1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 switch (Lex.getKind()) { 825 case lltok::kw_gv: 826 return ParseGVEntry(SummaryID); 827 case lltok::kw_module: 828 return ParseModuleEntry(SummaryID); 829 case lltok::kw_typeid: 830 return ParseTypeIdEntry(SummaryID); 831 break; 832 default: 833 return Error(Lex.getLoc(), "unexpected summary kind"); 834 } 835 Lex.setIgnoreColonInIdentifiers(false); 836 return false; 837 } 838 839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 840 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 841 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 842 } 843 844 // If there was an explicit dso_local, update GV. In the absence of an explicit 845 // dso_local we keep the default value. 846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 847 if (DSOLocal) 848 GV.setDSOLocal(true); 849 } 850 851 /// parseIndirectSymbol: 852 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 853 /// OptionalVisibility OptionalDLLStorageClass 854 /// OptionalThreadLocal OptionalUnnamedAddr 855 // 'alias|ifunc' IndirectSymbol 856 /// 857 /// IndirectSymbol 858 /// ::= TypeAndValue 859 /// 860 /// Everything through OptionalUnnamedAddr has already been parsed. 861 /// 862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 863 unsigned L, unsigned Visibility, 864 unsigned DLLStorageClass, bool DSOLocal, 865 GlobalVariable::ThreadLocalMode TLM, 866 GlobalVariable::UnnamedAddr UnnamedAddr) { 867 bool IsAlias; 868 if (Lex.getKind() == lltok::kw_alias) 869 IsAlias = true; 870 else if (Lex.getKind() == lltok::kw_ifunc) 871 IsAlias = false; 872 else 873 llvm_unreachable("Not an alias or ifunc!"); 874 Lex.Lex(); 875 876 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 877 878 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 879 return Error(NameLoc, "invalid linkage type for alias"); 880 881 if (!isValidVisibilityForLinkage(Visibility, L)) 882 return Error(NameLoc, 883 "symbol with local linkage must have default visibility"); 884 885 Type *Ty; 886 LocTy ExplicitTypeLoc = Lex.getLoc(); 887 if (ParseType(Ty) || 888 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 889 return true; 890 891 Constant *Aliasee; 892 LocTy AliaseeLoc = Lex.getLoc(); 893 if (Lex.getKind() != lltok::kw_bitcast && 894 Lex.getKind() != lltok::kw_getelementptr && 895 Lex.getKind() != lltok::kw_addrspacecast && 896 Lex.getKind() != lltok::kw_inttoptr) { 897 if (ParseGlobalTypeAndValue(Aliasee)) 898 return true; 899 } else { 900 // The bitcast dest type is not present, it is implied by the dest type. 901 ValID ID; 902 if (ParseValID(ID)) 903 return true; 904 if (ID.Kind != ValID::t_Constant) 905 return Error(AliaseeLoc, "invalid aliasee"); 906 Aliasee = ID.ConstantVal; 907 } 908 909 Type *AliaseeType = Aliasee->getType(); 910 auto *PTy = dyn_cast<PointerType>(AliaseeType); 911 if (!PTy) 912 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 913 unsigned AddrSpace = PTy->getAddressSpace(); 914 915 if (IsAlias && Ty != PTy->getElementType()) 916 return Error( 917 ExplicitTypeLoc, 918 "explicit pointee type doesn't match operand's pointee type"); 919 920 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 921 return Error( 922 ExplicitTypeLoc, 923 "explicit pointee type should be a function type"); 924 925 GlobalValue *GVal = nullptr; 926 927 // See if the alias was forward referenced, if so, prepare to replace the 928 // forward reference. 929 if (!Name.empty()) { 930 GVal = M->getNamedValue(Name); 931 if (GVal) { 932 if (!ForwardRefVals.erase(Name)) 933 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 934 } 935 } else { 936 auto I = ForwardRefValIDs.find(NumberedVals.size()); 937 if (I != ForwardRefValIDs.end()) { 938 GVal = I->second.first; 939 ForwardRefValIDs.erase(I); 940 } 941 } 942 943 // Okay, create the alias but do not insert it into the module yet. 944 std::unique_ptr<GlobalIndirectSymbol> GA; 945 if (IsAlias) 946 GA.reset(GlobalAlias::create(Ty, AddrSpace, 947 (GlobalValue::LinkageTypes)Linkage, Name, 948 Aliasee, /*Parent*/ nullptr)); 949 else 950 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 951 (GlobalValue::LinkageTypes)Linkage, Name, 952 Aliasee, /*Parent*/ nullptr)); 953 GA->setThreadLocalMode(TLM); 954 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 955 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 956 GA->setUnnamedAddr(UnnamedAddr); 957 maybeSetDSOLocal(DSOLocal, *GA); 958 959 if (Name.empty()) 960 NumberedVals.push_back(GA.get()); 961 962 if (GVal) { 963 // Verify that types agree. 964 if (GVal->getType() != GA->getType()) 965 return Error( 966 ExplicitTypeLoc, 967 "forward reference and definition of alias have different types"); 968 969 // If they agree, just RAUW the old value with the alias and remove the 970 // forward ref info. 971 GVal->replaceAllUsesWith(GA.get()); 972 GVal->eraseFromParent(); 973 } 974 975 // Insert into the module, we know its name won't collide now. 976 if (IsAlias) 977 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 978 else 979 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 980 assert(GA->getName() == Name && "Should not be a name conflict!"); 981 982 // The module owns this now 983 GA.release(); 984 985 return false; 986 } 987 988 /// ParseGlobal 989 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 990 /// OptionalVisibility OptionalDLLStorageClass 991 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 992 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 993 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 994 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 995 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 996 /// Const OptionalAttrs 997 /// 998 /// Everything up to and including OptionalUnnamedAddr has been parsed 999 /// already. 1000 /// 1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1002 unsigned Linkage, bool HasLinkage, 1003 unsigned Visibility, unsigned DLLStorageClass, 1004 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1005 GlobalVariable::UnnamedAddr UnnamedAddr) { 1006 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1007 return Error(NameLoc, 1008 "symbol with local linkage must have default visibility"); 1009 1010 unsigned AddrSpace; 1011 bool IsConstant, IsExternallyInitialized; 1012 LocTy IsExternallyInitializedLoc; 1013 LocTy TyLoc; 1014 1015 Type *Ty = nullptr; 1016 if (ParseOptionalAddrSpace(AddrSpace) || 1017 ParseOptionalToken(lltok::kw_externally_initialized, 1018 IsExternallyInitialized, 1019 &IsExternallyInitializedLoc) || 1020 ParseGlobalType(IsConstant) || 1021 ParseType(Ty, TyLoc)) 1022 return true; 1023 1024 // If the linkage is specified and is external, then no initializer is 1025 // present. 1026 Constant *Init = nullptr; 1027 if (!HasLinkage || 1028 !GlobalValue::isValidDeclarationLinkage( 1029 (GlobalValue::LinkageTypes)Linkage)) { 1030 if (ParseGlobalValue(Ty, Init)) 1031 return true; 1032 } 1033 1034 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1035 return Error(TyLoc, "invalid type for global variable"); 1036 1037 GlobalValue *GVal = nullptr; 1038 1039 // See if the global was forward referenced, if so, use the global. 1040 if (!Name.empty()) { 1041 GVal = M->getNamedValue(Name); 1042 if (GVal) { 1043 if (!ForwardRefVals.erase(Name)) 1044 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1045 } 1046 } else { 1047 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1048 if (I != ForwardRefValIDs.end()) { 1049 GVal = I->second.first; 1050 ForwardRefValIDs.erase(I); 1051 } 1052 } 1053 1054 GlobalVariable *GV; 1055 if (!GVal) { 1056 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1057 Name, nullptr, GlobalVariable::NotThreadLocal, 1058 AddrSpace); 1059 } else { 1060 if (GVal->getValueType() != Ty) 1061 return Error(TyLoc, 1062 "forward reference and definition of global have different types"); 1063 1064 GV = cast<GlobalVariable>(GVal); 1065 1066 // Move the forward-reference to the correct spot in the module. 1067 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1068 } 1069 1070 if (Name.empty()) 1071 NumberedVals.push_back(GV); 1072 1073 // Set the parsed properties on the global. 1074 if (Init) 1075 GV->setInitializer(Init); 1076 GV->setConstant(IsConstant); 1077 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1078 maybeSetDSOLocal(DSOLocal, *GV); 1079 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1080 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1081 GV->setExternallyInitialized(IsExternallyInitialized); 1082 GV->setThreadLocalMode(TLM); 1083 GV->setUnnamedAddr(UnnamedAddr); 1084 1085 // Parse attributes on the global. 1086 while (Lex.getKind() == lltok::comma) { 1087 Lex.Lex(); 1088 1089 if (Lex.getKind() == lltok::kw_section) { 1090 Lex.Lex(); 1091 GV->setSection(Lex.getStrVal()); 1092 if (ParseToken(lltok::StringConstant, "expected global section string")) 1093 return true; 1094 } else if (Lex.getKind() == lltok::kw_align) { 1095 unsigned Alignment; 1096 if (ParseOptionalAlignment(Alignment)) return true; 1097 GV->setAlignment(Alignment); 1098 } else if (Lex.getKind() == lltok::MetadataVar) { 1099 if (ParseGlobalObjectMetadataAttachment(*GV)) 1100 return true; 1101 } else { 1102 Comdat *C; 1103 if (parseOptionalComdat(Name, C)) 1104 return true; 1105 if (C) 1106 GV->setComdat(C); 1107 else 1108 return TokError("unknown global variable property!"); 1109 } 1110 } 1111 1112 AttrBuilder Attrs; 1113 LocTy BuiltinLoc; 1114 std::vector<unsigned> FwdRefAttrGrps; 1115 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1116 return true; 1117 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1118 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1119 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1120 } 1121 1122 return false; 1123 } 1124 1125 /// ParseUnnamedAttrGrp 1126 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1127 bool LLParser::ParseUnnamedAttrGrp() { 1128 assert(Lex.getKind() == lltok::kw_attributes); 1129 LocTy AttrGrpLoc = Lex.getLoc(); 1130 Lex.Lex(); 1131 1132 if (Lex.getKind() != lltok::AttrGrpID) 1133 return TokError("expected attribute group id"); 1134 1135 unsigned VarID = Lex.getUIntVal(); 1136 std::vector<unsigned> unused; 1137 LocTy BuiltinLoc; 1138 Lex.Lex(); 1139 1140 if (ParseToken(lltok::equal, "expected '=' here") || 1141 ParseToken(lltok::lbrace, "expected '{' here") || 1142 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1143 BuiltinLoc) || 1144 ParseToken(lltok::rbrace, "expected end of attribute group")) 1145 return true; 1146 1147 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1148 return Error(AttrGrpLoc, "attribute group has no attributes"); 1149 1150 return false; 1151 } 1152 1153 /// ParseFnAttributeValuePairs 1154 /// ::= <attr> | <attr> '=' <value> 1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1156 std::vector<unsigned> &FwdRefAttrGrps, 1157 bool inAttrGrp, LocTy &BuiltinLoc) { 1158 bool HaveError = false; 1159 1160 B.clear(); 1161 1162 while (true) { 1163 lltok::Kind Token = Lex.getKind(); 1164 if (Token == lltok::kw_builtin) 1165 BuiltinLoc = Lex.getLoc(); 1166 switch (Token) { 1167 default: 1168 if (!inAttrGrp) return HaveError; 1169 return Error(Lex.getLoc(), "unterminated attribute group"); 1170 case lltok::rbrace: 1171 // Finished. 1172 return false; 1173 1174 case lltok::AttrGrpID: { 1175 // Allow a function to reference an attribute group: 1176 // 1177 // define void @foo() #1 { ... } 1178 if (inAttrGrp) 1179 HaveError |= 1180 Error(Lex.getLoc(), 1181 "cannot have an attribute group reference in an attribute group"); 1182 1183 unsigned AttrGrpNum = Lex.getUIntVal(); 1184 if (inAttrGrp) break; 1185 1186 // Save the reference to the attribute group. We'll fill it in later. 1187 FwdRefAttrGrps.push_back(AttrGrpNum); 1188 break; 1189 } 1190 // Target-dependent attributes: 1191 case lltok::StringConstant: { 1192 if (ParseStringAttribute(B)) 1193 return true; 1194 continue; 1195 } 1196 1197 // Target-independent attributes: 1198 case lltok::kw_align: { 1199 // As a hack, we allow function alignment to be initially parsed as an 1200 // attribute on a function declaration/definition or added to an attribute 1201 // group and later moved to the alignment field. 1202 unsigned Alignment; 1203 if (inAttrGrp) { 1204 Lex.Lex(); 1205 if (ParseToken(lltok::equal, "expected '=' here") || 1206 ParseUInt32(Alignment)) 1207 return true; 1208 } else { 1209 if (ParseOptionalAlignment(Alignment)) 1210 return true; 1211 } 1212 B.addAlignmentAttr(Alignment); 1213 continue; 1214 } 1215 case lltok::kw_alignstack: { 1216 unsigned Alignment; 1217 if (inAttrGrp) { 1218 Lex.Lex(); 1219 if (ParseToken(lltok::equal, "expected '=' here") || 1220 ParseUInt32(Alignment)) 1221 return true; 1222 } else { 1223 if (ParseOptionalStackAlignment(Alignment)) 1224 return true; 1225 } 1226 B.addStackAlignmentAttr(Alignment); 1227 continue; 1228 } 1229 case lltok::kw_allocsize: { 1230 unsigned ElemSizeArg; 1231 Optional<unsigned> NumElemsArg; 1232 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1233 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1234 return true; 1235 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1236 continue; 1237 } 1238 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1239 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1240 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1241 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1242 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1243 case lltok::kw_inaccessiblememonly: 1244 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1245 case lltok::kw_inaccessiblemem_or_argmemonly: 1246 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1247 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1248 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1249 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1250 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1251 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1252 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1253 case lltok::kw_noimplicitfloat: 1254 B.addAttribute(Attribute::NoImplicitFloat); break; 1255 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1256 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1257 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1258 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1259 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1260 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1261 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1262 case lltok::kw_optforfuzzing: 1263 B.addAttribute(Attribute::OptForFuzzing); break; 1264 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1265 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1266 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1267 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1268 case lltok::kw_returns_twice: 1269 B.addAttribute(Attribute::ReturnsTwice); break; 1270 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1271 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1272 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1273 case lltok::kw_sspstrong: 1274 B.addAttribute(Attribute::StackProtectStrong); break; 1275 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1276 case lltok::kw_shadowcallstack: 1277 B.addAttribute(Attribute::ShadowCallStack); break; 1278 case lltok::kw_sanitize_address: 1279 B.addAttribute(Attribute::SanitizeAddress); break; 1280 case lltok::kw_sanitize_hwaddress: 1281 B.addAttribute(Attribute::SanitizeHWAddress); break; 1282 case lltok::kw_sanitize_thread: 1283 B.addAttribute(Attribute::SanitizeThread); break; 1284 case lltok::kw_sanitize_memory: 1285 B.addAttribute(Attribute::SanitizeMemory); break; 1286 case lltok::kw_speculative_load_hardening: 1287 B.addAttribute(Attribute::SpeculativeLoadHardening); 1288 break; 1289 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1290 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1291 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1292 1293 // Error handling. 1294 case lltok::kw_inreg: 1295 case lltok::kw_signext: 1296 case lltok::kw_zeroext: 1297 HaveError |= 1298 Error(Lex.getLoc(), 1299 "invalid use of attribute on a function"); 1300 break; 1301 case lltok::kw_byval: 1302 case lltok::kw_dereferenceable: 1303 case lltok::kw_dereferenceable_or_null: 1304 case lltok::kw_inalloca: 1305 case lltok::kw_nest: 1306 case lltok::kw_noalias: 1307 case lltok::kw_nocapture: 1308 case lltok::kw_nonnull: 1309 case lltok::kw_returned: 1310 case lltok::kw_sret: 1311 case lltok::kw_swifterror: 1312 case lltok::kw_swiftself: 1313 case lltok::kw_immarg: 1314 HaveError |= 1315 Error(Lex.getLoc(), 1316 "invalid use of parameter-only attribute on a function"); 1317 break; 1318 } 1319 1320 Lex.Lex(); 1321 } 1322 } 1323 1324 //===----------------------------------------------------------------------===// 1325 // GlobalValue Reference/Resolution Routines. 1326 //===----------------------------------------------------------------------===// 1327 1328 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1329 const std::string &Name) { 1330 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1331 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1332 PTy->getAddressSpace(), Name, M); 1333 else 1334 return new GlobalVariable(*M, PTy->getElementType(), false, 1335 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1336 nullptr, GlobalVariable::NotThreadLocal, 1337 PTy->getAddressSpace()); 1338 } 1339 1340 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1341 Value *Val, bool IsCall) { 1342 if (Val->getType() == Ty) 1343 return Val; 1344 // For calls we also accept variables in the program address space. 1345 Type *SuggestedTy = Ty; 1346 if (IsCall && isa<PointerType>(Ty)) { 1347 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1348 M->getDataLayout().getProgramAddressSpace()); 1349 SuggestedTy = TyInProgAS; 1350 if (Val->getType() == TyInProgAS) 1351 return Val; 1352 } 1353 if (Ty->isLabelTy()) 1354 Error(Loc, "'" + Name + "' is not a basic block"); 1355 else 1356 Error(Loc, "'" + Name + "' defined with type '" + 1357 getTypeString(Val->getType()) + "' but expected '" + 1358 getTypeString(SuggestedTy) + "'"); 1359 return nullptr; 1360 } 1361 1362 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1363 /// forward reference record if needed. This can return null if the value 1364 /// exists but does not have the right type. 1365 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1366 LocTy Loc, bool IsCall) { 1367 PointerType *PTy = dyn_cast<PointerType>(Ty); 1368 if (!PTy) { 1369 Error(Loc, "global variable reference must have pointer type"); 1370 return nullptr; 1371 } 1372 1373 // Look this name up in the normal function symbol table. 1374 GlobalValue *Val = 1375 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1376 1377 // If this is a forward reference for the value, see if we already created a 1378 // forward ref record. 1379 if (!Val) { 1380 auto I = ForwardRefVals.find(Name); 1381 if (I != ForwardRefVals.end()) 1382 Val = I->second.first; 1383 } 1384 1385 // If we have the value in the symbol table or fwd-ref table, return it. 1386 if (Val) 1387 return cast_or_null<GlobalValue>( 1388 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1389 1390 // Otherwise, create a new forward reference for this value and remember it. 1391 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1392 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1393 return FwdVal; 1394 } 1395 1396 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1397 bool IsCall) { 1398 PointerType *PTy = dyn_cast<PointerType>(Ty); 1399 if (!PTy) { 1400 Error(Loc, "global variable reference must have pointer type"); 1401 return nullptr; 1402 } 1403 1404 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1405 1406 // If this is a forward reference for the value, see if we already created a 1407 // forward ref record. 1408 if (!Val) { 1409 auto I = ForwardRefValIDs.find(ID); 1410 if (I != ForwardRefValIDs.end()) 1411 Val = I->second.first; 1412 } 1413 1414 // If we have the value in the symbol table or fwd-ref table, return it. 1415 if (Val) 1416 return cast_or_null<GlobalValue>( 1417 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1418 1419 // Otherwise, create a new forward reference for this value and remember it. 1420 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1421 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1422 return FwdVal; 1423 } 1424 1425 //===----------------------------------------------------------------------===// 1426 // Comdat Reference/Resolution Routines. 1427 //===----------------------------------------------------------------------===// 1428 1429 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1430 // Look this name up in the comdat symbol table. 1431 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1432 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1433 if (I != ComdatSymTab.end()) 1434 return &I->second; 1435 1436 // Otherwise, create a new forward reference for this value and remember it. 1437 Comdat *C = M->getOrInsertComdat(Name); 1438 ForwardRefComdats[Name] = Loc; 1439 return C; 1440 } 1441 1442 //===----------------------------------------------------------------------===// 1443 // Helper Routines. 1444 //===----------------------------------------------------------------------===// 1445 1446 /// ParseToken - If the current token has the specified kind, eat it and return 1447 /// success. Otherwise, emit the specified error and return failure. 1448 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1449 if (Lex.getKind() != T) 1450 return TokError(ErrMsg); 1451 Lex.Lex(); 1452 return false; 1453 } 1454 1455 /// ParseStringConstant 1456 /// ::= StringConstant 1457 bool LLParser::ParseStringConstant(std::string &Result) { 1458 if (Lex.getKind() != lltok::StringConstant) 1459 return TokError("expected string constant"); 1460 Result = Lex.getStrVal(); 1461 Lex.Lex(); 1462 return false; 1463 } 1464 1465 /// ParseUInt32 1466 /// ::= uint32 1467 bool LLParser::ParseUInt32(uint32_t &Val) { 1468 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1469 return TokError("expected integer"); 1470 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1471 if (Val64 != unsigned(Val64)) 1472 return TokError("expected 32-bit integer (too large)"); 1473 Val = Val64; 1474 Lex.Lex(); 1475 return false; 1476 } 1477 1478 /// ParseUInt64 1479 /// ::= uint64 1480 bool LLParser::ParseUInt64(uint64_t &Val) { 1481 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1482 return TokError("expected integer"); 1483 Val = Lex.getAPSIntVal().getLimitedValue(); 1484 Lex.Lex(); 1485 return false; 1486 } 1487 1488 /// ParseTLSModel 1489 /// := 'localdynamic' 1490 /// := 'initialexec' 1491 /// := 'localexec' 1492 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1493 switch (Lex.getKind()) { 1494 default: 1495 return TokError("expected localdynamic, initialexec or localexec"); 1496 case lltok::kw_localdynamic: 1497 TLM = GlobalVariable::LocalDynamicTLSModel; 1498 break; 1499 case lltok::kw_initialexec: 1500 TLM = GlobalVariable::InitialExecTLSModel; 1501 break; 1502 case lltok::kw_localexec: 1503 TLM = GlobalVariable::LocalExecTLSModel; 1504 break; 1505 } 1506 1507 Lex.Lex(); 1508 return false; 1509 } 1510 1511 /// ParseOptionalThreadLocal 1512 /// := /*empty*/ 1513 /// := 'thread_local' 1514 /// := 'thread_local' '(' tlsmodel ')' 1515 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1516 TLM = GlobalVariable::NotThreadLocal; 1517 if (!EatIfPresent(lltok::kw_thread_local)) 1518 return false; 1519 1520 TLM = GlobalVariable::GeneralDynamicTLSModel; 1521 if (Lex.getKind() == lltok::lparen) { 1522 Lex.Lex(); 1523 return ParseTLSModel(TLM) || 1524 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1525 } 1526 return false; 1527 } 1528 1529 /// ParseOptionalAddrSpace 1530 /// := /*empty*/ 1531 /// := 'addrspace' '(' uint32 ')' 1532 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1533 AddrSpace = DefaultAS; 1534 if (!EatIfPresent(lltok::kw_addrspace)) 1535 return false; 1536 return ParseToken(lltok::lparen, "expected '(' in address space") || 1537 ParseUInt32(AddrSpace) || 1538 ParseToken(lltok::rparen, "expected ')' in address space"); 1539 } 1540 1541 /// ParseStringAttribute 1542 /// := StringConstant 1543 /// := StringConstant '=' StringConstant 1544 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1545 std::string Attr = Lex.getStrVal(); 1546 Lex.Lex(); 1547 std::string Val; 1548 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1549 return true; 1550 B.addAttribute(Attr, Val); 1551 return false; 1552 } 1553 1554 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1555 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1556 bool HaveError = false; 1557 1558 B.clear(); 1559 1560 while (true) { 1561 lltok::Kind Token = Lex.getKind(); 1562 switch (Token) { 1563 default: // End of attributes. 1564 return HaveError; 1565 case lltok::StringConstant: { 1566 if (ParseStringAttribute(B)) 1567 return true; 1568 continue; 1569 } 1570 case lltok::kw_align: { 1571 unsigned Alignment; 1572 if (ParseOptionalAlignment(Alignment)) 1573 return true; 1574 B.addAlignmentAttr(Alignment); 1575 continue; 1576 } 1577 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1578 case lltok::kw_dereferenceable: { 1579 uint64_t Bytes; 1580 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1581 return true; 1582 B.addDereferenceableAttr(Bytes); 1583 continue; 1584 } 1585 case lltok::kw_dereferenceable_or_null: { 1586 uint64_t Bytes; 1587 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1588 return true; 1589 B.addDereferenceableOrNullAttr(Bytes); 1590 continue; 1591 } 1592 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1593 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1594 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1595 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1596 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1597 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1598 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1599 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1600 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1601 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1602 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1603 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1604 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1605 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1606 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1607 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1608 1609 case lltok::kw_alignstack: 1610 case lltok::kw_alwaysinline: 1611 case lltok::kw_argmemonly: 1612 case lltok::kw_builtin: 1613 case lltok::kw_inlinehint: 1614 case lltok::kw_jumptable: 1615 case lltok::kw_minsize: 1616 case lltok::kw_naked: 1617 case lltok::kw_nobuiltin: 1618 case lltok::kw_noduplicate: 1619 case lltok::kw_noimplicitfloat: 1620 case lltok::kw_noinline: 1621 case lltok::kw_nonlazybind: 1622 case lltok::kw_noredzone: 1623 case lltok::kw_noreturn: 1624 case lltok::kw_nocf_check: 1625 case lltok::kw_nounwind: 1626 case lltok::kw_optforfuzzing: 1627 case lltok::kw_optnone: 1628 case lltok::kw_optsize: 1629 case lltok::kw_returns_twice: 1630 case lltok::kw_sanitize_address: 1631 case lltok::kw_sanitize_hwaddress: 1632 case lltok::kw_sanitize_memory: 1633 case lltok::kw_sanitize_thread: 1634 case lltok::kw_speculative_load_hardening: 1635 case lltok::kw_ssp: 1636 case lltok::kw_sspreq: 1637 case lltok::kw_sspstrong: 1638 case lltok::kw_safestack: 1639 case lltok::kw_shadowcallstack: 1640 case lltok::kw_strictfp: 1641 case lltok::kw_uwtable: 1642 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1643 break; 1644 } 1645 1646 Lex.Lex(); 1647 } 1648 } 1649 1650 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1651 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1652 bool HaveError = false; 1653 1654 B.clear(); 1655 1656 while (true) { 1657 lltok::Kind Token = Lex.getKind(); 1658 switch (Token) { 1659 default: // End of attributes. 1660 return HaveError; 1661 case lltok::StringConstant: { 1662 if (ParseStringAttribute(B)) 1663 return true; 1664 continue; 1665 } 1666 case lltok::kw_dereferenceable: { 1667 uint64_t Bytes; 1668 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1669 return true; 1670 B.addDereferenceableAttr(Bytes); 1671 continue; 1672 } 1673 case lltok::kw_dereferenceable_or_null: { 1674 uint64_t Bytes; 1675 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1676 return true; 1677 B.addDereferenceableOrNullAttr(Bytes); 1678 continue; 1679 } 1680 case lltok::kw_align: { 1681 unsigned Alignment; 1682 if (ParseOptionalAlignment(Alignment)) 1683 return true; 1684 B.addAlignmentAttr(Alignment); 1685 continue; 1686 } 1687 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1688 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1689 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1690 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1691 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1692 1693 // Error handling. 