1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Dwarf.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (std::map<Value*, std::vector<unsigned> >::iterator 125 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 126 I != E; ++I) { 127 Value *V = I->first; 128 std::vector<unsigned> &Vec = I->second; 129 AttrBuilder B; 130 131 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 132 VI != VE; ++VI) 133 B.merge(NumberedAttrBuilders[*VI]); 134 135 if (Function *Fn = dyn_cast<Function>(V)) { 136 AttributeSet AS = Fn->getAttributes(); 137 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 138 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 139 AS.getFnAttributes()); 140 141 FnAttrs.merge(B); 142 143 // If the alignment was parsed as an attribute, move to the alignment 144 // field. 145 if (FnAttrs.hasAlignmentAttr()) { 146 Fn->setAlignment(FnAttrs.getAlignment()); 147 FnAttrs.removeAttribute(Attribute::Alignment); 148 } 149 150 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 151 AttributeSet::get(Context, 152 AttributeSet::FunctionIndex, 153 FnAttrs)); 154 Fn->setAttributes(AS); 155 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 156 AttributeSet AS = CI->getAttributes(); 157 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 158 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 159 AS.getFnAttributes()); 160 FnAttrs.merge(B); 161 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 162 AttributeSet::get(Context, 163 AttributeSet::FunctionIndex, 164 FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeSet AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 169 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 170 AS.getFnAttributes()); 171 FnAttrs.merge(B); 172 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 173 AttributeSet::get(Context, 174 AttributeSet::FunctionIndex, 175 FnAttrs)); 176 II->setAttributes(AS); 177 } else { 178 llvm_unreachable("invalid object with forward attribute group reference"); 179 } 180 } 181 182 // If there are entries in ForwardRefBlockAddresses at this point, the 183 // function was never defined. 184 if (!ForwardRefBlockAddresses.empty()) 185 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 186 "expected function name in blockaddress"); 187 188 for (const auto &NT : NumberedTypes) 189 if (NT.second.second.isValid()) 190 return Error(NT.second.second, 191 "use of undefined type '%" + Twine(NT.first) + "'"); 192 193 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 194 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 195 if (I->second.second.isValid()) 196 return Error(I->second.second, 197 "use of undefined type named '" + I->getKey() + "'"); 198 199 if (!ForwardRefComdats.empty()) 200 return Error(ForwardRefComdats.begin()->second, 201 "use of undefined comdat '$" + 202 ForwardRefComdats.begin()->first + "'"); 203 204 if (!ForwardRefVals.empty()) 205 return Error(ForwardRefVals.begin()->second.second, 206 "use of undefined value '@" + ForwardRefVals.begin()->first + 207 "'"); 208 209 if (!ForwardRefValIDs.empty()) 210 return Error(ForwardRefValIDs.begin()->second.second, 211 "use of undefined value '@" + 212 Twine(ForwardRefValIDs.begin()->first) + "'"); 213 214 if (!ForwardRefMDNodes.empty()) 215 return Error(ForwardRefMDNodes.begin()->second.second, 216 "use of undefined metadata '!" + 217 Twine(ForwardRefMDNodes.begin()->first) + "'"); 218 219 // Resolve metadata cycles. 220 for (auto &N : NumberedMetadata) { 221 if (N.second && !N.second->isResolved()) 222 N.second->resolveCycles(); 223 } 224 225 for (auto *Inst : InstsWithTBAATag) { 226 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 227 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 228 auto *UpgradedMD = UpgradeTBAANode(*MD); 229 if (MD != UpgradedMD) 230 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 231 } 232 233 // Look for intrinsic functions and CallInst that need to be upgraded 234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 235 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 236 237 // Some types could be renamed during loading if several modules are 238 // loaded in the same LLVMContext (LTO scenario). In this case we should 239 // remangle intrinsics names as well. 240 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 241 Function *F = &*FI++; 242 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 243 F->replaceAllUsesWith(Remangled.getValue()); 244 F->eraseFromParent(); 245 } 246 } 247 248 UpgradeDebugInfo(*M); 249 250 UpgradeModuleFlags(*M); 251 252 if (!Slots) 253 return false; 254 // Initialize the slot mapping. 255 // Because by this point we've parsed and validated everything, we can "steal" 256 // the mapping from LLParser as it doesn't need it anymore. 257 Slots->GlobalValues = std::move(NumberedVals); 258 Slots->MetadataNodes = std::move(NumberedMetadata); 259 for (const auto &I : NamedTypes) 260 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 261 for (const auto &I : NumberedTypes) 262 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 263 264 return false; 265 } 266 267 //===----------------------------------------------------------------------===// 268 // Top-Level Entities 269 //===----------------------------------------------------------------------===// 270 271 bool LLParser::ParseTopLevelEntities() { 272 while (true) { 273 switch (Lex.getKind()) { 274 default: return TokError("expected top-level entity"); 275 case lltok::Eof: return false; 276 case lltok::kw_declare: if (ParseDeclare()) return true; break; 277 case lltok::kw_define: if (ParseDefine()) return true; break; 278 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 279 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 280 case lltok::kw_source_filename: 281 if (ParseSourceFileName()) 282 return true; 283 break; 284 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 285 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 286 case lltok::LocalVar: if (ParseNamedType()) return true; break; 287 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 288 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 289 case lltok::ComdatVar: if (parseComdat()) return true; break; 290 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 291 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 292 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 293 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 294 case lltok::kw_uselistorder_bb: 295 if (ParseUseListOrderBB()) 296 return true; 297 break; 298 } 299 } 300 } 301 302 /// toplevelentity 303 /// ::= 'module' 'asm' STRINGCONSTANT 304 bool LLParser::ParseModuleAsm() { 305 assert(Lex.getKind() == lltok::kw_module); 306 Lex.Lex(); 307 308 std::string AsmStr; 309 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 310 ParseStringConstant(AsmStr)) return true; 311 312 M->appendModuleInlineAsm(AsmStr); 313 return false; 314 } 315 316 /// toplevelentity 317 /// ::= 'target' 'triple' '=' STRINGCONSTANT 318 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 319 bool LLParser::ParseTargetDefinition() { 320 assert(Lex.getKind() == lltok::kw_target); 321 std::string Str; 322 switch (Lex.Lex()) { 323 default: return TokError("unknown target property"); 324 case lltok::kw_triple: 325 Lex.Lex(); 326 if (ParseToken(lltok::equal, "expected '=' after target triple") || 327 ParseStringConstant(Str)) 328 return true; 329 M->setTargetTriple(Str); 330 return false; 331 case lltok::kw_datalayout: 332 Lex.Lex(); 333 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 334 ParseStringConstant(Str)) 335 return true; 336 M->setDataLayout(Str); 337 return false; 338 } 339 } 340 341 /// toplevelentity 342 /// ::= 'source_filename' '=' STRINGCONSTANT 343 bool LLParser::ParseSourceFileName() { 344 assert(Lex.getKind() == lltok::kw_source_filename); 345 std::string Str; 346 Lex.Lex(); 347 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 348 ParseStringConstant(Str)) 349 return true; 350 M->setSourceFileName(Str); 351 return false; 352 } 353 354 /// toplevelentity 355 /// ::= 'deplibs' '=' '[' ']' 356 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 357 /// FIXME: Remove in 4.0. Currently parse, but ignore. 358 bool LLParser::ParseDepLibs() { 359 assert(Lex.getKind() == lltok::kw_deplibs); 360 Lex.Lex(); 361 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 362 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 363 return true; 364 365 if (EatIfPresent(lltok::rsquare)) 366 return false; 367 368 do { 369 std::string Str; 370 if (ParseStringConstant(Str)) return true; 371 } while (EatIfPresent(lltok::comma)); 372 373 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 374 } 375 376 /// ParseUnnamedType: 377 /// ::= LocalVarID '=' 'type' type 378 bool LLParser::ParseUnnamedType() { 379 LocTy TypeLoc = Lex.getLoc(); 380 unsigned TypeID = Lex.getUIntVal(); 381 Lex.Lex(); // eat LocalVarID; 382 383 if (ParseToken(lltok::equal, "expected '=' after name") || 384 ParseToken(lltok::kw_type, "expected 'type' after '='")) 385 return true; 386 387 Type *Result = nullptr; 388 if (ParseStructDefinition(TypeLoc, "", 389 NumberedTypes[TypeID], Result)) return true; 390 391 if (!isa<StructType>(Result)) { 392 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 393 if (Entry.first) 394 return Error(TypeLoc, "non-struct types may not be recursive"); 395 Entry.first = Result; 396 Entry.second = SMLoc(); 397 } 398 399 return false; 400 } 401 402 /// toplevelentity 403 /// ::= LocalVar '=' 'type' type 404 bool LLParser::ParseNamedType() { 405 std::string Name = Lex.getStrVal(); 406 LocTy NameLoc = Lex.getLoc(); 407 Lex.Lex(); // eat LocalVar. 408 409 if (ParseToken(lltok::equal, "expected '=' after name") || 410 ParseToken(lltok::kw_type, "expected 'type' after name")) 411 return true; 412 413 Type *Result = nullptr; 414 if (ParseStructDefinition(NameLoc, Name, 415 NamedTypes[Name], Result)) return true; 416 417 if (!isa<StructType>(Result)) { 418 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 419 if (Entry.first) 420 return Error(NameLoc, "non-struct types may not be recursive"); 421 Entry.first = Result; 422 Entry.second = SMLoc(); 423 } 424 425 return false; 426 } 427 428 /// toplevelentity 429 /// ::= 'declare' FunctionHeader 430 bool LLParser::ParseDeclare() { 431 assert(Lex.getKind() == lltok::kw_declare); 432 Lex.Lex(); 433 434 std::vector<std::pair<unsigned, MDNode *>> MDs; 435 while (Lex.getKind() == lltok::MetadataVar) { 436 unsigned MDK; 437 MDNode *N; 438 if (ParseMetadataAttachment(MDK, N)) 439 return true; 440 MDs.push_back({MDK, N}); 441 } 442 443 Function *F; 444 if (ParseFunctionHeader(F, false)) 445 return true; 446 for (auto &MD : MDs) 447 F->addMetadata(MD.first, *MD.second); 448 return false; 449 } 450 451 /// toplevelentity 452 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 453 bool LLParser::ParseDefine() { 454 assert(Lex.getKind() == lltok::kw_define); 455 Lex.Lex(); 456 457 Function *F; 458 return ParseFunctionHeader(F, true) || 459 ParseOptionalFunctionMetadata(*F) || 460 ParseFunctionBody(*F); 461 } 462 463 /// ParseGlobalType 464 /// ::= 'constant' 465 /// ::= 'global' 466 bool LLParser::ParseGlobalType(bool &IsConstant) { 467 if (Lex.getKind() == lltok::kw_constant) 468 IsConstant = true; 469 else if (Lex.getKind() == lltok::kw_global) 470 IsConstant = false; 471 else { 472 IsConstant = false; 473 return TokError("expected 'global' or 'constant'"); 474 } 475 Lex.Lex(); 476 return false; 477 } 478 479 bool LLParser::ParseOptionalUnnamedAddr( 480 GlobalVariable::UnnamedAddr &UnnamedAddr) { 481 if (EatIfPresent(lltok::kw_unnamed_addr)) 482 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 483 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 484 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 485 else 486 UnnamedAddr = GlobalValue::UnnamedAddr::None; 487 return false; 488 } 489 490 /// ParseUnnamedGlobal: 491 /// OptionalVisibility (ALIAS | IFUNC) ... 492 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 493 /// ... -> global variable 494 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 495 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 496 /// ... -> global variable 497 bool LLParser::ParseUnnamedGlobal() { 498 unsigned VarID = NumberedVals.size(); 499 std::string Name; 500 LocTy NameLoc = Lex.getLoc(); 501 502 // Handle the GlobalID form. 503 if (Lex.getKind() == lltok::GlobalID) { 504 if (Lex.getUIntVal() != VarID) 505 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 506 Twine(VarID) + "'"); 507 Lex.Lex(); // eat GlobalID; 508 509 if (ParseToken(lltok::equal, "expected '=' after name")) 510 return true; 511 } 512 513 bool HasLinkage; 514 unsigned Linkage, Visibility, DLLStorageClass; 515 GlobalVariable::ThreadLocalMode TLM; 516 GlobalVariable::UnnamedAddr UnnamedAddr; 517 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 518 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 519 return true; 520 521 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 522 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 523 DLLStorageClass, TLM, UnnamedAddr); 524 525 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 526 DLLStorageClass, TLM, UnnamedAddr); 527 } 528 529 /// ParseNamedGlobal: 530 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 531 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 532 /// ... -> global variable 533 bool LLParser::ParseNamedGlobal() { 534 assert(Lex.getKind() == lltok::GlobalVar); 535 LocTy NameLoc = Lex.getLoc(); 536 std::string Name = Lex.getStrVal(); 537 Lex.Lex(); 538 539 bool HasLinkage; 540 unsigned Linkage, Visibility, DLLStorageClass; 541 GlobalVariable::ThreadLocalMode TLM; 542 GlobalVariable::UnnamedAddr UnnamedAddr; 543 if (ParseToken(lltok::equal, "expected '=' in global variable") || 544 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 545 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 546 return true; 547 548 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 549 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 550 DLLStorageClass, TLM, UnnamedAddr); 551 552 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 553 DLLStorageClass, TLM, UnnamedAddr); 554 } 555 556 bool LLParser::parseComdat() { 557 assert(Lex.getKind() == lltok::ComdatVar); 558 std::string Name = Lex.getStrVal(); 559 LocTy NameLoc = Lex.getLoc(); 560 Lex.Lex(); 561 562 if (ParseToken(lltok::equal, "expected '=' here")) 563 return true; 564 565 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 566 return TokError("expected comdat type"); 567 568 Comdat::SelectionKind SK; 569 switch (Lex.getKind()) { 570 default: 571 return TokError("unknown selection kind"); 572 case lltok::kw_any: 573 SK = Comdat::Any; 574 break; 575 case lltok::kw_exactmatch: 576 SK = Comdat::ExactMatch; 577 break; 578 case lltok::kw_largest: 579 SK = Comdat::Largest; 580 break; 581 case lltok::kw_noduplicates: 582 SK = Comdat::NoDuplicates; 583 break; 584 case lltok::kw_samesize: 585 SK = Comdat::SameSize; 586 break; 587 } 588 Lex.Lex(); 589 590 // See if the comdat was forward referenced, if so, use the comdat. 591 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 592 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 593 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 594 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 595 596 Comdat *C; 597 if (I != ComdatSymTab.end()) 598 C = &I->second; 599 else 600 C = M->getOrInsertComdat(Name); 601 C->setSelectionKind(SK); 602 603 return false; 604 } 605 606 // MDString: 607 // ::= '!' STRINGCONSTANT 608 bool LLParser::ParseMDString(MDString *&Result) { 609 std::string Str; 610 if (ParseStringConstant(Str)) return true; 611 Result = MDString::get(Context, Str); 612 return false; 613 } 614 615 // MDNode: 616 // ::= '!' MDNodeNumber 617 bool LLParser::ParseMDNodeID(MDNode *&Result) { 618 // !{ ..., !42, ... } 619 LocTy IDLoc = Lex.getLoc(); 620 unsigned MID = 0; 621 if (ParseUInt32(MID)) 622 return true; 623 624 // If not a forward reference, just return it now. 625 if (NumberedMetadata.count(MID)) { 626 Result = NumberedMetadata[MID]; 627 return false; 628 } 629 630 // Otherwise, create MDNode forward reference. 631 auto &FwdRef = ForwardRefMDNodes[MID]; 632 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 633 634 Result = FwdRef.first.get(); 635 NumberedMetadata[MID].reset(Result); 636 return false; 637 } 638 639 /// ParseNamedMetadata: 640 /// !foo = !{ !1, !2 } 641 bool LLParser::ParseNamedMetadata() { 642 assert(Lex.getKind() == lltok::MetadataVar); 643 std::string Name = Lex.getStrVal(); 644 Lex.Lex(); 645 646 if (ParseToken(lltok::equal, "expected '=' here") || 647 ParseToken(lltok::exclaim, "Expected '!' here") || 648 ParseToken(lltok::lbrace, "Expected '{' here")) 649 return true; 650 651 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 652 if (Lex.getKind() != lltok::rbrace) 653 do { 654 if (ParseToken(lltok::exclaim, "Expected '!' here")) 655 return true; 656 657 MDNode *N = nullptr; 658 if (ParseMDNodeID(N)) return true; 659 NMD->addOperand(N); 660 } while (EatIfPresent(lltok::comma)); 661 662 return ParseToken(lltok::rbrace, "expected end of metadata node"); 663 } 664 665 /// ParseStandaloneMetadata: 666 /// !42 = !{...} 667 bool LLParser::ParseStandaloneMetadata() { 668 assert(Lex.getKind() == lltok::exclaim); 669 Lex.Lex(); 670 unsigned MetadataID = 0; 671 672 MDNode *Init; 673 if (ParseUInt32(MetadataID) || 674 ParseToken(lltok::equal, "expected '=' here")) 675 return true; 676 677 // Detect common error, from old metadata syntax. 678 if (Lex.getKind() == lltok::Type) 679 return TokError("unexpected type in metadata definition"); 680 681 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 682 if (Lex.getKind() == lltok::MetadataVar) { 683 if (ParseSpecializedMDNode(Init, IsDistinct)) 684 return true; 685 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 686 ParseMDTuple(Init, IsDistinct)) 687 return true; 688 689 // See if this was forward referenced, if so, handle it. 690 auto FI = ForwardRefMDNodes.find(MetadataID); 691 if (FI != ForwardRefMDNodes.end()) { 692 FI->second.first->replaceAllUsesWith(Init); 693 ForwardRefMDNodes.erase(FI); 694 695 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 696 } else { 697 if (NumberedMetadata.count(MetadataID)) 698 return TokError("Metadata id is already used"); 699 NumberedMetadata[MetadataID].reset(Init); 700 } 701 702 return false; 703 } 704 705 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 706 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 707 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 708 } 709 710 /// parseIndirectSymbol: 711 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 712 /// OptionalDLLStorageClass OptionalThreadLocal 713 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 714 /// 715 /// IndirectSymbol 716 /// ::= TypeAndValue 717 /// 718 /// Everything through OptionalUnnamedAddr has already been parsed. 719 /// 720 bool LLParser::parseIndirectSymbol( 721 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 722 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 723 GlobalVariable::UnnamedAddr UnnamedAddr) { 724 bool IsAlias; 725 if (Lex.getKind() == lltok::kw_alias) 726 IsAlias = true; 727 else if (Lex.getKind() == lltok::kw_ifunc) 728 IsAlias = false; 729 else 730 llvm_unreachable("Not an alias or ifunc!"); 731 Lex.Lex(); 732 733 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 734 735 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 736 return Error(NameLoc, "invalid linkage type for alias"); 737 738 if (!isValidVisibilityForLinkage(Visibility, L)) 739 return Error(NameLoc, 740 "symbol with local linkage must have default visibility"); 741 742 Type *Ty; 743 LocTy ExplicitTypeLoc = Lex.getLoc(); 744 if (ParseType(Ty) || 745 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 746 return true; 747 748 Constant *Aliasee; 749 LocTy AliaseeLoc = Lex.getLoc(); 750 if (Lex.getKind() != lltok::kw_bitcast && 751 Lex.getKind() != lltok::kw_getelementptr && 752 Lex.getKind() != lltok::kw_addrspacecast && 753 Lex.getKind() != lltok::kw_inttoptr) { 754 if (ParseGlobalTypeAndValue(Aliasee)) 755 return true; 756 } else { 757 // The bitcast dest type is not present, it is implied by the dest type. 758 ValID ID; 759 if (ParseValID(ID)) 760 return true; 761 if (ID.Kind != ValID::t_Constant) 762 return Error(AliaseeLoc, "invalid aliasee"); 763 Aliasee = ID.ConstantVal; 764 } 765 766 Type *AliaseeType = Aliasee->getType(); 767 auto *PTy = dyn_cast<PointerType>(AliaseeType); 768 if (!PTy) 769 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 770 unsigned AddrSpace = PTy->getAddressSpace(); 771 772 if (IsAlias && Ty != PTy->getElementType()) 773 return Error( 774 ExplicitTypeLoc, 775 "explicit pointee type doesn't match operand's pointee type"); 776 777 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 778 return Error( 779 ExplicitTypeLoc, 780 "explicit pointee type should be a function type"); 781 782 GlobalValue *GVal = nullptr; 783 784 // See if the alias was forward referenced, if so, prepare to replace the 785 // forward reference. 786 if (!Name.empty()) { 787 GVal = M->getNamedValue(Name); 788 if (GVal) { 789 if (!ForwardRefVals.erase(Name)) 790 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 791 } 792 } else { 793 auto I = ForwardRefValIDs.find(NumberedVals.size()); 794 if (I != ForwardRefValIDs.end()) { 795 GVal = I->second.first; 796 ForwardRefValIDs.erase(I); 797 } 798 } 799 800 // Okay, create the alias but do not insert it into the module yet. 801 std::unique_ptr<GlobalIndirectSymbol> GA; 802 if (IsAlias) 803 GA.reset(GlobalAlias::create(Ty, AddrSpace, 804 (GlobalValue::LinkageTypes)Linkage, Name, 805 Aliasee, /*Parent*/ nullptr)); 806 else 807 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 808 (GlobalValue::LinkageTypes)Linkage, Name, 809 Aliasee, /*Parent*/ nullptr)); 810 GA->setThreadLocalMode(TLM); 811 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 812 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 813 GA->setUnnamedAddr(UnnamedAddr); 814 815 if (Name.empty()) 816 NumberedVals.push_back(GA.get()); 817 818 if (GVal) { 819 // Verify that types agree. 820 if (GVal->getType() != GA->getType()) 821 return Error( 822 ExplicitTypeLoc, 823 "forward reference and definition of alias have different types"); 824 825 // If they agree, just RAUW the old value with the alias and remove the 826 // forward ref info. 827 GVal->replaceAllUsesWith(GA.get()); 828 GVal->eraseFromParent(); 829 } 830 831 // Insert into the module, we know its name won't collide now. 832 if (IsAlias) 833 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 834 else 835 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 836 assert(GA->getName() == Name && "Should not be a name conflict!"); 837 838 // The module owns this now 839 GA.release(); 840 841 return false; 842 } 843 844 /// ParseGlobal 845 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 846 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 847 /// OptionalExternallyInitialized GlobalType Type Const 848 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 849 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 850 /// OptionalExternallyInitialized GlobalType Type Const 851 /// 852 /// Everything up to and including OptionalUnnamedAddr has been parsed 853 /// already. 854 /// 855 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 856 unsigned Linkage, bool HasLinkage, 857 unsigned Visibility, unsigned DLLStorageClass, 858 GlobalVariable::ThreadLocalMode TLM, 859 GlobalVariable::UnnamedAddr UnnamedAddr) { 860 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 861 return Error(NameLoc, 862 "symbol with local linkage must have default visibility"); 863 864 unsigned AddrSpace; 865 bool IsConstant, IsExternallyInitialized; 866 LocTy IsExternallyInitializedLoc; 867 LocTy TyLoc; 868 869 Type *Ty = nullptr; 870 if (ParseOptionalAddrSpace(AddrSpace) || 871 ParseOptionalToken(lltok::kw_externally_initialized, 872 IsExternallyInitialized, 873 &IsExternallyInitializedLoc) || 874 ParseGlobalType(IsConstant) || 875 ParseType(Ty, TyLoc)) 876 return true; 877 878 // If the linkage is specified and is external, then no initializer is 879 // present. 880 Constant *Init = nullptr; 881 if (!HasLinkage || 882 !GlobalValue::isValidDeclarationLinkage( 883 (GlobalValue::LinkageTypes)Linkage)) { 884 if (ParseGlobalValue(Ty, Init)) 885 return true; 886 } 887 888 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 889 return Error(TyLoc, "invalid type for global variable"); 890 891 GlobalValue *GVal = nullptr; 892 893 // See if the global was forward referenced, if so, use the global. 894 if (!Name.empty()) { 895 GVal = M->getNamedValue(Name); 896 if (GVal) { 897 if (!ForwardRefVals.erase(Name)) 898 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 899 } 900 } else { 901 auto I = ForwardRefValIDs.find(NumberedVals.size()); 902 if (I != ForwardRefValIDs.end()) { 903 GVal = I->second.first; 904 ForwardRefValIDs.erase(I); 905 } 906 } 907 908 GlobalVariable *GV; 909 if (!GVal) { 910 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 911 Name, nullptr, GlobalVariable::NotThreadLocal, 912 AddrSpace); 913 } else { 914 if (GVal->getValueType() != Ty) 915 return Error(TyLoc, 916 "forward reference and definition of global have different types"); 917 918 GV = cast<GlobalVariable>(GVal); 919 920 // Move the forward-reference to the correct spot in the module. 921 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 922 } 923 924 if (Name.empty()) 925 NumberedVals.push_back(GV); 926 927 // Set the parsed properties on the global. 928 if (Init) 929 GV->setInitializer(Init); 930 GV->setConstant(IsConstant); 931 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 932 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 933 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 934 GV->setExternallyInitialized(IsExternallyInitialized); 935 GV->setThreadLocalMode(TLM); 936 GV->setUnnamedAddr(UnnamedAddr); 937 938 // Parse attributes on the global. 