1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Dwarf.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (std::map<Value*, std::vector<unsigned> >::iterator
125          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
126          I != E; ++I) {
127     Value *V = I->first;
128     std::vector<unsigned> &Vec = I->second;
129     AttrBuilder B;
130 
131     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
132          VI != VE; ++VI)
133       B.merge(NumberedAttrBuilders[*VI]);
134 
135     if (Function *Fn = dyn_cast<Function>(V)) {
136       AttributeSet AS = Fn->getAttributes();
137       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
138       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
139                                AS.getFnAttributes());
140 
141       FnAttrs.merge(B);
142 
143       // If the alignment was parsed as an attribute, move to the alignment
144       // field.
145       if (FnAttrs.hasAlignmentAttr()) {
146         Fn->setAlignment(FnAttrs.getAlignment());
147         FnAttrs.removeAttribute(Attribute::Alignment);
148       }
149 
150       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
151                             AttributeSet::get(Context,
152                                               AttributeSet::FunctionIndex,
153                                               FnAttrs));
154       Fn->setAttributes(AS);
155     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
156       AttributeSet AS = CI->getAttributes();
157       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
158       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
159                                AS.getFnAttributes());
160       FnAttrs.merge(B);
161       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
162                             AttributeSet::get(Context,
163                                               AttributeSet::FunctionIndex,
164                                               FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeSet AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
169       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
170                                AS.getFnAttributes());
171       FnAttrs.merge(B);
172       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
173                             AttributeSet::get(Context,
174                                               AttributeSet::FunctionIndex,
175                                               FnAttrs));
176       II->setAttributes(AS);
177     } else {
178       llvm_unreachable("invalid object with forward attribute group reference");
179     }
180   }
181 
182   // If there are entries in ForwardRefBlockAddresses at this point, the
183   // function was never defined.
184   if (!ForwardRefBlockAddresses.empty())
185     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
186                  "expected function name in blockaddress");
187 
188   for (const auto &NT : NumberedTypes)
189     if (NT.second.second.isValid())
190       return Error(NT.second.second,
191                    "use of undefined type '%" + Twine(NT.first) + "'");
192 
193   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
194        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
195     if (I->second.second.isValid())
196       return Error(I->second.second,
197                    "use of undefined type named '" + I->getKey() + "'");
198 
199   if (!ForwardRefComdats.empty())
200     return Error(ForwardRefComdats.begin()->second,
201                  "use of undefined comdat '$" +
202                      ForwardRefComdats.begin()->first + "'");
203 
204   if (!ForwardRefVals.empty())
205     return Error(ForwardRefVals.begin()->second.second,
206                  "use of undefined value '@" + ForwardRefVals.begin()->first +
207                  "'");
208 
209   if (!ForwardRefValIDs.empty())
210     return Error(ForwardRefValIDs.begin()->second.second,
211                  "use of undefined value '@" +
212                  Twine(ForwardRefValIDs.begin()->first) + "'");
213 
214   if (!ForwardRefMDNodes.empty())
215     return Error(ForwardRefMDNodes.begin()->second.second,
216                  "use of undefined metadata '!" +
217                  Twine(ForwardRefMDNodes.begin()->first) + "'");
218 
219   // Resolve metadata cycles.
220   for (auto &N : NumberedMetadata) {
221     if (N.second && !N.second->isResolved())
222       N.second->resolveCycles();
223   }
224 
225   for (auto *Inst : InstsWithTBAATag) {
226     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
227     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
228     auto *UpgradedMD = UpgradeTBAANode(*MD);
229     if (MD != UpgradedMD)
230       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
231   }
232 
233   // Look for intrinsic functions and CallInst that need to be upgraded
234   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
235     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
236 
237   // Some types could be renamed during loading if several modules are
238   // loaded in the same LLVMContext (LTO scenario). In this case we should
239   // remangle intrinsics names as well.
240   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
241     Function *F = &*FI++;
242     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
243       F->replaceAllUsesWith(Remangled.getValue());
244       F->eraseFromParent();
245     }
246   }
247 
248   UpgradeDebugInfo(*M);
249 
250   UpgradeModuleFlags(*M);
251 
252   if (!Slots)
253     return false;
254   // Initialize the slot mapping.
255   // Because by this point we've parsed and validated everything, we can "steal"
256   // the mapping from LLParser as it doesn't need it anymore.
257   Slots->GlobalValues = std::move(NumberedVals);
258   Slots->MetadataNodes = std::move(NumberedMetadata);
259   for (const auto &I : NamedTypes)
260     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
261   for (const auto &I : NumberedTypes)
262     Slots->Types.insert(std::make_pair(I.first, I.second.first));
263 
264   return false;
265 }
266 
267 //===----------------------------------------------------------------------===//
268 // Top-Level Entities
269 //===----------------------------------------------------------------------===//
270 
271 bool LLParser::ParseTopLevelEntities() {
272   while (true) {
273     switch (Lex.getKind()) {
274     default:         return TokError("expected top-level entity");
275     case lltok::Eof: return false;
276     case lltok::kw_declare: if (ParseDeclare()) return true; break;
277     case lltok::kw_define:  if (ParseDefine()) return true; break;
278     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
279     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
280     case lltok::kw_source_filename:
281       if (ParseSourceFileName())
282         return true;
283       break;
284     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
285     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
286     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
287     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
288     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
289     case lltok::ComdatVar:  if (parseComdat()) return true; break;
290     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
291     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
292     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
293     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
294     case lltok::kw_uselistorder_bb:
295       if (ParseUseListOrderBB())
296         return true;
297       break;
298     }
299   }
300 }
301 
302 /// toplevelentity
303 ///   ::= 'module' 'asm' STRINGCONSTANT
304 bool LLParser::ParseModuleAsm() {
305   assert(Lex.getKind() == lltok::kw_module);
306   Lex.Lex();
307 
308   std::string AsmStr;
309   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
310       ParseStringConstant(AsmStr)) return true;
311 
312   M->appendModuleInlineAsm(AsmStr);
313   return false;
314 }
315 
316 /// toplevelentity
317 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
318 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
319 bool LLParser::ParseTargetDefinition() {
320   assert(Lex.getKind() == lltok::kw_target);
321   std::string Str;
322   switch (Lex.Lex()) {
323   default: return TokError("unknown target property");
324   case lltok::kw_triple:
325     Lex.Lex();
326     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
327         ParseStringConstant(Str))
328       return true;
329     M->setTargetTriple(Str);
330     return false;
331   case lltok::kw_datalayout:
332     Lex.Lex();
333     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
334         ParseStringConstant(Str))
335       return true;
336     M->setDataLayout(Str);
337     return false;
338   }
339 }
340 
341 /// toplevelentity
342 ///   ::= 'source_filename' '=' STRINGCONSTANT
343 bool LLParser::ParseSourceFileName() {
344   assert(Lex.getKind() == lltok::kw_source_filename);
345   std::string Str;
346   Lex.Lex();
347   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
348       ParseStringConstant(Str))
349     return true;
350   M->setSourceFileName(Str);
351   return false;
352 }
353 
354 /// toplevelentity
355 ///   ::= 'deplibs' '=' '[' ']'
356 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
357 /// FIXME: Remove in 4.0. Currently parse, but ignore.
358 bool LLParser::ParseDepLibs() {
359   assert(Lex.getKind() == lltok::kw_deplibs);
360   Lex.Lex();
361   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
362       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
363     return true;
364 
365   if (EatIfPresent(lltok::rsquare))
366     return false;
367 
368   do {
369     std::string Str;
370     if (ParseStringConstant(Str)) return true;
371   } while (EatIfPresent(lltok::comma));
372 
373   return ParseToken(lltok::rsquare, "expected ']' at end of list");
374 }
375 
376 /// ParseUnnamedType:
377 ///   ::= LocalVarID '=' 'type' type
378 bool LLParser::ParseUnnamedType() {
379   LocTy TypeLoc = Lex.getLoc();
380   unsigned TypeID = Lex.getUIntVal();
381   Lex.Lex(); // eat LocalVarID;
382 
383   if (ParseToken(lltok::equal, "expected '=' after name") ||
384       ParseToken(lltok::kw_type, "expected 'type' after '='"))
385     return true;
386 
387   Type *Result = nullptr;
388   if (ParseStructDefinition(TypeLoc, "",
389                             NumberedTypes[TypeID], Result)) return true;
390 
391   if (!isa<StructType>(Result)) {
392     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
393     if (Entry.first)
394       return Error(TypeLoc, "non-struct types may not be recursive");
395     Entry.first = Result;
396     Entry.second = SMLoc();
397   }
398 
399   return false;
400 }
401 
402 /// toplevelentity
403 ///   ::= LocalVar '=' 'type' type
404 bool LLParser::ParseNamedType() {
405   std::string Name = Lex.getStrVal();
406   LocTy NameLoc = Lex.getLoc();
407   Lex.Lex();  // eat LocalVar.
408 
409   if (ParseToken(lltok::equal, "expected '=' after name") ||
410       ParseToken(lltok::kw_type, "expected 'type' after name"))
411     return true;
412 
413   Type *Result = nullptr;
414   if (ParseStructDefinition(NameLoc, Name,
415                             NamedTypes[Name], Result)) return true;
416 
417   if (!isa<StructType>(Result)) {
418     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
419     if (Entry.first)
420       return Error(NameLoc, "non-struct types may not be recursive");
421     Entry.first = Result;
422     Entry.second = SMLoc();
423   }
424 
425   return false;
426 }
427 
428 /// toplevelentity
429 ///   ::= 'declare' FunctionHeader
430 bool LLParser::ParseDeclare() {
431   assert(Lex.getKind() == lltok::kw_declare);
432   Lex.Lex();
433 
434   std::vector<std::pair<unsigned, MDNode *>> MDs;
435   while (Lex.getKind() == lltok::MetadataVar) {
436     unsigned MDK;
437     MDNode *N;
438     if (ParseMetadataAttachment(MDK, N))
439       return true;
440     MDs.push_back({MDK, N});
441   }
442 
443   Function *F;
444   if (ParseFunctionHeader(F, false))
445     return true;
446   for (auto &MD : MDs)
447     F->addMetadata(MD.first, *MD.second);
448   return false;
449 }
450 
451 /// toplevelentity
452 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
453 bool LLParser::ParseDefine() {
454   assert(Lex.getKind() == lltok::kw_define);
455   Lex.Lex();
456 
457   Function *F;
458   return ParseFunctionHeader(F, true) ||
459          ParseOptionalFunctionMetadata(*F) ||
460          ParseFunctionBody(*F);
461 }
462 
463 /// ParseGlobalType
464 ///   ::= 'constant'
465 ///   ::= 'global'
466 bool LLParser::ParseGlobalType(bool &IsConstant) {
467   if (Lex.getKind() == lltok::kw_constant)
468     IsConstant = true;
469   else if (Lex.getKind() == lltok::kw_global)
470     IsConstant = false;
471   else {
472     IsConstant = false;
473     return TokError("expected 'global' or 'constant'");
474   }
475   Lex.Lex();
476   return false;
477 }
478 
479 bool LLParser::ParseOptionalUnnamedAddr(
480     GlobalVariable::UnnamedAddr &UnnamedAddr) {
481   if (EatIfPresent(lltok::kw_unnamed_addr))
482     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
483   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
484     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
485   else
486     UnnamedAddr = GlobalValue::UnnamedAddr::None;
487   return false;
488 }
489 
490 /// ParseUnnamedGlobal:
491 ///   OptionalVisibility (ALIAS | IFUNC) ...
492 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
493 ///                                                     ...   -> global variable
494 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
495 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
496 ///                                                     ...   -> global variable
497 bool LLParser::ParseUnnamedGlobal() {
498   unsigned VarID = NumberedVals.size();
499   std::string Name;
500   LocTy NameLoc = Lex.getLoc();
501 
502   // Handle the GlobalID form.
