1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   switch (Lex.getKind()) {
825   case lltok::kw_gv:
826     return ParseGVEntry(SummaryID);
827   case lltok::kw_module:
828     return ParseModuleEntry(SummaryID);
829   case lltok::kw_typeid:
830     return ParseTypeIdEntry(SummaryID);
831     break;
832   default:
833     return Error(Lex.getLoc(), "unexpected summary kind");
834   }
835   Lex.setIgnoreColonInIdentifiers(false);
836   return false;
837 }
838 
839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
840   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
841          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
842 }
843 
844 // If there was an explicit dso_local, update GV. In the absence of an explicit
845 // dso_local we keep the default value.
846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
847   if (DSOLocal)
848     GV.setDSOLocal(true);
849 }
850 
851 /// parseIndirectSymbol:
852 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
853 ///                     OptionalVisibility OptionalDLLStorageClass
854 ///                     OptionalThreadLocal OptionalUnnamedAddr
855 //                      'alias|ifunc' IndirectSymbol
856 ///
857 /// IndirectSymbol
858 ///   ::= TypeAndValue
859 ///
860 /// Everything through OptionalUnnamedAddr has already been parsed.
861 ///
862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
863                                    unsigned L, unsigned Visibility,
864                                    unsigned DLLStorageClass, bool DSOLocal,
865                                    GlobalVariable::ThreadLocalMode TLM,
866                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
867   bool IsAlias;
868   if (Lex.getKind() == lltok::kw_alias)
869     IsAlias = true;
870   else if (Lex.getKind() == lltok::kw_ifunc)
871     IsAlias = false;
872   else
873     llvm_unreachable("Not an alias or ifunc!");
874   Lex.Lex();
875 
876   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
877 
878   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
879     return Error(NameLoc, "invalid linkage type for alias");
880 
881   if (!isValidVisibilityForLinkage(Visibility, L))
882     return Error(NameLoc,
883                  "symbol with local linkage must have default visibility");
884 
885   Type *Ty;
886   LocTy ExplicitTypeLoc = Lex.getLoc();
887   if (ParseType(Ty) ||
888       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
889     return true;
890 
891   Constant *Aliasee;
892   LocTy AliaseeLoc = Lex.getLoc();
893   if (Lex.getKind() != lltok::kw_bitcast &&
894       Lex.getKind() != lltok::kw_getelementptr &&
895       Lex.getKind() != lltok::kw_addrspacecast &&
896       Lex.getKind() != lltok::kw_inttoptr) {
897     if (ParseGlobalTypeAndValue(Aliasee))
898       return true;
899   } else {
900     // The bitcast dest type is not present, it is implied by the dest type.
901     ValID ID;
902     if (ParseValID(ID))
903       return true;
904     if (ID.Kind != ValID::t_Constant)
905       return Error(AliaseeLoc, "invalid aliasee");
906     Aliasee = ID.ConstantVal;
907   }
908 
909   Type *AliaseeType = Aliasee->getType();
910   auto *PTy = dyn_cast<PointerType>(AliaseeType);
911   if (!PTy)
912     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
913   unsigned AddrSpace = PTy->getAddressSpace();
914 
915   if (IsAlias && Ty != PTy->getElementType())
916     return Error(
917         ExplicitTypeLoc,
918         "explicit pointee type doesn't match operand's pointee type");
919 
920   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
921     return Error(
922         ExplicitTypeLoc,
923         "explicit pointee type should be a function type");
924 
925   GlobalValue *GVal = nullptr;
926 
927   // See if the alias was forward referenced, if so, prepare to replace the
928   // forward reference.
929   if (!Name.empty()) {
930     GVal = M->getNamedValue(Name);
931     if (GVal) {
932       if (!ForwardRefVals.erase(Name))
933         return Error(NameLoc, "redefinition of global '@" + Name + "'");
934     }
935   } else {
936     auto I = ForwardRefValIDs.find(NumberedVals.size());
937     if (I != ForwardRefValIDs.end()) {
938       GVal = I->second.first;
939       ForwardRefValIDs.erase(I);
940     }
941   }
942 
943   // Okay, create the alias but do not insert it into the module yet.
944   std::unique_ptr<GlobalIndirectSymbol> GA;
945   if (IsAlias)
946     GA.reset(GlobalAlias::create(Ty, AddrSpace,
947                                  (GlobalValue::LinkageTypes)Linkage, Name,
948                                  Aliasee, /*Parent*/ nullptr));
949   else
950     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
951                                  (GlobalValue::LinkageTypes)Linkage, Name,
952                                  Aliasee, /*Parent*/ nullptr));
953   GA->setThreadLocalMode(TLM);
954   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956   GA->setUnnamedAddr(UnnamedAddr);
957   maybeSetDSOLocal(DSOLocal, *GA);
958 
959   if (Name.empty())
960     NumberedVals.push_back(GA.get());
961 
962   if (GVal) {
963     // Verify that types agree.
964     if (GVal->getType() != GA->getType())
965       return Error(
966           ExplicitTypeLoc,
967           "forward reference and definition of alias have different types");
968 
969     // If they agree, just RAUW the old value with the alias and remove the
970     // forward ref info.
971     GVal->replaceAllUsesWith(GA.get());
972     GVal->eraseFromParent();
973   }
974 
975   // Insert into the module, we know its name won't collide now.
976   if (IsAlias)
977     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
978   else
979     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
980   assert(GA->getName() == Name && "Should not be a name conflict!");
981 
982   // The module owns this now
983   GA.release();
984 
985   return false;
986 }
987 
988 /// ParseGlobal
989 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
990 ///       OptionalVisibility OptionalDLLStorageClass
991 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
992 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
993 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
994 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
995 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
996 ///       Const OptionalAttrs
997 ///
998 /// Everything up to and including OptionalUnnamedAddr has been parsed
999 /// already.
1000 ///
1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1002                            unsigned Linkage, bool HasLinkage,
1003                            unsigned Visibility, unsigned DLLStorageClass,
1004                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1005                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1006   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1007     return Error(NameLoc,
1008                  "symbol with local linkage must have default visibility");
1009 
1010   unsigned AddrSpace;
1011   bool IsConstant, IsExternallyInitialized;
1012   LocTy IsExternallyInitializedLoc;
1013   LocTy TyLoc;
1014 
1015   Type *Ty = nullptr;
1016   if (ParseOptionalAddrSpace(AddrSpace) ||
1017       ParseOptionalToken(lltok::kw_externally_initialized,
1018                          IsExternallyInitialized,
1019                          &IsExternallyInitializedLoc) ||
1020       ParseGlobalType(IsConstant) ||
1021       ParseType(Ty, TyLoc))
1022     return true;
1023 
1024   // If the linkage is specified and is external, then no initializer is
1025   // present.
1026   Constant *Init = nullptr;
1027   if (!HasLinkage ||
1028       !GlobalValue::isValidDeclarationLinkage(
1029           (GlobalValue::LinkageTypes)Linkage)) {
1030     if (ParseGlobalValue(Ty, Init))
1031       return true;
1032   }
1033 
1034   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1035     return Error(TyLoc, "invalid type for global variable");
1036 
1037   GlobalValue *GVal = nullptr;
1038 
1039   // See if the global was forward referenced, if so, use the global.
1040   if (!Name.empty()) {
1041     GVal = M->getNamedValue(Name);
1042     if (GVal) {
1043       if (!ForwardRefVals.erase(Name))
1044         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1045     }
1046   } else {
1047     auto I = ForwardRefValIDs.find(NumberedVals.size());
1048     if (I != ForwardRefValIDs.end()) {
1049       GVal = I->second.first;
1050       ForwardRefValIDs.erase(I);
1051     }
1052   }
1053 
1054   GlobalVariable *GV;
1055   if (!GVal) {
1056     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1057                             Name, nullptr, GlobalVariable::NotThreadLocal,
1058                             AddrSpace);
1059   } else {
1060     if (GVal->getValueType() != Ty)
1061       return Error(TyLoc,
1062             "forward reference and definition of global have different types");
1063 
1064     GV = cast<GlobalVariable>(GVal);
1065 
1066     // Move the forward-reference to the correct spot in the module.
1067     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1068   }
1069 
1070   if (Name.empty())
1071     NumberedVals.push_back(GV);
1072 
1073   // Set the parsed properties on the global.
1074   if (Init)
1075     GV->setInitializer(Init);
1076   GV->setConstant(IsConstant);
1077   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1078   maybeSetDSOLocal(DSOLocal, *GV);
1079   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1080   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1081   GV->setExternallyInitialized(IsExternallyInitialized);
1082   GV->setThreadLocalMode(TLM);
1083   GV->setUnnamedAddr(UnnamedAddr);
1084 
1085   // Parse attributes on the global.
1086   while (Lex.getKind() == lltok::comma) {
1087     Lex.Lex();
1088 
1089     if (Lex.getKind() == lltok::kw_section) {
1090       Lex.Lex();
1091       GV->setSection(Lex.getStrVal());
1092       if (ParseToken(lltok::StringConstant, "expected global section string"))
1093         return true;
1094     } else if (Lex.getKind() == lltok::kw_align) {
1095       unsigned Alignment;
1096       if (ParseOptionalAlignment(Alignment)) return true;
1097       GV->setAlignment(Alignment);
1098     } else if (Lex.getKind() == lltok::MetadataVar) {
1099       if (ParseGlobalObjectMetadataAttachment(*GV))
1100         return true;
1101     } else {
1102       Comdat *C;
1103       if (parseOptionalComdat(Name, C))
1104         return true;
1105       if (C)
1106         GV->setComdat(C);
1107       else
1108         return TokError("unknown global variable property!");
1109     }
1110   }
1111 
1112   AttrBuilder Attrs;
1113   LocTy BuiltinLoc;
1114   std::vector<unsigned> FwdRefAttrGrps;
1115   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1116     return true;
1117   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1118     GV->setAttributes(AttributeSet::get(Context, Attrs));
1119     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1120   }
1121 
1122   return false;
1123 }
1124 
1125 /// ParseUnnamedAttrGrp
1126 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1127 bool LLParser::ParseUnnamedAttrGrp() {
1128   assert(Lex.getKind() == lltok::kw_attributes);
1129   LocTy AttrGrpLoc = Lex.getLoc();
1130   Lex.Lex();
1131 
1132   if (Lex.getKind() != lltok::AttrGrpID)
1133     return TokError("expected attribute group id");
1134 
1135   unsigned VarID = Lex.getUIntVal();
1136   std::vector<unsigned> unused;
1137   LocTy BuiltinLoc;
1138   Lex.Lex();
1139 
1140   if (ParseToken(lltok::equal, "expected '=' here") ||
1141       ParseToken(lltok::lbrace, "expected '{' here") ||
1142       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1143                                  BuiltinLoc) ||
1144       ParseToken(lltok::rbrace, "expected end of attribute group"))
1145     return true;
1146 
1147   if (!NumberedAttrBuilders[VarID].hasAttributes())
1148     return Error(AttrGrpLoc, "attribute group has no attributes");
1149 
1150   return false;
1151 }
1152 
1153 /// ParseFnAttributeValuePairs
1154 ///   ::= <attr> | <attr> '=' <value>
1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1156                                           std::vector<unsigned> &FwdRefAttrGrps,
1157                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1158   bool HaveError = false;
1159 
1160   B.clear();
1161 
1162   while (true) {
1163     lltok::Kind Token = Lex.getKind();
1164     if (Token == lltok::kw_builtin)
1165       BuiltinLoc = Lex.getLoc();
1166     switch (Token) {
1167     default:
1168       if (!inAttrGrp) return HaveError;
1169       return Error(Lex.getLoc(), "unterminated attribute group");
1170     case lltok::rbrace:
1171       // Finished.
1172       return false;
1173 
1174     case lltok::AttrGrpID: {
1175       // Allow a function to reference an attribute group:
1176       //
1177       //   define void @foo() #1 { ... }
1178       if (inAttrGrp)
1179         HaveError |=
1180           Error(Lex.getLoc(),
1181               "cannot have an attribute group reference in an attribute group");
1182 
1183       unsigned AttrGrpNum = Lex.getUIntVal();
1184       if (inAttrGrp) break;
1185 
1186       // Save the reference to the attribute group. We'll fill it in later.
1187       FwdRefAttrGrps.push_back(AttrGrpNum);
1188       break;
1189     }
1190     // Target-dependent attributes:
1191     case lltok::StringConstant: {
1192       if (ParseStringAttribute(B))
1193         return true;
1194       continue;
1195     }
1196 
1197     // Target-independent attributes:
1198     case lltok::kw_align: {
1199       // As a hack, we allow function alignment to be initially parsed as an
1200       // attribute on a function declaration/definition or added to an attribute
1201       // group and later moved to the alignment field.
1202       unsigned Alignment;
1203       if (inAttrGrp) {
1204         Lex.Lex();
1205         if (ParseToken(lltok::equal, "expected '=' here") ||
1206             ParseUInt32(Alignment))
1207           return true;
1208       } else {
1209         if (ParseOptionalAlignment(Alignment))
1210           return true;
1211       }
1212       B.addAlignmentAttr(Alignment);
1213       continue;
1214     }
1215     case lltok::kw_alignstack: {
1216       unsigned Alignment;
1217       if (inAttrGrp) {
1218         Lex.Lex();
1219         if (ParseToken(lltok::equal, "expected '=' here") ||
1220             ParseUInt32(Alignment))
1221           return true;
1222       } else {
1223         if (ParseOptionalStackAlignment(Alignment))
1224           return true;
1225       }
1226       B.addStackAlignmentAttr(Alignment);
1227       continue;
1228     }
1229     case lltok::kw_allocsize: {
1230       unsigned ElemSizeArg;
1231       Optional<unsigned> NumElemsArg;
1232       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1233       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1234         return true;
1235       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1236       continue;
1237     }
1238     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1239     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1240     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1241     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1242     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1243     case lltok::kw_inaccessiblememonly:
1244       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1245     case lltok::kw_inaccessiblemem_or_argmemonly:
1246       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1247     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1248     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1249     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1250     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1251     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1252     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1253     case lltok::kw_noimplicitfloat:
1254       B.addAttribute(Attribute::NoImplicitFloat); break;
1255     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1256     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1257     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1258     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1259     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1260     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1261     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1262     case lltok::kw_optforfuzzing:
1263       B.addAttribute(Attribute::OptForFuzzing); break;
1264     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1265     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1266     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1267     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1268     case lltok::kw_returns_twice:
1269       B.addAttribute(Attribute::ReturnsTwice); break;
1270     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1271     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1272     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1273     case lltok::kw_sspstrong:
1274       B.addAttribute(Attribute::StackProtectStrong); break;
1275     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1276     case lltok::kw_shadowcallstack:
1277       B.addAttribute(Attribute::ShadowCallStack); break;
1278     case lltok::kw_sanitize_address:
1279       B.addAttribute(Attribute::SanitizeAddress); break;
1280     case lltok::kw_sanitize_hwaddress:
1281       B.addAttribute(Attribute::SanitizeHWAddress); break;
1282     case lltok::kw_sanitize_thread:
1283       B.addAttribute(Attribute::SanitizeThread); break;
1284     case lltok::kw_sanitize_memory:
1285       B.addAttribute(Attribute::SanitizeMemory); break;
1286     case lltok::kw_speculative_load_hardening:
1287       B.addAttribute(Attribute::SpeculativeLoadHardening);
1288       break;
1289     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1290     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1291     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1292 
1293     // Error handling.
1294     case lltok::kw_inreg:
1295     case lltok::kw_signext:
1296     case lltok::kw_zeroext:
1297       HaveError |=
1298         Error(Lex.getLoc(),
1299               "invalid use of attribute on a function");
1300       break;
1301     case lltok::kw_byval:
1302     case lltok::kw_dereferenceable:
1303     case lltok::kw_dereferenceable_or_null:
1304     case lltok::kw_inalloca:
1305     case lltok::kw_nest:
1306     case lltok::kw_noalias:
1307     case lltok::kw_nocapture:
1308     case lltok::kw_nonnull:
1309     case lltok::kw_returned:
1310     case lltok::kw_sret:
1311     case lltok::kw_swifterror:
1312     case lltok::kw_swiftself:
1313     case lltok::kw_immarg:
1314       HaveError |=
1315         Error(Lex.getLoc(),
1316               "invalid use of parameter-only attribute on a function");
1317       break;
1318     }
1319 
1320     Lex.Lex();
1321   }
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 // GlobalValue Reference/Resolution Routines.
1326 //===----------------------------------------------------------------------===//
1327 
1328 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1329                                               const std::string &Name) {
1330   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1331     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1332                             PTy->getAddressSpace(), Name, M);
1333   else
1334     return new GlobalVariable(*M, PTy->getElementType(), false,
1335                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1336                               nullptr, GlobalVariable::NotThreadLocal,
1337                               PTy->getAddressSpace());
1338 }
1339 
1340 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1341                                         Value *Val, bool IsCall) {
1342   if (Val->getType() == Ty)
1343     return Val;
1344   // For calls we also accept variables in the program address space.
1345   Type *SuggestedTy = Ty;
1346   if (IsCall && isa<PointerType>(Ty)) {
1347     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1348         M->getDataLayout().getProgramAddressSpace());
1349     SuggestedTy = TyInProgAS;
1350     if (Val->getType() == TyInProgAS)
1351       return Val;
1352   }
1353   if (Ty->isLabelTy())
1354     Error(Loc, "'" + Name + "' is not a basic block");
1355   else
1356     Error(Loc, "'" + Name + "' defined with type '" +
1357                    getTypeString(Val->getType()) + "' but expected '" +
1358                    getTypeString(SuggestedTy) + "'");
1359   return nullptr;
1360 }
1361 
1362 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1363 /// forward reference record if needed.  This can return null if the value
1364 /// exists but does not have the right type.
1365 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1366                                     LocTy Loc, bool IsCall) {
1367   PointerType *PTy = dyn_cast<PointerType>(Ty);
1368   if (!PTy) {
1369     Error(Loc, "global variable reference must have pointer type");
1370     return nullptr;
1371   }
1372 
1373   // Look this name up in the normal function symbol table.
1374   GlobalValue *Val =
1375     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1376 
1377   // If this is a forward reference for the value, see if we already created a
1378   // forward ref record.
1379   if (!Val) {
1380     auto I = ForwardRefVals.find(Name);
1381     if (I != ForwardRefVals.end())
1382       Val = I->second.first;
1383   }
1384 
1385   // If we have the value in the symbol table or fwd-ref table, return it.
1386   if (Val)
1387     return cast_or_null<GlobalValue>(
1388         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1389 
1390   // Otherwise, create a new forward reference for this value and remember it.
1391   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1392   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1393   return FwdVal;
1394 }
1395 
1396 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1397                                     bool IsCall) {
1398   PointerType *PTy = dyn_cast<PointerType>(Ty);
1399   if (!PTy) {
1400     Error(Loc, "global variable reference must have pointer type");
1401     return nullptr;
1402   }
1403 
1404   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1405 
1406   // If this is a forward reference for the value, see if we already created a
1407   // forward ref record.
1408   if (!Val) {
1409     auto I = ForwardRefValIDs.find(ID);
1410     if (I != ForwardRefValIDs.end())
1411       Val = I->second.first;
1412   }
1413 
1414   // If we have the value in the symbol table or fwd-ref table, return it.
1415   if (Val)
1416     return cast_or_null<GlobalValue>(
1417         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1418 
1419   // Otherwise, create a new forward reference for this value and remember it.
1420   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1421   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1422   return FwdVal;
1423 }
1424 
1425 //===----------------------------------------------------------------------===//
1426 // Comdat Reference/Resolution Routines.
1427 //===----------------------------------------------------------------------===//
1428 
1429 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1430   // Look this name up in the comdat symbol table.
1431   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1432   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1433   if (I != ComdatSymTab.end())
1434     return &I->second;
1435 
1436   // Otherwise, create a new forward reference for this value and remember it.
1437   Comdat *C = M->getOrInsertComdat(Name);
1438   ForwardRefComdats[Name] = Loc;
1439   return C;
1440 }
1441 
1442 //===----------------------------------------------------------------------===//
1443 // Helper Routines.
1444 //===----------------------------------------------------------------------===//
1445 
1446 /// ParseToken - If the current token has the specified kind, eat it and return
1447 /// success.  Otherwise, emit the specified error and return failure.
1448 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1449   if (Lex.getKind() != T)
1450     return TokError(ErrMsg);
1451   Lex.Lex();
1452   return false;
1453 }
1454 
1455 /// ParseStringConstant
1456 ///   ::= StringConstant
1457 bool LLParser::ParseStringConstant(std::string &Result) {
1458   if (Lex.getKind() != lltok::StringConstant)
1459     return TokError("expected string constant");
1460   Result = Lex.getStrVal();
1461   Lex.Lex();
1462   return false;
1463 }
1464 
1465 /// ParseUInt32
1466 ///   ::= uint32
1467 bool LLParser::ParseUInt32(uint32_t &Val) {
1468   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1469     return TokError("expected integer");
1470   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1471   if (Val64 != unsigned(Val64))
1472     return TokError("expected 32-bit integer (too large)");
1473   Val = Val64;
1474   Lex.Lex();
1475   return false;
1476 }
1477 
1478 /// ParseUInt64
1479 ///   ::= uint64
1480 bool LLParser::ParseUInt64(uint64_t &Val) {
1481   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1482     return TokError("expected integer");
1483   Val = Lex.getAPSIntVal().getLimitedValue();
1484   Lex.Lex();
1485   return false;
1486 }
1487 
1488 /// ParseTLSModel
1489 ///   := 'localdynamic'
1490 ///   := 'initialexec'
1491 ///   := 'localexec'
1492 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1493   switch (Lex.getKind()) {
1494     default:
1495       return TokError("expected localdynamic, initialexec or localexec");
1496     case lltok::kw_localdynamic:
1497       TLM = GlobalVariable::LocalDynamicTLSModel;
1498       break;
1499     case lltok::kw_initialexec:
1500       TLM = GlobalVariable::InitialExecTLSModel;
1501       break;
1502     case lltok::kw_localexec:
1503       TLM = GlobalVariable::LocalExecTLSModel;
1504       break;
1505   }
1506 
1507   Lex.Lex();
1508   return false;
1509 }
1510 
1511 /// ParseOptionalThreadLocal
1512 ///   := /*empty*/
1513 ///   := 'thread_local'
1514 ///   := 'thread_local' '(' tlsmodel ')'
1515 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1516   TLM = GlobalVariable::NotThreadLocal;
1517   if (!EatIfPresent(lltok::kw_thread_local))
1518     return false;
1519 
1520   TLM = GlobalVariable::GeneralDynamicTLSModel;
1521   if (Lex.getKind() == lltok::lparen) {
1522     Lex.Lex();
1523     return ParseTLSModel(TLM) ||
1524       ParseToken(lltok::rparen, "expected ')' after thread local model");
1525   }
1526   return false;
1527 }
1528 
1529 /// ParseOptionalAddrSpace
1530 ///   := /*empty*/
1531 ///   := 'addrspace' '(' uint32 ')'
1532 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1533   AddrSpace = DefaultAS;
1534   if (!EatIfPresent(lltok::kw_addrspace))
1535     return false;
1536   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1537          ParseUInt32(AddrSpace) ||
1538          ParseToken(lltok::rparen, "expected ')' in address space");
1539 }
1540 
1541 /// ParseStringAttribute
1542 ///   := StringConstant
1543 ///   := StringConstant '=' StringConstant
1544 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1545   std::string Attr = Lex.getStrVal();
1546   Lex.Lex();
1547   std::string Val;
1548   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1549     return true;
1550   B.addAttribute(Attr, Val);
1551   return false;
1552 }
1553 
1554 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1555 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1556   bool HaveError = false;
1557 
1558   B.clear();
1559 
1560   while (true) {
1561     lltok::Kind Token = Lex.getKind();
1562     switch (Token) {
1563     default:  // End of attributes.
1564       return HaveError;
1565     case lltok::StringConstant: {
1566       if (ParseStringAttribute(B))
1567         return true;
1568       continue;
1569     }
1570     case lltok::kw_align: {
1571       unsigned Alignment;
1572       if (ParseOptionalAlignment(Alignment))
1573         return true;
1574       B.addAlignmentAttr(Alignment);
1575       continue;
1576     }
1577     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1578     case lltok::kw_dereferenceable: {
1579       uint64_t Bytes;
1580       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1581         return true;
1582       B.addDereferenceableAttr(Bytes);
1583       continue;
1584     }
1585     case lltok::kw_dereferenceable_or_null: {
1586       uint64_t Bytes;
1587       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1588         return true;
1589       B.addDereferenceableOrNullAttr(Bytes);
1590       continue;
1591     }
1592     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1593     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1594     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1595     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1596     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1597     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1598     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1599     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1600     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1601     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1602     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1603     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1604     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1605     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1606     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1607     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1608 
1609     case lltok::kw_alignstack:
1610     case lltok::kw_alwaysinline:
1611     case lltok::kw_argmemonly:
1612     case lltok::kw_builtin:
1613     case lltok::kw_inlinehint:
1614     case lltok::kw_jumptable:
1615     case lltok::kw_minsize:
1616     case lltok::kw_naked:
1617     case lltok::kw_nobuiltin:
1618     case lltok::kw_noduplicate:
1619     case lltok::kw_noimplicitfloat:
1620     case lltok::kw_noinline:
1621     case lltok::kw_nonlazybind:
1622     case lltok::kw_noredzone:
1623     case lltok::kw_noreturn:
1624     case lltok::kw_nocf_check:
1625     case lltok::kw_nounwind:
1626     case lltok::kw_optforfuzzing:
1627     case lltok::kw_optnone:
1628     case lltok::kw_optsize:
1629     case lltok::kw_returns_twice:
1630     case lltok::kw_sanitize_address:
1631     case lltok::kw_sanitize_hwaddress:
1632     case lltok::kw_sanitize_memory:
1633     case lltok::kw_sanitize_thread:
1634     case lltok::kw_speculative_load_hardening:
1635     case lltok::kw_ssp:
1636     case lltok::kw_sspreq:
1637     case lltok::kw_sspstrong:
1638     case lltok::kw_safestack:
1639     case lltok::kw_shadowcallstack:
1640     case lltok::kw_strictfp:
1641     case lltok::kw_uwtable:
1642       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1643       break;
1644     }
1645 
1646     Lex.Lex();
1647   }
1648 }
1649 
1650 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1651 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1652   bool HaveError = false;
1653 
1654   B.clear();
1655 
1656   while (true) {
1657     lltok::Kind Token = Lex.getKind();
1658     switch (Token) {
1659     default:  // End of attributes.
1660       return HaveError;
1661     case lltok::StringConstant: {
1662       if (ParseStringAttribute(B))
1663         return true;
1664       continue;
1665     }
1666     case lltok::kw_dereferenceable: {
1667       uint64_t Bytes;
1668       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1669         return true;
1670       B.addDereferenceableAttr(Bytes);
1671       continue;
1672     }
1673     case lltok::kw_dereferenceable_or_null: {
1674       uint64_t Bytes;
1675       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1676         return true;
1677       B.addDereferenceableOrNullAttr(Bytes);
1678       continue;
1679     }
1680     case lltok::kw_align: {
1681       unsigned Alignment;
1682       if (ParseOptionalAlignment(Alignment))
1683         return true;
1684       B.addAlignmentAttr(Alignment);
1685       continue;
1686     }
1687     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1688     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1689     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1690     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1691     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1692 
1693     // Error handling.