939 while (Lex.getKind() == lltok::comma) { 940 Lex.Lex(); 941 942 if (Lex.getKind() == lltok::kw_section) { 943 Lex.Lex(); 944 GV->setSection(Lex.getStrVal()); 945 if (ParseToken(lltok::StringConstant, "expected global section string")) 946 return true; 947 } else if (Lex.getKind() == lltok::kw_align) { 948 unsigned Alignment; 949 if (ParseOptionalAlignment(Alignment)) return true; 950 GV->setAlignment(Alignment); 951 } else if (Lex.getKind() == lltok::MetadataVar) { 952 if (ParseGlobalObjectMetadataAttachment(*GV)) 953 return true; 954 } else { 955 Comdat *C; 956 if (parseOptionalComdat(Name, C)) 957 return true; 958 if (C) 959 GV->setComdat(C); 960 else 961 return TokError("unknown global variable property!"); 962 } 963 } 964 965 return false; 966 } 967 968 /// ParseUnnamedAttrGrp 969 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 970 bool LLParser::ParseUnnamedAttrGrp() { 971 assert(Lex.getKind() == lltok::kw_attributes); 972 LocTy AttrGrpLoc = Lex.getLoc(); 973 Lex.Lex(); 974 975 if (Lex.getKind() != lltok::AttrGrpID) 976 return TokError("expected attribute group id"); 977 978 unsigned VarID = Lex.getUIntVal(); 979 std::vector<unsigned> unused; 980 LocTy BuiltinLoc; 981 Lex.Lex(); 982 983 if (ParseToken(lltok::equal, "expected '=' here") || 984 ParseToken(lltok::lbrace, "expected '{' here") || 985 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 986 BuiltinLoc) || 987 ParseToken(lltok::rbrace, "expected end of attribute group")) 988 return true; 989 990 if (!NumberedAttrBuilders[VarID].hasAttributes()) 991 return Error(AttrGrpLoc, "attribute group has no attributes"); 992 993 return false; 994 } 995 996 /// ParseFnAttributeValuePairs 997 /// ::= <attr> | <attr> '=' <value> 998 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 999 std::vector<unsigned> &FwdRefAttrGrps, 1000 bool inAttrGrp, LocTy &BuiltinLoc) { 1001 bool HaveError = false; 1002 1003 B.clear(); 1004 1005 while (true) { 1006 lltok::Kind Token = Lex.getKind(); 1007 if (Token == lltok::kw_builtin) 1008 BuiltinLoc = Lex.getLoc(); 1009 switch (Token) { 1010 default: 1011 if (!inAttrGrp) return HaveError; 1012 return Error(Lex.getLoc(), "unterminated attribute group"); 1013 case lltok::rbrace: 1014 // Finished. 1015 return false; 1016 1017 case lltok::AttrGrpID: { 1018 // Allow a function to reference an attribute group: 1019 // 1020 // define void @foo() #1 { ... } 1021 if (inAttrGrp) 1022 HaveError |= 1023 Error(Lex.getLoc(), 1024 "cannot have an attribute group reference in an attribute group"); 1025 1026 unsigned AttrGrpNum = Lex.getUIntVal(); 1027 if (inAttrGrp) break; 1028 1029 // Save the reference to the attribute group. We'll fill it in later. 1030 FwdRefAttrGrps.push_back(AttrGrpNum); 1031 break; 1032 } 1033 // Target-dependent attributes: 1034 case lltok::StringConstant: { 1035 if (ParseStringAttribute(B)) 1036 return true; 1037 continue; 1038 } 1039 1040 // Target-independent attributes: 1041 case lltok::kw_align: { 1042 // As a hack, we allow function alignment to be initially parsed as an 1043 // attribute on a function declaration/definition or added to an attribute 1044 // group and later moved to the alignment field. 1045 unsigned Alignment; 1046 if (inAttrGrp) { 1047 Lex.Lex(); 1048 if (ParseToken(lltok::equal, "expected '=' here") || 1049 ParseUInt32(Alignment)) 1050 return true; 1051 } else { 1052 if (ParseOptionalAlignment(Alignment)) 1053 return true; 1054 } 1055 B.addAlignmentAttr(Alignment); 1056 continue; 1057 } 1058 case lltok::kw_alignstack: { 1059 unsigned Alignment; 1060 if (inAttrGrp) { 1061 Lex.Lex(); 1062 if (ParseToken(lltok::equal, "expected '=' here") || 1063 ParseUInt32(Alignment)) 1064 return true; 1065 } else { 1066 if (ParseOptionalStackAlignment(Alignment)) 1067 return true; 1068 } 1069 B.addStackAlignmentAttr(Alignment); 1070 continue; 1071 } 1072 case lltok::kw_allocsize: { 1073 unsigned ElemSizeArg; 1074 Optional<unsigned> NumElemsArg; 1075 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1076 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1077 return true; 1078 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1079 continue; 1080 } 1081 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1082 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1083 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1084 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1085 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1086 case lltok::kw_inaccessiblememonly: 1087 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1088 case lltok::kw_inaccessiblemem_or_argmemonly: 1089 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1090 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1091 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1092 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1093 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1094 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1095 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1096 case lltok::kw_noimplicitfloat: 1097 B.addAttribute(Attribute::NoImplicitFloat); break; 1098 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1099 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1100 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1101 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1102 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1103 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1104 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1105 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1106 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1107 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1108 case lltok::kw_returns_twice: 1109 B.addAttribute(Attribute::ReturnsTwice); break; 1110 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1111 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1112 case lltok::kw_sspstrong: 1113 B.addAttribute(Attribute::StackProtectStrong); break; 1114 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1115 case lltok::kw_sanitize_address: 1116 B.addAttribute(Attribute::SanitizeAddress); break; 1117 case lltok::kw_sanitize_thread: 1118 B.addAttribute(Attribute::SanitizeThread); break; 1119 case lltok::kw_sanitize_memory: 1120 B.addAttribute(Attribute::SanitizeMemory); break; 1121 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1122 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1123 1124 // Error handling. 1125 case lltok::kw_inreg: 1126 case lltok::kw_signext: 1127 case lltok::kw_zeroext: 1128 HaveError |= 1129 Error(Lex.getLoc(), 1130 "invalid use of attribute on a function"); 1131 break; 1132 case lltok::kw_byval: 1133 case lltok::kw_dereferenceable: 1134 case lltok::kw_dereferenceable_or_null: 1135 case lltok::kw_inalloca: 1136 case lltok::kw_nest: 1137 case lltok::kw_noalias: 1138 case lltok::kw_nocapture: 1139 case lltok::kw_nonnull: 1140 case lltok::kw_returned: 1141 case lltok::kw_sret: 1142 case lltok::kw_swifterror: 1143 case lltok::kw_swiftself: 1144 HaveError |= 1145 Error(Lex.getLoc(), 1146 "invalid use of parameter-only attribute on a function"); 1147 break; 1148 } 1149 1150 Lex.Lex(); 1151 } 1152 } 1153 1154 //===----------------------------------------------------------------------===// 1155 // GlobalValue Reference/Resolution Routines. 1156 //===----------------------------------------------------------------------===// 1157 1158 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1159 const std::string &Name) { 1160 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1161 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1162 else 1163 return new GlobalVariable(*M, PTy->getElementType(), false, 1164 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1165 nullptr, GlobalVariable::NotThreadLocal, 1166 PTy->getAddressSpace()); 1167 } 1168 1169 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1170 /// forward reference record if needed. This can return null if the value 1171 /// exists but does not have the right type. 1172 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1173 LocTy Loc) { 1174 PointerType *PTy = dyn_cast<PointerType>(Ty); 1175 if (!PTy) { 1176 Error(Loc, "global variable reference must have pointer type"); 1177 return nullptr; 1178 } 1179 1180 // Look this name up in the normal function symbol table. 1181 GlobalValue *Val = 1182 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1183 1184 // If this is a forward reference for the value, see if we already created a 1185 // forward ref record. 1186 if (!Val) { 1187 auto I = ForwardRefVals.find(Name); 1188 if (I != ForwardRefVals.end()) 1189 Val = I->second.first; 1190 } 1191 1192 // If we have the value in the symbol table or fwd-ref table, return it. 1193 if (Val) { 1194 if (Val->getType() == Ty) return Val; 1195 Error(Loc, "'@" + Name + "' defined with type '" + 1196 getTypeString(Val->getType()) + "'"); 1197 return nullptr; 1198 } 1199 1200 // Otherwise, create a new forward reference for this value and remember it. 1201 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1202 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1203 return FwdVal; 1204 } 1205 1206 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1207 PointerType *PTy = dyn_cast<PointerType>(Ty); 1208 if (!PTy) { 1209 Error(Loc, "global variable reference must have pointer type"); 1210 return nullptr; 1211 } 1212 1213 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1214 1215 // If this is a forward reference for the value, see if we already created a 1216 // forward ref record. 1217 if (!Val) { 1218 auto I = ForwardRefValIDs.find(ID); 1219 if (I != ForwardRefValIDs.end()) 1220 Val = I->second.first; 1221 } 1222 1223 // If we have the value in the symbol table or fwd-ref table, return it. 1224 if (Val) { 1225 if (Val->getType() == Ty) return Val; 1226 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1227 getTypeString(Val->getType()) + "'"); 1228 return nullptr; 1229 } 1230 1231 // Otherwise, create a new forward reference for this value and remember it. 1232 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1233 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1234 return FwdVal; 1235 } 1236 1237 //===----------------------------------------------------------------------===// 1238 // Comdat Reference/Resolution Routines. 1239 //===----------------------------------------------------------------------===// 1240 1241 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1242 // Look this name up in the comdat symbol table. 1243 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1244 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1245 if (I != ComdatSymTab.end()) 1246 return &I->second; 1247 1248 // Otherwise, create a new forward reference for this value and remember it. 1249 Comdat *C = M->getOrInsertComdat(Name); 1250 ForwardRefComdats[Name] = Loc; 1251 return C; 1252 } 1253 1254 //===----------------------------------------------------------------------===// 1255 // Helper Routines. 1256 //===----------------------------------------------------------------------===// 1257 1258 /// ParseToken - If the current token has the specified kind, eat it and return 1259 /// success. Otherwise, emit the specified error and return failure. 1260 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1261 if (Lex.getKind() != T) 1262 return TokError(ErrMsg); 1263 Lex.Lex(); 1264 return false; 1265 } 1266 1267 /// ParseStringConstant 1268 /// ::= StringConstant 1269 bool LLParser::ParseStringConstant(std::string &Result) { 1270 if (Lex.getKind() != lltok::StringConstant) 1271 return TokError("expected string constant"); 1272 Result = Lex.getStrVal(); 1273 Lex.Lex(); 1274 return false; 1275 } 1276 1277 /// ParseUInt32 1278 /// ::= uint32 1279 bool LLParser::ParseUInt32(uint32_t &Val) { 1280 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1281 return TokError("expected integer"); 1282 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1283 if (Val64 != unsigned(Val64)) 1284 return TokError("expected 32-bit integer (too large)"); 1285 Val = Val64; 1286 Lex.Lex(); 1287 return false; 1288 } 1289 1290 /// ParseUInt64 1291 /// ::= uint64 1292 bool LLParser::ParseUInt64(uint64_t &Val) { 1293 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1294 return TokError("expected integer"); 1295 Val = Lex.getAPSIntVal().getLimitedValue(); 1296 Lex.Lex(); 1297 return false; 1298 } 1299 1300 /// ParseTLSModel 1301 /// := 'localdynamic' 1302 /// := 'initialexec' 1303 /// := 'localexec' 1304 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1305 switch (Lex.getKind()) { 1306 default: 1307 return TokError("expected localdynamic, initialexec or localexec"); 1308 case lltok::kw_localdynamic: 1309 TLM = GlobalVariable::LocalDynamicTLSModel; 1310 break; 1311 case lltok::kw_initialexec: 1312 TLM = GlobalVariable::InitialExecTLSModel; 1313 break; 1314 case lltok::kw_localexec: 1315 TLM = GlobalVariable::LocalExecTLSModel; 1316 break; 1317 } 1318 1319 Lex.Lex(); 1320 return false; 1321 } 1322 1323 /// ParseOptionalThreadLocal 1324 /// := /*empty*/ 1325 /// := 'thread_local' 1326 /// := 'thread_local' '(' tlsmodel ')' 1327 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1328 TLM = GlobalVariable::NotThreadLocal; 1329 if (!EatIfPresent(lltok::kw_thread_local)) 1330 return false; 1331 1332 TLM = GlobalVariable::GeneralDynamicTLSModel; 1333 if (Lex.getKind() == lltok::lparen) { 1334 Lex.Lex(); 1335 return ParseTLSModel(TLM) || 1336 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1337 } 1338 return false; 1339 } 1340 1341 /// ParseOptionalAddrSpace 1342 /// := /*empty*/ 1343 /// := 'addrspace' '(' uint32 ')' 1344 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1345 AddrSpace = 0; 1346 if (!EatIfPresent(lltok::kw_addrspace)) 1347 return false; 1348 return ParseToken(lltok::lparen, "expected '(' in address space") || 1349 ParseUInt32(AddrSpace) || 1350 ParseToken(lltok::rparen, "expected ')' in address space"); 1351 } 1352 1353 /// ParseStringAttribute 1354 /// := StringConstant 1355 /// := StringConstant '=' StringConstant 1356 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1357 std::string Attr = Lex.getStrVal(); 1358 Lex.Lex(); 1359 std::string Val; 1360 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1361 return true; 1362 B.addAttribute(Attr, Val); 1363 return false; 1364 } 1365 1366 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1367 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1368 bool HaveError = false; 1369 1370 B.clear(); 1371 1372 while (true) { 1373 lltok::Kind Token = Lex.getKind(); 1374 switch (Token) { 1375 default: // End of attributes. 1376 return HaveError; 1377 case lltok::StringConstant: { 1378 if (ParseStringAttribute(B)) 1379 return true; 1380 continue; 1381 } 1382 case lltok::kw_align: { 1383 unsigned Alignment; 1384 if (ParseOptionalAlignment(Alignment)) 1385 return true; 1386 B.addAlignmentAttr(Alignment); 1387 continue; 1388 } 1389 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1390 case lltok::kw_dereferenceable: { 1391 uint64_t Bytes; 1392 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1393 return true; 1394 B.addDereferenceableAttr(Bytes); 1395 continue; 1396 } 1397 case lltok::kw_dereferenceable_or_null: { 1398 uint64_t Bytes; 1399 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1400 return true; 1401 B.addDereferenceableOrNullAttr(Bytes); 1402 continue; 1403 } 1404 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1405 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1406 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1407 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1408 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1409 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1410 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1411 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1412 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1413 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1414 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1415 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1416 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1417 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1418 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1419 1420 case lltok::kw_alignstack: 1421 case lltok::kw_alwaysinline: 1422 case lltok::kw_argmemonly: 1423 case lltok::kw_builtin: 1424 case lltok::kw_inlinehint: 1425 case lltok::kw_jumptable: 1426 case lltok::kw_minsize: 1427 case lltok::kw_naked: 1428 case lltok::kw_nobuiltin: 1429 case lltok::kw_noduplicate: 1430 case lltok::kw_noimplicitfloat: 1431 case lltok::kw_noinline: 1432 case lltok::kw_nonlazybind: 1433 case lltok::kw_noredzone: 1434 case lltok::kw_noreturn: 1435 case lltok::kw_nounwind: 1436 case lltok::kw_optnone: 1437 case lltok::kw_optsize: 1438 case lltok::kw_returns_twice: 1439 case lltok::kw_sanitize_address: 1440 case lltok::kw_sanitize_memory: 1441 case lltok::kw_sanitize_thread: 1442 case lltok::kw_ssp: 1443 case lltok::kw_sspreq: 1444 case lltok::kw_sspstrong: 1445 case lltok::kw_safestack: 1446 case lltok::kw_uwtable: 1447 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1448 break; 1449 } 1450 1451 Lex.Lex(); 1452 } 1453 } 1454 1455 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1456 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1457 bool HaveError = false; 1458 1459 B.clear(); 1460 1461 while (true) { 1462 lltok::Kind Token = Lex.getKind(); 1463 switch (Token) { 1464 default: // End of attributes. 1465 return HaveError; 1466 case lltok::StringConstant: { 1467 if (ParseStringAttribute(B)) 1468 return true; 1469 continue; 1470 } 1471 case lltok::kw_dereferenceable: { 1472 uint64_t Bytes; 1473 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1474 return true; 1475 B.addDereferenceableAttr(Bytes); 1476 continue; 1477 } 1478 case lltok::kw_dereferenceable_or_null: { 1479 uint64_t Bytes; 1480 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1481 return true; 1482 B.addDereferenceableOrNullAttr(Bytes); 1483 continue; 1484 } 1485 case lltok::kw_align: { 1486 unsigned Alignment; 1487 if (ParseOptionalAlignment(Alignment)) 1488 return true; 1489 B.addAlignmentAttr(Alignment); 1490 continue; 1491 } 1492 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1493 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1494 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1495 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1496 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1497 1498 // Error handling. 1499 case lltok::kw_byval: 1500 case lltok::kw_inalloca: 1501 case lltok::kw_nest: 1502 case lltok::kw_nocapture: 1503 case lltok::kw_returned: 1504 case lltok::kw_sret: 1505 case lltok::kw_swifterror: 1506 case lltok::kw_swiftself: 1507 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1508 break; 1509 1510 case lltok::kw_alignstack: 1511 case lltok::kw_alwaysinline: 1512 case lltok::kw_argmemonly: 1513 case lltok::kw_builtin: 1514 case lltok::kw_cold: 1515 case lltok::kw_inlinehint: 1516 case lltok::kw_jumptable: 1517 case lltok::kw_minsize: 1518 case lltok::kw_naked: 1519 case lltok::kw_nobuiltin: 1520 case lltok::kw_noduplicate: 1521 case lltok::kw_noimplicitfloat: 1522 case lltok::kw_noinline: 1523 case lltok::kw_nonlazybind: 1524 case lltok::kw_noredzone: 1525 case lltok::kw_noreturn: 1526 case lltok::kw_nounwind: 1527 case lltok::kw_optnone: 1528 case lltok::kw_optsize: 1529 case lltok::kw_returns_twice: 1530 case lltok::kw_sanitize_address: 1531 case lltok::kw_sanitize_memory: 1532 case lltok::kw_sanitize_thread: 1533 case lltok::kw_ssp: 1534 case lltok::kw_sspreq: 1535 case lltok::kw_sspstrong: 1536 case lltok::kw_safestack: 1537 case lltok::kw_uwtable: 1538 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1539 break; 1540 1541 case lltok::kw_readnone: 1542 case lltok::kw_readonly: 1543 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1544 } 1545 1546 Lex.Lex(); 1547 } 1548 } 1549 1550 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1551 HasLinkage = true; 1552 switch (Kind) { 1553 default: 1554 HasLinkage = false; 1555 return GlobalValue::ExternalLinkage; 1556 case lltok::kw_private: 1557 return GlobalValue::PrivateLinkage; 1558 case lltok::kw_internal: 1559 return GlobalValue::InternalLinkage; 1560 case lltok::kw_weak: 1561 return GlobalValue::WeakAnyLinkage; 1562 case lltok::kw_weak_odr: 1563 return GlobalValue::WeakODRLinkage; 1564 case lltok::kw_linkonce: 1565 return GlobalValue::LinkOnceAnyLinkage; 1566 case lltok::kw_linkonce_odr: 1567 return GlobalValue::LinkOnceODRLinkage; 1568 case lltok::kw_available_externally: 1569 return GlobalValue::AvailableExternallyLinkage; 1570 case lltok::kw_appending: 1571 return GlobalValue::AppendingLinkage; 1572 case lltok::kw_common: 1573 return GlobalValue::CommonLinkage; 1574 case lltok::kw_extern_weak: 1575 return GlobalValue::ExternalWeakLinkage; 1576 case lltok::kw_external: 1577 return GlobalValue::ExternalLinkage; 1578 } 1579 } 1580 1581 /// ParseOptionalLinkage 1582 /// ::= /*empty*/ 1583 /// ::= 'private' 1584 /// ::= 'internal' 1585 /// ::= 'weak' 1586 /// ::= 'weak_odr' 1587 /// ::= 'linkonce' 1588 /// ::= 'linkonce_odr' 1589 /// ::= 'available_externally' 1590 /// ::= 'appending' 1591 /// ::= 'common' 1592 /// ::= 'extern_weak' 1593 /// ::= 'external' 1594 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1595 unsigned &Visibility, 1596 unsigned &DLLStorageClass) { 1597 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1598 if (HasLinkage) 1599 Lex.Lex(); 1600 ParseOptionalVisibility(Visibility); 1601 ParseOptionalDLLStorageClass(DLLStorageClass); 1602 return false; 1603 } 1604 1605 /// ParseOptionalVisibility 1606 /// ::= /*empty*/ 1607 /// ::= 'default' 1608 /// ::= 'hidden' 1609 /// ::= 'protected' 1610 /// 1611 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1612 switch (Lex.getKind()) { 1613 default: 1614 Res = GlobalValue::DefaultVisibility; 1615 return; 1616 case lltok::kw_default: 1617 Res = GlobalValue::DefaultVisibility; 1618 break; 1619 case lltok::kw_hidden: 1620 Res = GlobalValue::HiddenVisibility; 1621 break; 1622 case lltok::kw_protected: 1623 Res = GlobalValue::ProtectedVisibility; 1624 break; 1625 } 1626 Lex.Lex(); 1627 } 1628 1629 /// ParseOptionalDLLStorageClass 1630 /// ::= /*empty*/ 1631 /// ::= 'dllimport' 1632 /// ::= 'dllexport' 1633 /// 1634 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1635 switch (Lex.getKind()) { 1636 default: 1637 Res = GlobalValue::DefaultStorageClass; 1638 return; 1639 case lltok::kw_dllimport: 1640 Res = GlobalValue::DLLImportStorageClass; 1641 break; 1642 case lltok::kw_dllexport: 1643 Res = GlobalValue::DLLExportStorageClass; 1644 break; 1645 } 1646 Lex.Lex(); 1647 } 1648 1649 /// ParseOptionalCallingConv 1650 /// ::= /*empty*/ 1651 /// ::= 'ccc' 1652 /// ::= 'fastcc' 1653 /// ::= 'intel_ocl_bicc' 1654 /// ::= 'coldcc' 1655 /// ::= 'x86_stdcallcc' 1656 /// ::= 'x86_fastcallcc' 1657 /// ::= 'x86_thiscallcc' 1658 /// ::= 'x86_vectorcallcc' 1659 /// ::= 'arm_apcscc' 1660 /// ::= 'arm_aapcscc' 1661 /// ::= 'arm_aapcs_vfpcc' 1662 /// ::= 'msp430_intrcc' 1663 /// ::= 'avr_intrcc' 1664 /// ::= 'avr_signalcc' 1665 /// ::= 'ptx_kernel' 1666 /// ::= 'ptx_device' 1667 /// ::= 'spir_func' 1668 /// ::= 'spir_kernel' 1669 /// ::= 'x86_64_sysvcc' 1670 /// ::= 'x86_64_win64cc' 1671 /// ::= 'webkit_jscc' 1672 /// ::= 'anyregcc' 1673 /// ::= 'preserve_mostcc' 1674 /// ::= 'preserve_allcc' 1675 /// ::= 'ghccc' 1676 /// ::= 'swiftcc' 1677 /// ::= 'x86_intrcc' 1678 /// ::= 'hhvmcc' 1679 /// ::= 'hhvm_ccc' 1680 /// ::= 'cxx_fast_tlscc' 1681 /// ::= 'amdgpu_vs' 1682 /// ::= 'amdgpu_tcs' 1683 /// ::= 'amdgpu_tes' 1684 /// ::= 'amdgpu_gs' 1685 /// ::= 'amdgpu_ps' 1686 /// ::= 'amdgpu_cs' 1687 /// ::= 'amdgpu_kernel' 1688 /// ::= 'cc' UINT 1689 /// 1690 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1691 switch (Lex.getKind()) { 1692 default: CC = CallingConv::C; return false; 1693 case lltok::kw_ccc: CC = CallingConv::C; break; 1694 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1695 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1696 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1697 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1698 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1699 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1700 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1701 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1702 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1703 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1704 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1705 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1706 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1707 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1708 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1709 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1710 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1711 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1712 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1713 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1714 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1715 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1716 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1717 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1718 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1719 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1720 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1721 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1722 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1723 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1724 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1725 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1726 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1727 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1728 case lltok::kw_cc: { 1729 Lex.Lex(); 1730 return ParseUInt32(CC); 1731 } 1732 } 1733 1734 Lex.Lex(); 1735 return false; 1736 } 1737 1738 /// ParseMetadataAttachment 1739 /// ::= !dbg !42 1740 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1741 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1742 1743 std::string Name = Lex.getStrVal(); 1744 Kind = M->getMDKindID(Name); 1745 Lex.Lex(); 1746 1747 return ParseMDNode(MD); 1748 } 1749 1750 /// ParseInstructionMetadata 1751 /// ::= !dbg !42 (',' !dbg !57)* 1752 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1753 do { 1754 if (Lex.getKind() != lltok::MetadataVar) 1755 return TokError("expected metadata after comma"); 1756 1757 unsigned MDK; 1758 MDNode *N; 1759 if (ParseMetadataAttachment(MDK, N)) 1760 return true; 1761 1762 Inst.setMetadata(MDK, N); 1763 if (MDK == LLVMContext::MD_tbaa) 1764 InstsWithTBAATag.push_back(&Inst); 1765 1766 // If this is the end of the list, we're done. 1767 } while (EatIfPresent(lltok::comma)); 1768 return false; 1769 } 1770 1771 /// ParseGlobalObjectMetadataAttachment 1772 /// ::= !dbg !57 1773 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1774 unsigned MDK; 1775 MDNode *N; 1776 if (ParseMetadataAttachment(MDK, N)) 1777 return true; 1778 1779 GO.addMetadata(MDK, *N); 1780 return false; 1781 } 1782 1783 /// ParseOptionalFunctionMetadata 1784 /// ::= (!dbg !57)* 1785 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1786 while (Lex.getKind() == lltok::MetadataVar) 1787 if (ParseGlobalObjectMetadataAttachment(F)) 1788 return true; 1789 return false; 1790 } 1791 1792 /// ParseOptionalAlignment 1793 /// ::= /* empty */ 1794 /// ::= 'align' 4 1795 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1796 Alignment = 0; 1797 if (!EatIfPresent(lltok::kw_align)) 1798 return false; 1799 LocTy AlignLoc = Lex.getLoc(); 1800 if (ParseUInt32(Alignment)) return true; 1801 if (!isPowerOf2_32(Alignment)) 1802 return Error(AlignLoc, "alignment is not a power of two"); 1803 if (Alignment > Value::MaximumAlignment) 1804 return Error(AlignLoc, "huge alignments are not supported yet"); 1805 return false; 1806 } 1807 1808 /// ParseOptionalDerefAttrBytes 1809 /// ::= /* empty */ 1810 /// ::= AttrKind '(' 4 ')' 1811 /// 1812 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1813 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1814 uint64_t &Bytes) { 1815 assert((AttrKind == lltok::kw_dereferenceable || 1816 AttrKind == lltok::kw_dereferenceable_or_null) && 1817 "contract!"); 1818 1819 Bytes = 0; 1820 if (!EatIfPresent(AttrKind)) 1821 return false; 1822 LocTy ParenLoc = Lex.getLoc(); 1823 if (!EatIfPresent(lltok::lparen)) 1824 return Error(ParenLoc, "expected '('"); 1825 LocTy DerefLoc = Lex.getLoc(); 1826 if (ParseUInt64(Bytes)) return true; 1827 ParenLoc = Lex.getLoc(); 1828 if (!EatIfPresent(lltok::rparen)) 1829 return Error(ParenLoc, "expected ')'"); 1830 if (!Bytes) 1831 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1832 return false; 1833 } 1834 1835 /// ParseOptionalCommaAlign 1836 /// ::= 1837 /// ::= ',' align 4 1838 /// 1839 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1840 /// end. 1841 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1842 bool &AteExtraComma) { 1843 AteExtraComma = false; 1844 while (EatIfPresent(lltok::comma)) { 1845 // Metadata at the end is an early exit. 1846 if (Lex.getKind() == lltok::MetadataVar) { 1847 AteExtraComma = true; 1848 return false; 1849 } 1850 1851 if (Lex.getKind() != lltok::kw_align) 1852 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1853 1854 if (ParseOptionalAlignment(Alignment)) return true; 1855 } 1856 1857 return false; 1858 } 1859 1860 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1861 Optional<unsigned> &HowManyArg) { 1862 Lex.Lex(); 1863 1864 auto StartParen = Lex.getLoc(); 1865 if (!EatIfPresent(lltok::lparen)) 1866 return Error(StartParen, "expected '('"); 1867 1868 if (ParseUInt32(BaseSizeArg)) 1869 return true; 1870 1871 if (EatIfPresent(lltok::comma)) { 1872 auto HowManyAt = Lex.getLoc(); 1873 unsigned HowMany; 1874 if (ParseUInt32(HowMany)) 1875 return true; 1876 if (HowMany == BaseSizeArg) 1877 return Error(HowManyAt, 1878 "'allocsize' indices can't refer to the same parameter"); 1879 HowManyArg = HowMany; 1880 } else 1881 HowManyArg = None; 1882 1883 auto EndParen = Lex.getLoc(); 1884 if (!EatIfPresent(lltok::rparen)) 1885 return Error(EndParen, "expected ')'"); 1886 return false; 1887 } 1888 1889 /// ParseScopeAndOrdering 1890 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1891 /// else: ::= 1892 /// 1893 /// This sets Scope and Ordering to the parsed values. 