503   if (Lex.getKind() == lltok::GlobalID) {
504     if (Lex.getUIntVal() != VarID)
505       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
506                    Twine(VarID) + "'");
507     Lex.Lex(); // eat GlobalID;
508 
509     if (ParseToken(lltok::equal, "expected '=' after name"))
510       return true;
511   }
512 
513   bool HasLinkage;
514   unsigned Linkage, Visibility, DLLStorageClass;
515   GlobalVariable::ThreadLocalMode TLM;
516   GlobalVariable::UnnamedAddr UnnamedAddr;
517   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
518       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
519     return true;
520 
521   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
522     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
523                        DLLStorageClass, TLM, UnnamedAddr);
524 
525   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
526                              DLLStorageClass, TLM, UnnamedAddr);
527 }
528 
529 /// ParseNamedGlobal:
530 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
531 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
532 ///                                                     ...   -> global variable
533 bool LLParser::ParseNamedGlobal() {
534   assert(Lex.getKind() == lltok::GlobalVar);
535   LocTy NameLoc = Lex.getLoc();
536   std::string Name = Lex.getStrVal();
537   Lex.Lex();
538 
539   bool HasLinkage;
540   unsigned Linkage, Visibility, DLLStorageClass;
541   GlobalVariable::ThreadLocalMode TLM;
542   GlobalVariable::UnnamedAddr UnnamedAddr;
543   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
544       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
545       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
546     return true;
547 
548   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
549     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
550                        DLLStorageClass, TLM, UnnamedAddr);
551 
552   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
553                              DLLStorageClass, TLM, UnnamedAddr);
554 }
555 
556 bool LLParser::parseComdat() {
557   assert(Lex.getKind() == lltok::ComdatVar);
558   std::string Name = Lex.getStrVal();
559   LocTy NameLoc = Lex.getLoc();
560   Lex.Lex();
561 
562   if (ParseToken(lltok::equal, "expected '=' here"))
563     return true;
564 
565   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
566     return TokError("expected comdat type");
567 
568   Comdat::SelectionKind SK;
569   switch (Lex.getKind()) {
570   default:
571     return TokError("unknown selection kind");
572   case lltok::kw_any:
573     SK = Comdat::Any;
574     break;
575   case lltok::kw_exactmatch:
576     SK = Comdat::ExactMatch;
577     break;
578   case lltok::kw_largest:
579     SK = Comdat::Largest;
580     break;
581   case lltok::kw_noduplicates:
582     SK = Comdat::NoDuplicates;
583     break;
584   case lltok::kw_samesize:
585     SK = Comdat::SameSize;
586     break;
587   }
588   Lex.Lex();
589 
590   // See if the comdat was forward referenced, if so, use the comdat.
591   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
592   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
593   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
594     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
595 
596   Comdat *C;
597   if (I != ComdatSymTab.end())
598     C = &I->second;
599   else
600     C = M->getOrInsertComdat(Name);
601   C->setSelectionKind(SK);
602 
603   return false;
604 }
605 
606 // MDString:
607 //   ::= '!' STRINGCONSTANT
608 bool LLParser::ParseMDString(MDString *&Result) {
609   std::string Str;
610   if (ParseStringConstant(Str)) return true;
611   Result = MDString::get(Context, Str);
612   return false;
613 }
614 
615 // MDNode:
616 //   ::= '!' MDNodeNumber
617 bool LLParser::ParseMDNodeID(MDNode *&Result) {
618   // !{ ..., !42, ... }
619   LocTy IDLoc = Lex.getLoc();
620   unsigned MID = 0;
621   if (ParseUInt32(MID))
622     return true;
623 
624   // If not a forward reference, just return it now.
625   if (NumberedMetadata.count(MID)) {
626     Result = NumberedMetadata[MID];
627     return false;
628   }
629 
630   // Otherwise, create MDNode forward reference.
631   auto &FwdRef = ForwardRefMDNodes[MID];
632   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
633 
634   Result = FwdRef.first.get();
635   NumberedMetadata[MID].reset(Result);
636   return false;
637 }
638 
639 /// ParseNamedMetadata:
640 ///   !foo = !{ !1, !2 }
641 bool LLParser::ParseNamedMetadata() {
642   assert(Lex.getKind() == lltok::MetadataVar);
643   std::string Name = Lex.getStrVal();
644   Lex.Lex();
645 
646   if (ParseToken(lltok::equal, "expected '=' here") ||
647       ParseToken(lltok::exclaim, "Expected '!' here") ||
648       ParseToken(lltok::lbrace, "Expected '{' here"))
649     return true;
650 
651   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
652   if (Lex.getKind() != lltok::rbrace)
653     do {
654       if (ParseToken(lltok::exclaim, "Expected '!' here"))
655         return true;
656 
657       MDNode *N = nullptr;
658       if (ParseMDNodeID(N)) return true;
659       NMD->addOperand(N);
660     } while (EatIfPresent(lltok::comma));
661 
662   return ParseToken(lltok::rbrace, "expected end of metadata node");
663 }
664 
665 /// ParseStandaloneMetadata:
666 ///   !42 = !{...}
667 bool LLParser::ParseStandaloneMetadata() {
668   assert(Lex.getKind() == lltok::exclaim);
669   Lex.Lex();
670   unsigned MetadataID = 0;
671 
672   MDNode *Init;
673   if (ParseUInt32(MetadataID) ||
674       ParseToken(lltok::equal, "expected '=' here"))
675     return true;
676 
677   // Detect common error, from old metadata syntax.
678   if (Lex.getKind() == lltok::Type)
679     return TokError("unexpected type in metadata definition");
680 
681   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
682   if (Lex.getKind() == lltok::MetadataVar) {
683     if (ParseSpecializedMDNode(Init, IsDistinct))
684       return true;
685   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
686              ParseMDTuple(Init, IsDistinct))
687     return true;
688 
689   // See if this was forward referenced, if so, handle it.
690   auto FI = ForwardRefMDNodes.find(MetadataID);
691   if (FI != ForwardRefMDNodes.end()) {
692     FI->second.first->replaceAllUsesWith(Init);
693     ForwardRefMDNodes.erase(FI);
694 
695     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
696   } else {
697     if (NumberedMetadata.count(MetadataID))
698       return TokError("Metadata id is already used");
699     NumberedMetadata[MetadataID].reset(Init);
700   }
701 
702   return false;
703 }
704 
705 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
706   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
707          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
708 }
709 
710 /// parseIndirectSymbol:
711 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
712 ///                     OptionalDLLStorageClass OptionalThreadLocal
713 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
714 ///
715 /// IndirectSymbol
716 ///   ::= TypeAndValue
717 ///
718 /// Everything through OptionalUnnamedAddr has already been parsed.
719 ///
720 bool LLParser::parseIndirectSymbol(
721     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
722     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
723     GlobalVariable::UnnamedAddr UnnamedAddr) {
724   bool IsAlias;
725   if (Lex.getKind() == lltok::kw_alias)
726     IsAlias = true;
727   else if (Lex.getKind() == lltok::kw_ifunc)
728     IsAlias = false;
729   else
730     llvm_unreachable("Not an alias or ifunc!");
731   Lex.Lex();
732 
733   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
734 
735   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
736     return Error(NameLoc, "invalid linkage type for alias");
737 
738   if (!isValidVisibilityForLinkage(Visibility, L))
739     return Error(NameLoc,
740                  "symbol with local linkage must have default visibility");
741 
742   Type *Ty;
743   LocTy ExplicitTypeLoc = Lex.getLoc();
744   if (ParseType(Ty) ||
745       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
746     return true;
747 
748   Constant *Aliasee;
749   LocTy AliaseeLoc = Lex.getLoc();
750   if (Lex.getKind() != lltok::kw_bitcast &&
751       Lex.getKind() != lltok::kw_getelementptr &&
752       Lex.getKind() != lltok::kw_addrspacecast &&
753       Lex.getKind() != lltok::kw_inttoptr) {
754     if (ParseGlobalTypeAndValue(Aliasee))
755       return true;
756   } else {
757     // The bitcast dest type is not present, it is implied by the dest type.
758     ValID ID;
759     if (ParseValID(ID))
760       return true;
761     if (ID.Kind != ValID::t_Constant)
762       return Error(AliaseeLoc, "invalid aliasee");
763     Aliasee = ID.ConstantVal;
764   }
765 
766   Type *AliaseeType = Aliasee->getType();
767   auto *PTy = dyn_cast<PointerType>(AliaseeType);
768   if (!PTy)
769     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
770   unsigned AddrSpace = PTy->getAddressSpace();
771 
772   if (IsAlias && Ty != PTy->getElementType())
773     return Error(
774         ExplicitTypeLoc,
775         "explicit pointee type doesn't match operand's pointee type");
776 
777   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
778     return Error(
779         ExplicitTypeLoc,
780         "explicit pointee type should be a function type");
781 
782   GlobalValue *GVal = nullptr;
783 
784   // See if the alias was forward referenced, if so, prepare to replace the
785   // forward reference.
786   if (!Name.empty()) {
787     GVal = M->getNamedValue(Name);
788     if (GVal) {
789       if (!ForwardRefVals.erase(Name))
790         return Error(NameLoc, "redefinition of global '@" + Name + "'");
791     }
792   } else {
793     auto I = ForwardRefValIDs.find(NumberedVals.size());
794     if (I != ForwardRefValIDs.end()) {
795       GVal = I->second.first;
796       ForwardRefValIDs.erase(I);
797     }
798   }
799 
800   // Okay, create the alias but do not insert it into the module yet.
801   std::unique_ptr<GlobalIndirectSymbol> GA;
802   if (IsAlias)
803     GA.reset(GlobalAlias::create(Ty, AddrSpace,
804                                  (GlobalValue::LinkageTypes)Linkage, Name,
805                                  Aliasee, /*Parent*/ nullptr));
806   else
807     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
808                                  (GlobalValue::LinkageTypes)Linkage, Name,
809                                  Aliasee, /*Parent*/ nullptr));
810   GA->setThreadLocalMode(TLM);
811   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
812   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
813   GA->setUnnamedAddr(UnnamedAddr);
814 
815   if (Name.empty())
816     NumberedVals.push_back(GA.get());
817 
818   if (GVal) {
819     // Verify that types agree.
820     if (GVal->getType() != GA->getType())
821       return Error(
822           ExplicitTypeLoc,
823           "forward reference and definition of alias have different types");
824 
825     // If they agree, just RAUW the old value with the alias and remove the
826     // forward ref info.
827     GVal->replaceAllUsesWith(GA.get());
828     GVal->eraseFromParent();
829   }
830 
831   // Insert into the module, we know its name won't collide now.
832   if (IsAlias)
833     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
834   else
835     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
836   assert(GA->getName() == Name && "Should not be a name conflict!");
837 
838   // The module owns this now
839   GA.release();
840 
841   return false;
842 }
843 
844 /// ParseGlobal
845 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
846 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
847 ///       OptionalExternallyInitialized GlobalType Type Const
848 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
849 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
850 ///       OptionalExternallyInitialized GlobalType Type Const
851 ///
852 /// Everything up to and including OptionalUnnamedAddr has been parsed
853 /// already.
854 ///
855 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
856                            unsigned Linkage, bool HasLinkage,
857                            unsigned Visibility, unsigned DLLStorageClass,
858                            GlobalVariable::ThreadLocalMode TLM,
859                            GlobalVariable::UnnamedAddr UnnamedAddr) {
860   if (!isValidVisibilityForLinkage(Visibility, Linkage))
861     return Error(NameLoc,
862                  "symbol with local linkage must have default visibility");
863 
864   unsigned AddrSpace;
865   bool IsConstant, IsExternallyInitialized;
866   LocTy IsExternallyInitializedLoc;
867   LocTy TyLoc;
868 
869   Type *Ty = nullptr;
870   if (ParseOptionalAddrSpace(AddrSpace) ||
871       ParseOptionalToken(lltok::kw_externally_initialized,
872                          IsExternallyInitialized,
873                          &IsExternallyInitializedLoc) ||
874       ParseGlobalType(IsConstant) ||
875       ParseType(Ty, TyLoc))
876     return true;
877 
878   // If the linkage is specified and is external, then no initializer is
879   // present.