1694     case lltok::kw_byval:
1695     case lltok::kw_inalloca:
1696     case lltok::kw_nest:
1697     case lltok::kw_nocapture:
1698     case lltok::kw_returned:
1699     case lltok::kw_sret:
1700     case lltok::kw_swifterror:
1701     case lltok::kw_swiftself:
1702     case lltok::kw_immarg:
1703       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1704       break;
1705 
1706     case lltok::kw_alignstack:
1707     case lltok::kw_alwaysinline:
1708     case lltok::kw_argmemonly:
1709     case lltok::kw_builtin:
1710     case lltok::kw_cold:
1711     case lltok::kw_inlinehint:
1712     case lltok::kw_jumptable:
1713     case lltok::kw_minsize:
1714     case lltok::kw_naked:
1715     case lltok::kw_nobuiltin:
1716     case lltok::kw_noduplicate:
1717     case lltok::kw_noimplicitfloat:
1718     case lltok::kw_noinline:
1719     case lltok::kw_nonlazybind:
1720     case lltok::kw_noredzone:
1721     case lltok::kw_noreturn:
1722     case lltok::kw_nocf_check:
1723     case lltok::kw_nounwind:
1724     case lltok::kw_optforfuzzing:
1725     case lltok::kw_optnone:
1726     case lltok::kw_optsize:
1727     case lltok::kw_returns_twice:
1728     case lltok::kw_sanitize_address:
1729     case lltok::kw_sanitize_hwaddress:
1730     case lltok::kw_sanitize_memory:
1731     case lltok::kw_sanitize_thread:
1732     case lltok::kw_speculative_load_hardening:
1733     case lltok::kw_ssp:
1734     case lltok::kw_sspreq:
1735     case lltok::kw_sspstrong:
1736     case lltok::kw_safestack:
1737     case lltok::kw_shadowcallstack:
1738     case lltok::kw_strictfp:
1739     case lltok::kw_uwtable:
1740       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1741       break;
1742 
1743     case lltok::kw_readnone:
1744     case lltok::kw_readonly:
1745       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1746     }
1747 
1748     Lex.Lex();
1749   }
1750 }
1751 
1752 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1753   HasLinkage = true;
1754   switch (Kind) {
1755   default:
1756     HasLinkage = false;
1757     return GlobalValue::ExternalLinkage;
1758   case lltok::kw_private:
1759     return GlobalValue::PrivateLinkage;
1760   case lltok::kw_internal:
1761     return GlobalValue::InternalLinkage;
1762   case lltok::kw_weak:
1763     return GlobalValue::WeakAnyLinkage;
1764   case lltok::kw_weak_odr:
1765     return GlobalValue::WeakODRLinkage;
1766   case lltok::kw_linkonce:
1767     return GlobalValue::LinkOnceAnyLinkage;
1768   case lltok::kw_linkonce_odr:
1769     return GlobalValue::LinkOnceODRLinkage;
1770   case lltok::kw_available_externally:
1771     return GlobalValue::AvailableExternallyLinkage;
1772   case lltok::kw_appending:
1773     return GlobalValue::AppendingLinkage;
1774   case lltok::kw_common:
1775     return GlobalValue::CommonLinkage;
1776   case lltok::kw_extern_weak:
1777     return GlobalValue::ExternalWeakLinkage;
1778   case lltok::kw_external:
1779     return GlobalValue::ExternalLinkage;
1780   }
1781 }
1782 
1783 /// ParseOptionalLinkage
1784 ///   ::= /*empty*/
1785 ///   ::= 'private'
1786 ///   ::= 'internal'
1787 ///   ::= 'weak'
1788 ///   ::= 'weak_odr'
1789 ///   ::= 'linkonce'
1790 ///   ::= 'linkonce_odr'
1791 ///   ::= 'available_externally'
1792 ///   ::= 'appending'
1793 ///   ::= 'common'
1794 ///   ::= 'extern_weak'
1795 ///   ::= 'external'
1796 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1797                                     unsigned &Visibility,
1798                                     unsigned &DLLStorageClass,
1799                                     bool &DSOLocal) {
1800   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1801   if (HasLinkage)
1802     Lex.Lex();
1803   ParseOptionalDSOLocal(DSOLocal);
1804   ParseOptionalVisibility(Visibility);
1805   ParseOptionalDLLStorageClass(DLLStorageClass);
1806 
1807   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1808     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1809   }
1810 
1811   return false;
1812 }
1813 
1814 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1815   switch (Lex.getKind()) {
1816   default:
1817     DSOLocal = false;
1818     break;
1819   case lltok::kw_dso_local:
1820     DSOLocal = true;
1821     Lex.Lex();
1822     break;
1823   case lltok::kw_dso_preemptable:
1824     DSOLocal = false;
1825     Lex.Lex();
1826     break;
1827   }
1828 }
1829 
1830 /// ParseOptionalVisibility
1831 ///   ::= /*empty*/
1832 ///   ::= 'default'
1833 ///   ::= 'hidden'
1834 ///   ::= 'protected'
1835 ///
1836 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1837   switch (Lex.getKind()) {
1838   default:
1839     Res = GlobalValue::DefaultVisibility;
1840     return;
1841   case lltok::kw_default:
1842     Res = GlobalValue::DefaultVisibility;
1843     break;
1844   case lltok::kw_hidden:
1845     Res = GlobalValue::HiddenVisibility;
1846     break;
1847   case lltok::kw_protected:
1848     Res = GlobalValue::ProtectedVisibility;
1849     break;
1850   }
1851   Lex.Lex();
1852 }
1853 
1854 /// ParseOptionalDLLStorageClass
1855 ///   ::= /*empty*/
1856 ///   ::= 'dllimport'
1857 ///   ::= 'dllexport'
1858 ///
1859 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1860   switch (Lex.getKind()) {
1861   default:
1862     Res = GlobalValue::DefaultStorageClass;
1863     return;
1864   case lltok::kw_dllimport:
1865     Res = GlobalValue::DLLImportStorageClass;
1866     break;
1867   case lltok::kw_dllexport:
1868     Res = GlobalValue::DLLExportStorageClass;
1869     break;
1870   }
1871   Lex.Lex();
1872 }
1873 
1874 /// ParseOptionalCallingConv
1875 ///   ::= /*empty*/
1876 ///   ::= 'ccc'
1877 ///   ::= 'fastcc'
1878 ///   ::= 'intel_ocl_bicc'
1879 ///   ::= 'coldcc'
1880 ///   ::= 'x86_stdcallcc'
1881 ///   ::= 'x86_fastcallcc'
1882 ///   ::= 'x86_thiscallcc'
1883 ///   ::= 'x86_vectorcallcc'
1884 ///   ::= 'arm_apcscc'
1885 ///   ::= 'arm_aapcscc'
1886 ///   ::= 'arm_aapcs_vfpcc'
1887 ///   ::= 'aarch64_vector_pcs'
1888 ///   ::= 'msp430_intrcc'
1889 ///   ::= 'avr_intrcc'
1890 ///   ::= 'avr_signalcc'
1891 ///   ::= 'ptx_kernel'
1892 ///   ::= 'ptx_device'
1893 ///   ::= 'spir_func'
1894 ///   ::= 'spir_kernel'
1895 ///   ::= 'x86_64_sysvcc'
1896 ///   ::= 'win64cc'
1897 ///   ::= 'webkit_jscc'
1898 ///   ::= 'anyregcc'
1899 ///   ::= 'preserve_mostcc'
1900 ///   ::= 'preserve_allcc'
1901 ///   ::= 'ghccc'
1902 ///   ::= 'swiftcc'
1903 ///   ::= 'x86_intrcc'
1904 ///   ::= 'hhvmcc'
1905 ///   ::= 'hhvm_ccc'
1906 ///   ::= 'cxx_fast_tlscc'
1907 ///   ::= 'amdgpu_vs'
1908 ///   ::= 'amdgpu_ls'
1909 ///   ::= 'amdgpu_hs'
1910 ///   ::= 'amdgpu_es'
1911 ///   ::= 'amdgpu_gs'
1912 ///   ::= 'amdgpu_ps'
1913 ///   ::= 'amdgpu_cs'
1914 ///   ::= 'amdgpu_kernel'
1915 ///   ::= 'cc' UINT
1916 ///
1917 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1918   switch (Lex.getKind()) {
1919   default:                       CC = CallingConv::C; return false;
1920   case lltok::kw_ccc:            CC = CallingConv::C; break;
1921   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1922   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1923   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1924   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1925   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1926   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1927   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1928   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1929   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1930   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1931   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1932   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1933   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1934   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1935   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1936   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1937   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1938   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1939   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1940   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1941   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1942   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1943   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1944   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1945   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1946   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1947   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1948   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1949   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1950   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1951   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1952   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1953   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1954   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1955   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1956   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1957   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1958   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1959   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1960   case lltok::kw_cc: {
1961       Lex.Lex();
1962       return ParseUInt32(CC);
1963     }
1964   }
1965 
1966   Lex.Lex();
1967   return false;
1968 }
1969 
1970 /// ParseMetadataAttachment
1971 ///   ::= !dbg !42
1972 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1973   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1974 
1975   std::string Name = Lex.getStrVal();
1976   Kind = M->getMDKindID(Name);
1977   Lex.Lex();
1978 
1979   return ParseMDNode(MD);
1980 }
1981 
1982 /// ParseInstructionMetadata
1983 ///   ::= !dbg !42 (',' !dbg !57)*
1984 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1985   do {
1986     if (Lex.getKind() != lltok::MetadataVar)
1987       return TokError("expected metadata after comma");
1988 
1989     unsigned MDK;
1990     MDNode *N;
1991     if (ParseMetadataAttachment(MDK, N))
1992       return true;
1993 
1994     Inst.setMetadata(MDK, N);
1995     if (MDK == LLVMContext::MD_tbaa)
1996       InstsWithTBAATag.push_back(&Inst);
1997 
1998     // If this is the end of the list, we're done.
1999   } while (EatIfPresent(lltok::comma));
2000   return false;
2001 }
2002 
2003 /// ParseGlobalObjectMetadataAttachment
2004 ///   ::= !dbg !57
2005 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2006   unsigned MDK;
2007   MDNode *N;
2008   if (ParseMetadataAttachment(MDK, N))
2009     return true;
2010 
2011   GO.addMetadata(MDK, *N);
2012   return false;
2013 }
2014 
2015 /// ParseOptionalFunctionMetadata
2016 ///   ::= (!dbg !57)*
2017 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2018   while (Lex.getKind() == lltok::MetadataVar)
2019     if (ParseGlobalObjectMetadataAttachment(F))
2020       return true;
2021   return false;
2022 }
2023 
2024 /// ParseOptionalAlignment
2025 ///   ::= /* empty */
2026 ///   ::= 'align' 4
2027 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2028   Alignment = 0;
2029   if (!EatIfPresent(lltok::kw_align))
2030     return false;
2031   LocTy AlignLoc = Lex.getLoc();
2032   if (ParseUInt32(Alignment)) return true;
2033   if (!isPowerOf2_32(Alignment))
2034     return Error(AlignLoc, "alignment is not a power of two");
2035   if (Alignment > Value::MaximumAlignment)
2036     return Error(AlignLoc, "huge alignments are not supported yet");
2037   return false;
2038 }
2039 
2040 /// ParseOptionalDerefAttrBytes
2041 ///   ::= /* empty */
2042 ///   ::= AttrKind '(' 4 ')'
2043 ///
2044 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2045 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2046                                            uint64_t &Bytes) {
2047   assert((AttrKind == lltok::kw_dereferenceable ||
2048           AttrKind == lltok::kw_dereferenceable_or_null) &&
2049          "contract!");
2050 
2051   Bytes = 0;
2052   if (!EatIfPresent(AttrKind))
2053     return false;
2054   LocTy ParenLoc = Lex.getLoc();
2055   if (!EatIfPresent(lltok::lparen))
2056     return Error(ParenLoc, "expected '('");
2057   LocTy DerefLoc = Lex.getLoc();
2058   if (ParseUInt64(Bytes)) return true;
2059   ParenLoc = Lex.getLoc();
2060   if (!EatIfPresent(lltok::rparen))
2061     return Error(ParenLoc, "expected ')'");
2062   if (!Bytes)
2063     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2064   return false;
2065 }
2066 
2067 /// ParseOptionalCommaAlign
2068 ///   ::=
2069 ///   ::= ',' align 4
2070 ///
2071 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2072 /// end.
2073 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2074                                        bool &AteExtraComma) {
2075   AteExtraComma = false;
2076   while (EatIfPresent(lltok::comma)) {
2077     // Metadata at the end is an early exit.
2078     if (Lex.getKind() == lltok::MetadataVar) {
2079       AteExtraComma = true;
2080       return false;
2081     }
2082 
2083     if (Lex.getKind() != lltok::kw_align)
2084       return Error(Lex.getLoc(), "expected metadata or 'align'");
2085 
2086     if (ParseOptionalAlignment(Alignment)) return true;
2087   }
2088 
2089   return false;
2090 }
2091 
2092 /// ParseOptionalCommaAddrSpace
2093 ///   ::=
2094 ///   ::= ',' addrspace(1)
2095 ///
2096 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2097 /// end.
2098 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2099                                            LocTy &Loc,
2100                                            bool &AteExtraComma) {
2101   AteExtraComma = false;
2102   while (EatIfPresent(lltok::comma)) {
2103     // Metadata at the end is an early exit.
2104     if (Lex.getKind() == lltok::MetadataVar) {
2105       AteExtraComma = true;
2106       return false;
2107     }
2108 
2109     Loc = Lex.getLoc();
2110     if (Lex.getKind() != lltok::kw_addrspace)
2111       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2112 
2113     if (ParseOptionalAddrSpace(AddrSpace))
2114       return true;
2115   }
2116 
2117   return false;
2118 }
2119 
2120 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2121                                        Optional<unsigned> &HowManyArg) {
2122   Lex.Lex();
2123 
2124   auto StartParen = Lex.getLoc();
2125   if (!EatIfPresent(lltok::lparen))
2126     return Error(StartParen, "expected '('");
2127 
2128   if (ParseUInt32(BaseSizeArg))
2129     return true;
2130 
2131   if (EatIfPresent(lltok::comma)) {
2132     auto HowManyAt = Lex.getLoc();
2133     unsigned HowMany;
2134     if (ParseUInt32(HowMany))
2135       return true;
2136     if (HowMany == BaseSizeArg)
2137       return Error(HowManyAt,
2138                    "'allocsize' indices can't refer to the same parameter");
2139     HowManyArg = HowMany;
2140   } else
2141     HowManyArg = None;
2142 
2143   auto EndParen = Lex.getLoc();
2144   if (!EatIfPresent(lltok::rparen))
2145     return Error(EndParen, "expected ')'");
2146   return false;
2147 }
2148 
2149 /// ParseScopeAndOrdering
2150 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2151 ///   else: ::=
2152 ///
2153 /// This sets Scope and Ordering to the parsed values.
2154 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2155                                      AtomicOrdering &Ordering) {
2156   if (!isAtomic)
2157     return false;
2158 
2159   return ParseScope(SSID) || ParseOrdering(Ordering);
2160 }
2161 
2162 /// ParseScope
2163 ///   ::= syncscope("singlethread" | "<target scope>")?
2164 ///
2165 /// This sets synchronization scope ID to the ID of the parsed value.
2166 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2167   SSID = SyncScope::System;
2168   if (EatIfPresent(lltok::kw_syncscope)) {
2169     auto StartParenAt = Lex.getLoc();
2170     if (!EatIfPresent(lltok::lparen))
2171       return Error(StartParenAt, "Expected '(' in syncscope");
2172 
2173     std::string SSN;
2174     auto SSNAt = Lex.getLoc();
2175     if (ParseStringConstant(SSN))
2176       return Error(SSNAt, "Expected synchronization scope name");
2177 
2178     auto EndParenAt = Lex.getLoc();
2179     if (!EatIfPresent(lltok::rparen))
2180       return Error(EndParenAt, "Expected ')' in syncscope");
2181 
2182     SSID = Context.getOrInsertSyncScopeID(SSN);
2183   }
2184 
2185   return false;
2186 }
2187 
2188 /// ParseOrdering
2189 ///   ::= AtomicOrdering
2190 ///
2191 /// This sets Ordering to the parsed value.
2192 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2193   switch (Lex.getKind()) {
2194   default: return TokError("Expected ordering on atomic instruction");
2195   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2196   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2197   // Not specified yet:
2198   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2199   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2200   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2201   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2202   case lltok::kw_seq_cst:
2203     Ordering = AtomicOrdering::SequentiallyConsistent;
2204     break;
2205   }
2206   Lex.Lex();
2207   return false;
2208 }
2209 
2210 /// ParseOptionalStackAlignment
2211 ///   ::= /* empty */
2212 ///   ::= 'alignstack' '(' 4 ')'
2213 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2214   Alignment = 0;
2215   if (!EatIfPresent(lltok::kw_alignstack))
2216     return false;
2217   LocTy ParenLoc = Lex.getLoc();
2218   if (!EatIfPresent(lltok::lparen))
2219     return Error(ParenLoc, "expected '('");
2220   LocTy AlignLoc = Lex.getLoc();
2221   if (ParseUInt32(Alignment)) return true;
2222   ParenLoc = Lex.getLoc();
2223   if (!EatIfPresent(lltok::rparen))
2224     return Error(ParenLoc, "expected ')'");
2225   if (!isPowerOf2_32(Alignment))
2226     return Error(AlignLoc, "stack alignment is not a power of two");
2227   return false;
2228 }
2229 
2230 /// ParseIndexList - This parses the index list for an insert/extractvalue
2231 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2232 /// comma at the end of the line and find that it is followed by metadata.
2233 /// Clients that don't allow metadata can call the version of this function that
2234 /// only takes one argument.
2235 ///
2236 /// ParseIndexList
2237 ///    ::=  (',' uint32)+
2238 ///
2239 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2240                               bool &AteExtraComma) {
2241   AteExtraComma = false;
2242 
2243   if (Lex.getKind() != lltok::comma)
2244     return TokError("expected ',' as start of index list");
2245 
2246   while (EatIfPresent(lltok::comma)) {
2247     if (Lex.getKind() == lltok::MetadataVar) {
2248       if (Indices.empty()) return TokError("expected index");
2249       AteExtraComma = true;
2250       return false;
2251     }
2252     unsigned Idx = 0;
2253     if (ParseUInt32(Idx)) return true;
2254     Indices.push_back(Idx);
2255   }
2256 
2257   return false;
2258 }
2259 
2260 //===----------------------------------------------------------------------===//
2261 // Type Parsing.
2262 //===----------------------------------------------------------------------===//
2263 
2264 /// ParseType - Parse a type.
2265 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2266   SMLoc TypeLoc = Lex.getLoc();
2267   switch (Lex.getKind()) {
2268   default:
2269     return TokError(Msg);
2270   case lltok::Type:
2271     // Type ::= 'float' | 'void' (etc)
2272     Result = Lex.getTyVal();
2273     Lex.Lex();
2274     break;
2275   case lltok::lbrace:
2276     // Type ::= StructType
2277     if (ParseAnonStructType(Result, false))
2278       return true;
2279     break;
2280   case lltok::lsquare:
2281     // Type ::= '[' ... ']'
2282     Lex.Lex(); // eat the lsquare.
2283     if (ParseArrayVectorType(Result, false))
2284       return true;
2285     break;
2286   case lltok::less: // Either vector or packed struct.
2287     // Type ::= '<' ... '>'
2288     Lex.Lex();
2289     if (Lex.getKind() == lltok::lbrace) {
2290       if (ParseAnonStructType(Result, true) ||
2291           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2292         return true;
2293     } else if (ParseArrayVectorType(Result, true))
2294       return true;
2295     break;
2296   case lltok::LocalVar: {
2297     // Type ::= %foo
2298     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2299 
2300     // If the type hasn't been defined yet, create a forward definition and
2301     // remember where that forward def'n was seen (in case it never is defined).
2302     if (!Entry.first) {
2303       Entry.first = StructType::create(Context, Lex.getStrVal());
2304       Entry.second = Lex.getLoc();
2305     }
2306     Result = Entry.first;
2307     Lex.Lex();
2308     break;
2309   }
2310 
2311   case lltok::LocalVarID: {
2312     // Type ::= %4
2313     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2314 
2315     // If the type hasn't been defined yet, create a forward definition and
2316     // remember where that forward def'n was seen (in case it never is defined).
2317     if (!Entry.first) {
2318       Entry.first = StructType::create(Context);
2319       Entry.second = Lex.getLoc();
2320     }
2321     Result = Entry.first;
2322     Lex.Lex();
2323     break;
2324   }
2325   }
2326 
2327   // Parse the type suffixes.
2328   while (true) {
2329     switch (Lex.getKind()) {
2330     // End of type.
2331     default:
2332       if (!AllowVoid && Result->isVoidTy())
2333         return Error(TypeLoc, "void type only allowed for function results");
2334       return false;
2335 
2336     // Type ::= Type '*'
2337     case lltok::star:
2338       if (Result->isLabelTy())
2339         return TokError("basic block pointers are invalid");
2340       if (Result->isVoidTy())
2341         return TokError("pointers to void are invalid - use i8* instead");
2342       if (!PointerType::isValidElementType(Result))
2343         return TokError("pointer to this type is invalid");
2344       Result = PointerType::getUnqual(Result);
2345       Lex.Lex();
2346       break;
2347 
2348     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2349     case lltok::kw_addrspace: {
2350       if (Result->isLabelTy())
2351         return TokError("basic block pointers are invalid");
2352       if (Result->isVoidTy())
2353         return TokError("pointers to void are invalid; use i8* instead");
2354       if (!PointerType::isValidElementType(Result))
2355         return TokError("pointer to this type is invalid");
2356       unsigned AddrSpace;
2357       if (ParseOptionalAddrSpace(AddrSpace) ||
2358           ParseToken(lltok::star, "expected '*' in address space"))
2359         return true;
2360 
2361       Result = PointerType::get(Result, AddrSpace);
2362       break;
2363     }
2364 
2365     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2366     case lltok::lparen:
2367       if (ParseFunctionType(Result))
2368         return true;
2369       break;
2370     }
2371   }
2372 }
2373 
2374 /// ParseParameterList
2375 ///    ::= '(' ')'
2376 ///    ::= '(' Arg (',' Arg)* ')'
2377 ///  Arg
2378 ///    ::= Type OptionalAttributes Value OptionalAttributes
2379 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2380                                   PerFunctionState &PFS, bool IsMustTailCall,
2381                                   bool InVarArgsFunc) {
2382   if (ParseToken(lltok::lparen, "expected '(' in call"))
2383     return true;
2384 
2385   while (Lex.getKind() != lltok::rparen) {
2386     // If this isn't the first argument, we need a comma.
2387     if (!ArgList.empty() &&
2388         ParseToken(lltok::comma, "expected ',' in argument list"))
2389       return true;
2390 
2391     // Parse an ellipsis if this is a musttail call in a variadic function.
2392     if (Lex.getKind() == lltok::dotdotdot) {
2393       const char *Msg = "unexpected ellipsis in argument list for ";
2394       if (!IsMustTailCall)
2395         return TokError(Twine(Msg) + "non-musttail call");
2396       if (!InVarArgsFunc)
2397         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2398       Lex.Lex();  // Lex the '...', it is purely for readability.
2399       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2400     }
2401 
2402     // Parse the argument.
2403     LocTy ArgLoc;
2404     Type *ArgTy = nullptr;
2405     AttrBuilder ArgAttrs;
2406     Value *V;
2407     if (ParseType(ArgTy, ArgLoc))
2408       return true;
2409 
2410     if (ArgTy->isMetadataTy()) {
2411       if (ParseMetadataAsValue(V, PFS))
2412         return true;
2413     } else {
2414       // Otherwise, handle normal operands.
2415       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2416         return true;
2417     }
2418     ArgList.push_back(ParamInfo(
2419         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2420   }
2421 
2422   if (IsMustTailCall && InVarArgsFunc)
2423     return TokError("expected '...' at end of argument list for musttail call "
2424                     "in varargs function");
2425 
2426   Lex.Lex();  // Lex the ')'.
2427   return false;
2428 }
2429 
2430 /// ParseOptionalOperandBundles
2431 ///    ::= /*empty*/
2432 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2433 ///
2434 /// OperandBundle
2435 ///    ::= bundle-tag '(' ')'
2436 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2437 ///
2438 /// bundle-tag ::= String Constant
2439 bool LLParser::ParseOptionalOperandBundles(
2440     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2441   LocTy BeginLoc = Lex.getLoc();
2442   if (!EatIfPresent(lltok::lsquare))
2443     return false;
2444 
2445   while (Lex.getKind() != lltok::rsquare) {
2446     // If this isn't the first operand bundle, we need a comma.
2447     if (!BundleList.empty() &&
2448         ParseToken(lltok::comma, "expected ',' in input list"))
2449       return true;
2450 
2451     std::string Tag;
2452     if (ParseStringConstant(Tag))
2453       return true;
2454 
2455     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2456       return true;
2457 
2458     std::vector<Value *> Inputs;
2459     while (Lex.getKind() != lltok::rparen) {
2460       // If this isn't the first input, we need a comma.
2461       if (!Inputs.empty() &&
2462           ParseToken(lltok::comma, "expected ',' in input list"))
2463         return true;
2464 
2465       Type *Ty = nullptr;
2466       Value *Input = nullptr;
2467       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2468         return true;
2469       Inputs.push_back(Input);
2470     }
2471 
2472     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2473 
2474     Lex.Lex(); // Lex the ')'.
2475   }
2476 
2477   if (BundleList.empty())
2478     return Error(BeginLoc, "operand bundle set must not be empty");
2479 
2480   Lex.Lex(); // Lex the ']'.
2481   return false;
2482 }
2483 
2484 /// ParseArgumentList - Parse the argument list for a function type or function
2485 /// prototype.
2486 ///   ::= '(' ArgTypeListI ')'
2487 /// ArgTypeListI
2488 ///   ::= /*empty*/
2489 ///   ::= '...'
2490 ///   ::= ArgTypeList ',' '...'
2491 ///   ::= ArgType (',' ArgType)*
2492 ///
2493 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2494                                  bool &isVarArg){
2495   isVarArg = false;
2496   assert(Lex.getKind() == lltok::lparen);
2497   Lex.Lex(); // eat the (.
2498 
2499   if (Lex.getKind() == lltok::rparen) {
2500     // empty
2501   } else if (Lex.getKind() == lltok::dotdotdot) {
2502     isVarArg = true;
2503     Lex.Lex();
2504   } else {
2505     LocTy TypeLoc = Lex.getLoc();
2506     Type *ArgTy = nullptr;
2507     AttrBuilder Attrs;
2508     std::string Name;
2509 
2510     if (ParseType(ArgTy) ||
2511         ParseOptionalParamAttrs(Attrs)) return true;
2512 
2513     if (ArgTy->isVoidTy())
2514       return Error(TypeLoc, "argument can not have void type");
2515 
2516     if (Lex.getKind() == lltok::LocalVar) {
2517       Name = Lex.getStrVal();
2518       Lex.Lex();
2519     }
2520 
2521     if (!FunctionType::isValidArgumentType(ArgTy))
2522       return Error(TypeLoc, "invalid type for function argument");
2523 
2524     ArgList.emplace_back(TypeLoc, ArgTy,
2525                          AttributeSet::get(ArgTy->getContext(), Attrs),
2526                          std::move(Name));
2527 
2528     while (EatIfPresent(lltok::comma)) {
2529       // Handle ... at end of arg list.
2530       if (EatIfPresent(lltok::dotdotdot)) {
2531         isVarArg = true;
2532         break;
2533       }
2534 
2535       // Otherwise must be an argument type.
2536       TypeLoc = Lex.getLoc();
2537       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2538 
2539       if (ArgTy->isVoidTy())
2540         return Error(TypeLoc, "argument can not have void type");
2541 
2542       if (Lex.getKind() == lltok::LocalVar) {
2543         Name = Lex.getStrVal();
2544         Lex.Lex();
2545       } else {
2546         Name = "";
2547       }
2548 
2549       if (!ArgTy->isFirstClassType())
2550         return Error(TypeLoc, "invalid type for function argument");
2551 
2552       ArgList.emplace_back(TypeLoc, ArgTy,
2553                            AttributeSet::get(ArgTy->getContext(), Attrs),
2554                            std::move(Name));
2555     }
2556   }
2557 
2558   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2559 }
2560 
2561 /// ParseFunctionType
2562 ///  ::= Type ArgumentList OptionalAttrs
2563 bool LLParser::ParseFunctionType(Type *&Result) {
2564   assert(Lex.getKind() == lltok::lparen);
2565 
2566   if (!FunctionType::isValidReturnType(Result))
2567     return TokError("invalid function return type");
2568 
2569   SmallVector<ArgInfo, 8> ArgList;
2570   bool isVarArg;
2571   if (ParseArgumentList(ArgList, isVarArg))
2572     return true;
2573 
2574   // Reject names on the arguments lists.
2575   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2576     if (!ArgList[i].Name.empty())
2577       return Error(ArgList[i].Loc, "argument name invalid in function type");
2578     if (ArgList[i].Attrs.hasAttributes())
2579       return Error(ArgList[i].Loc,
2580                    "argument attributes invalid in function type");
2581   }
2582 
2583   SmallVector<Type*, 16> ArgListTy;
2584   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2585     ArgListTy.push_back(ArgList[i].Ty);
2586 
2587   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2588   return false;
2589 }
2590 
2591 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2592 /// other structs.
2593 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2594   SmallVector<Type*, 8> Elts;
2595   if (ParseStructBody(Elts)) return true;
2596 
2597   Result = StructType::get(Context, Elts, Packed);
2598   return false;
2599 }
2600 
2601 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2602 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2603                                      std::pair<Type*, LocTy> &Entry,
2604                                      Type *&ResultTy) {
2605   // If the type was already defined, diagnose the redefinition.
2606   if (Entry.first && !Entry.second.isValid())
2607     return Error(TypeLoc, "redefinition of type");
2608 
2609   // If we have opaque, just return without filling in the definition for the
2610   // struct.  This counts as a definition as far as the .ll file goes.
2611   if (EatIfPresent(lltok::kw_opaque)) {
2612     // This type is being defined, so clear the location to indicate this.
2613     Entry.second = SMLoc();
2614 
2615     // If this type number has never been uttered, create it.
2616     if (!Entry.first)
2617       Entry.first = StructType::create(Context, Name);
2618     ResultTy = Entry.first;
2619     return false;
2620   }
2621 
2622   // If the type starts with '<', then it is either a packed struct or a vector.
2623   bool isPacked = EatIfPresent(lltok::less);
2624 
2625   // If we don't have a struct, then we have a random type alias, which we
2626   // accept for compatibility with old files.  These types are not allowed to be
2627   // forward referenced and not allowed to be recursive.
2628   if (Lex.getKind() != lltok::lbrace) {
2629     if (Entry.first)
2630       return Error(TypeLoc, "forward references to non-struct type");
2631 
2632     ResultTy = nullptr;
2633     if (isPacked)
2634       return ParseArrayVectorType(ResultTy, true);
2635     return ParseType(ResultTy);
2636   }
2637 
2638   // This type is being defined, so clear the location to indicate this.
2639   Entry.second = SMLoc();
2640 
2641   // If this type number has never been uttered, create it.
2642   if (!Entry.first)
2643     Entry.first = StructType::create(Context, Name);
2644 
2645   StructType *STy = cast<StructType>(Entry.first);
2646 
2647   SmallVector<Type*, 8> Body;
2648   if (ParseStructBody(Body) ||
2649       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2650     return true;
2651 
2652   STy->setBody(Body, isPacked);
2653   ResultTy = STy;
2654   return false;
2655 }
2656 
2657 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2658 ///   StructType
2659 ///     ::= '{' '}'
2660 ///     ::= '{' Type (',' Type)* '}'
2661 ///     ::= '<' '{' '}' '>'
2662 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2663 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2664   assert(Lex.getKind() == lltok::lbrace);
2665   Lex.Lex(); // Consume the '{'
2666 
2667   // Handle the empty struct.
2668   if (EatIfPresent(lltok::rbrace))
2669     return false;
2670 
2671   LocTy EltTyLoc = Lex.getLoc();
2672   Type *Ty = nullptr;
2673   if (ParseType(Ty)) return true;
2674   Body.push_back(Ty);
2675 
2676   if (!StructType::isValidElementType(Ty))
2677     return Error(EltTyLoc, "invalid element type for struct");
2678 
2679   while (EatIfPresent(lltok::comma)) {
2680     EltTyLoc = Lex.getLoc();
2681     if (ParseType(Ty)) return true;
2682 
2683     if (!StructType::isValidElementType(Ty))
2684       return Error(EltTyLoc, "invalid element type for struct");
2685 
2686     Body.push_back(Ty);
2687   }
2688 
2689   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2690 }
2691 
2692 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2693 /// token has already been consumed.