1694 case lltok::kw_byval: 1695 case lltok::kw_inalloca: 1696 case lltok::kw_nest: 1697 case lltok::kw_nocapture: 1698 case lltok::kw_returned: 1699 case lltok::kw_sret: 1700 case lltok::kw_swifterror: 1701 case lltok::kw_swiftself: 1702 case lltok::kw_immarg: 1703 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1704 break; 1705 1706 case lltok::kw_alignstack: 1707 case lltok::kw_alwaysinline: 1708 case lltok::kw_argmemonly: 1709 case lltok::kw_builtin: 1710 case lltok::kw_cold: 1711 case lltok::kw_inlinehint: 1712 case lltok::kw_jumptable: 1713 case lltok::kw_minsize: 1714 case lltok::kw_naked: 1715 case lltok::kw_nobuiltin: 1716 case lltok::kw_noduplicate: 1717 case lltok::kw_noimplicitfloat: 1718 case lltok::kw_noinline: 1719 case lltok::kw_nonlazybind: 1720 case lltok::kw_noredzone: 1721 case lltok::kw_noreturn: 1722 case lltok::kw_nocf_check: 1723 case lltok::kw_nounwind: 1724 case lltok::kw_optforfuzzing: 1725 case lltok::kw_optnone: 1726 case lltok::kw_optsize: 1727 case lltok::kw_returns_twice: 1728 case lltok::kw_sanitize_address: 1729 case lltok::kw_sanitize_hwaddress: 1730 case lltok::kw_sanitize_memory: 1731 case lltok::kw_sanitize_thread: 1732 case lltok::kw_speculative_load_hardening: 1733 case lltok::kw_ssp: 1734 case lltok::kw_sspreq: 1735 case lltok::kw_sspstrong: 1736 case lltok::kw_safestack: 1737 case lltok::kw_shadowcallstack: 1738 case lltok::kw_strictfp: 1739 case lltok::kw_uwtable: 1740 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1741 break; 1742 1743 case lltok::kw_readnone: 1744 case lltok::kw_readonly: 1745 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1746 } 1747 1748 Lex.Lex(); 1749 } 1750 } 1751 1752 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1753 HasLinkage = true; 1754 switch (Kind) { 1755 default: 1756 HasLinkage = false; 1757 return GlobalValue::ExternalLinkage; 1758 case lltok::kw_private: 1759 return GlobalValue::PrivateLinkage; 1760 case lltok::kw_internal: 1761 return GlobalValue::InternalLinkage; 1762 case lltok::kw_weak: 1763 return GlobalValue::WeakAnyLinkage; 1764 case lltok::kw_weak_odr: 1765 return GlobalValue::WeakODRLinkage; 1766 case lltok::kw_linkonce: 1767 return GlobalValue::LinkOnceAnyLinkage; 1768 case lltok::kw_linkonce_odr: 1769 return GlobalValue::LinkOnceODRLinkage; 1770 case lltok::kw_available_externally: 1771 return GlobalValue::AvailableExternallyLinkage; 1772 case lltok::kw_appending: 1773 return GlobalValue::AppendingLinkage; 1774 case lltok::kw_common: 1775 return GlobalValue::CommonLinkage; 1776 case lltok::kw_extern_weak: 1777 return GlobalValue::ExternalWeakLinkage; 1778 case lltok::kw_external: 1779 return GlobalValue::ExternalLinkage; 1780 } 1781 } 1782 1783 /// ParseOptionalLinkage 1784 /// ::= /*empty*/ 1785 /// ::= 'private' 1786 /// ::= 'internal' 1787 /// ::= 'weak' 1788 /// ::= 'weak_odr' 1789 /// ::= 'linkonce' 1790 /// ::= 'linkonce_odr' 1791 /// ::= 'available_externally' 1792 /// ::= 'appending' 1793 /// ::= 'common' 1794 /// ::= 'extern_weak' 1795 /// ::= 'external' 1796 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1797 unsigned &Visibility, 1798 unsigned &DLLStorageClass, 1799 bool &DSOLocal) { 1800 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1801 if (HasLinkage) 1802 Lex.Lex(); 1803 ParseOptionalDSOLocal(DSOLocal); 1804 ParseOptionalVisibility(Visibility); 1805 ParseOptionalDLLStorageClass(DLLStorageClass); 1806 1807 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1808 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1809 } 1810 1811 return false; 1812 } 1813 1814 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1815 switch (Lex.getKind()) { 1816 default: 1817 DSOLocal = false; 1818 break; 1819 case lltok::kw_dso_local: 1820 DSOLocal = true; 1821 Lex.Lex(); 1822 break; 1823 case lltok::kw_dso_preemptable: 1824 DSOLocal = false; 1825 Lex.Lex(); 1826 break; 1827 } 1828 } 1829 1830 /// ParseOptionalVisibility 1831 /// ::= /*empty*/ 1832 /// ::= 'default' 1833 /// ::= 'hidden' 1834 /// ::= 'protected' 1835 /// 1836 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1837 switch (Lex.getKind()) { 1838 default: 1839 Res = GlobalValue::DefaultVisibility; 1840 return; 1841 case lltok::kw_default: 1842 Res = GlobalValue::DefaultVisibility; 1843 break; 1844 case lltok::kw_hidden: 1845 Res = GlobalValue::HiddenVisibility; 1846 break; 1847 case lltok::kw_protected: 1848 Res = GlobalValue::ProtectedVisibility; 1849 break; 1850 } 1851 Lex.Lex(); 1852 } 1853 1854 /// ParseOptionalDLLStorageClass 1855 /// ::= /*empty*/ 1856 /// ::= 'dllimport' 1857 /// ::= 'dllexport' 1858 /// 1859 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1860 switch (Lex.getKind()) { 1861 default: 1862 Res = GlobalValue::DefaultStorageClass; 1863 return; 1864 case lltok::kw_dllimport: 1865 Res = GlobalValue::DLLImportStorageClass; 1866 break; 1867 case lltok::kw_dllexport: 1868 Res = GlobalValue::DLLExportStorageClass; 1869 break; 1870 } 1871 Lex.Lex(); 1872 } 1873 1874 /// ParseOptionalCallingConv 1875 /// ::= /*empty*/ 1876 /// ::= 'ccc' 1877 /// ::= 'fastcc' 1878 /// ::= 'intel_ocl_bicc' 1879 /// ::= 'coldcc' 1880 /// ::= 'x86_stdcallcc' 1881 /// ::= 'x86_fastcallcc' 1882 /// ::= 'x86_thiscallcc' 1883 /// ::= 'x86_vectorcallcc' 1884 /// ::= 'arm_apcscc' 1885 /// ::= 'arm_aapcscc' 1886 /// ::= 'arm_aapcs_vfpcc' 1887 /// ::= 'aarch64_vector_pcs' 1888 /// ::= 'msp430_intrcc' 1889 /// ::= 'avr_intrcc' 1890 /// ::= 'avr_signalcc' 1891 /// ::= 'ptx_kernel' 1892 /// ::= 'ptx_device' 1893 /// ::= 'spir_func' 1894 /// ::= 'spir_kernel' 1895 /// ::= 'x86_64_sysvcc' 1896 /// ::= 'win64cc' 1897 /// ::= 'webkit_jscc' 1898 /// ::= 'anyregcc' 1899 /// ::= 'preserve_mostcc' 1900 /// ::= 'preserve_allcc' 1901 /// ::= 'ghccc' 1902 /// ::= 'swiftcc' 1903 /// ::= 'x86_intrcc' 1904 /// ::= 'hhvmcc' 1905 /// ::= 'hhvm_ccc' 1906 /// ::= 'cxx_fast_tlscc' 1907 /// ::= 'amdgpu_vs' 1908 /// ::= 'amdgpu_ls' 1909 /// ::= 'amdgpu_hs' 1910 /// ::= 'amdgpu_es' 1911 /// ::= 'amdgpu_gs' 1912 /// ::= 'amdgpu_ps' 1913 /// ::= 'amdgpu_cs' 1914 /// ::= 'amdgpu_kernel' 1915 /// ::= 'cc' UINT 1916 /// 1917 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1918 switch (Lex.getKind()) { 1919 default: CC = CallingConv::C; return false; 1920 case lltok::kw_ccc: CC = CallingConv::C; break; 1921 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1922 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1923 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1924 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1925 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1926 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1927 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1928 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1929 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1930 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1931 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1932 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1933 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1934 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1935 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1936 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1937 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1938 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1939 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1940 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1941 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1942 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1943 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1944 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1945 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1946 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1947 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1948 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1949 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1950 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1951 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1952 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1953 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1954 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1955 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1956 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1957 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1958 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1959 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1960 case lltok::kw_cc: { 1961 Lex.Lex(); 1962 return ParseUInt32(CC); 1963 } 1964 } 1965 1966 Lex.Lex(); 1967 return false; 1968 } 1969 1970 /// ParseMetadataAttachment 1971 /// ::= !dbg !42 1972 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1973 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1974 1975 std::string Name = Lex.getStrVal(); 1976 Kind = M->getMDKindID(Name); 1977 Lex.Lex(); 1978 1979 return ParseMDNode(MD); 1980 } 1981 1982 /// ParseInstructionMetadata 1983 /// ::= !dbg !42 (',' !dbg !57)* 1984 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1985 do { 1986 if (Lex.getKind() != lltok::MetadataVar) 1987 return TokError("expected metadata after comma"); 1988 1989 unsigned MDK; 1990 MDNode *N; 1991 if (ParseMetadataAttachment(MDK, N)) 1992 return true; 1993 1994 Inst.setMetadata(MDK, N); 1995 if (MDK == LLVMContext::MD_tbaa) 1996 InstsWithTBAATag.push_back(&Inst); 1997 1998 // If this is the end of the list, we're done. 1999 } while (EatIfPresent(lltok::comma)); 2000 return false; 2001 } 2002 2003 /// ParseGlobalObjectMetadataAttachment 2004 /// ::= !dbg !57 2005 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2006 unsigned MDK; 2007 MDNode *N; 2008 if (ParseMetadataAttachment(MDK, N)) 2009 return true; 2010 2011 GO.addMetadata(MDK, *N); 2012 return false; 2013 } 2014 2015 /// ParseOptionalFunctionMetadata 2016 /// ::= (!dbg !57)* 2017 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2018 while (Lex.getKind() == lltok::MetadataVar) 2019 if (ParseGlobalObjectMetadataAttachment(F)) 2020 return true; 2021 return false; 2022 } 2023 2024 /// ParseOptionalAlignment 2025 /// ::= /* empty */ 2026 /// ::= 'align' 4 2027 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2028 Alignment = 0; 2029 if (!EatIfPresent(lltok::kw_align)) 2030 return false; 2031 LocTy AlignLoc = Lex.getLoc(); 2032 if (ParseUInt32(Alignment)) return true; 2033 if (!isPowerOf2_32(Alignment)) 2034 return Error(AlignLoc, "alignment is not a power of two"); 2035 if (Alignment > Value::MaximumAlignment) 2036 return Error(AlignLoc, "huge alignments are not supported yet"); 2037 return false; 2038 } 2039 2040 /// ParseOptionalDerefAttrBytes 2041 /// ::= /* empty */ 2042 /// ::= AttrKind '(' 4 ')' 2043 /// 2044 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2045 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2046 uint64_t &Bytes) { 2047 assert((AttrKind == lltok::kw_dereferenceable || 2048 AttrKind == lltok::kw_dereferenceable_or_null) && 2049 "contract!"); 2050 2051 Bytes = 0; 2052 if (!EatIfPresent(AttrKind)) 2053 return false; 2054 LocTy ParenLoc = Lex.getLoc(); 2055 if (!EatIfPresent(lltok::lparen)) 2056 return Error(ParenLoc, "expected '('"); 2057 LocTy DerefLoc = Lex.getLoc(); 2058 if (ParseUInt64(Bytes)) return true; 2059 ParenLoc = Lex.getLoc(); 2060 if (!EatIfPresent(lltok::rparen)) 2061 return Error(ParenLoc, "expected ')'"); 2062 if (!Bytes) 2063 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2064 return false; 2065 } 2066 2067 /// ParseOptionalCommaAlign 2068 /// ::= 2069 /// ::= ',' align 4 2070 /// 2071 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2072 /// end. 2073 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2074 bool &AteExtraComma) { 2075 AteExtraComma = false; 2076 while (EatIfPresent(lltok::comma)) { 2077 // Metadata at the end is an early exit. 2078 if (Lex.getKind() == lltok::MetadataVar) { 2079 AteExtraComma = true; 2080 return false; 2081 } 2082 2083 if (Lex.getKind() != lltok::kw_align) 2084 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2085 2086 if (ParseOptionalAlignment(Alignment)) return true; 2087 } 2088 2089 return false; 2090 } 2091 2092 /// ParseOptionalCommaAddrSpace 2093 /// ::= 2094 /// ::= ',' addrspace(1) 2095 /// 2096 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2097 /// end. 2098 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2099 LocTy &Loc, 2100 bool &AteExtraComma) { 2101 AteExtraComma = false; 2102 while (EatIfPresent(lltok::comma)) { 2103 // Metadata at the end is an early exit. 2104 if (Lex.getKind() == lltok::MetadataVar) { 2105 AteExtraComma = true; 2106 return false; 2107 } 2108 2109 Loc = Lex.getLoc(); 2110 if (Lex.getKind() != lltok::kw_addrspace) 2111 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2112 2113 if (ParseOptionalAddrSpace(AddrSpace)) 2114 return true; 2115 } 2116 2117 return false; 2118 } 2119 2120 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2121 Optional<unsigned> &HowManyArg) { 2122 Lex.Lex(); 2123 2124 auto StartParen = Lex.getLoc(); 2125 if (!EatIfPresent(lltok::lparen)) 2126 return Error(StartParen, "expected '('"); 2127 2128 if (ParseUInt32(BaseSizeArg)) 2129 return true; 2130 2131 if (EatIfPresent(lltok::comma)) { 2132 auto HowManyAt = Lex.getLoc(); 2133 unsigned HowMany; 2134 if (ParseUInt32(HowMany)) 2135 return true; 2136 if (HowMany == BaseSizeArg) 2137 return Error(HowManyAt, 2138 "'allocsize' indices can't refer to the same parameter"); 2139 HowManyArg = HowMany; 2140 } else 2141 HowManyArg = None; 2142 2143 auto EndParen = Lex.getLoc(); 2144 if (!EatIfPresent(lltok::rparen)) 2145 return Error(EndParen, "expected ')'"); 2146 return false; 2147 } 2148 2149 /// ParseScopeAndOrdering 2150 /// if isAtomic: ::= SyncScope? AtomicOrdering 2151 /// else: ::= 2152 /// 2153 /// This sets Scope and Ordering to the parsed values. 2154 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2155 AtomicOrdering &Ordering) { 2156 if (!isAtomic) 2157 return false; 2158 2159 return ParseScope(SSID) || ParseOrdering(Ordering); 2160 } 2161 2162 /// ParseScope 2163 /// ::= syncscope("singlethread" | "<target scope>")? 2164 /// 2165 /// This sets synchronization scope ID to the ID of the parsed value. 2166 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2167 SSID = SyncScope::System; 2168 if (EatIfPresent(lltok::kw_syncscope)) { 2169 auto StartParenAt = Lex.getLoc(); 2170 if (!EatIfPresent(lltok::lparen)) 2171 return Error(StartParenAt, "Expected '(' in syncscope"); 2172 2173 std::string SSN; 2174 auto SSNAt = Lex.getLoc(); 2175 if (ParseStringConstant(SSN)) 2176 return Error(SSNAt, "Expected synchronization scope name"); 2177 2178 auto EndParenAt = Lex.getLoc(); 2179 if (!EatIfPresent(lltok::rparen)) 2180 return Error(EndParenAt, "Expected ')' in syncscope"); 2181 2182 SSID = Context.getOrInsertSyncScopeID(SSN); 2183 } 2184 2185 return false; 2186 } 2187 2188 /// ParseOrdering 2189 /// ::= AtomicOrdering 2190 /// 2191 /// This sets Ordering to the parsed value. 2192 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2193 switch (Lex.getKind()) { 2194 default: return TokError("Expected ordering on atomic instruction"); 2195 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2196 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2197 // Not specified yet: 2198 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2199 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2200 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2201 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2202 case lltok::kw_seq_cst: 2203 Ordering = AtomicOrdering::SequentiallyConsistent; 2204 break; 2205 } 2206 Lex.Lex(); 2207 return false; 2208 } 2209 2210 /// ParseOptionalStackAlignment 2211 /// ::= /* empty */ 2212 /// ::= 'alignstack' '(' 4 ')' 2213 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2214 Alignment = 0; 2215 if (!EatIfPresent(lltok::kw_alignstack)) 2216 return false; 2217 LocTy ParenLoc = Lex.getLoc(); 2218 if (!EatIfPresent(lltok::lparen)) 2219 return Error(ParenLoc, "expected '('"); 2220 LocTy AlignLoc = Lex.getLoc(); 2221 if (ParseUInt32(Alignment)) return true; 2222 ParenLoc = Lex.getLoc(); 2223 if (!EatIfPresent(lltok::rparen)) 2224 return Error(ParenLoc, "expected ')'"); 2225 if (!isPowerOf2_32(Alignment)) 2226 return Error(AlignLoc, "stack alignment is not a power of two"); 2227 return false; 2228 } 2229 2230 /// ParseIndexList - This parses the index list for an insert/extractvalue 2231 /// instruction. This sets AteExtraComma in the case where we eat an extra 2232 /// comma at the end of the line and find that it is followed by metadata. 2233 /// Clients that don't allow metadata can call the version of this function that 2234 /// only takes one argument. 2235 /// 2236 /// ParseIndexList 2237 /// ::= (',' uint32)+ 2238 /// 2239 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2240 bool &AteExtraComma) { 2241 AteExtraComma = false; 2242 2243 if (Lex.getKind() != lltok::comma) 2244 return TokError("expected ',' as start of index list"); 2245 2246 while (EatIfPresent(lltok::comma)) { 2247 if (Lex.getKind() == lltok::MetadataVar) { 2248 if (Indices.empty()) return TokError("expected index"); 2249 AteExtraComma = true; 2250 return false; 2251 } 2252 unsigned Idx = 0; 2253 if (ParseUInt32(Idx)) return true; 2254 Indices.push_back(Idx); 2255 } 2256 2257 return false; 2258 } 2259 2260 //===----------------------------------------------------------------------===// 2261 // Type Parsing. 2262 //===----------------------------------------------------------------------===// 2263 2264 /// ParseType - Parse a type. 2265 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2266 SMLoc TypeLoc = Lex.getLoc(); 2267 switch (Lex.getKind()) { 2268 default: 2269 return TokError(Msg); 2270 case lltok::Type: 2271 // Type ::= 'float' | 'void' (etc) 2272 Result = Lex.getTyVal(); 2273 Lex.Lex(); 2274 break; 2275 case lltok::lbrace: 2276 // Type ::= StructType 2277 if (ParseAnonStructType(Result, false)) 2278 return true; 2279 break; 2280 case lltok::lsquare: 2281 // Type ::= '[' ... ']' 2282 Lex.Lex(); // eat the lsquare. 2283 if (ParseArrayVectorType(Result, false)) 2284 return true; 2285 break; 2286 case lltok::less: // Either vector or packed struct. 2287 // Type ::= '<' ... '>' 2288 Lex.Lex(); 2289 if (Lex.getKind() == lltok::lbrace) { 2290 if (ParseAnonStructType(Result, true) || 2291 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2292 return true; 2293 } else if (ParseArrayVectorType(Result, true)) 2294 return true; 2295 break; 2296 case lltok::LocalVar: { 2297 // Type ::= %foo 2298 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2299 2300 // If the type hasn't been defined yet, create a forward definition and 2301 // remember where that forward def'n was seen (in case it never is defined). 2302 if (!Entry.first) { 2303 Entry.first = StructType::create(Context, Lex.getStrVal()); 2304 Entry.second = Lex.getLoc(); 2305 } 2306 Result = Entry.first; 2307 Lex.Lex(); 2308 break; 2309 } 2310 2311 case lltok::LocalVarID: { 2312 // Type ::= %4 2313 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2314 2315 // If the type hasn't been defined yet, create a forward definition and 2316 // remember where that forward def'n was seen (in case it never is defined). 2317 if (!Entry.first) { 2318 Entry.first = StructType::create(Context); 2319 Entry.second = Lex.getLoc(); 2320 } 2321 Result = Entry.first; 2322 Lex.Lex(); 2323 break; 2324 } 2325 } 2326 2327 // Parse the type suffixes. 2328 while (true) { 2329 switch (Lex.getKind()) { 2330 // End of type. 2331 default: 2332 if (!AllowVoid && Result->isVoidTy()) 2333 return Error(TypeLoc, "void type only allowed for function results"); 2334 return false; 2335 2336 // Type ::= Type '*' 2337 case lltok::star: 2338 if (Result->isLabelTy()) 2339 return TokError("basic block pointers are invalid"); 2340 if (Result->isVoidTy()) 2341 return TokError("pointers to void are invalid - use i8* instead"); 2342 if (!PointerType::isValidElementType(Result)) 2343 return TokError("pointer to this type is invalid"); 2344 Result = PointerType::getUnqual(Result); 2345 Lex.Lex(); 2346 break; 2347 2348 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2349 case lltok::kw_addrspace: { 2350 if (Result->isLabelTy()) 2351 return TokError("basic block pointers are invalid"); 2352 if (Result->isVoidTy()) 2353 return TokError("pointers to void are invalid; use i8* instead"); 2354 if (!PointerType::isValidElementType(Result)) 2355 return TokError("pointer to this type is invalid"); 2356 unsigned AddrSpace; 2357 if (ParseOptionalAddrSpace(AddrSpace) || 2358 ParseToken(lltok::star, "expected '*' in address space")) 2359 return true; 2360 2361 Result = PointerType::get(Result, AddrSpace); 2362 break; 2363 } 2364 2365 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2366 case lltok::lparen: 2367 if (ParseFunctionType(Result)) 2368 return true; 2369 break; 2370 } 2371 } 2372 } 2373 2374 /// ParseParameterList 2375 /// ::= '(' ')' 2376 /// ::= '(' Arg (',' Arg)* ')' 2377 /// Arg 2378 /// ::= Type OptionalAttributes Value OptionalAttributes 2379 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2380 PerFunctionState &PFS, bool IsMustTailCall, 2381 bool InVarArgsFunc) { 2382 if (ParseToken(lltok::lparen, "expected '(' in call")) 2383 return true; 2384 2385 while (Lex.getKind() != lltok::rparen) { 2386 // If this isn't the first argument, we need a comma. 2387 if (!ArgList.empty() && 2388 ParseToken(lltok::comma, "expected ',' in argument list")) 2389 return true; 2390 2391 // Parse an ellipsis if this is a musttail call in a variadic function. 2392 if (Lex.getKind() == lltok::dotdotdot) { 2393 const char *Msg = "unexpected ellipsis in argument list for "; 2394 if (!IsMustTailCall) 2395 return TokError(Twine(Msg) + "non-musttail call"); 2396 if (!InVarArgsFunc) 2397 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2398 Lex.Lex(); // Lex the '...', it is purely for readability. 2399 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2400 } 2401 2402 // Parse the argument. 2403 LocTy ArgLoc; 2404 Type *ArgTy = nullptr; 2405 AttrBuilder ArgAttrs; 2406 Value *V; 2407 if (ParseType(ArgTy, ArgLoc)) 2408 return true; 2409 2410 if (ArgTy->isMetadataTy()) { 2411 if (ParseMetadataAsValue(V, PFS)) 2412 return true; 2413 } else { 2414 // Otherwise, handle normal operands. 2415 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2416 return true; 2417 } 2418 ArgList.push_back(ParamInfo( 2419 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2420 } 2421 2422 if (IsMustTailCall && InVarArgsFunc) 2423 return TokError("expected '...' at end of argument list for musttail call " 2424 "in varargs function"); 2425 2426 Lex.Lex(); // Lex the ')'. 2427 return false; 2428 } 2429 2430 /// ParseOptionalOperandBundles 2431 /// ::= /*empty*/ 2432 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2433 /// 2434 /// OperandBundle 2435 /// ::= bundle-tag '(' ')' 2436 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2437 /// 2438 /// bundle-tag ::= String Constant 2439 bool LLParser::ParseOptionalOperandBundles( 2440 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2441 LocTy BeginLoc = Lex.getLoc(); 2442 if (!EatIfPresent(lltok::lsquare)) 2443 return false; 2444 2445 while (Lex.getKind() != lltok::rsquare) { 2446 // If this isn't the first operand bundle, we need a comma. 2447 if (!BundleList.empty() && 2448 ParseToken(lltok::comma, "expected ',' in input list")) 2449 return true; 2450 2451 std::string Tag; 2452 if (ParseStringConstant(Tag)) 2453 return true; 2454 2455 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2456 return true; 2457 2458 std::vector<Value *> Inputs; 2459 while (Lex.getKind() != lltok::rparen) { 2460 // If this isn't the first input, we need a comma. 2461 if (!Inputs.empty() && 2462 ParseToken(lltok::comma, "expected ',' in input list")) 2463 return true; 2464 2465 Type *Ty = nullptr; 2466 Value *Input = nullptr; 2467 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2468 return true; 2469 Inputs.push_back(Input); 2470 } 2471 2472 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2473 2474 Lex.Lex(); // Lex the ')'. 2475 } 2476 2477 if (BundleList.empty()) 2478 return Error(BeginLoc, "operand bundle set must not be empty"); 2479 2480 Lex.Lex(); // Lex the ']'. 2481 return false; 2482 } 2483 2484 /// ParseArgumentList - Parse the argument list for a function type or function 2485 /// prototype. 2486 /// ::= '(' ArgTypeListI ')' 2487 /// ArgTypeListI 2488 /// ::= /*empty*/ 2489 /// ::= '...' 2490 /// ::= ArgTypeList ',' '...' 2491 /// ::= ArgType (',' ArgType)* 2492 /// 2493 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2494 bool &isVarArg){ 2495 isVarArg = false; 2496 assert(Lex.getKind() == lltok::lparen); 2497 Lex.Lex(); // eat the (. 2498 2499 if (Lex.getKind() == lltok::rparen) { 2500 // empty 2501 } else if (Lex.getKind() == lltok::dotdotdot) { 2502 isVarArg = true; 2503 Lex.Lex(); 2504 } else { 2505 LocTy TypeLoc = Lex.getLoc(); 2506 Type *ArgTy = nullptr; 2507 AttrBuilder Attrs; 2508 std::string Name; 2509 2510 if (ParseType(ArgTy) || 2511 ParseOptionalParamAttrs(Attrs)) return true; 2512 2513 if (ArgTy->isVoidTy()) 2514 return Error(TypeLoc, "argument can not have void type"); 2515 2516 if (Lex.getKind() == lltok::LocalVar) { 2517 Name = Lex.getStrVal(); 2518 Lex.Lex(); 2519 } 2520 2521 if (!FunctionType::isValidArgumentType(ArgTy)) 2522 return Error(TypeLoc, "invalid type for function argument"); 2523 2524 ArgList.emplace_back(TypeLoc, ArgTy, 2525 AttributeSet::get(ArgTy->getContext(), Attrs), 2526 std::move(Name)); 2527 2528 while (EatIfPresent(lltok::comma)) { 2529 // Handle ... at end of arg list. 2530 if (EatIfPresent(lltok::dotdotdot)) { 2531 isVarArg = true; 2532 break; 2533 } 2534 2535 // Otherwise must be an argument type. 2536 TypeLoc = Lex.getLoc(); 2537 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2538 2539 if (ArgTy->isVoidTy()) 2540 return Error(TypeLoc, "argument can not have void type"); 2541 2542 if (Lex.getKind() == lltok::LocalVar) { 2543 Name = Lex.getStrVal(); 2544 Lex.Lex(); 2545 } else { 2546 Name = ""; 2547 } 2548 2549 if (!ArgTy->isFirstClassType()) 2550 return Error(TypeLoc, "invalid type for function argument"); 2551 2552 ArgList.emplace_back(TypeLoc, ArgTy, 2553 AttributeSet::get(ArgTy->getContext(), Attrs), 2554 std::move(Name)); 2555 } 2556 } 2557 2558 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2559 } 2560 2561 /// ParseFunctionType 2562 /// ::= Type ArgumentList OptionalAttrs 2563 bool LLParser::ParseFunctionType(Type *&Result) { 2564 assert(Lex.getKind() == lltok::lparen); 2565 2566 if (!FunctionType::isValidReturnType(Result)) 2567 return TokError("invalid function return type"); 2568 2569 SmallVector<ArgInfo, 8> ArgList; 2570 bool isVarArg; 2571 if (ParseArgumentList(ArgList, isVarArg)) 2572 return true; 2573 2574 // Reject names on the arguments lists. 2575 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2576 if (!ArgList[i].Name.empty()) 2577 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2578 if (ArgList[i].Attrs.hasAttributes()) 2579 return Error(ArgList[i].Loc, 2580 "argument attributes invalid in function type"); 2581 } 2582 2583 SmallVector<Type*, 16> ArgListTy; 2584 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2585 ArgListTy.push_back(ArgList[i].Ty); 2586 2587 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2588 return false; 2589 } 2590 2591 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2592 /// other structs. 2593 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2594 SmallVector<Type*, 8> Elts; 2595 if (ParseStructBody(Elts)) return true; 2596 2597 Result = StructType::get(Context, Elts, Packed); 2598 return false; 2599 } 2600 2601 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2602 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2603 std::pair<Type*, LocTy> &Entry, 2604 Type *&ResultTy) { 2605 // If the type was already defined, diagnose the redefinition. 2606 if (Entry.first && !Entry.second.isValid()) 2607 return Error(TypeLoc, "redefinition of type"); 2608 2609 // If we have opaque, just return without filling in the definition for the 2610 // struct. This counts as a definition as far as the .ll file goes. 2611 if (EatIfPresent(lltok::kw_opaque)) { 2612 // This type is being defined, so clear the location to indicate this. 2613 Entry.second = SMLoc(); 2614 2615 // If this type number has never been uttered, create it. 2616 if (!Entry.first) 2617 Entry.first = StructType::create(Context, Name); 2618 ResultTy = Entry.first; 2619 return false; 2620 } 2621 2622 // If the type starts with '<', then it is either a packed struct or a vector. 2623 bool isPacked = EatIfPresent(lltok::less); 2624 2625 // If we don't have a struct, then we have a random type alias, which we 2626 // accept for compatibility with old files. These types are not allowed to be 2627 // forward referenced and not allowed to be recursive. 2628 if (Lex.getKind() != lltok::lbrace) { 2629 if (Entry.first) 2630 return Error(TypeLoc, "forward references to non-struct type"); 2631 2632 ResultTy = nullptr; 2633 if (isPacked) 2634 return ParseArrayVectorType(ResultTy, true); 2635 return ParseType(ResultTy); 2636 } 2637 2638 // This type is being defined, so clear the location to indicate this. 2639 Entry.second = SMLoc(); 2640 2641 // If this type number has never been uttered, create it. 2642 if (!Entry.first) 2643 Entry.first = StructType::create(Context, Name); 2644 2645 StructType *STy = cast<StructType>(Entry.first); 2646 2647 SmallVector<Type*, 8> Body; 2648 if (ParseStructBody(Body) || 2649 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2650 return true; 2651 2652 STy->setBody(Body, isPacked); 2653 ResultTy = STy; 2654 return false; 2655 } 2656 2657 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2658 /// StructType 2659 /// ::= '{' '}' 2660 /// ::= '{' Type (',' Type)* '}' 2661 /// ::= '<' '{' '}' '>' 2662 /// ::= '<' '{' Type (',' Type)* '}' '>' 2663 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2664 assert(Lex.getKind() == lltok::lbrace); 2665 Lex.Lex(); // Consume the '{' 2666 2667 // Handle the empty struct. 2668 if (EatIfPresent(lltok::rbrace)) 2669 return false; 2670 2671 LocTy EltTyLoc = Lex.getLoc(); 2672 Type *Ty = nullptr; 2673 if (ParseType(Ty)) return true; 2674 Body.push_back(Ty); 2675 2676 if (!StructType::isValidElementType(Ty)) 2677 return Error(EltTyLoc, "invalid element type for struct"); 2678 2679 while (EatIfPresent(lltok::comma)) { 2680 EltTyLoc = Lex.getLoc(); 2681 if (ParseType(Ty)) return true; 2682 2683 if (!StructType::isValidElementType(Ty)) 2684 return Error(EltTyLoc, "invalid element type for struct"); 2685 2686 Body.push_back(Ty); 2687 } 2688 2689 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2690 } 2691 2692 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2693 /// token has already been consumed. 2694 /// Type 2695 /// ::= '[' APSINTVAL 'x' Types ']' 2696 /// ::= '<' APSINTVAL 'x' Types '>' 2697 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2698 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2699 Lex.getAPSIntVal().getBitWidth() > 64) 2700 return TokError("expected number in address space"); 2701 2702 LocTy SizeLoc = Lex.getLoc(); 2703 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2704 Lex.Lex(); 2705 2706 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2707 return true; 2708 2709 LocTy TypeLoc = Lex.getLoc(); 2710 Type *EltTy = nullptr; 2711 if (ParseType(EltTy)) return true; 2712 2713 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2714 "expected end of sequential type")) 2715 return true; 2716 2717 if (isVector) { 2718 if (Size == 0) 2719 return Error(SizeLoc, "zero element vector is illegal"); 2720 if ((unsigned)Size != Size) 2721 return Error(SizeLoc, "size too large for vector"); 2722 if (!VectorType::isValidElementType(EltTy)) 2723 return Error(TypeLoc, "invalid vector element type"); 2724 Result = VectorType::get(EltTy, unsigned(Size)); 2725 } else { 2726 if (!ArrayType::isValidElementType(EltTy)) 2727 return Error(TypeLoc, "invalid array element type"); 2728 Result = ArrayType::get(EltTy, Size); 2729 } 2730 return false; 2731 } 2732 2733 //===----------------------------------------------------------------------===// 2734 // Function Semantic Analysis. 2735 //===----------------------------------------------------------------------===// 2736 2737 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2738 int functionNumber) 2739 : P(p), F(f), FunctionNumber(functionNumber) { 2740 2741 // Insert unnamed arguments into the NumberedVals list. 2742 for (Argument &A : F.args()) 2743 if (!A.hasName()) 2744 NumberedVals.push_back(&A); 2745 } 2746 2747 LLParser::PerFunctionState::~PerFunctionState() { 2748 // If there were any forward referenced non-basicblock values, delete them. 2749 2750 for (const auto &P : ForwardRefVals) { 2751 if (isa<BasicBlock>(P.second.first)) 2752 continue; 2753 P.second.first->replaceAllUsesWith( 2754 UndefValue::get(P.second.first->getType())); 2755 P.second.first->deleteValue(); 2756 } 2757 2758 for (const auto &P : ForwardRefValIDs) { 2759 if (isa<BasicBlock>(P.second.first)) 2760 continue; 2761 P.second.first->replaceAllUsesWith( 2762 UndefValue::get(P.second.first->getType())); 2763 P.second.first->deleteValue(); 2764 } 2765 } 2766 2767 bool LLParser::PerFunctionState::FinishFunction() { 2768 if (!ForwardRefVals.empty()) 2769 return P.Error(ForwardRefVals.begin()->second.second, 2770 "use of undefined value '%" + ForwardRefVals.begin()->first + 2771 "'"); 2772 if (!ForwardRefValIDs.empty()) 2773 return P.Error(ForwardRefValIDs.begin()->second.second, 2774 "use of undefined value '%" + 2775 Twine(ForwardRefValIDs.begin()->first) + "'"); 2776 return false; 2777 } 2778 2779 /// GetVal - Get a value with the specified name or ID, creating a 2780 /// forward reference record if needed. This can return null if the value 2781 /// exists but does not have the right type. 2782 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2783 LocTy Loc, bool IsCall) { 2784 // Look this name up in the normal function symbol table. 2785 Value *Val = F.getValueSymbolTable()->lookup(Name); 2786 2787 // If this is a forward reference for the value, see if we already created a 2788 // forward ref record. 2789 if (!Val) { 2790 auto I = ForwardRefVals.find(Name); 2791 if (I != ForwardRefVals.end()) 2792 Val = I->second.first; 2793 } 2794 2795 // If we have the value in the symbol table or fwd-ref table, return it. 2796 if (Val) 2797 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2798 2799 // Don't make placeholders with invalid type. 2800 if (!Ty->isFirstClassType()) { 2801 P.Error(Loc, "invalid use of a non-first-class type"); 2802 return nullptr; 2803 } 2804 2805 // Otherwise, create a new forward reference for this value and remember it. 2806 Value *FwdVal; 2807 if (Ty->isLabelTy()) { 2808 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2809 } else { 2810 FwdVal = new Argument(Ty, Name); 2811 } 2812 2813 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2814 return FwdVal; 2815 } 2816 2817 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2818 bool IsCall) { 2819 // Look this name up in the normal function symbol table. 