1894 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1895 AtomicOrdering &Ordering) { 1896 if (!isAtomic) 1897 return false; 1898 1899 Scope = CrossThread; 1900 if (EatIfPresent(lltok::kw_singlethread)) 1901 Scope = SingleThread; 1902 1903 return ParseOrdering(Ordering); 1904 } 1905 1906 /// ParseOrdering 1907 /// ::= AtomicOrdering 1908 /// 1909 /// This sets Ordering to the parsed value. 1910 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1911 switch (Lex.getKind()) { 1912 default: return TokError("Expected ordering on atomic instruction"); 1913 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1914 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1915 // Not specified yet: 1916 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1917 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1918 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1919 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1920 case lltok::kw_seq_cst: 1921 Ordering = AtomicOrdering::SequentiallyConsistent; 1922 break; 1923 } 1924 Lex.Lex(); 1925 return false; 1926 } 1927 1928 /// ParseOptionalStackAlignment 1929 /// ::= /* empty */ 1930 /// ::= 'alignstack' '(' 4 ')' 1931 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1932 Alignment = 0; 1933 if (!EatIfPresent(lltok::kw_alignstack)) 1934 return false; 1935 LocTy ParenLoc = Lex.getLoc(); 1936 if (!EatIfPresent(lltok::lparen)) 1937 return Error(ParenLoc, "expected '('"); 1938 LocTy AlignLoc = Lex.getLoc(); 1939 if (ParseUInt32(Alignment)) return true; 1940 ParenLoc = Lex.getLoc(); 1941 if (!EatIfPresent(lltok::rparen)) 1942 return Error(ParenLoc, "expected ')'"); 1943 if (!isPowerOf2_32(Alignment)) 1944 return Error(AlignLoc, "stack alignment is not a power of two"); 1945 return false; 1946 } 1947 1948 /// ParseIndexList - This parses the index list for an insert/extractvalue 1949 /// instruction. This sets AteExtraComma in the case where we eat an extra 1950 /// comma at the end of the line and find that it is followed by metadata. 1951 /// Clients that don't allow metadata can call the version of this function that 1952 /// only takes one argument. 1953 /// 1954 /// ParseIndexList 1955 /// ::= (',' uint32)+ 1956 /// 1957 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1958 bool &AteExtraComma) { 1959 AteExtraComma = false; 1960 1961 if (Lex.getKind() != lltok::comma) 1962 return TokError("expected ',' as start of index list"); 1963 1964 while (EatIfPresent(lltok::comma)) { 1965 if (Lex.getKind() == lltok::MetadataVar) { 1966 if (Indices.empty()) return TokError("expected index"); 1967 AteExtraComma = true; 1968 return false; 1969 } 1970 unsigned Idx = 0; 1971 if (ParseUInt32(Idx)) return true; 1972 Indices.push_back(Idx); 1973 } 1974 1975 return false; 1976 } 1977 1978 //===----------------------------------------------------------------------===// 1979 // Type Parsing. 1980 //===----------------------------------------------------------------------===// 1981 1982 /// ParseType - Parse a type. 1983 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1984 SMLoc TypeLoc = Lex.getLoc(); 1985 switch (Lex.getKind()) { 1986 default: 1987 return TokError(Msg); 1988 case lltok::Type: 1989 // Type ::= 'float' | 'void' (etc) 1990 Result = Lex.getTyVal(); 1991 Lex.Lex(); 1992 break; 1993 case lltok::lbrace: 1994 // Type ::= StructType 1995 if (ParseAnonStructType(Result, false)) 1996 return true; 1997 break; 1998 case lltok::lsquare: 1999 // Type ::= '[' ... ']' 2000 Lex.Lex(); // eat the lsquare. 2001 if (ParseArrayVectorType(Result, false)) 2002 return true; 2003 break; 2004 case lltok::less: // Either vector or packed struct. 2005 // Type ::= '<' ... '>' 2006 Lex.Lex(); 2007 if (Lex.getKind() == lltok::lbrace) { 2008 if (ParseAnonStructType(Result, true) || 2009 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2010 return true; 2011 } else if (ParseArrayVectorType(Result, true)) 2012 return true; 2013 break; 2014 case lltok::LocalVar: { 2015 // Type ::= %foo 2016 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2017 2018 // If the type hasn't been defined yet, create a forward definition and 2019 // remember where that forward def'n was seen (in case it never is defined). 2020 if (!Entry.first) { 2021 Entry.first = StructType::create(Context, Lex.getStrVal()); 2022 Entry.second = Lex.getLoc(); 2023 } 2024 Result = Entry.first; 2025 Lex.Lex(); 2026 break; 2027 } 2028 2029 case lltok::LocalVarID: { 2030 // Type ::= %4 2031 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2032 2033 // If the type hasn't been defined yet, create a forward definition and 2034 // remember where that forward def'n was seen (in case it never is defined). 2035 if (!Entry.first) { 2036 Entry.first = StructType::create(Context); 2037 Entry.second = Lex.getLoc(); 2038 } 2039 Result = Entry.first; 2040 Lex.Lex(); 2041 break; 2042 } 2043 } 2044 2045 // Parse the type suffixes. 2046 while (true) { 2047 switch (Lex.getKind()) { 2048 // End of type. 2049 default: 2050 if (!AllowVoid && Result->isVoidTy()) 2051 return Error(TypeLoc, "void type only allowed for function results"); 2052 return false; 2053 2054 // Type ::= Type '*' 2055 case lltok::star: 2056 if (Result->isLabelTy()) 2057 return TokError("basic block pointers are invalid"); 2058 if (Result->isVoidTy()) 2059 return TokError("pointers to void are invalid - use i8* instead"); 2060 if (!PointerType::isValidElementType(Result)) 2061 return TokError("pointer to this type is invalid"); 2062 Result = PointerType::getUnqual(Result); 2063 Lex.Lex(); 2064 break; 2065 2066 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2067 case lltok::kw_addrspace: { 2068 if (Result->isLabelTy()) 2069 return TokError("basic block pointers are invalid"); 2070 if (Result->isVoidTy()) 2071 return TokError("pointers to void are invalid; use i8* instead"); 2072 if (!PointerType::isValidElementType(Result)) 2073 return TokError("pointer to this type is invalid"); 2074 unsigned AddrSpace; 2075 if (ParseOptionalAddrSpace(AddrSpace) || 2076 ParseToken(lltok::star, "expected '*' in address space")) 2077 return true; 2078 2079 Result = PointerType::get(Result, AddrSpace); 2080 break; 2081 } 2082 2083 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2084 case lltok::lparen: 2085 if (ParseFunctionType(Result)) 2086 return true; 2087 break; 2088 } 2089 } 2090 } 2091 2092 /// ParseParameterList 2093 /// ::= '(' ')' 2094 /// ::= '(' Arg (',' Arg)* ')' 2095 /// Arg 2096 /// ::= Type OptionalAttributes Value OptionalAttributes 2097 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2098 PerFunctionState &PFS, bool IsMustTailCall, 2099 bool InVarArgsFunc) { 2100 if (ParseToken(lltok::lparen, "expected '(' in call")) 2101 return true; 2102 2103 unsigned AttrIndex = 1; 2104 while (Lex.getKind() != lltok::rparen) { 2105 // If this isn't the first argument, we need a comma. 2106 if (!ArgList.empty() && 2107 ParseToken(lltok::comma, "expected ',' in argument list")) 2108 return true; 2109 2110 // Parse an ellipsis if this is a musttail call in a variadic function. 2111 if (Lex.getKind() == lltok::dotdotdot) { 2112 const char *Msg = "unexpected ellipsis in argument list for "; 2113 if (!IsMustTailCall) 2114 return TokError(Twine(Msg) + "non-musttail call"); 2115 if (!InVarArgsFunc) 2116 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2117 Lex.Lex(); // Lex the '...', it is purely for readability. 2118 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2119 } 2120 2121 // Parse the argument. 2122 LocTy ArgLoc; 2123 Type *ArgTy = nullptr; 2124 AttrBuilder ArgAttrs; 2125 Value *V; 2126 if (ParseType(ArgTy, ArgLoc)) 2127 return true; 2128 2129 if (ArgTy->isMetadataTy()) { 2130 if (ParseMetadataAsValue(V, PFS)) 2131 return true; 2132 } else { 2133 // Otherwise, handle normal operands. 2134 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2135 return true; 2136 } 2137 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 2138 AttrIndex++, 2139 ArgAttrs))); 2140 } 2141 2142 if (IsMustTailCall && InVarArgsFunc) 2143 return TokError("expected '...' at end of argument list for musttail call " 2144 "in varargs function"); 2145 2146 Lex.Lex(); // Lex the ')'. 2147 return false; 2148 } 2149 2150 /// ParseOptionalOperandBundles 2151 /// ::= /*empty*/ 2152 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2153 /// 2154 /// OperandBundle 2155 /// ::= bundle-tag '(' ')' 2156 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2157 /// 2158 /// bundle-tag ::= String Constant 2159 bool LLParser::ParseOptionalOperandBundles( 2160 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2161 LocTy BeginLoc = Lex.getLoc(); 2162 if (!EatIfPresent(lltok::lsquare)) 2163 return false; 2164 2165 while (Lex.getKind() != lltok::rsquare) { 2166 // If this isn't the first operand bundle, we need a comma. 2167 if (!BundleList.empty() && 2168 ParseToken(lltok::comma, "expected ',' in input list")) 2169 return true; 2170 2171 std::string Tag; 2172 if (ParseStringConstant(Tag)) 2173 return true; 2174 2175 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2176 return true; 2177 2178 std::vector<Value *> Inputs; 2179 while (Lex.getKind() != lltok::rparen) { 2180 // If this isn't the first input, we need a comma. 2181 if (!Inputs.empty() && 2182 ParseToken(lltok::comma, "expected ',' in input list")) 2183 return true; 2184 2185 Type *Ty = nullptr; 2186 Value *Input = nullptr; 2187 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2188 return true; 2189 Inputs.push_back(Input); 2190 } 2191 2192 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2193 2194 Lex.Lex(); // Lex the ')'. 2195 } 2196 2197 if (BundleList.empty()) 2198 return Error(BeginLoc, "operand bundle set must not be empty"); 2199 2200 Lex.Lex(); // Lex the ']'. 2201 return false; 2202 } 2203 2204 /// ParseArgumentList - Parse the argument list for a function type or function 2205 /// prototype. 2206 /// ::= '(' ArgTypeListI ')' 2207 /// ArgTypeListI 2208 /// ::= /*empty*/ 2209 /// ::= '...' 2210 /// ::= ArgTypeList ',' '...' 2211 /// ::= ArgType (',' ArgType)* 2212 /// 2213 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2214 bool &isVarArg){ 2215 isVarArg = false; 2216 assert(Lex.getKind() == lltok::lparen); 2217 Lex.Lex(); // eat the (. 2218 2219 if (Lex.getKind() == lltok::rparen) { 2220 // empty 2221 } else if (Lex.getKind() == lltok::dotdotdot) { 2222 isVarArg = true; 2223 Lex.Lex(); 2224 } else { 2225 LocTy TypeLoc = Lex.getLoc(); 2226 Type *ArgTy = nullptr; 2227 AttrBuilder Attrs; 2228 std::string Name; 2229 2230 if (ParseType(ArgTy) || 2231 ParseOptionalParamAttrs(Attrs)) return true; 2232 2233 if (ArgTy->isVoidTy()) 2234 return Error(TypeLoc, "argument can not have void type"); 2235 2236 if (Lex.getKind() == lltok::LocalVar) { 2237 Name = Lex.getStrVal(); 2238 Lex.Lex(); 2239 } 2240 2241 if (!FunctionType::isValidArgumentType(ArgTy)) 2242 return Error(TypeLoc, "invalid type for function argument"); 2243 2244 unsigned AttrIndex = 1; 2245 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2246 AttrIndex++, Attrs), 2247 std::move(Name)); 2248 2249 while (EatIfPresent(lltok::comma)) { 2250 // Handle ... at end of arg list. 2251 if (EatIfPresent(lltok::dotdotdot)) { 2252 isVarArg = true; 2253 break; 2254 } 2255 2256 // Otherwise must be an argument type. 2257 TypeLoc = Lex.getLoc(); 2258 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2259 2260 if (ArgTy->isVoidTy()) 2261 return Error(TypeLoc, "argument can not have void type"); 2262 2263 if (Lex.getKind() == lltok::LocalVar) { 2264 Name = Lex.getStrVal(); 2265 Lex.Lex(); 2266 } else { 2267 Name = ""; 2268 } 2269 2270 if (!ArgTy->isFirstClassType()) 2271 return Error(TypeLoc, "invalid type for function argument"); 2272 2273 ArgList.emplace_back( 2274 TypeLoc, ArgTy, 2275 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2276 std::move(Name)); 2277 } 2278 } 2279 2280 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2281 } 2282 2283 /// ParseFunctionType 2284 /// ::= Type ArgumentList OptionalAttrs 2285 bool LLParser::ParseFunctionType(Type *&Result) { 2286 assert(Lex.getKind() == lltok::lparen); 2287 2288 if (!FunctionType::isValidReturnType(Result)) 2289 return TokError("invalid function return type"); 2290 2291 SmallVector<ArgInfo, 8> ArgList; 2292 bool isVarArg; 2293 if (ParseArgumentList(ArgList, isVarArg)) 2294 return true; 2295 2296 // Reject names on the arguments lists. 2297 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2298 if (!ArgList[i].Name.empty()) 2299 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2300 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2301 return Error(ArgList[i].Loc, 2302 "argument attributes invalid in function type"); 2303 } 2304 2305 SmallVector<Type*, 16> ArgListTy; 2306 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2307 ArgListTy.push_back(ArgList[i].Ty); 2308 2309 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2310 return false; 2311 } 2312 2313 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2314 /// other structs. 2315 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2316 SmallVector<Type*, 8> Elts; 2317 if (ParseStructBody(Elts)) return true; 2318 2319 Result = StructType::get(Context, Elts, Packed); 2320 return false; 2321 } 2322 2323 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2324 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2325 std::pair<Type*, LocTy> &Entry, 2326 Type *&ResultTy) { 2327 // If the type was already defined, diagnose the redefinition. 2328 if (Entry.first && !Entry.second.isValid()) 2329 return Error(TypeLoc, "redefinition of type"); 2330 2331 // If we have opaque, just return without filling in the definition for the 2332 // struct. This counts as a definition as far as the .ll file goes. 2333 if (EatIfPresent(lltok::kw_opaque)) { 2334 // This type is being defined, so clear the location to indicate this. 2335 Entry.second = SMLoc(); 2336 2337 // If this type number has never been uttered, create it. 2338 if (!Entry.first) 2339 Entry.first = StructType::create(Context, Name); 2340 ResultTy = Entry.first; 2341 return false; 2342 } 2343 2344 // If the type starts with '<', then it is either a packed struct or a vector. 2345 bool isPacked = EatIfPresent(lltok::less); 2346 2347 // If we don't have a struct, then we have a random type alias, which we 2348 // accept for compatibility with old files. These types are not allowed to be 2349 // forward referenced and not allowed to be recursive. 2350 if (Lex.getKind() != lltok::lbrace) { 2351 if (Entry.first) 2352 return Error(TypeLoc, "forward references to non-struct type"); 2353 2354 ResultTy = nullptr; 2355 if (isPacked) 2356 return ParseArrayVectorType(ResultTy, true); 2357 return ParseType(ResultTy); 2358 } 2359 2360 // This type is being defined, so clear the location to indicate this. 2361 Entry.second = SMLoc(); 2362 2363 // If this type number has never been uttered, create it. 2364 if (!Entry.first) 2365 Entry.first = StructType::create(Context, Name); 2366 2367 StructType *STy = cast<StructType>(Entry.first); 2368 2369 SmallVector<Type*, 8> Body; 2370 if (ParseStructBody(Body) || 2371 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2372 return true; 2373 2374 STy->setBody(Body, isPacked); 2375 ResultTy = STy; 2376 return false; 2377 } 2378 2379 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2380 /// StructType 2381 /// ::= '{' '}' 2382 /// ::= '{' Type (',' Type)* '}' 2383 /// ::= '<' '{' '}' '>' 2384 /// ::= '<' '{' Type (',' Type)* '}' '>' 2385 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2386 assert(Lex.getKind() == lltok::lbrace); 2387 Lex.Lex(); // Consume the '{' 2388 2389 // Handle the empty struct. 2390 if (EatIfPresent(lltok::rbrace)) 2391 return false; 2392 2393 LocTy EltTyLoc = Lex.getLoc(); 2394 Type *Ty = nullptr; 2395 if (ParseType(Ty)) return true; 2396 Body.push_back(Ty); 2397 2398 if (!StructType::isValidElementType(Ty)) 2399 return Error(EltTyLoc, "invalid element type for struct"); 2400 2401 while (EatIfPresent(lltok::comma)) { 2402 EltTyLoc = Lex.getLoc(); 2403 if (ParseType(Ty)) return true; 2404 2405 if (!StructType::isValidElementType(Ty)) 2406 return Error(EltTyLoc, "invalid element type for struct"); 2407 2408 Body.push_back(Ty); 2409 } 2410 2411 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2412 } 2413 2414 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2415 /// token has already been consumed. 2416 /// Type 2417 /// ::= '[' APSINTVAL 'x' Types ']' 2418 /// ::= '<' APSINTVAL 'x' Types '>' 2419 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2420 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2421 Lex.getAPSIntVal().getBitWidth() > 64) 2422 return TokError("expected number in address space"); 2423 2424 LocTy SizeLoc = Lex.getLoc(); 2425 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2426 Lex.Lex(); 2427 2428 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2429 return true; 2430 2431 LocTy TypeLoc = Lex.getLoc(); 2432 Type *EltTy = nullptr; 2433 if (ParseType(EltTy)) return true; 2434 2435 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2436 "expected end of sequential type")) 2437 return true; 2438 2439 if (isVector) { 2440 if (Size == 0) 2441 return Error(SizeLoc, "zero element vector is illegal"); 2442 if ((unsigned)Size != Size) 2443 return Error(SizeLoc, "size too large for vector"); 2444 if (!VectorType::isValidElementType(EltTy)) 2445 return Error(TypeLoc, "invalid vector element type"); 2446 Result = VectorType::get(EltTy, unsigned(Size)); 2447 } else { 2448 if (!ArrayType::isValidElementType(EltTy)) 2449 return Error(TypeLoc, "invalid array element type"); 2450 Result = ArrayType::get(EltTy, Size); 2451 } 2452 return false; 2453 } 2454 2455 //===----------------------------------------------------------------------===// 2456 // Function Semantic Analysis. 2457 //===----------------------------------------------------------------------===// 2458 2459 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2460 int functionNumber) 2461 : P(p), F(f), FunctionNumber(functionNumber) { 2462 2463 // Insert unnamed arguments into the NumberedVals list. 2464 for (Argument &A : F.args()) 2465 if (!A.hasName()) 2466 NumberedVals.push_back(&A); 2467 } 2468 2469 LLParser::PerFunctionState::~PerFunctionState() { 2470 // If there were any forward referenced non-basicblock values, delete them. 2471 2472 for (const auto &P : ForwardRefVals) { 2473 if (isa<BasicBlock>(P.second.first)) 2474 continue; 2475 P.second.first->replaceAllUsesWith( 2476 UndefValue::get(P.second.first->getType())); 2477 delete P.second.first; 2478 } 2479 2480 for (const auto &P : ForwardRefValIDs) { 2481 if (isa<BasicBlock>(P.second.first)) 2482 continue; 2483 P.second.first->replaceAllUsesWith( 2484 UndefValue::get(P.second.first->getType())); 2485 delete P.second.first; 2486 } 2487 } 2488 2489 bool LLParser::PerFunctionState::FinishFunction() { 2490 if (!ForwardRefVals.empty()) 2491 return P.Error(ForwardRefVals.begin()->second.second, 2492 "use of undefined value '%" + ForwardRefVals.begin()->first + 2493 "'"); 2494 if (!ForwardRefValIDs.empty()) 2495 return P.Error(ForwardRefValIDs.begin()->second.second, 2496 "use of undefined value '%" + 2497 Twine(ForwardRefValIDs.begin()->first) + "'"); 2498 return false; 2499 } 2500 2501 /// GetVal - Get a value with the specified name or ID, creating a 2502 /// forward reference record if needed. This can return null if the value 2503 /// exists but does not have the right type. 2504 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2505 LocTy Loc) { 2506 // Look this name up in the normal function symbol table. 2507 Value *Val = F.getValueSymbolTable()->lookup(Name); 2508 2509 // If this is a forward reference for the value, see if we already created a 2510 // forward ref record. 2511 if (!Val) { 2512 auto I = ForwardRefVals.find(Name); 2513 if (I != ForwardRefVals.end()) 2514 Val = I->second.first; 2515 } 2516 2517 // If we have the value in the symbol table or fwd-ref table, return it. 2518 if (Val) { 2519 if (Val->getType() == Ty) return Val; 2520 if (Ty->isLabelTy()) 2521 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2522 else 2523 P.Error(Loc, "'%" + Name + "' defined with type '" + 2524 getTypeString(Val->getType()) + "'"); 2525 return nullptr; 2526 } 2527 2528 // Don't make placeholders with invalid type. 2529 if (!Ty->isFirstClassType()) { 2530 P.Error(Loc, "invalid use of a non-first-class type"); 2531 return nullptr; 2532 } 2533 2534 // Otherwise, create a new forward reference for this value and remember it. 2535 Value *FwdVal; 2536 if (Ty->isLabelTy()) { 2537 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2538 } else { 2539 FwdVal = new Argument(Ty, Name); 2540 } 2541 2542 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2543 return FwdVal; 2544 } 2545 2546 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2547 // Look this name up in the normal function symbol table. 2548 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2549 2550 // If this is a forward reference for the value, see if we already created a 2551 // forward ref record. 2552 if (!Val) { 2553 auto I = ForwardRefValIDs.find(ID); 2554 if (I != ForwardRefValIDs.end()) 2555 Val = I->second.first; 2556 } 2557 2558 // If we have the value in the symbol table or fwd-ref table, return it. 2559 if (Val) { 2560 if (Val->getType() == Ty) return Val; 2561 if (Ty->isLabelTy()) 2562 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2563 else 2564 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2565 getTypeString(Val->getType()) + "'"); 2566 return nullptr; 2567 } 2568 2569 if (!Ty->isFirstClassType()) { 2570 P.Error(Loc, "invalid use of a non-first-class type"); 2571 return nullptr; 2572 } 2573 2574 // Otherwise, create a new forward reference for this value and remember it. 2575 Value *FwdVal; 2576 if (Ty->isLabelTy()) { 2577 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2578 } else { 2579 FwdVal = new Argument(Ty); 2580 } 2581 2582 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2583 return FwdVal; 2584 } 2585 2586 /// SetInstName - After an instruction is parsed and inserted into its 2587 /// basic block, this installs its name. 2588 bool LLParser::PerFunctionState::SetInstName(int NameID, 2589 const std::string &NameStr, 2590 LocTy NameLoc, Instruction *Inst) { 2591 // If this instruction has void type, it cannot have a name or ID specified. 2592 if (Inst->getType()->isVoidTy()) { 2593 if (NameID != -1 || !NameStr.empty()) 2594 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2595 return false; 2596 } 2597 2598 // If this was a numbered instruction, verify that the instruction is the 2599 // expected value and resolve any forward references. 