880   Constant *Init = nullptr;
881   if (!HasLinkage ||
882       !GlobalValue::isValidDeclarationLinkage(
883           (GlobalValue::LinkageTypes)Linkage)) {
884     if (ParseGlobalValue(Ty, Init))
885       return true;
886   }
887 
888   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
889     return Error(TyLoc, "invalid type for global variable");
890 
891   GlobalValue *GVal = nullptr;
892 
893   // See if the global was forward referenced, if so, use the global.
894   if (!Name.empty()) {
895     GVal = M->getNamedValue(Name);
896     if (GVal) {
897       if (!ForwardRefVals.erase(Name))
898         return Error(NameLoc, "redefinition of global '@" + Name + "'");
899     }
900   } else {
901     auto I = ForwardRefValIDs.find(NumberedVals.size());
902     if (I != ForwardRefValIDs.end()) {
903       GVal = I->second.first;
904       ForwardRefValIDs.erase(I);
905     }
906   }
907 
908   GlobalVariable *GV;
909   if (!GVal) {
910     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
911                             Name, nullptr, GlobalVariable::NotThreadLocal,
912                             AddrSpace);
913   } else {
914     if (GVal->getValueType() != Ty)
915       return Error(TyLoc,
916             "forward reference and definition of global have different types");
917 
918     GV = cast<GlobalVariable>(GVal);
919 
920     // Move the forward-reference to the correct spot in the module.
921     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
922   }
923 
924   if (Name.empty())
925     NumberedVals.push_back(GV);
926 
927   // Set the parsed properties on the global.
928   if (Init)
929     GV->setInitializer(Init);
930   GV->setConstant(IsConstant);
931   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
932   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
933   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
934   GV->setExternallyInitialized(IsExternallyInitialized);
935   GV->setThreadLocalMode(TLM);
936   GV->setUnnamedAddr(UnnamedAddr);
937 
938   // Parse attributes on the global.
939   while (Lex.getKind() == lltok::comma) {
940     Lex.Lex();
941 
942     if (Lex.getKind() == lltok::kw_section) {
943       Lex.Lex();
944       GV->setSection(Lex.getStrVal());
945       if (ParseToken(lltok::StringConstant, "expected global section string"))
946         return true;
947     } else if (Lex.getKind() == lltok::kw_align) {
948       unsigned Alignment;
949       if (ParseOptionalAlignment(Alignment)) return true;
950       GV->setAlignment(Alignment);
951     } else if (Lex.getKind() == lltok::MetadataVar) {
952       if (ParseGlobalObjectMetadataAttachment(*GV))
953         return true;
954     } else {
955       Comdat *C;
956       if (parseOptionalComdat(Name, C))
957         return true;
958       if (C)
959         GV->setComdat(C);
960       else
961         return TokError("unknown global variable property!");
962     }
963   }
964 
965   return false;
966 }
967 
968 /// ParseUnnamedAttrGrp
969 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
970 bool LLParser::ParseUnnamedAttrGrp() {
971   assert(Lex.getKind() == lltok::kw_attributes);
972   LocTy AttrGrpLoc = Lex.getLoc();
973   Lex.Lex();
974 
975   if (Lex.getKind() != lltok::AttrGrpID)
976     return TokError("expected attribute group id");
977 
978   unsigned VarID = Lex.getUIntVal();
979   std::vector<unsigned> unused;
980   LocTy BuiltinLoc;
981   Lex.Lex();
982 
983   if (ParseToken(lltok::equal, "expected '=' here") ||
984       ParseToken(lltok::lbrace, "expected '{' here") ||
985       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
986                                  BuiltinLoc) ||
987       ParseToken(lltok::rbrace, "expected end of attribute group"))
988     return true;
989 
990   if (!NumberedAttrBuilders[VarID].hasAttributes())
991     return Error(AttrGrpLoc, "attribute group has no attributes");
992 
993   return false;
994 }
995 
996 /// ParseFnAttributeValuePairs
997 ///   ::= <attr> | <attr> '=' <value>
998 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
999                                           std::vector<unsigned> &FwdRefAttrGrps,
1000                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1001   bool HaveError = false;
1002 
1003   B.clear();
1004 
1005   while (true) {
1006     lltok::Kind Token = Lex.getKind();
1007     if (Token == lltok::kw_builtin)
1008       BuiltinLoc = Lex.getLoc();
1009     switch (Token) {
1010     default:
1011       if (!inAttrGrp) return HaveError;
1012       return Error(Lex.getLoc(), "unterminated attribute group");
1013     case lltok::rbrace:
1014       // Finished.
1015       return false;
1016 
1017     case lltok::AttrGrpID: {
1018       // Allow a function to reference an attribute group:
1019       //
1020       //   define void @foo() #1 { ... }
1021       if (inAttrGrp)
1022         HaveError |=
1023           Error(Lex.getLoc(),
1024               "cannot have an attribute group reference in an attribute group");
1025 
1026       unsigned AttrGrpNum = Lex.getUIntVal();
1027       if (inAttrGrp) break;
1028 
1029       // Save the reference to the attribute group. We'll fill it in later.
1030       FwdRefAttrGrps.push_back(AttrGrpNum);
1031       break;
1032     }
1033     // Target-dependent attributes:
1034     case lltok::StringConstant: {
1035       if (ParseStringAttribute(B))
1036         return true;
1037       continue;
1038     }
1039 
1040     // Target-independent attributes:
1041     case lltok::kw_align: {
1042       // As a hack, we allow function alignment to be initially parsed as an
1043       // attribute on a function declaration/definition or added to an attribute
1044       // group and later moved to the alignment field.
1045       unsigned Alignment;
1046       if (inAttrGrp) {
1047         Lex.Lex();
1048         if (ParseToken(lltok::equal, "expected '=' here") ||
1049             ParseUInt32(Alignment))
1050           return true;
1051       } else {
1052         if (ParseOptionalAlignment(Alignment))
1053           return true;
1054       }
1055       B.addAlignmentAttr(Alignment);
1056       continue;
1057     }
1058     case lltok::kw_alignstack: {
1059       unsigned Alignment;
1060       if (inAttrGrp) {
1061         Lex.Lex();
1062         if (ParseToken(lltok::equal, "expected '=' here") ||
1063             ParseUInt32(Alignment))
1064           return true;
1065       } else {
1066         if (ParseOptionalStackAlignment(Alignment))
1067           return true;
1068       }
1069       B.addStackAlignmentAttr(Alignment);
1070       continue;
1071     }
1072     case lltok::kw_allocsize: {
1073       unsigned ElemSizeArg;
1074       Optional<unsigned> NumElemsArg;
1075       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1076       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1077         return true;
1078       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1079       continue;
1080     }
1081     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1082     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1083     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1084     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1085     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1086     case lltok::kw_inaccessiblememonly:
1087       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1088     case lltok::kw_inaccessiblemem_or_argmemonly:
1089       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1090     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1091     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1092     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1093     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1094     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1095     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1096     case lltok::kw_noimplicitfloat:
1097       B.addAttribute(Attribute::NoImplicitFloat); break;
1098     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1099     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1100     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1101     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1102     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1103     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1104     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1105     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1106     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1107     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1108     case lltok::kw_returns_twice:
1109       B.addAttribute(Attribute::ReturnsTwice); break;
1110     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1111     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1112     case lltok::kw_sspstrong:
1113       B.addAttribute(Attribute::StackProtectStrong); break;
1114     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1115     case lltok::kw_sanitize_address:
1116       B.addAttribute(Attribute::SanitizeAddress); break;
1117     case lltok::kw_sanitize_thread:
1118       B.addAttribute(Attribute::SanitizeThread); break;
1119     case lltok::kw_sanitize_memory:
1120       B.addAttribute(Attribute::SanitizeMemory); break;
1121     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1122     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1123 
1124     // Error handling.
1125     case lltok::kw_inreg:
1126     case lltok::kw_signext:
1127     case lltok::kw_zeroext:
1128       HaveError |=
1129         Error(Lex.getLoc(),
1130               "invalid use of attribute on a function");
1131       break;
1132     case lltok::kw_byval:
1133     case lltok::kw_dereferenceable:
1134     case lltok::kw_dereferenceable_or_null:
1135     case lltok::kw_inalloca:
1136     case lltok::kw_nest:
1137     case lltok::kw_noalias:
1138     case lltok::kw_nocapture:
1139     case lltok::kw_nonnull:
1140     case lltok::kw_returned:
1141     case lltok::kw_sret:
1142     case lltok::kw_swifterror:
1143     case lltok::kw_swiftself:
1144       HaveError |=
1145         Error(Lex.getLoc(),
1146               "invalid use of parameter-only attribute on a function");
1147       break;
1148     }
1149 
1150     Lex.Lex();
1151   }
1152 }
1153 
1154 //===----------------------------------------------------------------------===//
1155 // GlobalValue Reference/Resolution Routines.
1156 //===----------------------------------------------------------------------===//
1157 
1158 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1159                                               const std::string &Name) {
1160   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1161     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1162   else
1163     return new GlobalVariable(*M, PTy->getElementType(), false,
1164                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1165                               nullptr, GlobalVariable::NotThreadLocal,
1166                               PTy->getAddressSpace());
1167 }
1168 
1169 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1170 /// forward reference record if needed.  This can return null if the value
1171 /// exists but does not have the right type.
1172 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1173                                     LocTy Loc) {
1174   PointerType *PTy = dyn_cast<PointerType>(Ty);
1175   if (!PTy) {
1176     Error(Loc, "global variable reference must have pointer type");
1177     return nullptr;
1178   }
1179 
1180   // Look this name up in the normal function symbol table.
1181   GlobalValue *Val =
1182     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1183 
1184   // If this is a forward reference for the value, see if we already created a
1185   // forward ref record.
1186   if (!Val) {
1187     auto I = ForwardRefVals.find(Name);
1188     if (I != ForwardRefVals.end())
1189       Val = I->second.first;
1190   }
1191 
1192   // If we have the value in the symbol table or fwd-ref table, return it.
1193   if (Val) {
1194     if (Val->getType() == Ty) return Val;
1195     Error(Loc, "'@" + Name + "' defined with type '" +
1196           getTypeString(Val->getType()) + "'");
1197     return nullptr;
1198   }
1199 
1200   // Otherwise, create a new forward reference for this value and remember it.
1201   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1202   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1203   return FwdVal;
1204 }
1205 
1206 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1207   PointerType *PTy = dyn_cast<PointerType>(Ty);
1208   if (!PTy) {
1209     Error(Loc, "global variable reference must have pointer type");
1210     return nullptr;
1211   }
1212 
1213   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1214 
1215   // If this is a forward reference for the value, see if we already created a
1216   // forward ref record.
1217   if (!Val) {
1218     auto I = ForwardRefValIDs.find(ID);
1219     if (I != ForwardRefValIDs.end())
1220       Val = I->second.first;
1221   }
1222 
1223   // If we have the value in the symbol table or fwd-ref table, return it.
1224   if (Val) {
1225     if (Val->getType() == Ty) return Val;
1226     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1227           getTypeString(Val->getType()) + "'");
1228     return nullptr;
1229   }
1230 
1231   // Otherwise, create a new forward reference for this value and remember it.
1232   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1233   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1234   return FwdVal;
1235 }
1236 
1237 //===----------------------------------------------------------------------===//
1238 // Comdat Reference/Resolution Routines.
1239 //===----------------------------------------------------------------------===//
1240 
1241 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1242   // Look this name up in the comdat symbol table.