2820 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2821 2822 // If this is a forward reference for the value, see if we already created a 2823 // forward ref record. 2824 if (!Val) { 2825 auto I = ForwardRefValIDs.find(ID); 2826 if (I != ForwardRefValIDs.end()) 2827 Val = I->second.first; 2828 } 2829 2830 // If we have the value in the symbol table or fwd-ref table, return it. 2831 if (Val) 2832 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2833 2834 if (!Ty->isFirstClassType()) { 2835 P.Error(Loc, "invalid use of a non-first-class type"); 2836 return nullptr; 2837 } 2838 2839 // Otherwise, create a new forward reference for this value and remember it. 2840 Value *FwdVal; 2841 if (Ty->isLabelTy()) { 2842 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2843 } else { 2844 FwdVal = new Argument(Ty); 2845 } 2846 2847 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2848 return FwdVal; 2849 } 2850 2851 /// SetInstName - After an instruction is parsed and inserted into its 2852 /// basic block, this installs its name. 2853 bool LLParser::PerFunctionState::SetInstName(int NameID, 2854 const std::string &NameStr, 2855 LocTy NameLoc, Instruction *Inst) { 2856 // If this instruction has void type, it cannot have a name or ID specified. 2857 if (Inst->getType()->isVoidTy()) { 2858 if (NameID != -1 || !NameStr.empty()) 2859 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2860 return false; 2861 } 2862 2863 // If this was a numbered instruction, verify that the instruction is the 2864 // expected value and resolve any forward references. 2865 if (NameStr.empty()) { 2866 // If neither a name nor an ID was specified, just use the next ID. 2867 if (NameID == -1) 2868 NameID = NumberedVals.size(); 2869 2870 if (unsigned(NameID) != NumberedVals.size()) 2871 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2872 Twine(NumberedVals.size()) + "'"); 2873 2874 auto FI = ForwardRefValIDs.find(NameID); 2875 if (FI != ForwardRefValIDs.end()) { 2876 Value *Sentinel = FI->second.first; 2877 if (Sentinel->getType() != Inst->getType()) 2878 return P.Error(NameLoc, "instruction forward referenced with type '" + 2879 getTypeString(FI->second.first->getType()) + "'"); 2880 2881 Sentinel->replaceAllUsesWith(Inst); 2882 Sentinel->deleteValue(); 2883 ForwardRefValIDs.erase(FI); 2884 } 2885 2886 NumberedVals.push_back(Inst); 2887 return false; 2888 } 2889 2890 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2891 auto FI = ForwardRefVals.find(NameStr); 2892 if (FI != ForwardRefVals.end()) { 2893 Value *Sentinel = FI->second.first; 2894 if (Sentinel->getType() != Inst->getType()) 2895 return P.Error(NameLoc, "instruction forward referenced with type '" + 2896 getTypeString(FI->second.first->getType()) + "'"); 2897 2898 Sentinel->replaceAllUsesWith(Inst); 2899 Sentinel->deleteValue(); 2900 ForwardRefVals.erase(FI); 2901 } 2902 2903 // Set the name on the instruction. 2904 Inst->setName(NameStr); 2905 2906 if (Inst->getName() != NameStr) 2907 return P.Error(NameLoc, "multiple definition of local value named '" + 2908 NameStr + "'"); 2909 return false; 2910 } 2911 2912 /// GetBB - Get a basic block with the specified name or ID, creating a 2913 /// forward reference record if needed. 2914 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2915 LocTy Loc) { 2916 return dyn_cast_or_null<BasicBlock>( 2917 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2918 } 2919 2920 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2921 return dyn_cast_or_null<BasicBlock>( 2922 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2923 } 2924 2925 /// DefineBB - Define the specified basic block, which is either named or 2926 /// unnamed. If there is an error, this returns null otherwise it returns 2927 /// the block being defined. 2928 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2929 LocTy Loc) { 2930 BasicBlock *BB; 2931 if (Name.empty()) 2932 BB = GetBB(NumberedVals.size(), Loc); 2933 else 2934 BB = GetBB(Name, Loc); 2935 if (!BB) return nullptr; // Already diagnosed error. 2936 2937 // Move the block to the end of the function. Forward ref'd blocks are 2938 // inserted wherever they happen to be referenced. 2939 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2940 2941 // Remove the block from forward ref sets. 2942 if (Name.empty()) { 2943 ForwardRefValIDs.erase(NumberedVals.size()); 2944 NumberedVals.push_back(BB); 2945 } else { 2946 // BB forward references are already in the function symbol table. 2947 ForwardRefVals.erase(Name); 2948 } 2949 2950 return BB; 2951 } 2952 2953 //===----------------------------------------------------------------------===// 2954 // Constants. 2955 //===----------------------------------------------------------------------===// 2956 2957 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2958 /// type implied. For example, if we parse "4" we don't know what integer type 2959 /// it has. The value will later be combined with its type and checked for 2960 /// sanity. PFS is used to convert function-local operands of metadata (since 2961 /// metadata operands are not just parsed here but also converted to values). 2962 /// PFS can be null when we are not parsing metadata values inside a function. 2963 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2964 ID.Loc = Lex.getLoc(); 2965 switch (Lex.getKind()) { 2966 default: return TokError("expected value token"); 2967 case lltok::GlobalID: // @42 2968 ID.UIntVal = Lex.getUIntVal(); 2969 ID.Kind = ValID::t_GlobalID; 2970 break; 2971 case lltok::GlobalVar: // @foo 2972 ID.StrVal = Lex.getStrVal(); 2973 ID.Kind = ValID::t_GlobalName; 2974 break; 2975 case lltok::LocalVarID: // %42 2976 ID.UIntVal = Lex.getUIntVal(); 2977 ID.Kind = ValID::t_LocalID; 2978 break; 2979 case lltok::LocalVar: // %foo 2980 ID.StrVal = Lex.getStrVal(); 2981 ID.Kind = ValID::t_LocalName; 2982 break; 2983 case lltok::APSInt: 2984 ID.APSIntVal = Lex.getAPSIntVal(); 2985 ID.Kind = ValID::t_APSInt; 2986 break; 2987 case lltok::APFloat: 2988 ID.APFloatVal = Lex.getAPFloatVal(); 2989 ID.Kind = ValID::t_APFloat; 2990 break; 2991 case lltok::kw_true: 2992 ID.ConstantVal = ConstantInt::getTrue(Context); 2993 ID.Kind = ValID::t_Constant; 2994 break; 2995 case lltok::kw_false: 2996 ID.ConstantVal = ConstantInt::getFalse(Context); 2997 ID.Kind = ValID::t_Constant; 2998 break; 2999 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3000 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3001 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3002 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3003 3004 case lltok::lbrace: { 3005 // ValID ::= '{' ConstVector '}' 3006 Lex.Lex(); 3007 SmallVector<Constant*, 16> Elts; 3008 if (ParseGlobalValueVector(Elts) || 3009 ParseToken(lltok::rbrace, "expected end of struct constant")) 3010 return true; 3011 3012 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3013 ID.UIntVal = Elts.size(); 3014 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3015 Elts.size() * sizeof(Elts[0])); 3016 ID.Kind = ValID::t_ConstantStruct; 3017 return false; 3018 } 3019 case lltok::less: { 3020 // ValID ::= '<' ConstVector '>' --> Vector. 3021 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3022 Lex.Lex(); 3023 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3024 3025 SmallVector<Constant*, 16> Elts; 3026 LocTy FirstEltLoc = Lex.getLoc(); 3027 if (ParseGlobalValueVector(Elts) || 3028 (isPackedStruct && 3029 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3030 ParseToken(lltok::greater, "expected end of constant")) 3031 return true; 3032 3033 if (isPackedStruct) { 3034 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3035 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3036 Elts.size() * sizeof(Elts[0])); 3037 ID.UIntVal = Elts.size(); 3038 ID.Kind = ValID::t_PackedConstantStruct; 3039 return false; 3040 } 3041 3042 if (Elts.empty()) 3043 return Error(ID.Loc, "constant vector must not be empty"); 3044 3045 if (!Elts[0]->getType()->isIntegerTy() && 3046 !Elts[0]->getType()->isFloatingPointTy() && 3047 !Elts[0]->getType()->isPointerTy()) 3048 return Error(FirstEltLoc, 3049 "vector elements must have integer, pointer or floating point type"); 3050 3051 // Verify that all the vector elements have the same type. 3052 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3053 if (Elts[i]->getType() != Elts[0]->getType()) 3054 return Error(FirstEltLoc, 3055 "vector element #" + Twine(i) + 3056 " is not of type '" + getTypeString(Elts[0]->getType())); 3057 3058 ID.ConstantVal = ConstantVector::get(Elts); 3059 ID.Kind = ValID::t_Constant; 3060 return false; 3061 } 3062 case lltok::lsquare: { // Array Constant 3063 Lex.Lex(); 3064 SmallVector<Constant*, 16> Elts; 3065 LocTy FirstEltLoc = Lex.getLoc(); 3066 if (ParseGlobalValueVector(Elts) || 3067 ParseToken(lltok::rsquare, "expected end of array constant")) 3068 return true; 3069 3070 // Handle empty element. 3071 if (Elts.empty()) { 3072 // Use undef instead of an array because it's inconvenient to determine 3073 // the element type at this point, there being no elements to examine. 3074 ID.Kind = ValID::t_EmptyArray; 3075 return false; 3076 } 3077 3078 if (!Elts[0]->getType()->isFirstClassType()) 3079 return Error(FirstEltLoc, "invalid array element type: " + 3080 getTypeString(Elts[0]->getType())); 3081 3082 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3083 3084 // Verify all elements are correct type! 3085 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3086 if (Elts[i]->getType() != Elts[0]->getType()) 3087 return Error(FirstEltLoc, 3088 "array element #" + Twine(i) + 3089 " is not of type '" + getTypeString(Elts[0]->getType())); 3090 } 3091 3092 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3093 ID.Kind = ValID::t_Constant; 3094 return false; 3095 } 3096 case lltok::kw_c: // c "foo" 3097 Lex.Lex(); 3098 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3099 false); 3100 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3101 ID.Kind = ValID::t_Constant; 3102 return false; 3103 3104 case lltok::kw_asm: { 3105 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3106 // STRINGCONSTANT 3107 bool HasSideEffect, AlignStack, AsmDialect; 3108 Lex.Lex(); 3109 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3110 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3111 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3112 ParseStringConstant(ID.StrVal) || 3113 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3114 ParseToken(lltok::StringConstant, "expected constraint string")) 3115 return true; 3116 ID.StrVal2 = Lex.getStrVal(); 3117 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3118 (unsigned(AsmDialect)<<2); 3119 ID.Kind = ValID::t_InlineAsm; 3120 return false; 3121 } 3122 3123 case lltok::kw_blockaddress: { 3124 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3125 Lex.Lex(); 3126 3127 ValID Fn, Label; 3128 3129 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3130 ParseValID(Fn) || 3131 ParseToken(lltok::comma, "expected comma in block address expression")|| 3132 ParseValID(Label) || 3133 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3134 return true; 3135 3136 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3137 return Error(Fn.Loc, "expected function name in blockaddress"); 3138 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3139 return Error(Label.Loc, "expected basic block name in blockaddress"); 3140 3141 // Try to find the function (but skip it if it's forward-referenced). 3142 GlobalValue *GV = nullptr; 3143 if (Fn.Kind == ValID::t_GlobalID) { 3144 if (Fn.UIntVal < NumberedVals.size()) 3145 GV = NumberedVals[Fn.UIntVal]; 3146 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3147 GV = M->getNamedValue(Fn.StrVal); 3148 } 3149 Function *F = nullptr; 3150 if (GV) { 3151 // Confirm that it's actually a function with a definition. 3152 if (!isa<Function>(GV)) 3153 return Error(Fn.Loc, "expected function name in blockaddress"); 3154 F = cast<Function>(GV); 3155 if (F->isDeclaration()) 3156 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3157 } 3158 3159 if (!F) { 3160 // Make a global variable as a placeholder for this reference. 3161 GlobalValue *&FwdRef = 3162 ForwardRefBlockAddresses.insert(std::make_pair( 3163 std::move(Fn), 3164 std::map<ValID, GlobalValue *>())) 3165 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3166 .first->second; 3167 if (!FwdRef) 3168 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3169 GlobalValue::InternalLinkage, nullptr, ""); 3170 ID.ConstantVal = FwdRef; 3171 ID.Kind = ValID::t_Constant; 3172 return false; 3173 } 3174 3175 // We found the function; now find the basic block. Don't use PFS, since we 3176 // might be inside a constant expression. 3177 BasicBlock *BB; 3178 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3179 if (Label.Kind == ValID::t_LocalID) 3180 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3181 else 3182 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3183 if (!BB) 3184 return Error(Label.Loc, "referenced value is not a basic block"); 3185 } else { 3186 if (Label.Kind == ValID::t_LocalID) 3187 return Error(Label.Loc, "cannot take address of numeric label after " 3188 "the function is defined"); 3189 BB = dyn_cast_or_null<BasicBlock>( 3190 F->getValueSymbolTable()->lookup(Label.StrVal)); 3191 if (!BB) 3192 return Error(Label.Loc, "referenced value is not a basic block"); 3193 } 3194 3195 ID.ConstantVal = BlockAddress::get(F, BB); 3196 ID.Kind = ValID::t_Constant; 3197 return false; 3198 } 3199 3200 case lltok::kw_trunc: 3201 case lltok::kw_zext: 3202 case lltok::kw_sext: 3203 case lltok::kw_fptrunc: 3204 case lltok::kw_fpext: 3205 case lltok::kw_bitcast: 3206 case lltok::kw_addrspacecast: 3207 case lltok::kw_uitofp: 3208 case lltok::kw_sitofp: 3209 case lltok::kw_fptoui: 3210 case lltok::kw_fptosi: 3211 case lltok::kw_inttoptr: 3212 case lltok::kw_ptrtoint: { 3213 unsigned Opc = Lex.getUIntVal(); 3214 Type *DestTy = nullptr; 3215 Constant *SrcVal; 3216 Lex.Lex(); 3217 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3218 ParseGlobalTypeAndValue(SrcVal) || 3219 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3220 ParseType(DestTy) || 3221 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3222 return true; 3223 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3224 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3225 getTypeString(SrcVal->getType()) + "' to '" + 3226 getTypeString(DestTy) + "'"); 3227 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3228 SrcVal, DestTy); 3229 ID.Kind = ValID::t_Constant; 3230 return false; 3231 } 3232 case lltok::kw_extractvalue: { 3233 Lex.Lex(); 3234 Constant *Val; 3235 SmallVector<unsigned, 4> Indices; 3236 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3237 ParseGlobalTypeAndValue(Val) || 3238 ParseIndexList(Indices) || 3239 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3240 return true; 3241 3242 if (!Val->getType()->isAggregateType()) 3243 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3244 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3245 return Error(ID.Loc, "invalid indices for extractvalue"); 3246 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3247 ID.Kind = ValID::t_Constant; 3248 return false; 3249 } 3250 case lltok::kw_insertvalue: { 3251 Lex.Lex(); 3252 Constant *Val0, *Val1; 3253 SmallVector<unsigned, 4> Indices; 3254 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3255 ParseGlobalTypeAndValue(Val0) || 3256 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3257 ParseGlobalTypeAndValue(Val1) || 3258 ParseIndexList(Indices) || 3259 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3260 return true; 3261 if (!Val0->getType()->isAggregateType()) 3262 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3263 Type *IndexedType = 3264 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3265 if (!IndexedType) 3266 return Error(ID.Loc, "invalid indices for insertvalue"); 3267 if (IndexedType != Val1->getType()) 3268 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3269 getTypeString(Val1->getType()) + 3270 "' instead of '" + getTypeString(IndexedType) + 3271 "'"); 3272 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3273 ID.Kind = ValID::t_Constant; 3274 return false; 3275 } 3276 case lltok::kw_icmp: 3277 case lltok::kw_fcmp: { 3278 unsigned PredVal, Opc = Lex.getUIntVal(); 3279 Constant *Val0, *Val1; 3280 Lex.Lex(); 3281 if (ParseCmpPredicate(PredVal, Opc) || 3282 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3283 ParseGlobalTypeAndValue(Val0) || 3284 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3285 ParseGlobalTypeAndValue(Val1) || 3286 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3287 return true; 3288 3289 if (Val0->getType() != Val1->getType()) 3290 return Error(ID.Loc, "compare operands must have the same type"); 3291 3292 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3293 3294 if (Opc == Instruction::FCmp) { 3295 if (!Val0->getType()->isFPOrFPVectorTy()) 3296 return Error(ID.Loc, "fcmp requires floating point operands"); 3297 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3298 } else { 3299 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3300 if (!Val0->getType()->isIntOrIntVectorTy() && 3301 !Val0->getType()->isPtrOrPtrVectorTy()) 3302 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3303 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3304 } 3305 ID.Kind = ValID::t_Constant; 3306 return false; 3307 } 3308 3309 // Unary Operators. 3310 case lltok::kw_fneg: { 3311 unsigned Opc = Lex.getUIntVal(); 3312 Constant *Val; 3313 Lex.Lex(); 3314 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3315 ParseGlobalTypeAndValue(Val) || 3316 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3317 return true; 3318 3319 // Check that the type is valid for the operator. 3320 switch (Opc) { 3321 case Instruction::FNeg: 3322 if (!Val->getType()->isFPOrFPVectorTy()) 3323 return Error(ID.Loc, "constexpr requires fp operands"); 3324 break; 3325 default: llvm_unreachable("Unknown unary operator!"); 3326 } 3327 unsigned Flags = 0; 3328 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3329 ID.ConstantVal = C; 3330 ID.Kind = ValID::t_Constant; 3331 return false; 3332 } 3333 // Binary Operators. 3334 case lltok::kw_add: 3335 case lltok::kw_fadd: 3336 case lltok::kw_sub: 3337 case lltok::kw_fsub: 3338 case lltok::kw_mul: 3339 case lltok::kw_fmul: 3340 case lltok::kw_udiv: 3341 case lltok::kw_sdiv: 3342 case lltok::kw_fdiv: 3343 case lltok::kw_urem: 3344 case lltok::kw_srem: 3345 case lltok::kw_frem: 3346 case lltok::kw_shl: 3347 case lltok::kw_lshr: 3348 case lltok::kw_ashr: { 3349 bool NUW = false; 3350 bool NSW = false; 3351 bool Exact = false; 3352 unsigned Opc = Lex.getUIntVal(); 3353 Constant *Val0, *Val1; 3354 Lex.Lex(); 3355 LocTy ModifierLoc = Lex.getLoc(); 3356 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3357 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3358 if (EatIfPresent(lltok::kw_nuw)) 3359 NUW = true; 3360 if (EatIfPresent(lltok::kw_nsw)) { 3361 NSW = true; 3362 if (EatIfPresent(lltok::kw_nuw)) 3363 NUW = true; 3364 } 3365 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3366 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3367 if (EatIfPresent(lltok::kw_exact)) 3368 Exact = true; 3369 } 3370 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3371 ParseGlobalTypeAndValue(Val0) || 3372 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3373 ParseGlobalTypeAndValue(Val1) || 3374 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3375 return true; 3376 if (Val0->getType() != Val1->getType()) 3377 return Error(ID.Loc, "operands of constexpr must have same type"); 3378 if (!Val0->getType()->isIntOrIntVectorTy()) { 3379 if (NUW) 3380 return Error(ModifierLoc, "nuw only applies to integer operations"); 3381 if (NSW) 3382 return Error(ModifierLoc, "nsw only applies to integer operations"); 3383 } 3384 // Check that the type is valid for the operator. 3385 switch (Opc) { 3386 case Instruction::Add: 3387 case Instruction::Sub: 3388 case Instruction::Mul: 3389 case Instruction::UDiv: 3390 case Instruction::SDiv: 3391 case Instruction::URem: 3392 case Instruction::SRem: 3393 case Instruction::Shl: 3394 case Instruction::AShr: 3395 case Instruction::LShr: 3396 if (!Val0->getType()->isIntOrIntVectorTy()) 3397 return Error(ID.Loc, "constexpr requires integer operands"); 3398 break; 3399 case Instruction::FAdd: 3400 case Instruction::FSub: 3401 case Instruction::FMul: 3402 case Instruction::FDiv: 3403 case Instruction::FRem: 3404 if (!Val0->getType()->isFPOrFPVectorTy()) 3405 return Error(ID.Loc, "constexpr requires fp operands"); 3406 break; 3407 default: llvm_unreachable("Unknown binary operator!"); 3408 } 3409 unsigned Flags = 0; 3410 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3411 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3412 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3413 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3414 ID.ConstantVal = C; 3415 ID.Kind = ValID::t_Constant; 3416 return false; 3417 } 3418 3419 // Logical Operations 3420 case lltok::kw_and: 3421 case lltok::kw_or: 3422 case lltok::kw_xor: { 3423 unsigned Opc = Lex.getUIntVal(); 3424 Constant *Val0, *Val1; 3425 Lex.Lex(); 3426 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3427 ParseGlobalTypeAndValue(Val0) || 3428 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3429 ParseGlobalTypeAndValue(Val1) || 3430 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3431 return true; 3432 if (Val0->getType() != Val1->getType()) 3433 return Error(ID.Loc, "operands of constexpr must have same type"); 3434 if (!Val0->getType()->isIntOrIntVectorTy()) 3435 return Error(ID.Loc, 3436 "constexpr requires integer or integer vector operands"); 3437 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3438 ID.Kind = ValID::t_Constant; 3439 return false; 3440 } 3441 3442 case lltok::kw_getelementptr: 3443 case lltok::kw_shufflevector: 3444 case lltok::kw_insertelement: 3445 case lltok::kw_extractelement: 3446 case lltok::kw_select: { 3447 unsigned Opc = Lex.getUIntVal(); 3448 SmallVector<Constant*, 16> Elts; 3449 bool InBounds = false; 3450 Type *Ty; 3451 Lex.Lex(); 3452 3453 if (Opc == Instruction::GetElementPtr) 3454 InBounds = EatIfPresent(lltok::kw_inbounds); 3455 3456 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3457 return true; 3458 3459 LocTy ExplicitTypeLoc = Lex.getLoc(); 3460 if (Opc == Instruction::GetElementPtr) { 3461 if (ParseType(Ty) || 3462 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3463 return true; 3464 } 3465 3466 Optional<unsigned> InRangeOp; 3467 if (ParseGlobalValueVector( 3468 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3469 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3470 return true; 3471 3472 if (Opc == Instruction::GetElementPtr) { 3473 if (Elts.size() == 0 || 3474 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3475 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3476 3477 Type *BaseType = Elts[0]->getType(); 3478 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3479 if (Ty != BasePointerType->getElementType()) 3480 return Error( 3481 ExplicitTypeLoc, 3482 "explicit pointee type doesn't match operand's pointee type"); 3483 3484 unsigned GEPWidth = 3485 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3486 3487 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3488 for (Constant *Val : Indices) { 3489 Type *ValTy = Val->getType(); 3490 if (!ValTy->isIntOrIntVectorTy()) 3491 return Error(ID.Loc, "getelementptr index must be an integer"); 3492 if (ValTy->isVectorTy()) { 3493 unsigned ValNumEl = ValTy->getVectorNumElements(); 3494 if (GEPWidth && (ValNumEl != GEPWidth)) 3495 return Error( 3496 ID.Loc, 3497 "getelementptr vector index has a wrong number of elements"); 3498 // GEPWidth may have been unknown because the base is a scalar, 3499 // but it is known now. 3500 GEPWidth = ValNumEl; 3501 } 3502 } 3503 3504 SmallPtrSet<Type*, 4> Visited; 3505 if (!Indices.empty() && !Ty->isSized(&Visited)) 3506 return Error(ID.Loc, "base element of getelementptr must be sized"); 3507 3508 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3509 return Error(ID.Loc, "invalid getelementptr indices"); 3510 3511 if (InRangeOp) { 3512 if (*InRangeOp == 0) 3513 return Error(ID.Loc, 3514 "inrange keyword may not appear on pointer operand"); 3515 --*InRangeOp; 3516 } 3517 3518 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3519 InBounds, InRangeOp); 3520 } else if (Opc == Instruction::Select) { 3521 if (Elts.size() != 3) 3522 return Error(ID.Loc, "expected three operands to select"); 3523 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3524 Elts[2])) 3525 return Error(ID.Loc, Reason); 3526 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3527 } else if (Opc == Instruction::ShuffleVector) { 3528 if (Elts.size() != 3) 3529 return Error(ID.Loc, "expected three operands to shufflevector"); 3530 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3531 return Error(ID.Loc, "invalid operands to shufflevector"); 3532 ID.ConstantVal = 3533 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3534 } else if (Opc == Instruction::ExtractElement) { 3535 if (Elts.size() != 2) 3536 return Error(ID.Loc, "expected two operands to extractelement"); 3537 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3538 return Error(ID.Loc, "invalid extractelement operands"); 3539 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3540 } else { 3541 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3542 if (Elts.size() != 3) 3543 return Error(ID.Loc, "expected three operands to insertelement"); 3544 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3545 return Error(ID.Loc, "invalid insertelement operands"); 3546 ID.ConstantVal = 3547 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3548 } 3549 3550 ID.Kind = ValID::t_Constant; 3551 return false; 3552 } 3553 } 3554 3555 Lex.Lex(); 3556 return false; 3557 } 3558 3559 /// ParseGlobalValue - Parse a global value with the specified type. 3560 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3561 C = nullptr; 3562 ValID ID; 3563 Value *V = nullptr; 3564 bool Parsed = ParseValID(ID) || 3565 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3566 if (V && !(C = dyn_cast<Constant>(V))) 3567 return Error(ID.Loc, "global values must be constants"); 3568 return Parsed; 3569 } 3570 3571 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3572 Type *Ty = nullptr; 3573 return ParseType(Ty) || 3574 ParseGlobalValue(Ty, V); 3575 } 3576 3577 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3578 C = nullptr; 3579 3580 LocTy KwLoc = Lex.getLoc(); 3581 if (!EatIfPresent(lltok::kw_comdat)) 3582 return false; 3583 3584 if (EatIfPresent(lltok::lparen)) { 3585 if (Lex.getKind() != lltok::ComdatVar) 3586 return TokError("expected comdat variable"); 3587 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3588 Lex.Lex(); 3589 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3590 return true; 3591 } else { 3592 if (GlobalName.empty()) 3593 return TokError("comdat cannot be unnamed"); 3594 C = getComdat(GlobalName, KwLoc); 3595 } 3596 3597 return false; 3598 } 3599 3600 /// ParseGlobalValueVector 3601 /// ::= /*empty*/ 3602 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3603 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3604 Optional<unsigned> *InRangeOp) { 3605 // Empty list. 3606 if (Lex.getKind() == lltok::rbrace || 3607 Lex.getKind() == lltok::rsquare || 3608 Lex.getKind() == lltok::greater || 3609 Lex.getKind() == lltok::rparen) 3610 return false; 3611 3612 do { 3613 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3614 *InRangeOp = Elts.size(); 3615 3616 Constant *C; 3617 if (ParseGlobalTypeAndValue(C)) return true; 3618 Elts.push_back(C); 3619 } while (EatIfPresent(lltok::comma)); 3620 3621 return false; 3622 } 3623 3624 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3625 SmallVector<Metadata *, 16> Elts; 3626 if (ParseMDNodeVector(Elts)) 3627 return true; 3628 3629 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3630 return false; 3631 } 3632 3633 /// MDNode: 3634 /// ::= !{ ... } 3635 /// ::= !7 3636 /// ::= !DILocation(...) 3637 bool LLParser::ParseMDNode(MDNode *&N) { 3638 if (Lex.getKind() == lltok::MetadataVar) 3639 return ParseSpecializedMDNode(N); 3640 3641 return ParseToken(lltok::exclaim, "expected '!' here") || 3642 ParseMDNodeTail(N); 3643 } 3644 3645 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3646 // !{ ... } 3647 if (Lex.getKind() == lltok::lbrace) 3648 return ParseMDTuple(N); 3649 3650 // !42 3651 return ParseMDNodeID(N); 3652 } 3653 3654 namespace { 3655 3656 /// Structure to represent an optional metadata field. 3657 template <class FieldTy> struct MDFieldImpl { 3658 typedef MDFieldImpl ImplTy; 3659 FieldTy Val; 3660 bool Seen; 3661 3662 void assign(FieldTy Val) { 3663 Seen = true; 3664 this->Val = std::move(Val); 3665 } 3666 3667 explicit MDFieldImpl(FieldTy Default) 3668 : Val(std::move(Default)), Seen(false) {} 3669 }; 3670 3671 /// Structure to represent an optional metadata field that 3672 /// can be of either type (A or B) and encapsulates the 3673 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3674 /// to reimplement the specifics for representing each Field. 