2600 if (NameStr.empty()) { 2601 // If neither a name nor an ID was specified, just use the next ID. 2602 if (NameID == -1) 2603 NameID = NumberedVals.size(); 2604 2605 if (unsigned(NameID) != NumberedVals.size()) 2606 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2607 Twine(NumberedVals.size()) + "'"); 2608 2609 auto FI = ForwardRefValIDs.find(NameID); 2610 if (FI != ForwardRefValIDs.end()) { 2611 Value *Sentinel = FI->second.first; 2612 if (Sentinel->getType() != Inst->getType()) 2613 return P.Error(NameLoc, "instruction forward referenced with type '" + 2614 getTypeString(FI->second.first->getType()) + "'"); 2615 2616 Sentinel->replaceAllUsesWith(Inst); 2617 delete Sentinel; 2618 ForwardRefValIDs.erase(FI); 2619 } 2620 2621 NumberedVals.push_back(Inst); 2622 return false; 2623 } 2624 2625 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2626 auto FI = ForwardRefVals.find(NameStr); 2627 if (FI != ForwardRefVals.end()) { 2628 Value *Sentinel = FI->second.first; 2629 if (Sentinel->getType() != Inst->getType()) 2630 return P.Error(NameLoc, "instruction forward referenced with type '" + 2631 getTypeString(FI->second.first->getType()) + "'"); 2632 2633 Sentinel->replaceAllUsesWith(Inst); 2634 delete Sentinel; 2635 ForwardRefVals.erase(FI); 2636 } 2637 2638 // Set the name on the instruction. 2639 Inst->setName(NameStr); 2640 2641 if (Inst->getName() != NameStr) 2642 return P.Error(NameLoc, "multiple definition of local value named '" + 2643 NameStr + "'"); 2644 return false; 2645 } 2646 2647 /// GetBB - Get a basic block with the specified name or ID, creating a 2648 /// forward reference record if needed. 2649 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2650 LocTy Loc) { 2651 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2652 Type::getLabelTy(F.getContext()), Loc)); 2653 } 2654 2655 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2656 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2657 Type::getLabelTy(F.getContext()), Loc)); 2658 } 2659 2660 /// DefineBB - Define the specified basic block, which is either named or 2661 /// unnamed. If there is an error, this returns null otherwise it returns 2662 /// the block being defined. 2663 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2664 LocTy Loc) { 2665 BasicBlock *BB; 2666 if (Name.empty()) 2667 BB = GetBB(NumberedVals.size(), Loc); 2668 else 2669 BB = GetBB(Name, Loc); 2670 if (!BB) return nullptr; // Already diagnosed error. 2671 2672 // Move the block to the end of the function. Forward ref'd blocks are 2673 // inserted wherever they happen to be referenced. 2674 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2675 2676 // Remove the block from forward ref sets. 2677 if (Name.empty()) { 2678 ForwardRefValIDs.erase(NumberedVals.size()); 2679 NumberedVals.push_back(BB); 2680 } else { 2681 // BB forward references are already in the function symbol table. 2682 ForwardRefVals.erase(Name); 2683 } 2684 2685 return BB; 2686 } 2687 2688 //===----------------------------------------------------------------------===// 2689 // Constants. 2690 //===----------------------------------------------------------------------===// 2691 2692 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2693 /// type implied. For example, if we parse "4" we don't know what integer type 2694 /// it has. The value will later be combined with its type and checked for 2695 /// sanity. PFS is used to convert function-local operands of metadata (since 2696 /// metadata operands are not just parsed here but also converted to values). 2697 /// PFS can be null when we are not parsing metadata values inside a function. 2698 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2699 ID.Loc = Lex.getLoc(); 2700 switch (Lex.getKind()) { 2701 default: return TokError("expected value token"); 2702 case lltok::GlobalID: // @42 2703 ID.UIntVal = Lex.getUIntVal(); 2704 ID.Kind = ValID::t_GlobalID; 2705 break; 2706 case lltok::GlobalVar: // @foo 2707 ID.StrVal = Lex.getStrVal(); 2708 ID.Kind = ValID::t_GlobalName; 2709 break; 2710 case lltok::LocalVarID: // %42 2711 ID.UIntVal = Lex.getUIntVal(); 2712 ID.Kind = ValID::t_LocalID; 2713 break; 2714 case lltok::LocalVar: // %foo 2715 ID.StrVal = Lex.getStrVal(); 2716 ID.Kind = ValID::t_LocalName; 2717 break; 2718 case lltok::APSInt: 2719 ID.APSIntVal = Lex.getAPSIntVal(); 2720 ID.Kind = ValID::t_APSInt; 2721 break; 2722 case lltok::APFloat: 2723 ID.APFloatVal = Lex.getAPFloatVal(); 2724 ID.Kind = ValID::t_APFloat; 2725 break; 2726 case lltok::kw_true: 2727 ID.ConstantVal = ConstantInt::getTrue(Context); 2728 ID.Kind = ValID::t_Constant; 2729 break; 2730 case lltok::kw_false: 2731 ID.ConstantVal = ConstantInt::getFalse(Context); 2732 ID.Kind = ValID::t_Constant; 2733 break; 2734 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2735 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2736 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2737 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2738 2739 case lltok::lbrace: { 2740 // ValID ::= '{' ConstVector '}' 2741 Lex.Lex(); 2742 SmallVector<Constant*, 16> Elts; 2743 if (ParseGlobalValueVector(Elts) || 2744 ParseToken(lltok::rbrace, "expected end of struct constant")) 2745 return true; 2746 2747 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2748 ID.UIntVal = Elts.size(); 2749 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2750 Elts.size() * sizeof(Elts[0])); 2751 ID.Kind = ValID::t_ConstantStruct; 2752 return false; 2753 } 2754 case lltok::less: { 2755 // ValID ::= '<' ConstVector '>' --> Vector. 2756 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2757 Lex.Lex(); 2758 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2759 2760 SmallVector<Constant*, 16> Elts; 2761 LocTy FirstEltLoc = Lex.getLoc(); 2762 if (ParseGlobalValueVector(Elts) || 2763 (isPackedStruct && 2764 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2765 ParseToken(lltok::greater, "expected end of constant")) 2766 return true; 2767 2768 if (isPackedStruct) { 2769 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2770 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2771 Elts.size() * sizeof(Elts[0])); 2772 ID.UIntVal = Elts.size(); 2773 ID.Kind = ValID::t_PackedConstantStruct; 2774 return false; 2775 } 2776 2777 if (Elts.empty()) 2778 return Error(ID.Loc, "constant vector must not be empty"); 2779 2780 if (!Elts[0]->getType()->isIntegerTy() && 2781 !Elts[0]->getType()->isFloatingPointTy() && 2782 !Elts[0]->getType()->isPointerTy()) 2783 return Error(FirstEltLoc, 2784 "vector elements must have integer, pointer or floating point type"); 2785 2786 // Verify that all the vector elements have the same type. 2787 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2788 if (Elts[i]->getType() != Elts[0]->getType()) 2789 return Error(FirstEltLoc, 2790 "vector element #" + Twine(i) + 2791 " is not of type '" + getTypeString(Elts[0]->getType())); 2792 2793 ID.ConstantVal = ConstantVector::get(Elts); 2794 ID.Kind = ValID::t_Constant; 2795 return false; 2796 } 2797 case lltok::lsquare: { // Array Constant 2798 Lex.Lex(); 2799 SmallVector<Constant*, 16> Elts; 2800 LocTy FirstEltLoc = Lex.getLoc(); 2801 if (ParseGlobalValueVector(Elts) || 2802 ParseToken(lltok::rsquare, "expected end of array constant")) 2803 return true; 2804 2805 // Handle empty element. 2806 if (Elts.empty()) { 2807 // Use undef instead of an array because it's inconvenient to determine 2808 // the element type at this point, there being no elements to examine. 2809 ID.Kind = ValID::t_EmptyArray; 2810 return false; 2811 } 2812 2813 if (!Elts[0]->getType()->isFirstClassType()) 2814 return Error(FirstEltLoc, "invalid array element type: " + 2815 getTypeString(Elts[0]->getType())); 2816 2817 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2818 2819 // Verify all elements are correct type! 2820 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2821 if (Elts[i]->getType() != Elts[0]->getType()) 2822 return Error(FirstEltLoc, 2823 "array element #" + Twine(i) + 2824 " is not of type '" + getTypeString(Elts[0]->getType())); 2825 } 2826 2827 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2828 ID.Kind = ValID::t_Constant; 2829 return false; 2830 } 2831 case lltok::kw_c: // c "foo" 2832 Lex.Lex(); 2833 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2834 false); 2835 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2836 ID.Kind = ValID::t_Constant; 2837 return false; 2838 2839 case lltok::kw_asm: { 2840 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2841 // STRINGCONSTANT 2842 bool HasSideEffect, AlignStack, AsmDialect; 2843 Lex.Lex(); 2844 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2845 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2846 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2847 ParseStringConstant(ID.StrVal) || 2848 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2849 ParseToken(lltok::StringConstant, "expected constraint string")) 2850 return true; 2851 ID.StrVal2 = Lex.getStrVal(); 2852 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2853 (unsigned(AsmDialect)<<2); 2854 ID.Kind = ValID::t_InlineAsm; 2855 return false; 2856 } 2857 2858 case lltok::kw_blockaddress: { 2859 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2860 Lex.Lex(); 2861 2862 ValID Fn, Label; 2863 2864 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2865 ParseValID(Fn) || 2866 ParseToken(lltok::comma, "expected comma in block address expression")|| 2867 ParseValID(Label) || 2868 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2869 return true; 2870 2871 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2872 return Error(Fn.Loc, "expected function name in blockaddress"); 2873 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2874 return Error(Label.Loc, "expected basic block name in blockaddress"); 2875 2876 // Try to find the function (but skip it if it's forward-referenced). 2877 GlobalValue *GV = nullptr; 2878 if (Fn.Kind == ValID::t_GlobalID) { 2879 if (Fn.UIntVal < NumberedVals.size()) 2880 GV = NumberedVals[Fn.UIntVal]; 2881 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2882 GV = M->getNamedValue(Fn.StrVal); 2883 } 2884 Function *F = nullptr; 2885 if (GV) { 2886 // Confirm that it's actually a function with a definition. 2887 if (!isa<Function>(GV)) 2888 return Error(Fn.Loc, "expected function name in blockaddress"); 2889 F = cast<Function>(GV); 2890 if (F->isDeclaration()) 2891 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2892 } 2893 2894 if (!F) { 2895 // Make a global variable as a placeholder for this reference. 2896 GlobalValue *&FwdRef = 2897 ForwardRefBlockAddresses.insert(std::make_pair( 2898 std::move(Fn), 2899 std::map<ValID, GlobalValue *>())) 2900 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2901 .first->second; 2902 if (!FwdRef) 2903 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2904 GlobalValue::InternalLinkage, nullptr, ""); 2905 ID.ConstantVal = FwdRef; 2906 ID.Kind = ValID::t_Constant; 2907 return false; 2908 } 2909 2910 // We found the function; now find the basic block. Don't use PFS, since we 2911 // might be inside a constant expression. 2912 BasicBlock *BB; 2913 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2914 if (Label.Kind == ValID::t_LocalID) 2915 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2916 else 2917 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2918 if (!BB) 2919 return Error(Label.Loc, "referenced value is not a basic block"); 2920 } else { 2921 if (Label.Kind == ValID::t_LocalID) 2922 return Error(Label.Loc, "cannot take address of numeric label after " 2923 "the function is defined"); 2924 BB = dyn_cast_or_null<BasicBlock>( 2925 F->getValueSymbolTable()->lookup(Label.StrVal)); 2926 if (!BB) 2927 return Error(Label.Loc, "referenced value is not a basic block"); 2928 } 2929 2930 ID.ConstantVal = BlockAddress::get(F, BB); 2931 ID.Kind = ValID::t_Constant; 2932 return false; 2933 } 2934 2935 case lltok::kw_trunc: 2936 case lltok::kw_zext: 2937 case lltok::kw_sext: 2938 case lltok::kw_fptrunc: 2939 case lltok::kw_fpext: 2940 case lltok::kw_bitcast: 2941 case lltok::kw_addrspacecast: 2942 case lltok::kw_uitofp: 2943 case lltok::kw_sitofp: 2944 case lltok::kw_fptoui: 2945 case lltok::kw_fptosi: 2946 case lltok::kw_inttoptr: 2947 case lltok::kw_ptrtoint: { 2948 unsigned Opc = Lex.getUIntVal(); 2949 Type *DestTy = nullptr; 2950 Constant *SrcVal; 2951 Lex.Lex(); 2952 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2953 ParseGlobalTypeAndValue(SrcVal) || 2954 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2955 ParseType(DestTy) || 2956 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2957 return true; 2958 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2959 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2960 getTypeString(SrcVal->getType()) + "' to '" + 2961 getTypeString(DestTy) + "'"); 2962 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2963 SrcVal, DestTy); 2964 ID.Kind = ValID::t_Constant; 2965 return false; 2966 } 2967 case lltok::kw_extractvalue: { 2968 Lex.Lex(); 2969 Constant *Val; 2970 SmallVector<unsigned, 4> Indices; 2971 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2972 ParseGlobalTypeAndValue(Val) || 2973 ParseIndexList(Indices) || 2974 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2975 return true; 2976 2977 if (!Val->getType()->isAggregateType()) 2978 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2979 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2980 return Error(ID.Loc, "invalid indices for extractvalue"); 2981 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2982 ID.Kind = ValID::t_Constant; 2983 return false; 2984 } 2985 case lltok::kw_insertvalue: { 2986 Lex.Lex(); 2987 Constant *Val0, *Val1; 2988 SmallVector<unsigned, 4> Indices; 2989 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2990 ParseGlobalTypeAndValue(Val0) || 2991 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2992 ParseGlobalTypeAndValue(Val1) || 2993 ParseIndexList(Indices) || 2994 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2995 return true; 2996 if (!Val0->getType()->isAggregateType()) 2997 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2998 Type *IndexedType = 2999 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3000 if (!IndexedType) 3001 return Error(ID.Loc, "invalid indices for insertvalue"); 3002 if (IndexedType != Val1->getType()) 3003 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3004 getTypeString(Val1->getType()) + 3005 "' instead of '" + getTypeString(IndexedType) + 3006 "'"); 3007 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3008 ID.Kind = ValID::t_Constant; 3009 return false; 3010 } 3011 case lltok::kw_icmp: 3012 case lltok::kw_fcmp: { 3013 unsigned PredVal, Opc = Lex.getUIntVal(); 3014 Constant *Val0, *Val1; 3015 Lex.Lex(); 3016 if (ParseCmpPredicate(PredVal, Opc) || 3017 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3018 ParseGlobalTypeAndValue(Val0) || 3019 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3020 ParseGlobalTypeAndValue(Val1) || 3021 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3022 return true; 3023 3024 if (Val0->getType() != Val1->getType()) 3025 return Error(ID.Loc, "compare operands must have the same type"); 3026 3027 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3028 3029 if (Opc == Instruction::FCmp) { 3030 if (!Val0->getType()->isFPOrFPVectorTy()) 3031 return Error(ID.Loc, "fcmp requires floating point operands"); 3032 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3033 } else { 3034 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3035 if (!Val0->getType()->isIntOrIntVectorTy() && 3036 !Val0->getType()->getScalarType()->isPointerTy()) 3037 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3038 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3039 } 3040 ID.Kind = ValID::t_Constant; 3041 return false; 3042 } 3043 3044 // Binary Operators. 3045 case lltok::kw_add: 3046 case lltok::kw_fadd: 3047 case lltok::kw_sub: 3048 case lltok::kw_fsub: 3049 case lltok::kw_mul: 3050 case lltok::kw_fmul: 3051 case lltok::kw_udiv: 3052 case lltok::kw_sdiv: 3053 case lltok::kw_fdiv: 3054 case lltok::kw_urem: 3055 case lltok::kw_srem: 3056 case lltok::kw_frem: 3057 case lltok::kw_shl: 3058 case lltok::kw_lshr: 3059 case lltok::kw_ashr: { 3060 bool NUW = false; 3061 bool NSW = false; 3062 bool Exact = false; 3063 unsigned Opc = Lex.getUIntVal(); 3064 Constant *Val0, *Val1; 3065 Lex.Lex(); 3066 LocTy ModifierLoc = Lex.getLoc(); 3067 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3068 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3069 if (EatIfPresent(lltok::kw_nuw)) 3070 NUW = true; 3071 if (EatIfPresent(lltok::kw_nsw)) { 3072 NSW = true; 3073 if (EatIfPresent(lltok::kw_nuw)) 3074 NUW = true; 3075 } 3076 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3077 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3078 if (EatIfPresent(lltok::kw_exact)) 3079 Exact = true; 3080 } 3081 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3082 ParseGlobalTypeAndValue(Val0) || 3083 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3084 ParseGlobalTypeAndValue(Val1) || 3085 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3086 return true; 3087 if (Val0->getType() != Val1->getType()) 3088 return Error(ID.Loc, "operands of constexpr must have same type"); 3089 if (!Val0->getType()->isIntOrIntVectorTy()) { 3090 if (NUW) 3091 return Error(ModifierLoc, "nuw only applies to integer operations"); 3092 if (NSW) 3093 return Error(ModifierLoc, "nsw only applies to integer operations"); 3094 } 3095 // Check that the type is valid for the operator. 3096 switch (Opc) { 3097 case Instruction::Add: 3098 case Instruction::Sub: 3099 case Instruction::Mul: 3100 case Instruction::UDiv: 3101 case Instruction::SDiv: 3102 case Instruction::URem: 3103 case Instruction::SRem: 3104 case Instruction::Shl: 3105 case Instruction::AShr: 3106 case Instruction::LShr: 3107 if (!Val0->getType()->isIntOrIntVectorTy()) 3108 return Error(ID.Loc, "constexpr requires integer operands"); 3109 break; 3110 case Instruction::FAdd: 3111 case Instruction::FSub: 3112 case Instruction::FMul: 3113 case Instruction::FDiv: 3114 case Instruction::FRem: 3115 if (!Val0->getType()->isFPOrFPVectorTy()) 3116 return Error(ID.Loc, "constexpr requires fp operands"); 3117 break; 3118 default: llvm_unreachable("Unknown binary operator!"); 3119 } 3120 unsigned Flags = 0; 3121 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3122 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3123 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3124 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3125 ID.ConstantVal = C; 3126 ID.Kind = ValID::t_Constant; 3127 return false; 3128 } 3129 3130 // Logical Operations 3131 case lltok::kw_and: 3132 case lltok::kw_or: 3133 case lltok::kw_xor: { 3134 unsigned Opc = Lex.getUIntVal(); 3135 Constant *Val0, *Val1; 3136 Lex.Lex(); 3137 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3138 ParseGlobalTypeAndValue(Val0) || 3139 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3140 ParseGlobalTypeAndValue(Val1) || 3141 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3142 return true; 3143 if (Val0->getType() != Val1->getType()) 3144 return Error(ID.Loc, "operands of constexpr must have same type"); 3145 if (!Val0->getType()->isIntOrIntVectorTy()) 3146 return Error(ID.Loc, 3147 "constexpr requires integer or integer vector operands"); 3148 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3149 ID.Kind = ValID::t_Constant; 3150 return false; 3151 } 3152 3153 case lltok::kw_getelementptr: 3154 case lltok::kw_shufflevector: 3155 case lltok::kw_insertelement: 3156 case lltok::kw_extractelement: 3157 case lltok::kw_select: { 3158 unsigned Opc = Lex.getUIntVal(); 3159 SmallVector<Constant*, 16> Elts; 3160 bool InBounds = false; 3161 Type *Ty; 3162 Lex.Lex(); 3163 3164 if (Opc == Instruction::GetElementPtr) 3165 InBounds = EatIfPresent(lltok::kw_inbounds); 3166 3167 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3168 return true; 3169 3170 LocTy ExplicitTypeLoc = Lex.getLoc(); 3171 if (Opc == Instruction::GetElementPtr) { 3172 if (ParseType(Ty) || 3173 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3174 return true; 3175 } 3176 3177 if (ParseGlobalValueVector(Elts) || 3178 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3179 return true; 3180 3181 if (Opc == Instruction::GetElementPtr) { 3182 if (Elts.size() == 0 || 3183 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3184 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3185 3186 Type *BaseType = Elts[0]->getType(); 3187 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3188 if (Ty != BasePointerType->getElementType()) 3189 return Error( 3190 ExplicitTypeLoc, 3191 "explicit pointee type doesn't match operand's pointee type"); 3192 3193 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3194 for (Constant *Val : Indices) { 3195 Type *ValTy = Val->getType(); 3196 if (!ValTy->getScalarType()->isIntegerTy()) 3197 return Error(ID.Loc, "getelementptr index must be an integer"); 3198 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3199 return Error(ID.Loc, "getelementptr index type missmatch"); 3200 if (ValTy->isVectorTy()) { 3201 unsigned ValNumEl = ValTy->getVectorNumElements(); 3202 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3203 if (ValNumEl != PtrNumEl) 3204 return Error( 3205 ID.Loc, 3206 "getelementptr vector index has a wrong number of elements"); 3207 } 3208 } 3209 3210 SmallPtrSet<Type*, 4> Visited; 3211 if (!Indices.empty() && !Ty->isSized(&Visited)) 3212 return Error(ID.Loc, "base element of getelementptr must be sized"); 3213 3214 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3215 return Error(ID.Loc, "invalid getelementptr indices"); 3216 ID.ConstantVal = 3217 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3218 } else if (Opc == Instruction::Select) { 3219 if (Elts.size() != 3) 3220 return Error(ID.Loc, "expected three operands to select"); 3221 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3222 Elts[2])) 3223 return Error(ID.Loc, Reason); 3224 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3225 } else if (Opc == Instruction::ShuffleVector) { 3226 if (Elts.size() != 3) 3227 return Error(ID.Loc, "expected three operands to shufflevector"); 3228 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3229 return Error(ID.Loc, "invalid operands to shufflevector"); 3230 ID.ConstantVal = 3231 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3232 } else if (Opc == Instruction::ExtractElement) { 3233 if (Elts.size() != 2) 3234 return Error(ID.Loc, "expected two operands to extractelement"); 3235 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3236 return Error(ID.Loc, "invalid extractelement operands"); 3237 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3238 } else { 3239 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3240 if (Elts.size() != 3) 3241 return Error(ID.Loc, "expected three operands to insertelement"); 3242 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3243 return Error(ID.Loc, "invalid insertelement operands"); 3244 ID.ConstantVal = 3245 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3246 } 3247 3248 ID.Kind = ValID::t_Constant; 3249 return false; 3250 } 3251 } 3252 3253 Lex.Lex(); 3254 return false; 3255 } 3256 3257 /// ParseGlobalValue - Parse a global value with the specified type. 3258 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3259 C = nullptr; 3260 ValID ID; 3261 Value *V = nullptr; 3262 bool Parsed = ParseValID(ID) || 3263 ConvertValIDToValue(Ty, ID, V, nullptr); 3264 if (V && !(C = dyn_cast<Constant>(V))) 3265 return Error(ID.Loc, "global values must be constants"); 3266 return Parsed; 3267 } 3268 3269 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3270 Type *Ty = nullptr; 3271 return ParseType(Ty) || 3272 ParseGlobalValue(Ty, V); 3273 } 3274 3275 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3276 C = nullptr; 3277 3278 LocTy KwLoc = Lex.getLoc(); 3279 if (!EatIfPresent(lltok::kw_comdat)) 3280 return false; 3281 3282 if (EatIfPresent(lltok::lparen)) { 3283 if (Lex.getKind() != lltok::ComdatVar) 3284 return TokError("expected comdat variable"); 3285 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3286 Lex.Lex(); 3287 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3288 return true; 3289 } else { 3290 if (GlobalName.empty()) 3291 return TokError("comdat cannot be unnamed"); 3292 C = getComdat(GlobalName, KwLoc); 3293 } 3294 3295 return false; 3296 } 3297 3298 /// ParseGlobalValueVector 3299 /// ::= /*empty*/ 3300 /// ::= TypeAndValue (',' TypeAndValue)* 3301 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3302 // Empty list. 3303 if (Lex.getKind() == lltok::rbrace || 3304 Lex.getKind() == lltok::rsquare || 3305 Lex.getKind() == lltok::greater || 3306 Lex.getKind() == lltok::rparen) 3307 return false; 3308 3309 Constant *C; 3310 if (ParseGlobalTypeAndValue(C)) return true; 3311 Elts.push_back(C); 3312 3313 while (EatIfPresent(lltok::comma)) { 3314 if (ParseGlobalTypeAndValue(C)) return true; 3315 Elts.push_back(C); 3316 } 3317 3318 return false; 3319 } 3320 3321 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3322 SmallVector<Metadata *, 16> Elts; 3323 if (ParseMDNodeVector(Elts)) 3324 return true; 3325 3326 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3327 return false; 3328 } 3329 3330 /// MDNode: 3331 /// ::= !{ ... } 3332 /// ::= !7 3333 /// ::= !DILocation(...) 3334 bool LLParser::ParseMDNode(MDNode *&N) { 3335 if (Lex.getKind() == lltok::MetadataVar) 3336 return ParseSpecializedMDNode(N); 3337 3338 return ParseToken(lltok::exclaim, "expected '!' here") || 3339 ParseMDNodeTail(N); 3340 } 3341 3342 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3343 // !{ ... } 3344 if (Lex.getKind() == lltok::lbrace) 3345 return ParseMDTuple(N); 3346 3347 // !42 3348 return ParseMDNodeID(N); 3349 } 3350 3351 namespace { 3352 3353 /// Structure to represent an optional metadata field. 