1243   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1244   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1245   if (I != ComdatSymTab.end())
1246     return &I->second;
1247 
1248   // Otherwise, create a new forward reference for this value and remember it.
1249   Comdat *C = M->getOrInsertComdat(Name);
1250   ForwardRefComdats[Name] = Loc;
1251   return C;
1252 }
1253 
1254 //===----------------------------------------------------------------------===//
1255 // Helper Routines.
1256 //===----------------------------------------------------------------------===//
1257 
1258 /// ParseToken - If the current token has the specified kind, eat it and return
1259 /// success.  Otherwise, emit the specified error and return failure.
1260 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1261   if (Lex.getKind() != T)
1262     return TokError(ErrMsg);
1263   Lex.Lex();
1264   return false;
1265 }
1266 
1267 /// ParseStringConstant
1268 ///   ::= StringConstant
1269 bool LLParser::ParseStringConstant(std::string &Result) {
1270   if (Lex.getKind() != lltok::StringConstant)
1271     return TokError("expected string constant");
1272   Result = Lex.getStrVal();
1273   Lex.Lex();
1274   return false;
1275 }
1276 
1277 /// ParseUInt32
1278 ///   ::= uint32
1279 bool LLParser::ParseUInt32(uint32_t &Val) {
1280   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1281     return TokError("expected integer");
1282   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1283   if (Val64 != unsigned(Val64))
1284     return TokError("expected 32-bit integer (too large)");
1285   Val = Val64;
1286   Lex.Lex();
1287   return false;
1288 }
1289 
1290 /// ParseUInt64
1291 ///   ::= uint64
1292 bool LLParser::ParseUInt64(uint64_t &Val) {
1293   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1294     return TokError("expected integer");
1295   Val = Lex.getAPSIntVal().getLimitedValue();
1296   Lex.Lex();
1297   return false;
1298 }
1299 
1300 /// ParseTLSModel
1301 ///   := 'localdynamic'
1302 ///   := 'initialexec'
1303 ///   := 'localexec'
1304 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1305   switch (Lex.getKind()) {
1306     default:
1307       return TokError("expected localdynamic, initialexec or localexec");
1308     case lltok::kw_localdynamic:
1309       TLM = GlobalVariable::LocalDynamicTLSModel;
1310       break;
1311     case lltok::kw_initialexec:
1312       TLM = GlobalVariable::InitialExecTLSModel;
1313       break;
1314     case lltok::kw_localexec:
1315       TLM = GlobalVariable::LocalExecTLSModel;
1316       break;
1317   }
1318 
1319   Lex.Lex();
1320   return false;
1321 }
1322 
1323 /// ParseOptionalThreadLocal
1324 ///   := /*empty*/
1325 ///   := 'thread_local'
1326 ///   := 'thread_local' '(' tlsmodel ')'
1327 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1328   TLM = GlobalVariable::NotThreadLocal;
1329   if (!EatIfPresent(lltok::kw_thread_local))
1330     return false;
1331 
1332   TLM = GlobalVariable::GeneralDynamicTLSModel;
1333   if (Lex.getKind() == lltok::lparen) {
1334     Lex.Lex();
1335     return ParseTLSModel(TLM) ||
1336       ParseToken(lltok::rparen, "expected ')' after thread local model");
1337   }
1338   return false;
1339 }
1340 
1341 /// ParseOptionalAddrSpace
1342 ///   := /*empty*/
1343 ///   := 'addrspace' '(' uint32 ')'
1344 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1345   AddrSpace = 0;
1346   if (!EatIfPresent(lltok::kw_addrspace))
1347     return false;
1348   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1349          ParseUInt32(AddrSpace) ||
1350          ParseToken(lltok::rparen, "expected ')' in address space");
1351 }
1352 
1353 /// ParseStringAttribute
1354 ///   := StringConstant
1355 ///   := StringConstant '=' StringConstant
1356 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1357   std::string Attr = Lex.getStrVal();
1358   Lex.Lex();
1359   std::string Val;
1360   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1361     return true;
1362   B.addAttribute(Attr, Val);
1363   return false;
1364 }
1365 
1366 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1367 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1368   bool HaveError = false;
1369 
1370   B.clear();
1371 
1372   while (true) {
1373     lltok::Kind Token = Lex.getKind();
1374     switch (Token) {
1375     default:  // End of attributes.
1376       return HaveError;
1377     case lltok::StringConstant: {
1378       if (ParseStringAttribute(B))
1379         return true;
1380       continue;
1381     }
1382     case lltok::kw_align: {
1383       unsigned Alignment;
1384       if (ParseOptionalAlignment(Alignment))
1385         return true;
1386       B.addAlignmentAttr(Alignment);
1387       continue;
1388     }
1389     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1390     case lltok::kw_dereferenceable: {
1391       uint64_t Bytes;
1392       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1393         return true;
1394       B.addDereferenceableAttr(Bytes);
1395       continue;
1396     }
1397     case lltok::kw_dereferenceable_or_null: {
1398       uint64_t Bytes;
1399       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1400         return true;
1401       B.addDereferenceableOrNullAttr(Bytes);
1402       continue;
1403     }
1404     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1405     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1406     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1407     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1408     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1409     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1410     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1411     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1412     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1413     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1414     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1415     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1416     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1417     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1418     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1419 
1420     case lltok::kw_alignstack:
1421     case lltok::kw_alwaysinline:
1422     case lltok::kw_argmemonly:
1423     case lltok::kw_builtin:
1424     case lltok::kw_inlinehint:
1425     case lltok::kw_jumptable:
1426     case lltok::kw_minsize:
1427     case lltok::kw_naked:
1428     case lltok::kw_nobuiltin:
1429     case lltok::kw_noduplicate:
1430     case lltok::kw_noimplicitfloat:
1431     case lltok::kw_noinline:
1432     case lltok::kw_nonlazybind:
1433     case lltok::kw_noredzone:
1434     case lltok::kw_noreturn:
1435     case lltok::kw_nounwind:
1436     case lltok::kw_optnone:
1437     case lltok::kw_optsize:
1438     case lltok::kw_returns_twice:
1439     case lltok::kw_sanitize_address:
1440     case lltok::kw_sanitize_memory:
1441     case lltok::kw_sanitize_thread:
1442     case lltok::kw_ssp:
1443     case lltok::kw_sspreq:
1444     case lltok::kw_sspstrong:
1445     case lltok::kw_safestack:
1446     case lltok::kw_uwtable:
1447       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1448       break;
1449     }
1450 
1451     Lex.Lex();
1452   }
1453 }
1454 
1455 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1456 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1457   bool HaveError = false;
1458 
1459   B.clear();
1460 
1461   while (true) {
1462     lltok::Kind Token = Lex.getKind();
1463     switch (Token) {
1464     default:  // End of attributes.
1465       return HaveError;
1466     case lltok::StringConstant: {
1467       if (ParseStringAttribute(B))
1468         return true;
1469       continue;
1470     }
1471     case lltok::kw_dereferenceable: {
1472       uint64_t Bytes;
1473       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1474         return true;
1475       B.addDereferenceableAttr(Bytes);
1476       continue;
1477     }
1478     case lltok::kw_dereferenceable_or_null: {
1479       uint64_t Bytes;
1480       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1481         return true;
1482       B.addDereferenceableOrNullAttr(Bytes);
1483       continue;
1484     }
1485     case lltok::kw_align: {
1486       unsigned Alignment;
1487       if (ParseOptionalAlignment(Alignment))
1488         return true;
1489       B.addAlignmentAttr(Alignment);
1490       continue;
1491     }
1492     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1493     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1494     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1495     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1496     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1497 
1498     // Error handling.
1499     case lltok::kw_byval:
1500     case lltok::kw_inalloca:
1501     case lltok::kw_nest:
1502     case lltok::kw_nocapture:
1503     case lltok::kw_returned:
1504     case lltok::kw_sret:
1505     case lltok::kw_swifterror:
1506     case lltok::kw_swiftself:
1507       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1508       break;
1509 
1510     case lltok::kw_alignstack:
1511     case lltok::kw_alwaysinline:
1512     case lltok::kw_argmemonly:
1513     case lltok::kw_builtin:
1514     case lltok::kw_cold:
1515     case lltok::kw_inlinehint:
1516     case lltok::kw_jumptable:
1517     case lltok::kw_minsize:
1518     case lltok::kw_naked:
1519     case lltok::kw_nobuiltin:
1520     case lltok::kw_noduplicate:
1521     case lltok::kw_noimplicitfloat:
1522     case lltok::kw_noinline:
1523     case lltok::kw_nonlazybind:
1524     case lltok::kw_noredzone:
1525     case lltok::kw_noreturn:
1526     case lltok::kw_nounwind:
1527     case lltok::kw_optnone:
1528     case lltok::kw_optsize:
1529     case lltok::kw_returns_twice:
1530     case lltok::kw_sanitize_address:
1531     case lltok::kw_sanitize_memory:
1532     case lltok::kw_sanitize_thread:
1533     case lltok::kw_ssp:
1534     case lltok::kw_sspreq:
1535     case lltok::kw_sspstrong:
1536     case lltok::kw_safestack:
1537     case lltok::kw_uwtable:
1538       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1539       break;
1540 
1541     case lltok::kw_readnone:
1542     case lltok::kw_readonly:
1543       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1544     }
1545 
1546     Lex.Lex();
1547   }
1548 }
1549 
1550 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1551   HasLinkage = true;
1552   switch (Kind) {
1553   default:
1554     HasLinkage = false;
1555     return GlobalValue::ExternalLinkage;
1556   case lltok::kw_private:
1557     return GlobalValue::PrivateLinkage;
1558   case lltok::kw_internal:
1559     return GlobalValue::InternalLinkage;
1560   case lltok::kw_weak:
1561     return GlobalValue::WeakAnyLinkage;
1562   case lltok::kw_weak_odr:
1563     return GlobalValue::WeakODRLinkage;
1564   case lltok::kw_linkonce:
1565     return GlobalValue::LinkOnceAnyLinkage;
1566   case lltok::kw_linkonce_odr:
1567     return GlobalValue::LinkOnceODRLinkage;
1568   case lltok::kw_available_externally:
1569     return GlobalValue::AvailableExternallyLinkage;
1570   case lltok::kw_appending:
1571     return GlobalValue::AppendingLinkage;
1572   case lltok::kw_common:
1573     return GlobalValue::CommonLinkage;
1574   case lltok::kw_extern_weak:
1575     return GlobalValue::ExternalWeakLinkage;
1576   case lltok::kw_external:
1577     return GlobalValue::ExternalLinkage;
1578   }
1579 }
1580 
1581 /// ParseOptionalLinkage
1582 ///   ::= /*empty*/
1583 ///   ::= 'private'
1584 ///   ::= 'internal'
1585 ///   ::= 'weak'
1586 ///   ::= 'weak_odr'
1587 ///   ::= 'linkonce'
1588 ///   ::= 'linkonce_odr'
1589 ///   ::= 'available_externally'
1590 ///   ::= 'appending'
1591 ///   ::= 'common'
1592 ///   ::= 'extern_weak'
1593 ///   ::= 'external'
1594 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1595                                     unsigned &Visibility,
1596                                     unsigned &DLLStorageClass) {
1597   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1598   if (HasLinkage)
1599     Lex.Lex();
1600   ParseOptionalVisibility(Visibility);
1601   ParseOptionalDLLStorageClass(DLLStorageClass);
1602   return false;
1603 }
1604 
1605 /// ParseOptionalVisibility
1606 ///   ::= /*empty*/
1607 ///   ::= 'default'
1608 ///   ::= 'hidden'
1609 ///   ::= 'protected'
1610 ///
1611 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1612   switch (Lex.getKind()) {
1613   default:
1614     Res = GlobalValue::DefaultVisibility;