2694 ///   Type
2695 ///     ::= '[' APSINTVAL 'x' Types ']'
2696 ///     ::= '<' APSINTVAL 'x' Types '>'
2697 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2698   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2699       Lex.getAPSIntVal().getBitWidth() > 64)
2700     return TokError("expected number in address space");
2701 
2702   LocTy SizeLoc = Lex.getLoc();
2703   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2704   Lex.Lex();
2705 
2706   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2707       return true;
2708 
2709   LocTy TypeLoc = Lex.getLoc();
2710   Type *EltTy = nullptr;
2711   if (ParseType(EltTy)) return true;
2712 
2713   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2714                  "expected end of sequential type"))
2715     return true;
2716 
2717   if (isVector) {
2718     if (Size == 0)
2719       return Error(SizeLoc, "zero element vector is illegal");
2720     if ((unsigned)Size != Size)
2721       return Error(SizeLoc, "size too large for vector");
2722     if (!VectorType::isValidElementType(EltTy))
2723       return Error(TypeLoc, "invalid vector element type");
2724     Result = VectorType::get(EltTy, unsigned(Size));
2725   } else {
2726     if (!ArrayType::isValidElementType(EltTy))
2727       return Error(TypeLoc, "invalid array element type");
2728     Result = ArrayType::get(EltTy, Size);
2729   }
2730   return false;
2731 }
2732 
2733 //===----------------------------------------------------------------------===//
2734 // Function Semantic Analysis.
2735 //===----------------------------------------------------------------------===//
2736 
2737 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2738                                              int functionNumber)
2739   : P(p), F(f), FunctionNumber(functionNumber) {
2740 
2741   // Insert unnamed arguments into the NumberedVals list.
2742   for (Argument &A : F.args())
2743     if (!A.hasName())
2744       NumberedVals.push_back(&A);
2745 }
2746 
2747 LLParser::PerFunctionState::~PerFunctionState() {
2748   // If there were any forward referenced non-basicblock values, delete them.
2749 
2750   for (const auto &P : ForwardRefVals) {
2751     if (isa<BasicBlock>(P.second.first))
2752       continue;
2753     P.second.first->replaceAllUsesWith(
2754         UndefValue::get(P.second.first->getType()));
2755     P.second.first->deleteValue();
2756   }
2757 
2758   for (const auto &P : ForwardRefValIDs) {
2759     if (isa<BasicBlock>(P.second.first))
2760       continue;
2761     P.second.first->replaceAllUsesWith(
2762         UndefValue::get(P.second.first->getType()));
2763     P.second.first->deleteValue();
2764   }
2765 }
2766 
2767 bool LLParser::PerFunctionState::FinishFunction() {
2768   if (!ForwardRefVals.empty())
2769     return P.Error(ForwardRefVals.begin()->second.second,
2770                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2771                    "'");
2772   if (!ForwardRefValIDs.empty())
2773     return P.Error(ForwardRefValIDs.begin()->second.second,
2774                    "use of undefined value '%" +
2775                    Twine(ForwardRefValIDs.begin()->first) + "'");
2776   return false;
2777 }
2778 
2779 /// GetVal - Get a value with the specified name or ID, creating a
2780 /// forward reference record if needed.  This can return null if the value
2781 /// exists but does not have the right type.
2782 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2783                                           LocTy Loc, bool IsCall) {
2784   // Look this name up in the normal function symbol table.
2785   Value *Val = F.getValueSymbolTable()->lookup(Name);
2786 
2787   // If this is a forward reference for the value, see if we already created a
2788   // forward ref record.
2789   if (!Val) {
2790     auto I = ForwardRefVals.find(Name);
2791     if (I != ForwardRefVals.end())
2792       Val = I->second.first;
2793   }
2794 
2795   // If we have the value in the symbol table or fwd-ref table, return it.
2796   if (Val)
2797     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2798 
2799   // Don't make placeholders with invalid type.
2800   if (!Ty->isFirstClassType()) {
2801     P.Error(Loc, "invalid use of a non-first-class type");
2802     return nullptr;
2803   }
2804 
2805   // Otherwise, create a new forward reference for this value and remember it.
2806   Value *FwdVal;
2807   if (Ty->isLabelTy()) {
2808     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2809   } else {
2810     FwdVal = new Argument(Ty, Name);
2811   }
2812 
2813   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2814   return FwdVal;
2815 }
2816 
2817 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2818                                           bool IsCall) {
2819   // Look this name up in the normal function symbol table.
2820   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2821 
2822   // If this is a forward reference for the value, see if we already created a
2823   // forward ref record.
2824   if (!Val) {
2825     auto I = ForwardRefValIDs.find(ID);
2826     if (I != ForwardRefValIDs.end())
2827       Val = I->second.first;
2828   }
2829 
2830   // If we have the value in the symbol table or fwd-ref table, return it.
2831   if (Val)
2832     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2833 
2834   if (!Ty->isFirstClassType()) {
2835     P.Error(Loc, "invalid use of a non-first-class type");
2836     return nullptr;
2837   }
2838 
2839   // Otherwise, create a new forward reference for this value and remember it.
2840   Value *FwdVal;
2841   if (Ty->isLabelTy()) {
2842     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2843   } else {
2844     FwdVal = new Argument(Ty);
2845   }
2846 
2847   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2848   return FwdVal;
2849 }
2850 
2851 /// SetInstName - After an instruction is parsed and inserted into its
2852 /// basic block, this installs its name.
2853 bool LLParser::PerFunctionState::SetInstName(int NameID,
2854                                              const std::string &NameStr,
2855                                              LocTy NameLoc, Instruction *Inst) {
2856   // If this instruction has void type, it cannot have a name or ID specified.
2857   if (Inst->getType()->isVoidTy()) {
2858     if (NameID != -1 || !NameStr.empty())
2859       return P.Error(NameLoc, "instructions returning void cannot have a name");
2860     return false;
2861   }
2862 
2863   // If this was a numbered instruction, verify that the instruction is the
2864   // expected value and resolve any forward references.
2865   if (NameStr.empty()) {
2866     // If neither a name nor an ID was specified, just use the next ID.
2867     if (NameID == -1)
2868       NameID = NumberedVals.size();
2869 
2870     if (unsigned(NameID) != NumberedVals.size())
2871       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2872                      Twine(NumberedVals.size()) + "'");
2873 
2874     auto FI = ForwardRefValIDs.find(NameID);
2875     if (FI != ForwardRefValIDs.end()) {
2876       Value *Sentinel = FI->second.first;
2877       if (Sentinel->getType() != Inst->getType())
2878         return P.Error(NameLoc, "instruction forward referenced with type '" +
2879                        getTypeString(FI->second.first->getType()) + "'");
2880 
2881       Sentinel->replaceAllUsesWith(Inst);
2882       Sentinel->deleteValue();
2883       ForwardRefValIDs.erase(FI);
2884     }
2885 
2886     NumberedVals.push_back(Inst);
2887     return false;
2888   }
2889 
2890   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2891   auto FI = ForwardRefVals.find(NameStr);
2892   if (FI != ForwardRefVals.end()) {
2893     Value *Sentinel = FI->second.first;
2894     if (Sentinel->getType() != Inst->getType())
2895       return P.Error(NameLoc, "instruction forward referenced with type '" +
2896                      getTypeString(FI->second.first->getType()) + "'");
2897 
2898     Sentinel->replaceAllUsesWith(Inst);
2899     Sentinel->deleteValue();
2900     ForwardRefVals.erase(FI);
2901   }
2902 
2903   // Set the name on the instruction.
2904   Inst->setName(NameStr);
2905 
2906   if (Inst->getName() != NameStr)
2907     return P.Error(NameLoc, "multiple definition of local value named '" +
2908                    NameStr + "'");
2909   return false;
2910 }
2911 
2912 /// GetBB - Get a basic block with the specified name or ID, creating a
2913 /// forward reference record if needed.
2914 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2915                                               LocTy Loc) {
2916   return dyn_cast_or_null<BasicBlock>(
2917       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2918 }
2919 
2920 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2921   return dyn_cast_or_null<BasicBlock>(
2922       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2923 }
2924 
2925 /// DefineBB - Define the specified basic block, which is either named or
2926 /// unnamed.  If there is an error, this returns null otherwise it returns
2927 /// the block being defined.
2928 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2929                                                  LocTy Loc) {
2930   BasicBlock *BB;
2931   if (Name.empty())
2932     BB = GetBB(NumberedVals.size(), Loc);
2933   else
2934     BB = GetBB(Name, Loc);
2935   if (!BB) return nullptr; // Already diagnosed error.
2936 
2937   // Move the block to the end of the function.  Forward ref'd blocks are
2938   // inserted wherever they happen to be referenced.
2939   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2940 
2941   // Remove the block from forward ref sets.
2942   if (Name.empty()) {
2943     ForwardRefValIDs.erase(NumberedVals.size());
2944     NumberedVals.push_back(BB);
2945   } else {
2946     // BB forward references are already in the function symbol table.
2947     ForwardRefVals.erase(Name);
2948   }
2949 
2950   return BB;
2951 }
2952 
2953 //===----------------------------------------------------------------------===//
2954 // Constants.
2955 //===----------------------------------------------------------------------===//
2956 
2957 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2958 /// type implied.  For example, if we parse "4" we don't know what integer type
2959 /// it has.  The value will later be combined with its type and checked for
2960 /// sanity.  PFS is used to convert function-local operands of metadata (since
2961 /// metadata operands are not just parsed here but also converted to values).
2962 /// PFS can be null when we are not parsing metadata values inside a function.
2963 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2964   ID.Loc = Lex.getLoc();
2965   switch (Lex.getKind()) {
2966   default: return TokError("expected value token");
2967   case lltok::GlobalID:  // @42
2968     ID.UIntVal = Lex.getUIntVal();
2969     ID.Kind = ValID::t_GlobalID;
2970     break;
2971   case lltok::GlobalVar:  // @foo
2972     ID.StrVal = Lex.getStrVal();
2973     ID.Kind = ValID::t_GlobalName;
2974     break;
2975   case lltok::LocalVarID:  // %42
2976     ID.UIntVal = Lex.getUIntVal();
2977     ID.Kind = ValID::t_LocalID;
2978     break;
2979   case lltok::LocalVar:  // %foo
2980     ID.StrVal = Lex.getStrVal();
2981     ID.Kind = ValID::t_LocalName;
2982     break;
2983   case lltok::APSInt:
2984     ID.APSIntVal = Lex.getAPSIntVal();
2985     ID.Kind = ValID::t_APSInt;
2986     break;
2987   case lltok::APFloat:
2988     ID.APFloatVal = Lex.getAPFloatVal();
2989     ID.Kind = ValID::t_APFloat;
2990     break;
2991   case lltok::kw_true:
2992     ID.ConstantVal = ConstantInt::getTrue(Context);
2993     ID.Kind = ValID::t_Constant;
2994     break;
2995   case lltok::kw_false:
2996     ID.ConstantVal = ConstantInt::getFalse(Context);
2997     ID.Kind = ValID::t_Constant;
2998     break;
2999   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3000   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3001   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3002   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3003 
3004   case lltok::lbrace: {
3005     // ValID ::= '{' ConstVector '}'
3006     Lex.Lex();
3007     SmallVector<Constant*, 16> Elts;
3008     if (ParseGlobalValueVector(Elts) ||
3009         ParseToken(lltok::rbrace, "expected end of struct constant"))
3010       return true;
3011 
3012     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3013     ID.UIntVal = Elts.size();
3014     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3015            Elts.size() * sizeof(Elts[0]));
3016     ID.Kind = ValID::t_ConstantStruct;
3017     return false;
3018   }
3019   case lltok::less: {
3020     // ValID ::= '<' ConstVector '>'         --> Vector.
3021     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3022     Lex.Lex();
3023     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3024 
3025     SmallVector<Constant*, 16> Elts;
3026     LocTy FirstEltLoc = Lex.getLoc();
3027     if (ParseGlobalValueVector(Elts) ||
3028         (isPackedStruct &&
3029          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3030         ParseToken(lltok::greater, "expected end of constant"))
3031       return true;
3032 
3033     if (isPackedStruct) {
3034       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3035       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3036              Elts.size() * sizeof(Elts[0]));
3037       ID.UIntVal = Elts.size();
3038       ID.Kind = ValID::t_PackedConstantStruct;
3039       return false;
3040     }
3041 
3042     if (Elts.empty())
3043       return Error(ID.Loc, "constant vector must not be empty");
3044 
3045     if (!Elts[0]->getType()->isIntegerTy() &&
3046         !Elts[0]->getType()->isFloatingPointTy() &&
3047         !Elts[0]->getType()->isPointerTy())
3048       return Error(FirstEltLoc,
3049             "vector elements must have integer, pointer or floating point type");
3050 
3051     // Verify that all the vector elements have the same type.
3052     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3053       if (Elts[i]->getType() != Elts[0]->getType())
3054         return Error(FirstEltLoc,
3055                      "vector element #" + Twine(i) +
3056                     " is not of type '" + getTypeString(Elts[0]->getType()));
3057 
3058     ID.ConstantVal = ConstantVector::get(Elts);
3059     ID.Kind = ValID::t_Constant;
3060     return false;
3061   }
3062   case lltok::lsquare: {   // Array Constant
3063     Lex.Lex();
3064     SmallVector<Constant*, 16> Elts;
3065     LocTy FirstEltLoc = Lex.getLoc();
3066     if (ParseGlobalValueVector(Elts) ||
3067         ParseToken(lltok::rsquare, "expected end of array constant"))
3068       return true;
3069 
3070     // Handle empty element.
3071     if (Elts.empty()) {
3072       // Use undef instead of an array because it's inconvenient to determine
3073       // the element type at this point, there being no elements to examine.
3074       ID.Kind = ValID::t_EmptyArray;
3075       return false;
3076     }
3077 
3078     if (!Elts[0]->getType()->isFirstClassType())
3079       return Error(FirstEltLoc, "invalid array element type: " +
3080                    getTypeString(Elts[0]->getType()));
3081 
3082     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3083 
3084     // Verify all elements are correct type!
3085     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3086       if (Elts[i]->getType() != Elts[0]->getType())
3087         return Error(FirstEltLoc,
3088                      "array element #" + Twine(i) +
3089                      " is not of type '" + getTypeString(Elts[0]->getType()));
3090     }
3091 
3092     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3093     ID.Kind = ValID::t_Constant;
3094     return false;
3095   }
3096   case lltok::kw_c:  // c "foo"
3097     Lex.Lex();
3098     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3099                                                   false);
3100     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3101     ID.Kind = ValID::t_Constant;
3102     return false;
3103 
3104   case lltok::kw_asm: {
3105     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3106     //             STRINGCONSTANT
3107     bool HasSideEffect, AlignStack, AsmDialect;
3108     Lex.Lex();
3109     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3110         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3111         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3112         ParseStringConstant(ID.StrVal) ||
3113         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3114         ParseToken(lltok::StringConstant, "expected constraint string"))
3115       return true;
3116     ID.StrVal2 = Lex.getStrVal();
3117     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3118       (unsigned(AsmDialect)<<2);
3119     ID.Kind = ValID::t_InlineAsm;
3120     return false;
3121   }
3122 
3123   case lltok::kw_blockaddress: {
3124     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3125     Lex.Lex();
3126 
3127     ValID Fn, Label;
3128 
3129     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3130         ParseValID(Fn) ||
3131         ParseToken(lltok::comma, "expected comma in block address expression")||
3132         ParseValID(Label) ||
3133         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3134       return true;
3135 
3136     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3137       return Error(Fn.Loc, "expected function name in blockaddress");
3138     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3139       return Error(Label.Loc, "expected basic block name in blockaddress");
3140 
3141     // Try to find the function (but skip it if it's forward-referenced).
3142     GlobalValue *GV = nullptr;
3143     if (Fn.Kind == ValID::t_GlobalID) {
3144       if (Fn.UIntVal < NumberedVals.size())
3145         GV = NumberedVals[Fn.UIntVal];
3146     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3147       GV = M->getNamedValue(Fn.StrVal);
3148     }
3149     Function *F = nullptr;
3150     if (GV) {
3151       // Confirm that it's actually a function with a definition.
3152       if (!isa<Function>(GV))
3153         return Error(Fn.Loc, "expected function name in blockaddress");
3154       F = cast<Function>(GV);
3155       if (F->isDeclaration())
3156         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3157     }
3158 
3159     if (!F) {
3160       // Make a global variable as a placeholder for this reference.
3161       GlobalValue *&FwdRef =
3162           ForwardRefBlockAddresses.insert(std::make_pair(
3163                                               std::move(Fn),
3164                                               std::map<ValID, GlobalValue *>()))
3165               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3166               .first->second;
3167       if (!FwdRef)
3168         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3169                                     GlobalValue::InternalLinkage, nullptr, "");
3170       ID.ConstantVal = FwdRef;
3171       ID.Kind = ValID::t_Constant;
3172       return false;
3173     }
3174 
3175     // We found the function; now find the basic block.  Don't use PFS, since we
3176     // might be inside a constant expression.
3177     BasicBlock *BB;
3178     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3179       if (Label.Kind == ValID::t_LocalID)
3180         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3181       else
3182         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3183       if (!BB)
3184         return Error(Label.Loc, "referenced value is not a basic block");
3185     } else {
3186       if (Label.Kind == ValID::t_LocalID)
3187         return Error(Label.Loc, "cannot take address of numeric label after "
3188                                 "the function is defined");
3189       BB = dyn_cast_or_null<BasicBlock>(
3190           F->getValueSymbolTable()->lookup(Label.StrVal));
3191       if (!BB)
3192         return Error(Label.Loc, "referenced value is not a basic block");
3193     }
3194 
3195     ID.ConstantVal = BlockAddress::get(F, BB);
3196     ID.Kind = ValID::t_Constant;
3197     return false;
3198   }
3199 
3200   case lltok::kw_trunc:
3201   case lltok::kw_zext:
3202   case lltok::kw_sext:
3203   case lltok::kw_fptrunc:
3204   case lltok::kw_fpext:
3205   case lltok::kw_bitcast:
3206   case lltok::kw_addrspacecast:
3207   case lltok::kw_uitofp:
3208   case lltok::kw_sitofp:
3209   case lltok::kw_fptoui:
3210   case lltok::kw_fptosi:
3211   case lltok::kw_inttoptr:
3212   case lltok::kw_ptrtoint: {
3213     unsigned Opc = Lex.getUIntVal();
3214     Type *DestTy = nullptr;
3215     Constant *SrcVal;
3216     Lex.Lex();
3217     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3218         ParseGlobalTypeAndValue(SrcVal) ||
3219         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3220         ParseType(DestTy) ||
3221         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3222       return true;
3223     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3224       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3225                    getTypeString(SrcVal->getType()) + "' to '" +
3226                    getTypeString(DestTy) + "'");
3227     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3228                                                  SrcVal, DestTy);
3229     ID.Kind = ValID::t_Constant;
3230     return false;
3231   }
3232   case lltok::kw_extractvalue: {
3233     Lex.Lex();
3234     Constant *Val;
3235     SmallVector<unsigned, 4> Indices;
3236     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3237         ParseGlobalTypeAndValue(Val) ||
3238         ParseIndexList(Indices) ||
3239         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3240       return true;
3241 
3242     if (!Val->getType()->isAggregateType())
3243       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3244     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3245       return Error(ID.Loc, "invalid indices for extractvalue");
3246     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3247     ID.Kind = ValID::t_Constant;
3248     return false;
3249   }
3250   case lltok::kw_insertvalue: {
3251     Lex.Lex();
3252     Constant *Val0, *Val1;
3253     SmallVector<unsigned, 4> Indices;
3254     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3255         ParseGlobalTypeAndValue(Val0) ||
3256         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3257         ParseGlobalTypeAndValue(Val1) ||
3258         ParseIndexList(Indices) ||
3259         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3260       return true;
3261     if (!Val0->getType()->isAggregateType())
3262       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3263     Type *IndexedType =
3264         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3265     if (!IndexedType)
3266       return Error(ID.Loc, "invalid indices for insertvalue");
3267     if (IndexedType != Val1->getType())
3268       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3269                                getTypeString(Val1->getType()) +
3270                                "' instead of '" + getTypeString(IndexedType) +
3271                                "'");
3272     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3273     ID.Kind = ValID::t_Constant;
3274     return false;
3275   }
3276   case lltok::kw_icmp:
3277   case lltok::kw_fcmp: {
3278     unsigned PredVal, Opc = Lex.getUIntVal();
3279     Constant *Val0, *Val1;
3280     Lex.Lex();
3281     if (ParseCmpPredicate(PredVal, Opc) ||
3282         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3283         ParseGlobalTypeAndValue(Val0) ||
3284         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3285         ParseGlobalTypeAndValue(Val1) ||
3286         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3287       return true;
3288 
3289     if (Val0->getType() != Val1->getType())
3290       return Error(ID.Loc, "compare operands must have the same type");
3291 
3292     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3293 
3294     if (Opc == Instruction::FCmp) {
3295       if (!Val0->getType()->isFPOrFPVectorTy())
3296         return Error(ID.Loc, "fcmp requires floating point operands");
3297       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3298     } else {
3299       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3300       if (!Val0->getType()->isIntOrIntVectorTy() &&
3301           !Val0->getType()->isPtrOrPtrVectorTy())
3302         return Error(ID.Loc, "icmp requires pointer or integer operands");
3303       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3304     }
3305     ID.Kind = ValID::t_Constant;
3306     return false;
3307   }
3308 
3309   // Unary Operators.
3310   case lltok::kw_fneg: {
3311     unsigned Opc = Lex.getUIntVal();
3312     Constant *Val;
3313     Lex.Lex();
3314     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3315         ParseGlobalTypeAndValue(Val) ||
3316         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3317       return true;
3318 
3319     // Check that the type is valid for the operator.
3320     switch (Opc) {
3321     case Instruction::FNeg:
3322       if (!Val->getType()->isFPOrFPVectorTy())
3323         return Error(ID.Loc, "constexpr requires fp operands");
3324       break;
3325     default: llvm_unreachable("Unknown unary operator!");
3326     }
3327     unsigned Flags = 0;
3328     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3329     ID.ConstantVal = C;
3330     ID.Kind = ValID::t_Constant;
3331     return false;
3332   }
3333   // Binary Operators.
3334   case lltok::kw_add:
3335   case lltok::kw_fadd:
3336   case lltok::kw_sub:
3337   case lltok::kw_fsub:
3338   case lltok::kw_mul:
3339   case lltok::kw_fmul:
3340   case lltok::kw_udiv:
3341   case lltok::kw_sdiv:
3342   case lltok::kw_fdiv:
3343   case lltok::kw_urem:
3344   case lltok::kw_srem:
3345   case lltok::kw_frem:
3346   case lltok::kw_shl:
3347   case lltok::kw_lshr:
3348   case lltok::kw_ashr: {
3349     bool NUW = false;
3350     bool NSW = false;
3351     bool Exact = false;
3352     unsigned Opc = Lex.getUIntVal();
3353     Constant *Val0, *Val1;
3354     Lex.Lex();
3355     LocTy ModifierLoc = Lex.getLoc();
3356     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3357         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3358       if (EatIfPresent(lltok::kw_nuw))
3359         NUW = true;
3360       if (EatIfPresent(lltok::kw_nsw)) {
3361         NSW = true;
3362         if (EatIfPresent(lltok::kw_nuw))
3363           NUW = true;
3364       }
3365     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3366                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3367       if (EatIfPresent(lltok::kw_exact))
3368         Exact = true;
3369     }
3370     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3371         ParseGlobalTypeAndValue(Val0) ||
3372         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3373         ParseGlobalTypeAndValue(Val1) ||
3374         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3375       return true;
3376     if (Val0->getType() != Val1->getType())
3377       return Error(ID.Loc, "operands of constexpr must have same type");
3378     if (!Val0->getType()->isIntOrIntVectorTy()) {
3379       if (NUW)
3380         return Error(ModifierLoc, "nuw only applies to integer operations");
3381       if (NSW)
3382         return Error(ModifierLoc, "nsw only applies to integer operations");
3383     }
3384     // Check that the type is valid for the operator.
3385     switch (Opc) {
3386     case Instruction::Add:
3387     case Instruction::Sub:
3388     case Instruction::Mul:
3389     case Instruction::UDiv:
3390     case Instruction::SDiv:
3391     case Instruction::URem:
3392     case Instruction::SRem:
3393     case Instruction::Shl:
3394     case Instruction::AShr:
3395     case Instruction::LShr:
3396       if (!Val0->getType()->isIntOrIntVectorTy())
3397         return Error(ID.Loc, "constexpr requires integer operands");
3398       break;
3399     case Instruction::FAdd:
3400     case Instruction::FSub:
3401     case Instruction::FMul:
3402     case Instruction::FDiv:
3403     case Instruction::FRem:
3404       if (!Val0->getType()->isFPOrFPVectorTy())
3405         return Error(ID.Loc, "constexpr requires fp operands");
3406       break;
3407     default: llvm_unreachable("Unknown binary operator!");
3408     }
3409     unsigned Flags = 0;
3410     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3411     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3412     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3413     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3414     ID.ConstantVal = C;
3415     ID.Kind = ValID::t_Constant;
3416     return false;
3417   }
3418 
3419   // Logical Operations
3420   case lltok::kw_and:
3421   case lltok::kw_or:
3422   case lltok::kw_xor: {
3423     unsigned Opc = Lex.getUIntVal();
3424     Constant *Val0, *Val1;
3425     Lex.Lex();
3426     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3427         ParseGlobalTypeAndValue(Val0) ||
3428         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3429         ParseGlobalTypeAndValue(Val1) ||
3430         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3431       return true;
3432     if (Val0->getType() != Val1->getType())
3433       return Error(ID.Loc, "operands of constexpr must have same type");
3434     if (!Val0->getType()->isIntOrIntVectorTy())
3435       return Error(ID.Loc,
3436                    "constexpr requires integer or integer vector operands");
3437     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3438     ID.Kind = ValID::t_Constant;
3439     return false;
3440   }
3441 
3442   case lltok::kw_getelementptr:
3443   case lltok::kw_shufflevector:
3444   case lltok::kw_insertelement:
3445   case lltok::kw_extractelement:
3446   case lltok::kw_select: {
3447     unsigned Opc = Lex.getUIntVal();
3448     SmallVector<Constant*, 16> Elts;
3449     bool InBounds = false;
3450     Type *Ty;
3451     Lex.Lex();
3452 
3453     if (Opc == Instruction::GetElementPtr)
3454       InBounds = EatIfPresent(lltok::kw_inbounds);
3455 
3456     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3457       return true;
3458 
3459     LocTy ExplicitTypeLoc = Lex.getLoc();
3460     if (Opc == Instruction::GetElementPtr) {
3461       if (ParseType(Ty) ||
3462           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3463         return true;
3464     }
3465 
3466     Optional<unsigned> InRangeOp;
3467     if (ParseGlobalValueVector(
3468             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3469         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3470       return true;
3471 
3472     if (Opc == Instruction::GetElementPtr) {
3473       if (Elts.size() == 0 ||
3474           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3475         return Error(ID.Loc, "base of getelementptr must be a pointer");
3476 
3477       Type *BaseType = Elts[0]->getType();
3478       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3479       if (Ty != BasePointerType->getElementType())
3480         return Error(
3481             ExplicitTypeLoc,
3482             "explicit pointee type doesn't match operand's pointee type");
3483 
3484       unsigned GEPWidth =
3485           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3486 
3487       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3488       for (Constant *Val : Indices) {
3489         Type *ValTy = Val->getType();
3490         if (!ValTy->isIntOrIntVectorTy())
3491           return Error(ID.Loc, "getelementptr index must be an integer");
3492         if (ValTy->isVectorTy()) {
3493           unsigned ValNumEl = ValTy->getVectorNumElements();
3494           if (GEPWidth && (ValNumEl != GEPWidth))
3495             return Error(
3496                 ID.Loc,
3497                 "getelementptr vector index has a wrong number of elements");
3498           // GEPWidth may have been unknown because the base is a scalar,
3499           // but it is known now.
3500           GEPWidth = ValNumEl;
3501         }
3502       }
3503 
3504       SmallPtrSet<Type*, 4> Visited;
3505       if (!Indices.empty() && !Ty->isSized(&Visited))
3506         return Error(ID.Loc, "base element of getelementptr must be sized");
3507 
3508       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3509         return Error(ID.Loc, "invalid getelementptr indices");
3510 
3511       if (InRangeOp) {
3512         if (*InRangeOp == 0)
3513           return Error(ID.Loc,
3514                        "inrange keyword may not appear on pointer operand");
3515         --*InRangeOp;
3516       }
3517 
3518       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3519                                                       InBounds, InRangeOp);
3520     } else if (Opc == Instruction::Select) {
3521       if (Elts.size() != 3)
3522         return Error(ID.Loc, "expected three operands to select");
3523       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3524                                                               Elts[2]))
3525         return Error(ID.Loc, Reason);
3526       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3527     } else if (Opc == Instruction::ShuffleVector) {
3528       if (Elts.size() != 3)
3529         return Error(ID.Loc, "expected three operands to shufflevector");
3530       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3531         return Error(ID.Loc, "invalid operands to shufflevector");
3532       ID.ConstantVal =
3533                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3534     } else if (Opc == Instruction::ExtractElement) {
3535       if (Elts.size() != 2)
3536         return Error(ID.Loc, "expected two operands to extractelement");
3537       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3538         return Error(ID.Loc, "invalid extractelement operands");
3539       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3540     } else {
3541       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3542       if (Elts.size() != 3)
3543       return Error(ID.Loc, "expected three operands to insertelement");
3544       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3545         return Error(ID.Loc, "invalid insertelement operands");
3546       ID.ConstantVal =
3547                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3548     }
3549 
3550     ID.Kind = ValID::t_Constant;
3551     return false;
3552   }
3553   }
3554 
3555   Lex.Lex();
3556   return false;
3557 }
3558 
3559 /// ParseGlobalValue - Parse a global value with the specified type.