3354 template <class FieldTy> struct MDFieldImpl { 3355 typedef MDFieldImpl ImplTy; 3356 FieldTy Val; 3357 bool Seen; 3358 3359 void assign(FieldTy Val) { 3360 Seen = true; 3361 this->Val = std::move(Val); 3362 } 3363 3364 explicit MDFieldImpl(FieldTy Default) 3365 : Val(std::move(Default)), Seen(false) {} 3366 }; 3367 3368 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3369 uint64_t Max; 3370 3371 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3372 : ImplTy(Default), Max(Max) {} 3373 }; 3374 3375 struct LineField : public MDUnsignedField { 3376 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3377 }; 3378 3379 struct ColumnField : public MDUnsignedField { 3380 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3381 }; 3382 3383 struct DwarfTagField : public MDUnsignedField { 3384 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3385 DwarfTagField(dwarf::Tag DefaultTag) 3386 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3387 }; 3388 3389 struct DwarfMacinfoTypeField : public MDUnsignedField { 3390 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3391 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3392 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3393 }; 3394 3395 struct DwarfAttEncodingField : public MDUnsignedField { 3396 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3397 }; 3398 3399 struct DwarfVirtualityField : public MDUnsignedField { 3400 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3401 }; 3402 3403 struct DwarfLangField : public MDUnsignedField { 3404 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3405 }; 3406 3407 struct DwarfCCField : public MDUnsignedField { 3408 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3409 }; 3410 3411 struct EmissionKindField : public MDUnsignedField { 3412 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3413 }; 3414 3415 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3416 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3417 }; 3418 3419 struct MDSignedField : public MDFieldImpl<int64_t> { 3420 int64_t Min; 3421 int64_t Max; 3422 3423 MDSignedField(int64_t Default = 0) 3424 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3425 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3426 : ImplTy(Default), Min(Min), Max(Max) {} 3427 }; 3428 3429 struct MDBoolField : public MDFieldImpl<bool> { 3430 MDBoolField(bool Default = false) : ImplTy(Default) {} 3431 }; 3432 3433 struct MDField : public MDFieldImpl<Metadata *> { 3434 bool AllowNull; 3435 3436 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3437 }; 3438 3439 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3440 MDConstant() : ImplTy(nullptr) {} 3441 }; 3442 3443 struct MDStringField : public MDFieldImpl<MDString *> { 3444 bool AllowEmpty; 3445 MDStringField(bool AllowEmpty = true) 3446 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3447 }; 3448 3449 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3450 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3451 }; 3452 3453 } // end anonymous namespace 3454 3455 namespace llvm { 3456 3457 template <> 3458 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3459 MDUnsignedField &Result) { 3460 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3461 return TokError("expected unsigned integer"); 3462 3463 auto &U = Lex.getAPSIntVal(); 3464 if (U.ugt(Result.Max)) 3465 return TokError("value for '" + Name + "' too large, limit is " + 3466 Twine(Result.Max)); 3467 Result.assign(U.getZExtValue()); 3468 assert(Result.Val <= Result.Max && "Expected value in range"); 3469 Lex.Lex(); 3470 return false; 3471 } 3472 3473 template <> 3474 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3475 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3476 } 3477 template <> 3478 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3479 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3480 } 3481 3482 template <> 3483 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3484 if (Lex.getKind() == lltok::APSInt) 3485 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3486 3487 if (Lex.getKind() != lltok::DwarfTag) 3488 return TokError("expected DWARF tag"); 3489 3490 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3491 if (Tag == dwarf::DW_TAG_invalid) 3492 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3493 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3494 3495 Result.assign(Tag); 3496 Lex.Lex(); 3497 return false; 3498 } 3499 3500 template <> 3501 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3502 DwarfMacinfoTypeField &Result) { 3503 if (Lex.getKind() == lltok::APSInt) 3504 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3505 3506 if (Lex.getKind() != lltok::DwarfMacinfo) 3507 return TokError("expected DWARF macinfo type"); 3508 3509 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3510 if (Macinfo == dwarf::DW_MACINFO_invalid) 3511 return TokError( 3512 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3513 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3514 3515 Result.assign(Macinfo); 3516 Lex.Lex(); 3517 return false; 3518 } 3519 3520 template <> 3521 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3522 DwarfVirtualityField &Result) { 3523 if (Lex.getKind() == lltok::APSInt) 3524 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3525 3526 if (Lex.getKind() != lltok::DwarfVirtuality) 3527 return TokError("expected DWARF virtuality code"); 3528 3529 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3530 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3531 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3532 Lex.getStrVal() + "'"); 3533 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3534 Result.assign(Virtuality); 3535 Lex.Lex(); 3536 return false; 3537 } 3538 3539 template <> 3540 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3541 if (Lex.getKind() == lltok::APSInt) 3542 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3543 3544 if (Lex.getKind() != lltok::DwarfLang) 3545 return TokError("expected DWARF language"); 3546 3547 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3548 if (!Lang) 3549 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3550 "'"); 3551 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3552 Result.assign(Lang); 3553 Lex.Lex(); 3554 return false; 3555 } 3556 3557 template <> 3558 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3559 if (Lex.getKind() == lltok::APSInt) 3560 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3561 3562 if (Lex.getKind() != lltok::DwarfCC) 3563 return TokError("expected DWARF calling convention"); 3564 3565 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3566 if (!CC) 3567 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3568 "'"); 3569 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3570 Result.assign(CC); 3571 Lex.Lex(); 3572 return false; 3573 } 3574 3575 template <> 3576 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3577 if (Lex.getKind() == lltok::APSInt) 3578 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3579 3580 if (Lex.getKind() != lltok::EmissionKind) 3581 return TokError("expected emission kind"); 3582 3583 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3584 if (!Kind) 3585 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3586 "'"); 3587 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3588 Result.assign(*Kind); 3589 Lex.Lex(); 3590 return false; 3591 } 3592 3593 template <> 3594 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3595 DwarfAttEncodingField &Result) { 3596 if (Lex.getKind() == lltok::APSInt) 3597 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3598 3599 if (Lex.getKind() != lltok::DwarfAttEncoding) 3600 return TokError("expected DWARF type attribute encoding"); 3601 3602 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3603 if (!Encoding) 3604 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3605 Lex.getStrVal() + "'"); 3606 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3607 Result.assign(Encoding); 3608 Lex.Lex(); 3609 return false; 3610 } 3611 3612 /// DIFlagField 3613 /// ::= uint32 3614 /// ::= DIFlagVector 3615 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3616 template <> 3617 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3618 3619 // Parser for a single flag. 3620 auto parseFlag = [&](DINode::DIFlags &Val) { 3621 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3622 uint32_t TempVal = static_cast<uint32_t>(Val); 3623 bool Res = ParseUInt32(TempVal); 3624 Val = static_cast<DINode::DIFlags>(TempVal); 3625 return Res; 3626 } 3627 3628 if (Lex.getKind() != lltok::DIFlag) 3629 return TokError("expected debug info flag"); 3630 3631 Val = DINode::getFlag(Lex.getStrVal()); 3632 if (!Val) 3633 return TokError(Twine("invalid debug info flag flag '") + 3634 Lex.getStrVal() + "'"); 3635 Lex.Lex(); 3636 return false; 3637 }; 3638 3639 // Parse the flags and combine them together. 3640 DINode::DIFlags Combined = DINode::FlagZero; 3641 do { 3642 DINode::DIFlags Val; 3643 if (parseFlag(Val)) 3644 return true; 3645 Combined |= Val; 3646 } while (EatIfPresent(lltok::bar)); 3647 3648 Result.assign(Combined); 3649 return false; 3650 } 3651 3652 template <> 3653 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3654 MDSignedField &Result) { 3655 if (Lex.getKind() != lltok::APSInt) 3656 return TokError("expected signed integer"); 3657 3658 auto &S = Lex.getAPSIntVal(); 3659 if (S < Result.Min) 3660 return TokError("value for '" + Name + "' too small, limit is " + 3661 Twine(Result.Min)); 3662 if (S > Result.Max) 3663 return TokError("value for '" + Name + "' too large, limit is " + 3664 Twine(Result.Max)); 3665 Result.assign(S.getExtValue()); 3666 assert(Result.Val >= Result.Min && "Expected value in range"); 3667 assert(Result.Val <= Result.Max && "Expected value in range"); 3668 Lex.Lex(); 3669 return false; 3670 } 3671 3672 template <> 3673 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3674 switch (Lex.getKind()) { 3675 default: 3676 return TokError("expected 'true' or 'false'"); 3677 case lltok::kw_true: 3678 Result.assign(true); 3679 break; 3680 case lltok::kw_false: 3681 Result.assign(false); 3682 break; 3683 } 3684 Lex.Lex(); 3685 return false; 3686 } 3687 3688 template <> 3689 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3690 if (Lex.getKind() == lltok::kw_null) { 3691 if (!Result.AllowNull) 3692 return TokError("'" + Name + "' cannot be null"); 3693 Lex.Lex(); 3694 Result.assign(nullptr); 3695 return false; 3696 } 3697 3698 Metadata *MD; 3699 if (ParseMetadata(MD, nullptr)) 3700 return true; 3701 3702 Result.assign(MD); 3703 return false; 3704 } 3705 3706 template <> 3707 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3708 LocTy ValueLoc = Lex.getLoc(); 3709 std::string S; 3710 if (ParseStringConstant(S)) 3711 return true; 3712 3713 if (!Result.AllowEmpty && S.empty()) 3714 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3715 3716 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3717 return false; 3718 } 3719 3720 template <> 3721 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3722 SmallVector<Metadata *, 4> MDs; 3723 if (ParseMDNodeVector(MDs)) 3724 return true; 3725 3726 Result.assign(std::move(MDs)); 3727 return false; 3728 } 3729 3730 } // end namespace llvm 3731 3732 template <class ParserTy> 3733 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3734 do { 3735 if (Lex.getKind() != lltok::LabelStr) 3736 return TokError("expected field label here"); 3737 3738 if (parseField()) 3739 return true; 3740 } while (EatIfPresent(lltok::comma)); 3741 3742 return false; 3743 } 3744 3745 template <class ParserTy> 3746 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3747 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3748 Lex.Lex(); 3749 3750 if (ParseToken(lltok::lparen, "expected '(' here")) 3751 return true; 3752 if (Lex.getKind() != lltok::rparen) 3753 if (ParseMDFieldsImplBody(parseField)) 3754 return true; 3755 3756 ClosingLoc = Lex.getLoc(); 3757 return ParseToken(lltok::rparen, "expected ')' here"); 3758 } 3759 3760 template <class FieldTy> 3761 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3762 if (Result.Seen) 3763 return TokError("field '" + Name + "' cannot be specified more than once"); 3764 3765 LocTy Loc = Lex.getLoc(); 3766 Lex.Lex(); 3767 return ParseMDField(Loc, Name, Result); 3768 } 3769 3770 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3771 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3772 3773 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3774 if (Lex.getStrVal() == #CLASS) \ 3775 return Parse##CLASS(N, IsDistinct); 3776 #include "llvm/IR/Metadata.def" 3777 3778 return TokError("expected metadata type"); 3779 } 3780 3781 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3782 #define NOP_FIELD(NAME, TYPE, INIT) 3783 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3784 if (!NAME.Seen) \ 3785 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3786 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3787 if (Lex.getStrVal() == #NAME) \ 3788 return ParseMDField(#NAME, NAME); 3789 #define PARSE_MD_FIELDS() \ 3790 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3791 do { \ 3792 LocTy ClosingLoc; \ 3793 if (ParseMDFieldsImpl([&]() -> bool { \ 3794 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3795 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3796 }, ClosingLoc)) \ 3797 return true; \ 3798 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3799 } while (false) 3800 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3801 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3802 3803 /// ParseDILocationFields: 3804 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3805 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3806 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3807 OPTIONAL(line, LineField, ); \ 3808 OPTIONAL(column, ColumnField, ); \ 3809 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3810 OPTIONAL(inlinedAt, MDField, ); 3811 PARSE_MD_FIELDS(); 3812 #undef VISIT_MD_FIELDS 3813 3814 Result = GET_OR_DISTINCT( 3815 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3816 return false; 3817 } 3818 3819 /// ParseGenericDINode: 3820 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3821 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3822 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3823 REQUIRED(tag, DwarfTagField, ); \ 3824 OPTIONAL(header, MDStringField, ); \ 3825 OPTIONAL(operands, MDFieldList, ); 3826 PARSE_MD_FIELDS(); 3827 #undef VISIT_MD_FIELDS 3828 3829 Result = GET_OR_DISTINCT(GenericDINode, 3830 (Context, tag.Val, header.Val, operands.Val)); 3831 return false; 3832 } 3833 3834 /// ParseDISubrange: 3835 /// ::= !DISubrange(count: 30, lowerBound: 2) 3836 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3837 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3838 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3839 OPTIONAL(lowerBound, MDSignedField, ); 3840 PARSE_MD_FIELDS(); 3841 #undef VISIT_MD_FIELDS 3842 3843 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3844 return false; 3845 } 3846 3847 /// ParseDIEnumerator: 3848 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3849 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3850 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3851 REQUIRED(name, MDStringField, ); \ 3852 REQUIRED(value, MDSignedField, ); 3853 PARSE_MD_FIELDS(); 3854 #undef VISIT_MD_FIELDS 3855 3856 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3857 return false; 3858 } 3859 3860 /// ParseDIBasicType: 3861 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3862 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3863 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3864 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3865 OPTIONAL(name, MDStringField, ); \ 3866 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3867 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3868 OPTIONAL(encoding, DwarfAttEncodingField, ); 3869 PARSE_MD_FIELDS(); 3870 #undef VISIT_MD_FIELDS 3871 3872 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3873 align.Val, encoding.Val)); 3874 return false; 3875 } 3876 3877 /// ParseDIDerivedType: 3878 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3879 /// line: 7, scope: !1, baseType: !2, size: 32, 3880 /// align: 32, offset: 0, flags: 0, extraData: !3) 3881 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3883 REQUIRED(tag, DwarfTagField, ); \ 3884 OPTIONAL(name, MDStringField, ); \ 3885 OPTIONAL(file, MDField, ); \ 3886 OPTIONAL(line, LineField, ); \ 3887 OPTIONAL(scope, MDField, ); \ 3888 REQUIRED(baseType, MDField, ); \ 3889 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3890 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3891 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3892 OPTIONAL(flags, DIFlagField, ); \ 3893 OPTIONAL(extraData, MDField, ); 3894 PARSE_MD_FIELDS(); 3895 #undef VISIT_MD_FIELDS 3896 3897 Result = GET_OR_DISTINCT(DIDerivedType, 3898 (Context, tag.Val, name.Val, file.Val, line.Val, 3899 scope.Val, baseType.Val, size.Val, align.Val, 3900 offset.Val, flags.Val, extraData.Val)); 3901 return false; 3902 } 3903 3904 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3905 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3906 REQUIRED(tag, DwarfTagField, ); \ 3907 OPTIONAL(name, MDStringField, ); \ 3908 OPTIONAL(file, MDField, ); \ 3909 OPTIONAL(line, LineField, ); \ 3910 OPTIONAL(scope, MDField, ); \ 3911 OPTIONAL(baseType, MDField, ); \ 3912 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3913 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3914 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3915 OPTIONAL(flags, DIFlagField, ); \ 3916 OPTIONAL(elements, MDField, ); \ 3917 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3918 OPTIONAL(vtableHolder, MDField, ); \ 3919 OPTIONAL(templateParams, MDField, ); \ 3920 OPTIONAL(identifier, MDStringField, ); 3921 PARSE_MD_FIELDS(); 3922 #undef VISIT_MD_FIELDS 3923 3924 // If this has an identifier try to build an ODR type. 3925 if (identifier.Val) 3926 if (auto *CT = DICompositeType::buildODRType( 3927 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3928 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3929 elements.Val, runtimeLang.Val, vtableHolder.Val, 3930 templateParams.Val)) { 3931 Result = CT; 3932 return false; 3933 } 3934 3935 // Create a new node, and save it in the context if it belongs in the type 3936 // map. 3937 Result = GET_OR_DISTINCT( 3938 DICompositeType, 3939 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3940 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3941 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3942 return false; 3943 } 3944 3945 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3946 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3947 OPTIONAL(flags, DIFlagField, ); \ 3948 OPTIONAL(cc, DwarfCCField, ); \ 3949 REQUIRED(types, MDField, ); 3950 PARSE_MD_FIELDS(); 3951 #undef VISIT_MD_FIELDS 3952 3953 Result = GET_OR_DISTINCT(DISubroutineType, 3954 (Context, flags.Val, cc.Val, types.Val)); 3955 return false; 3956 } 3957 3958 /// ParseDIFileType: 3959 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3960 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3961 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3962 REQUIRED(filename, MDStringField, ); \ 3963 REQUIRED(directory, MDStringField, ); 3964 PARSE_MD_FIELDS(); 3965 #undef VISIT_MD_FIELDS 3966 3967 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3968 return false; 3969 } 3970 3971 /// ParseDICompileUnit: 3972 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3973 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3974 /// splitDebugFilename: "abc.debug", 3975 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 3976 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3977 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3978 if (!IsDistinct) 3979 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3980 3981 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3982 REQUIRED(language, DwarfLangField, ); \ 3983 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3984 OPTIONAL(producer, MDStringField, ); \ 3985 OPTIONAL(isOptimized, MDBoolField, ); \ 3986 OPTIONAL(flags, MDStringField, ); \ 3987 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3988 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3989 OPTIONAL(emissionKind, EmissionKindField, ); \ 3990 OPTIONAL(enums, MDField, ); \ 3991 OPTIONAL(retainedTypes, MDField, ); \ 3992 OPTIONAL(globals, MDField, ); \ 3993 OPTIONAL(imports, MDField, ); \ 3994 OPTIONAL(macros, MDField, ); \ 3995 OPTIONAL(dwoId, MDUnsignedField, ); \ 3996 OPTIONAL(splitDebugInlining, MDBoolField, = true); 3997 PARSE_MD_FIELDS(); 3998 #undef VISIT_MD_FIELDS 3999 4000 Result = DICompileUnit::getDistinct( 4001 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4002 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4003 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4004 splitDebugInlining.Val); 4005 return false; 4006 } 4007 4008 /// ParseDISubprogram: 4009 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4010 /// file: !1, line: 7, type: !2, isLocal: false, 4011 /// isDefinition: true, scopeLine: 8, containingType: !3, 4012 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4013 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4014 /// isOptimized: false, templateParams: !4, declaration: !5, 4015 /// variables: !6) 4016 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4017 auto Loc = Lex.getLoc(); 4018 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4019 OPTIONAL(scope, MDField, ); \ 4020 OPTIONAL(name, MDStringField, ); \ 4021 OPTIONAL(linkageName, MDStringField, ); \ 4022 OPTIONAL(file, MDField, ); \ 4023 OPTIONAL(line, LineField, ); \ 4024 OPTIONAL(type, MDField, ); \ 4025 OPTIONAL(isLocal, MDBoolField, ); \ 4026 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4027 OPTIONAL(scopeLine, LineField, ); \ 4028 OPTIONAL(containingType, MDField, ); \ 4029 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4030 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4031 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4032 OPTIONAL(flags, DIFlagField, ); \ 4033 OPTIONAL(isOptimized, MDBoolField, ); \ 4034 OPTIONAL(unit, MDField, ); \ 4035 OPTIONAL(templateParams, MDField, ); \ 4036 OPTIONAL(declaration, MDField, ); \ 4037 OPTIONAL(variables, MDField, ); 4038 PARSE_MD_FIELDS(); 4039 #undef VISIT_MD_FIELDS 4040 4041 if (isDefinition.Val && !IsDistinct) 4042 return Lex.Error( 4043 Loc, 4044 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4045 4046 Result = GET_OR_DISTINCT( 4047 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4048 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4049 scopeLine.Val, containingType.Val, virtuality.Val, 4050 virtualIndex.Val, thisAdjustment.Val, flags.Val, 4051 isOptimized.Val, unit.Val, templateParams.Val, 4052 declaration.Val, variables.Val)); 4053 return false; 4054 } 4055 4056 /// ParseDILexicalBlock: 4057 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4058 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4059 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4060 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4061 OPTIONAL(file, MDField, ); \ 4062 OPTIONAL(line, LineField, ); \ 4063 OPTIONAL(column, ColumnField, ); 4064 PARSE_MD_FIELDS(); 4065 #undef VISIT_MD_FIELDS 4066 4067 Result = GET_OR_DISTINCT( 4068 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4069 return false; 4070 } 4071 4072 /// ParseDILexicalBlockFile: 4073 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4074 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4075 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4076 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4077 OPTIONAL(file, MDField, ); \ 4078 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4079 PARSE_MD_FIELDS(); 4080 #undef VISIT_MD_FIELDS 4081 4082 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4083 (Context, scope.Val, file.Val, discriminator.Val)); 4084 return false; 4085 } 4086 4087 /// ParseDINamespace: 4088 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4089 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4090 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4091 REQUIRED(scope, MDField, ); \ 4092 OPTIONAL(file, MDField, ); \ 4093 OPTIONAL(name, MDStringField, ); \ 4094 OPTIONAL(line, LineField, ); 4095 PARSE_MD_FIELDS(); 4096 #undef VISIT_MD_FIELDS 4097 4098 Result = GET_OR_DISTINCT(DINamespace, 4099 (Context, scope.Val, file.Val, name.Val, line.Val)); 4100 return false; 4101 } 4102 4103 /// ParseDIMacro: 4104 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4105 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4106 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4107 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4108 REQUIRED(line, LineField, ); \ 4109 REQUIRED(name, MDStringField, ); \ 4110 OPTIONAL(value, MDStringField, ); 4111 PARSE_MD_FIELDS(); 4112 #undef VISIT_MD_FIELDS 4113 4114 Result = GET_OR_DISTINCT(DIMacro, 4115 (Context, type.Val, line.Val, name.Val, value.Val)); 4116 return false; 4117 } 4118 4119 /// ParseDIMacroFile: 4120 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4121 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4122 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4123 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4124 REQUIRED(line, LineField, ); \ 4125 REQUIRED(file, MDField, ); \ 4126 OPTIONAL(nodes, MDField, ); 4127 PARSE_MD_FIELDS(); 4128 #undef VISIT_MD_FIELDS 4129 4130 Result = GET_OR_DISTINCT(DIMacroFile, 4131 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4132 return false; 4133 } 4134 4135 /// ParseDIModule: 4136 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4137 /// includePath: "/usr/include", isysroot: "/") 4138 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4139 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4140 REQUIRED(scope, MDField, ); \ 4141 REQUIRED(name, MDStringField, ); \ 4142 OPTIONAL(configMacros, MDStringField, ); \ 4143 OPTIONAL(includePath, MDStringField, ); \ 4144 OPTIONAL(isysroot, MDStringField, ); 4145 PARSE_MD_FIELDS(); 4146 #undef VISIT_MD_FIELDS 4147 4148 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4149 configMacros.Val, includePath.Val, isysroot.Val)); 4150 return false; 4151 } 4152 4153 /// ParseDITemplateTypeParameter: 4154 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4155 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4156 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4157 OPTIONAL(name, MDStringField, ); \ 4158 REQUIRED(type, MDField, ); 4159 PARSE_MD_FIELDS(); 4160 #undef VISIT_MD_FIELDS 4161 4162 Result = 4163 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4164 return false; 4165 } 4166 4167 /// ParseDITemplateValueParameter: 4168 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4169 /// name: "V", type: !1, value: i32 7) 4170 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4171 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4172 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4173 OPTIONAL(name, MDStringField, ); \ 4174 OPTIONAL(type, MDField, ); \ 4175 REQUIRED(value, MDField, ); 4176 PARSE_MD_FIELDS(); 4177 #undef VISIT_MD_FIELDS 4178 4179 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4180 (Context, tag.Val, name.Val, type.Val, value.Val)); 4181 return false; 4182 } 4183 4184 /// ParseDIGlobalVariable: 4185 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4186 /// file: !1, line: 7, type: !2, isLocal: false, 4187 /// isDefinition: true, variable: i32* @foo, 4188 /// declaration: !3) 4189 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4190 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4191 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4192 OPTIONAL(scope, MDField, ); \ 4193 OPTIONAL(linkageName, MDStringField, ); \ 4194 OPTIONAL(file, MDField, ); \ 4195 OPTIONAL(line, LineField, ); \ 4196 OPTIONAL(type, MDField, ); \ 4197 OPTIONAL(isLocal, MDBoolField, ); \ 4198 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4199 OPTIONAL(expr, MDField, ); \ 4200 OPTIONAL(declaration, MDField, ); 4201 PARSE_MD_FIELDS(); 4202 #undef VISIT_MD_FIELDS 4203 4204 Result = GET_OR_DISTINCT(DIGlobalVariable, 4205 (Context, scope.Val, name.Val, linkageName.Val, 4206 file.Val, line.Val, type.Val, isLocal.Val, 4207 isDefinition.Val, expr.Val, declaration.Val)); 4208 return false; 4209 } 4210 4211 /// ParseDILocalVariable: 4212 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4213 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4214 /// ::= !DILocalVariable(scope: !0, name: "foo", 4215 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4216 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4218 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4219 OPTIONAL(name, MDStringField, ); \ 4220 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4221 OPTIONAL(file, MDField, ); \ 4222 OPTIONAL(line, LineField, ); \ 4223 OPTIONAL(type, MDField, ); \ 4224 OPTIONAL(flags, DIFlagField, ); 4225 PARSE_MD_FIELDS(); 4226 #undef VISIT_MD_FIELDS 4227 4228 Result = GET_OR_DISTINCT(DILocalVariable, 4229 (Context, scope.Val, name.Val, file.Val, line.Val, 4230 type.Val, arg.Val, flags.Val)); 4231 return false; 4232 } 4233 4234 /// ParseDIExpression: 4235 /// ::= !DIExpression(0, 7, -1) 4236 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4237 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4238 Lex.Lex(); 4239 4240 if (ParseToken(lltok::lparen, "expected '(' here")) 4241 return true; 4242 4243 SmallVector<uint64_t, 8> Elements; 4244 if (Lex.getKind() != lltok::rparen) 4245 do { 4246 if (Lex.getKind() == lltok::DwarfOp) { 4247 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4248 Lex.Lex(); 4249 Elements.push_back(Op); 4250 continue; 4251 } 4252 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4253 } 4254 4255 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4256 return TokError("expected unsigned integer"); 4257 4258 auto &U = Lex.getAPSIntVal(); 4259 if (U.ugt(UINT64_MAX)) 4260 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4261 Elements.push_back(U.getZExtValue()); 4262 Lex.Lex(); 4263 } while (EatIfPresent(lltok::comma)); 4264 4265 if (ParseToken(lltok::rparen, "expected ')' here")) 4266 return true; 4267 4268 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4269 return false; 4270 } 4271 4272 /// ParseDIObjCProperty: 4273 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4274 /// getter: "getFoo", attributes: 7, type: !2) 4275 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4276 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4277 OPTIONAL(name, MDStringField, ); \ 4278 OPTIONAL(file, MDField, ); \ 4279 OPTIONAL(line, LineField, ); \ 4280 OPTIONAL(setter, MDStringField, ); \ 4281 OPTIONAL(getter, MDStringField, ); \ 4282 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4283 OPTIONAL(type, MDField, ); 4284 PARSE_MD_FIELDS(); 4285 #undef VISIT_MD_FIELDS 4286 4287 Result = GET_OR_DISTINCT(DIObjCProperty, 4288 (Context, name.Val, file.Val, line.Val, setter.Val, 4289 getter.Val, attributes.Val, type.Val)); 4290 return false; 4291 } 4292 4293 /// ParseDIImportedEntity: 4294 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4295 /// line: 7, name: "foo") 4296 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4297 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4298 REQUIRED(tag, DwarfTagField, ); \ 4299 REQUIRED(scope, MDField, ); \ 4300 OPTIONAL(entity, MDField, ); \ 4301 OPTIONAL(line, LineField, ); \ 4302 OPTIONAL(name, MDStringField, ); 4303 PARSE_MD_FIELDS(); 4304 #undef VISIT_MD_FIELDS 4305 4306 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4307 entity.Val, line.Val, name.Val)); 4308 return false; 4309 } 4310 4311 #undef PARSE_MD_FIELD 4312 #undef NOP_FIELD 4313 #undef REQUIRE_FIELD 4314 #undef DECLARE_FIELD 4315 4316 /// ParseMetadataAsValue 4317 /// ::= metadata i32 %local 4318 /// ::= metadata i32 @global 4319 /// ::= metadata i32 7 4320 /// ::= metadata !0 4321 /// ::= metadata !{...} 4322 /// ::= metadata !"string" 4323 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4324 // Note: the type 'metadata' has already been parsed. 4325 Metadata *MD; 4326 if (ParseMetadata(MD, &PFS)) 4327 return true; 4328 4329 V = MetadataAsValue::get(Context, MD); 4330 return false; 4331 } 4332 4333 /// ParseValueAsMetadata 4334 /// ::= i32 %local 4335 /// ::= i32 @global 4336 /// ::= i32 7 4337 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4338 PerFunctionState *PFS) { 4339 Type *Ty; 4340 LocTy Loc; 4341 if (ParseType(Ty, TypeMsg, Loc)) 4342 return true; 4343 if (Ty->isMetadataTy()) 4344 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4345 4346 Value *V; 4347 if (ParseValue(Ty, V, PFS)) 4348 return true; 4349 4350 MD = ValueAsMetadata::get(V); 4351 return false; 4352 } 4353 4354 /// ParseMetadata 4355 /// ::= i32 %local 4356 /// ::= i32 @global 4357 /// ::= i32 7 4358 /// ::= !42 4359 /// ::= !{...} 4360 /// ::= !"string" 4361 /// ::= !DILocation(...) 4362 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4363 if (Lex.getKind() == lltok::MetadataVar) { 4364 MDNode *N; 4365 if (ParseSpecializedMDNode(N)) 4366 return true; 4367 MD = N; 4368 return false; 4369 } 4370 4371 // ValueAsMetadata: 4372 // <type> <value> 4373 if (Lex.getKind() != lltok::exclaim) 4374 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4375 4376 // '!'. 4377 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4378 Lex.Lex(); 4379 4380 // MDString: 4381 // ::= '!' STRINGCONSTANT 4382 if (Lex.getKind() == lltok::StringConstant) { 4383 MDString *S; 4384 if (ParseMDString(S)) 4385 return true; 4386 MD = S; 4387 return false; 4388 } 4389 4390 // MDNode: 4391 // !{ ... } 4392 // !7 4393 MDNode *N; 4394 if (ParseMDNodeTail(N)) 4395 return true; 4396 MD = N; 4397 return false; 4398 } 4399 4400 //===----------------------------------------------------------------------===// 4401 // Function Parsing. 4402 //===----------------------------------------------------------------------===// 4403 4404 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4405 PerFunctionState *PFS) { 4406 if (Ty->isFunctionTy()) 4407 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4408 4409 switch (ID.Kind) { 4410 case ValID::t_LocalID: 4411 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4412 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4413 return V == nullptr; 4414 case ValID::t_LocalName: 4415 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4416 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4417 return V == nullptr; 4418 case ValID::t_InlineAsm: { 4419 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4420 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4421 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4422 (ID.UIntVal >> 1) & 1, 4423 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4424 return false; 4425 } 4426 case ValID::t_GlobalName: 4427 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4428 return V == nullptr; 4429 case ValID::t_GlobalID: 4430 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4431 return V == nullptr; 4432 case ValID::t_APSInt: 4433 if (!Ty->isIntegerTy()) 4434 return Error(ID.Loc, "integer constant must have integer type"); 4435 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4436 V = ConstantInt::get(Context, ID.APSIntVal); 4437 return false; 4438 case ValID::t_APFloat: 4439 if (!Ty->isFloatingPointTy() || 4440 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4441 return Error(ID.Loc, "floating point constant invalid for type"); 4442 4443 // The lexer has no type info, so builds all half, float, and double FP 4444 // constants as double. Fix this here. Long double does not need this. 4445 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4446 bool Ignored; 4447 if (Ty->isHalfTy()) 4448 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4449 &Ignored); 4450 else if (Ty->isFloatTy()) 4451 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4452 &Ignored); 4453 } 4454 V = ConstantFP::get(Context, ID.APFloatVal); 4455 4456 if (V->getType() != Ty) 4457 return Error(ID.Loc, "floating point constant does not have type '" + 4458 getTypeString(Ty) + "'"); 4459 4460 return false; 4461 case ValID::t_Null: 4462 if (!Ty->isPointerTy()) 4463 return Error(ID.Loc, "null must be a pointer type"); 4464 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4465 return false; 4466 case ValID::t_Undef: 4467 // FIXME: LabelTy should not be a first-class type. 4468 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4469 return Error(ID.Loc, "invalid type for undef constant"); 4470 V = UndefValue::get(Ty); 4471 return false; 4472 case ValID::t_EmptyArray: 4473 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4474 return Error(ID.Loc, "invalid empty array initializer"); 4475 V = UndefValue::get(Ty); 4476 return false; 4477 case ValID::t_Zero: 4478 // FIXME: LabelTy should not be a first-class type. 4479 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4480 return Error(ID.Loc, "invalid type for null constant"); 4481 V = Constant::getNullValue(Ty); 4482 return false; 4483 case ValID::t_None: 4484 if (!Ty->isTokenTy()) 4485 return Error(ID.Loc, "invalid type for none constant"); 4486 V = Constant::getNullValue(Ty); 4487 return false; 4488 case ValID::t_Constant: 4489 if (ID.ConstantVal->getType() != Ty) 4490 return Error(ID.Loc, "constant expression type mismatch"); 4491 4492 V = ID.ConstantVal; 4493 return false; 4494 case ValID::t_ConstantStruct: 4495 case ValID::t_PackedConstantStruct: 4496 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4497 if (ST->getNumElements() != ID.UIntVal) 4498 return Error(ID.Loc, 4499 "initializer with struct type has wrong # elements"); 4500 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4501 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4502 4503 // Verify that the elements are compatible with the structtype. 4504 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4505 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4506 return Error(ID.Loc, "element " + Twine(i) + 4507 " of struct initializer doesn't match struct element type"); 4508 4509 V = ConstantStruct::get( 4510 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4511 } else 4512 return Error(ID.Loc, "constant expression type mismatch"); 4513 return false; 4514 } 4515 llvm_unreachable("Invalid ValID"); 4516 } 4517 4518 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4519 C = nullptr; 4520 ValID ID; 4521 auto Loc = Lex.getLoc(); 4522 if (ParseValID(ID, /*PFS=*/nullptr)) 4523 return true; 4524 switch (ID.Kind) { 4525 case ValID::t_APSInt: 4526 case ValID::t_APFloat: 4527 case ValID::t_Undef: 4528 case ValID::t_Constant: 4529 case ValID::t_ConstantStruct: 4530 case ValID::t_PackedConstantStruct: { 4531 Value *V; 4532 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4533 return true; 4534 assert(isa<Constant>(V) && "Expected a constant value"); 4535 C = cast<Constant>(V); 4536 return false; 4537 } 4538 default: 4539 return Error(Loc, "expected a constant value"); 4540 } 4541 } 4542 4543 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4544 V = nullptr; 4545 ValID ID; 4546 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4547 } 4548 4549 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4550 Type *Ty = nullptr; 4551 return ParseType(Ty) || 4552 ParseValue(Ty, V, PFS); 4553 } 4554 4555 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4556 PerFunctionState &PFS) { 4557 Value *V; 4558 Loc = Lex.getLoc(); 4559 if (ParseTypeAndValue(V, PFS)) return true; 4560 if (!isa<BasicBlock>(V)) 4561 return Error(Loc, "expected a basic block"); 4562 BB = cast<BasicBlock>(V); 4563 return false; 4564 } 4565 4566 /// FunctionHeader 4567 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4568 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4569 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4570 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4571 // Parse the linkage. 4572 LocTy LinkageLoc = Lex.getLoc(); 4573 unsigned Linkage; 4574 4575 unsigned Visibility; 4576 unsigned DLLStorageClass; 4577 AttrBuilder RetAttrs; 4578 unsigned CC; 4579 bool HasLinkage; 4580 Type *RetType = nullptr; 4581 LocTy RetTypeLoc = Lex.getLoc(); 4582 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4583 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4584 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4585 return true; 4586 4587 // Verify that the linkage is ok. 4588 switch ((GlobalValue::LinkageTypes)Linkage) { 4589 case GlobalValue::ExternalLinkage: 4590 break; // always ok. 4591 case GlobalValue::ExternalWeakLinkage: 4592 if (isDefine) 4593 return Error(LinkageLoc, "invalid linkage for function definition"); 4594 break; 4595 case GlobalValue::PrivateLinkage: 4596 case GlobalValue::InternalLinkage: 4597 case GlobalValue::AvailableExternallyLinkage: 4598 case GlobalValue::LinkOnceAnyLinkage: 4599 case GlobalValue::LinkOnceODRLinkage: 4600 case GlobalValue::WeakAnyLinkage: 4601 case GlobalValue::WeakODRLinkage: 4602 if (!isDefine) 4603 return Error(LinkageLoc, "invalid linkage for function declaration"); 4604 break; 4605 case GlobalValue::AppendingLinkage: 4606 case GlobalValue::CommonLinkage: 4607 return Error(LinkageLoc, "invalid function linkage type"); 4608 } 4609 4610 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4611 return Error(LinkageLoc, 4612 "symbol with local linkage must have default visibility"); 4613 4614 if (!FunctionType::isValidReturnType(RetType)) 4615 return Error(RetTypeLoc, "invalid function return type"); 4616 4617 LocTy NameLoc = Lex.getLoc(); 4618 4619 std::string FunctionName; 4620 if (Lex.getKind() == lltok::GlobalVar) { 4621 FunctionName = Lex.getStrVal(); 4622 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4623 unsigned NameID = Lex.getUIntVal(); 4624 4625 if (NameID != NumberedVals.size()) 4626 return TokError("function expected to be numbered '%" + 4627 Twine(NumberedVals.size()) + "'"); 4628 } else { 4629 return TokError("expected function name"); 4630 } 4631 4632 Lex.Lex(); 4633 4634 if (Lex.getKind() != lltok::lparen) 4635 return TokError("expected '(' in function argument list"); 4636 4637 SmallVector<ArgInfo, 8> ArgList; 4638 bool isVarArg; 4639 AttrBuilder FuncAttrs; 4640 std::vector<unsigned> FwdRefAttrGrps; 4641 LocTy BuiltinLoc; 4642 std::string Section; 4643 unsigned Alignment; 4644 std::string GC; 4645 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4646 LocTy UnnamedAddrLoc; 4647 Constant *Prefix = nullptr; 4648 Constant *Prologue = nullptr; 4649 Constant *PersonalityFn = nullptr; 4650 Comdat *C; 4651 4652 if (ParseArgumentList(ArgList, isVarArg) || 4653 ParseOptionalUnnamedAddr(UnnamedAddr) || 4654 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4655 BuiltinLoc) || 4656 (EatIfPresent(lltok::kw_section) && 4657 ParseStringConstant(Section)) || 4658 parseOptionalComdat(FunctionName, C) || 4659 ParseOptionalAlignment(Alignment) || 4660 (EatIfPresent(lltok::kw_gc) && 4661 ParseStringConstant(GC)) || 4662 (EatIfPresent(lltok::kw_prefix) && 4663 ParseGlobalTypeAndValue(Prefix)) || 4664 (EatIfPresent(lltok::kw_prologue) && 4665 ParseGlobalTypeAndValue(Prologue)) || 4666 (EatIfPresent(lltok::kw_personality) && 4667 ParseGlobalTypeAndValue(PersonalityFn))) 4668 return true; 4669 4670 if (FuncAttrs.contains(Attribute::Builtin)) 4671 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4672 4673 // If the alignment was parsed as an attribute, move to the alignment field. 4674 if (FuncAttrs.hasAlignmentAttr()) { 4675 Alignment = FuncAttrs.getAlignment(); 4676 FuncAttrs.removeAttribute(Attribute::Alignment); 4677 } 4678 4679 // Okay, if we got here, the function is syntactically valid. Convert types 4680 // and do semantic checks. 4681 std::vector<Type*> ParamTypeList; 4682 SmallVector<AttributeSet, 8> Attrs; 4683 4684 if (RetAttrs.hasAttributes()) 4685 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4686 AttributeSet::ReturnIndex, 4687 RetAttrs)); 4688 4689 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4690 ParamTypeList.push_back(ArgList[i].Ty); 4691 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4692 AttrBuilder B(ArgList[i].Attrs, i + 1); 4693 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4694 } 4695 } 4696 4697 if (FuncAttrs.hasAttributes()) 4698 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4699 AttributeSet::FunctionIndex, 4700 FuncAttrs)); 4701 4702 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4703 4704 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4705 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4706 4707 FunctionType *FT = 4708 FunctionType::get(RetType, ParamTypeList, isVarArg); 4709 PointerType *PFT = PointerType::getUnqual(FT); 4710 4711 Fn = nullptr; 4712 if (!FunctionName.empty()) { 4713 // If this was a definition of a forward reference, remove the definition 4714 // from the forward reference table and fill in the forward ref. 4715 auto FRVI = ForwardRefVals.find(FunctionName); 4716 if (FRVI != ForwardRefVals.end()) { 4717 Fn = M->getFunction(FunctionName); 4718 if (!Fn) 4719 return Error(FRVI->second.second, "invalid forward reference to " 4720 "function as global value!"); 4721 if (Fn->getType() != PFT) 4722 return Error(FRVI->second.second, "invalid forward reference to " 4723 "function '" + FunctionName + "' with wrong type!"); 4724 4725 ForwardRefVals.erase(FRVI); 4726 } else if ((Fn = M->getFunction(FunctionName))) { 4727 // Reject redefinitions. 4728 return Error(NameLoc, "invalid redefinition of function '" + 4729 FunctionName + "'"); 4730 } else if (M->getNamedValue(FunctionName)) { 4731 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4732 } 4733 4734 } else { 4735 // If this is a definition of a forward referenced function, make sure the 4736 // types agree. 4737 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4738 if (I != ForwardRefValIDs.end()) { 4739 Fn = cast<Function>(I->second.first); 4740 if (Fn->getType() != PFT) 4741 return Error(NameLoc, "type of definition and forward reference of '@" + 4742 Twine(NumberedVals.size()) + "' disagree"); 4743 ForwardRefValIDs.erase(I); 4744 } 4745 } 4746 4747 if (!Fn) 4748 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4749 else // Move the forward-reference to the correct spot in the module. 4750 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4751 4752 if (FunctionName.empty()) 4753 NumberedVals.push_back(Fn); 4754 4755 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4756 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4757 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4758 Fn->setCallingConv(CC); 4759 Fn->setAttributes(PAL); 4760 Fn->setUnnamedAddr(UnnamedAddr); 4761 Fn->setAlignment(Alignment); 4762 Fn->setSection(Section); 4763 Fn->setComdat(C); 4764 Fn->setPersonalityFn(PersonalityFn); 4765 if (!GC.empty()) Fn->setGC(GC); 4766 Fn->setPrefixData(Prefix); 4767 Fn->setPrologueData(Prologue); 4768 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4769 4770 // Add all of the arguments we parsed to the function. 4771 Function::arg_iterator ArgIt = Fn->arg_begin(); 4772 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4773 // If the argument has a name, insert it into the argument symbol table. 4774 if (ArgList[i].Name.empty()) continue; 4775 4776 // Set the name, if it conflicted, it will be auto-renamed. 4777 ArgIt->setName(ArgList[i].Name); 4778 4779 if (ArgIt->getName() != ArgList[i].Name) 4780 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4781 ArgList[i].Name + "'"); 4782 } 4783 4784 if (isDefine) 4785 return false; 4786 4787 // Check the declaration has no block address forward references. 4788 ValID ID; 4789 if (FunctionName.empty()) { 4790 ID.Kind = ValID::t_GlobalID; 4791 ID.UIntVal = NumberedVals.size() - 1; 4792 } else { 4793 ID.Kind = ValID::t_GlobalName; 4794 ID.StrVal = FunctionName; 4795 } 4796 auto Blocks = ForwardRefBlockAddresses.find(ID); 4797 if (Blocks != ForwardRefBlockAddresses.end()) 4798 return Error(Blocks->first.Loc, 4799 "cannot take blockaddress inside a declaration"); 4800 return false; 4801 } 4802 4803 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4804 ValID ID; 4805 if (FunctionNumber == -1) { 4806 ID.Kind = ValID::t_GlobalName; 4807 ID.StrVal = F.getName(); 4808 } else { 4809 ID.Kind = ValID::t_GlobalID; 4810 ID.UIntVal = FunctionNumber; 4811 } 4812 4813 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4814 if (Blocks == P.ForwardRefBlockAddresses.end()) 4815 return false; 4816 4817 for (const auto &I : Blocks->second) { 4818 const ValID &BBID = I.first; 4819 GlobalValue *GV = I.second; 4820 4821 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4822 "Expected local id or name"); 4823 BasicBlock *BB; 4824 if (BBID.Kind == ValID::t_LocalName) 4825 BB = GetBB(BBID.StrVal, BBID.Loc); 4826 else 4827 BB = GetBB(BBID.UIntVal, BBID.Loc); 4828 if (!BB) 4829 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4830 4831 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4832 GV->eraseFromParent(); 4833 } 4834 4835 P.ForwardRefBlockAddresses.erase(Blocks); 4836 return false; 4837 } 4838 4839 /// ParseFunctionBody 4840 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4841 bool LLParser::ParseFunctionBody(Function &Fn) { 4842 if (Lex.getKind() != lltok::lbrace) 4843 return TokError("expected '{' in function body"); 4844 Lex.Lex(); // eat the {. 4845 4846 int FunctionNumber = -1; 4847 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4848 4849 PerFunctionState PFS(*this, Fn, FunctionNumber); 4850 4851 // Resolve block addresses and allow basic blocks to be forward-declared 4852 // within this function. 4853 if (PFS.resolveForwardRefBlockAddresses()) 4854 return true; 4855 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4856 4857 // We need at least one basic block. 4858 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4859 return TokError("function body requires at least one basic block"); 4860 4861 while (Lex.getKind() != lltok::rbrace && 4862 Lex.getKind() != lltok::kw_uselistorder) 4863 if (ParseBasicBlock(PFS)) return true; 4864 4865 while (Lex.getKind() != lltok::rbrace) 4866 if (ParseUseListOrder(&PFS)) 4867 return true; 4868 4869 // Eat the }. 4870 Lex.Lex(); 4871 4872 // Verify function is ok. 4873 return PFS.FinishFunction(); 4874 } 4875 4876 /// ParseBasicBlock 4877 /// ::= LabelStr? Instruction* 4878 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4879 // If this basic block starts out with a name, remember it. 4880 std::string Name; 4881 LocTy NameLoc = Lex.getLoc(); 4882 if (Lex.getKind() == lltok::LabelStr) { 4883 Name = Lex.getStrVal(); 4884 Lex.Lex(); 4885 } 4886 4887 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4888 if (!BB) 4889 return Error(NameLoc, 4890 "unable to create block named '" + Name + "'"); 4891 4892 std::string NameStr; 4893 4894 // Parse the instructions in this block until we get a terminator. 4895 Instruction *Inst; 4896 do { 4897 // This instruction may have three possibilities for a name: a) none 4898 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4899 LocTy NameLoc = Lex.getLoc(); 4900 int NameID = -1; 4901 NameStr = ""; 4902 4903 if (Lex.getKind() == lltok::LocalVarID) { 4904 NameID = Lex.getUIntVal(); 4905 Lex.Lex(); 4906 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4907 return true; 4908 } else if (Lex.getKind() == lltok::LocalVar) { 4909 NameStr = Lex.getStrVal(); 4910 Lex.Lex(); 4911 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4912 return true; 4913 } 4914 4915 switch (ParseInstruction(Inst, BB, PFS)) { 4916 default: llvm_unreachable("Unknown ParseInstruction result!"); 4917 case InstError: return true; 4918 case InstNormal: 4919 BB->getInstList().push_back(Inst); 4920 4921 // With a normal result, we check to see if the instruction is followed by 4922 // a comma and metadata. 4923 if (EatIfPresent(lltok::comma)) 4924 if (ParseInstructionMetadata(*Inst)) 4925 return true; 4926 break; 4927 case InstExtraComma: 4928 BB->getInstList().push_back(Inst); 4929 4930 // If the instruction parser ate an extra comma at the end of it, it 4931 // *must* be followed by metadata. 4932 if (ParseInstructionMetadata(*Inst)) 4933 return true; 4934 break; 4935 } 4936 4937 // Set the name on the instruction. 4938 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4939 } while (!isa<TerminatorInst>(Inst)); 4940 4941 return false; 4942 } 4943 4944 //===----------------------------------------------------------------------===// 4945 // Instruction Parsing. 4946 //===----------------------------------------------------------------------===// 4947 4948 /// ParseInstruction - Parse one of the many different instructions. 4949 /// 4950 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4951 PerFunctionState &PFS) { 4952 lltok::Kind Token = Lex.getKind(); 4953 if (Token == lltok::Eof) 4954 return TokError("found end of file when expecting more instructions"); 4955 LocTy Loc = Lex.getLoc(); 4956 unsigned KeywordVal = Lex.getUIntVal(); 4957 Lex.Lex(); // Eat the keyword. 4958 4959 switch (Token) { 4960 default: return Error(Loc, "expected instruction opcode"); 4961 // Terminator Instructions. 4962 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4963 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4964 case lltok::kw_br: return ParseBr(Inst, PFS); 4965 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4966 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4967 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4968 case lltok::kw_resume: return ParseResume(Inst, PFS); 4969 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4970 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4971 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4972 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4973 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4974 // Binary Operators. 