1615     return;
1616   case lltok::kw_default:
1617     Res = GlobalValue::DefaultVisibility;
1618     break;
1619   case lltok::kw_hidden:
1620     Res = GlobalValue::HiddenVisibility;
1621     break;
1622   case lltok::kw_protected:
1623     Res = GlobalValue::ProtectedVisibility;
1624     break;
1625   }
1626   Lex.Lex();
1627 }
1628 
1629 /// ParseOptionalDLLStorageClass
1630 ///   ::= /*empty*/
1631 ///   ::= 'dllimport'
1632 ///   ::= 'dllexport'
1633 ///
1634 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1635   switch (Lex.getKind()) {
1636   default:
1637     Res = GlobalValue::DefaultStorageClass;
1638     return;
1639   case lltok::kw_dllimport:
1640     Res = GlobalValue::DLLImportStorageClass;
1641     break;
1642   case lltok::kw_dllexport:
1643     Res = GlobalValue::DLLExportStorageClass;
1644     break;
1645   }
1646   Lex.Lex();
1647 }
1648 
1649 /// ParseOptionalCallingConv
1650 ///   ::= /*empty*/
1651 ///   ::= 'ccc'
1652 ///   ::= 'fastcc'
1653 ///   ::= 'intel_ocl_bicc'
1654 ///   ::= 'coldcc'
1655 ///   ::= 'x86_stdcallcc'
1656 ///   ::= 'x86_fastcallcc'
1657 ///   ::= 'x86_thiscallcc'
1658 ///   ::= 'x86_vectorcallcc'
1659 ///   ::= 'arm_apcscc'
1660 ///   ::= 'arm_aapcscc'
1661 ///   ::= 'arm_aapcs_vfpcc'
1662 ///   ::= 'msp430_intrcc'
1663 ///   ::= 'avr_intrcc'
1664 ///   ::= 'avr_signalcc'
1665 ///   ::= 'ptx_kernel'
1666 ///   ::= 'ptx_device'
1667 ///   ::= 'spir_func'
1668 ///   ::= 'spir_kernel'
1669 ///   ::= 'x86_64_sysvcc'
1670 ///   ::= 'x86_64_win64cc'
1671 ///   ::= 'webkit_jscc'
1672 ///   ::= 'anyregcc'
1673 ///   ::= 'preserve_mostcc'
1674 ///   ::= 'preserve_allcc'
1675 ///   ::= 'ghccc'
1676 ///   ::= 'swiftcc'
1677 ///   ::= 'x86_intrcc'
1678 ///   ::= 'hhvmcc'
1679 ///   ::= 'hhvm_ccc'
1680 ///   ::= 'cxx_fast_tlscc'
1681 ///   ::= 'amdgpu_vs'
1682 ///   ::= 'amdgpu_tcs'
1683 ///   ::= 'amdgpu_tes'
1684 ///   ::= 'amdgpu_gs'
1685 ///   ::= 'amdgpu_ps'
1686 ///   ::= 'amdgpu_cs'
1687 ///   ::= 'amdgpu_kernel'
1688 ///   ::= 'cc' UINT
1689 ///
1690 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1691   switch (Lex.getKind()) {
1692   default:                       CC = CallingConv::C; return false;
1693   case lltok::kw_ccc:            CC = CallingConv::C; break;
1694   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1695   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1696   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1697   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1698   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1699   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1700   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1701   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1702   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1703   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1704   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1705   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1706   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1707   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1708   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1709   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1710   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1711   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1712   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1713   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1714   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1715   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1716   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1717   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1718   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1719   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1720   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1721   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1722   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1723   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1724   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1725   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1726   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1727   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1728   case lltok::kw_cc: {
1729       Lex.Lex();
1730       return ParseUInt32(CC);
1731     }
1732   }
1733 
1734   Lex.Lex();
1735   return false;
1736 }
1737 
1738 /// ParseMetadataAttachment
1739 ///   ::= !dbg !42
1740 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1741   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1742 
1743   std::string Name = Lex.getStrVal();
1744   Kind = M->getMDKindID(Name);
1745   Lex.Lex();
1746 
1747   return ParseMDNode(MD);
1748 }
1749 
1750 /// ParseInstructionMetadata
1751 ///   ::= !dbg !42 (',' !dbg !57)*
1752 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1753   do {
1754     if (Lex.getKind() != lltok::MetadataVar)
1755       return TokError("expected metadata after comma");
1756 
1757     unsigned MDK;
1758     MDNode *N;
1759     if (ParseMetadataAttachment(MDK, N))
1760       return true;
1761 
1762     Inst.setMetadata(MDK, N);
1763     if (MDK == LLVMContext::MD_tbaa)
1764       InstsWithTBAATag.push_back(&Inst);
1765 
1766     // If this is the end of the list, we're done.
1767   } while (EatIfPresent(lltok::comma));
1768   return false;
1769 }
1770 
1771 /// ParseGlobalObjectMetadataAttachment
1772 ///   ::= !dbg !57
1773 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1774   unsigned MDK;
1775   MDNode *N;
1776   if (ParseMetadataAttachment(MDK, N))
1777     return true;
1778 
1779   GO.addMetadata(MDK, *N);
1780   return false;
1781 }
1782 
1783 /// ParseOptionalFunctionMetadata
1784 ///   ::= (!dbg !57)*
1785 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1786   while (Lex.getKind() == lltok::MetadataVar)
1787     if (ParseGlobalObjectMetadataAttachment(F))
1788       return true;
1789   return false;
1790 }
1791 
1792 /// ParseOptionalAlignment
1793 ///   ::= /* empty */
1794 ///   ::= 'align' 4
1795 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1796   Alignment = 0;
1797   if (!EatIfPresent(lltok::kw_align))
1798     return false;
1799   LocTy AlignLoc = Lex.getLoc();
1800   if (ParseUInt32(Alignment)) return true;
1801   if (!isPowerOf2_32(Alignment))
1802     return Error(AlignLoc, "alignment is not a power of two");
1803   if (Alignment > Value::MaximumAlignment)
1804     return Error(AlignLoc, "huge alignments are not supported yet");
1805   return false;
1806 }
1807 
1808 /// ParseOptionalDerefAttrBytes
1809 ///   ::= /* empty */
1810 ///   ::= AttrKind '(' 4 ')'
1811 ///
1812 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1813 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1814                                            uint64_t &Bytes) {
1815   assert((AttrKind == lltok::kw_dereferenceable ||
1816           AttrKind == lltok::kw_dereferenceable_or_null) &&
1817          "contract!");
1818 
1819   Bytes = 0;
1820   if (!EatIfPresent(AttrKind))
1821     return false;
1822   LocTy ParenLoc = Lex.getLoc();
1823   if (!EatIfPresent(lltok::lparen))
1824     return Error(ParenLoc, "expected '('");
1825   LocTy DerefLoc = Lex.getLoc();
1826   if (ParseUInt64(Bytes)) return true;
1827   ParenLoc = Lex.getLoc();
1828   if (!EatIfPresent(lltok::rparen))
1829     return Error(ParenLoc, "expected ')'");
1830   if (!Bytes)
1831     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1832   return false;
1833 }
1834 
1835 /// ParseOptionalCommaAlign
1836 ///   ::=
1837 ///   ::= ',' align 4
1838 ///
1839 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1840 /// end.
1841 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1842                                        bool &AteExtraComma) {
1843   AteExtraComma = false;
1844   while (EatIfPresent(lltok::comma)) {
1845     // Metadata at the end is an early exit.
1846     if (Lex.getKind() == lltok::MetadataVar) {
1847       AteExtraComma = true;
1848       return false;
1849     }
1850 
1851     if (Lex.getKind() != lltok::kw_align)
1852       return Error(Lex.getLoc(), "expected metadata or 'align'");
1853 
1854     if (ParseOptionalAlignment(Alignment)) return true;
1855   }
1856 
1857   return false;
1858 }
1859 
1860 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1861                                        Optional<unsigned> &HowManyArg) {
1862   Lex.Lex();
1863 
1864   auto StartParen = Lex.getLoc();
1865   if (!EatIfPresent(lltok::lparen))
1866     return Error(StartParen, "expected '('");
1867 
1868   if (ParseUInt32(BaseSizeArg))
1869     return true;
1870 
1871   if (EatIfPresent(lltok::comma)) {
1872     auto HowManyAt = Lex.getLoc();
1873     unsigned HowMany;
1874     if (ParseUInt32(HowMany))
1875       return true;
1876     if (HowMany == BaseSizeArg)
1877       return Error(HowManyAt,
1878                    "'allocsize' indices can't refer to the same parameter");
1879     HowManyArg = HowMany;
1880   } else
1881     HowManyArg = None;
1882 
1883   auto EndParen = Lex.getLoc();
1884   if (!EatIfPresent(lltok::rparen))
1885     return Error(EndParen, "expected ')'");
1886   return false;
1887 }
1888 
1889 /// ParseScopeAndOrdering
1890 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1891 ///   else: ::=
1892 ///
1893 /// This sets Scope and Ordering to the parsed values.
1894 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1895                                      AtomicOrdering &Ordering) {
1896   if (!isAtomic)
1897     return false;
1898 
1899   Scope = CrossThread;
1900   if (EatIfPresent(lltok::kw_singlethread))
1901     Scope = SingleThread;
1902 
1903   return ParseOrdering(Ordering);
1904 }
1905 
1906 /// ParseOrdering
1907 ///   ::= AtomicOrdering
1908 ///
1909 /// This sets Ordering to the parsed value.
1910 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1911   switch (Lex.getKind()) {
1912   default: return TokError("Expected ordering on atomic instruction");
1913   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1914   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1915   // Not specified yet:
1916   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1917   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1918   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1919   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1920   case lltok::kw_seq_cst:
1921     Ordering = AtomicOrdering::SequentiallyConsistent;
1922     break;
1923   }
1924   Lex.Lex();
1925   return false;
1926 }
1927 
1928 /// ParseOptionalStackAlignment
1929 ///   ::= /* empty */
1930 ///   ::= 'alignstack' '(' 4 ')'
1931 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1932   Alignment = 0;
1933   if (!EatIfPresent(lltok::kw_alignstack))
1934     return false;
1935   LocTy ParenLoc = Lex.getLoc();
1936   if (!EatIfPresent(lltok::lparen))
1937     return Error(ParenLoc, "expected '('");
1938   LocTy AlignLoc = Lex.getLoc();
1939   if (ParseUInt32(Alignment)) return true;
1940   ParenLoc = Lex.getLoc();
1941   if (!EatIfPresent(lltok::rparen))
1942     return Error(ParenLoc, "expected ')'");
1943   if (!isPowerOf2_32(Alignment))
1944     return Error(AlignLoc, "stack alignment is not a power of two");
1945   return false;
1946 }
1947 
1948 /// ParseIndexList - This parses the index list for an insert/extractvalue
1949 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1950 /// comma at the end of the line and find that it is followed by metadata.
1951 /// Clients that don't allow metadata can call the version of this function that
1952 /// only takes one argument.
1953 ///
1954 /// ParseIndexList
1955 ///    ::=  (',' uint32)+
1956 ///
1957 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1958                               bool &AteExtraComma) {
1959   AteExtraComma = false;
1960 
1961   if (Lex.getKind() != lltok::comma)
1962     return TokError("expected ',' as start of index list");
1963 
1964   while (EatIfPresent(lltok::comma)) {
1965     if (Lex.getKind() == lltok::MetadataVar) {
1966       if (Indices.empty()) return TokError("expected index");
1967       AteExtraComma = true;
1968       return false;
1969     }
1970     unsigned Idx = 0;
1971     if (ParseUInt32(Idx)) return true;
1972     Indices.push_back(Idx);
1973   }
1974 
1975   return false;
1976 }
1977 
1978 //===----------------------------------------------------------------------===//
1979 // Type Parsing.
1980 //===----------------------------------------------------------------------===//
1981 
1982 /// ParseType - Parse a type.