3675 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3676 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3677 FieldTypeA A; 3678 FieldTypeB B; 3679 bool Seen; 3680 3681 enum { 3682 IsInvalid = 0, 3683 IsTypeA = 1, 3684 IsTypeB = 2 3685 } WhatIs; 3686 3687 void assign(FieldTypeA A) { 3688 Seen = true; 3689 this->A = std::move(A); 3690 WhatIs = IsTypeA; 3691 } 3692 3693 void assign(FieldTypeB B) { 3694 Seen = true; 3695 this->B = std::move(B); 3696 WhatIs = IsTypeB; 3697 } 3698 3699 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3700 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3701 WhatIs(IsInvalid) {} 3702 }; 3703 3704 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3705 uint64_t Max; 3706 3707 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3708 : ImplTy(Default), Max(Max) {} 3709 }; 3710 3711 struct LineField : public MDUnsignedField { 3712 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3713 }; 3714 3715 struct ColumnField : public MDUnsignedField { 3716 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3717 }; 3718 3719 struct DwarfTagField : public MDUnsignedField { 3720 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3721 DwarfTagField(dwarf::Tag DefaultTag) 3722 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3723 }; 3724 3725 struct DwarfMacinfoTypeField : public MDUnsignedField { 3726 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3727 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3728 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3729 }; 3730 3731 struct DwarfAttEncodingField : public MDUnsignedField { 3732 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3733 }; 3734 3735 struct DwarfVirtualityField : public MDUnsignedField { 3736 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3737 }; 3738 3739 struct DwarfLangField : public MDUnsignedField { 3740 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3741 }; 3742 3743 struct DwarfCCField : public MDUnsignedField { 3744 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3745 }; 3746 3747 struct EmissionKindField : public MDUnsignedField { 3748 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3749 }; 3750 3751 struct NameTableKindField : public MDUnsignedField { 3752 NameTableKindField() 3753 : MDUnsignedField( 3754 0, (unsigned) 3755 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3756 }; 3757 3758 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3759 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3760 }; 3761 3762 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3763 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3764 }; 3765 3766 struct MDSignedField : public MDFieldImpl<int64_t> { 3767 int64_t Min; 3768 int64_t Max; 3769 3770 MDSignedField(int64_t Default = 0) 3771 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3772 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3773 : ImplTy(Default), Min(Min), Max(Max) {} 3774 }; 3775 3776 struct MDBoolField : public MDFieldImpl<bool> { 3777 MDBoolField(bool Default = false) : ImplTy(Default) {} 3778 }; 3779 3780 struct MDField : public MDFieldImpl<Metadata *> { 3781 bool AllowNull; 3782 3783 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3784 }; 3785 3786 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3787 MDConstant() : ImplTy(nullptr) {} 3788 }; 3789 3790 struct MDStringField : public MDFieldImpl<MDString *> { 3791 bool AllowEmpty; 3792 MDStringField(bool AllowEmpty = true) 3793 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3794 }; 3795 3796 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3797 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3798 }; 3799 3800 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3801 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3802 }; 3803 3804 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3805 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3806 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3807 3808 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3809 bool AllowNull = true) 3810 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3811 3812 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3813 bool isMDField() const { return WhatIs == IsTypeB; } 3814 int64_t getMDSignedValue() const { 3815 assert(isMDSignedField() && "Wrong field type"); 3816 return A.Val; 3817 } 3818 Metadata *getMDFieldValue() const { 3819 assert(isMDField() && "Wrong field type"); 3820 return B.Val; 3821 } 3822 }; 3823 3824 struct MDSignedOrUnsignedField 3825 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3826 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3827 3828 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3829 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3830 int64_t getMDSignedValue() const { 3831 assert(isMDSignedField() && "Wrong field type"); 3832 return A.Val; 3833 } 3834 uint64_t getMDUnsignedValue() const { 3835 assert(isMDUnsignedField() && "Wrong field type"); 3836 return B.Val; 3837 } 3838 }; 3839 3840 } // end anonymous namespace 3841 3842 namespace llvm { 3843 3844 template <> 3845 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3846 MDUnsignedField &Result) { 3847 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3848 return TokError("expected unsigned integer"); 3849 3850 auto &U = Lex.getAPSIntVal(); 3851 if (U.ugt(Result.Max)) 3852 return TokError("value for '" + Name + "' too large, limit is " + 3853 Twine(Result.Max)); 3854 Result.assign(U.getZExtValue()); 3855 assert(Result.Val <= Result.Max && "Expected value in range"); 3856 Lex.Lex(); 3857 return false; 3858 } 3859 3860 template <> 3861 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3862 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3863 } 3864 template <> 3865 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3866 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3867 } 3868 3869 template <> 3870 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3871 if (Lex.getKind() == lltok::APSInt) 3872 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3873 3874 if (Lex.getKind() != lltok::DwarfTag) 3875 return TokError("expected DWARF tag"); 3876 3877 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3878 if (Tag == dwarf::DW_TAG_invalid) 3879 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3880 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3881 3882 Result.assign(Tag); 3883 Lex.Lex(); 3884 return false; 3885 } 3886 3887 template <> 3888 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3889 DwarfMacinfoTypeField &Result) { 3890 if (Lex.getKind() == lltok::APSInt) 3891 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3892 3893 if (Lex.getKind() != lltok::DwarfMacinfo) 3894 return TokError("expected DWARF macinfo type"); 3895 3896 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3897 if (Macinfo == dwarf::DW_MACINFO_invalid) 3898 return TokError( 3899 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3900 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3901 3902 Result.assign(Macinfo); 3903 Lex.Lex(); 3904 return false; 3905 } 3906 3907 template <> 3908 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3909 DwarfVirtualityField &Result) { 3910 if (Lex.getKind() == lltok::APSInt) 3911 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3912 3913 if (Lex.getKind() != lltok::DwarfVirtuality) 3914 return TokError("expected DWARF virtuality code"); 3915 3916 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3917 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3918 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3919 Lex.getStrVal() + "'"); 3920 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3921 Result.assign(Virtuality); 3922 Lex.Lex(); 3923 return false; 3924 } 3925 3926 template <> 3927 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3928 if (Lex.getKind() == lltok::APSInt) 3929 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3930 3931 if (Lex.getKind() != lltok::DwarfLang) 3932 return TokError("expected DWARF language"); 3933 3934 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3935 if (!Lang) 3936 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3937 "'"); 3938 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3939 Result.assign(Lang); 3940 Lex.Lex(); 3941 return false; 3942 } 3943 3944 template <> 3945 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3946 if (Lex.getKind() == lltok::APSInt) 3947 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3948 3949 if (Lex.getKind() != lltok::DwarfCC) 3950 return TokError("expected DWARF calling convention"); 3951 3952 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3953 if (!CC) 3954 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3955 "'"); 3956 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3957 Result.assign(CC); 3958 Lex.Lex(); 3959 return false; 3960 } 3961 3962 template <> 3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3964 if (Lex.getKind() == lltok::APSInt) 3965 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3966 3967 if (Lex.getKind() != lltok::EmissionKind) 3968 return TokError("expected emission kind"); 3969 3970 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3971 if (!Kind) 3972 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3973 "'"); 3974 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3975 Result.assign(*Kind); 3976 Lex.Lex(); 3977 return false; 3978 } 3979 3980 template <> 3981 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3982 NameTableKindField &Result) { 3983 if (Lex.getKind() == lltok::APSInt) 3984 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3985 3986 if (Lex.getKind() != lltok::NameTableKind) 3987 return TokError("expected nameTable kind"); 3988 3989 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 3990 if (!Kind) 3991 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 3992 "'"); 3993 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 3994 Result.assign((unsigned)*Kind); 3995 Lex.Lex(); 3996 return false; 3997 } 3998 3999 template <> 4000 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4001 DwarfAttEncodingField &Result) { 4002 if (Lex.getKind() == lltok::APSInt) 4003 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4004 4005 if (Lex.getKind() != lltok::DwarfAttEncoding) 4006 return TokError("expected DWARF type attribute encoding"); 4007 4008 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4009 if (!Encoding) 4010 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4011 Lex.getStrVal() + "'"); 4012 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4013 Result.assign(Encoding); 4014 Lex.Lex(); 4015 return false; 4016 } 4017 4018 /// DIFlagField 4019 /// ::= uint32 4020 /// ::= DIFlagVector 4021 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4022 template <> 4023 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4024 4025 // Parser for a single flag. 4026 auto parseFlag = [&](DINode::DIFlags &Val) { 4027 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4028 uint32_t TempVal = static_cast<uint32_t>(Val); 4029 bool Res = ParseUInt32(TempVal); 4030 Val = static_cast<DINode::DIFlags>(TempVal); 4031 return Res; 4032 } 4033 4034 if (Lex.getKind() != lltok::DIFlag) 4035 return TokError("expected debug info flag"); 4036 4037 Val = DINode::getFlag(Lex.getStrVal()); 4038 if (!Val) 4039 return TokError(Twine("invalid debug info flag flag '") + 4040 Lex.getStrVal() + "'"); 4041 Lex.Lex(); 4042 return false; 4043 }; 4044 4045 // Parse the flags and combine them together. 4046 DINode::DIFlags Combined = DINode::FlagZero; 4047 do { 4048 DINode::DIFlags Val; 4049 if (parseFlag(Val)) 4050 return true; 4051 Combined |= Val; 4052 } while (EatIfPresent(lltok::bar)); 4053 4054 Result.assign(Combined); 4055 return false; 4056 } 4057 4058 /// DISPFlagField 4059 /// ::= uint32 4060 /// ::= DISPFlagVector 4061 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4062 template <> 4063 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4064 4065 // Parser for a single flag. 4066 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4067 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4068 uint32_t TempVal = static_cast<uint32_t>(Val); 4069 bool Res = ParseUInt32(TempVal); 4070 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4071 return Res; 4072 } 4073 4074 if (Lex.getKind() != lltok::DISPFlag) 4075 return TokError("expected debug info flag"); 4076 4077 Val = DISubprogram::getFlag(Lex.getStrVal()); 4078 if (!Val) 4079 return TokError(Twine("invalid subprogram debug info flag '") + 4080 Lex.getStrVal() + "'"); 4081 Lex.Lex(); 4082 return false; 4083 }; 4084 4085 // Parse the flags and combine them together. 4086 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4087 do { 4088 DISubprogram::DISPFlags Val; 4089 if (parseFlag(Val)) 4090 return true; 4091 Combined |= Val; 4092 } while (EatIfPresent(lltok::bar)); 4093 4094 Result.assign(Combined); 4095 return false; 4096 } 4097 4098 template <> 4099 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4100 MDSignedField &Result) { 4101 if (Lex.getKind() != lltok::APSInt) 4102 return TokError("expected signed integer"); 4103 4104 auto &S = Lex.getAPSIntVal(); 4105 if (S < Result.Min) 4106 return TokError("value for '" + Name + "' too small, limit is " + 4107 Twine(Result.Min)); 4108 if (S > Result.Max) 4109 return TokError("value for '" + Name + "' too large, limit is " + 4110 Twine(Result.Max)); 4111 Result.assign(S.getExtValue()); 4112 assert(Result.Val >= Result.Min && "Expected value in range"); 4113 assert(Result.Val <= Result.Max && "Expected value in range"); 4114 Lex.Lex(); 4115 return false; 4116 } 4117 4118 template <> 4119 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4120 switch (Lex.getKind()) { 4121 default: 4122 return TokError("expected 'true' or 'false'"); 4123 case lltok::kw_true: 4124 Result.assign(true); 4125 break; 4126 case lltok::kw_false: 4127 Result.assign(false); 4128 break; 4129 } 4130 Lex.Lex(); 4131 return false; 4132 } 4133 4134 template <> 4135 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4136 if (Lex.getKind() == lltok::kw_null) { 4137 if (!Result.AllowNull) 4138 return TokError("'" + Name + "' cannot be null"); 4139 Lex.Lex(); 4140 Result.assign(nullptr); 4141 return false; 4142 } 4143 4144 Metadata *MD; 4145 if (ParseMetadata(MD, nullptr)) 4146 return true; 4147 4148 Result.assign(MD); 4149 return false; 4150 } 4151 4152 template <> 4153 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4154 MDSignedOrMDField &Result) { 4155 // Try to parse a signed int. 4156 if (Lex.getKind() == lltok::APSInt) { 4157 MDSignedField Res = Result.A; 4158 if (!ParseMDField(Loc, Name, Res)) { 4159 Result.assign(Res); 4160 return false; 4161 } 4162 return true; 4163 } 4164 4165 // Otherwise, try to parse as an MDField. 4166 MDField Res = Result.B; 4167 if (!ParseMDField(Loc, Name, Res)) { 4168 Result.assign(Res); 4169 return false; 4170 } 4171 4172 return true; 4173 } 4174 4175 template <> 4176 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4177 MDSignedOrUnsignedField &Result) { 4178 if (Lex.getKind() != lltok::APSInt) 4179 return false; 4180 4181 if (Lex.getAPSIntVal().isSigned()) { 4182 MDSignedField Res = Result.A; 4183 if (ParseMDField(Loc, Name, Res)) 4184 return true; 4185 Result.assign(Res); 4186 return false; 4187 } 4188 4189 MDUnsignedField Res = Result.B; 4190 if (ParseMDField(Loc, Name, Res)) 4191 return true; 4192 Result.assign(Res); 4193 return false; 4194 } 4195 4196 template <> 4197 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4198 LocTy ValueLoc = Lex.getLoc(); 4199 std::string S; 4200 if (ParseStringConstant(S)) 4201 return true; 4202 4203 if (!Result.AllowEmpty && S.empty()) 4204 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4205 4206 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4207 return false; 4208 } 4209 4210 template <> 4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4212 SmallVector<Metadata *, 4> MDs; 4213 if (ParseMDNodeVector(MDs)) 4214 return true; 4215 4216 Result.assign(std::move(MDs)); 4217 return false; 4218 } 4219 4220 template <> 4221 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4222 ChecksumKindField &Result) { 4223 Optional<DIFile::ChecksumKind> CSKind = 4224 DIFile::getChecksumKind(Lex.getStrVal()); 4225 4226 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4227 return TokError( 4228 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4229 4230 Result.assign(*CSKind); 4231 Lex.Lex(); 4232 return false; 4233 } 4234 4235 } // end namespace llvm 4236 4237 template <class ParserTy> 4238 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4239 do { 4240 if (Lex.getKind() != lltok::LabelStr) 4241 return TokError("expected field label here"); 4242 4243 if (parseField()) 4244 return true; 4245 } while (EatIfPresent(lltok::comma)); 4246 4247 return false; 4248 } 4249 4250 template <class ParserTy> 4251 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4252 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4253 Lex.Lex(); 4254 4255 if (ParseToken(lltok::lparen, "expected '(' here")) 4256 return true; 4257 if (Lex.getKind() != lltok::rparen) 4258 if (ParseMDFieldsImplBody(parseField)) 4259 return true; 4260 4261 ClosingLoc = Lex.getLoc(); 4262 return ParseToken(lltok::rparen, "expected ')' here"); 4263 } 4264 4265 template <class FieldTy> 4266 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4267 if (Result.Seen) 4268 return TokError("field '" + Name + "' cannot be specified more than once"); 4269 4270 LocTy Loc = Lex.getLoc(); 4271 Lex.Lex(); 4272 return ParseMDField(Loc, Name, Result); 4273 } 4274 4275 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4276 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4277 4278 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4279 if (Lex.getStrVal() == #CLASS) \ 4280 return Parse##CLASS(N, IsDistinct); 4281 #include "llvm/IR/Metadata.def" 4282 4283 return TokError("expected metadata type"); 4284 } 4285 4286 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4287 #define NOP_FIELD(NAME, TYPE, INIT) 4288 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4289 if (!NAME.Seen) \ 4290 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4291 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4292 if (Lex.getStrVal() == #NAME) \ 4293 return ParseMDField(#NAME, NAME); 4294 #define PARSE_MD_FIELDS() \ 4295 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4296 do { \ 4297 LocTy ClosingLoc; \ 4298 if (ParseMDFieldsImpl([&]() -> bool { \ 4299 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4300 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4301 }, ClosingLoc)) \ 4302 return true; \ 4303 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4304 } while (false) 4305 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4306 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4307 4308 /// ParseDILocationFields: 4309 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4310 /// isImplicitCode: true) 4311 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4312 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4313 OPTIONAL(line, LineField, ); \ 4314 OPTIONAL(column, ColumnField, ); \ 4315 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4316 OPTIONAL(inlinedAt, MDField, ); \ 4317 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4318 PARSE_MD_FIELDS(); 4319 #undef VISIT_MD_FIELDS 4320 4321 Result = 4322 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4323 inlinedAt.Val, isImplicitCode.Val)); 4324 return false; 4325 } 4326 4327 /// ParseGenericDINode: 4328 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4329 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4330 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4331 REQUIRED(tag, DwarfTagField, ); \ 4332 OPTIONAL(header, MDStringField, ); \ 4333 OPTIONAL(operands, MDFieldList, ); 4334 PARSE_MD_FIELDS(); 4335 #undef VISIT_MD_FIELDS 4336 4337 Result = GET_OR_DISTINCT(GenericDINode, 4338 (Context, tag.Val, header.Val, operands.Val)); 4339 return false; 4340 } 4341 4342 /// ParseDISubrange: 4343 /// ::= !DISubrange(count: 30, lowerBound: 2) 4344 /// ::= !DISubrange(count: !node, lowerBound: 2) 4345 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4346 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4347 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4348 OPTIONAL(lowerBound, MDSignedField, ); 4349 PARSE_MD_FIELDS(); 4350 #undef VISIT_MD_FIELDS 4351 4352 if (count.isMDSignedField()) 4353 Result = GET_OR_DISTINCT( 4354 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4355 else if (count.isMDField()) 4356 Result = GET_OR_DISTINCT( 4357 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4358 else 4359 return true; 4360 4361 return false; 4362 } 4363 4364 /// ParseDIEnumerator: 4365 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4366 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4367 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4368 REQUIRED(name, MDStringField, ); \ 4369 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4370 OPTIONAL(isUnsigned, MDBoolField, (false)); 4371 PARSE_MD_FIELDS(); 4372 #undef VISIT_MD_FIELDS 4373 4374 if (isUnsigned.Val && value.isMDSignedField()) 4375 return TokError("unsigned enumerator with negative value"); 4376 4377 int64_t Value = value.isMDSignedField() 4378 ? value.getMDSignedValue() 4379 : static_cast<int64_t>(value.getMDUnsignedValue()); 4380 Result = 4381 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4382 4383 return false; 4384 } 4385 4386 /// ParseDIBasicType: 4387 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4388 /// encoding: DW_ATE_encoding, flags: 0) 4389 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4390 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4391 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4392 OPTIONAL(name, MDStringField, ); \ 4393 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4394 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4395 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4396 OPTIONAL(flags, DIFlagField, ); 4397 PARSE_MD_FIELDS(); 4398 #undef VISIT_MD_FIELDS 4399 4400 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4401 align.Val, encoding.Val, flags.Val)); 4402 return false; 4403 } 4404 4405 /// ParseDIDerivedType: 4406 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4407 /// line: 7, scope: !1, baseType: !2, size: 32, 4408 /// align: 32, offset: 0, flags: 0, extraData: !3, 4409 /// dwarfAddressSpace: 3) 4410 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4411 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4412 REQUIRED(tag, DwarfTagField, ); \ 4413 OPTIONAL(name, MDStringField, ); \ 4414 OPTIONAL(file, MDField, ); \ 4415 OPTIONAL(line, LineField, ); \ 4416 OPTIONAL(scope, MDField, ); \ 4417 REQUIRED(baseType, MDField, ); \ 4418 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4419 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4420 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4421 OPTIONAL(flags, DIFlagField, ); \ 4422 OPTIONAL(extraData, MDField, ); \ 4423 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4424 PARSE_MD_FIELDS(); 4425 #undef VISIT_MD_FIELDS 4426 4427 Optional<unsigned> DWARFAddressSpace; 4428 if (dwarfAddressSpace.Val != UINT32_MAX) 4429 DWARFAddressSpace = dwarfAddressSpace.Val; 4430 4431 Result = GET_OR_DISTINCT(DIDerivedType, 4432 (Context, tag.Val, name.Val, file.Val, line.Val, 4433 scope.Val, baseType.Val, size.Val, align.Val, 4434 offset.Val, DWARFAddressSpace, flags.Val, 4435 extraData.Val)); 4436 return false; 4437 } 4438 4439 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4440 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4441 REQUIRED(tag, DwarfTagField, ); \ 4442 OPTIONAL(name, MDStringField, ); \ 4443 OPTIONAL(file, MDField, ); \ 4444 OPTIONAL(line, LineField, ); \ 4445 OPTIONAL(scope, MDField, ); \ 4446 OPTIONAL(baseType, MDField, ); \ 4447 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4448 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4449 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4450 OPTIONAL(flags, DIFlagField, ); \ 4451 OPTIONAL(elements, MDField, ); \ 4452 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4453 OPTIONAL(vtableHolder, MDField, ); \ 4454 OPTIONAL(templateParams, MDField, ); \ 4455 OPTIONAL(identifier, MDStringField, ); \ 4456 OPTIONAL(discriminator, MDField, ); 4457 PARSE_MD_FIELDS(); 4458 #undef VISIT_MD_FIELDS 4459 4460 // If this has an identifier try to build an ODR type. 4461 if (identifier.Val) 4462 if (auto *CT = DICompositeType::buildODRType( 4463 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4464 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4465 elements.Val, runtimeLang.Val, vtableHolder.Val, 4466 templateParams.Val, discriminator.Val)) { 4467 Result = CT; 4468 return false; 4469 } 4470 4471 // Create a new node, and save it in the context if it belongs in the type 4472 // map. 4473 Result = GET_OR_DISTINCT( 4474 DICompositeType, 4475 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4476 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4477 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4478 discriminator.Val)); 4479 return false; 4480 } 4481 4482 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4483 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4484 OPTIONAL(flags, DIFlagField, ); \ 4485 OPTIONAL(cc, DwarfCCField, ); \ 4486 REQUIRED(types, MDField, ); 4487 PARSE_MD_FIELDS(); 4488 #undef VISIT_MD_FIELDS 4489 4490 Result = GET_OR_DISTINCT(DISubroutineType, 4491 (Context, flags.Val, cc.Val, types.Val)); 4492 return false; 4493 } 4494 4495 /// ParseDIFileType: 4496 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4497 /// checksumkind: CSK_MD5, 4498 /// checksum: "000102030405060708090a0b0c0d0e0f", 4499 /// source: "source file contents") 4500 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4501 // The default constructed value for checksumkind is required, but will never 4502 // be used, as the parser checks if the field was actually Seen before using 4503 // the Val. 4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4505 REQUIRED(filename, MDStringField, ); \ 4506 REQUIRED(directory, MDStringField, ); \ 4507 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4508 OPTIONAL(checksum, MDStringField, ); \ 4509 OPTIONAL(source, MDStringField, ); 4510 PARSE_MD_FIELDS(); 4511 #undef VISIT_MD_FIELDS 4512 4513 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4514 if (checksumkind.Seen && checksum.Seen) 4515 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4516 else if (checksumkind.Seen || checksum.Seen) 4517 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4518 4519 Optional<MDString *> OptSource; 4520 if (source.Seen) 4521 OptSource = source.Val; 4522 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4523 OptChecksum, OptSource)); 4524 return false; 4525 } 4526 4527 /// ParseDICompileUnit: 4528 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4529 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4530 /// splitDebugFilename: "abc.debug", 4531 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4532 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4533 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4534 if (!IsDistinct) 4535 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4536 4537 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4538 REQUIRED(language, DwarfLangField, ); \ 4539 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4540 OPTIONAL(producer, MDStringField, ); \ 4541 OPTIONAL(isOptimized, MDBoolField, ); \ 4542 OPTIONAL(flags, MDStringField, ); \ 4543 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4544 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4545 OPTIONAL(emissionKind, EmissionKindField, ); \ 4546 OPTIONAL(enums, MDField, ); \ 4547 OPTIONAL(retainedTypes, MDField, ); \ 4548 OPTIONAL(globals, MDField, ); \ 4549 OPTIONAL(imports, MDField, ); \ 4550 OPTIONAL(macros, MDField, ); \ 4551 OPTIONAL(dwoId, MDUnsignedField, ); \ 4552 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4553 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4554 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4555 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4556 PARSE_MD_FIELDS(); 4557 #undef VISIT_MD_FIELDS 4558 4559 Result = DICompileUnit::getDistinct( 4560 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4561 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4562 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4563 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4564 debugBaseAddress.Val); 4565 return false; 4566 } 4567 4568 /// ParseDISubprogram: 4569 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4570 /// file: !1, line: 7, type: !2, isLocal: false, 4571 /// isDefinition: true, scopeLine: 8, containingType: !3, 4572 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4573 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4574 /// spFlags: 10, isOptimized: false, templateParams: !4, 4575 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4576 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4577 auto Loc = Lex.getLoc(); 4578 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4579 OPTIONAL(scope, MDField, ); \ 4580 OPTIONAL(name, MDStringField, ); \ 4581 OPTIONAL(linkageName, MDStringField, ); \ 4582 OPTIONAL(file, MDField, ); \ 4583 OPTIONAL(line, LineField, ); \ 4584 OPTIONAL(type, MDField, ); \ 4585 OPTIONAL(isLocal, MDBoolField, ); \ 4586 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4587 OPTIONAL(scopeLine, LineField, ); \ 4588 OPTIONAL(containingType, MDField, ); \ 4589 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4590 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4591 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4592 OPTIONAL(flags, DIFlagField, ); \ 4593 OPTIONAL(spFlags, DISPFlagField, ); \ 4594 OPTIONAL(isOptimized, MDBoolField, ); \ 4595 OPTIONAL(unit, MDField, ); \ 4596 OPTIONAL(templateParams, MDField, ); \ 4597 OPTIONAL(declaration, MDField, ); \ 4598 OPTIONAL(retainedNodes, MDField, ); \ 4599 OPTIONAL(thrownTypes, MDField, ); 4600 PARSE_MD_FIELDS(); 4601 #undef VISIT_MD_FIELDS 4602 4603 // An explicit spFlags field takes precedence over individual fields in 4604 // older IR versions. 