3560 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3561   C = nullptr;
3562   ValID ID;
3563   Value *V = nullptr;
3564   bool Parsed = ParseValID(ID) ||
3565                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3566   if (V && !(C = dyn_cast<Constant>(V)))
3567     return Error(ID.Loc, "global values must be constants");
3568   return Parsed;
3569 }
3570 
3571 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3572   Type *Ty = nullptr;
3573   return ParseType(Ty) ||
3574          ParseGlobalValue(Ty, V);
3575 }
3576 
3577 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3578   C = nullptr;
3579 
3580   LocTy KwLoc = Lex.getLoc();
3581   if (!EatIfPresent(lltok::kw_comdat))
3582     return false;
3583 
3584   if (EatIfPresent(lltok::lparen)) {
3585     if (Lex.getKind() != lltok::ComdatVar)
3586       return TokError("expected comdat variable");
3587     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3588     Lex.Lex();
3589     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3590       return true;
3591   } else {
3592     if (GlobalName.empty())
3593       return TokError("comdat cannot be unnamed");
3594     C = getComdat(GlobalName, KwLoc);
3595   }
3596 
3597   return false;
3598 }
3599 
3600 /// ParseGlobalValueVector
3601 ///   ::= /*empty*/
3602 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3603 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3604                                       Optional<unsigned> *InRangeOp) {
3605   // Empty list.
3606   if (Lex.getKind() == lltok::rbrace ||
3607       Lex.getKind() == lltok::rsquare ||
3608       Lex.getKind() == lltok::greater ||
3609       Lex.getKind() == lltok::rparen)
3610     return false;
3611 
3612   do {
3613     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3614       *InRangeOp = Elts.size();
3615 
3616     Constant *C;
3617     if (ParseGlobalTypeAndValue(C)) return true;
3618     Elts.push_back(C);
3619   } while (EatIfPresent(lltok::comma));
3620 
3621   return false;
3622 }
3623 
3624 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3625   SmallVector<Metadata *, 16> Elts;
3626   if (ParseMDNodeVector(Elts))
3627     return true;
3628 
3629   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3630   return false;
3631 }
3632 
3633 /// MDNode:
3634 ///  ::= !{ ... }
3635 ///  ::= !7
3636 ///  ::= !DILocation(...)
3637 bool LLParser::ParseMDNode(MDNode *&N) {
3638   if (Lex.getKind() == lltok::MetadataVar)
3639     return ParseSpecializedMDNode(N);
3640 
3641   return ParseToken(lltok::exclaim, "expected '!' here") ||
3642          ParseMDNodeTail(N);
3643 }
3644 
3645 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3646   // !{ ... }
3647   if (Lex.getKind() == lltok::lbrace)
3648     return ParseMDTuple(N);
3649 
3650   // !42
3651   return ParseMDNodeID(N);
3652 }
3653 
3654 namespace {
3655 
3656 /// Structure to represent an optional metadata field.
3657 template <class FieldTy> struct MDFieldImpl {
3658   typedef MDFieldImpl ImplTy;
3659   FieldTy Val;
3660   bool Seen;
3661 
3662   void assign(FieldTy Val) {
3663     Seen = true;
3664     this->Val = std::move(Val);
3665   }
3666 
3667   explicit MDFieldImpl(FieldTy Default)
3668       : Val(std::move(Default)), Seen(false) {}
3669 };
3670 
3671 /// Structure to represent an optional metadata field that
3672 /// can be of either type (A or B) and encapsulates the
3673 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3674 /// to reimplement the specifics for representing each Field.
3675 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3676   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3677   FieldTypeA A;
3678   FieldTypeB B;
3679   bool Seen;
3680 
3681   enum {
3682     IsInvalid = 0,
3683     IsTypeA = 1,
3684     IsTypeB = 2
3685   } WhatIs;
3686 
3687   void assign(FieldTypeA A) {
3688     Seen = true;
3689     this->A = std::move(A);
3690     WhatIs = IsTypeA;
3691   }
3692 
3693   void assign(FieldTypeB B) {
3694     Seen = true;
3695     this->B = std::move(B);
3696     WhatIs = IsTypeB;
3697   }
3698 
3699   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3700       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3701         WhatIs(IsInvalid) {}
3702 };
3703 
3704 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3705   uint64_t Max;
3706 
3707   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3708       : ImplTy(Default), Max(Max) {}
3709 };
3710 
3711 struct LineField : public MDUnsignedField {
3712   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3713 };
3714 
3715 struct ColumnField : public MDUnsignedField {
3716   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3717 };
3718 
3719 struct DwarfTagField : public MDUnsignedField {
3720   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3721   DwarfTagField(dwarf::Tag DefaultTag)
3722       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3723 };
3724 
3725 struct DwarfMacinfoTypeField : public MDUnsignedField {
3726   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3727   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3728     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3729 };
3730 
3731 struct DwarfAttEncodingField : public MDUnsignedField {
3732   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3733 };
3734 
3735 struct DwarfVirtualityField : public MDUnsignedField {
3736   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3737 };
3738 
3739 struct DwarfLangField : public MDUnsignedField {
3740   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3741 };
3742 
3743 struct DwarfCCField : public MDUnsignedField {
3744   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3745 };
3746 
3747 struct EmissionKindField : public MDUnsignedField {
3748   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3749 };
3750 
3751 struct NameTableKindField : public MDUnsignedField {
3752   NameTableKindField()
3753       : MDUnsignedField(
3754             0, (unsigned)
3755                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3756 };
3757 
3758 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3759   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3760 };
3761 
3762 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3763   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3764 };
3765 
3766 struct MDSignedField : public MDFieldImpl<int64_t> {
3767   int64_t Min;
3768   int64_t Max;
3769 
3770   MDSignedField(int64_t Default = 0)
3771       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3772   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3773       : ImplTy(Default), Min(Min), Max(Max) {}
3774 };
3775 
3776 struct MDBoolField : public MDFieldImpl<bool> {
3777   MDBoolField(bool Default = false) : ImplTy(Default) {}
3778 };
3779 
3780 struct MDField : public MDFieldImpl<Metadata *> {
3781   bool AllowNull;
3782 
3783   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3784 };
3785 
3786 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3787   MDConstant() : ImplTy(nullptr) {}
3788 };
3789 
3790 struct MDStringField : public MDFieldImpl<MDString *> {
3791   bool AllowEmpty;
3792   MDStringField(bool AllowEmpty = true)
3793       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3794 };
3795 
3796 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3797   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3798 };
3799 
3800 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3801   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3802 };
3803 
3804 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3805   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3806       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3807 
3808   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3809                     bool AllowNull = true)
3810       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3811 
3812   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3813   bool isMDField() const { return WhatIs == IsTypeB; }
3814   int64_t getMDSignedValue() const {
3815     assert(isMDSignedField() && "Wrong field type");
3816     return A.Val;
3817   }
3818   Metadata *getMDFieldValue() const {
3819     assert(isMDField() && "Wrong field type");
3820     return B.Val;
3821   }
3822 };
3823 
3824 struct MDSignedOrUnsignedField
3825     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3826   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3827 
3828   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3829   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3830   int64_t getMDSignedValue() const {
3831     assert(isMDSignedField() && "Wrong field type");
3832     return A.Val;
3833   }
3834   uint64_t getMDUnsignedValue() const {
3835     assert(isMDUnsignedField() && "Wrong field type");
3836     return B.Val;
3837   }
3838 };
3839 
3840 } // end anonymous namespace
3841 
3842 namespace llvm {
3843 
3844 template <>
3845 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3846                             MDUnsignedField &Result) {
3847   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3848     return TokError("expected unsigned integer");
3849 
3850   auto &U = Lex.getAPSIntVal();
3851   if (U.ugt(Result.Max))
3852     return TokError("value for '" + Name + "' too large, limit is " +
3853                     Twine(Result.Max));
3854   Result.assign(U.getZExtValue());
3855   assert(Result.Val <= Result.Max && "Expected value in range");
3856   Lex.Lex();
3857   return false;
3858 }
3859 
3860 template <>
3861 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3862   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3863 }
3864 template <>
3865 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3866   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3867 }
3868 
3869 template <>
3870 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3871   if (Lex.getKind() == lltok::APSInt)
3872     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3873 
3874   if (Lex.getKind() != lltok::DwarfTag)
3875     return TokError("expected DWARF tag");
3876 
3877   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3878   if (Tag == dwarf::DW_TAG_invalid)
3879     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3880   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3881 
3882   Result.assign(Tag);
3883   Lex.Lex();
3884   return false;
3885 }
3886 
3887 template <>
3888 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3889                             DwarfMacinfoTypeField &Result) {
3890   if (Lex.getKind() == lltok::APSInt)
3891     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3892 
3893   if (Lex.getKind() != lltok::DwarfMacinfo)
3894     return TokError("expected DWARF macinfo type");
3895 
3896   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3897   if (Macinfo == dwarf::DW_MACINFO_invalid)
3898     return TokError(
3899         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3900   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3901 
3902   Result.assign(Macinfo);
3903   Lex.Lex();
3904   return false;
3905 }
3906 
3907 template <>
3908 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3909                             DwarfVirtualityField &Result) {
3910   if (Lex.getKind() == lltok::APSInt)
3911     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3912 
3913   if (Lex.getKind() != lltok::DwarfVirtuality)
3914     return TokError("expected DWARF virtuality code");
3915 
3916   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3917   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3918     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3919                     Lex.getStrVal() + "'");
3920   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3921   Result.assign(Virtuality);
3922   Lex.Lex();
3923   return false;
3924 }
3925 
3926 template <>
3927 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3928   if (Lex.getKind() == lltok::APSInt)
3929     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3930 
3931   if (Lex.getKind() != lltok::DwarfLang)
3932     return TokError("expected DWARF language");
3933 
3934   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3935   if (!Lang)
3936     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3937                     "'");
3938   assert(Lang <= Result.Max && "Expected valid DWARF language");
3939   Result.assign(Lang);
3940   Lex.Lex();
3941   return false;
3942 }
3943 
3944 template <>
3945 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3946   if (Lex.getKind() == lltok::APSInt)
3947     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3948 
3949   if (Lex.getKind() != lltok::DwarfCC)
3950     return TokError("expected DWARF calling convention");
3951 
3952   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3953   if (!CC)
3954     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3955                     "'");
3956   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3957   Result.assign(CC);
3958   Lex.Lex();
3959   return false;
3960 }
3961 
3962 template <>
3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3964   if (Lex.getKind() == lltok::APSInt)
3965     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3966 
3967   if (Lex.getKind() != lltok::EmissionKind)
3968     return TokError("expected emission kind");
3969 
3970   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3971   if (!Kind)
3972     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3973                     "'");
3974   assert(*Kind <= Result.Max && "Expected valid emission kind");
3975   Result.assign(*Kind);
3976   Lex.Lex();
3977   return false;
3978 }
3979 
3980 template <>
3981 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3982                             NameTableKindField &Result) {
3983   if (Lex.getKind() == lltok::APSInt)
3984     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3985 
3986   if (Lex.getKind() != lltok::NameTableKind)
3987     return TokError("expected nameTable kind");
3988 
3989   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
3990   if (!Kind)
3991     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
3992                     "'");
3993   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
3994   Result.assign((unsigned)*Kind);
3995   Lex.Lex();
3996   return false;
3997 }
3998 
3999 template <>
4000 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4001                             DwarfAttEncodingField &Result) {
4002   if (Lex.getKind() == lltok::APSInt)
4003     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4004 
4005   if (Lex.getKind() != lltok::DwarfAttEncoding)
4006     return TokError("expected DWARF type attribute encoding");
4007 
4008   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4009   if (!Encoding)
4010     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4011                     Lex.getStrVal() + "'");
4012   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4013   Result.assign(Encoding);
4014   Lex.Lex();
4015   return false;
4016 }
4017 
4018 /// DIFlagField
4019 ///  ::= uint32
4020 ///  ::= DIFlagVector
4021 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4022 template <>
4023 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4024 
4025   // Parser for a single flag.
4026   auto parseFlag = [&](DINode::DIFlags &Val) {
4027     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4028       uint32_t TempVal = static_cast<uint32_t>(Val);
4029       bool Res = ParseUInt32(TempVal);
4030       Val = static_cast<DINode::DIFlags>(TempVal);
4031       return Res;
4032     }
4033 
4034     if (Lex.getKind() != lltok::DIFlag)
4035       return TokError("expected debug info flag");
4036 
4037     Val = DINode::getFlag(Lex.getStrVal());
4038     if (!Val)
4039       return TokError(Twine("invalid debug info flag flag '") +
4040                       Lex.getStrVal() + "'");
4041     Lex.Lex();
4042     return false;
4043   };
4044 
4045   // Parse the flags and combine them together.
4046   DINode::DIFlags Combined = DINode::FlagZero;
4047   do {
4048     DINode::DIFlags Val;
4049     if (parseFlag(Val))
4050       return true;
4051     Combined |= Val;
4052   } while (EatIfPresent(lltok::bar));
4053 
4054   Result.assign(Combined);
4055   return false;
4056 }
4057 
4058 /// DISPFlagField
4059 ///  ::= uint32
4060 ///  ::= DISPFlagVector
4061 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4062 template <>
4063 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4064 
4065   // Parser for a single flag.
4066   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4067     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4068       uint32_t TempVal = static_cast<uint32_t>(Val);
4069       bool Res = ParseUInt32(TempVal);
4070       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4071       return Res;
4072     }
4073 
4074     if (Lex.getKind() != lltok::DISPFlag)
4075       return TokError("expected debug info flag");
4076 
4077     Val = DISubprogram::getFlag(Lex.getStrVal());
4078     if (!Val)
4079       return TokError(Twine("invalid subprogram debug info flag '") +
4080                       Lex.getStrVal() + "'");
4081     Lex.Lex();
4082     return false;
4083   };
4084 
4085   // Parse the flags and combine them together.
4086   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4087   do {
4088     DISubprogram::DISPFlags Val;
4089     if (parseFlag(Val))
4090       return true;
4091     Combined |= Val;
4092   } while (EatIfPresent(lltok::bar));
4093 
4094   Result.assign(Combined);
4095   return false;
4096 }
4097 
4098 template <>
4099 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4100                             MDSignedField &Result) {
4101   if (Lex.getKind() != lltok::APSInt)
4102     return TokError("expected signed integer");
4103 
4104   auto &S = Lex.getAPSIntVal();
4105   if (S < Result.Min)
4106     return TokError("value for '" + Name + "' too small, limit is " +
4107                     Twine(Result.Min));
4108   if (S > Result.Max)
4109     return TokError("value for '" + Name + "' too large, limit is " +
4110                     Twine(Result.Max));
4111   Result.assign(S.getExtValue());
4112   assert(Result.Val >= Result.Min && "Expected value in range");
4113   assert(Result.Val <= Result.Max && "Expected value in range");
4114   Lex.Lex();
4115   return false;
4116 }
4117 
4118 template <>
4119 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4120   switch (Lex.getKind()) {
4121   default:
4122     return TokError("expected 'true' or 'false'");
4123   case lltok::kw_true:
4124     Result.assign(true);
4125     break;
4126   case lltok::kw_false:
4127     Result.assign(false);
4128     break;
4129   }
4130   Lex.Lex();
4131   return false;
4132 }
4133 
4134 template <>
4135 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4136   if (Lex.getKind() == lltok::kw_null) {
4137     if (!Result.AllowNull)
4138       return TokError("'" + Name + "' cannot be null");
4139     Lex.Lex();
4140     Result.assign(nullptr);
4141     return false;
4142   }
4143 
4144   Metadata *MD;
4145   if (ParseMetadata(MD, nullptr))
4146     return true;
4147 
4148   Result.assign(MD);
4149   return false;
4150 }
4151 
4152 template <>
4153 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4154                             MDSignedOrMDField &Result) {
4155   // Try to parse a signed int.
4156   if (Lex.getKind() == lltok::APSInt) {
4157     MDSignedField Res = Result.A;
4158     if (!ParseMDField(Loc, Name, Res)) {
4159       Result.assign(Res);
4160       return false;
4161     }
4162     return true;
4163   }
4164 
4165   // Otherwise, try to parse as an MDField.
4166   MDField Res = Result.B;
4167   if (!ParseMDField(Loc, Name, Res)) {
4168     Result.assign(Res);
4169     return false;
4170   }
4171 
4172   return true;
4173 }
4174 
4175 template <>
4176 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4177                             MDSignedOrUnsignedField &Result) {
4178   if (Lex.getKind() != lltok::APSInt)
4179     return false;
4180 
4181   if (Lex.getAPSIntVal().isSigned()) {
4182     MDSignedField Res = Result.A;
4183     if (ParseMDField(Loc, Name, Res))
4184       return true;
4185     Result.assign(Res);
4186     return false;
4187   }
4188 
4189   MDUnsignedField Res = Result.B;
4190   if (ParseMDField(Loc, Name, Res))
4191     return true;
4192   Result.assign(Res);
4193   return false;
4194 }
4195 
4196 template <>
4197 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4198   LocTy ValueLoc = Lex.getLoc();
4199   std::string S;
4200   if (ParseStringConstant(S))
4201     return true;
4202 
4203   if (!Result.AllowEmpty && S.empty())
4204     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4205 
4206   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4207   return false;
4208 }
4209 
4210 template <>
4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4212   SmallVector<Metadata *, 4> MDs;
4213   if (ParseMDNodeVector(MDs))
4214     return true;
4215 
4216   Result.assign(std::move(MDs));
4217   return false;
4218 }
4219 
4220 template <>
4221 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4222                             ChecksumKindField &Result) {
4223   Optional<DIFile::ChecksumKind> CSKind =
4224       DIFile::getChecksumKind(Lex.getStrVal());
4225 
4226   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4227     return TokError(
4228         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4229 
4230   Result.assign(*CSKind);
4231   Lex.Lex();
4232   return false;
4233 }
4234 
4235 } // end namespace llvm
4236 
4237 template <class ParserTy>
4238 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4239   do {
4240     if (Lex.getKind() != lltok::LabelStr)
4241       return TokError("expected field label here");
4242 
4243     if (parseField())
4244       return true;
4245   } while (EatIfPresent(lltok::comma));
4246 
4247   return false;
4248 }
4249 
4250 template <class ParserTy>
4251 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4252   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4253   Lex.Lex();
4254 
4255   if (ParseToken(lltok::lparen, "expected '(' here"))
4256     return true;
4257   if (Lex.getKind() != lltok::rparen)
4258     if (ParseMDFieldsImplBody(parseField))
4259       return true;
4260 
4261   ClosingLoc = Lex.getLoc();
4262   return ParseToken(lltok::rparen, "expected ')' here");
4263 }
4264 
4265 template <class FieldTy>
4266 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4267   if (Result.Seen)
4268     return TokError("field '" + Name + "' cannot be specified more than once");
4269 
4270   LocTy Loc = Lex.getLoc();
4271   Lex.Lex();
4272   return ParseMDField(Loc, Name, Result);
4273 }
4274 
4275 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4276   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4277 
4278 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4279   if (Lex.getStrVal() == #CLASS)                                               \
4280     return Parse##CLASS(N, IsDistinct);
4281 #include "llvm/IR/Metadata.def"
4282 
4283   return TokError("expected metadata type");
4284 }
4285 
4286 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4287 #define NOP_FIELD(NAME, TYPE, INIT)
4288 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4289   if (!NAME.Seen)                                                              \
4290     return Error(ClosingLoc, "missing required field '" #NAME "'");
4291 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4292   if (Lex.getStrVal() == #NAME)                                                \
4293     return ParseMDField(#NAME, NAME);
4294 #define PARSE_MD_FIELDS()                                                      \
4295   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4296   do {                                                                         \
4297     LocTy ClosingLoc;                                                          \
4298     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4299       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4300       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4301     }, ClosingLoc))                                                            \
4302       return true;                                                             \
4303     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4304   } while (false)
4305 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4306   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4307 
4308 /// ParseDILocationFields:
4309 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4310 ///   isImplicitCode: true)
4311 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4312 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4313   OPTIONAL(line, LineField, );                                                 \
4314   OPTIONAL(column, ColumnField, );                                             \
4315   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4316   OPTIONAL(inlinedAt, MDField, );                                              \
4317   OPTIONAL(isImplicitCode, MDBoolField, (false));
4318   PARSE_MD_FIELDS();
4319 #undef VISIT_MD_FIELDS
4320 
4321   Result =
4322       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4323                                    inlinedAt.Val, isImplicitCode.Val));
4324   return false;
4325 }
4326 
4327 /// ParseGenericDINode:
4328 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4329 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4330 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4331   REQUIRED(tag, DwarfTagField, );                                              \
4332   OPTIONAL(header, MDStringField, );                                           \
4333   OPTIONAL(operands, MDFieldList, );
4334   PARSE_MD_FIELDS();
4335 #undef VISIT_MD_FIELDS
4336 
4337   Result = GET_OR_DISTINCT(GenericDINode,
4338                            (Context, tag.Val, header.Val, operands.Val));
4339   return false;
4340 }
4341 
4342 /// ParseDISubrange:
4343 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4344 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4345 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4346 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4347   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4348   OPTIONAL(lowerBound, MDSignedField, );
4349   PARSE_MD_FIELDS();
4350 #undef VISIT_MD_FIELDS
4351 
4352   if (count.isMDSignedField())
4353     Result = GET_OR_DISTINCT(
4354         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4355   else if (count.isMDField())
4356     Result = GET_OR_DISTINCT(
4357         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4358   else
4359     return true;
4360 
4361   return false;
4362 }
4363 
4364 /// ParseDIEnumerator:
4365 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4366 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4367 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4368   REQUIRED(name, MDStringField, );                                             \
4369   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4370   OPTIONAL(isUnsigned, MDBoolField, (false));
4371   PARSE_MD_FIELDS();
4372 #undef VISIT_MD_FIELDS
4373 
4374   if (isUnsigned.Val && value.isMDSignedField())
4375     return TokError("unsigned enumerator with negative value");
4376 
4377   int64_t Value = value.isMDSignedField()
4378                       ? value.getMDSignedValue()
4379                       : static_cast<int64_t>(value.getMDUnsignedValue());
4380   Result =
4381       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4382 
4383   return false;
4384 }
4385 
4386 /// ParseDIBasicType:
4387 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4388 ///                    encoding: DW_ATE_encoding, flags: 0)
4389 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4390 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4391   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4392   OPTIONAL(name, MDStringField, );                                             \
4393   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4394   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4395   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4396   OPTIONAL(flags, DIFlagField, );
4397   PARSE_MD_FIELDS();
4398 #undef VISIT_MD_FIELDS
4399 
4400   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4401                                          align.Val, encoding.Val, flags.Val));
4402   return false;
4403 }
4404 
4405 /// ParseDIDerivedType:
4406 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4407 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4408 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4409 ///                      dwarfAddressSpace: 3)
4410 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4411 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4412   REQUIRED(tag, DwarfTagField, );                                              \
4413   OPTIONAL(name, MDStringField, );                                             \
4414   OPTIONAL(file, MDField, );                                                   \
4415   OPTIONAL(line, LineField, );                                                 \
4416   OPTIONAL(scope, MDField, );                                                  \
4417   REQUIRED(baseType, MDField, );                                               \
4418   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4419   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4420   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4421   OPTIONAL(flags, DIFlagField, );                                              \
4422   OPTIONAL(extraData, MDField, );                                              \
4423   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4424   PARSE_MD_FIELDS();
4425 #undef VISIT_MD_FIELDS
4426 
4427   Optional<unsigned> DWARFAddressSpace;
4428   if (dwarfAddressSpace.Val != UINT32_MAX)
4429     DWARFAddressSpace = dwarfAddressSpace.Val;
4430 
4431   Result = GET_OR_DISTINCT(DIDerivedType,
4432                            (Context, tag.Val, name.Val, file.Val, line.Val,
4433                             scope.Val, baseType.Val, size.Val, align.Val,
4434                             offset.Val, DWARFAddressSpace, flags.Val,
4435                             extraData.Val));
4436   return false;
4437 }
4438 
4439 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4440 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4441   REQUIRED(tag, DwarfTagField, );                                              \
4442   OPTIONAL(name, MDStringField, );                                             \
4443   OPTIONAL(file, MDField, );                                                   \
4444   OPTIONAL(line, LineField, );                                                 \
4445   OPTIONAL(scope, MDField, );                                                  \
4446   OPTIONAL(baseType, MDField, );                                               \
4447   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4448   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4449   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4450   OPTIONAL(flags, DIFlagField, );                                              \
4451   OPTIONAL(elements, MDField, );                                               \
4452   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4453   OPTIONAL(vtableHolder, MDField, );                                           \
4454   OPTIONAL(templateParams, MDField, );                                         \
4455   OPTIONAL(identifier, MDStringField, );                                       \
4456   OPTIONAL(discriminator, MDField, );
4457   PARSE_MD_FIELDS();
4458 #undef VISIT_MD_FIELDS
4459 
4460   // If this has an identifier try to build an ODR type.
4461   if (identifier.Val)
4462     if (auto *CT = DICompositeType::buildODRType(
4463             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4464             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4465             elements.Val, runtimeLang.Val, vtableHolder.Val,
4466             templateParams.Val, discriminator.Val)) {
4467       Result = CT;
4468       return false;
4469     }
4470 
4471   // Create a new node, and save it in the context if it belongs in the type
4472   // map.
4473   Result = GET_OR_DISTINCT(
4474       DICompositeType,
4475       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4476        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4477        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4478        discriminator.Val));
4479   return false;
4480 }
4481 
4482 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4483 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4484   OPTIONAL(flags, DIFlagField, );                                              \
4485   OPTIONAL(cc, DwarfCCField, );                                                \
4486   REQUIRED(types, MDField, );
4487   PARSE_MD_FIELDS();
4488 #undef VISIT_MD_FIELDS
4489 
4490   Result = GET_OR_DISTINCT(DISubroutineType,
4491                            (Context, flags.Val, cc.Val, types.Val));
4492   return false;
4493 }
4494 
4495 /// ParseDIFileType:
4496 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4497 ///                   checksumkind: CSK_MD5,
4498 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4499 ///                   source: "source file contents")
4500 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4501   // The default constructed value for checksumkind is required, but will never
4502   // be used, as the parser checks if the field was actually Seen before using
4503   // the Val.
4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4505   REQUIRED(filename, MDStringField, );                                         \
4506   REQUIRED(directory, MDStringField, );                                        \
4507   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4508   OPTIONAL(checksum, MDStringField, );                                         \
4509   OPTIONAL(source, MDStringField, );
4510   PARSE_MD_FIELDS();
4511 #undef VISIT_MD_FIELDS
4512 
4513   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4514   if (checksumkind.Seen && checksum.Seen)
4515     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4516   else if (checksumkind.Seen || checksum.Seen)
4517     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4518 
4519   Optional<MDString *> OptSource;
4520   if (source.Seen)
4521     OptSource = source.Val;
4522   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4523                                     OptChecksum, OptSource));
4524   return false;
4525 }
4526 
4527 /// ParseDICompileUnit:
4528 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4529 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4530 ///                      splitDebugFilename: "abc.debug",
4531 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4532 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4533 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4534   if (!IsDistinct)
4535     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4536 
4537 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4538   REQUIRED(language, DwarfLangField, );                                        \
4539   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4540   OPTIONAL(producer, MDStringField, );                                         \
4541   OPTIONAL(isOptimized, MDBoolField, );                                        \
4542   OPTIONAL(flags, MDStringField, );                                            \
4543   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4544   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4545   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4546   OPTIONAL(enums, MDField, );                                                  \
4547   OPTIONAL(retainedTypes, MDField, );                                          \
4548   OPTIONAL(globals, MDField, );                                                \
4549   OPTIONAL(imports, MDField, );                                                \
4550   OPTIONAL(macros, MDField, );                                                 \
4551   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4552   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4553   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4554   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4555   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4556   PARSE_MD_FIELDS();
4557 #undef VISIT_MD_FIELDS
4558 
4559   Result = DICompileUnit::getDistinct(
4560       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4561       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4562       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4563       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4564       debugBaseAddress.Val);
4565   return false;
4566 }
4567 
4568 /// ParseDISubprogram:
4569 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4570 ///                     file: !1, line: 7, type: !2, isLocal: false,
4571 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4572 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4573 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4574 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4575 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4576 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4577   auto Loc = Lex.getLoc();
4578 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4579   OPTIONAL(scope, MDField, );                                                  \
4580   OPTIONAL(name, MDStringField, );                                             \
4581   OPTIONAL(linkageName, MDStringField, );                                      \
4582   OPTIONAL(file, MDField, );                                                   \
4583   OPTIONAL(line, LineField, );                                                 \
4584   OPTIONAL(type, MDField, );                                                   \
4585   OPTIONAL(isLocal, MDBoolField, );                                            \
4586   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4587   OPTIONAL(scopeLine, LineField, );                                            \
4588   OPTIONAL(containingType, MDField, );                                         \
4589   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4590   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4591   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4592   OPTIONAL(flags, DIFlagField, );                                              \
4593   OPTIONAL(spFlags, DISPFlagField, );                                          \
4594   OPTIONAL(isOptimized, MDBoolField, );                                        \
4595   OPTIONAL(unit, MDField, );                                                   \
4596   OPTIONAL(templateParams, MDField, );                                         \
4597   OPTIONAL(declaration, MDField, );                                            \
4598   OPTIONAL(retainedNodes, MDField, );                                          \
4599   OPTIONAL(thrownTypes, MDField, );
4600   PARSE_MD_FIELDS();
4601 #undef VISIT_MD_FIELDS
4602 
4603   // An explicit spFlags field takes precedence over individual fields in
4604   // older IR versions.