1983 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1984   SMLoc TypeLoc = Lex.getLoc();
1985   switch (Lex.getKind()) {
1986   default:
1987     return TokError(Msg);
1988   case lltok::Type:
1989     // Type ::= 'float' | 'void' (etc)
1990     Result = Lex.getTyVal();
1991     Lex.Lex();
1992     break;
1993   case lltok::lbrace:
1994     // Type ::= StructType
1995     if (ParseAnonStructType(Result, false))
1996       return true;
1997     break;
1998   case lltok::lsquare:
1999     // Type ::= '[' ... ']'
2000     Lex.Lex(); // eat the lsquare.
2001     if (ParseArrayVectorType(Result, false))
2002       return true;
2003     break;
2004   case lltok::less: // Either vector or packed struct.
2005     // Type ::= '<' ... '>'
2006     Lex.Lex();
2007     if (Lex.getKind() == lltok::lbrace) {
2008       if (ParseAnonStructType(Result, true) ||
2009           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2010         return true;
2011     } else if (ParseArrayVectorType(Result, true))
2012       return true;
2013     break;
2014   case lltok::LocalVar: {
2015     // Type ::= %foo
2016     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2017 
2018     // If the type hasn't been defined yet, create a forward definition and
2019     // remember where that forward def'n was seen (in case it never is defined).
2020     if (!Entry.first) {
2021       Entry.first = StructType::create(Context, Lex.getStrVal());
2022       Entry.second = Lex.getLoc();
2023     }
2024     Result = Entry.first;
2025     Lex.Lex();
2026     break;
2027   }
2028 
2029   case lltok::LocalVarID: {
2030     // Type ::= %4
2031     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2032 
2033     // If the type hasn't been defined yet, create a forward definition and
2034     // remember where that forward def'n was seen (in case it never is defined).
2035     if (!Entry.first) {
2036       Entry.first = StructType::create(Context);
2037       Entry.second = Lex.getLoc();
2038     }
2039     Result = Entry.first;
2040     Lex.Lex();
2041     break;
2042   }
2043   }
2044 
2045   // Parse the type suffixes.
2046   while (true) {
2047     switch (Lex.getKind()) {
2048     // End of type.
2049     default:
2050       if (!AllowVoid && Result->isVoidTy())
2051         return Error(TypeLoc, "void type only allowed for function results");
2052       return false;
2053 
2054     // Type ::= Type '*'
2055     case lltok::star:
2056       if (Result->isLabelTy())
2057         return TokError("basic block pointers are invalid");
2058       if (Result->isVoidTy())
2059         return TokError("pointers to void are invalid - use i8* instead");
2060       if (!PointerType::isValidElementType(Result))
2061         return TokError("pointer to this type is invalid");
2062       Result = PointerType::getUnqual(Result);
2063       Lex.Lex();
2064       break;
2065 
2066     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2067     case lltok::kw_addrspace: {
2068       if (Result->isLabelTy())
2069         return TokError("basic block pointers are invalid");
2070       if (Result->isVoidTy())
2071         return TokError("pointers to void are invalid; use i8* instead");
2072       if (!PointerType::isValidElementType(Result))
2073         return TokError("pointer to this type is invalid");
2074       unsigned AddrSpace;
2075       if (ParseOptionalAddrSpace(AddrSpace) ||
2076           ParseToken(lltok::star, "expected '*' in address space"))
2077         return true;
2078 
2079       Result = PointerType::get(Result, AddrSpace);
2080       break;
2081     }
2082 
2083     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2084     case lltok::lparen:
2085       if (ParseFunctionType(Result))
2086         return true;
2087       break;
2088     }
2089   }
2090 }
2091 
2092 /// ParseParameterList
2093 ///    ::= '(' ')'
2094 ///    ::= '(' Arg (',' Arg)* ')'
2095 ///  Arg
2096 ///    ::= Type OptionalAttributes Value OptionalAttributes
2097 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2098                                   PerFunctionState &PFS, bool IsMustTailCall,
2099                                   bool InVarArgsFunc) {
2100   if (ParseToken(lltok::lparen, "expected '(' in call"))
2101     return true;
2102 
2103   unsigned AttrIndex = 1;
2104   while (Lex.getKind() != lltok::rparen) {
2105     // If this isn't the first argument, we need a comma.
2106     if (!ArgList.empty() &&
2107         ParseToken(lltok::comma, "expected ',' in argument list"))
2108       return true;
2109 
2110     // Parse an ellipsis if this is a musttail call in a variadic function.
2111     if (Lex.getKind() == lltok::dotdotdot) {
2112       const char *Msg = "unexpected ellipsis in argument list for ";
2113       if (!IsMustTailCall)
2114         return TokError(Twine(Msg) + "non-musttail call");
2115       if (!InVarArgsFunc)
2116         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2117       Lex.Lex();  // Lex the '...', it is purely for readability.
2118       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2119     }
2120 
2121     // Parse the argument.
2122     LocTy ArgLoc;
2123     Type *ArgTy = nullptr;
2124     AttrBuilder ArgAttrs;
2125     Value *V;
2126     if (ParseType(ArgTy, ArgLoc))
2127       return true;
2128 
2129     if (ArgTy->isMetadataTy()) {
2130       if (ParseMetadataAsValue(V, PFS))
2131         return true;
2132     } else {
2133       // Otherwise, handle normal operands.
2134       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2135         return true;
2136     }
2137     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
2138                                                              AttrIndex++,
2139                                                              ArgAttrs)));
2140   }
2141 
2142   if (IsMustTailCall && InVarArgsFunc)
2143     return TokError("expected '...' at end of argument list for musttail call "
2144                     "in varargs function");
2145 
2146   Lex.Lex();  // Lex the ')'.
2147   return false;
2148 }
2149 
2150 /// ParseOptionalOperandBundles
2151 ///    ::= /*empty*/
2152 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2153 ///
2154 /// OperandBundle
2155 ///    ::= bundle-tag '(' ')'
2156 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2157 ///
2158 /// bundle-tag ::= String Constant
2159 bool LLParser::ParseOptionalOperandBundles(
2160     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2161   LocTy BeginLoc = Lex.getLoc();
2162   if (!EatIfPresent(lltok::lsquare))
2163     return false;
2164 
2165   while (Lex.getKind() != lltok::rsquare) {
2166     // If this isn't the first operand bundle, we need a comma.
2167     if (!BundleList.empty() &&
2168         ParseToken(lltok::comma, "expected ',' in input list"))
2169       return true;
2170 
2171     std::string Tag;
2172     if (ParseStringConstant(Tag))
2173       return true;
2174 
2175     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2176       return true;
2177 
2178     std::vector<Value *> Inputs;
2179     while (Lex.getKind() != lltok::rparen) {
2180       // If this isn't the first input, we need a comma.
2181       if (!Inputs.empty() &&
2182           ParseToken(lltok::comma, "expected ',' in input list"))
2183         return true;
2184 
2185       Type *Ty = nullptr;
2186       Value *Input = nullptr;
2187       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2188         return true;
2189       Inputs.push_back(Input);
2190     }
2191 
2192     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2193 
2194     Lex.Lex(); // Lex the ')'.
2195   }
2196 
2197   if (BundleList.empty())
2198     return Error(BeginLoc, "operand bundle set must not be empty");
2199 
2200   Lex.Lex(); // Lex the ']'.
2201   return false;
2202 }
2203 
2204 /// ParseArgumentList - Parse the argument list for a function type or function
2205 /// prototype.
2206 ///   ::= '(' ArgTypeListI ')'
2207 /// ArgTypeListI
2208 ///   ::= /*empty*/
2209 ///   ::= '...'
2210 ///   ::= ArgTypeList ',' '...'
2211 ///   ::= ArgType (',' ArgType)*
2212 ///
2213 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2214                                  bool &isVarArg){
2215   isVarArg = false;
2216   assert(Lex.getKind() == lltok::lparen);
2217   Lex.Lex(); // eat the (.
2218 
2219   if (Lex.getKind() == lltok::rparen) {
2220     // empty
2221   } else if (Lex.getKind() == lltok::dotdotdot) {
2222     isVarArg = true;
2223     Lex.Lex();
2224   } else {
2225     LocTy TypeLoc = Lex.getLoc();
2226     Type *ArgTy = nullptr;
2227     AttrBuilder Attrs;
2228     std::string Name;
2229 
2230     if (ParseType(ArgTy) ||
2231         ParseOptionalParamAttrs(Attrs)) return true;
2232 
2233     if (ArgTy->isVoidTy())
2234       return Error(TypeLoc, "argument can not have void type");
2235 
2236     if (Lex.getKind() == lltok::LocalVar) {
2237       Name = Lex.getStrVal();
2238       Lex.Lex();
2239     }
2240 
2241     if (!FunctionType::isValidArgumentType(ArgTy))
2242       return Error(TypeLoc, "invalid type for function argument");
2243 
2244     unsigned AttrIndex = 1;
2245     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2246                                                            AttrIndex++, Attrs),
2247                          std::move(Name));
2248 
2249     while (EatIfPresent(lltok::comma)) {
2250       // Handle ... at end of arg list.
2251       if (EatIfPresent(lltok::dotdotdot)) {
2252         isVarArg = true;
2253         break;
2254       }
2255 
2256       // Otherwise must be an argument type.
2257       TypeLoc = Lex.getLoc();
2258       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2259 
2260       if (ArgTy->isVoidTy())
2261         return Error(TypeLoc, "argument can not have void type");
2262 
2263       if (Lex.getKind() == lltok::LocalVar) {
2264         Name = Lex.getStrVal();
2265         Lex.Lex();
2266       } else {
2267         Name = "";
2268       }
2269 
2270       if (!ArgTy->isFirstClassType())
2271         return Error(TypeLoc, "invalid type for function argument");
2272 
2273       ArgList.emplace_back(
2274           TypeLoc, ArgTy,
2275           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2276           std::move(Name));
2277     }
2278   }
2279 
2280   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2281 }
2282 
2283 /// ParseFunctionType
2284 ///  ::= Type ArgumentList OptionalAttrs
2285 bool LLParser::ParseFunctionType(Type *&Result) {
2286   assert(Lex.getKind() == lltok::lparen);
2287 
2288   if (!FunctionType::isValidReturnType(Result))
2289     return TokError("invalid function return type");
2290 
2291   SmallVector<ArgInfo, 8> ArgList;
2292   bool isVarArg;
2293   if (ParseArgumentList(ArgList, isVarArg))
2294     return true;
2295 
2296   // Reject names on the arguments lists.
2297   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2298     if (!ArgList[i].Name.empty())
2299       return Error(ArgList[i].Loc, "argument name invalid in function type");
2300     if (ArgList[i].Attrs.hasAttributes(i + 1))
2301       return Error(ArgList[i].Loc,
2302                    "argument attributes invalid in function type");
2303   }
2304 
2305   SmallVector<Type*, 16> ArgListTy;
2306   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2307     ArgListTy.push_back(ArgList[i].Ty);
2308 
2309   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2310   return false;
2311 }
2312 
2313 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2314 /// other structs.
2315 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2316   SmallVector<Type*, 8> Elts;
2317   if (ParseStructBody(Elts)) return true;
2318 
2319   Result = StructType::get(Context, Elts, Packed);
2320   return false;
2321 }
2322 
2323 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2324 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2325                                      std::pair<Type*, LocTy> &Entry,
2326                                      Type *&ResultTy) {
2327   // If the type was already defined, diagnose the redefinition.
2328   if (Entry.first && !Entry.second.isValid())
2329     return Error(TypeLoc, "redefinition of type");
2330 
2331   // If we have opaque, just return without filling in the definition for the
2332   // struct.  This counts as a definition as far as the .ll file goes.
2333   if (EatIfPresent(lltok::kw_opaque)) {
2334     // This type is being defined, so clear the location to indicate this.
2335     Entry.second = SMLoc();
2336 
2337     // If this type number has never been uttered, create it.