4605 DISubprogram::DISPFlags SPFlags = 4606 spFlags.Seen ? spFlags.Val 4607 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4608 isOptimized.Val, virtuality.Val); 4609 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4610 return Lex.Error( 4611 Loc, 4612 "missing 'distinct', required for !DISubprogram that is a Definition"); 4613 Result = GET_OR_DISTINCT( 4614 DISubprogram, 4615 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4616 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4617 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4618 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4619 return false; 4620 } 4621 4622 /// ParseDILexicalBlock: 4623 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4624 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4625 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4626 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4627 OPTIONAL(file, MDField, ); \ 4628 OPTIONAL(line, LineField, ); \ 4629 OPTIONAL(column, ColumnField, ); 4630 PARSE_MD_FIELDS(); 4631 #undef VISIT_MD_FIELDS 4632 4633 Result = GET_OR_DISTINCT( 4634 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4635 return false; 4636 } 4637 4638 /// ParseDILexicalBlockFile: 4639 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4640 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4642 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4643 OPTIONAL(file, MDField, ); \ 4644 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4645 PARSE_MD_FIELDS(); 4646 #undef VISIT_MD_FIELDS 4647 4648 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4649 (Context, scope.Val, file.Val, discriminator.Val)); 4650 return false; 4651 } 4652 4653 /// ParseDINamespace: 4654 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4655 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4656 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4657 REQUIRED(scope, MDField, ); \ 4658 OPTIONAL(name, MDStringField, ); \ 4659 OPTIONAL(exportSymbols, MDBoolField, ); 4660 PARSE_MD_FIELDS(); 4661 #undef VISIT_MD_FIELDS 4662 4663 Result = GET_OR_DISTINCT(DINamespace, 4664 (Context, scope.Val, name.Val, exportSymbols.Val)); 4665 return false; 4666 } 4667 4668 /// ParseDIMacro: 4669 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4670 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4672 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4673 OPTIONAL(line, LineField, ); \ 4674 REQUIRED(name, MDStringField, ); \ 4675 OPTIONAL(value, MDStringField, ); 4676 PARSE_MD_FIELDS(); 4677 #undef VISIT_MD_FIELDS 4678 4679 Result = GET_OR_DISTINCT(DIMacro, 4680 (Context, type.Val, line.Val, name.Val, value.Val)); 4681 return false; 4682 } 4683 4684 /// ParseDIMacroFile: 4685 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4686 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4687 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4688 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4689 OPTIONAL(line, LineField, ); \ 4690 REQUIRED(file, MDField, ); \ 4691 OPTIONAL(nodes, MDField, ); 4692 PARSE_MD_FIELDS(); 4693 #undef VISIT_MD_FIELDS 4694 4695 Result = GET_OR_DISTINCT(DIMacroFile, 4696 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4697 return false; 4698 } 4699 4700 /// ParseDIModule: 4701 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4702 /// includePath: "/usr/include", isysroot: "/") 4703 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4704 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4705 REQUIRED(scope, MDField, ); \ 4706 REQUIRED(name, MDStringField, ); \ 4707 OPTIONAL(configMacros, MDStringField, ); \ 4708 OPTIONAL(includePath, MDStringField, ); \ 4709 OPTIONAL(isysroot, MDStringField, ); 4710 PARSE_MD_FIELDS(); 4711 #undef VISIT_MD_FIELDS 4712 4713 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4714 configMacros.Val, includePath.Val, isysroot.Val)); 4715 return false; 4716 } 4717 4718 /// ParseDITemplateTypeParameter: 4719 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4720 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4721 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4722 OPTIONAL(name, MDStringField, ); \ 4723 REQUIRED(type, MDField, ); 4724 PARSE_MD_FIELDS(); 4725 #undef VISIT_MD_FIELDS 4726 4727 Result = 4728 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4729 return false; 4730 } 4731 4732 /// ParseDITemplateValueParameter: 4733 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4734 /// name: "V", type: !1, value: i32 7) 4735 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4737 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4738 OPTIONAL(name, MDStringField, ); \ 4739 OPTIONAL(type, MDField, ); \ 4740 REQUIRED(value, MDField, ); 4741 PARSE_MD_FIELDS(); 4742 #undef VISIT_MD_FIELDS 4743 4744 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4745 (Context, tag.Val, name.Val, type.Val, value.Val)); 4746 return false; 4747 } 4748 4749 /// ParseDIGlobalVariable: 4750 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4751 /// file: !1, line: 7, type: !2, isLocal: false, 4752 /// isDefinition: true, templateParams: !3, 4753 /// declaration: !4, align: 8) 4754 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4755 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4756 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4757 OPTIONAL(scope, MDField, ); \ 4758 OPTIONAL(linkageName, MDStringField, ); \ 4759 OPTIONAL(file, MDField, ); \ 4760 OPTIONAL(line, LineField, ); \ 4761 OPTIONAL(type, MDField, ); \ 4762 OPTIONAL(isLocal, MDBoolField, ); \ 4763 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4764 OPTIONAL(templateParams, MDField, ); \ 4765 OPTIONAL(declaration, MDField, ); \ 4766 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4767 PARSE_MD_FIELDS(); 4768 #undef VISIT_MD_FIELDS 4769 4770 Result = 4771 GET_OR_DISTINCT(DIGlobalVariable, 4772 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4773 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4774 declaration.Val, templateParams.Val, align.Val)); 4775 return false; 4776 } 4777 4778 /// ParseDILocalVariable: 4779 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4780 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4781 /// align: 8) 4782 /// ::= !DILocalVariable(scope: !0, name: "foo", 4783 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4784 /// align: 8) 4785 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4786 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4787 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4788 OPTIONAL(name, MDStringField, ); \ 4789 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4790 OPTIONAL(file, MDField, ); \ 4791 OPTIONAL(line, LineField, ); \ 4792 OPTIONAL(type, MDField, ); \ 4793 OPTIONAL(flags, DIFlagField, ); \ 4794 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4795 PARSE_MD_FIELDS(); 4796 #undef VISIT_MD_FIELDS 4797 4798 Result = GET_OR_DISTINCT(DILocalVariable, 4799 (Context, scope.Val, name.Val, file.Val, line.Val, 4800 type.Val, arg.Val, flags.Val, align.Val)); 4801 return false; 4802 } 4803 4804 /// ParseDILabel: 4805 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4806 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4807 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4808 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4809 REQUIRED(name, MDStringField, ); \ 4810 REQUIRED(file, MDField, ); \ 4811 REQUIRED(line, LineField, ); 4812 PARSE_MD_FIELDS(); 4813 #undef VISIT_MD_FIELDS 4814 4815 Result = GET_OR_DISTINCT(DILabel, 4816 (Context, scope.Val, name.Val, file.Val, line.Val)); 4817 return false; 4818 } 4819 4820 /// ParseDIExpression: 4821 /// ::= !DIExpression(0, 7, -1) 4822 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4823 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4824 Lex.Lex(); 4825 4826 if (ParseToken(lltok::lparen, "expected '(' here")) 4827 return true; 4828 4829 SmallVector<uint64_t, 8> Elements; 4830 if (Lex.getKind() != lltok::rparen) 4831 do { 4832 if (Lex.getKind() == lltok::DwarfOp) { 4833 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4834 Lex.Lex(); 4835 Elements.push_back(Op); 4836 continue; 4837 } 4838 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4839 } 4840 4841 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4842 return TokError("expected unsigned integer"); 4843 4844 auto &U = Lex.getAPSIntVal(); 4845 if (U.ugt(UINT64_MAX)) 4846 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4847 Elements.push_back(U.getZExtValue()); 4848 Lex.Lex(); 4849 } while (EatIfPresent(lltok::comma)); 4850 4851 if (ParseToken(lltok::rparen, "expected ')' here")) 4852 return true; 4853 4854 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4855 return false; 4856 } 4857 4858 /// ParseDIGlobalVariableExpression: 4859 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4860 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4861 bool IsDistinct) { 4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4863 REQUIRED(var, MDField, ); \ 4864 REQUIRED(expr, MDField, ); 4865 PARSE_MD_FIELDS(); 4866 #undef VISIT_MD_FIELDS 4867 4868 Result = 4869 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4870 return false; 4871 } 4872 4873 /// ParseDIObjCProperty: 4874 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4875 /// getter: "getFoo", attributes: 7, type: !2) 4876 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4877 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4878 OPTIONAL(name, MDStringField, ); \ 4879 OPTIONAL(file, MDField, ); \ 4880 OPTIONAL(line, LineField, ); \ 4881 OPTIONAL(setter, MDStringField, ); \ 4882 OPTIONAL(getter, MDStringField, ); \ 4883 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4884 OPTIONAL(type, MDField, ); 4885 PARSE_MD_FIELDS(); 4886 #undef VISIT_MD_FIELDS 4887 4888 Result = GET_OR_DISTINCT(DIObjCProperty, 4889 (Context, name.Val, file.Val, line.Val, setter.Val, 4890 getter.Val, attributes.Val, type.Val)); 4891 return false; 4892 } 4893 4894 /// ParseDIImportedEntity: 4895 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4896 /// line: 7, name: "foo") 4897 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4898 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4899 REQUIRED(tag, DwarfTagField, ); \ 4900 REQUIRED(scope, MDField, ); \ 4901 OPTIONAL(entity, MDField, ); \ 4902 OPTIONAL(file, MDField, ); \ 4903 OPTIONAL(line, LineField, ); \ 4904 OPTIONAL(name, MDStringField, ); 4905 PARSE_MD_FIELDS(); 4906 #undef VISIT_MD_FIELDS 4907 4908 Result = GET_OR_DISTINCT( 4909 DIImportedEntity, 4910 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4911 return false; 4912 } 4913 4914 #undef PARSE_MD_FIELD 4915 #undef NOP_FIELD 4916 #undef REQUIRE_FIELD 4917 #undef DECLARE_FIELD 4918 4919 /// ParseMetadataAsValue 4920 /// ::= metadata i32 %local 4921 /// ::= metadata i32 @global 4922 /// ::= metadata i32 7 4923 /// ::= metadata !0 4924 /// ::= metadata !{...} 4925 /// ::= metadata !"string" 4926 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4927 // Note: the type 'metadata' has already been parsed. 4928 Metadata *MD; 4929 if (ParseMetadata(MD, &PFS)) 4930 return true; 4931 4932 V = MetadataAsValue::get(Context, MD); 4933 return false; 4934 } 4935 4936 /// ParseValueAsMetadata 4937 /// ::= i32 %local 4938 /// ::= i32 @global 4939 /// ::= i32 7 4940 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4941 PerFunctionState *PFS) { 4942 Type *Ty; 4943 LocTy Loc; 4944 if (ParseType(Ty, TypeMsg, Loc)) 4945 return true; 4946 if (Ty->isMetadataTy()) 4947 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4948 4949 Value *V; 4950 if (ParseValue(Ty, V, PFS)) 4951 return true; 4952 4953 MD = ValueAsMetadata::get(V); 4954 return false; 4955 } 4956 4957 /// ParseMetadata 4958 /// ::= i32 %local 4959 /// ::= i32 @global 4960 /// ::= i32 7 4961 /// ::= !42 4962 /// ::= !{...} 4963 /// ::= !"string" 4964 /// ::= !DILocation(...) 4965 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4966 if (Lex.getKind() == lltok::MetadataVar) { 4967 MDNode *N; 4968 if (ParseSpecializedMDNode(N)) 4969 return true; 4970 MD = N; 4971 return false; 4972 } 4973 4974 // ValueAsMetadata: 4975 // <type> <value> 4976 if (Lex.getKind() != lltok::exclaim) 4977 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4978 4979 // '!'. 4980 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4981 Lex.Lex(); 4982 4983 // MDString: 4984 // ::= '!' STRINGCONSTANT 4985 if (Lex.getKind() == lltok::StringConstant) { 4986 MDString *S; 4987 if (ParseMDString(S)) 4988 return true; 4989 MD = S; 4990 return false; 4991 } 4992 4993 // MDNode: 4994 // !{ ... } 4995 // !7 4996 MDNode *N; 4997 if (ParseMDNodeTail(N)) 4998 return true; 4999 MD = N; 5000 return false; 5001 } 5002 5003 //===----------------------------------------------------------------------===// 5004 // Function Parsing. 5005 //===----------------------------------------------------------------------===// 5006 5007 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5008 PerFunctionState *PFS, bool IsCall) { 5009 if (Ty->isFunctionTy()) 5010 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5011 5012 switch (ID.Kind) { 5013 case ValID::t_LocalID: 5014 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5015 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5016 return V == nullptr; 5017 case ValID::t_LocalName: 5018 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5019 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5020 return V == nullptr; 5021 case ValID::t_InlineAsm: { 5022 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5023 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5024 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5025 (ID.UIntVal >> 1) & 1, 5026 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5027 return false; 5028 } 5029 case ValID::t_GlobalName: 5030 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5031 return V == nullptr; 5032 case ValID::t_GlobalID: 5033 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5034 return V == nullptr; 5035 case ValID::t_APSInt: 5036 if (!Ty->isIntegerTy()) 5037 return Error(ID.Loc, "integer constant must have integer type"); 5038 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5039 V = ConstantInt::get(Context, ID.APSIntVal); 5040 return false; 5041 case ValID::t_APFloat: 5042 if (!Ty->isFloatingPointTy() || 5043 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5044 return Error(ID.Loc, "floating point constant invalid for type"); 5045 5046 // The lexer has no type info, so builds all half, float, and double FP 5047 // constants as double. Fix this here. Long double does not need this. 5048 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5049 bool Ignored; 5050 if (Ty->isHalfTy()) 5051 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5052 &Ignored); 5053 else if (Ty->isFloatTy()) 5054 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5055 &Ignored); 5056 } 5057 V = ConstantFP::get(Context, ID.APFloatVal); 5058 5059 if (V->getType() != Ty) 5060 return Error(ID.Loc, "floating point constant does not have type '" + 5061 getTypeString(Ty) + "'"); 5062 5063 return false; 5064 case ValID::t_Null: 5065 if (!Ty->isPointerTy()) 5066 return Error(ID.Loc, "null must be a pointer type"); 5067 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5068 return false; 5069 case ValID::t_Undef: 5070 // FIXME: LabelTy should not be a first-class type. 5071 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5072 return Error(ID.Loc, "invalid type for undef constant"); 5073 V = UndefValue::get(Ty); 5074 return false; 5075 case ValID::t_EmptyArray: 5076 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5077 return Error(ID.Loc, "invalid empty array initializer"); 5078 V = UndefValue::get(Ty); 5079 return false; 5080 case ValID::t_Zero: 5081 // FIXME: LabelTy should not be a first-class type. 5082 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5083 return Error(ID.Loc, "invalid type for null constant"); 5084 V = Constant::getNullValue(Ty); 5085 return false; 5086 case ValID::t_None: 5087 if (!Ty->isTokenTy()) 5088 return Error(ID.Loc, "invalid type for none constant"); 5089 V = Constant::getNullValue(Ty); 5090 return false; 5091 case ValID::t_Constant: 5092 if (ID.ConstantVal->getType() != Ty) 5093 return Error(ID.Loc, "constant expression type mismatch"); 5094 5095 V = ID.ConstantVal; 5096 return false; 5097 case ValID::t_ConstantStruct: 5098 case ValID::t_PackedConstantStruct: 5099 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5100 if (ST->getNumElements() != ID.UIntVal) 5101 return Error(ID.Loc, 5102 "initializer with struct type has wrong # elements"); 5103 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5104 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5105 5106 // Verify that the elements are compatible with the structtype. 5107 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5108 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5109 return Error(ID.Loc, "element " + Twine(i) + 5110 " of struct initializer doesn't match struct element type"); 5111 5112 V = ConstantStruct::get( 5113 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5114 } else 5115 return Error(ID.Loc, "constant expression type mismatch"); 5116 return false; 5117 } 5118 llvm_unreachable("Invalid ValID"); 5119 } 5120 5121 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5122 C = nullptr; 5123 ValID ID; 5124 auto Loc = Lex.getLoc(); 5125 if (ParseValID(ID, /*PFS=*/nullptr)) 5126 return true; 5127 switch (ID.Kind) { 5128 case ValID::t_APSInt: 5129 case ValID::t_APFloat: 5130 case ValID::t_Undef: 5131 case ValID::t_Constant: 5132 case ValID::t_ConstantStruct: 5133 case ValID::t_PackedConstantStruct: { 5134 Value *V; 5135 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5136 return true; 5137 assert(isa<Constant>(V) && "Expected a constant value"); 5138 C = cast<Constant>(V); 5139 return false; 5140 } 5141 case ValID::t_Null: 5142 C = Constant::getNullValue(Ty); 5143 return false; 5144 default: 5145 return Error(Loc, "expected a constant value"); 5146 } 5147 } 5148 5149 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5150 V = nullptr; 5151 ValID ID; 5152 return ParseValID(ID, PFS) || 5153 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5154 } 5155 5156 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5157 Type *Ty = nullptr; 5158 return ParseType(Ty) || 5159 ParseValue(Ty, V, PFS); 5160 } 5161 5162 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5163 PerFunctionState &PFS) { 5164 Value *V; 5165 Loc = Lex.getLoc(); 5166 if (ParseTypeAndValue(V, PFS)) return true; 5167 if (!isa<BasicBlock>(V)) 5168 return Error(Loc, "expected a basic block"); 5169 BB = cast<BasicBlock>(V); 5170 return false; 5171 } 5172 5173 /// FunctionHeader 5174 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5175 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5176 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5177 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5178 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5179 // Parse the linkage. 5180 LocTy LinkageLoc = Lex.getLoc(); 5181 unsigned Linkage; 5182 unsigned Visibility; 5183 unsigned DLLStorageClass; 5184 bool DSOLocal; 5185 AttrBuilder RetAttrs; 5186 unsigned CC; 5187 bool HasLinkage; 5188 Type *RetType = nullptr; 5189 LocTy RetTypeLoc = Lex.getLoc(); 5190 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5191 DSOLocal) || 5192 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5193 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5194 return true; 5195 5196 // Verify that the linkage is ok. 5197 switch ((GlobalValue::LinkageTypes)Linkage) { 5198 case GlobalValue::ExternalLinkage: 5199 break; // always ok. 5200 case GlobalValue::ExternalWeakLinkage: 5201 if (isDefine) 5202 return Error(LinkageLoc, "invalid linkage for function definition"); 5203 break; 5204 case GlobalValue::PrivateLinkage: 5205 case GlobalValue::InternalLinkage: 5206 case GlobalValue::AvailableExternallyLinkage: 5207 case GlobalValue::LinkOnceAnyLinkage: 5208 case GlobalValue::LinkOnceODRLinkage: 5209 case GlobalValue::WeakAnyLinkage: 5210 case GlobalValue::WeakODRLinkage: 5211 if (!isDefine) 5212 return Error(LinkageLoc, "invalid linkage for function declaration"); 5213 break; 5214 case GlobalValue::AppendingLinkage: 5215 case GlobalValue::CommonLinkage: 5216 return Error(LinkageLoc, "invalid function linkage type"); 5217 } 5218 5219 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5220 return Error(LinkageLoc, 5221 "symbol with local linkage must have default visibility"); 5222 5223 if (!FunctionType::isValidReturnType(RetType)) 5224 return Error(RetTypeLoc, "invalid function return type"); 5225 5226 LocTy NameLoc = Lex.getLoc(); 5227 5228 std::string FunctionName; 5229 if (Lex.getKind() == lltok::GlobalVar) { 5230 FunctionName = Lex.getStrVal(); 5231 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5232 unsigned NameID = Lex.getUIntVal(); 5233 5234 if (NameID != NumberedVals.size()) 5235 return TokError("function expected to be numbered '%" + 5236 Twine(NumberedVals.size()) + "'"); 5237 } else { 5238 return TokError("expected function name"); 5239 } 5240 5241 Lex.Lex(); 5242 5243 if (Lex.getKind() != lltok::lparen) 5244 return TokError("expected '(' in function argument list"); 5245 5246 SmallVector<ArgInfo, 8> ArgList; 5247 bool isVarArg; 5248 AttrBuilder FuncAttrs; 5249 std::vector<unsigned> FwdRefAttrGrps; 5250 LocTy BuiltinLoc; 5251 std::string Section; 5252 unsigned Alignment; 5253 std::string GC; 5254 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5255 unsigned AddrSpace = 0; 5256 Constant *Prefix = nullptr; 5257 Constant *Prologue = nullptr; 5258 Constant *PersonalityFn = nullptr; 5259 Comdat *C; 5260 5261 if (ParseArgumentList(ArgList, isVarArg) || 5262 ParseOptionalUnnamedAddr(UnnamedAddr) || 5263 ParseOptionalProgramAddrSpace(AddrSpace) || 5264 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5265 BuiltinLoc) || 5266 (EatIfPresent(lltok::kw_section) && 5267 ParseStringConstant(Section)) || 5268 parseOptionalComdat(FunctionName, C) || 5269 ParseOptionalAlignment(Alignment) || 5270 (EatIfPresent(lltok::kw_gc) && 5271 ParseStringConstant(GC)) || 5272 (EatIfPresent(lltok::kw_prefix) && 5273 ParseGlobalTypeAndValue(Prefix)) || 5274 (EatIfPresent(lltok::kw_prologue) && 5275 ParseGlobalTypeAndValue(Prologue)) || 5276 (EatIfPresent(lltok::kw_personality) && 5277 ParseGlobalTypeAndValue(PersonalityFn))) 5278 return true; 5279 5280 if (FuncAttrs.contains(Attribute::Builtin)) 5281 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5282 5283 // If the alignment was parsed as an attribute, move to the alignment field. 5284 if (FuncAttrs.hasAlignmentAttr()) { 5285 Alignment = FuncAttrs.getAlignment(); 5286 FuncAttrs.removeAttribute(Attribute::Alignment); 5287 } 5288 5289 // Okay, if we got here, the function is syntactically valid. Convert types 5290 // and do semantic checks. 5291 std::vector<Type*> ParamTypeList; 5292 SmallVector<AttributeSet, 8> Attrs; 5293 5294 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5295 ParamTypeList.push_back(ArgList[i].Ty); 5296 Attrs.push_back(ArgList[i].Attrs); 5297 } 5298 5299 AttributeList PAL = 5300 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5301 AttributeSet::get(Context, RetAttrs), Attrs); 5302 5303 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5304 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5305 5306 FunctionType *FT = 5307 FunctionType::get(RetType, ParamTypeList, isVarArg); 5308 PointerType *PFT = PointerType::get(FT, AddrSpace); 5309 5310 Fn = nullptr; 5311 if (!FunctionName.empty()) { 5312 // If this was a definition of a forward reference, remove the definition 5313 // from the forward reference table and fill in the forward ref. 5314 auto FRVI = ForwardRefVals.find(FunctionName); 5315 if (FRVI != ForwardRefVals.end()) { 5316 Fn = M->getFunction(FunctionName); 5317 if (!Fn) 5318 return Error(FRVI->second.second, "invalid forward reference to " 5319 "function as global value!"); 5320 if (Fn->getType() != PFT) 5321 return Error(FRVI->second.second, "invalid forward reference to " 5322 "function '" + FunctionName + "' with wrong type: " 5323 "expected '" + getTypeString(PFT) + "' but was '" + 5324 getTypeString(Fn->getType()) + "'"); 5325 ForwardRefVals.erase(FRVI); 5326 } else if ((Fn = M->getFunction(FunctionName))) { 5327 // Reject redefinitions. 5328 return Error(NameLoc, "invalid redefinition of function '" + 5329 FunctionName + "'"); 5330 } else if (M->getNamedValue(FunctionName)) { 5331 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5332 } 5333 5334 } else { 5335 // If this is a definition of a forward referenced function, make sure the 5336 // types agree. 5337 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5338 if (I != ForwardRefValIDs.end()) { 5339 Fn = cast<Function>(I->second.first); 5340 if (Fn->getType() != PFT) 5341 return Error(NameLoc, "type of definition and forward reference of '@" + 5342 Twine(NumberedVals.size()) + "' disagree: " 5343 "expected '" + getTypeString(PFT) + "' but was '" + 5344 getTypeString(Fn->getType()) + "'"); 5345 ForwardRefValIDs.erase(I); 5346 } 5347 } 5348 5349 if (!Fn) 5350 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5351 FunctionName, M); 5352 else // Move the forward-reference to the correct spot in the module. 5353 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5354 5355 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5356 5357 if (FunctionName.empty()) 5358 NumberedVals.push_back(Fn); 5359 5360 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5361 maybeSetDSOLocal(DSOLocal, *Fn); 5362 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5363 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5364 Fn->setCallingConv(CC); 5365 Fn->setAttributes(PAL); 5366 Fn->setUnnamedAddr(UnnamedAddr); 5367 Fn->setAlignment(Alignment); 5368 Fn->setSection(Section); 5369 Fn->setComdat(C); 5370 Fn->setPersonalityFn(PersonalityFn); 5371 if (!GC.empty()) Fn->setGC(GC); 5372 Fn->setPrefixData(Prefix); 5373 Fn->setPrologueData(Prologue); 5374 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5375 5376 // Add all of the arguments we parsed to the function. 5377 Function::arg_iterator ArgIt = Fn->arg_begin(); 5378 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5379 // If the argument has a name, insert it into the argument symbol table. 5380 if (ArgList[i].Name.empty()) continue; 5381 5382 // Set the name, if it conflicted, it will be auto-renamed. 5383 ArgIt->setName(ArgList[i].Name); 5384 5385 if (ArgIt->getName() != ArgList[i].Name) 5386 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5387 ArgList[i].Name + "'"); 5388 } 5389 5390 if (isDefine) 5391 return false; 5392 5393 // Check the declaration has no block address forward references. 5394 ValID ID; 5395 if (FunctionName.empty()) { 5396 ID.Kind = ValID::t_GlobalID; 5397 ID.UIntVal = NumberedVals.size() - 1; 5398 } else { 5399 ID.Kind = ValID::t_GlobalName; 5400 ID.StrVal = FunctionName; 5401 } 5402 auto Blocks = ForwardRefBlockAddresses.find(ID); 5403 if (Blocks != ForwardRefBlockAddresses.end()) 5404 return Error(Blocks->first.Loc, 5405 "cannot take blockaddress inside a declaration"); 5406 return false; 5407 } 5408 5409 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5410 ValID ID; 5411 if (FunctionNumber == -1) { 5412 ID.Kind = ValID::t_GlobalName; 5413 ID.StrVal = F.getName(); 5414 } else { 5415 ID.Kind = ValID::t_GlobalID; 5416 ID.UIntVal = FunctionNumber; 5417 } 5418 5419 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5420 if (Blocks == P.ForwardRefBlockAddresses.end()) 5421 return false; 5422 5423 for (const auto &I : Blocks->second) { 5424 const ValID &BBID = I.first; 5425 GlobalValue *GV = I.second; 5426 5427 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5428 "Expected local id or name"); 5429 BasicBlock *BB; 5430 if (BBID.Kind == ValID::t_LocalName) 5431 BB = GetBB(BBID.StrVal, BBID.Loc); 5432 else 5433 BB = GetBB(BBID.UIntVal, BBID.Loc); 5434 if (!BB) 5435 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5436 5437 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5438 GV->eraseFromParent(); 5439 } 5440 5441 P.ForwardRefBlockAddresses.erase(Blocks); 5442 return false; 5443 } 5444 5445 /// ParseFunctionBody 5446 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5447 bool LLParser::ParseFunctionBody(Function &Fn) { 5448 if (Lex.getKind() != lltok::lbrace) 5449 return TokError("expected '{' in function body"); 5450 Lex.Lex(); // eat the {. 5451 5452 int FunctionNumber = -1; 5453 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5454 5455 PerFunctionState PFS(*this, Fn, FunctionNumber); 5456 5457 // Resolve block addresses and allow basic blocks to be forward-declared 5458 // within this function. 5459 if (PFS.resolveForwardRefBlockAddresses()) 5460 return true; 5461 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5462 5463 // We need at least one basic block. 5464 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5465 return TokError("function body requires at least one basic block"); 5466 5467 while (Lex.getKind() != lltok::rbrace && 5468 Lex.getKind() != lltok::kw_uselistorder) 5469 if (ParseBasicBlock(PFS)) return true; 5470 5471 while (Lex.getKind() != lltok::rbrace) 5472 if (ParseUseListOrder(&PFS)) 5473 return true; 5474 5475 // Eat the }. 5476 Lex.Lex(); 5477 5478 // Verify function is ok. 5479 return PFS.FinishFunction(); 5480 } 5481 5482 /// ParseBasicBlock 5483 /// ::= LabelStr? Instruction* 5484 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5485 // If this basic block starts out with a name, remember it. 5486 std::string Name; 5487 LocTy NameLoc = Lex.getLoc(); 5488 if (Lex.getKind() == lltok::LabelStr) { 5489 Name = Lex.getStrVal(); 5490 Lex.Lex(); 5491 } 5492 5493 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5494 if (!BB) 5495 return Error(NameLoc, 5496 "unable to create block named '" + Name + "'"); 5497 5498 std::string NameStr; 5499 5500 // Parse the instructions in this block until we get a terminator. 5501 Instruction *Inst; 5502 do { 5503 // This instruction may have three possibilities for a name: a) none 5504 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5505 LocTy NameLoc = Lex.getLoc(); 5506 int NameID = -1; 5507 NameStr = ""; 5508 5509 if (Lex.getKind() == lltok::LocalVarID) { 5510 NameID = Lex.getUIntVal(); 5511 Lex.Lex(); 5512 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5513 return true; 5514 } else if (Lex.getKind() == lltok::LocalVar) { 5515 NameStr = Lex.getStrVal(); 5516 Lex.Lex(); 5517 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5518 return true; 5519 } 5520 5521 switch (ParseInstruction(Inst, BB, PFS)) { 5522 default: llvm_unreachable("Unknown ParseInstruction result!"); 5523 case InstError: return true; 5524 case InstNormal: 5525 BB->getInstList().push_back(Inst); 5526 5527 // With a normal result, we check to see if the instruction is followed by 5528 // a comma and metadata. 5529 if (EatIfPresent(lltok::comma)) 5530 if (ParseInstructionMetadata(*Inst)) 5531 return true; 5532 break; 5533 case InstExtraComma: 5534 BB->getInstList().push_back(Inst); 5535 5536 // If the instruction parser ate an extra comma at the end of it, it 5537 // *must* be followed by metadata. 5538 if (ParseInstructionMetadata(*Inst)) 5539 return true; 5540 break; 5541 } 5542 5543 // Set the name on the instruction. 5544 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5545 } while (!Inst->isTerminator()); 5546 5547 return false; 5548 } 5549 5550 //===----------------------------------------------------------------------===// 5551 // Instruction Parsing. 5552 //===----------------------------------------------------------------------===// 5553 5554 /// ParseInstruction - Parse one of the many different instructions. 5555 /// 5556 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5557 PerFunctionState &PFS) { 5558 lltok::Kind Token = Lex.getKind(); 5559 if (Token == lltok::Eof) 5560 return TokError("found end of file when expecting more instructions"); 5561 LocTy Loc = Lex.getLoc(); 5562 unsigned KeywordVal = Lex.getUIntVal(); 5563 Lex.Lex(); // Eat the keyword. 5564 5565 switch (Token) { 5566 default: return Error(Loc, "expected instruction opcode"); 5567 // Terminator Instructions. 5568 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5569 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5570 case lltok::kw_br: return ParseBr(Inst, PFS); 5571 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5572 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5573 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5574 case lltok::kw_resume: return ParseResume(Inst, PFS); 5575 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5576 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5577 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5578 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5579 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5580 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5581 // Unary Operators. 5582 case lltok::kw_fneg: { 5583 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5584 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2); 5585 if (Res != 0) 5586 return Res; 5587 if (FMF.any()) 5588 Inst->setFastMathFlags(FMF); 5589 return false; 5590 } 5591 // Binary Operators. 5592 case lltok::kw_add: 5593 case lltok::kw_sub: 5594 case lltok::kw_mul: 5595 case lltok::kw_shl: { 5596 bool NUW = EatIfPresent(lltok::kw_nuw); 5597 bool NSW = EatIfPresent(lltok::kw_nsw); 5598 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5599 5600 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5601 5602 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5603 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5604 return false; 5605 } 5606 case lltok::kw_fadd: 5607 case lltok::kw_fsub: 5608 case lltok::kw_fmul: 5609 case lltok::kw_fdiv: 5610 case lltok::kw_frem: { 5611 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5612 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5613 if (Res != 0) 5614 return Res; 5615 if (FMF.any()) 5616 Inst->setFastMathFlags(FMF); 5617 return 0; 5618 } 5619 5620 case lltok::kw_sdiv: 5621 case lltok::kw_udiv: 5622 case lltok::kw_lshr: 5623 case lltok::kw_ashr: { 5624 bool Exact = EatIfPresent(lltok::kw_exact); 5625 5626 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5627 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5628 return false; 5629 } 5630 5631 case lltok::kw_urem: 5632 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5633 case lltok::kw_and: 5634 case lltok::kw_or: 5635 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5636 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5637 case lltok::kw_fcmp: { 5638 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5639 int Res = ParseCompare(Inst, PFS, KeywordVal); 5640 if (Res != 0) 5641 return Res; 5642 if (FMF.any()) 5643 Inst->setFastMathFlags(FMF); 5644 return 0; 5645 } 5646 5647 // Casts. 5648 case lltok::kw_trunc: 5649 case lltok::kw_zext: 5650 case lltok::kw_sext: 5651 case lltok::kw_fptrunc: 5652 case lltok::kw_fpext: 5653 case lltok::kw_bitcast: 5654 case lltok::kw_addrspacecast: 5655 case lltok::kw_uitofp: 5656 case lltok::kw_sitofp: 5657 case lltok::kw_fptoui: 5658 case lltok::kw_fptosi: 5659 case lltok::kw_inttoptr: 5660 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5661 // Other. 5662 case lltok::kw_select: return ParseSelect(Inst, PFS); 5663 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5664 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5665 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5666 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5667 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5668 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5669 // Call. 5670 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5671 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5672 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5673 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5674 // Memory. 