4605   DISubprogram::DISPFlags SPFlags =
4606       spFlags.Seen ? spFlags.Val
4607                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4608                                              isOptimized.Val, virtuality.Val);
4609   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4610     return Lex.Error(
4611         Loc,
4612         "missing 'distinct', required for !DISubprogram that is a Definition");
4613   Result = GET_OR_DISTINCT(
4614       DISubprogram,
4615       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4616        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4617        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4618        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4619   return false;
4620 }
4621 
4622 /// ParseDILexicalBlock:
4623 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4624 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4625 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4626   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4627   OPTIONAL(file, MDField, );                                                   \
4628   OPTIONAL(line, LineField, );                                                 \
4629   OPTIONAL(column, ColumnField, );
4630   PARSE_MD_FIELDS();
4631 #undef VISIT_MD_FIELDS
4632 
4633   Result = GET_OR_DISTINCT(
4634       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4635   return false;
4636 }
4637 
4638 /// ParseDILexicalBlockFile:
4639 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4640 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4642   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4643   OPTIONAL(file, MDField, );                                                   \
4644   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4645   PARSE_MD_FIELDS();
4646 #undef VISIT_MD_FIELDS
4647 
4648   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4649                            (Context, scope.Val, file.Val, discriminator.Val));
4650   return false;
4651 }
4652 
4653 /// ParseDINamespace:
4654 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4655 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4656 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4657   REQUIRED(scope, MDField, );                                                  \
4658   OPTIONAL(name, MDStringField, );                                             \
4659   OPTIONAL(exportSymbols, MDBoolField, );
4660   PARSE_MD_FIELDS();
4661 #undef VISIT_MD_FIELDS
4662 
4663   Result = GET_OR_DISTINCT(DINamespace,
4664                            (Context, scope.Val, name.Val, exportSymbols.Val));
4665   return false;
4666 }
4667 
4668 /// ParseDIMacro:
4669 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4670 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4672   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4673   OPTIONAL(line, LineField, );                                                 \
4674   REQUIRED(name, MDStringField, );                                             \
4675   OPTIONAL(value, MDStringField, );
4676   PARSE_MD_FIELDS();
4677 #undef VISIT_MD_FIELDS
4678 
4679   Result = GET_OR_DISTINCT(DIMacro,
4680                            (Context, type.Val, line.Val, name.Val, value.Val));
4681   return false;
4682 }
4683 
4684 /// ParseDIMacroFile:
4685 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4686 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4687 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4688   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4689   OPTIONAL(line, LineField, );                                                 \
4690   REQUIRED(file, MDField, );                                                   \
4691   OPTIONAL(nodes, MDField, );
4692   PARSE_MD_FIELDS();
4693 #undef VISIT_MD_FIELDS
4694 
4695   Result = GET_OR_DISTINCT(DIMacroFile,
4696                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4697   return false;
4698 }
4699 
4700 /// ParseDIModule:
4701 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4702 ///                 includePath: "/usr/include", isysroot: "/")
4703 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4704 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4705   REQUIRED(scope, MDField, );                                                  \
4706   REQUIRED(name, MDStringField, );                                             \
4707   OPTIONAL(configMacros, MDStringField, );                                     \
4708   OPTIONAL(includePath, MDStringField, );                                      \
4709   OPTIONAL(isysroot, MDStringField, );
4710   PARSE_MD_FIELDS();
4711 #undef VISIT_MD_FIELDS
4712 
4713   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4714                            configMacros.Val, includePath.Val, isysroot.Val));
4715   return false;
4716 }
4717 
4718 /// ParseDITemplateTypeParameter:
4719 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4720 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4721 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4722   OPTIONAL(name, MDStringField, );                                             \
4723   REQUIRED(type, MDField, );
4724   PARSE_MD_FIELDS();
4725 #undef VISIT_MD_FIELDS
4726 
4727   Result =
4728       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4729   return false;
4730 }
4731 
4732 /// ParseDITemplateValueParameter:
4733 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4734 ///                                 name: "V", type: !1, value: i32 7)
4735 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4737   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4738   OPTIONAL(name, MDStringField, );                                             \
4739   OPTIONAL(type, MDField, );                                                   \
4740   REQUIRED(value, MDField, );
4741   PARSE_MD_FIELDS();
4742 #undef VISIT_MD_FIELDS
4743 
4744   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4745                            (Context, tag.Val, name.Val, type.Val, value.Val));
4746   return false;
4747 }
4748 
4749 /// ParseDIGlobalVariable:
4750 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4751 ///                         file: !1, line: 7, type: !2, isLocal: false,
4752 ///                         isDefinition: true, templateParams: !3,
4753 ///                         declaration: !4, align: 8)
4754 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4755 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4756   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4757   OPTIONAL(scope, MDField, );                                                  \
4758   OPTIONAL(linkageName, MDStringField, );                                      \
4759   OPTIONAL(file, MDField, );                                                   \
4760   OPTIONAL(line, LineField, );                                                 \
4761   OPTIONAL(type, MDField, );                                                   \
4762   OPTIONAL(isLocal, MDBoolField, );                                            \
4763   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4764   OPTIONAL(templateParams, MDField, );                                         \
4765   OPTIONAL(declaration, MDField, );                                            \
4766   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4767   PARSE_MD_FIELDS();
4768 #undef VISIT_MD_FIELDS
4769 
4770   Result =
4771       GET_OR_DISTINCT(DIGlobalVariable,
4772                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4773                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4774                        declaration.Val, templateParams.Val, align.Val));
4775   return false;
4776 }
4777 
4778 /// ParseDILocalVariable:
4779 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4780 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4781 ///                        align: 8)
4782 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4783 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4784 ///                        align: 8)
4785 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4786 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4787   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4788   OPTIONAL(name, MDStringField, );                                             \
4789   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4790   OPTIONAL(file, MDField, );                                                   \
4791   OPTIONAL(line, LineField, );                                                 \
4792   OPTIONAL(type, MDField, );                                                   \
4793   OPTIONAL(flags, DIFlagField, );                                              \
4794   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4795   PARSE_MD_FIELDS();
4796 #undef VISIT_MD_FIELDS
4797 
4798   Result = GET_OR_DISTINCT(DILocalVariable,
4799                            (Context, scope.Val, name.Val, file.Val, line.Val,
4800                             type.Val, arg.Val, flags.Val, align.Val));
4801   return false;
4802 }
4803 
4804 /// ParseDILabel:
4805 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4806 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4807 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4808   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4809   REQUIRED(name, MDStringField, );                                             \
4810   REQUIRED(file, MDField, );                                                   \
4811   REQUIRED(line, LineField, );
4812   PARSE_MD_FIELDS();
4813 #undef VISIT_MD_FIELDS
4814 
4815   Result = GET_OR_DISTINCT(DILabel,
4816                            (Context, scope.Val, name.Val, file.Val, line.Val));
4817   return false;
4818 }
4819 
4820 /// ParseDIExpression:
4821 ///   ::= !DIExpression(0, 7, -1)
4822 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4823   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4824   Lex.Lex();
4825 
4826   if (ParseToken(lltok::lparen, "expected '(' here"))
4827     return true;
4828 
4829   SmallVector<uint64_t, 8> Elements;
4830   if (Lex.getKind() != lltok::rparen)
4831     do {
4832       if (Lex.getKind() == lltok::DwarfOp) {
4833         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4834           Lex.Lex();
4835           Elements.push_back(Op);
4836           continue;
4837         }
4838         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4839       }
4840 
4841       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4842         return TokError("expected unsigned integer");
4843 
4844       auto &U = Lex.getAPSIntVal();
4845       if (U.ugt(UINT64_MAX))
4846         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4847       Elements.push_back(U.getZExtValue());
4848       Lex.Lex();
4849     } while (EatIfPresent(lltok::comma));
4850 
4851   if (ParseToken(lltok::rparen, "expected ')' here"))
4852     return true;
4853 
4854   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4855   return false;
4856 }
4857 
4858 /// ParseDIGlobalVariableExpression:
4859 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4860 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4861                                                bool IsDistinct) {
4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4863   REQUIRED(var, MDField, );                                                    \
4864   REQUIRED(expr, MDField, );
4865   PARSE_MD_FIELDS();
4866 #undef VISIT_MD_FIELDS
4867 
4868   Result =
4869       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4870   return false;
4871 }
4872 
4873 /// ParseDIObjCProperty:
4874 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4875 ///                       getter: "getFoo", attributes: 7, type: !2)
4876 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4877 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4878   OPTIONAL(name, MDStringField, );                                             \
4879   OPTIONAL(file, MDField, );                                                   \
4880   OPTIONAL(line, LineField, );                                                 \
4881   OPTIONAL(setter, MDStringField, );                                           \
4882   OPTIONAL(getter, MDStringField, );                                           \
4883   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4884   OPTIONAL(type, MDField, );
4885   PARSE_MD_FIELDS();
4886 #undef VISIT_MD_FIELDS
4887 
4888   Result = GET_OR_DISTINCT(DIObjCProperty,
4889                            (Context, name.Val, file.Val, line.Val, setter.Val,
4890                             getter.Val, attributes.Val, type.Val));
4891   return false;
4892 }
4893 
4894 /// ParseDIImportedEntity:
4895 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4896 ///                         line: 7, name: "foo")
4897 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4898 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4899   REQUIRED(tag, DwarfTagField, );                                              \
4900   REQUIRED(scope, MDField, );                                                  \
4901   OPTIONAL(entity, MDField, );                                                 \
4902   OPTIONAL(file, MDField, );                                                   \
4903   OPTIONAL(line, LineField, );                                                 \
4904   OPTIONAL(name, MDStringField, );
4905   PARSE_MD_FIELDS();
4906 #undef VISIT_MD_FIELDS
4907 
4908   Result = GET_OR_DISTINCT(
4909       DIImportedEntity,
4910       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4911   return false;
4912 }
4913 
4914 #undef PARSE_MD_FIELD
4915 #undef NOP_FIELD
4916 #undef REQUIRE_FIELD
4917 #undef DECLARE_FIELD
4918 
4919 /// ParseMetadataAsValue
4920 ///  ::= metadata i32 %local
4921 ///  ::= metadata i32 @global
4922 ///  ::= metadata i32 7
4923 ///  ::= metadata !0
4924 ///  ::= metadata !{...}
4925 ///  ::= metadata !"string"
4926 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4927   // Note: the type 'metadata' has already been parsed.
4928   Metadata *MD;
4929   if (ParseMetadata(MD, &PFS))
4930     return true;
4931 
4932   V = MetadataAsValue::get(Context, MD);
4933   return false;
4934 }
4935 
4936 /// ParseValueAsMetadata
4937 ///  ::= i32 %local
4938 ///  ::= i32 @global
4939 ///  ::= i32 7
4940 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4941                                     PerFunctionState *PFS) {
4942   Type *Ty;
4943   LocTy Loc;
4944   if (ParseType(Ty, TypeMsg, Loc))
4945     return true;
4946   if (Ty->isMetadataTy())
4947     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4948 
4949   Value *V;
4950   if (ParseValue(Ty, V, PFS))
4951     return true;
4952 
4953   MD = ValueAsMetadata::get(V);
4954   return false;
4955 }
4956 
4957 /// ParseMetadata
4958 ///  ::= i32 %local
4959 ///  ::= i32 @global
4960 ///  ::= i32 7
4961 ///  ::= !42
4962 ///  ::= !{...}
4963 ///  ::= !"string"
4964 ///  ::= !DILocation(...)
4965 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4966   if (Lex.getKind() == lltok::MetadataVar) {
4967     MDNode *N;
4968     if (ParseSpecializedMDNode(N))
4969       return true;
4970     MD = N;
4971     return false;
4972   }
4973 
4974   // ValueAsMetadata:
4975   // <type> <value>
4976   if (Lex.getKind() != lltok::exclaim)
4977     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4978 
4979   // '!'.
4980   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4981   Lex.Lex();
4982 
4983   // MDString:
4984   //   ::= '!' STRINGCONSTANT
4985   if (Lex.getKind() == lltok::StringConstant) {
4986     MDString *S;
4987     if (ParseMDString(S))
4988       return true;
4989     MD = S;
4990     return false;
4991   }
4992 
4993   // MDNode:
4994   // !{ ... }
4995   // !7
4996   MDNode *N;
4997   if (ParseMDNodeTail(N))
4998     return true;
4999   MD = N;
5000   return false;
5001 }
5002 
5003 //===----------------------------------------------------------------------===//
5004 // Function Parsing.
5005 //===----------------------------------------------------------------------===//
5006 
5007 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5008                                    PerFunctionState *PFS, bool IsCall) {
5009   if (Ty->isFunctionTy())
5010     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5011 
5012   switch (ID.Kind) {
5013   case ValID::t_LocalID:
5014     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5015     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5016     return V == nullptr;
5017   case ValID::t_LocalName:
5018     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5019     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5020     return V == nullptr;
5021   case ValID::t_InlineAsm: {
5022     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5023       return Error(ID.Loc, "invalid type for inline asm constraint string");
5024     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5025                        (ID.UIntVal >> 1) & 1,
5026                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5027     return false;
5028   }
5029   case ValID::t_GlobalName:
5030     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5031     return V == nullptr;
5032   case ValID::t_GlobalID:
5033     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5034     return V == nullptr;
5035   case ValID::t_APSInt:
5036     if (!Ty->isIntegerTy())
5037       return Error(ID.Loc, "integer constant must have integer type");
5038     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5039     V = ConstantInt::get(Context, ID.APSIntVal);
5040     return false;
5041   case ValID::t_APFloat:
5042     if (!Ty->isFloatingPointTy() ||
5043         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5044       return Error(ID.Loc, "floating point constant invalid for type");
5045 
5046     // The lexer has no type info, so builds all half, float, and double FP
5047     // constants as double.  Fix this here.  Long double does not need this.
5048     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5049       bool Ignored;
5050       if (Ty->isHalfTy())
5051         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5052                               &Ignored);
5053       else if (Ty->isFloatTy())
5054         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5055                               &Ignored);
5056     }
5057     V = ConstantFP::get(Context, ID.APFloatVal);
5058 
5059     if (V->getType() != Ty)
5060       return Error(ID.Loc, "floating point constant does not have type '" +
5061                    getTypeString(Ty) + "'");
5062 
5063     return false;
5064   case ValID::t_Null:
5065     if (!Ty->isPointerTy())
5066       return Error(ID.Loc, "null must be a pointer type");
5067     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5068     return false;
5069   case ValID::t_Undef:
5070     // FIXME: LabelTy should not be a first-class type.
5071     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5072       return Error(ID.Loc, "invalid type for undef constant");
5073     V = UndefValue::get(Ty);
5074     return false;
5075   case ValID::t_EmptyArray:
5076     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5077       return Error(ID.Loc, "invalid empty array initializer");
5078     V = UndefValue::get(Ty);
5079     return false;
5080   case ValID::t_Zero:
5081     // FIXME: LabelTy should not be a first-class type.
5082     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5083       return Error(ID.Loc, "invalid type for null constant");
5084     V = Constant::getNullValue(Ty);
5085     return false;
5086   case ValID::t_None:
5087     if (!Ty->isTokenTy())
5088       return Error(ID.Loc, "invalid type for none constant");
5089     V = Constant::getNullValue(Ty);
5090     return false;
5091   case ValID::t_Constant:
5092     if (ID.ConstantVal->getType() != Ty)
5093       return Error(ID.Loc, "constant expression type mismatch");
5094 
5095     V = ID.ConstantVal;
5096     return false;
5097   case ValID::t_ConstantStruct:
5098   case ValID::t_PackedConstantStruct:
5099     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5100       if (ST->getNumElements() != ID.UIntVal)
5101         return Error(ID.Loc,
5102                      "initializer with struct type has wrong # elements");
5103       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5104         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5105 
5106       // Verify that the elements are compatible with the structtype.
5107       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5108         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5109           return Error(ID.Loc, "element " + Twine(i) +
5110                     " of struct initializer doesn't match struct element type");
5111 
5112       V = ConstantStruct::get(
5113           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5114     } else
5115       return Error(ID.Loc, "constant expression type mismatch");
5116     return false;
5117   }
5118   llvm_unreachable("Invalid ValID");
5119 }
5120 
5121 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5122   C = nullptr;
5123   ValID ID;
5124   auto Loc = Lex.getLoc();
5125   if (ParseValID(ID, /*PFS=*/nullptr))
5126     return true;
5127   switch (ID.Kind) {
5128   case ValID::t_APSInt:
5129   case ValID::t_APFloat:
5130   case ValID::t_Undef:
5131   case ValID::t_Constant:
5132   case ValID::t_ConstantStruct:
5133   case ValID::t_PackedConstantStruct: {
5134     Value *V;
5135     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5136       return true;
5137     assert(isa<Constant>(V) && "Expected a constant value");
5138     C = cast<Constant>(V);
5139     return false;
5140   }
5141   case ValID::t_Null:
5142     C = Constant::getNullValue(Ty);
5143     return false;
5144   default:
5145     return Error(Loc, "expected a constant value");
5146   }
5147 }
5148 
5149 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5150   V = nullptr;
5151   ValID ID;
5152   return ParseValID(ID, PFS) ||
5153          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5154 }
5155 
5156 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5157   Type *Ty = nullptr;
5158   return ParseType(Ty) ||
5159          ParseValue(Ty, V, PFS);
5160 }
5161 
5162 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5163                                       PerFunctionState &PFS) {
5164   Value *V;
5165   Loc = Lex.getLoc();
5166   if (ParseTypeAndValue(V, PFS)) return true;
5167   if (!isa<BasicBlock>(V))
5168     return Error(Loc, "expected a basic block");
5169   BB = cast<BasicBlock>(V);
5170   return false;
5171 }
5172 
5173 /// FunctionHeader
5174 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5175 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5176 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5177 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5178 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5179   // Parse the linkage.
5180   LocTy LinkageLoc = Lex.getLoc();
5181   unsigned Linkage;
5182   unsigned Visibility;
5183   unsigned DLLStorageClass;
5184   bool DSOLocal;
5185   AttrBuilder RetAttrs;
5186   unsigned CC;
5187   bool HasLinkage;
5188   Type *RetType = nullptr;
5189   LocTy RetTypeLoc = Lex.getLoc();
5190   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5191                            DSOLocal) ||
5192       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5193       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5194     return true;
5195 
5196   // Verify that the linkage is ok.
5197   switch ((GlobalValue::LinkageTypes)Linkage) {
5198   case GlobalValue::ExternalLinkage:
5199     break; // always ok.
5200   case GlobalValue::ExternalWeakLinkage:
5201     if (isDefine)
5202       return Error(LinkageLoc, "invalid linkage for function definition");
5203     break;
5204   case GlobalValue::PrivateLinkage:
5205   case GlobalValue::InternalLinkage:
5206   case GlobalValue::AvailableExternallyLinkage:
5207   case GlobalValue::LinkOnceAnyLinkage:
5208   case GlobalValue::LinkOnceODRLinkage:
5209   case GlobalValue::WeakAnyLinkage:
5210   case GlobalValue::WeakODRLinkage:
5211     if (!isDefine)
5212       return Error(LinkageLoc, "invalid linkage for function declaration");
5213     break;
5214   case GlobalValue::AppendingLinkage:
5215   case GlobalValue::CommonLinkage:
5216     return Error(LinkageLoc, "invalid function linkage type");
5217   }
5218 
5219   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5220     return Error(LinkageLoc,
5221                  "symbol with local linkage must have default visibility");
5222 
5223   if (!FunctionType::isValidReturnType(RetType))
5224     return Error(RetTypeLoc, "invalid function return type");
5225 
5226   LocTy NameLoc = Lex.getLoc();
5227 
5228   std::string FunctionName;
5229   if (Lex.getKind() == lltok::GlobalVar) {
5230     FunctionName = Lex.getStrVal();
5231   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5232     unsigned NameID = Lex.getUIntVal();
5233 
5234     if (NameID != NumberedVals.size())
5235       return TokError("function expected to be numbered '%" +
5236                       Twine(NumberedVals.size()) + "'");
5237   } else {
5238     return TokError("expected function name");
5239   }
5240 
5241   Lex.Lex();
5242 
5243   if (Lex.getKind() != lltok::lparen)
5244     return TokError("expected '(' in function argument list");
5245 
5246   SmallVector<ArgInfo, 8> ArgList;
5247   bool isVarArg;
5248   AttrBuilder FuncAttrs;
5249   std::vector<unsigned> FwdRefAttrGrps;
5250   LocTy BuiltinLoc;
5251   std::string Section;
5252   unsigned Alignment;
5253   std::string GC;
5254   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5255   unsigned AddrSpace = 0;
5256   Constant *Prefix = nullptr;
5257   Constant *Prologue = nullptr;
5258   Constant *PersonalityFn = nullptr;
5259   Comdat *C;
5260 
5261   if (ParseArgumentList(ArgList, isVarArg) ||
5262       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5263       ParseOptionalProgramAddrSpace(AddrSpace) ||
5264       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5265                                  BuiltinLoc) ||
5266       (EatIfPresent(lltok::kw_section) &&
5267        ParseStringConstant(Section)) ||
5268       parseOptionalComdat(FunctionName, C) ||
5269       ParseOptionalAlignment(Alignment) ||
5270       (EatIfPresent(lltok::kw_gc) &&
5271        ParseStringConstant(GC)) ||
5272       (EatIfPresent(lltok::kw_prefix) &&
5273        ParseGlobalTypeAndValue(Prefix)) ||
5274       (EatIfPresent(lltok::kw_prologue) &&
5275        ParseGlobalTypeAndValue(Prologue)) ||
5276       (EatIfPresent(lltok::kw_personality) &&
5277        ParseGlobalTypeAndValue(PersonalityFn)))
5278     return true;
5279 
5280   if (FuncAttrs.contains(Attribute::Builtin))
5281     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5282 
5283   // If the alignment was parsed as an attribute, move to the alignment field.
5284   if (FuncAttrs.hasAlignmentAttr()) {
5285     Alignment = FuncAttrs.getAlignment();
5286     FuncAttrs.removeAttribute(Attribute::Alignment);
5287   }
5288 
5289   // Okay, if we got here, the function is syntactically valid.  Convert types
5290   // and do semantic checks.
5291   std::vector<Type*> ParamTypeList;
5292   SmallVector<AttributeSet, 8> Attrs;
5293 
5294   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5295     ParamTypeList.push_back(ArgList[i].Ty);
5296     Attrs.push_back(ArgList[i].Attrs);
5297   }
5298 
5299   AttributeList PAL =
5300       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5301                          AttributeSet::get(Context, RetAttrs), Attrs);
5302 
5303   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5304     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5305 
5306   FunctionType *FT =
5307     FunctionType::get(RetType, ParamTypeList, isVarArg);
5308   PointerType *PFT = PointerType::get(FT, AddrSpace);
5309 
5310   Fn = nullptr;
5311   if (!FunctionName.empty()) {
5312     // If this was a definition of a forward reference, remove the definition
5313     // from the forward reference table and fill in the forward ref.
5314     auto FRVI = ForwardRefVals.find(FunctionName);
5315     if (FRVI != ForwardRefVals.end()) {
5316       Fn = M->getFunction(FunctionName);
5317       if (!Fn)
5318         return Error(FRVI->second.second, "invalid forward reference to "
5319                      "function as global value!");
5320       if (Fn->getType() != PFT)
5321         return Error(FRVI->second.second, "invalid forward reference to "
5322                      "function '" + FunctionName + "' with wrong type: "
5323                      "expected '" + getTypeString(PFT) + "' but was '" +
5324                      getTypeString(Fn->getType()) + "'");
5325       ForwardRefVals.erase(FRVI);
5326     } else if ((Fn = M->getFunction(FunctionName))) {
5327       // Reject redefinitions.
5328       return Error(NameLoc, "invalid redefinition of function '" +
5329                    FunctionName + "'");
5330     } else if (M->getNamedValue(FunctionName)) {
5331       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5332     }
5333 
5334   } else {
5335     // If this is a definition of a forward referenced function, make sure the
5336     // types agree.
5337     auto I = ForwardRefValIDs.find(NumberedVals.size());
5338     if (I != ForwardRefValIDs.end()) {
5339       Fn = cast<Function>(I->second.first);
5340       if (Fn->getType() != PFT)
5341         return Error(NameLoc, "type of definition and forward reference of '@" +
5342                      Twine(NumberedVals.size()) + "' disagree: "
5343                      "expected '" + getTypeString(PFT) + "' but was '" +
5344                      getTypeString(Fn->getType()) + "'");
5345       ForwardRefValIDs.erase(I);
5346     }
5347   }
5348 
5349   if (!Fn)
5350     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5351                           FunctionName, M);
5352   else // Move the forward-reference to the correct spot in the module.
5353     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5354 
5355   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5356 
5357   if (FunctionName.empty())
5358     NumberedVals.push_back(Fn);
5359 
5360   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5361   maybeSetDSOLocal(DSOLocal, *Fn);
5362   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5363   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5364   Fn->setCallingConv(CC);
5365   Fn->setAttributes(PAL);
5366   Fn->setUnnamedAddr(UnnamedAddr);
5367   Fn->setAlignment(Alignment);
5368   Fn->setSection(Section);
5369   Fn->setComdat(C);
5370   Fn->setPersonalityFn(PersonalityFn);
5371   if (!GC.empty()) Fn->setGC(GC);
5372   Fn->setPrefixData(Prefix);
5373   Fn->setPrologueData(Prologue);
5374   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5375 
5376   // Add all of the arguments we parsed to the function.
5377   Function::arg_iterator ArgIt = Fn->arg_begin();
5378   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5379     // If the argument has a name, insert it into the argument symbol table.
5380     if (ArgList[i].Name.empty()) continue;
5381 
5382     // Set the name, if it conflicted, it will be auto-renamed.
5383     ArgIt->setName(ArgList[i].Name);
5384 
5385     if (ArgIt->getName() != ArgList[i].Name)
5386       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5387                    ArgList[i].Name + "'");
5388   }
5389 
5390   if (isDefine)
5391     return false;
5392 
5393   // Check the declaration has no block address forward references.
5394   ValID ID;
5395   if (FunctionName.empty()) {
5396     ID.Kind = ValID::t_GlobalID;
5397     ID.UIntVal = NumberedVals.size() - 1;
5398   } else {
5399     ID.Kind = ValID::t_GlobalName;
5400     ID.StrVal = FunctionName;
5401   }
5402   auto Blocks = ForwardRefBlockAddresses.find(ID);
5403   if (Blocks != ForwardRefBlockAddresses.end())
5404     return Error(Blocks->first.Loc,
5405                  "cannot take blockaddress inside a declaration");
5406   return false;
5407 }
5408 
5409 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5410   ValID ID;
5411   if (FunctionNumber == -1) {
5412     ID.Kind = ValID::t_GlobalName;
5413     ID.StrVal = F.getName();
5414   } else {
5415     ID.Kind = ValID::t_GlobalID;
5416     ID.UIntVal = FunctionNumber;
5417   }
5418 
5419   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5420   if (Blocks == P.ForwardRefBlockAddresses.end())
5421     return false;
5422 
5423   for (const auto &I : Blocks->second) {
5424     const ValID &BBID = I.first;
5425     GlobalValue *GV = I.second;
5426 
5427     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5428            "Expected local id or name");
5429     BasicBlock *BB;
5430     if (BBID.Kind == ValID::t_LocalName)
5431       BB = GetBB(BBID.StrVal, BBID.Loc);
5432     else
5433       BB = GetBB(BBID.UIntVal, BBID.Loc);
5434     if (!BB)
5435       return P.Error(BBID.Loc, "referenced value is not a basic block");
5436 
5437     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5438     GV->eraseFromParent();
5439   }
5440 
5441   P.ForwardRefBlockAddresses.erase(Blocks);
5442   return false;
5443 }
5444 
5445 /// ParseFunctionBody
5446 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5447 bool LLParser::ParseFunctionBody(Function &Fn) {
5448   if (Lex.getKind() != lltok::lbrace)
5449     return TokError("expected '{' in function body");
5450   Lex.Lex();  // eat the {.
5451 
5452   int FunctionNumber = -1;
5453   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5454 
5455   PerFunctionState PFS(*this, Fn, FunctionNumber);
5456 
5457   // Resolve block addresses and allow basic blocks to be forward-declared
5458   // within this function.
5459   if (PFS.resolveForwardRefBlockAddresses())
5460     return true;
5461   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5462 
5463   // We need at least one basic block.
5464   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5465     return TokError("function body requires at least one basic block");
5466 
5467   while (Lex.getKind() != lltok::rbrace &&
5468          Lex.getKind() != lltok::kw_uselistorder)
5469     if (ParseBasicBlock(PFS)) return true;
5470 
5471   while (Lex.getKind() != lltok::rbrace)
5472     if (ParseUseListOrder(&PFS))
5473       return true;
5474 
5475   // Eat the }.
5476   Lex.Lex();
5477 
5478   // Verify function is ok.
5479   return PFS.FinishFunction();
5480 }
5481 
5482 /// ParseBasicBlock
5483 ///   ::= LabelStr? Instruction*
5484 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5485   // If this basic block starts out with a name, remember it.
5486   std::string Name;
5487   LocTy NameLoc = Lex.getLoc();
5488   if (Lex.getKind() == lltok::LabelStr) {
5489     Name = Lex.getStrVal();
5490     Lex.Lex();
5491   }
5492 
5493   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5494   if (!BB)
5495     return Error(NameLoc,
5496                  "unable to create block named '" + Name + "'");
5497 
5498   std::string NameStr;
5499 
5500   // Parse the instructions in this block until we get a terminator.
5501   Instruction *Inst;
5502   do {
5503     // This instruction may have three possibilities for a name: a) none
5504     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5505     LocTy NameLoc = Lex.getLoc();
5506     int NameID = -1;
5507     NameStr = "";
5508 
5509     if (Lex.getKind() == lltok::LocalVarID) {
5510       NameID = Lex.getUIntVal();
5511       Lex.Lex();
5512       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5513         return true;
5514     } else if (Lex.getKind() == lltok::LocalVar) {
5515       NameStr = Lex.getStrVal();
5516       Lex.Lex();
5517       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5518         return true;
5519     }
5520 
5521     switch (ParseInstruction(Inst, BB, PFS)) {
5522     default: llvm_unreachable("Unknown ParseInstruction result!");
5523     case InstError: return true;
5524     case InstNormal:
5525       BB->getInstList().push_back(Inst);
5526 
5527       // With a normal result, we check to see if the instruction is followed by
5528       // a comma and metadata.