4975 case lltok::kw_add: 4976 case lltok::kw_sub: 4977 case lltok::kw_mul: 4978 case lltok::kw_shl: { 4979 bool NUW = EatIfPresent(lltok::kw_nuw); 4980 bool NSW = EatIfPresent(lltok::kw_nsw); 4981 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4982 4983 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4984 4985 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4986 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4987 return false; 4988 } 4989 case lltok::kw_fadd: 4990 case lltok::kw_fsub: 4991 case lltok::kw_fmul: 4992 case lltok::kw_fdiv: 4993 case lltok::kw_frem: { 4994 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4995 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4996 if (Res != 0) 4997 return Res; 4998 if (FMF.any()) 4999 Inst->setFastMathFlags(FMF); 5000 return 0; 5001 } 5002 5003 case lltok::kw_sdiv: 5004 case lltok::kw_udiv: 5005 case lltok::kw_lshr: 5006 case lltok::kw_ashr: { 5007 bool Exact = EatIfPresent(lltok::kw_exact); 5008 5009 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5010 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5011 return false; 5012 } 5013 5014 case lltok::kw_urem: 5015 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5016 case lltok::kw_and: 5017 case lltok::kw_or: 5018 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5019 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5020 case lltok::kw_fcmp: { 5021 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5022 int Res = ParseCompare(Inst, PFS, KeywordVal); 5023 if (Res != 0) 5024 return Res; 5025 if (FMF.any()) 5026 Inst->setFastMathFlags(FMF); 5027 return 0; 5028 } 5029 5030 // Casts. 5031 case lltok::kw_trunc: 5032 case lltok::kw_zext: 5033 case lltok::kw_sext: 5034 case lltok::kw_fptrunc: 5035 case lltok::kw_fpext: 5036 case lltok::kw_bitcast: 5037 case lltok::kw_addrspacecast: 5038 case lltok::kw_uitofp: 5039 case lltok::kw_sitofp: 5040 case lltok::kw_fptoui: 5041 case lltok::kw_fptosi: 5042 case lltok::kw_inttoptr: 5043 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5044 // Other. 5045 case lltok::kw_select: return ParseSelect(Inst, PFS); 5046 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5047 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5048 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5049 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5050 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5051 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5052 // Call. 5053 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5054 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5055 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5056 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5057 // Memory. 5058 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5059 case lltok::kw_load: return ParseLoad(Inst, PFS); 5060 case lltok::kw_store: return ParseStore(Inst, PFS); 5061 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5062 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5063 case lltok::kw_fence: return ParseFence(Inst, PFS); 5064 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5065 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5066 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5067 } 5068 } 5069 5070 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5071 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5072 if (Opc == Instruction::FCmp) { 5073 switch (Lex.getKind()) { 5074 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5075 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5076 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5077 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5078 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5079 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5080 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5081 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5082 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5083 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5084 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5085 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5086 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5087 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5088 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5089 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5090 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5091 } 5092 } else { 5093 switch (Lex.getKind()) { 5094 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5095 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5096 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5097 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5098 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5099 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5100 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5101 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5102 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5103 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5104 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5105 } 5106 } 5107 Lex.Lex(); 5108 return false; 5109 } 5110 5111 //===----------------------------------------------------------------------===// 5112 // Terminator Instructions. 5113 //===----------------------------------------------------------------------===// 5114 5115 /// ParseRet - Parse a return instruction. 5116 /// ::= 'ret' void (',' !dbg, !1)* 5117 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5118 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5119 PerFunctionState &PFS) { 5120 SMLoc TypeLoc = Lex.getLoc(); 5121 Type *Ty = nullptr; 5122 if (ParseType(Ty, true /*void allowed*/)) return true; 5123 5124 Type *ResType = PFS.getFunction().getReturnType(); 5125 5126 if (Ty->isVoidTy()) { 5127 if (!ResType->isVoidTy()) 5128 return Error(TypeLoc, "value doesn't match function result type '" + 5129 getTypeString(ResType) + "'"); 5130 5131 Inst = ReturnInst::Create(Context); 5132 return false; 5133 } 5134 5135 Value *RV; 5136 if (ParseValue(Ty, RV, PFS)) return true; 5137 5138 if (ResType != RV->getType()) 5139 return Error(TypeLoc, "value doesn't match function result type '" + 5140 getTypeString(ResType) + "'"); 5141 5142 Inst = ReturnInst::Create(Context, RV); 5143 return false; 5144 } 5145 5146 /// ParseBr 5147 /// ::= 'br' TypeAndValue 5148 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5149 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5150 LocTy Loc, Loc2; 5151 Value *Op0; 5152 BasicBlock *Op1, *Op2; 5153 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5154 5155 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5156 Inst = BranchInst::Create(BB); 5157 return false; 5158 } 5159 5160 if (Op0->getType() != Type::getInt1Ty(Context)) 5161 return Error(Loc, "branch condition must have 'i1' type"); 5162 5163 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5164 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5165 ParseToken(lltok::comma, "expected ',' after true destination") || 5166 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5167 return true; 5168 5169 Inst = BranchInst::Create(Op1, Op2, Op0); 5170 return false; 5171 } 5172 5173 /// ParseSwitch 5174 /// Instruction 5175 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5176 /// JumpTable 5177 /// ::= (TypeAndValue ',' TypeAndValue)* 5178 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5179 LocTy CondLoc, BBLoc; 5180 Value *Cond; 5181 BasicBlock *DefaultBB; 5182 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5183 ParseToken(lltok::comma, "expected ',' after switch condition") || 5184 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5185 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5186 return true; 5187 5188 if (!Cond->getType()->isIntegerTy()) 5189 return Error(CondLoc, "switch condition must have integer type"); 5190 5191 // Parse the jump table pairs. 5192 SmallPtrSet<Value*, 32> SeenCases; 5193 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5194 while (Lex.getKind() != lltok::rsquare) { 5195 Value *Constant; 5196 BasicBlock *DestBB; 5197 5198 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5199 ParseToken(lltok::comma, "expected ',' after case value") || 5200 ParseTypeAndBasicBlock(DestBB, PFS)) 5201 return true; 5202 5203 if (!SeenCases.insert(Constant).second) 5204 return Error(CondLoc, "duplicate case value in switch"); 5205 if (!isa<ConstantInt>(Constant)) 5206 return Error(CondLoc, "case value is not a constant integer"); 5207 5208 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5209 } 5210 5211 Lex.Lex(); // Eat the ']'. 5212 5213 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5214 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5215 SI->addCase(Table[i].first, Table[i].second); 5216 Inst = SI; 5217 return false; 5218 } 5219 5220 /// ParseIndirectBr 5221 /// Instruction 5222 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5223 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5224 LocTy AddrLoc; 5225 Value *Address; 5226 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5227 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5228 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5229 return true; 5230 5231 if (!Address->getType()->isPointerTy()) 5232 return Error(AddrLoc, "indirectbr address must have pointer type"); 5233 5234 // Parse the destination list. 5235 SmallVector<BasicBlock*, 16> DestList; 5236 5237 if (Lex.getKind() != lltok::rsquare) { 5238 BasicBlock *DestBB; 5239 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5240 return true; 5241 DestList.push_back(DestBB); 5242 5243 while (EatIfPresent(lltok::comma)) { 5244 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5245 return true; 5246 DestList.push_back(DestBB); 5247 } 5248 } 5249 5250 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5251 return true; 5252 5253 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5254 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5255 IBI->addDestination(DestList[i]); 5256 Inst = IBI; 5257 return false; 5258 } 5259 5260 /// ParseInvoke 5261 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5262 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5263 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5264 LocTy CallLoc = Lex.getLoc(); 5265 AttrBuilder RetAttrs, FnAttrs; 5266 std::vector<unsigned> FwdRefAttrGrps; 5267 LocTy NoBuiltinLoc; 5268 unsigned CC; 5269 Type *RetType = nullptr; 5270 LocTy RetTypeLoc; 5271 ValID CalleeID; 5272 SmallVector<ParamInfo, 16> ArgList; 5273 SmallVector<OperandBundleDef, 2> BundleList; 5274 5275 BasicBlock *NormalBB, *UnwindBB; 5276 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5277 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5278 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5279 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5280 NoBuiltinLoc) || 5281 ParseOptionalOperandBundles(BundleList, PFS) || 5282 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5283 ParseTypeAndBasicBlock(NormalBB, PFS) || 5284 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5285 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5286 return true; 5287 5288 // If RetType is a non-function pointer type, then this is the short syntax 5289 // for the call, which means that RetType is just the return type. Infer the 5290 // rest of the function argument types from the arguments that are present. 5291 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5292 if (!Ty) { 5293 // Pull out the types of all of the arguments... 5294 std::vector<Type*> ParamTypes; 5295 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5296 ParamTypes.push_back(ArgList[i].V->getType()); 5297 5298 if (!FunctionType::isValidReturnType(RetType)) 5299 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5300 5301 Ty = FunctionType::get(RetType, ParamTypes, false); 5302 } 5303 5304 CalleeID.FTy = Ty; 5305 5306 // Look up the callee. 5307 Value *Callee; 5308 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5309 return true; 5310 5311 // Set up the Attribute for the function. 5312 SmallVector<AttributeSet, 8> Attrs; 5313 if (RetAttrs.hasAttributes()) 5314 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5315 AttributeSet::ReturnIndex, 5316 RetAttrs)); 5317 5318 SmallVector<Value*, 8> Args; 5319 5320 // Loop through FunctionType's arguments and ensure they are specified 5321 // correctly. Also, gather any parameter attributes. 5322 FunctionType::param_iterator I = Ty->param_begin(); 5323 FunctionType::param_iterator E = Ty->param_end(); 5324 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5325 Type *ExpectedTy = nullptr; 5326 if (I != E) { 5327 ExpectedTy = *I++; 5328 } else if (!Ty->isVarArg()) { 5329 return Error(ArgList[i].Loc, "too many arguments specified"); 5330 } 5331 5332 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5333 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5334 getTypeString(ExpectedTy) + "'"); 5335 Args.push_back(ArgList[i].V); 5336 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5337 AttrBuilder B(ArgList[i].Attrs, i + 1); 5338 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5339 } 5340 } 5341 5342 if (I != E) 5343 return Error(CallLoc, "not enough parameters specified for call"); 5344 5345 if (FnAttrs.hasAttributes()) { 5346 if (FnAttrs.hasAlignmentAttr()) 5347 return Error(CallLoc, "invoke instructions may not have an alignment"); 5348 5349 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5350 AttributeSet::FunctionIndex, 5351 FnAttrs)); 5352 } 5353 5354 // Finish off the Attribute and check them 5355 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5356 5357 InvokeInst *II = 5358 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5359 II->setCallingConv(CC); 5360 II->setAttributes(PAL); 5361 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5362 Inst = II; 5363 return false; 5364 } 5365 5366 /// ParseResume 5367 /// ::= 'resume' TypeAndValue 5368 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5369 Value *Exn; LocTy ExnLoc; 5370 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5371 return true; 5372 5373 ResumeInst *RI = ResumeInst::Create(Exn); 5374 Inst = RI; 5375 return false; 5376 } 5377 5378 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5379 PerFunctionState &PFS) { 5380 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5381 return true; 5382 5383 while (Lex.getKind() != lltok::rsquare) { 5384 // If this isn't the first argument, we need a comma. 5385 if (!Args.empty() && 5386 ParseToken(lltok::comma, "expected ',' in argument list")) 5387 return true; 5388 5389 // Parse the argument. 5390 LocTy ArgLoc; 5391 Type *ArgTy = nullptr; 5392 if (ParseType(ArgTy, ArgLoc)) 5393 return true; 5394 5395 Value *V; 5396 if (ArgTy->isMetadataTy()) { 5397 if (ParseMetadataAsValue(V, PFS)) 5398 return true; 5399 } else { 5400 if (ParseValue(ArgTy, V, PFS)) 5401 return true; 5402 } 5403 Args.push_back(V); 5404 } 5405 5406 Lex.Lex(); // Lex the ']'. 5407 return false; 5408 } 5409 5410 /// ParseCleanupRet 5411 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5412 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5413 Value *CleanupPad = nullptr; 5414 5415 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5416 return true; 5417 5418 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5419 return true; 5420 5421 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5422 return true; 5423 5424 BasicBlock *UnwindBB = nullptr; 5425 if (Lex.getKind() == lltok::kw_to) { 5426 Lex.Lex(); 5427 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5428 return true; 5429 } else { 5430 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5431 return true; 5432 } 5433 } 5434 5435 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5436 return false; 5437 } 5438 5439 /// ParseCatchRet 5440 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5441 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5442 Value *CatchPad = nullptr; 5443 5444 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5445 return true; 5446 5447 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5448 return true; 5449 5450 BasicBlock *BB; 5451 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5452 ParseTypeAndBasicBlock(BB, PFS)) 5453 return true; 5454 5455 Inst = CatchReturnInst::Create(CatchPad, BB); 5456 return false; 5457 } 5458 5459 /// ParseCatchSwitch 5460 /// ::= 'catchswitch' within Parent 5461 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5462 Value *ParentPad; 5463 LocTy BBLoc; 5464 5465 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5466 return true; 5467 5468 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5469 Lex.getKind() != lltok::LocalVarID) 5470 return TokError("expected scope value for catchswitch"); 5471 5472 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5473 return true; 5474 5475 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5476 return true; 5477 5478 SmallVector<BasicBlock *, 32> Table; 5479 do { 5480 BasicBlock *DestBB; 5481 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5482 return true; 5483 Table.push_back(DestBB); 5484 } while (EatIfPresent(lltok::comma)); 5485 5486 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5487 return true; 5488 5489 if (ParseToken(lltok::kw_unwind, 5490 "expected 'unwind' after catchswitch scope")) 5491 return true; 5492 5493 BasicBlock *UnwindBB = nullptr; 5494 if (EatIfPresent(lltok::kw_to)) { 5495 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5496 return true; 5497 } else { 5498 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5499 return true; 5500 } 5501 5502 auto *CatchSwitch = 5503 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5504 for (BasicBlock *DestBB : Table) 5505 CatchSwitch->addHandler(DestBB); 5506 Inst = CatchSwitch; 5507 return false; 5508 } 5509 5510 /// ParseCatchPad 5511 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5512 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5513 Value *CatchSwitch = nullptr; 5514 5515 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5516 return true; 5517 5518 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5519 return TokError("expected scope value for catchpad"); 5520 5521 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5522 return true; 5523 5524 SmallVector<Value *, 8> Args; 5525 if (ParseExceptionArgs(Args, PFS)) 5526 return true; 5527 5528 Inst = CatchPadInst::Create(CatchSwitch, Args); 5529 return false; 5530 } 5531 5532 /// ParseCleanupPad 5533 /// ::= 'cleanuppad' within Parent ParamList 5534 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5535 Value *ParentPad = nullptr; 5536 5537 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5538 return true; 5539 5540 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5541 Lex.getKind() != lltok::LocalVarID) 5542 return TokError("expected scope value for cleanuppad"); 5543 5544 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5545 return true; 5546 5547 SmallVector<Value *, 8> Args; 5548 if (ParseExceptionArgs(Args, PFS)) 5549 return true; 5550 5551 Inst = CleanupPadInst::Create(ParentPad, Args); 5552 return false; 5553 } 5554 5555 //===----------------------------------------------------------------------===// 5556 // Binary Operators. 5557 //===----------------------------------------------------------------------===// 5558 5559 /// ParseArithmetic 5560 /// ::= ArithmeticOps TypeAndValue ',' Value 5561 /// 5562 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5563 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5564 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5565 unsigned Opc, unsigned OperandType) { 5566 LocTy Loc; Value *LHS, *RHS; 5567 if (ParseTypeAndValue(LHS, Loc, PFS) || 5568 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5569 ParseValue(LHS->getType(), RHS, PFS)) 5570 return true; 5571 5572 bool Valid; 5573 switch (OperandType) { 5574 default: llvm_unreachable("Unknown operand type!"); 5575 case 0: // int or FP. 5576 Valid = LHS->getType()->isIntOrIntVectorTy() || 5577 LHS->getType()->isFPOrFPVectorTy(); 5578 break; 5579 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5580 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5581 } 5582 5583 if (!Valid) 5584 return Error(Loc, "invalid operand type for instruction"); 5585 5586 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5587 return false; 5588 } 5589 5590 /// ParseLogical 5591 /// ::= ArithmeticOps TypeAndValue ',' Value { 5592 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5593 unsigned Opc) { 5594 LocTy Loc; Value *LHS, *RHS; 5595 if (ParseTypeAndValue(LHS, Loc, PFS) || 5596 ParseToken(lltok::comma, "expected ',' in logical operation") || 5597 ParseValue(LHS->getType(), RHS, PFS)) 5598 return true; 5599 5600 if (!LHS->getType()->isIntOrIntVectorTy()) 5601 return Error(Loc,"instruction requires integer or integer vector operands"); 5602 5603 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5604 return false; 5605 } 5606 5607 /// ParseCompare 5608 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5609 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5610 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5611 unsigned Opc) { 5612 // Parse the integer/fp comparison predicate. 5613 LocTy Loc; 5614 unsigned Pred; 5615 Value *LHS, *RHS; 5616 if (ParseCmpPredicate(Pred, Opc) || 5617 ParseTypeAndValue(LHS, Loc, PFS) || 5618 ParseToken(lltok::comma, "expected ',' after compare value") || 5619 ParseValue(LHS->getType(), RHS, PFS)) 5620 return true; 5621 5622 if (Opc == Instruction::FCmp) { 5623 if (!LHS->getType()->isFPOrFPVectorTy()) 5624 return Error(Loc, "fcmp requires floating point operands"); 5625 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5626 } else { 5627 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5628 if (!LHS->getType()->isIntOrIntVectorTy() && 5629 !LHS->getType()->getScalarType()->isPointerTy()) 5630 return Error(Loc, "icmp requires integer operands"); 5631 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5632 } 5633 return false; 5634 } 5635 5636 //===----------------------------------------------------------------------===// 5637 // Other Instructions. 5638 //===----------------------------------------------------------------------===// 5639 5640 5641 /// ParseCast 5642 /// ::= CastOpc TypeAndValue 'to' Type 5643 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5644 unsigned Opc) { 5645 LocTy Loc; 5646 Value *Op; 5647 Type *DestTy = nullptr; 5648 if (ParseTypeAndValue(Op, Loc, PFS) || 5649 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5650 ParseType(DestTy)) 5651 return true; 5652 5653 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5654 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5655 return Error(Loc, "invalid cast opcode for cast from '" + 5656 getTypeString(Op->getType()) + "' to '" + 5657 getTypeString(DestTy) + "'"); 5658 } 5659 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5660 return false; 5661 } 5662 5663 /// ParseSelect 5664 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5665 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5666 LocTy Loc; 5667 Value *Op0, *Op1, *Op2; 5668 if (ParseTypeAndValue(Op0, Loc, PFS) || 5669 ParseToken(lltok::comma, "expected ',' after select condition") || 5670 ParseTypeAndValue(Op1, PFS) || 5671 ParseToken(lltok::comma, "expected ',' after select value") || 5672 ParseTypeAndValue(Op2, PFS)) 5673 return true; 5674 5675 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5676 return Error(Loc, Reason); 5677 5678 Inst = SelectInst::Create(Op0, Op1, Op2); 5679 return false; 5680 } 5681 5682 /// ParseVA_Arg 5683 /// ::= 'va_arg' TypeAndValue ',' Type 5684 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5685 Value *Op; 5686 Type *EltTy = nullptr; 5687 LocTy TypeLoc; 5688 if (ParseTypeAndValue(Op, PFS) || 5689 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5690 ParseType(EltTy, TypeLoc)) 5691 return true; 5692 5693 if (!EltTy->isFirstClassType()) 5694 return Error(TypeLoc, "va_arg requires operand with first class type"); 5695 5696 Inst = new VAArgInst(Op, EltTy); 5697 return false; 5698 } 5699 5700 /// ParseExtractElement 5701 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5702 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5703 LocTy Loc; 5704 Value *Op0, *Op1; 5705 if (ParseTypeAndValue(Op0, Loc, PFS) || 5706 ParseToken(lltok::comma, "expected ',' after extract value") || 5707 ParseTypeAndValue(Op1, PFS)) 5708 return true; 5709 5710 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5711 return Error(Loc, "invalid extractelement operands"); 5712 5713 Inst = ExtractElementInst::Create(Op0, Op1); 5714 return false; 5715 } 5716 5717 /// ParseInsertElement 5718 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5719 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5720 LocTy Loc; 5721 Value *Op0, *Op1, *Op2; 5722 if (ParseTypeAndValue(Op0, Loc, PFS) || 5723 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5724 ParseTypeAndValue(Op1, PFS) || 5725 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5726 ParseTypeAndValue(Op2, PFS)) 5727 return true; 5728 5729 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5730 return Error(Loc, "invalid insertelement operands"); 5731 5732 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5733 return false; 5734 } 5735 5736 /// ParseShuffleVector 5737 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5738 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5739 LocTy Loc; 5740 Value *Op0, *Op1, *Op2; 5741 if (ParseTypeAndValue(Op0, Loc, PFS) || 5742 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5743 ParseTypeAndValue(Op1, PFS) || 5744 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5745 ParseTypeAndValue(Op2, PFS)) 5746 return true; 5747 5748 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5749 return Error(Loc, "invalid shufflevector operands"); 5750 5751 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5752 return false; 5753 } 5754 5755 /// ParsePHI 5756 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5757 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5758 Type *Ty = nullptr; LocTy TypeLoc; 5759 Value *Op0, *Op1; 5760 5761 if (ParseType(Ty, TypeLoc) || 5762 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5763 ParseValue(Ty, Op0, PFS) || 5764 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5765 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5766 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5767 return true; 5768 5769 bool AteExtraComma = false; 5770 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5771 5772 while (true) { 5773 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5774 5775 if (!EatIfPresent(lltok::comma)) 5776 break; 5777 5778 if (Lex.getKind() == lltok::MetadataVar) { 5779 AteExtraComma = true; 5780 break; 5781 } 5782 5783 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5784 ParseValue(Ty, Op0, PFS) || 5785 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5786 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5787 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5788 return true; 5789 } 5790 5791 if (!Ty->isFirstClassType()) 5792 return Error(TypeLoc, "phi node must have first class type"); 5793 5794 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5795 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5796 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5797 Inst = PN; 5798 return AteExtraComma ? InstExtraComma : InstNormal; 5799 } 5800 5801 /// ParseLandingPad 5802 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5803 /// Clause 5804 /// ::= 'catch' TypeAndValue 5805 /// ::= 'filter' 5806 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5807 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5808 Type *Ty = nullptr; LocTy TyLoc; 5809 5810 if (ParseType(Ty, TyLoc)) 5811 return true; 5812 5813 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5814 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5815 5816 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5817 LandingPadInst::ClauseType CT; 5818 if (EatIfPresent(lltok::kw_catch)) 5819 CT = LandingPadInst::Catch; 5820 else if (EatIfPresent(lltok::kw_filter)) 5821 CT = LandingPadInst::Filter; 5822 else 5823 return TokError("expected 'catch' or 'filter' clause type"); 5824 5825 Value *V; 5826 LocTy VLoc; 5827 if (ParseTypeAndValue(V, VLoc, PFS)) 5828 return true; 5829 5830 // A 'catch' type expects a non-array constant. A filter clause expects an 5831 // array constant. 