5675 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5676 case lltok::kw_load: return ParseLoad(Inst, PFS); 5677 case lltok::kw_store: return ParseStore(Inst, PFS); 5678 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5679 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5680 case lltok::kw_fence: return ParseFence(Inst, PFS); 5681 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5682 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5683 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5684 } 5685 } 5686 5687 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5688 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5689 if (Opc == Instruction::FCmp) { 5690 switch (Lex.getKind()) { 5691 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5692 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5693 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5694 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5695 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5696 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5697 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5698 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5699 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5700 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5701 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5702 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5703 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5704 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5705 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5706 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5707 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5708 } 5709 } else { 5710 switch (Lex.getKind()) { 5711 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5712 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5713 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5714 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5715 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5716 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5717 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5718 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5719 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5720 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5721 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5722 } 5723 } 5724 Lex.Lex(); 5725 return false; 5726 } 5727 5728 //===----------------------------------------------------------------------===// 5729 // Terminator Instructions. 5730 //===----------------------------------------------------------------------===// 5731 5732 /// ParseRet - Parse a return instruction. 5733 /// ::= 'ret' void (',' !dbg, !1)* 5734 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5735 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5736 PerFunctionState &PFS) { 5737 SMLoc TypeLoc = Lex.getLoc(); 5738 Type *Ty = nullptr; 5739 if (ParseType(Ty, true /*void allowed*/)) return true; 5740 5741 Type *ResType = PFS.getFunction().getReturnType(); 5742 5743 if (Ty->isVoidTy()) { 5744 if (!ResType->isVoidTy()) 5745 return Error(TypeLoc, "value doesn't match function result type '" + 5746 getTypeString(ResType) + "'"); 5747 5748 Inst = ReturnInst::Create(Context); 5749 return false; 5750 } 5751 5752 Value *RV; 5753 if (ParseValue(Ty, RV, PFS)) return true; 5754 5755 if (ResType != RV->getType()) 5756 return Error(TypeLoc, "value doesn't match function result type '" + 5757 getTypeString(ResType) + "'"); 5758 5759 Inst = ReturnInst::Create(Context, RV); 5760 return false; 5761 } 5762 5763 /// ParseBr 5764 /// ::= 'br' TypeAndValue 5765 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5766 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5767 LocTy Loc, Loc2; 5768 Value *Op0; 5769 BasicBlock *Op1, *Op2; 5770 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5771 5772 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5773 Inst = BranchInst::Create(BB); 5774 return false; 5775 } 5776 5777 if (Op0->getType() != Type::getInt1Ty(Context)) 5778 return Error(Loc, "branch condition must have 'i1' type"); 5779 5780 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5781 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5782 ParseToken(lltok::comma, "expected ',' after true destination") || 5783 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5784 return true; 5785 5786 Inst = BranchInst::Create(Op1, Op2, Op0); 5787 return false; 5788 } 5789 5790 /// ParseSwitch 5791 /// Instruction 5792 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5793 /// JumpTable 5794 /// ::= (TypeAndValue ',' TypeAndValue)* 5795 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5796 LocTy CondLoc, BBLoc; 5797 Value *Cond; 5798 BasicBlock *DefaultBB; 5799 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5800 ParseToken(lltok::comma, "expected ',' after switch condition") || 5801 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5802 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5803 return true; 5804 5805 if (!Cond->getType()->isIntegerTy()) 5806 return Error(CondLoc, "switch condition must have integer type"); 5807 5808 // Parse the jump table pairs. 5809 SmallPtrSet<Value*, 32> SeenCases; 5810 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5811 while (Lex.getKind() != lltok::rsquare) { 5812 Value *Constant; 5813 BasicBlock *DestBB; 5814 5815 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5816 ParseToken(lltok::comma, "expected ',' after case value") || 5817 ParseTypeAndBasicBlock(DestBB, PFS)) 5818 return true; 5819 5820 if (!SeenCases.insert(Constant).second) 5821 return Error(CondLoc, "duplicate case value in switch"); 5822 if (!isa<ConstantInt>(Constant)) 5823 return Error(CondLoc, "case value is not a constant integer"); 5824 5825 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5826 } 5827 5828 Lex.Lex(); // Eat the ']'. 5829 5830 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5831 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5832 SI->addCase(Table[i].first, Table[i].second); 5833 Inst = SI; 5834 return false; 5835 } 5836 5837 /// ParseIndirectBr 5838 /// Instruction 5839 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5840 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5841 LocTy AddrLoc; 5842 Value *Address; 5843 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5844 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5845 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5846 return true; 5847 5848 if (!Address->getType()->isPointerTy()) 5849 return Error(AddrLoc, "indirectbr address must have pointer type"); 5850 5851 // Parse the destination list. 5852 SmallVector<BasicBlock*, 16> DestList; 5853 5854 if (Lex.getKind() != lltok::rsquare) { 5855 BasicBlock *DestBB; 5856 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5857 return true; 5858 DestList.push_back(DestBB); 5859 5860 while (EatIfPresent(lltok::comma)) { 5861 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5862 return true; 5863 DestList.push_back(DestBB); 5864 } 5865 } 5866 5867 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5868 return true; 5869 5870 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5871 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5872 IBI->addDestination(DestList[i]); 5873 Inst = IBI; 5874 return false; 5875 } 5876 5877 /// ParseInvoke 5878 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5879 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5880 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5881 LocTy CallLoc = Lex.getLoc(); 5882 AttrBuilder RetAttrs, FnAttrs; 5883 std::vector<unsigned> FwdRefAttrGrps; 5884 LocTy NoBuiltinLoc; 5885 unsigned CC; 5886 unsigned InvokeAddrSpace; 5887 Type *RetType = nullptr; 5888 LocTy RetTypeLoc; 5889 ValID CalleeID; 5890 SmallVector<ParamInfo, 16> ArgList; 5891 SmallVector<OperandBundleDef, 2> BundleList; 5892 5893 BasicBlock *NormalBB, *UnwindBB; 5894 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5895 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 5896 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5897 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5898 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5899 NoBuiltinLoc) || 5900 ParseOptionalOperandBundles(BundleList, PFS) || 5901 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5902 ParseTypeAndBasicBlock(NormalBB, PFS) || 5903 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5904 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5905 return true; 5906 5907 // If RetType is a non-function pointer type, then this is the short syntax 5908 // for the call, which means that RetType is just the return type. Infer the 5909 // rest of the function argument types from the arguments that are present. 5910 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5911 if (!Ty) { 5912 // Pull out the types of all of the arguments... 5913 std::vector<Type*> ParamTypes; 5914 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5915 ParamTypes.push_back(ArgList[i].V->getType()); 5916 5917 if (!FunctionType::isValidReturnType(RetType)) 5918 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5919 5920 Ty = FunctionType::get(RetType, ParamTypes, false); 5921 } 5922 5923 CalleeID.FTy = Ty; 5924 5925 // Look up the callee. 5926 Value *Callee; 5927 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 5928 Callee, &PFS, /*IsCall=*/true)) 5929 return true; 5930 5931 // Set up the Attribute for the function. 5932 SmallVector<Value *, 8> Args; 5933 SmallVector<AttributeSet, 8> ArgAttrs; 5934 5935 // Loop through FunctionType's arguments and ensure they are specified 5936 // correctly. Also, gather any parameter attributes. 5937 FunctionType::param_iterator I = Ty->param_begin(); 5938 FunctionType::param_iterator E = Ty->param_end(); 5939 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5940 Type *ExpectedTy = nullptr; 5941 if (I != E) { 5942 ExpectedTy = *I++; 5943 } else if (!Ty->isVarArg()) { 5944 return Error(ArgList[i].Loc, "too many arguments specified"); 5945 } 5946 5947 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5948 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5949 getTypeString(ExpectedTy) + "'"); 5950 Args.push_back(ArgList[i].V); 5951 ArgAttrs.push_back(ArgList[i].Attrs); 5952 } 5953 5954 if (I != E) 5955 return Error(CallLoc, "not enough parameters specified for call"); 5956 5957 if (FnAttrs.hasAlignmentAttr()) 5958 return Error(CallLoc, "invoke instructions may not have an alignment"); 5959 5960 // Finish off the Attribute and check them 5961 AttributeList PAL = 5962 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5963 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5964 5965 InvokeInst *II = 5966 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5967 II->setCallingConv(CC); 5968 II->setAttributes(PAL); 5969 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5970 Inst = II; 5971 return false; 5972 } 5973 5974 /// ParseResume 5975 /// ::= 'resume' TypeAndValue 5976 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5977 Value *Exn; LocTy ExnLoc; 5978 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5979 return true; 5980 5981 ResumeInst *RI = ResumeInst::Create(Exn); 5982 Inst = RI; 5983 return false; 5984 } 5985 5986 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5987 PerFunctionState &PFS) { 5988 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5989 return true; 5990 5991 while (Lex.getKind() != lltok::rsquare) { 5992 // If this isn't the first argument, we need a comma. 5993 if (!Args.empty() && 5994 ParseToken(lltok::comma, "expected ',' in argument list")) 5995 return true; 5996 5997 // Parse the argument. 5998 LocTy ArgLoc; 5999 Type *ArgTy = nullptr; 6000 if (ParseType(ArgTy, ArgLoc)) 6001 return true; 6002 6003 Value *V; 6004 if (ArgTy->isMetadataTy()) { 6005 if (ParseMetadataAsValue(V, PFS)) 6006 return true; 6007 } else { 6008 if (ParseValue(ArgTy, V, PFS)) 6009 return true; 6010 } 6011 Args.push_back(V); 6012 } 6013 6014 Lex.Lex(); // Lex the ']'. 6015 return false; 6016 } 6017 6018 /// ParseCleanupRet 6019 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6020 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6021 Value *CleanupPad = nullptr; 6022 6023 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6024 return true; 6025 6026 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6027 return true; 6028 6029 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6030 return true; 6031 6032 BasicBlock *UnwindBB = nullptr; 6033 if (Lex.getKind() == lltok::kw_to) { 6034 Lex.Lex(); 6035 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6036 return true; 6037 } else { 6038 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6039 return true; 6040 } 6041 } 6042 6043 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6044 return false; 6045 } 6046 6047 /// ParseCatchRet 6048 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6049 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6050 Value *CatchPad = nullptr; 6051 6052 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6053 return true; 6054 6055 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6056 return true; 6057 6058 BasicBlock *BB; 6059 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6060 ParseTypeAndBasicBlock(BB, PFS)) 6061 return true; 6062 6063 Inst = CatchReturnInst::Create(CatchPad, BB); 6064 return false; 6065 } 6066 6067 /// ParseCatchSwitch 6068 /// ::= 'catchswitch' within Parent 6069 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6070 Value *ParentPad; 6071 6072 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6073 return true; 6074 6075 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6076 Lex.getKind() != lltok::LocalVarID) 6077 return TokError("expected scope value for catchswitch"); 6078 6079 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6080 return true; 6081 6082 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6083 return true; 6084 6085 SmallVector<BasicBlock *, 32> Table; 6086 do { 6087 BasicBlock *DestBB; 6088 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6089 return true; 6090 Table.push_back(DestBB); 6091 } while (EatIfPresent(lltok::comma)); 6092 6093 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6094 return true; 6095 6096 if (ParseToken(lltok::kw_unwind, 6097 "expected 'unwind' after catchswitch scope")) 6098 return true; 6099 6100 BasicBlock *UnwindBB = nullptr; 6101 if (EatIfPresent(lltok::kw_to)) { 6102 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6103 return true; 6104 } else { 6105 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6106 return true; 6107 } 6108 6109 auto *CatchSwitch = 6110 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6111 for (BasicBlock *DestBB : Table) 6112 CatchSwitch->addHandler(DestBB); 6113 Inst = CatchSwitch; 6114 return false; 6115 } 6116 6117 /// ParseCatchPad 6118 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6119 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6120 Value *CatchSwitch = nullptr; 6121 6122 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6123 return true; 6124 6125 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6126 return TokError("expected scope value for catchpad"); 6127 6128 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6129 return true; 6130 6131 SmallVector<Value *, 8> Args; 6132 if (ParseExceptionArgs(Args, PFS)) 6133 return true; 6134 6135 Inst = CatchPadInst::Create(CatchSwitch, Args); 6136 return false; 6137 } 6138 6139 /// ParseCleanupPad 6140 /// ::= 'cleanuppad' within Parent ParamList 6141 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6142 Value *ParentPad = nullptr; 6143 6144 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6145 return true; 6146 6147 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6148 Lex.getKind() != lltok::LocalVarID) 6149 return TokError("expected scope value for cleanuppad"); 6150 6151 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6152 return true; 6153 6154 SmallVector<Value *, 8> Args; 6155 if (ParseExceptionArgs(Args, PFS)) 6156 return true; 6157 6158 Inst = CleanupPadInst::Create(ParentPad, Args); 6159 return false; 6160 } 6161 6162 //===----------------------------------------------------------------------===// 6163 // Unary Operators. 6164 //===----------------------------------------------------------------------===// 6165 6166 /// ParseUnaryOp 6167 /// ::= UnaryOp TypeAndValue ',' Value 6168 /// 6169 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6170 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6171 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6172 unsigned Opc, unsigned OperandType) { 6173 LocTy Loc; Value *LHS; 6174 if (ParseTypeAndValue(LHS, Loc, PFS)) 6175 return true; 6176 6177 bool Valid; 6178 switch (OperandType) { 6179 default: llvm_unreachable("Unknown operand type!"); 6180 case 0: // int or FP. 6181 Valid = LHS->getType()->isIntOrIntVectorTy() || 6182 LHS->getType()->isFPOrFPVectorTy(); 6183 break; 6184 case 1: 6185 Valid = LHS->getType()->isIntOrIntVectorTy(); 6186 break; 6187 case 2: 6188 Valid = LHS->getType()->isFPOrFPVectorTy(); 6189 break; 6190 } 6191 6192 if (!Valid) 6193 return Error(Loc, "invalid operand type for instruction"); 6194 6195 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6196 return false; 6197 } 6198 6199 /// ParseCallBr 6200 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6201 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6202 /// '[' LabelList ']' 6203 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6204 LocTy CallLoc = Lex.getLoc(); 6205 AttrBuilder RetAttrs, FnAttrs; 6206 std::vector<unsigned> FwdRefAttrGrps; 6207 LocTy NoBuiltinLoc; 6208 unsigned CC; 6209 Type *RetType = nullptr; 6210 LocTy RetTypeLoc; 6211 ValID CalleeID; 6212 SmallVector<ParamInfo, 16> ArgList; 6213 SmallVector<OperandBundleDef, 2> BundleList; 6214 6215 BasicBlock *DefaultDest; 6216 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6217 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6218 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6219 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6220 NoBuiltinLoc) || 6221 ParseOptionalOperandBundles(BundleList, PFS) || 6222 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6223 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6224 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6225 return true; 6226 6227 // Parse the destination list. 6228 SmallVector<BasicBlock *, 16> IndirectDests; 6229 6230 if (Lex.getKind() != lltok::rsquare) { 6231 BasicBlock *DestBB; 6232 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6233 return true; 6234 IndirectDests.push_back(DestBB); 6235 6236 while (EatIfPresent(lltok::comma)) { 6237 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6238 return true; 6239 IndirectDests.push_back(DestBB); 6240 } 6241 } 6242 6243 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6244 return true; 6245 6246 // If RetType is a non-function pointer type, then this is the short syntax 6247 // for the call, which means that RetType is just the return type. Infer the 6248 // rest of the function argument types from the arguments that are present. 6249 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6250 if (!Ty) { 6251 // Pull out the types of all of the arguments... 6252 std::vector<Type *> ParamTypes; 6253 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6254 ParamTypes.push_back(ArgList[i].V->getType()); 6255 6256 if (!FunctionType::isValidReturnType(RetType)) 6257 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6258 6259 Ty = FunctionType::get(RetType, ParamTypes, false); 6260 } 6261 6262 CalleeID.FTy = Ty; 6263 6264 // Look up the callee. 6265 Value *Callee; 6266 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6267 /*IsCall=*/true)) 6268 return true; 6269 6270 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6271 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6272 6273 // Set up the Attribute for the function. 6274 SmallVector<Value *, 8> Args; 6275 SmallVector<AttributeSet, 8> ArgAttrs; 6276 6277 // Loop through FunctionType's arguments and ensure they are specified 6278 // correctly. Also, gather any parameter attributes. 6279 FunctionType::param_iterator I = Ty->param_begin(); 6280 FunctionType::param_iterator E = Ty->param_end(); 6281 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6282 Type *ExpectedTy = nullptr; 6283 if (I != E) { 6284 ExpectedTy = *I++; 6285 } else if (!Ty->isVarArg()) { 6286 return Error(ArgList[i].Loc, "too many arguments specified"); 6287 } 6288 6289 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6290 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6291 getTypeString(ExpectedTy) + "'"); 6292 Args.push_back(ArgList[i].V); 6293 ArgAttrs.push_back(ArgList[i].Attrs); 6294 } 6295 6296 if (I != E) 6297 return Error(CallLoc, "not enough parameters specified for call"); 6298 6299 if (FnAttrs.hasAlignmentAttr()) 6300 return Error(CallLoc, "callbr instructions may not have an alignment"); 6301 6302 // Finish off the Attribute and check them 6303 AttributeList PAL = 6304 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6305 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6306 6307 CallBrInst *CBI = 6308 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6309 BundleList); 6310 CBI->setCallingConv(CC); 6311 CBI->setAttributes(PAL); 6312 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6313 Inst = CBI; 6314 return false; 6315 } 6316 6317 //===----------------------------------------------------------------------===// 6318 // Binary Operators. 6319 //===----------------------------------------------------------------------===// 6320 6321 /// ParseArithmetic 6322 /// ::= ArithmeticOps TypeAndValue ',' Value 6323 /// 6324 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6325 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6326 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6327 unsigned Opc, unsigned OperandType) { 6328 LocTy Loc; Value *LHS, *RHS; 6329 if (ParseTypeAndValue(LHS, Loc, PFS) || 6330 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6331 ParseValue(LHS->getType(), RHS, PFS)) 6332 return true; 6333 6334 bool Valid; 6335 switch (OperandType) { 6336 default: llvm_unreachable("Unknown operand type!"); 6337 case 0: // int or FP. 6338 Valid = LHS->getType()->isIntOrIntVectorTy() || 6339 LHS->getType()->isFPOrFPVectorTy(); 6340 break; 6341 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6342 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6343 } 6344 6345 if (!Valid) 6346 return Error(Loc, "invalid operand type for instruction"); 6347 6348 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6349 return false; 6350 } 6351 6352 /// ParseLogical 6353 /// ::= ArithmeticOps TypeAndValue ',' Value { 6354 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6355 unsigned Opc) { 6356 LocTy Loc; Value *LHS, *RHS; 6357 if (ParseTypeAndValue(LHS, Loc, PFS) || 6358 ParseToken(lltok::comma, "expected ',' in logical operation") || 6359 ParseValue(LHS->getType(), RHS, PFS)) 6360 return true; 6361 6362 if (!LHS->getType()->isIntOrIntVectorTy()) 6363 return Error(Loc,"instruction requires integer or integer vector operands"); 6364 6365 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6366 return false; 6367 } 6368 6369 /// ParseCompare 6370 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6371 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6372 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6373 unsigned Opc) { 6374 // Parse the integer/fp comparison predicate. 6375 LocTy Loc; 6376 unsigned Pred; 6377 Value *LHS, *RHS; 6378 if (ParseCmpPredicate(Pred, Opc) || 6379 ParseTypeAndValue(LHS, Loc, PFS) || 6380 ParseToken(lltok::comma, "expected ',' after compare value") || 6381 ParseValue(LHS->getType(), RHS, PFS)) 6382 return true; 6383 6384 if (Opc == Instruction::FCmp) { 6385 if (!LHS->getType()->isFPOrFPVectorTy()) 6386 return Error(Loc, "fcmp requires floating point operands"); 6387 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6388 } else { 6389 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6390 if (!LHS->getType()->isIntOrIntVectorTy() && 6391 !LHS->getType()->isPtrOrPtrVectorTy()) 6392 return Error(Loc, "icmp requires integer operands"); 6393 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6394 } 6395 return false; 6396 } 6397 6398 //===----------------------------------------------------------------------===// 6399 // Other Instructions. 6400 //===----------------------------------------------------------------------===// 6401 6402 6403 /// ParseCast 6404 /// ::= CastOpc TypeAndValue 'to' Type 6405 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6406 unsigned Opc) { 6407 LocTy Loc; 6408 Value *Op; 6409 Type *DestTy = nullptr; 6410 if (ParseTypeAndValue(Op, Loc, PFS) || 6411 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6412 ParseType(DestTy)) 6413 return true; 6414 6415 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6416 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6417 return Error(Loc, "invalid cast opcode for cast from '" + 6418 getTypeString(Op->getType()) + "' to '" + 6419 getTypeString(DestTy) + "'"); 6420 } 6421 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6422 return false; 6423 } 6424 6425 /// ParseSelect 6426 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6427 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6428 LocTy Loc; 6429 Value *Op0, *Op1, *Op2; 6430 if (ParseTypeAndValue(Op0, Loc, PFS) || 6431 ParseToken(lltok::comma, "expected ',' after select condition") || 6432 ParseTypeAndValue(Op1, PFS) || 6433 ParseToken(lltok::comma, "expected ',' after select value") || 6434 ParseTypeAndValue(Op2, PFS)) 6435 return true; 6436 6437 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6438 return Error(Loc, Reason); 6439 6440 Inst = SelectInst::Create(Op0, Op1, Op2); 6441 return false; 6442 } 6443 6444 /// ParseVA_Arg 6445 /// ::= 'va_arg' TypeAndValue ',' Type 6446 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6447 Value *Op; 6448 Type *EltTy = nullptr; 6449 LocTy TypeLoc; 6450 if (ParseTypeAndValue(Op, PFS) || 6451 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6452 ParseType(EltTy, TypeLoc)) 6453 return true; 6454 6455 if (!EltTy->isFirstClassType()) 6456 return Error(TypeLoc, "va_arg requires operand with first class type"); 6457 6458 Inst = new VAArgInst(Op, EltTy); 6459 return false; 6460 } 6461 6462 /// ParseExtractElement 6463 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6464 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6465 LocTy Loc; 6466 Value *Op0, *Op1; 6467 if (ParseTypeAndValue(Op0, Loc, PFS) || 6468 ParseToken(lltok::comma, "expected ',' after extract value") || 6469 ParseTypeAndValue(Op1, PFS)) 6470 return true; 6471 6472 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6473 return Error(Loc, "invalid extractelement operands"); 6474 6475 Inst = ExtractElementInst::Create(Op0, Op1); 6476 return false; 6477 } 6478 6479 /// ParseInsertElement 6480 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6481 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6482 LocTy Loc; 6483 Value *Op0, *Op1, *Op2; 6484 if (ParseTypeAndValue(Op0, Loc, PFS) || 6485 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6486 ParseTypeAndValue(Op1, PFS) || 6487 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6488 ParseTypeAndValue(Op2, PFS)) 6489 return true; 6490 6491 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6492 return Error(Loc, "invalid insertelement operands"); 6493 6494 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6495 return false; 6496 } 6497 6498 /// ParseShuffleVector 6499 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6500 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6501 LocTy Loc; 6502 Value *Op0, *Op1, *Op2; 6503 if (ParseTypeAndValue(Op0, Loc, PFS) || 6504 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6505 ParseTypeAndValue(Op1, PFS) || 6506 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6507 ParseTypeAndValue(Op2, PFS)) 6508 return true; 6509 6510 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6511 return Error(Loc, "invalid shufflevector operands"); 6512 6513 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6514 return false; 6515 } 6516 6517 /// ParsePHI 6518 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6519 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6520 Type *Ty = nullptr; LocTy TypeLoc; 6521 Value *Op0, *Op1; 6522 6523 if (ParseType(Ty, TypeLoc) || 6524 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6525 ParseValue(Ty, Op0, PFS) || 6526 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6527 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6528 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6529 return true; 6530 6531 bool AteExtraComma = false; 6532 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6533 6534 while (true) { 6535 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6536 6537 if (!EatIfPresent(lltok::comma)) 6538 break; 6539 6540 if (Lex.getKind() == lltok::MetadataVar) { 6541 AteExtraComma = true; 6542 break; 6543 } 6544 6545 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6546 ParseValue(Ty, Op0, PFS) || 6547 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6548 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6549 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6550 return true; 6551 } 6552 6553 if (!Ty->isFirstClassType()) 6554 return Error(TypeLoc, "phi node must have first class type"); 6555 6556 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6557 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6558 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6559 Inst = PN; 6560 return AteExtraComma ? InstExtraComma : InstNormal; 6561 } 6562 6563 /// ParseLandingPad 6564 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6565 /// Clause 6566 /// ::= 'catch' TypeAndValue 6567 /// ::= 'filter' 6568 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6569 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6570 Type *Ty = nullptr; LocTy TyLoc; 6571 6572 if (ParseType(Ty, TyLoc)) 6573 return true; 6574 6575 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6576 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6577 6578 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6579 LandingPadInst::ClauseType CT; 6580 if (EatIfPresent(lltok::kw_catch)) 6581 CT = LandingPadInst::Catch; 6582 else if (EatIfPresent(lltok::kw_filter)) 6583 CT = LandingPadInst::Filter; 6584 else 6585 return TokError("expected 'catch' or 'filter' clause type"); 6586 6587 Value *V; 6588 LocTy VLoc; 6589 if (ParseTypeAndValue(V, VLoc, PFS)) 6590 return true; 6591 6592 // A 'catch' type expects a non-array constant. A filter clause expects an 6593 // array constant. 6594 if (CT == LandingPadInst::Catch) { 6595 if (isa<ArrayType>(V->getType())) 6596 Error(VLoc, "'catch' clause has an invalid type"); 6597 } else { 6598 if (!isa<ArrayType>(V->getType())) 6599 Error(VLoc, "'filter' clause has an invalid type"); 6600 } 6601 6602 Constant *CV = dyn_cast<Constant>(V); 6603 if (!CV) 6604 return Error(VLoc, "clause argument must be a constant"); 6605 LP->addClause(CV); 6606 } 6607 6608 Inst = LP.release(); 6609 return false; 6610 } 6611 6612 /// ParseCall 6613 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6614 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6615 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6616 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6617 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6618 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6619 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6620 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6621 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6622 CallInst::TailCallKind TCK) { 6623 AttrBuilder RetAttrs, FnAttrs; 6624 std::vector<unsigned> FwdRefAttrGrps; 6625 LocTy BuiltinLoc; 6626 unsigned CallAddrSpace; 6627 unsigned CC; 6628 Type *RetType = nullptr; 6629 LocTy RetTypeLoc; 6630 ValID CalleeID; 6631 SmallVector<ParamInfo, 16> ArgList; 6632 SmallVector<OperandBundleDef, 2> BundleList; 6633 LocTy CallLoc = Lex.getLoc(); 6634 6635 if (TCK != CallInst::TCK_None && 6636 ParseToken(lltok::kw_call, 6637 "expected 'tail call', 'musttail call', or 'notail call'")) 6638 return true; 6639 6640 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6641 6642 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6643 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6644 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6645 ParseValID(CalleeID) || 6646 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6647 PFS.getFunction().isVarArg()) || 6648 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6649 ParseOptionalOperandBundles(BundleList, PFS)) 6650 return true; 6651 6652 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6653 return Error(CallLoc, "fast-math-flags specified for call without " 6654 "floating-point scalar or vector return type"); 6655 6656 // If RetType is a non-function pointer type, then this is the short syntax 6657 // for the call, which means that RetType is just the return type. Infer the 6658 // rest of the function argument types from the arguments that are present. 