5529       if (EatIfPresent(lltok::comma))
5530         if (ParseInstructionMetadata(*Inst))
5531           return true;
5532       break;
5533     case InstExtraComma:
5534       BB->getInstList().push_back(Inst);
5535 
5536       // If the instruction parser ate an extra comma at the end of it, it
5537       // *must* be followed by metadata.
5538       if (ParseInstructionMetadata(*Inst))
5539         return true;
5540       break;
5541     }
5542 
5543     // Set the name on the instruction.
5544     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5545   } while (!Inst->isTerminator());
5546 
5547   return false;
5548 }
5549 
5550 //===----------------------------------------------------------------------===//
5551 // Instruction Parsing.
5552 //===----------------------------------------------------------------------===//
5553 
5554 /// ParseInstruction - Parse one of the many different instructions.
5555 ///
5556 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5557                                PerFunctionState &PFS) {
5558   lltok::Kind Token = Lex.getKind();
5559   if (Token == lltok::Eof)
5560     return TokError("found end of file when expecting more instructions");
5561   LocTy Loc = Lex.getLoc();
5562   unsigned KeywordVal = Lex.getUIntVal();
5563   Lex.Lex();  // Eat the keyword.
5564 
5565   switch (Token) {
5566   default:                    return Error(Loc, "expected instruction opcode");
5567   // Terminator Instructions.
5568   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5569   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5570   case lltok::kw_br:          return ParseBr(Inst, PFS);
5571   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5572   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5573   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5574   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5575   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5576   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5577   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5578   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5579   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5580   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5581   // Unary Operators.
5582   case lltok::kw_fneg: {
5583     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5584     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2);
5585     if (Res != 0)
5586       return Res;
5587     if (FMF.any())
5588       Inst->setFastMathFlags(FMF);
5589     return false;
5590   }
5591   // Binary Operators.
5592   case lltok::kw_add:
5593   case lltok::kw_sub:
5594   case lltok::kw_mul:
5595   case lltok::kw_shl: {
5596     bool NUW = EatIfPresent(lltok::kw_nuw);
5597     bool NSW = EatIfPresent(lltok::kw_nsw);
5598     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5599 
5600     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5601 
5602     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5603     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5604     return false;
5605   }
5606   case lltok::kw_fadd:
5607   case lltok::kw_fsub:
5608   case lltok::kw_fmul:
5609   case lltok::kw_fdiv:
5610   case lltok::kw_frem: {
5611     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5612     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5613     if (Res != 0)
5614       return Res;
5615     if (FMF.any())
5616       Inst->setFastMathFlags(FMF);
5617     return 0;
5618   }
5619 
5620   case lltok::kw_sdiv:
5621   case lltok::kw_udiv:
5622   case lltok::kw_lshr:
5623   case lltok::kw_ashr: {
5624     bool Exact = EatIfPresent(lltok::kw_exact);
5625 
5626     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5627     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5628     return false;
5629   }
5630 
5631   case lltok::kw_urem:
5632   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5633   case lltok::kw_and:
5634   case lltok::kw_or:
5635   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5636   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5637   case lltok::kw_fcmp: {
5638     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5639     int Res = ParseCompare(Inst, PFS, KeywordVal);
5640     if (Res != 0)
5641       return Res;
5642     if (FMF.any())
5643       Inst->setFastMathFlags(FMF);
5644     return 0;
5645   }
5646 
5647   // Casts.
5648   case lltok::kw_trunc:
5649   case lltok::kw_zext:
5650   case lltok::kw_sext:
5651   case lltok::kw_fptrunc:
5652   case lltok::kw_fpext:
5653   case lltok::kw_bitcast:
5654   case lltok::kw_addrspacecast:
5655   case lltok::kw_uitofp:
5656   case lltok::kw_sitofp:
5657   case lltok::kw_fptoui:
5658   case lltok::kw_fptosi:
5659   case lltok::kw_inttoptr:
5660   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5661   // Other.
5662   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5663   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5664   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5665   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5666   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5667   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5668   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5669   // Call.
5670   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5671   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5672   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5673   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5674   // Memory.
5675   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5676   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5677   case lltok::kw_store:          return ParseStore(Inst, PFS);
5678   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5679   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5680   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5681   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5682   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5683   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5684   }
5685 }
5686 
5687 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5688 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5689   if (Opc == Instruction::FCmp) {
5690     switch (Lex.getKind()) {
5691     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5692     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5693     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5694     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5695     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5696     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5697     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5698     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5699     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5700     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5701     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5702     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5703     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5704     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5705     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5706     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5707     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5708     }
5709   } else {
5710     switch (Lex.getKind()) {
5711     default: return TokError("expected icmp predicate (e.g. 'eq')");
5712     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5713     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5714     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5715     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5716     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5717     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5718     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5719     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5720     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5721     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5722     }
5723   }
5724   Lex.Lex();
5725   return false;
5726 }
5727 
5728 //===----------------------------------------------------------------------===//
5729 // Terminator Instructions.
5730 //===----------------------------------------------------------------------===//
5731 
5732 /// ParseRet - Parse a return instruction.
5733 ///   ::= 'ret' void (',' !dbg, !1)*
5734 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5735 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5736                         PerFunctionState &PFS) {
5737   SMLoc TypeLoc = Lex.getLoc();
5738   Type *Ty = nullptr;
5739   if (ParseType(Ty, true /*void allowed*/)) return true;
5740 
5741   Type *ResType = PFS.getFunction().getReturnType();
5742 
5743   if (Ty->isVoidTy()) {
5744     if (!ResType->isVoidTy())
5745       return Error(TypeLoc, "value doesn't match function result type '" +
5746                    getTypeString(ResType) + "'");
5747 
5748     Inst = ReturnInst::Create(Context);
5749     return false;
5750   }
5751 
5752   Value *RV;
5753   if (ParseValue(Ty, RV, PFS)) return true;
5754 
5755   if (ResType != RV->getType())
5756     return Error(TypeLoc, "value doesn't match function result type '" +
5757                  getTypeString(ResType) + "'");
5758 
5759   Inst = ReturnInst::Create(Context, RV);
5760   return false;
5761 }
5762 
5763 /// ParseBr
5764 ///   ::= 'br' TypeAndValue
5765 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5766 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5767   LocTy Loc, Loc2;
5768   Value *Op0;
5769   BasicBlock *Op1, *Op2;
5770   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5771 
5772   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5773     Inst = BranchInst::Create(BB);
5774     return false;
5775   }
5776 
5777   if (Op0->getType() != Type::getInt1Ty(Context))
5778     return Error(Loc, "branch condition must have 'i1' type");
5779 
5780   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5781       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5782       ParseToken(lltok::comma, "expected ',' after true destination") ||
5783       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5784     return true;
5785 
5786   Inst = BranchInst::Create(Op1, Op2, Op0);
5787   return false;
5788 }
5789 
5790 /// ParseSwitch
5791 ///  Instruction
5792 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5793 ///  JumpTable
5794 ///    ::= (TypeAndValue ',' TypeAndValue)*
5795 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5796   LocTy CondLoc, BBLoc;
5797   Value *Cond;
5798   BasicBlock *DefaultBB;
5799   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5800       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5801       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5802       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5803     return true;
5804 
5805   if (!Cond->getType()->isIntegerTy())
5806     return Error(CondLoc, "switch condition must have integer type");
5807 
5808   // Parse the jump table pairs.
5809   SmallPtrSet<Value*, 32> SeenCases;
5810   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5811   while (Lex.getKind() != lltok::rsquare) {
5812     Value *Constant;
5813     BasicBlock *DestBB;
5814 
5815     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5816         ParseToken(lltok::comma, "expected ',' after case value") ||
5817         ParseTypeAndBasicBlock(DestBB, PFS))
5818       return true;
5819 
5820     if (!SeenCases.insert(Constant).second)
5821       return Error(CondLoc, "duplicate case value in switch");
5822     if (!isa<ConstantInt>(Constant))
5823       return Error(CondLoc, "case value is not a constant integer");
5824 
5825     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5826   }
5827 
5828   Lex.Lex();  // Eat the ']'.
5829 
5830   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5831   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5832     SI->addCase(Table[i].first, Table[i].second);
5833   Inst = SI;
5834   return false;
5835 }
5836 
5837 /// ParseIndirectBr
5838 ///  Instruction
5839 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5840 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5841   LocTy AddrLoc;
5842   Value *Address;
5843   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5844       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5845       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5846     return true;
5847 
5848   if (!Address->getType()->isPointerTy())
5849     return Error(AddrLoc, "indirectbr address must have pointer type");
5850 
5851   // Parse the destination list.
5852   SmallVector<BasicBlock*, 16> DestList;
5853 
5854   if (Lex.getKind() != lltok::rsquare) {
5855     BasicBlock *DestBB;
5856     if (ParseTypeAndBasicBlock(DestBB, PFS))
5857       return true;
5858     DestList.push_back(DestBB);
5859 
5860     while (EatIfPresent(lltok::comma)) {
5861       if (ParseTypeAndBasicBlock(DestBB, PFS))
5862         return true;
5863       DestList.push_back(DestBB);
5864     }
5865   }
5866 
5867   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5868     return true;
5869 
5870   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5871   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5872     IBI->addDestination(DestList[i]);
5873   Inst = IBI;
5874   return false;
5875 }
5876 
5877 /// ParseInvoke
5878 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5879 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5880 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5881   LocTy CallLoc = Lex.getLoc();
5882   AttrBuilder RetAttrs, FnAttrs;
5883   std::vector<unsigned> FwdRefAttrGrps;
5884   LocTy NoBuiltinLoc;
5885   unsigned CC;
5886   unsigned InvokeAddrSpace;
5887   Type *RetType = nullptr;
5888   LocTy RetTypeLoc;
5889   ValID CalleeID;
5890   SmallVector<ParamInfo, 16> ArgList;
5891   SmallVector<OperandBundleDef, 2> BundleList;
5892 
5893   BasicBlock *NormalBB, *UnwindBB;
5894   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5895       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5896       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5897       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5898       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5899                                  NoBuiltinLoc) ||
5900       ParseOptionalOperandBundles(BundleList, PFS) ||
5901       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5902       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5903       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5904       ParseTypeAndBasicBlock(UnwindBB, PFS))
5905     return true;
5906 
5907   // If RetType is a non-function pointer type, then this is the short syntax
5908   // for the call, which means that RetType is just the return type.  Infer the
5909   // rest of the function argument types from the arguments that are present.
5910   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5911   if (!Ty) {
5912     // Pull out the types of all of the arguments...
5913     std::vector<Type*> ParamTypes;
5914     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5915       ParamTypes.push_back(ArgList[i].V->getType());
5916 
5917     if (!FunctionType::isValidReturnType(RetType))
5918       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5919 
5920     Ty = FunctionType::get(RetType, ParamTypes, false);
5921   }
5922 
5923   CalleeID.FTy = Ty;
5924 
5925   // Look up the callee.
5926   Value *Callee;
5927   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5928                           Callee, &PFS, /*IsCall=*/true))
5929     return true;
5930 
5931   // Set up the Attribute for the function.
5932   SmallVector<Value *, 8> Args;
5933   SmallVector<AttributeSet, 8> ArgAttrs;
5934 
5935   // Loop through FunctionType's arguments and ensure they are specified
5936   // correctly.  Also, gather any parameter attributes.
5937   FunctionType::param_iterator I = Ty->param_begin();
5938   FunctionType::param_iterator E = Ty->param_end();
5939   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5940     Type *ExpectedTy = nullptr;
5941     if (I != E) {
5942       ExpectedTy = *I++;
5943     } else if (!Ty->isVarArg()) {
5944       return Error(ArgList[i].Loc, "too many arguments specified");
5945     }
5946 
5947     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5948       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5949                    getTypeString(ExpectedTy) + "'");
5950     Args.push_back(ArgList[i].V);
5951     ArgAttrs.push_back(ArgList[i].Attrs);
5952   }
5953 
5954   if (I != E)
5955     return Error(CallLoc, "not enough parameters specified for call");
5956 
5957   if (FnAttrs.hasAlignmentAttr())
5958     return Error(CallLoc, "invoke instructions may not have an alignment");
5959 
5960   // Finish off the Attribute and check them
5961   AttributeList PAL =
5962       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5963                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5964 
5965   InvokeInst *II =
5966       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5967   II->setCallingConv(CC);
5968   II->setAttributes(PAL);
5969   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5970   Inst = II;
5971   return false;
5972 }
5973 
5974 /// ParseResume
5975 ///   ::= 'resume' TypeAndValue
5976 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5977   Value *Exn; LocTy ExnLoc;
5978   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5979     return true;
5980 
5981   ResumeInst *RI = ResumeInst::Create(Exn);
5982   Inst = RI;
5983   return false;
5984 }
5985 
5986 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5987                                   PerFunctionState &PFS) {
5988   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5989     return true;
5990 
5991   while (Lex.getKind() != lltok::rsquare) {
5992     // If this isn't the first argument, we need a comma.
5993     if (!Args.empty() &&
5994         ParseToken(lltok::comma, "expected ',' in argument list"))
5995       return true;
5996 
5997     // Parse the argument.
5998     LocTy ArgLoc;
5999     Type *ArgTy = nullptr;
6000     if (ParseType(ArgTy, ArgLoc))
6001       return true;
6002 
6003     Value *V;
6004     if (ArgTy->isMetadataTy()) {
6005       if (ParseMetadataAsValue(V, PFS))
6006         return true;
6007     } else {
6008       if (ParseValue(ArgTy, V, PFS))
6009         return true;
6010     }
6011     Args.push_back(V);
6012   }
6013 
6014   Lex.Lex();  // Lex the ']'.
6015   return false;
6016 }
6017 
6018 /// ParseCleanupRet
6019 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6020 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6021   Value *CleanupPad = nullptr;
6022 
6023   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6024     return true;
6025 
6026   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6027     return true;
6028 
6029   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6030     return true;
6031 
6032   BasicBlock *UnwindBB = nullptr;
6033   if (Lex.getKind() == lltok::kw_to) {
6034     Lex.Lex();
6035     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6036       return true;
6037   } else {
6038     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6039       return true;
6040     }
6041   }
6042 
6043   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6044   return false;
6045 }
6046 
6047 /// ParseCatchRet
6048 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6049 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6050   Value *CatchPad = nullptr;
6051 
6052   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6053     return true;
6054 
6055   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6056     return true;
6057 
6058   BasicBlock *BB;
6059   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6060       ParseTypeAndBasicBlock(BB, PFS))
6061       return true;
6062 
6063   Inst = CatchReturnInst::Create(CatchPad, BB);
6064   return false;
6065 }
6066 
6067 /// ParseCatchSwitch
6068 ///   ::= 'catchswitch' within Parent
6069 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6070   Value *ParentPad;
6071 
6072   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6073     return true;
6074 
6075   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6076       Lex.getKind() != lltok::LocalVarID)
6077     return TokError("expected scope value for catchswitch");
6078 
6079   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6080     return true;
6081 
6082   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6083     return true;
6084 
6085   SmallVector<BasicBlock *, 32> Table;
6086   do {
6087     BasicBlock *DestBB;
6088     if (ParseTypeAndBasicBlock(DestBB, PFS))
6089       return true;
6090     Table.push_back(DestBB);
6091   } while (EatIfPresent(lltok::comma));
6092 
6093   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6094     return true;
6095 
6096   if (ParseToken(lltok::kw_unwind,
6097                  "expected 'unwind' after catchswitch scope"))
6098     return true;
6099 
6100   BasicBlock *UnwindBB = nullptr;
6101   if (EatIfPresent(lltok::kw_to)) {
6102     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6103       return true;
6104   } else {
6105     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6106       return true;
6107   }
6108 
6109   auto *CatchSwitch =
6110       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6111   for (BasicBlock *DestBB : Table)
6112     CatchSwitch->addHandler(DestBB);
6113   Inst = CatchSwitch;
6114   return false;
6115 }
6116 
6117 /// ParseCatchPad
6118 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6119 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6120   Value *CatchSwitch = nullptr;
6121 
6122   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6123     return true;
6124 
6125   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6126     return TokError("expected scope value for catchpad");
6127 
6128   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6129     return true;
6130 
6131   SmallVector<Value *, 8> Args;
6132   if (ParseExceptionArgs(Args, PFS))
6133     return true;
6134 
6135   Inst = CatchPadInst::Create(CatchSwitch, Args);
6136   return false;
6137 }
6138 
6139 /// ParseCleanupPad
6140 ///   ::= 'cleanuppad' within Parent ParamList
6141 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6142   Value *ParentPad = nullptr;
6143 
6144   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6145     return true;
6146 
6147   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6148       Lex.getKind() != lltok::LocalVarID)
6149     return TokError("expected scope value for cleanuppad");
6150 
6151   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6152     return true;
6153 
6154   SmallVector<Value *, 8> Args;
6155   if (ParseExceptionArgs(Args, PFS))
6156     return true;
6157 
6158   Inst = CleanupPadInst::Create(ParentPad, Args);
6159   return false;
6160 }
6161 
6162 //===----------------------------------------------------------------------===//
6163 // Unary Operators.
6164 //===----------------------------------------------------------------------===//
6165 
6166 /// ParseUnaryOp
6167 ///  ::= UnaryOp TypeAndValue ',' Value
6168 ///
6169 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6170 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6171 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6172                             unsigned Opc, unsigned OperandType) {
6173   LocTy Loc; Value *LHS;
6174   if (ParseTypeAndValue(LHS, Loc, PFS))
6175     return true;
6176 
6177   bool Valid;
6178   switch (OperandType) {
6179   default: llvm_unreachable("Unknown operand type!");
6180   case 0: // int or FP.
6181     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6182             LHS->getType()->isFPOrFPVectorTy();
6183     break;
6184   case 1:
6185     Valid = LHS->getType()->isIntOrIntVectorTy();
6186     break;
6187   case 2:
6188     Valid = LHS->getType()->isFPOrFPVectorTy();
6189     break;
6190   }
6191 
6192   if (!Valid)
6193     return Error(Loc, "invalid operand type for instruction");
6194 
6195   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6196   return false;
6197 }
6198 
6199 /// ParseCallBr
6200 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6201 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6202 ///       '[' LabelList ']'
6203 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6204   LocTy CallLoc = Lex.getLoc();
6205   AttrBuilder RetAttrs, FnAttrs;
6206   std::vector<unsigned> FwdRefAttrGrps;
6207   LocTy NoBuiltinLoc;
6208   unsigned CC;
6209   Type *RetType = nullptr;
6210   LocTy RetTypeLoc;
6211   ValID CalleeID;
6212   SmallVector<ParamInfo, 16> ArgList;
6213   SmallVector<OperandBundleDef, 2> BundleList;
6214 
6215   BasicBlock *DefaultDest;
6216   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6217       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6218       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6219       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6220                                  NoBuiltinLoc) ||
6221       ParseOptionalOperandBundles(BundleList, PFS) ||
6222       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6223       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6224       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6225     return true;
6226 
6227   // Parse the destination list.
6228   SmallVector<BasicBlock *, 16> IndirectDests;
6229 
6230   if (Lex.getKind() != lltok::rsquare) {
6231     BasicBlock *DestBB;
6232     if (ParseTypeAndBasicBlock(DestBB, PFS))
6233       return true;
6234     IndirectDests.push_back(DestBB);
6235 
6236     while (EatIfPresent(lltok::comma)) {
6237       if (ParseTypeAndBasicBlock(DestBB, PFS))
6238         return true;
6239       IndirectDests.push_back(DestBB);
6240     }
6241   }
6242 
6243   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6244     return true;
6245 
6246   // If RetType is a non-function pointer type, then this is the short syntax
6247   // for the call, which means that RetType is just the return type.  Infer the
6248   // rest of the function argument types from the arguments that are present.
6249   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6250   if (!Ty) {
6251     // Pull out the types of all of the arguments...
6252     std::vector<Type *> ParamTypes;
6253     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6254       ParamTypes.push_back(ArgList[i].V->getType());
6255 
6256     if (!FunctionType::isValidReturnType(RetType))
6257       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6258 
6259     Ty = FunctionType::get(RetType, ParamTypes, false);
6260   }
6261 
6262   CalleeID.FTy = Ty;
6263 
6264   // Look up the callee.
6265   Value *Callee;
6266   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6267                           /*IsCall=*/true))
6268     return true;
6269 
6270   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6271     return Error(RetTypeLoc, "asm-goto outputs not supported");
6272 
6273   // Set up the Attribute for the function.
6274   SmallVector<Value *, 8> Args;
6275   SmallVector<AttributeSet, 8> ArgAttrs;
6276 
6277   // Loop through FunctionType's arguments and ensure they are specified
6278   // correctly.  Also, gather any parameter attributes.
6279   FunctionType::param_iterator I = Ty->param_begin();
6280   FunctionType::param_iterator E = Ty->param_end();
6281   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6282     Type *ExpectedTy = nullptr;
6283     if (I != E) {
6284       ExpectedTy = *I++;
6285     } else if (!Ty->isVarArg()) {
6286       return Error(ArgList[i].Loc, "too many arguments specified");
6287     }
6288 
6289     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6290       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6291                                        getTypeString(ExpectedTy) + "'");
6292     Args.push_back(ArgList[i].V);
6293     ArgAttrs.push_back(ArgList[i].Attrs);
6294   }
6295 
6296   if (I != E)
6297     return Error(CallLoc, "not enough parameters specified for call");
6298 
6299   if (FnAttrs.hasAlignmentAttr())
6300     return Error(CallLoc, "callbr instructions may not have an alignment");
6301 
6302   // Finish off the Attribute and check them
6303   AttributeList PAL =
6304       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6305                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6306 
6307   CallBrInst *CBI =
6308       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6309                          BundleList);
6310   CBI->setCallingConv(CC);
6311   CBI->setAttributes(PAL);
6312   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6313   Inst = CBI;
6314   return false;
6315 }
6316 
6317 //===----------------------------------------------------------------------===//
6318 // Binary Operators.
6319 //===----------------------------------------------------------------------===//
6320 
6321 /// ParseArithmetic
6322 ///  ::= ArithmeticOps TypeAndValue ',' Value
6323 ///
6324 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6325 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6326 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6327                                unsigned Opc, unsigned OperandType) {
6328   LocTy Loc; Value *LHS, *RHS;
6329   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6330       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6331       ParseValue(LHS->getType(), RHS, PFS))
6332     return true;
6333 
6334   bool Valid;
6335   switch (OperandType) {
6336   default: llvm_unreachable("Unknown operand type!");
6337   case 0: // int or FP.
6338     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6339             LHS->getType()->isFPOrFPVectorTy();
6340     break;
6341   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6342   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6343   }
6344 
6345   if (!Valid)
6346     return Error(Loc, "invalid operand type for instruction");
6347 
6348   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6349   return false;
6350 }
6351 
6352 /// ParseLogical
6353 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6354 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6355                             unsigned Opc) {
6356   LocTy Loc; Value *LHS, *RHS;
6357   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6358       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6359       ParseValue(LHS->getType(), RHS, PFS))
6360     return true;
6361 
6362   if (!LHS->getType()->isIntOrIntVectorTy())
6363     return Error(Loc,"instruction requires integer or integer vector operands");
6364 
6365   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6366   return false;
6367 }
6368 
6369 /// ParseCompare
6370 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6371 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6372 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6373                             unsigned Opc) {
6374   // Parse the integer/fp comparison predicate.
6375   LocTy Loc;
6376   unsigned Pred;
6377   Value *LHS, *RHS;
6378   if (ParseCmpPredicate(Pred, Opc) ||
6379       ParseTypeAndValue(LHS, Loc, PFS) ||
6380       ParseToken(lltok::comma, "expected ',' after compare value") ||
6381       ParseValue(LHS->getType(), RHS, PFS))
6382     return true;
6383 
6384   if (Opc == Instruction::FCmp) {
6385     if (!LHS->getType()->isFPOrFPVectorTy())
6386       return Error(Loc, "fcmp requires floating point operands");
6387     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6388   } else {
6389     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6390     if (!LHS->getType()->isIntOrIntVectorTy() &&
6391         !LHS->getType()->isPtrOrPtrVectorTy())
6392       return Error(Loc, "icmp requires integer operands");
6393     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6394   }
6395   return false;
6396 }
6397 
6398 //===----------------------------------------------------------------------===//
6399 // Other Instructions.
6400 //===----------------------------------------------------------------------===//
6401 
6402 
6403 /// ParseCast
6404 ///   ::= CastOpc TypeAndValue 'to' Type
6405 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6406                          unsigned Opc) {
6407   LocTy Loc;
6408   Value *Op;
6409   Type *DestTy = nullptr;
6410   if (ParseTypeAndValue(Op, Loc, PFS) ||
6411       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6412       ParseType(DestTy))
6413     return true;
6414 
6415   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6416     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6417     return Error(Loc, "invalid cast opcode for cast from '" +
6418                  getTypeString(Op->getType()) + "' to '" +
6419                  getTypeString(DestTy) + "'");
6420   }
6421   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6422   return false;
6423 }
6424 
6425 /// ParseSelect
6426 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6427 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6428   LocTy Loc;
6429   Value *Op0, *Op1, *Op2;
6430   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6431       ParseToken(lltok::comma, "expected ',' after select condition") ||
6432       ParseTypeAndValue(Op1, PFS) ||
6433       ParseToken(lltok::comma, "expected ',' after select value") ||
6434       ParseTypeAndValue(Op2, PFS))
6435     return true;
6436 
6437   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6438     return Error(Loc, Reason);
6439 
6440   Inst = SelectInst::Create(Op0, Op1, Op2);
6441   return false;
6442 }
6443 
6444 /// ParseVA_Arg
6445 ///   ::= 'va_arg' TypeAndValue ',' Type
6446 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6447   Value *Op;
6448   Type *EltTy = nullptr;
6449   LocTy TypeLoc;
6450   if (ParseTypeAndValue(Op, PFS) ||
6451       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6452       ParseType(EltTy, TypeLoc))
6453     return true;
6454 
6455   if (!EltTy->isFirstClassType())
6456     return Error(TypeLoc, "va_arg requires operand with first class type");
6457 
6458   Inst = new VAArgInst(Op, EltTy);
6459   return false;
6460 }
6461 
6462 /// ParseExtractElement
6463 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6464 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6465   LocTy Loc;
6466   Value *Op0, *Op1;
6467   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6468       ParseToken(lltok::comma, "expected ',' after extract value") ||
6469       ParseTypeAndValue(Op1, PFS))
6470     return true;
6471 
6472   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6473     return Error(Loc, "invalid extractelement operands");
6474 
6475   Inst = ExtractElementInst::Create(Op0, Op1);
6476   return false;
6477 }
6478 
6479 /// ParseInsertElement
6480 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6481 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6482   LocTy Loc;
6483   Value *Op0, *Op1, *Op2;
6484   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6485       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6486       ParseTypeAndValue(Op1, PFS) ||
6487       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6488       ParseTypeAndValue(Op2, PFS))
6489     return true;
6490 
6491   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6492     return Error(Loc, "invalid insertelement operands");
6493 
6494   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6495   return false;
6496 }
6497 
6498 /// ParseShuffleVector
6499 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6500 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6501   LocTy Loc;
6502   Value *Op0, *Op1, *Op2;
6503   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6504       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6505       ParseTypeAndValue(Op1, PFS) ||
6506       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6507       ParseTypeAndValue(Op2, PFS))
6508     return true;
6509 
6510   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6511     return Error(Loc, "invalid shufflevector operands");
6512 
6513   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6514   return false;
6515 }
6516 
6517 /// ParsePHI
6518 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6519 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6520   Type *Ty = nullptr;  LocTy TypeLoc;
6521   Value *Op0, *Op1;
6522 
6523   if (ParseType(Ty, TypeLoc) ||
6524       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6525       ParseValue(Ty, Op0, PFS) ||
6526       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6527       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6528       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6529     return true;
6530 
6531   bool AteExtraComma = false;
6532   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6533 
6534   while (true) {
6535     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6536 
6537     if (!EatIfPresent(lltok::comma))
6538       break;
6539 
6540     if (Lex.getKind() == lltok::MetadataVar) {
6541       AteExtraComma = true;
6542       break;
6543     }
6544 
6545     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6546         ParseValue(Ty, Op0, PFS) ||
6547         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6548         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6549         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6550       return true;
6551   }
6552 
6553   if (!Ty->isFirstClassType())
6554     return Error(TypeLoc, "phi node must have first class type");
6555 
6556   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6557   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6558     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6559   Inst = PN;
6560   return AteExtraComma ? InstExtraComma : InstNormal;
6561 }
6562 
6563 /// ParseLandingPad
6564 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6565 /// Clause
6566 ///   ::= 'catch' TypeAndValue
6567 ///   ::= 'filter'
6568 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6569 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6570   Type *Ty = nullptr; LocTy TyLoc;
6571 
6572   if (ParseType(Ty, TyLoc))
6573     return true;
6574 
6575   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6576   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6577 
6578   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6579     LandingPadInst::ClauseType CT;
6580     if (EatIfPresent(lltok::kw_catch))
6581       CT = LandingPadInst::Catch;
6582     else if (EatIfPresent(lltok::kw_filter))
6583       CT = LandingPadInst::Filter;
6584     else
6585       return TokError("expected 'catch' or 'filter' clause type");
6586 
6587     Value *V;
6588     LocTy VLoc;
6589     if (ParseTypeAndValue(V, VLoc, PFS))
6590       return true;
6591 
6592     // A 'catch' type expects a non-array constant. A filter clause expects an
6593     // array constant.