2338     if (!Entry.first)
2339       Entry.first = StructType::create(Context, Name);
2340     ResultTy = Entry.first;
2341     return false;
2342   }
2343 
2344   // If the type starts with '<', then it is either a packed struct or a vector.
2345   bool isPacked = EatIfPresent(lltok::less);
2346 
2347   // If we don't have a struct, then we have a random type alias, which we
2348   // accept for compatibility with old files.  These types are not allowed to be
2349   // forward referenced and not allowed to be recursive.
2350   if (Lex.getKind() != lltok::lbrace) {
2351     if (Entry.first)
2352       return Error(TypeLoc, "forward references to non-struct type");
2353 
2354     ResultTy = nullptr;
2355     if (isPacked)
2356       return ParseArrayVectorType(ResultTy, true);
2357     return ParseType(ResultTy);
2358   }
2359 
2360   // This type is being defined, so clear the location to indicate this.
2361   Entry.second = SMLoc();
2362 
2363   // If this type number has never been uttered, create it.
2364   if (!Entry.first)
2365     Entry.first = StructType::create(Context, Name);
2366 
2367   StructType *STy = cast<StructType>(Entry.first);
2368 
2369   SmallVector<Type*, 8> Body;
2370   if (ParseStructBody(Body) ||
2371       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2372     return true;
2373 
2374   STy->setBody(Body, isPacked);
2375   ResultTy = STy;
2376   return false;
2377 }
2378 
2379 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2380 ///   StructType
2381 ///     ::= '{' '}'
2382 ///     ::= '{' Type (',' Type)* '}'
2383 ///     ::= '<' '{' '}' '>'
2384 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2385 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2386   assert(Lex.getKind() == lltok::lbrace);
2387   Lex.Lex(); // Consume the '{'
2388 
2389   // Handle the empty struct.
2390   if (EatIfPresent(lltok::rbrace))
2391     return false;
2392 
2393   LocTy EltTyLoc = Lex.getLoc();
2394   Type *Ty = nullptr;
2395   if (ParseType(Ty)) return true;
2396   Body.push_back(Ty);
2397 
2398   if (!StructType::isValidElementType(Ty))
2399     return Error(EltTyLoc, "invalid element type for struct");
2400 
2401   while (EatIfPresent(lltok::comma)) {
2402     EltTyLoc = Lex.getLoc();
2403     if (ParseType(Ty)) return true;
2404 
2405     if (!StructType::isValidElementType(Ty))
2406       return Error(EltTyLoc, "invalid element type for struct");
2407 
2408     Body.push_back(Ty);
2409   }
2410 
2411   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2412 }
2413 
2414 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2415 /// token has already been consumed.
2416 ///   Type
2417 ///     ::= '[' APSINTVAL 'x' Types ']'
2418 ///     ::= '<' APSINTVAL 'x' Types '>'
2419 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2420   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2421       Lex.getAPSIntVal().getBitWidth() > 64)
2422     return TokError("expected number in address space");
2423 
2424   LocTy SizeLoc = Lex.getLoc();
2425   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2426   Lex.Lex();
2427 
2428   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2429       return true;
2430 
2431   LocTy TypeLoc = Lex.getLoc();
2432   Type *EltTy = nullptr;
2433   if (ParseType(EltTy)) return true;
2434 
2435   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2436                  "expected end of sequential type"))
2437     return true;
2438 
2439   if (isVector) {
2440     if (Size == 0)
2441       return Error(SizeLoc, "zero element vector is illegal");
2442     if ((unsigned)Size != Size)
2443       return Error(SizeLoc, "size too large for vector");
2444     if (!VectorType::isValidElementType(EltTy))
2445       return Error(TypeLoc, "invalid vector element type");
2446     Result = VectorType::get(EltTy, unsigned(Size));
2447   } else {
2448     if (!ArrayType::isValidElementType(EltTy))
2449       return Error(TypeLoc, "invalid array element type");
2450     Result = ArrayType::get(EltTy, Size);
2451   }
2452   return false;
2453 }
2454 
2455 //===----------------------------------------------------------------------===//
2456 // Function Semantic Analysis.
2457 //===----------------------------------------------------------------------===//
2458 
2459 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2460                                              int functionNumber)
2461   : P(p), F(f), FunctionNumber(functionNumber) {
2462 
2463   // Insert unnamed arguments into the NumberedVals list.
2464   for (Argument &A : F.args())
2465     if (!A.hasName())
2466       NumberedVals.push_back(&A);
2467 }
2468 
2469 LLParser::PerFunctionState::~PerFunctionState() {
2470   // If there were any forward referenced non-basicblock values, delete them.
2471 
2472   for (const auto &P : ForwardRefVals) {
2473     if (isa<BasicBlock>(P.second.first))
2474       continue;
2475     P.second.first->replaceAllUsesWith(
2476         UndefValue::get(P.second.first->getType()));
2477     delete P.second.first;
2478   }
2479 
2480   for (const auto &P : ForwardRefValIDs) {
2481     if (isa<BasicBlock>(P.second.first))
2482       continue;
2483     P.second.first->replaceAllUsesWith(
2484         UndefValue::get(P.second.first->getType()));
2485     delete P.second.first;
2486   }
2487 }
2488 
2489 bool LLParser::PerFunctionState::FinishFunction() {
2490   if (!ForwardRefVals.empty())
2491     return P.Error(ForwardRefVals.begin()->second.second,
2492                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2493                    "'");
2494   if (!ForwardRefValIDs.empty())
2495     return P.Error(ForwardRefValIDs.begin()->second.second,
2496                    "use of undefined value '%" +
2497                    Twine(ForwardRefValIDs.begin()->first) + "'");
2498   return false;
2499 }
2500 
2501 /// GetVal - Get a value with the specified name or ID, creating a
2502 /// forward reference record if needed.  This can return null if the value
2503 /// exists but does not have the right type.
2504 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2505                                           LocTy Loc) {
2506   // Look this name up in the normal function symbol table.
2507   Value *Val = F.getValueSymbolTable()->lookup(Name);
2508 
2509   // If this is a forward reference for the value, see if we already created a
2510   // forward ref record.
2511   if (!Val) {
2512     auto I = ForwardRefVals.find(Name);
2513     if (I != ForwardRefVals.end())
2514       Val = I->second.first;
2515   }
2516 
2517   // If we have the value in the symbol table or fwd-ref table, return it.
2518   if (Val) {
2519     if (Val->getType() == Ty) return Val;
2520     if (Ty->isLabelTy())
2521       P.Error(Loc, "'%" + Name + "' is not a basic block");
2522     else
2523       P.Error(Loc, "'%" + Name + "' defined with type '" +
2524               getTypeString(Val->getType()) + "'");
2525     return nullptr;
2526   }
2527 
2528   // Don't make placeholders with invalid type.
2529   if (!Ty->isFirstClassType()) {
2530     P.Error(Loc, "invalid use of a non-first-class type");
2531     return nullptr;
2532   }
2533 
2534   // Otherwise, create a new forward reference for this value and remember it.
2535   Value *FwdVal;
2536   if (Ty->isLabelTy()) {
2537     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2538   } else {
2539     FwdVal = new Argument(Ty, Name);
2540   }
2541 
2542   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2543   return FwdVal;
2544 }
2545 
2546 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2547   // Look this name up in the normal function symbol table.
2548   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2549 
2550   // If this is a forward reference for the value, see if we already created a
2551   // forward ref record.
2552   if (!Val) {
2553     auto I = ForwardRefValIDs.find(ID);
2554     if (I != ForwardRefValIDs.end())
2555       Val = I->second.first;
2556   }
2557 
2558   // If we have the value in the symbol table or fwd-ref table, return it.
2559   if (Val) {
2560     if (Val->getType() == Ty) return Val;
2561     if (Ty->isLabelTy())
2562       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2563     else
2564       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2565               getTypeString(Val->getType()) + "'");
2566     return nullptr;
2567   }
2568 
2569   if (!Ty->isFirstClassType()) {
2570     P.Error(Loc, "invalid use of a non-first-class type");
2571     return nullptr;
2572   }
2573 
2574   // Otherwise, create a new forward reference for this value and remember it.
2575   Value *FwdVal;
2576   if (Ty->isLabelTy()) {
2577     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2578   } else {
2579     FwdVal = new Argument(Ty);
2580   }
2581 
2582   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2583   return FwdVal;
2584 }
2585 
2586 /// SetInstName - After an instruction is parsed and inserted into its
2587 /// basic block, this installs its name.
2588 bool LLParser::PerFunctionState::SetInstName(int NameID,
2589                                              const std::string &NameStr,
2590                                              LocTy NameLoc, Instruction *Inst) {
2591   // If this instruction has void type, it cannot have a name or ID specified.
2592   if (Inst->getType()->isVoidTy()) {
2593     if (NameID != -1 || !NameStr.empty())
2594       return P.Error(NameLoc, "instructions returning void cannot have a name");
2595     return false;
2596   }
2597 
2598   // If this was a numbered instruction, verify that the instruction is the
2599   // expected value and resolve any forward references.
2600   if (NameStr.empty()) {
2601     // If neither a name nor an ID was specified, just use the next ID.
2602     if (NameID == -1)
2603       NameID = NumberedVals.size();
2604 
2605     if (unsigned(NameID) != NumberedVals.size())
2606       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2607                      Twine(NumberedVals.size()) + "'");
2608 
2609     auto FI = ForwardRefValIDs.find(NameID);
2610     if (FI != ForwardRefValIDs.end()) {
2611       Value *Sentinel = FI->second.first;
2612       if (Sentinel->getType() != Inst->getType())
2613         return P.Error(NameLoc, "instruction forward referenced with type '" +
2614                        getTypeString(FI->second.first->getType()) + "'");
2615 
2616       Sentinel->replaceAllUsesWith(Inst);
2617       delete Sentinel;
2618       ForwardRefValIDs.erase(FI);
2619     }
2620 
2621     NumberedVals.push_back(Inst);
2622     return false;
2623   }
2624 
2625   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2626   auto FI = ForwardRefVals.find(NameStr);
2627   if (FI != ForwardRefVals.end()) {
2628     Value *Sentinel = FI->second.first;
2629     if (Sentinel->getType() != Inst->getType())
2630       return P.Error(NameLoc, "instruction forward referenced with type '" +
2631                      getTypeString(FI->second.first->getType()) + "'");
2632 
2633     Sentinel->replaceAllUsesWith(Inst);
2634     delete Sentinel;
2635     ForwardRefVals.erase(FI);
2636   }
2637 
2638   // Set the name on the instruction.
2639   Inst->setName(NameStr);
2640 
2641   if (Inst->getName() != NameStr)
2642     return P.Error(NameLoc, "multiple definition of local value named '" +
2643                    NameStr + "'");
2644   return false;
2645 }
2646 
2647 /// GetBB - Get a basic block with the specified name or ID, creating a
2648 /// forward reference record if needed.
2649 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2650                                               LocTy Loc) {
2651   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2652                                       Type::getLabelTy(F.getContext()), Loc));
2653 }
2654 
2655 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2656   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2657                                       Type::getLabelTy(F.getContext()), Loc));
2658 }
2659 
2660 /// DefineBB - Define the specified basic block, which is either named or
2661 /// unnamed.  If there is an error, this returns null otherwise it returns
2662 /// the block being defined.
2663 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2664                                                  LocTy Loc) {
2665   BasicBlock *BB;
2666   if (Name.empty())
2667     BB = GetBB(NumberedVals.size(), Loc);
2668   else
2669     BB = GetBB(Name, Loc);
2670   if (!BB) return nullptr; // Already diagnosed error.
2671 
2672   // Move the block to the end of the function.  Forward ref'd blocks are
2673   // inserted wherever they happen to be referenced.
2674   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2675 
2676   // Remove the block from forward ref sets.