6659 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6660 if (!Ty) { 6661 // Pull out the types of all of the arguments... 6662 std::vector<Type*> ParamTypes; 6663 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6664 ParamTypes.push_back(ArgList[i].V->getType()); 6665 6666 if (!FunctionType::isValidReturnType(RetType)) 6667 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6668 6669 Ty = FunctionType::get(RetType, ParamTypes, false); 6670 } 6671 6672 CalleeID.FTy = Ty; 6673 6674 // Look up the callee. 6675 Value *Callee; 6676 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6677 &PFS, /*IsCall=*/true)) 6678 return true; 6679 6680 // Set up the Attribute for the function. 6681 SmallVector<AttributeSet, 8> Attrs; 6682 6683 SmallVector<Value*, 8> Args; 6684 6685 // Loop through FunctionType's arguments and ensure they are specified 6686 // correctly. Also, gather any parameter attributes. 6687 FunctionType::param_iterator I = Ty->param_begin(); 6688 FunctionType::param_iterator E = Ty->param_end(); 6689 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6690 Type *ExpectedTy = nullptr; 6691 if (I != E) { 6692 ExpectedTy = *I++; 6693 } else if (!Ty->isVarArg()) { 6694 return Error(ArgList[i].Loc, "too many arguments specified"); 6695 } 6696 6697 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6698 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6699 getTypeString(ExpectedTy) + "'"); 6700 Args.push_back(ArgList[i].V); 6701 Attrs.push_back(ArgList[i].Attrs); 6702 } 6703 6704 if (I != E) 6705 return Error(CallLoc, "not enough parameters specified for call"); 6706 6707 if (FnAttrs.hasAlignmentAttr()) 6708 return Error(CallLoc, "call instructions may not have an alignment"); 6709 6710 // Finish off the Attribute and check them 6711 AttributeList PAL = 6712 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6713 AttributeSet::get(Context, RetAttrs), Attrs); 6714 6715 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6716 CI->setTailCallKind(TCK); 6717 CI->setCallingConv(CC); 6718 if (FMF.any()) 6719 CI->setFastMathFlags(FMF); 6720 CI->setAttributes(PAL); 6721 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6722 Inst = CI; 6723 return false; 6724 } 6725 6726 //===----------------------------------------------------------------------===// 6727 // Memory Instructions. 6728 //===----------------------------------------------------------------------===// 6729 6730 /// ParseAlloc 6731 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6732 /// (',' 'align' i32)? (',', 'addrspace(n))? 6733 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6734 Value *Size = nullptr; 6735 LocTy SizeLoc, TyLoc, ASLoc; 6736 unsigned Alignment = 0; 6737 unsigned AddrSpace = 0; 6738 Type *Ty = nullptr; 6739 6740 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6741 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6742 6743 if (ParseType(Ty, TyLoc)) return true; 6744 6745 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6746 return Error(TyLoc, "invalid type for alloca"); 6747 6748 bool AteExtraComma = false; 6749 if (EatIfPresent(lltok::comma)) { 6750 if (Lex.getKind() == lltok::kw_align) { 6751 if (ParseOptionalAlignment(Alignment)) 6752 return true; 6753 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6754 return true; 6755 } else if (Lex.getKind() == lltok::kw_addrspace) { 6756 ASLoc = Lex.getLoc(); 6757 if (ParseOptionalAddrSpace(AddrSpace)) 6758 return true; 6759 } else if (Lex.getKind() == lltok::MetadataVar) { 6760 AteExtraComma = true; 6761 } else { 6762 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6763 return true; 6764 if (EatIfPresent(lltok::comma)) { 6765 if (Lex.getKind() == lltok::kw_align) { 6766 if (ParseOptionalAlignment(Alignment)) 6767 return true; 6768 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6769 return true; 6770 } else if (Lex.getKind() == lltok::kw_addrspace) { 6771 ASLoc = Lex.getLoc(); 6772 if (ParseOptionalAddrSpace(AddrSpace)) 6773 return true; 6774 } else if (Lex.getKind() == lltok::MetadataVar) { 6775 AteExtraComma = true; 6776 } 6777 } 6778 } 6779 } 6780 6781 if (Size && !Size->getType()->isIntegerTy()) 6782 return Error(SizeLoc, "element count must have integer type"); 6783 6784 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6785 AI->setUsedWithInAlloca(IsInAlloca); 6786 AI->setSwiftError(IsSwiftError); 6787 Inst = AI; 6788 return AteExtraComma ? InstExtraComma : InstNormal; 6789 } 6790 6791 /// ParseLoad 6792 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6793 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6794 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6795 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6796 Value *Val; LocTy Loc; 6797 unsigned Alignment = 0; 6798 bool AteExtraComma = false; 6799 bool isAtomic = false; 6800 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6801 SyncScope::ID SSID = SyncScope::System; 6802 6803 if (Lex.getKind() == lltok::kw_atomic) { 6804 isAtomic = true; 6805 Lex.Lex(); 6806 } 6807 6808 bool isVolatile = false; 6809 if (Lex.getKind() == lltok::kw_volatile) { 6810 isVolatile = true; 6811 Lex.Lex(); 6812 } 6813 6814 Type *Ty; 6815 LocTy ExplicitTypeLoc = Lex.getLoc(); 6816 if (ParseType(Ty) || 6817 ParseToken(lltok::comma, "expected comma after load's type") || 6818 ParseTypeAndValue(Val, Loc, PFS) || 6819 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6820 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6821 return true; 6822 6823 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6824 return Error(Loc, "load operand must be a pointer to a first class type"); 6825 if (isAtomic && !Alignment) 6826 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6827 if (Ordering == AtomicOrdering::Release || 6828 Ordering == AtomicOrdering::AcquireRelease) 6829 return Error(Loc, "atomic load cannot use Release ordering"); 6830 6831 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6832 return Error(ExplicitTypeLoc, 6833 "explicit pointee type doesn't match operand's pointee type"); 6834 6835 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6836 return AteExtraComma ? InstExtraComma : InstNormal; 6837 } 6838 6839 /// ParseStore 6840 6841 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6842 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6843 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6844 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6845 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6846 unsigned Alignment = 0; 6847 bool AteExtraComma = false; 6848 bool isAtomic = false; 6849 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6850 SyncScope::ID SSID = SyncScope::System; 6851 6852 if (Lex.getKind() == lltok::kw_atomic) { 6853 isAtomic = true; 6854 Lex.Lex(); 6855 } 6856 6857 bool isVolatile = false; 6858 if (Lex.getKind() == lltok::kw_volatile) { 6859 isVolatile = true; 6860 Lex.Lex(); 6861 } 6862 6863 if (ParseTypeAndValue(Val, Loc, PFS) || 6864 ParseToken(lltok::comma, "expected ',' after store operand") || 6865 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6866 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6867 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6868 return true; 6869 6870 if (!Ptr->getType()->isPointerTy()) 6871 return Error(PtrLoc, "store operand must be a pointer"); 6872 if (!Val->getType()->isFirstClassType()) 6873 return Error(Loc, "store operand must be a first class value"); 6874 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6875 return Error(Loc, "stored value and pointer type do not match"); 6876 if (isAtomic && !Alignment) 6877 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6878 if (Ordering == AtomicOrdering::Acquire || 6879 Ordering == AtomicOrdering::AcquireRelease) 6880 return Error(Loc, "atomic store cannot use Acquire ordering"); 6881 6882 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6883 return AteExtraComma ? InstExtraComma : InstNormal; 6884 } 6885 6886 /// ParseCmpXchg 6887 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6888 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6889 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6890 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6891 bool AteExtraComma = false; 6892 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6893 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6894 SyncScope::ID SSID = SyncScope::System; 6895 bool isVolatile = false; 6896 bool isWeak = false; 6897 6898 if (EatIfPresent(lltok::kw_weak)) 6899 isWeak = true; 6900 6901 if (EatIfPresent(lltok::kw_volatile)) 6902 isVolatile = true; 6903 6904 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6905 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6906 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6907 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6908 ParseTypeAndValue(New, NewLoc, PFS) || 6909 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6910 ParseOrdering(FailureOrdering)) 6911 return true; 6912 6913 if (SuccessOrdering == AtomicOrdering::Unordered || 6914 FailureOrdering == AtomicOrdering::Unordered) 6915 return TokError("cmpxchg cannot be unordered"); 6916 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6917 return TokError("cmpxchg failure argument shall be no stronger than the " 6918 "success argument"); 6919 if (FailureOrdering == AtomicOrdering::Release || 6920 FailureOrdering == AtomicOrdering::AcquireRelease) 6921 return TokError( 6922 "cmpxchg failure ordering cannot include release semantics"); 6923 if (!Ptr->getType()->isPointerTy()) 6924 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6925 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6926 return Error(CmpLoc, "compare value and pointer type do not match"); 6927 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6928 return Error(NewLoc, "new value and pointer type do not match"); 6929 if (!New->getType()->isFirstClassType()) 6930 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6931 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6932 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6933 CXI->setVolatile(isVolatile); 6934 CXI->setWeak(isWeak); 6935 Inst = CXI; 6936 return AteExtraComma ? InstExtraComma : InstNormal; 6937 } 6938 6939 /// ParseAtomicRMW 6940 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6941 /// 'singlethread'? AtomicOrdering 6942 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6943 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6944 bool AteExtraComma = false; 6945 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6946 SyncScope::ID SSID = SyncScope::System; 6947 bool isVolatile = false; 6948 bool IsFP = false; 6949 AtomicRMWInst::BinOp Operation; 6950 6951 if (EatIfPresent(lltok::kw_volatile)) 6952 isVolatile = true; 6953 6954 switch (Lex.getKind()) { 6955 default: return TokError("expected binary operation in atomicrmw"); 6956 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6957 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6958 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6959 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6960 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6961 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6962 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6963 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6964 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6965 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6966 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6967 case lltok::kw_fadd: 6968 Operation = AtomicRMWInst::FAdd; 6969 IsFP = true; 6970 break; 6971 case lltok::kw_fsub: 6972 Operation = AtomicRMWInst::FSub; 6973 IsFP = true; 6974 break; 6975 } 6976 Lex.Lex(); // Eat the operation. 6977 6978 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6979 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6980 ParseTypeAndValue(Val, ValLoc, PFS) || 6981 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6982 return true; 6983 6984 if (Ordering == AtomicOrdering::Unordered) 6985 return TokError("atomicrmw cannot be unordered"); 6986 if (!Ptr->getType()->isPointerTy()) 6987 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6988 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6989 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6990 6991 if (Operation == AtomicRMWInst::Xchg) { 6992 if (!Val->getType()->isIntegerTy() && 6993 !Val->getType()->isFloatingPointTy()) { 6994 return Error(ValLoc, "atomicrmw " + 6995 AtomicRMWInst::getOperationName(Operation) + 6996 " operand must be an integer or floating point type"); 6997 } 6998 } else if (IsFP) { 6999 if (!Val->getType()->isFloatingPointTy()) { 7000 return Error(ValLoc, "atomicrmw " + 7001 AtomicRMWInst::getOperationName(Operation) + 7002 " operand must be a floating point type"); 7003 } 7004 } else { 7005 if (!Val->getType()->isIntegerTy()) { 7006 return Error(ValLoc, "atomicrmw " + 7007 AtomicRMWInst::getOperationName(Operation) + 7008 " operand must be an integer"); 7009 } 7010 } 7011 7012 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7013 if (Size < 8 || (Size & (Size - 1))) 7014 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7015 " integer"); 7016 7017 AtomicRMWInst *RMWI = 7018 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7019 RMWI->setVolatile(isVolatile); 7020 Inst = RMWI; 7021 return AteExtraComma ? InstExtraComma : InstNormal; 7022 } 7023 7024 /// ParseFence 7025 /// ::= 'fence' 'singlethread'? AtomicOrdering 7026 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7027 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7028 SyncScope::ID SSID = SyncScope::System; 7029 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7030 return true; 7031 7032 if (Ordering == AtomicOrdering::Unordered) 7033 return TokError("fence cannot be unordered"); 7034 if (Ordering == AtomicOrdering::Monotonic) 7035 return TokError("fence cannot be monotonic"); 7036 7037 Inst = new FenceInst(Context, Ordering, SSID); 7038 return InstNormal; 7039 } 7040 7041 /// ParseGetElementPtr 7042 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7043 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7044 Value *Ptr = nullptr; 7045 Value *Val = nullptr; 7046 LocTy Loc, EltLoc; 7047 7048 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7049 7050 Type *Ty = nullptr; 7051 LocTy ExplicitTypeLoc = Lex.getLoc(); 7052 if (ParseType(Ty) || 7053 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7054 ParseTypeAndValue(Ptr, Loc, PFS)) 7055 return true; 7056 7057 Type *BaseType = Ptr->getType(); 7058 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7059 if (!BasePointerType) 7060 return Error(Loc, "base of getelementptr must be a pointer"); 7061 7062 if (Ty != BasePointerType->getElementType()) 7063 return Error(ExplicitTypeLoc, 7064 "explicit pointee type doesn't match operand's pointee type"); 7065 7066 SmallVector<Value*, 16> Indices; 7067 bool AteExtraComma = false; 7068 // GEP returns a vector of pointers if at least one of parameters is a vector. 7069 // All vector parameters should have the same vector width. 7070 unsigned GEPWidth = BaseType->isVectorTy() ? 7071 BaseType->getVectorNumElements() : 0; 7072 7073 while (EatIfPresent(lltok::comma)) { 7074 if (Lex.getKind() == lltok::MetadataVar) { 7075 AteExtraComma = true; 7076 break; 7077 } 7078 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7079 if (!Val->getType()->isIntOrIntVectorTy()) 7080 return Error(EltLoc, "getelementptr index must be an integer"); 7081 7082 if (Val->getType()->isVectorTy()) { 7083 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7084 if (GEPWidth && GEPWidth != ValNumEl) 7085 return Error(EltLoc, 7086 "getelementptr vector index has a wrong number of elements"); 7087 GEPWidth = ValNumEl; 7088 } 7089 Indices.push_back(Val); 7090 } 7091 7092 SmallPtrSet<Type*, 4> Visited; 7093 if (!Indices.empty() && !Ty->isSized(&Visited)) 7094 return Error(Loc, "base element of getelementptr must be sized"); 7095 7096 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7097 return Error(Loc, "invalid getelementptr indices"); 7098 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7099 if (InBounds) 7100 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7101 return AteExtraComma ? InstExtraComma : InstNormal; 7102 } 7103 7104 /// ParseExtractValue 7105 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7106 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7107 Value *Val; LocTy Loc; 7108 SmallVector<unsigned, 4> Indices; 7109 bool AteExtraComma; 7110 if (ParseTypeAndValue(Val, Loc, PFS) || 7111 ParseIndexList(Indices, AteExtraComma)) 7112 return true; 7113 7114 if (!Val->getType()->isAggregateType()) 7115 return Error(Loc, "extractvalue operand must be aggregate type"); 7116 7117 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7118 return Error(Loc, "invalid indices for extractvalue"); 7119 Inst = ExtractValueInst::Create(Val, Indices); 7120 return AteExtraComma ? InstExtraComma : InstNormal; 7121 } 7122 7123 /// ParseInsertValue 7124 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7125 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7126 Value *Val0, *Val1; LocTy Loc0, Loc1; 7127 SmallVector<unsigned, 4> Indices; 7128 bool AteExtraComma; 7129 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7130 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7131 ParseTypeAndValue(Val1, Loc1, PFS) || 7132 ParseIndexList(Indices, AteExtraComma)) 7133 return true; 7134 7135 if (!Val0->getType()->isAggregateType()) 7136 return Error(Loc0, "insertvalue operand must be aggregate type"); 7137 7138 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7139 if (!IndexedType) 7140 return Error(Loc0, "invalid indices for insertvalue"); 7141 if (IndexedType != Val1->getType()) 7142 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7143 getTypeString(Val1->getType()) + "' instead of '" + 7144 getTypeString(IndexedType) + "'"); 7145 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7146 return AteExtraComma ? InstExtraComma : InstNormal; 7147 } 7148 7149 //===----------------------------------------------------------------------===// 7150 // Embedded metadata. 7151 //===----------------------------------------------------------------------===// 7152 7153 /// ParseMDNodeVector 7154 /// ::= { Element (',' Element)* } 7155 /// Element 7156 /// ::= 'null' | TypeAndValue 7157 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7158 if (ParseToken(lltok::lbrace, "expected '{' here")) 7159 return true; 7160 7161 // Check for an empty list. 7162 if (EatIfPresent(lltok::rbrace)) 7163 return false; 7164 7165 do { 7166 // Null is a special case since it is typeless. 7167 if (EatIfPresent(lltok::kw_null)) { 7168 Elts.push_back(nullptr); 7169 continue; 7170 } 7171 7172 Metadata *MD; 7173 if (ParseMetadata(MD, nullptr)) 7174 return true; 7175 Elts.push_back(MD); 7176 } while (EatIfPresent(lltok::comma)); 7177 7178 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7179 } 7180 7181 //===----------------------------------------------------------------------===// 7182 // Use-list order directives. 7183 //===----------------------------------------------------------------------===// 7184 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7185 SMLoc Loc) { 7186 if (V->use_empty()) 7187 return Error(Loc, "value has no uses"); 7188 7189 unsigned NumUses = 0; 7190 SmallDenseMap<const Use *, unsigned, 16> Order; 7191 for (const Use &U : V->uses()) { 7192 if (++NumUses > Indexes.size()) 7193 break; 7194 Order[&U] = Indexes[NumUses - 1]; 7195 } 7196 if (NumUses < 2) 7197 return Error(Loc, "value only has one use"); 7198 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7199 return Error(Loc, 7200 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7201 7202 V->sortUseList([&](const Use &L, const Use &R) { 7203 return Order.lookup(&L) < Order.lookup(&R); 7204 }); 7205 return false; 7206 } 7207 7208 /// ParseUseListOrderIndexes 7209 /// ::= '{' uint32 (',' uint32)+ '}' 7210 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7211 SMLoc Loc = Lex.getLoc(); 7212 if (ParseToken(lltok::lbrace, "expected '{' here")) 7213 return true; 7214 if (Lex.getKind() == lltok::rbrace) 7215 return Lex.Error("expected non-empty list of uselistorder indexes"); 7216 7217 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7218 // indexes should be distinct numbers in the range [0, size-1], and should 7219 // not be in order. 7220 unsigned Offset = 0; 7221 unsigned Max = 0; 7222 bool IsOrdered = true; 7223 assert(Indexes.empty() && "Expected empty order vector"); 7224 do { 7225 unsigned Index; 7226 if (ParseUInt32(Index)) 7227 return true; 7228 7229 // Update consistency checks. 7230 Offset += Index - Indexes.size(); 7231 Max = std::max(Max, Index); 7232 IsOrdered &= Index == Indexes.size(); 7233 7234 Indexes.push_back(Index); 7235 } while (EatIfPresent(lltok::comma)); 7236 7237 if (ParseToken(lltok::rbrace, "expected '}' here")) 7238 return true; 7239 7240 if (Indexes.size() < 2) 7241 return Error(Loc, "expected >= 2 uselistorder indexes"); 7242 if (Offset != 0 || Max >= Indexes.size()) 7243 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7244 if (IsOrdered) 7245 return Error(Loc, "expected uselistorder indexes to change the order"); 7246 7247 return false; 7248 } 7249 7250 /// ParseUseListOrder 7251 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7252 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7253 SMLoc Loc = Lex.getLoc(); 7254 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7255 return true; 7256 7257 Value *V; 7258 SmallVector<unsigned, 16> Indexes; 7259 if (ParseTypeAndValue(V, PFS) || 7260 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7261 ParseUseListOrderIndexes(Indexes)) 7262 return true; 7263 7264 return sortUseListOrder(V, Indexes, Loc); 7265 } 7266 7267 /// ParseUseListOrderBB 7268 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7269 bool LLParser::ParseUseListOrderBB() { 7270 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7271 SMLoc Loc = Lex.getLoc(); 7272 Lex.Lex(); 7273 7274 ValID Fn, Label; 7275 SmallVector<unsigned, 16> Indexes; 7276 if (ParseValID(Fn) || 7277 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7278 ParseValID(Label) || 7279 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7280 ParseUseListOrderIndexes(Indexes)) 7281 return true; 7282 7283 // Check the function. 7284 GlobalValue *GV; 7285 if (Fn.Kind == ValID::t_GlobalName) 7286 GV = M->getNamedValue(Fn.StrVal); 7287 else if (Fn.Kind == ValID::t_GlobalID) 7288 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7289 else 7290 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7291 if (!GV) 7292 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7293 auto *F = dyn_cast<Function>(GV); 7294 if (!F) 7295 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7296 if (F->isDeclaration()) 7297 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7298 7299 // Check the basic block. 7300 if (Label.Kind == ValID::t_LocalID) 7301 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7302 if (Label.Kind != ValID::t_LocalName) 7303 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7304 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7305 if (!V) 7306 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7307 if (!isa<BasicBlock>(V)) 7308 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7309 7310 return sortUseListOrder(V, Indexes, Loc); 7311 } 7312 7313 /// ModuleEntry 7314 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7315 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7316 bool LLParser::ParseModuleEntry(unsigned ID) { 7317 assert(Lex.getKind() == lltok::kw_module); 7318 Lex.Lex(); 7319 7320 std::string Path; 7321 if (ParseToken(lltok::colon, "expected ':' here") || 7322 ParseToken(lltok::lparen, "expected '(' here") || 7323 ParseToken(lltok::kw_path, "expected 'path' here") || 7324 ParseToken(lltok::colon, "expected ':' here") || 7325 ParseStringConstant(Path) || 7326 ParseToken(lltok::comma, "expected ',' here") || 7327 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7328 ParseToken(lltok::colon, "expected ':' here") || 7329 ParseToken(lltok::lparen, "expected '(' here")) 7330 return true; 7331 7332 ModuleHash Hash; 7333 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7334 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7335 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7336 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7337 ParseUInt32(Hash[4])) 7338 return true; 7339 7340 if (ParseToken(lltok::rparen, "expected ')' here") || 7341 ParseToken(lltok::rparen, "expected ')' here")) 7342 return true; 7343 7344 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7345 ModuleIdMap[ID] = ModuleEntry->first(); 7346 7347 return false; 7348 } 7349 7350 /// TypeIdEntry 7351 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7352 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7353 assert(Lex.getKind() == lltok::kw_typeid); 7354 Lex.Lex(); 7355 7356 std::string Name; 7357 if (ParseToken(lltok::colon, "expected ':' here") || 7358 ParseToken(lltok::lparen, "expected '(' here") || 7359 ParseToken(lltok::kw_name, "expected 'name' here") || 7360 ParseToken(lltok::colon, "expected ':' here") || 7361 ParseStringConstant(Name)) 7362 return true; 7363 7364 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7365 if (ParseToken(lltok::comma, "expected ',' here") || 7366 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7367 return true; 7368 7369 // Check if this ID was forward referenced, and if so, update the 7370 // corresponding GUIDs. 7371 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7372 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7373 for (auto TIDRef : FwdRefTIDs->second) { 7374 assert(!*TIDRef.first && 7375 "Forward referenced type id GUID expected to be 0"); 7376 *TIDRef.first = GlobalValue::getGUID(Name); 7377 } 7378 ForwardRefTypeIds.erase(FwdRefTIDs); 7379 } 7380 7381 return false; 7382 } 7383 7384 /// TypeIdSummary 7385 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7386 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7387 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7388 ParseToken(lltok::colon, "expected ':' here") || 7389 ParseToken(lltok::lparen, "expected '(' here") || 7390 ParseTypeTestResolution(TIS.TTRes)) 7391 return true; 7392 7393 if (EatIfPresent(lltok::comma)) { 7394 // Expect optional wpdResolutions field 7395 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7396 return true; 7397 } 7398 7399 if (ParseToken(lltok::rparen, "expected ')' here")) 7400 return true; 7401 7402 return false; 7403 } 7404 7405 /// TypeTestResolution 7406 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7407 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7408 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7409 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7410 /// [',' 'inlinesBits' ':' UInt64]? ')' 7411 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7412 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7413 ParseToken(lltok::colon, "expected ':' here") || 7414 ParseToken(lltok::lparen, "expected '(' here") || 7415 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7416 ParseToken(lltok::colon, "expected ':' here")) 7417 return true; 7418 7419 switch (Lex.getKind()) { 7420 case lltok::kw_unsat: 7421 TTRes.TheKind = TypeTestResolution::Unsat; 7422 break; 7423 case lltok::kw_byteArray: 7424 TTRes.TheKind = TypeTestResolution::ByteArray; 7425 break; 7426 case lltok::kw_inline: 7427 TTRes.TheKind = TypeTestResolution::Inline; 7428 break; 7429 case lltok::kw_single: 7430 TTRes.TheKind = TypeTestResolution::Single; 7431 break; 7432 case lltok::kw_allOnes: 7433 TTRes.TheKind = TypeTestResolution::AllOnes; 7434 break; 7435 default: 7436 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7437 } 7438 Lex.Lex(); 7439 7440 if (ParseToken(lltok::comma, "expected ',' here") || 7441 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7442 ParseToken(lltok::colon, "expected ':' here") || 7443 ParseUInt32(TTRes.SizeM1BitWidth)) 7444 return true; 7445 7446 // Parse optional fields 7447 while (EatIfPresent(lltok::comma)) { 7448 switch (Lex.getKind()) { 7449 case lltok::kw_alignLog2: 7450 Lex.Lex(); 7451 if (ParseToken(lltok::colon, "expected ':'") || 7452 ParseUInt64(TTRes.AlignLog2)) 7453 return true; 7454 break; 7455 case lltok::kw_sizeM1: 7456 Lex.Lex(); 7457 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7458 return true; 7459 break; 7460 case lltok::kw_bitMask: { 7461 unsigned Val; 7462 Lex.Lex(); 7463 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7464 return true; 7465 assert(Val <= 0xff); 7466 TTRes.BitMask = (uint8_t)Val; 7467 break; 7468 } 7469 case lltok::kw_inlineBits: 7470 Lex.Lex(); 7471 if (ParseToken(lltok::colon, "expected ':'") || 7472 ParseUInt64(TTRes.InlineBits)) 7473 return true; 7474 break; 7475 default: 7476 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7477 } 7478 } 7479 7480 if (ParseToken(lltok::rparen, "expected ')' here")) 7481 return true; 7482 7483 return false; 7484 } 7485 7486 /// OptionalWpdResolutions 7487 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7488 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7489 bool LLParser::ParseOptionalWpdResolutions( 7490 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7491 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7492 ParseToken(lltok::colon, "expected ':' here") || 7493 ParseToken(lltok::lparen, "expected '(' here")) 7494 return true; 7495 7496 do { 7497 uint64_t Offset; 7498 WholeProgramDevirtResolution WPDRes; 7499 if (ParseToken(lltok::lparen, "expected '(' here") || 7500 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7501 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7502 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7503 ParseToken(lltok::rparen, "expected ')' here")) 7504 return true; 7505 WPDResMap[Offset] = WPDRes; 7506 } while (EatIfPresent(lltok::comma)); 7507 7508 if (ParseToken(lltok::rparen, "expected ')' here")) 7509 return true; 7510 7511 return false; 7512 } 7513 7514 /// WpdRes 7515 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7516 /// [',' OptionalResByArg]? ')' 7517 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7518 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7519 /// [',' OptionalResByArg]? ')' 7520 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7521 /// [',' OptionalResByArg]? ')' 7522 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7523 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7524 ParseToken(lltok::colon, "expected ':' here") || 7525 ParseToken(lltok::lparen, "expected '(' here") || 7526 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7527 ParseToken(lltok::colon, "expected ':' here")) 7528 return true; 7529 7530 switch (Lex.getKind()) { 7531 case lltok::kw_indir: 7532 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7533 break; 7534 case lltok::kw_singleImpl: 7535 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7536 break; 7537 case lltok::kw_branchFunnel: 7538 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7539 break; 7540 default: 7541 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7542 } 7543 Lex.Lex(); 7544 7545 // Parse optional fields 7546 while (EatIfPresent(lltok::comma)) { 7547 switch (Lex.getKind()) { 7548 case lltok::kw_singleImplName: 7549 Lex.Lex(); 7550 if (ParseToken(lltok::colon, "expected ':' here") || 7551 ParseStringConstant(WPDRes.SingleImplName)) 7552 return true; 7553 break; 7554 case lltok::kw_resByArg: 7555 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7556 return true; 7557 break; 7558 default: 7559 return Error(Lex.getLoc(), 7560 "expected optional WholeProgramDevirtResolution field"); 7561 } 7562 } 7563 7564 if (ParseToken(lltok::rparen, "expected ')' here")) 7565 return true; 7566 7567 return false; 7568 } 7569 7570 /// OptionalResByArg 7571 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7572 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7573 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7574 /// 'virtualConstProp' ) 7575 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7576 /// [',' 'bit' ':' UInt32]? ')' 7577 bool LLParser::ParseOptionalResByArg( 7578 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7579 &ResByArg) { 7580 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7581 ParseToken(lltok::colon, "expected ':' here") || 7582 ParseToken(lltok::lparen, "expected '(' here")) 7583 return true; 7584 7585 do { 7586 std::vector<uint64_t> Args; 7587 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7588 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7589 ParseToken(lltok::colon, "expected ':' here") || 7590 ParseToken(lltok::lparen, "expected '(' here") || 7591 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7592 ParseToken(lltok::colon, "expected ':' here")) 7593 return true; 7594 7595 WholeProgramDevirtResolution::ByArg ByArg; 7596 switch (Lex.getKind()) { 7597 case lltok::kw_indir: 7598 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7599 break; 7600 case lltok::kw_uniformRetVal: 7601 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7602 break; 7603 case lltok::kw_uniqueRetVal: 7604 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7605 break; 7606 case lltok::kw_virtualConstProp: 7607 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7608 break; 7609 default: 7610 return Error(Lex.getLoc(), 7611 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7612 } 7613 Lex.Lex(); 7614 7615 // Parse optional fields 7616 while (EatIfPresent(lltok::comma)) { 7617 switch (Lex.getKind()) { 7618 case lltok::kw_info: 7619 Lex.Lex(); 7620 if (ParseToken(lltok::colon, "expected ':' here") || 7621 ParseUInt64(ByArg.Info)) 7622 return true; 7623 break; 7624 case lltok::kw_byte: 7625 Lex.Lex(); 7626 if (ParseToken(lltok::colon, "expected ':' here") || 7627 ParseUInt32(ByArg.Byte)) 7628 return true; 7629 break; 7630 case lltok::kw_bit: 7631 Lex.Lex(); 7632 if (ParseToken(lltok::colon, "expected ':' here") || 7633 ParseUInt32(ByArg.Bit)) 7634 return true; 7635 break; 7636 default: 7637 return Error(Lex.getLoc(), 7638 "expected optional whole program devirt field"); 7639 } 7640 } 7641 7642 if (ParseToken(lltok::rparen, "expected ')' here")) 7643 return true; 7644 7645 ResByArg[Args] = ByArg; 7646 } while (EatIfPresent(lltok::comma)); 7647 7648 if (ParseToken(lltok::rparen, "expected ')' here")) 7649 return true; 7650 7651 return false; 7652 } 7653 7654 /// OptionalResByArg 7655 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7656 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7657 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7658 ParseToken(lltok::colon, "expected ':' here") || 7659 ParseToken(lltok::lparen, "expected '(' here")) 7660 return true; 7661 7662 do { 7663 uint64_t Val; 7664 if (ParseUInt64(Val)) 7665 return true; 7666 Args.push_back(Val); 7667 } while (EatIfPresent(lltok::comma)); 7668 7669 if (ParseToken(lltok::rparen, "expected ')' here")) 7670 return true; 7671 7672 return false; 7673 } 7674 7675 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7676 7677 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7678 bool ReadOnly = Fwd->isReadOnly(); 7679 *Fwd = Resolved; 7680 if (ReadOnly) 7681 Fwd->setReadOnly(); 7682 } 7683 7684 /// Stores the given Name/GUID and associated summary into the Index. 