5832 if (CT == LandingPadInst::Catch) { 5833 if (isa<ArrayType>(V->getType())) 5834 Error(VLoc, "'catch' clause has an invalid type"); 5835 } else { 5836 if (!isa<ArrayType>(V->getType())) 5837 Error(VLoc, "'filter' clause has an invalid type"); 5838 } 5839 5840 Constant *CV = dyn_cast<Constant>(V); 5841 if (!CV) 5842 return Error(VLoc, "clause argument must be a constant"); 5843 LP->addClause(CV); 5844 } 5845 5846 Inst = LP.release(); 5847 return false; 5848 } 5849 5850 /// ParseCall 5851 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5852 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5853 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5854 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5855 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5856 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5857 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5858 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5859 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5860 CallInst::TailCallKind TCK) { 5861 AttrBuilder RetAttrs, FnAttrs; 5862 std::vector<unsigned> FwdRefAttrGrps; 5863 LocTy BuiltinLoc; 5864 unsigned CC; 5865 Type *RetType = nullptr; 5866 LocTy RetTypeLoc; 5867 ValID CalleeID; 5868 SmallVector<ParamInfo, 16> ArgList; 5869 SmallVector<OperandBundleDef, 2> BundleList; 5870 LocTy CallLoc = Lex.getLoc(); 5871 5872 if (TCK != CallInst::TCK_None && 5873 ParseToken(lltok::kw_call, 5874 "expected 'tail call', 'musttail call', or 'notail call'")) 5875 return true; 5876 5877 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5878 5879 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5880 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5881 ParseValID(CalleeID) || 5882 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5883 PFS.getFunction().isVarArg()) || 5884 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5885 ParseOptionalOperandBundles(BundleList, PFS)) 5886 return true; 5887 5888 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5889 return Error(CallLoc, "fast-math-flags specified for call without " 5890 "floating-point scalar or vector return type"); 5891 5892 // If RetType is a non-function pointer type, then this is the short syntax 5893 // for the call, which means that RetType is just the return type. Infer the 5894 // rest of the function argument types from the arguments that are present. 5895 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5896 if (!Ty) { 5897 // Pull out the types of all of the arguments... 5898 std::vector<Type*> ParamTypes; 5899 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5900 ParamTypes.push_back(ArgList[i].V->getType()); 5901 5902 if (!FunctionType::isValidReturnType(RetType)) 5903 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5904 5905 Ty = FunctionType::get(RetType, ParamTypes, false); 5906 } 5907 5908 CalleeID.FTy = Ty; 5909 5910 // Look up the callee. 5911 Value *Callee; 5912 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5913 return true; 5914 5915 // Set up the Attribute for the function. 5916 SmallVector<AttributeSet, 8> Attrs; 5917 if (RetAttrs.hasAttributes()) 5918 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5919 AttributeSet::ReturnIndex, 5920 RetAttrs)); 5921 5922 SmallVector<Value*, 8> Args; 5923 5924 // Loop through FunctionType's arguments and ensure they are specified 5925 // correctly. Also, gather any parameter attributes. 5926 FunctionType::param_iterator I = Ty->param_begin(); 5927 FunctionType::param_iterator E = Ty->param_end(); 5928 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5929 Type *ExpectedTy = nullptr; 5930 if (I != E) { 5931 ExpectedTy = *I++; 5932 } else if (!Ty->isVarArg()) { 5933 return Error(ArgList[i].Loc, "too many arguments specified"); 5934 } 5935 5936 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5937 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5938 getTypeString(ExpectedTy) + "'"); 5939 Args.push_back(ArgList[i].V); 5940 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5941 AttrBuilder B(ArgList[i].Attrs, i + 1); 5942 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5943 } 5944 } 5945 5946 if (I != E) 5947 return Error(CallLoc, "not enough parameters specified for call"); 5948 5949 if (FnAttrs.hasAttributes()) { 5950 if (FnAttrs.hasAlignmentAttr()) 5951 return Error(CallLoc, "call instructions may not have an alignment"); 5952 5953 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5954 AttributeSet::FunctionIndex, 5955 FnAttrs)); 5956 } 5957 5958 // Finish off the Attribute and check them 5959 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5960 5961 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5962 CI->setTailCallKind(TCK); 5963 CI->setCallingConv(CC); 5964 if (FMF.any()) 5965 CI->setFastMathFlags(FMF); 5966 CI->setAttributes(PAL); 5967 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5968 Inst = CI; 5969 return false; 5970 } 5971 5972 //===----------------------------------------------------------------------===// 5973 // Memory Instructions. 5974 //===----------------------------------------------------------------------===// 5975 5976 /// ParseAlloc 5977 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 5978 /// (',' 'align' i32)? 5979 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5980 Value *Size = nullptr; 5981 LocTy SizeLoc, TyLoc; 5982 unsigned Alignment = 0; 5983 Type *Ty = nullptr; 5984 5985 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5986 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 5987 5988 if (ParseType(Ty, TyLoc)) return true; 5989 5990 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5991 return Error(TyLoc, "invalid type for alloca"); 5992 5993 bool AteExtraComma = false; 5994 if (EatIfPresent(lltok::comma)) { 5995 if (Lex.getKind() == lltok::kw_align) { 5996 if (ParseOptionalAlignment(Alignment)) return true; 5997 } else if (Lex.getKind() == lltok::MetadataVar) { 5998 AteExtraComma = true; 5999 } else { 6000 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 6001 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6002 return true; 6003 } 6004 } 6005 6006 if (Size && !Size->getType()->isIntegerTy()) 6007 return Error(SizeLoc, "element count must have integer type"); 6008 6009 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 6010 AI->setUsedWithInAlloca(IsInAlloca); 6011 AI->setSwiftError(IsSwiftError); 6012 Inst = AI; 6013 return AteExtraComma ? InstExtraComma : InstNormal; 6014 } 6015 6016 /// ParseLoad 6017 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6018 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6019 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6020 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6021 Value *Val; LocTy Loc; 6022 unsigned Alignment = 0; 6023 bool AteExtraComma = false; 6024 bool isAtomic = false; 6025 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6026 SynchronizationScope Scope = CrossThread; 6027 6028 if (Lex.getKind() == lltok::kw_atomic) { 6029 isAtomic = true; 6030 Lex.Lex(); 6031 } 6032 6033 bool isVolatile = false; 6034 if (Lex.getKind() == lltok::kw_volatile) { 6035 isVolatile = true; 6036 Lex.Lex(); 6037 } 6038 6039 Type *Ty; 6040 LocTy ExplicitTypeLoc = Lex.getLoc(); 6041 if (ParseType(Ty) || 6042 ParseToken(lltok::comma, "expected comma after load's type") || 6043 ParseTypeAndValue(Val, Loc, PFS) || 6044 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6045 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6046 return true; 6047 6048 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6049 return Error(Loc, "load operand must be a pointer to a first class type"); 6050 if (isAtomic && !Alignment) 6051 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6052 if (Ordering == AtomicOrdering::Release || 6053 Ordering == AtomicOrdering::AcquireRelease) 6054 return Error(Loc, "atomic load cannot use Release ordering"); 6055 6056 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6057 return Error(ExplicitTypeLoc, 6058 "explicit pointee type doesn't match operand's pointee type"); 6059 6060 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 6061 return AteExtraComma ? InstExtraComma : InstNormal; 6062 } 6063 6064 /// ParseStore 6065 6066 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6067 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6068 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6069 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6070 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6071 unsigned Alignment = 0; 6072 bool AteExtraComma = false; 6073 bool isAtomic = false; 6074 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6075 SynchronizationScope Scope = CrossThread; 6076 6077 if (Lex.getKind() == lltok::kw_atomic) { 6078 isAtomic = true; 6079 Lex.Lex(); 6080 } 6081 6082 bool isVolatile = false; 6083 if (Lex.getKind() == lltok::kw_volatile) { 6084 isVolatile = true; 6085 Lex.Lex(); 6086 } 6087 6088 if (ParseTypeAndValue(Val, Loc, PFS) || 6089 ParseToken(lltok::comma, "expected ',' after store operand") || 6090 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6091 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6092 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6093 return true; 6094 6095 if (!Ptr->getType()->isPointerTy()) 6096 return Error(PtrLoc, "store operand must be a pointer"); 6097 if (!Val->getType()->isFirstClassType()) 6098 return Error(Loc, "store operand must be a first class value"); 6099 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6100 return Error(Loc, "stored value and pointer type do not match"); 6101 if (isAtomic && !Alignment) 6102 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6103 if (Ordering == AtomicOrdering::Acquire || 6104 Ordering == AtomicOrdering::AcquireRelease) 6105 return Error(Loc, "atomic store cannot use Acquire ordering"); 6106 6107 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6108 return AteExtraComma ? InstExtraComma : InstNormal; 6109 } 6110 6111 /// ParseCmpXchg 6112 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6113 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6114 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6115 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6116 bool AteExtraComma = false; 6117 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6118 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6119 SynchronizationScope Scope = CrossThread; 6120 bool isVolatile = false; 6121 bool isWeak = false; 6122 6123 if (EatIfPresent(lltok::kw_weak)) 6124 isWeak = true; 6125 6126 if (EatIfPresent(lltok::kw_volatile)) 6127 isVolatile = true; 6128 6129 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6130 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6131 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6132 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6133 ParseTypeAndValue(New, NewLoc, PFS) || 6134 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6135 ParseOrdering(FailureOrdering)) 6136 return true; 6137 6138 if (SuccessOrdering == AtomicOrdering::Unordered || 6139 FailureOrdering == AtomicOrdering::Unordered) 6140 return TokError("cmpxchg cannot be unordered"); 6141 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6142 return TokError("cmpxchg failure argument shall be no stronger than the " 6143 "success argument"); 6144 if (FailureOrdering == AtomicOrdering::Release || 6145 FailureOrdering == AtomicOrdering::AcquireRelease) 6146 return TokError( 6147 "cmpxchg failure ordering cannot include release semantics"); 6148 if (!Ptr->getType()->isPointerTy()) 6149 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6150 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6151 return Error(CmpLoc, "compare value and pointer type do not match"); 6152 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6153 return Error(NewLoc, "new value and pointer type do not match"); 6154 if (!New->getType()->isFirstClassType()) 6155 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6156 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6157 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6158 CXI->setVolatile(isVolatile); 6159 CXI->setWeak(isWeak); 6160 Inst = CXI; 6161 return AteExtraComma ? InstExtraComma : InstNormal; 6162 } 6163 6164 /// ParseAtomicRMW 6165 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6166 /// 'singlethread'? AtomicOrdering 6167 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6168 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6169 bool AteExtraComma = false; 6170 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6171 SynchronizationScope Scope = CrossThread; 6172 bool isVolatile = false; 6173 AtomicRMWInst::BinOp Operation; 6174 6175 if (EatIfPresent(lltok::kw_volatile)) 6176 isVolatile = true; 6177 6178 switch (Lex.getKind()) { 6179 default: return TokError("expected binary operation in atomicrmw"); 6180 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6181 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6182 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6183 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6184 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6185 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6186 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6187 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6188 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6189 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6190 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6191 } 6192 Lex.Lex(); // Eat the operation. 6193 6194 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6195 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6196 ParseTypeAndValue(Val, ValLoc, PFS) || 6197 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6198 return true; 6199 6200 if (Ordering == AtomicOrdering::Unordered) 6201 return TokError("atomicrmw cannot be unordered"); 6202 if (!Ptr->getType()->isPointerTy()) 6203 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6204 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6205 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6206 if (!Val->getType()->isIntegerTy()) 6207 return Error(ValLoc, "atomicrmw operand must be an integer"); 6208 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6209 if (Size < 8 || (Size & (Size - 1))) 6210 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6211 " integer"); 6212 6213 AtomicRMWInst *RMWI = 6214 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6215 RMWI->setVolatile(isVolatile); 6216 Inst = RMWI; 6217 return AteExtraComma ? InstExtraComma : InstNormal; 6218 } 6219 6220 /// ParseFence 6221 /// ::= 'fence' 'singlethread'? AtomicOrdering 6222 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6223 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6224 SynchronizationScope Scope = CrossThread; 6225 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6226 return true; 6227 6228 if (Ordering == AtomicOrdering::Unordered) 6229 return TokError("fence cannot be unordered"); 6230 if (Ordering == AtomicOrdering::Monotonic) 6231 return TokError("fence cannot be monotonic"); 6232 6233 Inst = new FenceInst(Context, Ordering, Scope); 6234 return InstNormal; 6235 } 6236 6237 /// ParseGetElementPtr 6238 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6239 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6240 Value *Ptr = nullptr; 6241 Value *Val = nullptr; 6242 LocTy Loc, EltLoc; 6243 6244 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6245 6246 Type *Ty = nullptr; 6247 LocTy ExplicitTypeLoc = Lex.getLoc(); 6248 if (ParseType(Ty) || 6249 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6250 ParseTypeAndValue(Ptr, Loc, PFS)) 6251 return true; 6252 6253 Type *BaseType = Ptr->getType(); 6254 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6255 if (!BasePointerType) 6256 return Error(Loc, "base of getelementptr must be a pointer"); 6257 6258 if (Ty != BasePointerType->getElementType()) 6259 return Error(ExplicitTypeLoc, 6260 "explicit pointee type doesn't match operand's pointee type"); 6261 6262 SmallVector<Value*, 16> Indices; 6263 bool AteExtraComma = false; 6264 // GEP returns a vector of pointers if at least one of parameters is a vector. 6265 // All vector parameters should have the same vector width. 6266 unsigned GEPWidth = BaseType->isVectorTy() ? 6267 BaseType->getVectorNumElements() : 0; 6268 6269 while (EatIfPresent(lltok::comma)) { 6270 if (Lex.getKind() == lltok::MetadataVar) { 6271 AteExtraComma = true; 6272 break; 6273 } 6274 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6275 if (!Val->getType()->getScalarType()->isIntegerTy()) 6276 return Error(EltLoc, "getelementptr index must be an integer"); 6277 6278 if (Val->getType()->isVectorTy()) { 6279 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6280 if (GEPWidth && GEPWidth != ValNumEl) 6281 return Error(EltLoc, 6282 "getelementptr vector index has a wrong number of elements"); 6283 GEPWidth = ValNumEl; 6284 } 6285 Indices.push_back(Val); 6286 } 6287 6288 SmallPtrSet<Type*, 4> Visited; 6289 if (!Indices.empty() && !Ty->isSized(&Visited)) 6290 return Error(Loc, "base element of getelementptr must be sized"); 6291 6292 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6293 return Error(Loc, "invalid getelementptr indices"); 6294 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6295 if (InBounds) 6296 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6297 return AteExtraComma ? InstExtraComma : InstNormal; 6298 } 6299 6300 /// ParseExtractValue 6301 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6302 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6303 Value *Val; LocTy Loc; 6304 SmallVector<unsigned, 4> Indices; 6305 bool AteExtraComma; 6306 if (ParseTypeAndValue(Val, Loc, PFS) || 6307 ParseIndexList(Indices, AteExtraComma)) 6308 return true; 6309 6310 if (!Val->getType()->isAggregateType()) 6311 return Error(Loc, "extractvalue operand must be aggregate type"); 6312 6313 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6314 return Error(Loc, "invalid indices for extractvalue"); 6315 Inst = ExtractValueInst::Create(Val, Indices); 6316 return AteExtraComma ? InstExtraComma : InstNormal; 6317 } 6318 6319 /// ParseInsertValue 6320 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6321 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6322 Value *Val0, *Val1; LocTy Loc0, Loc1; 6323 SmallVector<unsigned, 4> Indices; 6324 bool AteExtraComma; 6325 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6326 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6327 ParseTypeAndValue(Val1, Loc1, PFS) || 6328 ParseIndexList(Indices, AteExtraComma)) 6329 return true; 6330 6331 if (!Val0->getType()->isAggregateType()) 6332 return Error(Loc0, "insertvalue operand must be aggregate type"); 6333 6334 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6335 if (!IndexedType) 6336 return Error(Loc0, "invalid indices for insertvalue"); 6337 if (IndexedType != Val1->getType()) 6338 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6339 getTypeString(Val1->getType()) + "' instead of '" + 6340 getTypeString(IndexedType) + "'"); 6341 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6342 return AteExtraComma ? InstExtraComma : InstNormal; 6343 } 6344 6345 //===----------------------------------------------------------------------===// 6346 // Embedded metadata. 6347 //===----------------------------------------------------------------------===// 6348 6349 /// ParseMDNodeVector 6350 /// ::= { Element (',' Element)* } 6351 /// Element 6352 /// ::= 'null' | TypeAndValue 6353 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6354 if (ParseToken(lltok::lbrace, "expected '{' here")) 6355 return true; 6356 6357 // Check for an empty list. 6358 if (EatIfPresent(lltok::rbrace)) 6359 return false; 6360 6361 do { 6362 // Null is a special case since it is typeless. 6363 if (EatIfPresent(lltok::kw_null)) { 6364 Elts.push_back(nullptr); 6365 continue; 6366 } 6367 6368 Metadata *MD; 6369 if (ParseMetadata(MD, nullptr)) 6370 return true; 6371 Elts.push_back(MD); 6372 } while (EatIfPresent(lltok::comma)); 6373 6374 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6375 } 6376 6377 //===----------------------------------------------------------------------===// 6378 // Use-list order directives. 6379 //===----------------------------------------------------------------------===// 6380 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6381 SMLoc Loc) { 6382 if (V->use_empty()) 6383 return Error(Loc, "value has no uses"); 6384 6385 unsigned NumUses = 0; 6386 SmallDenseMap<const Use *, unsigned, 16> Order; 6387 for (const Use &U : V->uses()) { 6388 if (++NumUses > Indexes.size()) 6389 break; 6390 Order[&U] = Indexes[NumUses - 1]; 6391 } 6392 if (NumUses < 2) 6393 return Error(Loc, "value only has one use"); 6394 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6395 return Error(Loc, "wrong number of indexes, expected " + 6396 Twine(std::distance(V->use_begin(), V->use_end()))); 6397 6398 V->sortUseList([&](const Use &L, const Use &R) { 6399 return Order.lookup(&L) < Order.lookup(&R); 6400 }); 6401 return false; 6402 } 6403 6404 /// ParseUseListOrderIndexes 6405 /// ::= '{' uint32 (',' uint32)+ '}' 6406 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6407 SMLoc Loc = Lex.getLoc(); 6408 if (ParseToken(lltok::lbrace, "expected '{' here")) 6409 return true; 6410 if (Lex.getKind() == lltok::rbrace) 6411 return Lex.Error("expected non-empty list of uselistorder indexes"); 6412 6413 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6414 // indexes should be distinct numbers in the range [0, size-1], and should 6415 // not be in order. 6416 unsigned Offset = 0; 6417 unsigned Max = 0; 6418 bool IsOrdered = true; 6419 assert(Indexes.empty() && "Expected empty order vector"); 6420 do { 6421 unsigned Index; 6422 if (ParseUInt32(Index)) 6423 return true; 6424 6425 // Update consistency checks. 6426 Offset += Index - Indexes.size(); 6427 Max = std::max(Max, Index); 6428 IsOrdered &= Index == Indexes.size(); 6429 6430 Indexes.push_back(Index); 6431 } while (EatIfPresent(lltok::comma)); 6432 6433 if (ParseToken(lltok::rbrace, "expected '}' here")) 6434 return true; 6435 6436 if (Indexes.size() < 2) 6437 return Error(Loc, "expected >= 2 uselistorder indexes"); 6438 if (Offset != 0 || Max >= Indexes.size()) 6439 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6440 if (IsOrdered) 6441 return Error(Loc, "expected uselistorder indexes to change the order"); 6442 6443 return false; 6444 } 6445 6446 /// ParseUseListOrder 6447 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6448 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6449 SMLoc Loc = Lex.getLoc(); 6450 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6451 return true; 6452 6453 Value *V; 6454 SmallVector<unsigned, 16> Indexes; 6455 if (ParseTypeAndValue(V, PFS) || 6456 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6457 ParseUseListOrderIndexes(Indexes)) 6458 return true; 6459 6460 return sortUseListOrder(V, Indexes, Loc); 6461 } 6462 6463 /// ParseUseListOrderBB 6464 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6465 bool LLParser::ParseUseListOrderBB() { 6466 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6467 SMLoc Loc = Lex.getLoc(); 6468 Lex.Lex(); 6469 6470 ValID Fn, Label; 6471 SmallVector<unsigned, 16> Indexes; 6472 if (ParseValID(Fn) || 6473 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6474 ParseValID(Label) || 6475 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6476 ParseUseListOrderIndexes(Indexes)) 6477 return true; 6478 6479 // Check the function. 6480 GlobalValue *GV; 6481 if (Fn.Kind == ValID::t_GlobalName) 6482 GV = M->getNamedValue(Fn.StrVal); 6483 else if (Fn.Kind == ValID::t_GlobalID) 6484 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6485 else 6486 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6487 if (!GV) 6488 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6489 auto *F = dyn_cast<Function>(GV); 6490 if (!F) 6491 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6492 if (F->isDeclaration()) 6493 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6494 6495 // Check the basic block. 6496 if (Label.Kind == ValID::t_LocalID) 6497 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6498 if (Label.Kind != ValID::t_LocalName) 6499 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6500 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6501 if (!V) 6502 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6503 if (!isa<BasicBlock>(V)) 6504 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6505 6506 return sortUseListOrder(V, Indexes, Loc); 6507 } 6508