6594     if (CT == LandingPadInst::Catch) {
6595       if (isa<ArrayType>(V->getType()))
6596         Error(VLoc, "'catch' clause has an invalid type");
6597     } else {
6598       if (!isa<ArrayType>(V->getType()))
6599         Error(VLoc, "'filter' clause has an invalid type");
6600     }
6601 
6602     Constant *CV = dyn_cast<Constant>(V);
6603     if (!CV)
6604       return Error(VLoc, "clause argument must be a constant");
6605     LP->addClause(CV);
6606   }
6607 
6608   Inst = LP.release();
6609   return false;
6610 }
6611 
6612 /// ParseCall
6613 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6614 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6615 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6616 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6617 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6618 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6619 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6620 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6621 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6622                          CallInst::TailCallKind TCK) {
6623   AttrBuilder RetAttrs, FnAttrs;
6624   std::vector<unsigned> FwdRefAttrGrps;
6625   LocTy BuiltinLoc;
6626   unsigned CallAddrSpace;
6627   unsigned CC;
6628   Type *RetType = nullptr;
6629   LocTy RetTypeLoc;
6630   ValID CalleeID;
6631   SmallVector<ParamInfo, 16> ArgList;
6632   SmallVector<OperandBundleDef, 2> BundleList;
6633   LocTy CallLoc = Lex.getLoc();
6634 
6635   if (TCK != CallInst::TCK_None &&
6636       ParseToken(lltok::kw_call,
6637                  "expected 'tail call', 'musttail call', or 'notail call'"))
6638     return true;
6639 
6640   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6641 
6642   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6643       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6644       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6645       ParseValID(CalleeID) ||
6646       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6647                          PFS.getFunction().isVarArg()) ||
6648       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6649       ParseOptionalOperandBundles(BundleList, PFS))
6650     return true;
6651 
6652   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6653     return Error(CallLoc, "fast-math-flags specified for call without "
6654                           "floating-point scalar or vector return type");
6655 
6656   // If RetType is a non-function pointer type, then this is the short syntax
6657   // for the call, which means that RetType is just the return type.  Infer the
6658   // rest of the function argument types from the arguments that are present.
6659   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6660   if (!Ty) {
6661     // Pull out the types of all of the arguments...
6662     std::vector<Type*> ParamTypes;
6663     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6664       ParamTypes.push_back(ArgList[i].V->getType());
6665 
6666     if (!FunctionType::isValidReturnType(RetType))
6667       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6668 
6669     Ty = FunctionType::get(RetType, ParamTypes, false);
6670   }
6671 
6672   CalleeID.FTy = Ty;
6673 
6674   // Look up the callee.
6675   Value *Callee;
6676   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6677                           &PFS, /*IsCall=*/true))
6678     return true;
6679 
6680   // Set up the Attribute for the function.
6681   SmallVector<AttributeSet, 8> Attrs;
6682 
6683   SmallVector<Value*, 8> Args;
6684 
6685   // Loop through FunctionType's arguments and ensure they are specified
6686   // correctly.  Also, gather any parameter attributes.
6687   FunctionType::param_iterator I = Ty->param_begin();
6688   FunctionType::param_iterator E = Ty->param_end();
6689   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6690     Type *ExpectedTy = nullptr;
6691     if (I != E) {
6692       ExpectedTy = *I++;
6693     } else if (!Ty->isVarArg()) {
6694       return Error(ArgList[i].Loc, "too many arguments specified");
6695     }
6696 
6697     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6698       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6699                    getTypeString(ExpectedTy) + "'");
6700     Args.push_back(ArgList[i].V);
6701     Attrs.push_back(ArgList[i].Attrs);
6702   }
6703 
6704   if (I != E)
6705     return Error(CallLoc, "not enough parameters specified for call");
6706 
6707   if (FnAttrs.hasAlignmentAttr())
6708     return Error(CallLoc, "call instructions may not have an alignment");
6709 
6710   // Finish off the Attribute and check them
6711   AttributeList PAL =
6712       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6713                          AttributeSet::get(Context, RetAttrs), Attrs);
6714 
6715   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6716   CI->setTailCallKind(TCK);
6717   CI->setCallingConv(CC);
6718   if (FMF.any())
6719     CI->setFastMathFlags(FMF);
6720   CI->setAttributes(PAL);
6721   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6722   Inst = CI;
6723   return false;
6724 }
6725 
6726 //===----------------------------------------------------------------------===//
6727 // Memory Instructions.
6728 //===----------------------------------------------------------------------===//
6729 
6730 /// ParseAlloc
6731 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6732 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6733 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6734   Value *Size = nullptr;
6735   LocTy SizeLoc, TyLoc, ASLoc;
6736   unsigned Alignment = 0;
6737   unsigned AddrSpace = 0;
6738   Type *Ty = nullptr;
6739 
6740   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6741   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6742 
6743   if (ParseType(Ty, TyLoc)) return true;
6744 
6745   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6746     return Error(TyLoc, "invalid type for alloca");
6747 
6748   bool AteExtraComma = false;
6749   if (EatIfPresent(lltok::comma)) {
6750     if (Lex.getKind() == lltok::kw_align) {
6751       if (ParseOptionalAlignment(Alignment))
6752         return true;
6753       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6754         return true;
6755     } else if (Lex.getKind() == lltok::kw_addrspace) {
6756       ASLoc = Lex.getLoc();
6757       if (ParseOptionalAddrSpace(AddrSpace))
6758         return true;
6759     } else if (Lex.getKind() == lltok::MetadataVar) {
6760       AteExtraComma = true;
6761     } else {
6762       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6763         return true;
6764       if (EatIfPresent(lltok::comma)) {
6765         if (Lex.getKind() == lltok::kw_align) {
6766           if (ParseOptionalAlignment(Alignment))
6767             return true;
6768           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6769             return true;
6770         } else if (Lex.getKind() == lltok::kw_addrspace) {
6771           ASLoc = Lex.getLoc();
6772           if (ParseOptionalAddrSpace(AddrSpace))
6773             return true;
6774         } else if (Lex.getKind() == lltok::MetadataVar) {
6775           AteExtraComma = true;
6776         }
6777       }
6778     }
6779   }
6780 
6781   if (Size && !Size->getType()->isIntegerTy())
6782     return Error(SizeLoc, "element count must have integer type");
6783 
6784   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6785   AI->setUsedWithInAlloca(IsInAlloca);
6786   AI->setSwiftError(IsSwiftError);
6787   Inst = AI;
6788   return AteExtraComma ? InstExtraComma : InstNormal;
6789 }
6790 
6791 /// ParseLoad
6792 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6793 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6794 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6795 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6796   Value *Val; LocTy Loc;
6797   unsigned Alignment = 0;
6798   bool AteExtraComma = false;
6799   bool isAtomic = false;
6800   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6801   SyncScope::ID SSID = SyncScope::System;
6802 
6803   if (Lex.getKind() == lltok::kw_atomic) {
6804     isAtomic = true;
6805     Lex.Lex();
6806   }
6807 
6808   bool isVolatile = false;
6809   if (Lex.getKind() == lltok::kw_volatile) {
6810     isVolatile = true;
6811     Lex.Lex();
6812   }
6813 
6814   Type *Ty;
6815   LocTy ExplicitTypeLoc = Lex.getLoc();
6816   if (ParseType(Ty) ||
6817       ParseToken(lltok::comma, "expected comma after load's type") ||
6818       ParseTypeAndValue(Val, Loc, PFS) ||
6819       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6820       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6821     return true;
6822 
6823   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6824     return Error(Loc, "load operand must be a pointer to a first class type");
6825   if (isAtomic && !Alignment)
6826     return Error(Loc, "atomic load must have explicit non-zero alignment");
6827   if (Ordering == AtomicOrdering::Release ||
6828       Ordering == AtomicOrdering::AcquireRelease)
6829     return Error(Loc, "atomic load cannot use Release ordering");
6830 
6831   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6832     return Error(ExplicitTypeLoc,
6833                  "explicit pointee type doesn't match operand's pointee type");
6834 
6835   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6836   return AteExtraComma ? InstExtraComma : InstNormal;
6837 }
6838 
6839 /// ParseStore
6840 
6841 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6842 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6843 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6844 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6845   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6846   unsigned Alignment = 0;
6847   bool AteExtraComma = false;
6848   bool isAtomic = false;
6849   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6850   SyncScope::ID SSID = SyncScope::System;
6851 
6852   if (Lex.getKind() == lltok::kw_atomic) {
6853     isAtomic = true;
6854     Lex.Lex();
6855   }
6856 
6857   bool isVolatile = false;
6858   if (Lex.getKind() == lltok::kw_volatile) {
6859     isVolatile = true;
6860     Lex.Lex();
6861   }
6862 
6863   if (ParseTypeAndValue(Val, Loc, PFS) ||
6864       ParseToken(lltok::comma, "expected ',' after store operand") ||
6865       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6866       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6867       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6868     return true;
6869 
6870   if (!Ptr->getType()->isPointerTy())
6871     return Error(PtrLoc, "store operand must be a pointer");
6872   if (!Val->getType()->isFirstClassType())
6873     return Error(Loc, "store operand must be a first class value");
6874   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6875     return Error(Loc, "stored value and pointer type do not match");
6876   if (isAtomic && !Alignment)
6877     return Error(Loc, "atomic store must have explicit non-zero alignment");
6878   if (Ordering == AtomicOrdering::Acquire ||
6879       Ordering == AtomicOrdering::AcquireRelease)
6880     return Error(Loc, "atomic store cannot use Acquire ordering");
6881 
6882   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6883   return AteExtraComma ? InstExtraComma : InstNormal;
6884 }
6885 
6886 /// ParseCmpXchg
6887 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6888 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6889 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6890   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6891   bool AteExtraComma = false;
6892   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6893   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6894   SyncScope::ID SSID = SyncScope::System;
6895   bool isVolatile = false;
6896   bool isWeak = false;
6897 
6898   if (EatIfPresent(lltok::kw_weak))
6899     isWeak = true;
6900 
6901   if (EatIfPresent(lltok::kw_volatile))
6902     isVolatile = true;
6903 
6904   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6905       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6906       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6907       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6908       ParseTypeAndValue(New, NewLoc, PFS) ||
6909       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6910       ParseOrdering(FailureOrdering))
6911     return true;
6912 
6913   if (SuccessOrdering == AtomicOrdering::Unordered ||
6914       FailureOrdering == AtomicOrdering::Unordered)
6915     return TokError("cmpxchg cannot be unordered");
6916   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6917     return TokError("cmpxchg failure argument shall be no stronger than the "
6918                     "success argument");
6919   if (FailureOrdering == AtomicOrdering::Release ||
6920       FailureOrdering == AtomicOrdering::AcquireRelease)
6921     return TokError(
6922         "cmpxchg failure ordering cannot include release semantics");
6923   if (!Ptr->getType()->isPointerTy())
6924     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6925   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6926     return Error(CmpLoc, "compare value and pointer type do not match");
6927   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6928     return Error(NewLoc, "new value and pointer type do not match");
6929   if (!New->getType()->isFirstClassType())
6930     return Error(NewLoc, "cmpxchg operand must be a first class value");
6931   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6932       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6933   CXI->setVolatile(isVolatile);
6934   CXI->setWeak(isWeak);
6935   Inst = CXI;
6936   return AteExtraComma ? InstExtraComma : InstNormal;
6937 }
6938 
6939 /// ParseAtomicRMW
6940 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6941 ///       'singlethread'? AtomicOrdering
6942 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6943   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6944   bool AteExtraComma = false;
6945   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6946   SyncScope::ID SSID = SyncScope::System;
6947   bool isVolatile = false;
6948   bool IsFP = false;
6949   AtomicRMWInst::BinOp Operation;
6950 
6951   if (EatIfPresent(lltok::kw_volatile))
6952     isVolatile = true;
6953 
6954   switch (Lex.getKind()) {
6955   default: return TokError("expected binary operation in atomicrmw");
6956   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6957   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6958   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6959   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6960   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6961   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6962   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6963   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6964   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6965   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6966   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6967   case lltok::kw_fadd:
6968     Operation = AtomicRMWInst::FAdd;
6969     IsFP = true;
6970     break;
6971   case lltok::kw_fsub:
6972     Operation = AtomicRMWInst::FSub;
6973     IsFP = true;
6974     break;
6975   }
6976   Lex.Lex();  // Eat the operation.
6977 
6978   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6979       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6980       ParseTypeAndValue(Val, ValLoc, PFS) ||
6981       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6982     return true;
6983 
6984   if (Ordering == AtomicOrdering::Unordered)
6985     return TokError("atomicrmw cannot be unordered");
6986   if (!Ptr->getType()->isPointerTy())
6987     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6988   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6989     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6990 
6991   if (Operation == AtomicRMWInst::Xchg) {
6992     if (!Val->getType()->isIntegerTy() &&
6993         !Val->getType()->isFloatingPointTy()) {
6994       return Error(ValLoc, "atomicrmw " +
6995                    AtomicRMWInst::getOperationName(Operation) +
6996                    " operand must be an integer or floating point type");
6997     }
6998   } else if (IsFP) {
6999     if (!Val->getType()->isFloatingPointTy()) {
7000       return Error(ValLoc, "atomicrmw " +
7001                    AtomicRMWInst::getOperationName(Operation) +
7002                    " operand must be a floating point type");
7003     }
7004   } else {
7005     if (!Val->getType()->isIntegerTy()) {
7006       return Error(ValLoc, "atomicrmw " +
7007                    AtomicRMWInst::getOperationName(Operation) +
7008                    " operand must be an integer");
7009     }
7010   }
7011 
7012   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7013   if (Size < 8 || (Size & (Size - 1)))
7014     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7015                          " integer");
7016 
7017   AtomicRMWInst *RMWI =
7018     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7019   RMWI->setVolatile(isVolatile);
7020   Inst = RMWI;
7021   return AteExtraComma ? InstExtraComma : InstNormal;
7022 }
7023 
7024 /// ParseFence
7025 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7026 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7027   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7028   SyncScope::ID SSID = SyncScope::System;
7029   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7030     return true;
7031 
7032   if (Ordering == AtomicOrdering::Unordered)
7033     return TokError("fence cannot be unordered");
7034   if (Ordering == AtomicOrdering::Monotonic)
7035     return TokError("fence cannot be monotonic");
7036 
7037   Inst = new FenceInst(Context, Ordering, SSID);
7038   return InstNormal;
7039 }
7040 
7041 /// ParseGetElementPtr
7042 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7043 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7044   Value *Ptr = nullptr;
7045   Value *Val = nullptr;
7046   LocTy Loc, EltLoc;
7047 
7048   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7049 
7050   Type *Ty = nullptr;
7051   LocTy ExplicitTypeLoc = Lex.getLoc();
7052   if (ParseType(Ty) ||
7053       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7054       ParseTypeAndValue(Ptr, Loc, PFS))
7055     return true;
7056 
7057   Type *BaseType = Ptr->getType();
7058   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7059   if (!BasePointerType)
7060     return Error(Loc, "base of getelementptr must be a pointer");
7061 
7062   if (Ty != BasePointerType->getElementType())
7063     return Error(ExplicitTypeLoc,
7064                  "explicit pointee type doesn't match operand's pointee type");
7065 
7066   SmallVector<Value*, 16> Indices;
7067   bool AteExtraComma = false;
7068   // GEP returns a vector of pointers if at least one of parameters is a vector.
7069   // All vector parameters should have the same vector width.
7070   unsigned GEPWidth = BaseType->isVectorTy() ?
7071     BaseType->getVectorNumElements() : 0;
7072 
7073   while (EatIfPresent(lltok::comma)) {
7074     if (Lex.getKind() == lltok::MetadataVar) {
7075       AteExtraComma = true;
7076       break;
7077     }
7078     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7079     if (!Val->getType()->isIntOrIntVectorTy())
7080       return Error(EltLoc, "getelementptr index must be an integer");
7081 
7082     if (Val->getType()->isVectorTy()) {
7083       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7084       if (GEPWidth && GEPWidth != ValNumEl)
7085         return Error(EltLoc,
7086           "getelementptr vector index has a wrong number of elements");
7087       GEPWidth = ValNumEl;
7088     }
7089     Indices.push_back(Val);
7090   }
7091 
7092   SmallPtrSet<Type*, 4> Visited;
7093   if (!Indices.empty() && !Ty->isSized(&Visited))
7094     return Error(Loc, "base element of getelementptr must be sized");
7095 
7096   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7097     return Error(Loc, "invalid getelementptr indices");
7098   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7099   if (InBounds)
7100     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7101   return AteExtraComma ? InstExtraComma : InstNormal;
7102 }
7103 
7104 /// ParseExtractValue
7105 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7106 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7107   Value *Val; LocTy Loc;
7108   SmallVector<unsigned, 4> Indices;
7109   bool AteExtraComma;
7110   if (ParseTypeAndValue(Val, Loc, PFS) ||
7111       ParseIndexList(Indices, AteExtraComma))
7112     return true;
7113 
7114   if (!Val->getType()->isAggregateType())
7115     return Error(Loc, "extractvalue operand must be aggregate type");
7116 
7117   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7118     return Error(Loc, "invalid indices for extractvalue");
7119   Inst = ExtractValueInst::Create(Val, Indices);
7120   return AteExtraComma ? InstExtraComma : InstNormal;
7121 }
7122 
7123 /// ParseInsertValue
7124 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7125 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7126   Value *Val0, *Val1; LocTy Loc0, Loc1;
7127   SmallVector<unsigned, 4> Indices;
7128   bool AteExtraComma;
7129   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7130       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7131       ParseTypeAndValue(Val1, Loc1, PFS) ||
7132       ParseIndexList(Indices, AteExtraComma))
7133     return true;
7134 
7135   if (!Val0->getType()->isAggregateType())
7136     return Error(Loc0, "insertvalue operand must be aggregate type");
7137 
7138   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7139   if (!IndexedType)
7140     return Error(Loc0, "invalid indices for insertvalue");
7141   if (IndexedType != Val1->getType())
7142     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7143                            getTypeString(Val1->getType()) + "' instead of '" +
7144                            getTypeString(IndexedType) + "'");
7145   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7146   return AteExtraComma ? InstExtraComma : InstNormal;
7147 }
7148 
7149 //===----------------------------------------------------------------------===//
7150 // Embedded metadata.
7151 //===----------------------------------------------------------------------===//
7152 
7153 /// ParseMDNodeVector
7154 ///   ::= { Element (',' Element)* }
7155 /// Element
7156 ///   ::= 'null' | TypeAndValue
7157 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7158   if (ParseToken(lltok::lbrace, "expected '{' here"))
7159     return true;
7160 
7161   // Check for an empty list.
7162   if (EatIfPresent(lltok::rbrace))
7163     return false;
7164 
7165   do {
7166     // Null is a special case since it is typeless.
7167     if (EatIfPresent(lltok::kw_null)) {
7168       Elts.push_back(nullptr);
7169       continue;
7170     }
7171 
7172     Metadata *MD;
7173     if (ParseMetadata(MD, nullptr))
7174       return true;
7175     Elts.push_back(MD);
7176   } while (EatIfPresent(lltok::comma));
7177 
7178   return ParseToken(lltok::rbrace, "expected end of metadata node");
7179 }
7180 
7181 //===----------------------------------------------------------------------===//
7182 // Use-list order directives.
7183 //===----------------------------------------------------------------------===//
7184 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7185                                 SMLoc Loc) {
7186   if (V->use_empty())
7187     return Error(Loc, "value has no uses");
7188 
7189   unsigned NumUses = 0;
7190   SmallDenseMap<const Use *, unsigned, 16> Order;
7191   for (const Use &U : V->uses()) {
7192     if (++NumUses > Indexes.size())
7193       break;
7194     Order[&U] = Indexes[NumUses - 1];
7195   }
7196   if (NumUses < 2)
7197     return Error(Loc, "value only has one use");
7198   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7199     return Error(Loc,
7200                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7201 
7202   V->sortUseList([&](const Use &L, const Use &R) {
7203     return Order.lookup(&L) < Order.lookup(&R);
7204   });
7205   return false;
7206 }
7207 
7208 /// ParseUseListOrderIndexes
7209 ///   ::= '{' uint32 (',' uint32)+ '}'
7210 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7211   SMLoc Loc = Lex.getLoc();
7212   if (ParseToken(lltok::lbrace, "expected '{' here"))
7213     return true;
7214   if (Lex.getKind() == lltok::rbrace)
7215     return Lex.Error("expected non-empty list of uselistorder indexes");
7216 
7217   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7218   // indexes should be distinct numbers in the range [0, size-1], and should
7219   // not be in order.
7220   unsigned Offset = 0;
7221   unsigned Max = 0;
7222   bool IsOrdered = true;
7223   assert(Indexes.empty() && "Expected empty order vector");
7224   do {
7225     unsigned Index;
7226     if (ParseUInt32(Index))
7227       return true;
7228 
7229     // Update consistency checks.
7230     Offset += Index - Indexes.size();
7231     Max = std::max(Max, Index);
7232     IsOrdered &= Index == Indexes.size();
7233 
7234     Indexes.push_back(Index);
7235   } while (EatIfPresent(lltok::comma));
7236 
7237   if (ParseToken(lltok::rbrace, "expected '}' here"))
7238     return true;
7239 
7240   if (Indexes.size() < 2)
7241     return Error(Loc, "expected >= 2 uselistorder indexes");
7242   if (Offset != 0 || Max >= Indexes.size())
7243     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7244   if (IsOrdered)
7245     return Error(Loc, "expected uselistorder indexes to change the order");
7246 
7247   return false;
7248 }
7249 
7250 /// ParseUseListOrder
7251 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7252 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7253   SMLoc Loc = Lex.getLoc();
7254   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7255     return true;
7256 
7257   Value *V;
7258   SmallVector<unsigned, 16> Indexes;
7259   if (ParseTypeAndValue(V, PFS) ||
7260       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7261       ParseUseListOrderIndexes(Indexes))
7262     return true;
7263 
7264   return sortUseListOrder(V, Indexes, Loc);
7265 }
7266 
7267 /// ParseUseListOrderBB
7268 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7269 bool LLParser::ParseUseListOrderBB() {
7270   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7271   SMLoc Loc = Lex.getLoc();
7272   Lex.Lex();
7273 
7274   ValID Fn, Label;
7275   SmallVector<unsigned, 16> Indexes;
7276   if (ParseValID(Fn) ||
7277       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7278       ParseValID(Label) ||
7279       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7280       ParseUseListOrderIndexes(Indexes))
7281     return true;
7282 
7283   // Check the function.
7284   GlobalValue *GV;
7285   if (Fn.Kind == ValID::t_GlobalName)
7286     GV = M->getNamedValue(Fn.StrVal);
7287   else if (Fn.Kind == ValID::t_GlobalID)
7288     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7289   else
7290     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7291   if (!GV)
7292     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7293   auto *F = dyn_cast<Function>(GV);
7294   if (!F)
7295     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7296   if (F->isDeclaration())
7297     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7298 
7299   // Check the basic block.
7300   if (Label.Kind == ValID::t_LocalID)
7301     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7302   if (Label.Kind != ValID::t_LocalName)
7303     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7304   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7305   if (!V)
7306     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7307   if (!isa<BasicBlock>(V))
7308     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7309 
7310   return sortUseListOrder(V, Indexes, Loc);
7311 }
7312 
7313 /// ModuleEntry
7314 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7315 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7316 bool LLParser::ParseModuleEntry(unsigned ID) {
7317   assert(Lex.getKind() == lltok::kw_module);
7318   Lex.Lex();
7319 
7320   std::string Path;
7321   if (ParseToken(lltok::colon, "expected ':' here") ||
7322       ParseToken(lltok::lparen, "expected '(' here") ||
7323       ParseToken(lltok::kw_path, "expected 'path' here") ||
7324       ParseToken(lltok::colon, "expected ':' here") ||
7325       ParseStringConstant(Path) ||
7326       ParseToken(lltok::comma, "expected ',' here") ||
7327       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7328       ParseToken(lltok::colon, "expected ':' here") ||
7329       ParseToken(lltok::lparen, "expected '(' here"))
7330     return true;
7331 
7332   ModuleHash Hash;
7333   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7334       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7335       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7336       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7337       ParseUInt32(Hash[4]))
7338     return true;
7339 
7340   if (ParseToken(lltok::rparen, "expected ')' here") ||
7341       ParseToken(lltok::rparen, "expected ')' here"))
7342     return true;
7343 
7344   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7345   ModuleIdMap[ID] = ModuleEntry->first();
7346 
7347   return false;
7348 }
7349 
7350 /// TypeIdEntry
7351 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7352 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7353   assert(Lex.getKind() == lltok::kw_typeid);
7354   Lex.Lex();
7355 
7356   std::string Name;
7357   if (ParseToken(lltok::colon, "expected ':' here") ||
7358       ParseToken(lltok::lparen, "expected '(' here") ||
7359       ParseToken(lltok::kw_name, "expected 'name' here") ||
7360       ParseToken(lltok::colon, "expected ':' here") ||
7361       ParseStringConstant(Name))
7362     return true;
7363 
7364   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7365   if (ParseToken(lltok::comma, "expected ',' here") ||
7366       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7367     return true;
7368 
7369   // Check if this ID was forward referenced, and if so, update the
7370   // corresponding GUIDs.
7371   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7372   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7373     for (auto TIDRef : FwdRefTIDs->second) {
7374       assert(!*TIDRef.first &&
7375              "Forward referenced type id GUID expected to be 0");
7376       *TIDRef.first = GlobalValue::getGUID(Name);
7377     }
7378     ForwardRefTypeIds.erase(FwdRefTIDs);
7379   }
7380 
7381   return false;
7382 }
7383 
7384 /// TypeIdSummary
7385 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7386 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7387   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7388       ParseToken(lltok::colon, "expected ':' here") ||
7389       ParseToken(lltok::lparen, "expected '(' here") ||
7390       ParseTypeTestResolution(TIS.TTRes))
7391     return true;
7392 
7393   if (EatIfPresent(lltok::comma)) {
7394     // Expect optional wpdResolutions field
7395     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7396       return true;
7397   }
7398 
7399   if (ParseToken(lltok::rparen, "expected ')' here"))
7400     return true;
7401 
7402   return false;
7403 }
7404 
7405 /// TypeTestResolution
7406 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7407 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7408 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7409 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7410 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7411 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7412   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7413       ParseToken(lltok::colon, "expected ':' here") ||
7414       ParseToken(lltok::lparen, "expected '(' here") ||
7415       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7416       ParseToken(lltok::colon, "expected ':' here"))
7417     return true;
7418 
7419   switch (Lex.getKind()) {
7420   case lltok::kw_unsat:
7421     TTRes.TheKind = TypeTestResolution::Unsat;
7422     break;
7423   case lltok::kw_byteArray:
7424     TTRes.TheKind = TypeTestResolution::ByteArray;
7425     break;
7426   case lltok::kw_inline:
7427     TTRes.TheKind = TypeTestResolution::Inline;
7428     break;
7429   case lltok::kw_single:
7430     TTRes.TheKind = TypeTestResolution::Single;
7431     break;
7432   case lltok::kw_allOnes:
7433     TTRes.TheKind = TypeTestResolution::AllOnes;
7434     break;
7435   default:
7436     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7437   }
7438   Lex.Lex();
7439 
7440   if (ParseToken(lltok::comma, "expected ',' here") ||
7441       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7442       ParseToken(lltok::colon, "expected ':' here") ||
7443       ParseUInt32(TTRes.SizeM1BitWidth))
7444     return true;
7445 
7446   // Parse optional fields
7447   while (EatIfPresent(lltok::comma)) {
7448     switch (Lex.getKind()) {
7449     case lltok::kw_alignLog2:
7450       Lex.Lex();
7451       if (ParseToken(lltok::colon, "expected ':'") ||
7452           ParseUInt64(TTRes.AlignLog2))
7453         return true;
7454       break;
7455     case lltok::kw_sizeM1:
7456       Lex.Lex();
7457       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7458         return true;
7459       break;
7460     case lltok::kw_bitMask: {
7461       unsigned Val;
7462       Lex.Lex();
7463       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7464         return true;
7465       assert(Val <= 0xff);
7466       TTRes.BitMask = (uint8_t)Val;
7467       break;
7468     }
7469     case lltok::kw_inlineBits:
7470       Lex.Lex();
7471       if (ParseToken(lltok::colon, "expected ':'") ||
7472           ParseUInt64(TTRes.InlineBits))
7473         return true;
7474       break;
7475     default:
7476       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7477     }
7478   }
7479 
7480   if (ParseToken(lltok::rparen, "expected ')' here"))
7481     return true;
7482 
7483   return false;
7484 }
7485 
7486 /// OptionalWpdResolutions
7487 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7488 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7489 bool LLParser::ParseOptionalWpdResolutions(
7490     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7491   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7492       ParseToken(lltok::colon, "expected ':' here") ||
7493       ParseToken(lltok::lparen, "expected '(' here"))
7494     return true;
7495 
7496   do {
7497     uint64_t Offset;
7498     WholeProgramDevirtResolution WPDRes;
7499     if (ParseToken(lltok::lparen, "expected '(' here") ||
7500         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7501         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7502         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7503         ParseToken(lltok::rparen, "expected ')' here"))
7504       return true;
7505     WPDResMap[Offset] = WPDRes;
7506   } while (EatIfPresent(lltok::comma));
7507 
7508   if (ParseToken(lltok::rparen, "expected ')' here"))
7509     return true;
7510 
7511   return false;
7512 }
7513 
7514 /// WpdRes
7515 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7516 ///         [',' OptionalResByArg]? ')'
7517 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7518 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7519 ///         [',' OptionalResByArg]? ')'
7520 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7521 ///         [',' OptionalResByArg]? ')'
7522 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7523   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7524       ParseToken(lltok::colon, "expected ':' here") ||
7525       ParseToken(lltok::lparen, "expected '(' here") ||
7526       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7527       ParseToken(lltok::colon, "expected ':' here"))
7528     return true;
7529 
7530   switch (Lex.getKind()) {
7531   case lltok::kw_indir:
7532     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7533     break;
7534   case lltok::kw_singleImpl:
7535     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7536     break;
7537   case lltok::kw_branchFunnel:
7538     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7539     break;
7540   default:
7541     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7542   }
7543   Lex.Lex();
7544 
7545   // Parse optional fields
7546   while (EatIfPresent(lltok::comma)) {
7547     switch (Lex.getKind()) {
7548     case lltok::kw_singleImplName:
7549       Lex.Lex();
7550       if (ParseToken(lltok::colon, "expected ':' here") ||
7551           ParseStringConstant(WPDRes.SingleImplName))
7552         return true;
7553       break;
7554     case lltok::kw_resByArg:
7555       if (ParseOptionalResByArg(WPDRes.ResByArg))
7556         return true;
7557       break;
7558     default:
7559       return Error(Lex.getLoc(),
7560                    "expected optional WholeProgramDevirtResolution field");
7561     }
7562   }
7563 
7564   if (ParseToken(lltok::rparen, "expected ')' here"))
7565     return true;
7566 
7567   return false;
7568 }
7569 
7570 /// OptionalResByArg
7571 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7572 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7573 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7574 ///                  'virtualConstProp' )
7575 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7576 ///                [',' 'bit' ':' UInt32]? ')'
7577 bool LLParser::ParseOptionalResByArg(
7578     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7579         &ResByArg) {
7580   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7581       ParseToken(lltok::colon, "expected ':' here") ||
7582       ParseToken(lltok::lparen, "expected '(' here"))
7583     return true;
7584 
7585   do {
7586     std::vector<uint64_t> Args;
7587     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7588         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7589         ParseToken(lltok::colon, "expected ':' here") ||
7590         ParseToken(lltok::lparen, "expected '(' here") ||
7591         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7592         ParseToken(lltok::colon, "expected ':' here"))
7593       return true;
7594 
7595     WholeProgramDevirtResolution::ByArg ByArg;
7596     switch (Lex.getKind()) {
7597     case lltok::kw_indir:
7598       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7599       break;
7600     case lltok::kw_uniformRetVal:
7601       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7602       break;
7603     case lltok::kw_uniqueRetVal:
7604       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7605       break;
7606     case lltok::kw_virtualConstProp:
7607       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7608       break;
7609     default:
7610       return Error(Lex.getLoc(),
7611                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7612     }
7613     Lex.Lex();
7614 
7615     // Parse optional fields
7616     while (EatIfPresent(lltok::comma)) {
7617       switch (Lex.getKind()) {
7618       case lltok::kw_info:
7619         Lex.Lex();
7620         if (ParseToken(lltok::colon, "expected ':' here") ||
7621             ParseUInt64(ByArg.Info))
7622           return true;
7623         break;
7624       case lltok::kw_byte:
7625         Lex.Lex();
7626         if (ParseToken(lltok::colon, "expected ':' here") ||
7627             ParseUInt32(ByArg.Byte))
7628           return true;
7629         break;
7630       case lltok::kw_bit:
7631         Lex.Lex();
7632         if (ParseToken(lltok::colon, "expected ':' here") ||
7633             ParseUInt32(ByArg.Bit))
7634           return true;
7635         break;
7636       default:
7637         return Error(Lex.getLoc(),
7638                      "expected optional whole program devirt field");
7639       }
7640     }
7641 
7642     if (ParseToken(lltok::rparen, "expected ')' here"))
7643       return true;
7644 
7645     ResByArg[Args] = ByArg;
7646   } while (EatIfPresent(lltok::comma));
7647 
7648   if (ParseToken(lltok::rparen, "expected ')' here"))
7649     return true;
7650 
7651   return false;
7652 }
7653 
7654 /// OptionalResByArg
7655 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7656 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7657   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7658       ParseToken(lltok::colon, "expected ':' here") ||
7659       ParseToken(lltok::lparen, "expected '(' here"))
7660     return true;
7661 
7662   do {
7663     uint64_t Val;
7664     if (ParseUInt64(Val))
7665       return true;
7666     Args.push_back(Val);
7667   } while (EatIfPresent(lltok::comma));
7668 
7669   if (ParseToken(lltok::rparen, "expected ')' here"))
7670     return true;
7671 
7672   return false;
7673 }
7674 
7675 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7676 
7677 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7678   bool ReadOnly = Fwd->isReadOnly();
7679   *Fwd = Resolved;
7680   if (ReadOnly)
7681     Fwd->setReadOnly();
7682 }
7683 
7684 /// Stores the given Name/GUID and associated summary into the Index.