7685 /// Also updates any forward references to the associated entry ID. 7686 void LLParser::AddGlobalValueToIndex( 7687 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7688 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7689 // First create the ValueInfo utilizing the Name or GUID. 7690 ValueInfo VI; 7691 if (GUID != 0) { 7692 assert(Name.empty()); 7693 VI = Index->getOrInsertValueInfo(GUID); 7694 } else { 7695 assert(!Name.empty()); 7696 if (M) { 7697 auto *GV = M->getNamedValue(Name); 7698 assert(GV); 7699 VI = Index->getOrInsertValueInfo(GV); 7700 } else { 7701 assert( 7702 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7703 "Need a source_filename to compute GUID for local"); 7704 GUID = GlobalValue::getGUID( 7705 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7706 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7707 } 7708 } 7709 7710 // Add the summary if one was provided. 7711 if (Summary) 7712 Index->addGlobalValueSummary(VI, std::move(Summary)); 7713 7714 // Resolve forward references from calls/refs 7715 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7716 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7717 for (auto VIRef : FwdRefVIs->second) { 7718 assert(VIRef.first->getRef() == FwdVIRef && 7719 "Forward referenced ValueInfo expected to be empty"); 7720 resolveFwdRef(VIRef.first, VI); 7721 } 7722 ForwardRefValueInfos.erase(FwdRefVIs); 7723 } 7724 7725 // Resolve forward references from aliases 7726 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7727 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7728 for (auto AliaseeRef : FwdRefAliasees->second) { 7729 assert(!AliaseeRef.first->hasAliasee() && 7730 "Forward referencing alias already has aliasee"); 7731 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get()); 7732 } 7733 ForwardRefAliasees.erase(FwdRefAliasees); 7734 } 7735 7736 // Save the associated ValueInfo for use in later references by ID. 7737 if (ID == NumberedValueInfos.size()) 7738 NumberedValueInfos.push_back(VI); 7739 else { 7740 // Handle non-continuous numbers (to make test simplification easier). 7741 if (ID > NumberedValueInfos.size()) 7742 NumberedValueInfos.resize(ID + 1); 7743 NumberedValueInfos[ID] = VI; 7744 } 7745 } 7746 7747 /// ParseGVEntry 7748 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7749 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7750 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7751 bool LLParser::ParseGVEntry(unsigned ID) { 7752 assert(Lex.getKind() == lltok::kw_gv); 7753 Lex.Lex(); 7754 7755 if (ParseToken(lltok::colon, "expected ':' here") || 7756 ParseToken(lltok::lparen, "expected '(' here")) 7757 return true; 7758 7759 std::string Name; 7760 GlobalValue::GUID GUID = 0; 7761 switch (Lex.getKind()) { 7762 case lltok::kw_name: 7763 Lex.Lex(); 7764 if (ParseToken(lltok::colon, "expected ':' here") || 7765 ParseStringConstant(Name)) 7766 return true; 7767 // Can't create GUID/ValueInfo until we have the linkage. 7768 break; 7769 case lltok::kw_guid: 7770 Lex.Lex(); 7771 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7772 return true; 7773 break; 7774 default: 7775 return Error(Lex.getLoc(), "expected name or guid tag"); 7776 } 7777 7778 if (!EatIfPresent(lltok::comma)) { 7779 // No summaries. Wrap up. 7780 if (ParseToken(lltok::rparen, "expected ')' here")) 7781 return true; 7782 // This was created for a call to an external or indirect target. 7783 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7784 // created for indirect calls with VP. A Name with no GUID came from 7785 // an external definition. We pass ExternalLinkage since that is only 7786 // used when the GUID must be computed from Name, and in that case 7787 // the symbol must have external linkage. 7788 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7789 nullptr); 7790 return false; 7791 } 7792 7793 // Have a list of summaries 7794 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7795 ParseToken(lltok::colon, "expected ':' here")) 7796 return true; 7797 7798 do { 7799 if (ParseToken(lltok::lparen, "expected '(' here")) 7800 return true; 7801 switch (Lex.getKind()) { 7802 case lltok::kw_function: 7803 if (ParseFunctionSummary(Name, GUID, ID)) 7804 return true; 7805 break; 7806 case lltok::kw_variable: 7807 if (ParseVariableSummary(Name, GUID, ID)) 7808 return true; 7809 break; 7810 case lltok::kw_alias: 7811 if (ParseAliasSummary(Name, GUID, ID)) 7812 return true; 7813 break; 7814 default: 7815 return Error(Lex.getLoc(), "expected summary type"); 7816 } 7817 if (ParseToken(lltok::rparen, "expected ')' here")) 7818 return true; 7819 } while (EatIfPresent(lltok::comma)); 7820 7821 if (ParseToken(lltok::rparen, "expected ')' here")) 7822 return true; 7823 7824 return false; 7825 } 7826 7827 /// FunctionSummary 7828 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7829 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7830 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7831 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7832 unsigned ID) { 7833 assert(Lex.getKind() == lltok::kw_function); 7834 Lex.Lex(); 7835 7836 StringRef ModulePath; 7837 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7838 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7839 /*Live=*/false, /*IsLocal=*/false); 7840 unsigned InstCount; 7841 std::vector<FunctionSummary::EdgeTy> Calls; 7842 FunctionSummary::TypeIdInfo TypeIdInfo; 7843 std::vector<ValueInfo> Refs; 7844 // Default is all-zeros (conservative values). 7845 FunctionSummary::FFlags FFlags = {}; 7846 if (ParseToken(lltok::colon, "expected ':' here") || 7847 ParseToken(lltok::lparen, "expected '(' here") || 7848 ParseModuleReference(ModulePath) || 7849 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7850 ParseToken(lltok::comma, "expected ',' here") || 7851 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7852 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7853 return true; 7854 7855 // Parse optional fields 7856 while (EatIfPresent(lltok::comma)) { 7857 switch (Lex.getKind()) { 7858 case lltok::kw_funcFlags: 7859 if (ParseOptionalFFlags(FFlags)) 7860 return true; 7861 break; 7862 case lltok::kw_calls: 7863 if (ParseOptionalCalls(Calls)) 7864 return true; 7865 break; 7866 case lltok::kw_typeIdInfo: 7867 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7868 return true; 7869 break; 7870 case lltok::kw_refs: 7871 if (ParseOptionalRefs(Refs)) 7872 return true; 7873 break; 7874 default: 7875 return Error(Lex.getLoc(), "expected optional function summary field"); 7876 } 7877 } 7878 7879 if (ParseToken(lltok::rparen, "expected ')' here")) 7880 return true; 7881 7882 auto FS = llvm::make_unique<FunctionSummary>( 7883 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 7884 std::move(Calls), std::move(TypeIdInfo.TypeTests), 7885 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7886 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7887 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7888 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7889 7890 FS->setModulePath(ModulePath); 7891 7892 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7893 ID, std::move(FS)); 7894 7895 return false; 7896 } 7897 7898 /// VariableSummary 7899 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7900 /// [',' OptionalRefs]? ')' 7901 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7902 unsigned ID) { 7903 assert(Lex.getKind() == lltok::kw_variable); 7904 Lex.Lex(); 7905 7906 StringRef ModulePath; 7907 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7908 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7909 /*Live=*/false, /*IsLocal=*/false); 7910 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false); 7911 std::vector<ValueInfo> Refs; 7912 if (ParseToken(lltok::colon, "expected ':' here") || 7913 ParseToken(lltok::lparen, "expected '(' here") || 7914 ParseModuleReference(ModulePath) || 7915 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7916 ParseToken(lltok::comma, "expected ',' here") || 7917 ParseGVarFlags(GVarFlags)) 7918 return true; 7919 7920 // Parse optional refs field 7921 if (EatIfPresent(lltok::comma)) { 7922 if (ParseOptionalRefs(Refs)) 7923 return true; 7924 } 7925 7926 if (ParseToken(lltok::rparen, "expected ')' here")) 7927 return true; 7928 7929 auto GS = 7930 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 7931 7932 GS->setModulePath(ModulePath); 7933 7934 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7935 ID, std::move(GS)); 7936 7937 return false; 7938 } 7939 7940 /// AliasSummary 7941 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7942 /// 'aliasee' ':' GVReference ')' 7943 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7944 unsigned ID) { 7945 assert(Lex.getKind() == lltok::kw_alias); 7946 LocTy Loc = Lex.getLoc(); 7947 Lex.Lex(); 7948 7949 StringRef ModulePath; 7950 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7951 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7952 /*Live=*/false, /*IsLocal=*/false); 7953 if (ParseToken(lltok::colon, "expected ':' here") || 7954 ParseToken(lltok::lparen, "expected '(' here") || 7955 ParseModuleReference(ModulePath) || 7956 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7957 ParseToken(lltok::comma, "expected ',' here") || 7958 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 7959 ParseToken(lltok::colon, "expected ':' here")) 7960 return true; 7961 7962 ValueInfo AliaseeVI; 7963 unsigned GVId; 7964 if (ParseGVReference(AliaseeVI, GVId)) 7965 return true; 7966 7967 if (ParseToken(lltok::rparen, "expected ')' here")) 7968 return true; 7969 7970 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 7971 7972 AS->setModulePath(ModulePath); 7973 7974 // Record forward reference if the aliasee is not parsed yet. 7975 if (AliaseeVI.getRef() == FwdVIRef) { 7976 auto FwdRef = ForwardRefAliasees.insert( 7977 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 7978 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 7979 } else 7980 AS->setAliasee(AliaseeVI.getSummaryList().front().get()); 7981 7982 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7983 ID, std::move(AS)); 7984 7985 return false; 7986 } 7987 7988 /// Flag 7989 /// ::= [0|1] 7990 bool LLParser::ParseFlag(unsigned &Val) { 7991 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 7992 return TokError("expected integer"); 7993 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 7994 Lex.Lex(); 7995 return false; 7996 } 7997 7998 /// OptionalFFlags 7999 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8000 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8001 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8002 /// [',' 'noInline' ':' Flag]? ')' 8003 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8004 assert(Lex.getKind() == lltok::kw_funcFlags); 8005 Lex.Lex(); 8006 8007 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8008 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8009 return true; 8010 8011 do { 8012 unsigned Val; 8013 switch (Lex.getKind()) { 8014 case lltok::kw_readNone: 8015 Lex.Lex(); 8016 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8017 return true; 8018 FFlags.ReadNone = Val; 8019 break; 8020 case lltok::kw_readOnly: 8021 Lex.Lex(); 8022 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8023 return true; 8024 FFlags.ReadOnly = Val; 8025 break; 8026 case lltok::kw_noRecurse: 8027 Lex.Lex(); 8028 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8029 return true; 8030 FFlags.NoRecurse = Val; 8031 break; 8032 case lltok::kw_returnDoesNotAlias: 8033 Lex.Lex(); 8034 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8035 return true; 8036 FFlags.ReturnDoesNotAlias = Val; 8037 break; 8038 case lltok::kw_noInline: 8039 Lex.Lex(); 8040 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8041 return true; 8042 FFlags.NoInline = Val; 8043 break; 8044 default: 8045 return Error(Lex.getLoc(), "expected function flag type"); 8046 } 8047 } while (EatIfPresent(lltok::comma)); 8048 8049 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8050 return true; 8051 8052 return false; 8053 } 8054 8055 /// OptionalCalls 8056 /// := 'calls' ':' '(' Call [',' Call]* ')' 8057 /// Call ::= '(' 'callee' ':' GVReference 8058 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8059 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8060 assert(Lex.getKind() == lltok::kw_calls); 8061 Lex.Lex(); 8062 8063 if (ParseToken(lltok::colon, "expected ':' in calls") | 8064 ParseToken(lltok::lparen, "expected '(' in calls")) 8065 return true; 8066 8067 IdToIndexMapType IdToIndexMap; 8068 // Parse each call edge 8069 do { 8070 ValueInfo VI; 8071 if (ParseToken(lltok::lparen, "expected '(' in call") || 8072 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8073 ParseToken(lltok::colon, "expected ':'")) 8074 return true; 8075 8076 LocTy Loc = Lex.getLoc(); 8077 unsigned GVId; 8078 if (ParseGVReference(VI, GVId)) 8079 return true; 8080 8081 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8082 unsigned RelBF = 0; 8083 if (EatIfPresent(lltok::comma)) { 8084 // Expect either hotness or relbf 8085 if (EatIfPresent(lltok::kw_hotness)) { 8086 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8087 return true; 8088 } else { 8089 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8090 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8091 return true; 8092 } 8093 } 8094 // Keep track of the Call array index needing a forward reference. 8095 // We will save the location of the ValueInfo needing an update, but 8096 // can only do so once the std::vector is finalized. 8097 if (VI.getRef() == FwdVIRef) 8098 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8099 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8100 8101 if (ParseToken(lltok::rparen, "expected ')' in call")) 8102 return true; 8103 } while (EatIfPresent(lltok::comma)); 8104 8105 // Now that the Calls vector is finalized, it is safe to save the locations 8106 // of any forward GV references that need updating later. 8107 for (auto I : IdToIndexMap) { 8108 for (auto P : I.second) { 8109 assert(Calls[P.first].first.getRef() == FwdVIRef && 8110 "Forward referenced ValueInfo expected to be empty"); 8111 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8112 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8113 FwdRef.first->second.push_back( 8114 std::make_pair(&Calls[P.first].first, P.second)); 8115 } 8116 } 8117 8118 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8119 return true; 8120 8121 return false; 8122 } 8123 8124 /// Hotness 8125 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8126 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8127 switch (Lex.getKind()) { 8128 case lltok::kw_unknown: 8129 Hotness = CalleeInfo::HotnessType::Unknown; 8130 break; 8131 case lltok::kw_cold: 8132 Hotness = CalleeInfo::HotnessType::Cold; 8133 break; 8134 case lltok::kw_none: 8135 Hotness = CalleeInfo::HotnessType::None; 8136 break; 8137 case lltok::kw_hot: 8138 Hotness = CalleeInfo::HotnessType::Hot; 8139 break; 8140 case lltok::kw_critical: 8141 Hotness = CalleeInfo::HotnessType::Critical; 8142 break; 8143 default: 8144 return Error(Lex.getLoc(), "invalid call edge hotness"); 8145 } 8146 Lex.Lex(); 8147 return false; 8148 } 8149 8150 /// OptionalRefs 8151 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8152 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8153 assert(Lex.getKind() == lltok::kw_refs); 8154 Lex.Lex(); 8155 8156 if (ParseToken(lltok::colon, "expected ':' in refs") | 8157 ParseToken(lltok::lparen, "expected '(' in refs")) 8158 return true; 8159 8160 struct ValueContext { 8161 ValueInfo VI; 8162 unsigned GVId; 8163 LocTy Loc; 8164 }; 8165 std::vector<ValueContext> VContexts; 8166 // Parse each ref edge 8167 do { 8168 ValueContext VC; 8169 VC.Loc = Lex.getLoc(); 8170 if (ParseGVReference(VC.VI, VC.GVId)) 8171 return true; 8172 VContexts.push_back(VC); 8173 } while (EatIfPresent(lltok::comma)); 8174 8175 // Sort value contexts so that ones with readonly ValueInfo are at the end 8176 // of VContexts vector. This is needed to match immutableRefCount() behavior. 8177 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8178 return VC1.VI.isReadOnly() < VC2.VI.isReadOnly(); 8179 }); 8180 8181 IdToIndexMapType IdToIndexMap; 8182 for (auto &VC : VContexts) { 8183 // Keep track of the Refs array index needing a forward reference. 8184 // We will save the location of the ValueInfo needing an update, but 8185 // can only do so once the std::vector is finalized. 8186 if (VC.VI.getRef() == FwdVIRef) 8187 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8188 Refs.push_back(VC.VI); 8189 } 8190 8191 // Now that the Refs vector is finalized, it is safe to save the locations 8192 // of any forward GV references that need updating later. 8193 for (auto I : IdToIndexMap) { 8194 for (auto P : I.second) { 8195 assert(Refs[P.first].getRef() == FwdVIRef && 8196 "Forward referenced ValueInfo expected to be empty"); 8197 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8198 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8199 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8200 } 8201 } 8202 8203 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8204 return true; 8205 8206 return false; 8207 } 8208 8209 /// OptionalTypeIdInfo 8210 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8211 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8212 /// [',' TypeCheckedLoadConstVCalls]? ')' 8213 bool LLParser::ParseOptionalTypeIdInfo( 8214 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8215 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8216 Lex.Lex(); 8217 8218 if (ParseToken(lltok::colon, "expected ':' here") || 8219 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8220 return true; 8221 8222 do { 8223 switch (Lex.getKind()) { 8224 case lltok::kw_typeTests: 8225 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8226 return true; 8227 break; 8228 case lltok::kw_typeTestAssumeVCalls: 8229 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8230 TypeIdInfo.TypeTestAssumeVCalls)) 8231 return true; 8232 break; 8233 case lltok::kw_typeCheckedLoadVCalls: 8234 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8235 TypeIdInfo.TypeCheckedLoadVCalls)) 8236 return true; 8237 break; 8238 case lltok::kw_typeTestAssumeConstVCalls: 8239 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8240 TypeIdInfo.TypeTestAssumeConstVCalls)) 8241 return true; 8242 break; 8243 case lltok::kw_typeCheckedLoadConstVCalls: 8244 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8245 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8246 return true; 8247 break; 8248 default: 8249 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8250 } 8251 } while (EatIfPresent(lltok::comma)); 8252 8253 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8254 return true; 8255 8256 return false; 8257 } 8258 8259 /// TypeTests 8260 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8261 /// [',' (SummaryID | UInt64)]* ')' 8262 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8263 assert(Lex.getKind() == lltok::kw_typeTests); 8264 Lex.Lex(); 8265 8266 if (ParseToken(lltok::colon, "expected ':' here") || 8267 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8268 return true; 8269 8270 IdToIndexMapType IdToIndexMap; 8271 do { 8272 GlobalValue::GUID GUID = 0; 8273 if (Lex.getKind() == lltok::SummaryID) { 8274 unsigned ID = Lex.getUIntVal(); 8275 LocTy Loc = Lex.getLoc(); 8276 // Keep track of the TypeTests array index needing a forward reference. 8277 // We will save the location of the GUID needing an update, but 8278 // can only do so once the std::vector is finalized. 8279 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8280 Lex.Lex(); 8281 } else if (ParseUInt64(GUID)) 8282 return true; 8283 TypeTests.push_back(GUID); 8284 } while (EatIfPresent(lltok::comma)); 8285 8286 // Now that the TypeTests vector is finalized, it is safe to save the 8287 // locations of any forward GV references that need updating later. 8288 for (auto I : IdToIndexMap) { 8289 for (auto P : I.second) { 8290 assert(TypeTests[P.first] == 0 && 8291 "Forward referenced type id GUID expected to be 0"); 8292 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8293 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8294 FwdRef.first->second.push_back( 8295 std::make_pair(&TypeTests[P.first], P.second)); 8296 } 8297 } 8298 8299 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8300 return true; 8301 8302 return false; 8303 } 8304 8305 /// VFuncIdList 8306 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8307 bool LLParser::ParseVFuncIdList( 8308 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8309 assert(Lex.getKind() == Kind); 8310 Lex.Lex(); 8311 8312 if (ParseToken(lltok::colon, "expected ':' here") || 8313 ParseToken(lltok::lparen, "expected '(' here")) 8314 return true; 8315 8316 IdToIndexMapType IdToIndexMap; 8317 do { 8318 FunctionSummary::VFuncId VFuncId; 8319 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8320 return true; 8321 VFuncIdList.push_back(VFuncId); 8322 } while (EatIfPresent(lltok::comma)); 8323 8324 if (ParseToken(lltok::rparen, "expected ')' here")) 8325 return true; 8326 8327 // Now that the VFuncIdList vector is finalized, it is safe to save the 8328 // locations of any forward GV references that need updating later. 8329 for (auto I : IdToIndexMap) { 8330 for (auto P : I.second) { 8331 assert(VFuncIdList[P.first].GUID == 0 && 8332 "Forward referenced type id GUID expected to be 0"); 8333 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8334 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8335 FwdRef.first->second.push_back( 8336 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8337 } 8338 } 8339 8340 return false; 8341 } 8342 8343 /// ConstVCallList 8344 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8345 bool LLParser::ParseConstVCallList( 8346 lltok::Kind Kind, 8347 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8348 assert(Lex.getKind() == Kind); 8349 Lex.Lex(); 8350 8351 if (ParseToken(lltok::colon, "expected ':' here") || 8352 ParseToken(lltok::lparen, "expected '(' here")) 8353 return true; 8354 8355 IdToIndexMapType IdToIndexMap; 8356 do { 8357 FunctionSummary::ConstVCall ConstVCall; 8358 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8359 return true; 8360 ConstVCallList.push_back(ConstVCall); 8361 } while (EatIfPresent(lltok::comma)); 8362 8363 if (ParseToken(lltok::rparen, "expected ')' here")) 8364 return true; 8365 8366 // Now that the ConstVCallList vector is finalized, it is safe to save the 8367 // locations of any forward GV references that need updating later. 8368 for (auto I : IdToIndexMap) { 8369 for (auto P : I.second) { 8370 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8371 "Forward referenced type id GUID expected to be 0"); 8372 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8373 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8374 FwdRef.first->second.push_back( 8375 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8376 } 8377 } 8378 8379 return false; 8380 } 8381 8382 /// ConstVCall 8383 /// ::= '(' VFuncId ',' Args ')' 8384 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8385 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8386 if (ParseToken(lltok::lparen, "expected '(' here") || 8387 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8388 return true; 8389 8390 if (EatIfPresent(lltok::comma)) 8391 if (ParseArgs(ConstVCall.Args)) 8392 return true; 8393 8394 if (ParseToken(lltok::rparen, "expected ')' here")) 8395 return true; 8396 8397 return false; 8398 } 8399 8400 /// VFuncId 8401 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8402 /// 'offset' ':' UInt64 ')' 8403 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8404 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8405 assert(Lex.getKind() == lltok::kw_vFuncId); 8406 Lex.Lex(); 8407 8408 if (ParseToken(lltok::colon, "expected ':' here") || 8409 ParseToken(lltok::lparen, "expected '(' here")) 8410 return true; 8411 8412 if (Lex.getKind() == lltok::SummaryID) { 8413 VFuncId.GUID = 0; 8414 unsigned ID = Lex.getUIntVal(); 8415 LocTy Loc = Lex.getLoc(); 8416 // Keep track of the array index needing a forward reference. 8417 // We will save the location of the GUID needing an update, but 8418 // can only do so once the caller's std::vector is finalized. 8419 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8420 Lex.Lex(); 8421 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8422 ParseToken(lltok::colon, "expected ':' here") || 8423 ParseUInt64(VFuncId.GUID)) 8424 return true; 8425 8426 if (ParseToken(lltok::comma, "expected ',' here") || 8427 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8428 ParseToken(lltok::colon, "expected ':' here") || 8429 ParseUInt64(VFuncId.Offset) || 8430 ParseToken(lltok::rparen, "expected ')' here")) 8431 return true; 8432 8433 return false; 8434 } 8435 8436 /// GVFlags 8437 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8438 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8439 /// 'dsoLocal' ':' Flag ')' 8440 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8441 assert(Lex.getKind() == lltok::kw_flags); 8442 Lex.Lex(); 8443 8444 bool HasLinkage; 8445 if (ParseToken(lltok::colon, "expected ':' here") || 8446 ParseToken(lltok::lparen, "expected '(' here") || 8447 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8448 ParseToken(lltok::colon, "expected ':' here")) 8449 return true; 8450 8451 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8452 assert(HasLinkage && "Linkage not optional in summary entry"); 8453 Lex.Lex(); 8454 8455 unsigned Flag; 8456 if (ParseToken(lltok::comma, "expected ',' here") || 8457 ParseToken(lltok::kw_notEligibleToImport, 8458 "expected 'notEligibleToImport' here") || 8459 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8460 return true; 8461 GVFlags.NotEligibleToImport = Flag; 8462 8463 if (ParseToken(lltok::comma, "expected ',' here") || 8464 ParseToken(lltok::kw_live, "expected 'live' here") || 8465 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8466 return true; 8467 GVFlags.Live = Flag; 8468 8469 if (ParseToken(lltok::comma, "expected ',' here") || 8470 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8471 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8472 return true; 8473 GVFlags.DSOLocal = Flag; 8474 8475 if (ParseToken(lltok::rparen, "expected ')' here")) 8476 return true; 8477 8478 return false; 8479 } 8480 8481 /// GVarFlags 8482 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')' 8483 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8484 assert(Lex.getKind() == lltok::kw_varFlags); 8485 Lex.Lex(); 8486 8487 unsigned Flag; 8488 if (ParseToken(lltok::colon, "expected ':' here") || 8489 ParseToken(lltok::lparen, "expected '(' here") || 8490 ParseToken(lltok::kw_readonly, "expected 'readonly' here") || 8491 ParseToken(lltok::colon, "expected ':' here")) 8492 return true; 8493 8494 ParseFlag(Flag); 8495 GVarFlags.ReadOnly = Flag; 8496 8497 if (ParseToken(lltok::rparen, "expected ')' here")) 8498 return true; 8499 return false; 8500 } 8501 8502 /// ModuleReference 8503 /// ::= 'module' ':' UInt 8504 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8505 // Parse module id. 8506 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8507 ParseToken(lltok::colon, "expected ':' here") || 8508 ParseToken(lltok::SummaryID, "expected module ID")) 8509 return true; 8510 8511 unsigned ModuleID = Lex.getUIntVal(); 8512 auto I = ModuleIdMap.find(ModuleID); 8513 // We should have already parsed all module IDs 8514 assert(I != ModuleIdMap.end()); 8515 ModulePath = I->second; 8516 return false; 8517 } 8518 8519 /// GVReference 8520 /// ::= SummaryID 8521 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8522 bool ReadOnly = EatIfPresent(lltok::kw_readonly); 8523 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8524 return true; 8525 8526 GVId = Lex.getUIntVal(); 8527 // Check if we already have a VI for this GV 8528 if (GVId < NumberedValueInfos.size()) { 8529 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8530 VI = NumberedValueInfos[GVId]; 8531 } else 8532 // We will create a forward reference to the stored location. 8533 VI = ValueInfo(false, FwdVIRef); 8534 8535 if (ReadOnly) 8536 VI.setReadOnly(); 8537 return false; 8538 } 8539