7685 /// Also updates any forward references to the associated entry ID.
7686 void LLParser::AddGlobalValueToIndex(
7687     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7688     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7689   // First create the ValueInfo utilizing the Name or GUID.
7690   ValueInfo VI;
7691   if (GUID != 0) {
7692     assert(Name.empty());
7693     VI = Index->getOrInsertValueInfo(GUID);
7694   } else {
7695     assert(!Name.empty());
7696     if (M) {
7697       auto *GV = M->getNamedValue(Name);
7698       assert(GV);
7699       VI = Index->getOrInsertValueInfo(GV);
7700     } else {
7701       assert(
7702           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7703           "Need a source_filename to compute GUID for local");
7704       GUID = GlobalValue::getGUID(
7705           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7706       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7707     }
7708   }
7709 
7710   // Add the summary if one was provided.
7711   if (Summary)
7712     Index->addGlobalValueSummary(VI, std::move(Summary));
7713 
7714   // Resolve forward references from calls/refs
7715   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7716   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7717     for (auto VIRef : FwdRefVIs->second) {
7718       assert(VIRef.first->getRef() == FwdVIRef &&
7719              "Forward referenced ValueInfo expected to be empty");
7720       resolveFwdRef(VIRef.first, VI);
7721     }
7722     ForwardRefValueInfos.erase(FwdRefVIs);
7723   }
7724 
7725   // Resolve forward references from aliases
7726   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7727   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7728     for (auto AliaseeRef : FwdRefAliasees->second) {
7729       assert(!AliaseeRef.first->hasAliasee() &&
7730              "Forward referencing alias already has aliasee");
7731       AliaseeRef.first->setAliasee(VI.getSummaryList().front().get());
7732     }
7733     ForwardRefAliasees.erase(FwdRefAliasees);
7734   }
7735 
7736   // Save the associated ValueInfo for use in later references by ID.
7737   if (ID == NumberedValueInfos.size())
7738     NumberedValueInfos.push_back(VI);
7739   else {
7740     // Handle non-continuous numbers (to make test simplification easier).
7741     if (ID > NumberedValueInfos.size())
7742       NumberedValueInfos.resize(ID + 1);
7743     NumberedValueInfos[ID] = VI;
7744   }
7745 }
7746 
7747 /// ParseGVEntry
7748 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7749 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7750 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7751 bool LLParser::ParseGVEntry(unsigned ID) {
7752   assert(Lex.getKind() == lltok::kw_gv);
7753   Lex.Lex();
7754 
7755   if (ParseToken(lltok::colon, "expected ':' here") ||
7756       ParseToken(lltok::lparen, "expected '(' here"))
7757     return true;
7758 
7759   std::string Name;
7760   GlobalValue::GUID GUID = 0;
7761   switch (Lex.getKind()) {
7762   case lltok::kw_name:
7763     Lex.Lex();
7764     if (ParseToken(lltok::colon, "expected ':' here") ||
7765         ParseStringConstant(Name))
7766       return true;
7767     // Can't create GUID/ValueInfo until we have the linkage.
7768     break;
7769   case lltok::kw_guid:
7770     Lex.Lex();
7771     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7772       return true;
7773     break;
7774   default:
7775     return Error(Lex.getLoc(), "expected name or guid tag");
7776   }
7777 
7778   if (!EatIfPresent(lltok::comma)) {
7779     // No summaries. Wrap up.
7780     if (ParseToken(lltok::rparen, "expected ')' here"))
7781       return true;
7782     // This was created for a call to an external or indirect target.
7783     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7784     // created for indirect calls with VP. A Name with no GUID came from
7785     // an external definition. We pass ExternalLinkage since that is only
7786     // used when the GUID must be computed from Name, and in that case
7787     // the symbol must have external linkage.
7788     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7789                           nullptr);
7790     return false;
7791   }
7792 
7793   // Have a list of summaries
7794   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7795       ParseToken(lltok::colon, "expected ':' here"))
7796     return true;
7797 
7798   do {
7799     if (ParseToken(lltok::lparen, "expected '(' here"))
7800       return true;
7801     switch (Lex.getKind()) {
7802     case lltok::kw_function:
7803       if (ParseFunctionSummary(Name, GUID, ID))
7804         return true;
7805       break;
7806     case lltok::kw_variable:
7807       if (ParseVariableSummary(Name, GUID, ID))
7808         return true;
7809       break;
7810     case lltok::kw_alias:
7811       if (ParseAliasSummary(Name, GUID, ID))
7812         return true;
7813       break;
7814     default:
7815       return Error(Lex.getLoc(), "expected summary type");
7816     }
7817     if (ParseToken(lltok::rparen, "expected ')' here"))
7818       return true;
7819   } while (EatIfPresent(lltok::comma));
7820 
7821   if (ParseToken(lltok::rparen, "expected ')' here"))
7822     return true;
7823 
7824   return false;
7825 }
7826 
7827 /// FunctionSummary
7828 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7829 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7830 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7831 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7832                                     unsigned ID) {
7833   assert(Lex.getKind() == lltok::kw_function);
7834   Lex.Lex();
7835 
7836   StringRef ModulePath;
7837   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7838       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7839       /*Live=*/false, /*IsLocal=*/false);
7840   unsigned InstCount;
7841   std::vector<FunctionSummary::EdgeTy> Calls;
7842   FunctionSummary::TypeIdInfo TypeIdInfo;
7843   std::vector<ValueInfo> Refs;
7844   // Default is all-zeros (conservative values).
7845   FunctionSummary::FFlags FFlags = {};
7846   if (ParseToken(lltok::colon, "expected ':' here") ||
7847       ParseToken(lltok::lparen, "expected '(' here") ||
7848       ParseModuleReference(ModulePath) ||
7849       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7850       ParseToken(lltok::comma, "expected ',' here") ||
7851       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7852       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7853     return true;
7854 
7855   // Parse optional fields
7856   while (EatIfPresent(lltok::comma)) {
7857     switch (Lex.getKind()) {
7858     case lltok::kw_funcFlags:
7859       if (ParseOptionalFFlags(FFlags))
7860         return true;
7861       break;
7862     case lltok::kw_calls:
7863       if (ParseOptionalCalls(Calls))
7864         return true;
7865       break;
7866     case lltok::kw_typeIdInfo:
7867       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7868         return true;
7869       break;
7870     case lltok::kw_refs:
7871       if (ParseOptionalRefs(Refs))
7872         return true;
7873       break;
7874     default:
7875       return Error(Lex.getLoc(), "expected optional function summary field");
7876     }
7877   }
7878 
7879   if (ParseToken(lltok::rparen, "expected ')' here"))
7880     return true;
7881 
7882   auto FS = llvm::make_unique<FunctionSummary>(
7883       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7884       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7885       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7886       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7887       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7888       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7889 
7890   FS->setModulePath(ModulePath);
7891 
7892   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7893                         ID, std::move(FS));
7894 
7895   return false;
7896 }
7897 
7898 /// VariableSummary
7899 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7900 ///         [',' OptionalRefs]? ')'
7901 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7902                                     unsigned ID) {
7903   assert(Lex.getKind() == lltok::kw_variable);
7904   Lex.Lex();
7905 
7906   StringRef ModulePath;
7907   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7908       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7909       /*Live=*/false, /*IsLocal=*/false);
7910   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7911   std::vector<ValueInfo> Refs;
7912   if (ParseToken(lltok::colon, "expected ':' here") ||
7913       ParseToken(lltok::lparen, "expected '(' here") ||
7914       ParseModuleReference(ModulePath) ||
7915       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7916       ParseToken(lltok::comma, "expected ',' here") ||
7917       ParseGVarFlags(GVarFlags))
7918     return true;
7919 
7920   // Parse optional refs field
7921   if (EatIfPresent(lltok::comma)) {
7922     if (ParseOptionalRefs(Refs))
7923       return true;
7924   }
7925 
7926   if (ParseToken(lltok::rparen, "expected ')' here"))
7927     return true;
7928 
7929   auto GS =
7930       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
7931 
7932   GS->setModulePath(ModulePath);
7933 
7934   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7935                         ID, std::move(GS));
7936 
7937   return false;
7938 }
7939 
7940 /// AliasSummary
7941 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7942 ///         'aliasee' ':' GVReference ')'
7943 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7944                                  unsigned ID) {
7945   assert(Lex.getKind() == lltok::kw_alias);
7946   LocTy Loc = Lex.getLoc();
7947   Lex.Lex();
7948 
7949   StringRef ModulePath;
7950   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7951       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7952       /*Live=*/false, /*IsLocal=*/false);
7953   if (ParseToken(lltok::colon, "expected ':' here") ||
7954       ParseToken(lltok::lparen, "expected '(' here") ||
7955       ParseModuleReference(ModulePath) ||
7956       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7957       ParseToken(lltok::comma, "expected ',' here") ||
7958       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7959       ParseToken(lltok::colon, "expected ':' here"))
7960     return true;
7961 
7962   ValueInfo AliaseeVI;
7963   unsigned GVId;
7964   if (ParseGVReference(AliaseeVI, GVId))
7965     return true;
7966 
7967   if (ParseToken(lltok::rparen, "expected ')' here"))
7968     return true;
7969 
7970   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7971 
7972   AS->setModulePath(ModulePath);
7973 
7974   // Record forward reference if the aliasee is not parsed yet.
7975   if (AliaseeVI.getRef() == FwdVIRef) {
7976     auto FwdRef = ForwardRefAliasees.insert(
7977         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
7978     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
7979   } else
7980     AS->setAliasee(AliaseeVI.getSummaryList().front().get());
7981 
7982   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7983                         ID, std::move(AS));
7984 
7985   return false;
7986 }
7987 
7988 /// Flag
7989 ///   ::= [0|1]
7990 bool LLParser::ParseFlag(unsigned &Val) {
7991   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
7992     return TokError("expected integer");
7993   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
7994   Lex.Lex();
7995   return false;
7996 }
7997 
7998 /// OptionalFFlags
7999 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8000 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8001 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8002 ///        [',' 'noInline' ':' Flag]? ')'
8003 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8004   assert(Lex.getKind() == lltok::kw_funcFlags);
8005   Lex.Lex();
8006 
8007   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8008       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8009     return true;
8010 
8011   do {
8012     unsigned Val;
8013     switch (Lex.getKind()) {
8014     case lltok::kw_readNone:
8015       Lex.Lex();
8016       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8017         return true;
8018       FFlags.ReadNone = Val;
8019       break;
8020     case lltok::kw_readOnly:
8021       Lex.Lex();
8022       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8023         return true;
8024       FFlags.ReadOnly = Val;
8025       break;
8026     case lltok::kw_noRecurse:
8027       Lex.Lex();
8028       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8029         return true;
8030       FFlags.NoRecurse = Val;
8031       break;
8032     case lltok::kw_returnDoesNotAlias:
8033       Lex.Lex();
8034       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8035         return true;
8036       FFlags.ReturnDoesNotAlias = Val;
8037       break;
8038     case lltok::kw_noInline:
8039       Lex.Lex();
8040       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8041         return true;
8042       FFlags.NoInline = Val;
8043       break;
8044     default:
8045       return Error(Lex.getLoc(), "expected function flag type");
8046     }
8047   } while (EatIfPresent(lltok::comma));
8048 
8049   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8050     return true;
8051 
8052   return false;
8053 }
8054 
8055 /// OptionalCalls
8056 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8057 /// Call ::= '(' 'callee' ':' GVReference
8058 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8059 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8060   assert(Lex.getKind() == lltok::kw_calls);
8061   Lex.Lex();
8062 
8063   if (ParseToken(lltok::colon, "expected ':' in calls") |
8064       ParseToken(lltok::lparen, "expected '(' in calls"))
8065     return true;
8066 
8067   IdToIndexMapType IdToIndexMap;
8068   // Parse each call edge
8069   do {
8070     ValueInfo VI;
8071     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8072         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8073         ParseToken(lltok::colon, "expected ':'"))
8074       return true;
8075 
8076     LocTy Loc = Lex.getLoc();
8077     unsigned GVId;
8078     if (ParseGVReference(VI, GVId))
8079       return true;
8080 
8081     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8082     unsigned RelBF = 0;
8083     if (EatIfPresent(lltok::comma)) {
8084       // Expect either hotness or relbf
8085       if (EatIfPresent(lltok::kw_hotness)) {
8086         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8087           return true;
8088       } else {
8089         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8090             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8091           return true;
8092       }
8093     }
8094     // Keep track of the Call array index needing a forward reference.
8095     // We will save the location of the ValueInfo needing an update, but
8096     // can only do so once the std::vector is finalized.
8097     if (VI.getRef() == FwdVIRef)
8098       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8099     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8100 
8101     if (ParseToken(lltok::rparen, "expected ')' in call"))
8102       return true;
8103   } while (EatIfPresent(lltok::comma));
8104 
8105   // Now that the Calls vector is finalized, it is safe to save the locations
8106   // of any forward GV references that need updating later.
8107   for (auto I : IdToIndexMap) {
8108     for (auto P : I.second) {
8109       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8110              "Forward referenced ValueInfo expected to be empty");
8111       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8112           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8113       FwdRef.first->second.push_back(
8114           std::make_pair(&Calls[P.first].first, P.second));
8115     }
8116   }
8117 
8118   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8119     return true;
8120 
8121   return false;
8122 }
8123 
8124 /// Hotness
8125 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8126 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8127   switch (Lex.getKind()) {
8128   case lltok::kw_unknown:
8129     Hotness = CalleeInfo::HotnessType::Unknown;
8130     break;
8131   case lltok::kw_cold:
8132     Hotness = CalleeInfo::HotnessType::Cold;
8133     break;
8134   case lltok::kw_none:
8135     Hotness = CalleeInfo::HotnessType::None;
8136     break;
8137   case lltok::kw_hot:
8138     Hotness = CalleeInfo::HotnessType::Hot;
8139     break;
8140   case lltok::kw_critical:
8141     Hotness = CalleeInfo::HotnessType::Critical;
8142     break;
8143   default:
8144     return Error(Lex.getLoc(), "invalid call edge hotness");
8145   }
8146   Lex.Lex();
8147   return false;
8148 }
8149 
8150 /// OptionalRefs
8151 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8152 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8153   assert(Lex.getKind() == lltok::kw_refs);
8154   Lex.Lex();
8155 
8156   if (ParseToken(lltok::colon, "expected ':' in refs") |
8157       ParseToken(lltok::lparen, "expected '(' in refs"))
8158     return true;
8159 
8160   struct ValueContext {
8161     ValueInfo VI;
8162     unsigned GVId;
8163     LocTy Loc;
8164   };
8165   std::vector<ValueContext> VContexts;
8166   // Parse each ref edge
8167   do {
8168     ValueContext VC;
8169     VC.Loc = Lex.getLoc();
8170     if (ParseGVReference(VC.VI, VC.GVId))
8171       return true;
8172     VContexts.push_back(VC);
8173   } while (EatIfPresent(lltok::comma));
8174 
8175   // Sort value contexts so that ones with readonly ValueInfo are at the end
8176   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8177   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8178     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8179   });
8180 
8181   IdToIndexMapType IdToIndexMap;
8182   for (auto &VC : VContexts) {
8183     // Keep track of the Refs array index needing a forward reference.
8184     // We will save the location of the ValueInfo needing an update, but
8185     // can only do so once the std::vector is finalized.
8186     if (VC.VI.getRef() == FwdVIRef)
8187       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8188     Refs.push_back(VC.VI);
8189   }
8190 
8191   // Now that the Refs vector is finalized, it is safe to save the locations
8192   // of any forward GV references that need updating later.
8193   for (auto I : IdToIndexMap) {
8194     for (auto P : I.second) {
8195       assert(Refs[P.first].getRef() == FwdVIRef &&
8196              "Forward referenced ValueInfo expected to be empty");
8197       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8198           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8199       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8200     }
8201   }
8202 
8203   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8204     return true;
8205 
8206   return false;
8207 }
8208 
8209 /// OptionalTypeIdInfo
8210 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8211 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8212 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8213 bool LLParser::ParseOptionalTypeIdInfo(
8214     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8215   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8216   Lex.Lex();
8217 
8218   if (ParseToken(lltok::colon, "expected ':' here") ||
8219       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8220     return true;
8221 
8222   do {
8223     switch (Lex.getKind()) {
8224     case lltok::kw_typeTests:
8225       if (ParseTypeTests(TypeIdInfo.TypeTests))
8226         return true;
8227       break;
8228     case lltok::kw_typeTestAssumeVCalls:
8229       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8230                            TypeIdInfo.TypeTestAssumeVCalls))
8231         return true;
8232       break;
8233     case lltok::kw_typeCheckedLoadVCalls:
8234       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8235                            TypeIdInfo.TypeCheckedLoadVCalls))
8236         return true;
8237       break;
8238     case lltok::kw_typeTestAssumeConstVCalls:
8239       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8240                               TypeIdInfo.TypeTestAssumeConstVCalls))
8241         return true;
8242       break;
8243     case lltok::kw_typeCheckedLoadConstVCalls:
8244       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8245                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8246         return true;
8247       break;
8248     default:
8249       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8250     }
8251   } while (EatIfPresent(lltok::comma));
8252 
8253   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8254     return true;
8255 
8256   return false;
8257 }
8258 
8259 /// TypeTests
8260 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8261 ///         [',' (SummaryID | UInt64)]* ')'
8262 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8263   assert(Lex.getKind() == lltok::kw_typeTests);
8264   Lex.Lex();
8265 
8266   if (ParseToken(lltok::colon, "expected ':' here") ||
8267       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8268     return true;
8269 
8270   IdToIndexMapType IdToIndexMap;
8271   do {
8272     GlobalValue::GUID GUID = 0;
8273     if (Lex.getKind() == lltok::SummaryID) {
8274       unsigned ID = Lex.getUIntVal();
8275       LocTy Loc = Lex.getLoc();
8276       // Keep track of the TypeTests array index needing a forward reference.
8277       // We will save the location of the GUID needing an update, but
8278       // can only do so once the std::vector is finalized.
8279       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8280       Lex.Lex();
8281     } else if (ParseUInt64(GUID))
8282       return true;
8283     TypeTests.push_back(GUID);
8284   } while (EatIfPresent(lltok::comma));
8285 
8286   // Now that the TypeTests vector is finalized, it is safe to save the
8287   // locations of any forward GV references that need updating later.
8288   for (auto I : IdToIndexMap) {
8289     for (auto P : I.second) {
8290       assert(TypeTests[P.first] == 0 &&
8291              "Forward referenced type id GUID expected to be 0");
8292       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8293           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8294       FwdRef.first->second.push_back(
8295           std::make_pair(&TypeTests[P.first], P.second));
8296     }
8297   }
8298 
8299   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8300     return true;
8301 
8302   return false;
8303 }
8304 
8305 /// VFuncIdList
8306 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8307 bool LLParser::ParseVFuncIdList(
8308     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8309   assert(Lex.getKind() == Kind);
8310   Lex.Lex();
8311 
8312   if (ParseToken(lltok::colon, "expected ':' here") ||
8313       ParseToken(lltok::lparen, "expected '(' here"))
8314     return true;
8315 
8316   IdToIndexMapType IdToIndexMap;
8317   do {
8318     FunctionSummary::VFuncId VFuncId;
8319     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8320       return true;
8321     VFuncIdList.push_back(VFuncId);
8322   } while (EatIfPresent(lltok::comma));
8323 
8324   if (ParseToken(lltok::rparen, "expected ')' here"))
8325     return true;
8326 
8327   // Now that the VFuncIdList vector is finalized, it is safe to save the
8328   // locations of any forward GV references that need updating later.
8329   for (auto I : IdToIndexMap) {
8330     for (auto P : I.second) {
8331       assert(VFuncIdList[P.first].GUID == 0 &&
8332              "Forward referenced type id GUID expected to be 0");
8333       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8334           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8335       FwdRef.first->second.push_back(
8336           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8337     }
8338   }
8339 
8340   return false;
8341 }
8342 
8343 /// ConstVCallList
8344 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8345 bool LLParser::ParseConstVCallList(
8346     lltok::Kind Kind,
8347     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8348   assert(Lex.getKind() == Kind);
8349   Lex.Lex();
8350 
8351   if (ParseToken(lltok::colon, "expected ':' here") ||
8352       ParseToken(lltok::lparen, "expected '(' here"))
8353     return true;
8354 
8355   IdToIndexMapType IdToIndexMap;
8356   do {
8357     FunctionSummary::ConstVCall ConstVCall;
8358     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8359       return true;
8360     ConstVCallList.push_back(ConstVCall);
8361   } while (EatIfPresent(lltok::comma));
8362 
8363   if (ParseToken(lltok::rparen, "expected ')' here"))
8364     return true;
8365 
8366   // Now that the ConstVCallList vector is finalized, it is safe to save the
8367   // locations of any forward GV references that need updating later.
8368   for (auto I : IdToIndexMap) {
8369     for (auto P : I.second) {
8370       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8371              "Forward referenced type id GUID expected to be 0");
8372       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8373           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8374       FwdRef.first->second.push_back(
8375           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8376     }
8377   }
8378 
8379   return false;
8380 }
8381 
8382 /// ConstVCall
8383 ///   ::= '(' VFuncId ',' Args ')'
8384 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8385                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8386   if (ParseToken(lltok::lparen, "expected '(' here") ||
8387       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8388     return true;
8389 
8390   if (EatIfPresent(lltok::comma))
8391     if (ParseArgs(ConstVCall.Args))
8392       return true;
8393 
8394   if (ParseToken(lltok::rparen, "expected ')' here"))
8395     return true;
8396 
8397   return false;
8398 }
8399 
8400 /// VFuncId
8401 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8402 ///         'offset' ':' UInt64 ')'
8403 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8404                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8405   assert(Lex.getKind() == lltok::kw_vFuncId);
8406   Lex.Lex();
8407 
8408   if (ParseToken(lltok::colon, "expected ':' here") ||
8409       ParseToken(lltok::lparen, "expected '(' here"))
8410     return true;
8411 
8412   if (Lex.getKind() == lltok::SummaryID) {
8413     VFuncId.GUID = 0;
8414     unsigned ID = Lex.getUIntVal();
8415     LocTy Loc = Lex.getLoc();
8416     // Keep track of the array index needing a forward reference.
8417     // We will save the location of the GUID needing an update, but
8418     // can only do so once the caller's std::vector is finalized.
8419     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8420     Lex.Lex();
8421   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8422              ParseToken(lltok::colon, "expected ':' here") ||
8423              ParseUInt64(VFuncId.GUID))
8424     return true;
8425 
8426   if (ParseToken(lltok::comma, "expected ',' here") ||
8427       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8428       ParseToken(lltok::colon, "expected ':' here") ||
8429       ParseUInt64(VFuncId.Offset) ||
8430       ParseToken(lltok::rparen, "expected ')' here"))
8431     return true;
8432 
8433   return false;
8434 }
8435 
8436 /// GVFlags
8437 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8438 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8439 ///         'dsoLocal' ':' Flag ')'
8440 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8441   assert(Lex.getKind() == lltok::kw_flags);
8442   Lex.Lex();
8443 
8444   bool HasLinkage;
8445   if (ParseToken(lltok::colon, "expected ':' here") ||
8446       ParseToken(lltok::lparen, "expected '(' here") ||
8447       ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8448       ParseToken(lltok::colon, "expected ':' here"))
8449     return true;
8450 
8451   GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8452   assert(HasLinkage && "Linkage not optional in summary entry");
8453   Lex.Lex();
8454 
8455   unsigned Flag;
8456   if (ParseToken(lltok::comma, "expected ',' here") ||
8457       ParseToken(lltok::kw_notEligibleToImport,
8458                  "expected 'notEligibleToImport' here") ||
8459       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8460     return true;
8461   GVFlags.NotEligibleToImport = Flag;
8462 
8463   if (ParseToken(lltok::comma, "expected ',' here") ||
8464       ParseToken(lltok::kw_live, "expected 'live' here") ||
8465       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8466     return true;
8467   GVFlags.Live = Flag;
8468 
8469   if (ParseToken(lltok::comma, "expected ',' here") ||
8470       ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8471       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8472     return true;
8473   GVFlags.DSOLocal = Flag;
8474 
8475   if (ParseToken(lltok::rparen, "expected ')' here"))
8476     return true;
8477 
8478   return false;
8479 }
8480 
8481 /// GVarFlags
8482 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8483 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8484   assert(Lex.getKind() == lltok::kw_varFlags);
8485   Lex.Lex();
8486 
8487   unsigned Flag;
8488   if (ParseToken(lltok::colon, "expected ':' here") ||
8489       ParseToken(lltok::lparen, "expected '(' here") ||
8490       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8491       ParseToken(lltok::colon, "expected ':' here"))
8492     return true;
8493 
8494   ParseFlag(Flag);
8495   GVarFlags.ReadOnly = Flag;
8496 
8497   if (ParseToken(lltok::rparen, "expected ')' here"))
8498     return true;
8499   return false;
8500 }
8501 
8502 /// ModuleReference
8503 ///   ::= 'module' ':' UInt
8504 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8505   // Parse module id.
8506   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8507       ParseToken(lltok::colon, "expected ':' here") ||
8508       ParseToken(lltok::SummaryID, "expected module ID"))
8509     return true;
8510 
8511   unsigned ModuleID = Lex.getUIntVal();
8512   auto I = ModuleIdMap.find(ModuleID);
8513   // We should have already parsed all module IDs
8514   assert(I != ModuleIdMap.end());
8515   ModulePath = I->second;
8516   return false;
8517 }
8518 
8519 /// GVReference
8520 ///   ::= SummaryID
8521 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8522   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8523   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8524     return true;
8525 
8526   GVId = Lex.getUIntVal();
8527   // Check if we already have a VI for this GV
8528   if (GVId < NumberedValueInfos.size()) {
8529     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8530     VI = NumberedValueInfos[GVId];
8531   } else
8532     // We will create a forward reference to the stored location.
8533     VI = ValueInfo(false, FwdVIRef);
8534 
8535   if (ReadOnly)
8536     VI.setReadOnly();
8537   return false;
8538 }
8539