2677   if (Name.empty()) {
2678     ForwardRefValIDs.erase(NumberedVals.size());
2679     NumberedVals.push_back(BB);
2680   } else {
2681     // BB forward references are already in the function symbol table.
2682     ForwardRefVals.erase(Name);
2683   }
2684 
2685   return BB;
2686 }
2687 
2688 //===----------------------------------------------------------------------===//
2689 // Constants.
2690 //===----------------------------------------------------------------------===//
2691 
2692 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2693 /// type implied.  For example, if we parse "4" we don't know what integer type
2694 /// it has.  The value will later be combined with its type and checked for
2695 /// sanity.  PFS is used to convert function-local operands of metadata (since
2696 /// metadata operands are not just parsed here but also converted to values).
2697 /// PFS can be null when we are not parsing metadata values inside a function.
2698 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2699   ID.Loc = Lex.getLoc();
2700   switch (Lex.getKind()) {
2701   default: return TokError("expected value token");
2702   case lltok::GlobalID:  // @42
2703     ID.UIntVal = Lex.getUIntVal();
2704     ID.Kind = ValID::t_GlobalID;
2705     break;
2706   case lltok::GlobalVar:  // @foo
2707     ID.StrVal = Lex.getStrVal();
2708     ID.Kind = ValID::t_GlobalName;
2709     break;
2710   case lltok::LocalVarID:  // %42
2711     ID.UIntVal = Lex.getUIntVal();
2712     ID.Kind = ValID::t_LocalID;
2713     break;
2714   case lltok::LocalVar:  // %foo
2715     ID.StrVal = Lex.getStrVal();
2716     ID.Kind = ValID::t_LocalName;
2717     break;
2718   case lltok::APSInt:
2719     ID.APSIntVal = Lex.getAPSIntVal();
2720     ID.Kind = ValID::t_APSInt;
2721     break;
2722   case lltok::APFloat:
2723     ID.APFloatVal = Lex.getAPFloatVal();
2724     ID.Kind = ValID::t_APFloat;
2725     break;
2726   case lltok::kw_true:
2727     ID.ConstantVal = ConstantInt::getTrue(Context);
2728     ID.Kind = ValID::t_Constant;
2729     break;
2730   case lltok::kw_false:
2731     ID.ConstantVal = ConstantInt::getFalse(Context);
2732     ID.Kind = ValID::t_Constant;
2733     break;
2734   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2735   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2736   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2737   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2738 
2739   case lltok::lbrace: {
2740     // ValID ::= '{' ConstVector '}'
2741     Lex.Lex();
2742     SmallVector<Constant*, 16> Elts;
2743     if (ParseGlobalValueVector(Elts) ||
2744         ParseToken(lltok::rbrace, "expected end of struct constant"))
2745       return true;
2746 
2747     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2748     ID.UIntVal = Elts.size();
2749     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2750            Elts.size() * sizeof(Elts[0]));
2751     ID.Kind = ValID::t_ConstantStruct;
2752     return false;
2753   }
2754   case lltok::less: {
2755     // ValID ::= '<' ConstVector '>'         --> Vector.
2756     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2757     Lex.Lex();
2758     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2759 
2760     SmallVector<Constant*, 16> Elts;
2761     LocTy FirstEltLoc = Lex.getLoc();
2762     if (ParseGlobalValueVector(Elts) ||
2763         (isPackedStruct &&
2764          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2765         ParseToken(lltok::greater, "expected end of constant"))
2766       return true;
2767 
2768     if (isPackedStruct) {
2769       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2770       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2771              Elts.size() * sizeof(Elts[0]));
2772       ID.UIntVal = Elts.size();
2773       ID.Kind = ValID::t_PackedConstantStruct;
2774       return false;
2775     }
2776 
2777     if (Elts.empty())
2778       return Error(ID.Loc, "constant vector must not be empty");
2779 
2780     if (!Elts[0]->getType()->isIntegerTy() &&
2781         !Elts[0]->getType()->isFloatingPointTy() &&
2782         !Elts[0]->getType()->isPointerTy())
2783       return Error(FirstEltLoc,
2784             "vector elements must have integer, pointer or floating point type");
2785 
2786     // Verify that all the vector elements have the same type.
2787     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2788       if (Elts[i]->getType() != Elts[0]->getType())
2789         return Error(FirstEltLoc,
2790                      "vector element #" + Twine(i) +
2791                     " is not of type '" + getTypeString(Elts[0]->getType()));
2792 
2793     ID.ConstantVal = ConstantVector::get(Elts);
2794     ID.Kind = ValID::t_Constant;
2795     return false;
2796   }
2797   case lltok::lsquare: {   // Array Constant
2798     Lex.Lex();
2799     SmallVector<Constant*, 16> Elts;
2800     LocTy FirstEltLoc = Lex.getLoc();
2801     if (ParseGlobalValueVector(Elts) ||
2802         ParseToken(lltok::rsquare, "expected end of array constant"))
2803       return true;
2804 
2805     // Handle empty element.
2806     if (Elts.empty()) {
2807       // Use undef instead of an array because it's inconvenient to determine
2808       // the element type at this point, there being no elements to examine.
2809       ID.Kind = ValID::t_EmptyArray;
2810       return false;
2811     }
2812 
2813     if (!Elts[0]->getType()->isFirstClassType())
2814       return Error(FirstEltLoc, "invalid array element type: " +
2815                    getTypeString(Elts[0]->getType()));
2816 
2817     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2818 
2819     // Verify all elements are correct type!
2820     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2821       if (Elts[i]->getType() != Elts[0]->getType())
2822         return Error(FirstEltLoc,
2823                      "array element #" + Twine(i) +
2824                      " is not of type '" + getTypeString(Elts[0]->getType()));
2825     }
2826 
2827     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2828     ID.Kind = ValID::t_Constant;
2829     return false;
2830   }
2831   case lltok::kw_c:  // c "foo"
2832     Lex.Lex();
2833     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2834                                                   false);
2835     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2836     ID.Kind = ValID::t_Constant;
2837     return false;
2838 
2839   case lltok::kw_asm: {
2840     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2841     //             STRINGCONSTANT
2842     bool HasSideEffect, AlignStack, AsmDialect;
2843     Lex.Lex();
2844     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2845         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2846         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2847         ParseStringConstant(ID.StrVal) ||
2848         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2849         ParseToken(lltok::StringConstant, "expected constraint string"))
2850       return true;
2851     ID.StrVal2 = Lex.getStrVal();
2852     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2853       (unsigned(AsmDialect)<<2);
2854     ID.Kind = ValID::t_InlineAsm;
2855     return false;
2856   }
2857 
2858   case lltok::kw_blockaddress: {
2859     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2860     Lex.Lex();
2861 
2862     ValID Fn, Label;
2863 
2864     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2865         ParseValID(Fn) ||
2866         ParseToken(lltok::comma, "expected comma in block address expression")||
2867         ParseValID(Label) ||
2868         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2869       return true;
2870 
2871     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2872       return Error(Fn.Loc, "expected function name in blockaddress");
2873     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2874       return Error(Label.Loc, "expected basic block name in blockaddress");
2875 
2876     // Try to find the function (but skip it if it's forward-referenced).
2877     GlobalValue *GV = nullptr;
2878     if (Fn.Kind == ValID::t_GlobalID) {
2879       if (Fn.UIntVal < NumberedVals.size())
2880         GV = NumberedVals[Fn.UIntVal];
2881     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2882       GV = M->getNamedValue(Fn.StrVal);
2883     }
2884     Function *F = nullptr;
2885     if (GV) {
2886       // Confirm that it's actually a function with a definition.
2887       if (!isa<Function>(GV))
2888         return Error(Fn.Loc, "expected function name in blockaddress");
2889       F = cast<Function>(GV);
2890       if (F->isDeclaration())
2891         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2892     }
2893 
2894     if (!F) {
2895       // Make a global variable as a placeholder for this reference.
2896       GlobalValue *&FwdRef =
2897           ForwardRefBlockAddresses.insert(std::make_pair(
2898                                               std::move(Fn),
2899                                               std::map<ValID, GlobalValue *>()))
2900               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2901               .first->second;
2902       if (!FwdRef)
2903         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2904                                     GlobalValue::InternalLinkage, nullptr, "");
2905       ID.ConstantVal = FwdRef;
2906       ID.Kind = ValID::t_Constant;
2907       return false;
2908     }
2909 
2910     // We found the function; now find the basic block.  Don't use PFS, since we
2911     // might be inside a constant expression.
2912     BasicBlock *BB;
2913     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2914       if (Label.Kind == ValID::t_LocalID)
2915         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2916       else
2917         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2918       if (!BB)
2919         return Error(Label.Loc, "referenced value is not a basic block");
2920     } else {
2921       if (Label.Kind == ValID::t_LocalID)
2922         return Error(Label.Loc, "cannot take address of numeric label after "
2923                                 "the function is defined");
2924       BB = dyn_cast_or_null<BasicBlock>(
2925           F->getValueSymbolTable()->lookup(Label.StrVal));
2926       if (!BB)
2927         return Error(Label.Loc, "referenced value is not a basic block");
2928     }
2929 
2930     ID.ConstantVal = BlockAddress::get(F, BB);
2931     ID.Kind = ValID::t_Constant;
2932     return false;
2933   }
2934 
2935   case lltok::kw_trunc:
2936   case lltok::kw_zext:
2937   case lltok::kw_sext:
2938   case lltok::kw_fptrunc:
2939   case lltok::kw_fpext:
2940   case lltok::kw_bitcast:
2941   case lltok::kw_addrspacecast:
2942   case lltok::kw_uitofp:
2943   case lltok::kw_sitofp:
2944   case lltok::kw_fptoui:
2945   case lltok::kw_fptosi:
2946   case lltok::kw_inttoptr:
2947   case lltok::kw_ptrtoint: {
2948     unsigned Opc = Lex.getUIntVal();
2949     Type *DestTy = nullptr;
2950     Constant *SrcVal;
2951     Lex.Lex();
2952     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2953         ParseGlobalTypeAndValue(SrcVal) ||
2954         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2955         ParseType(DestTy) ||
2956         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2957       return true;
2958     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2959       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2960                    getTypeString(SrcVal->getType()) + "' to '" +
2961                    getTypeString(DestTy) + "'");
2962     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2963                                                  SrcVal, DestTy);
2964     ID.Kind = ValID::t_Constant;
2965     return false;
2966   }
2967   case lltok::kw_extractvalue: {
2968     Lex.Lex();
2969     Constant *Val;
2970     SmallVector<unsigned, 4> Indices;
2971     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2972         ParseGlobalTypeAndValue(Val) ||
2973         ParseIndexList(Indices) ||
2974         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2975       return true;
2976 
2977     if (!Val->getType()->isAggregateType())
2978       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2979     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2980       return Error(ID.Loc, "invalid indices for extractvalue");
2981     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2982     ID.Kind = ValID::t_Constant;
2983     return false;
2984   }
2985   case lltok::kw_insertvalue: {
2986     Lex.Lex();
2987     Constant *Val0, *Val1;
2988     SmallVector<unsigned, 4> Indices;
2989     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2990         ParseGlobalTypeAndValue(Val0) ||
2991         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2992         ParseGlobalTypeAndValue(Val1) ||
2993         ParseIndexList(Indices) ||
2994         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2995       return true;
2996     if (!Val0->getType()->isAggregateType())
2997       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2998     Type *IndexedType =
2999         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3000     if (!IndexedType)
3001       return Error(ID.Loc, "invalid indices for insertvalue");
3002     if (IndexedType != Val1->getType())
3003       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3004                                getTypeString(Val1->getType()) +
3005                                "' instead of '" + getTypeString(IndexedType) +
3006                                "'");
3007     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3008     ID.Kind = ValID::t_Constant;
3009     return false;
3010   }
3011   case lltok::kw_icmp:
3012   case lltok::kw_fcmp: {
3013     unsigned PredVal, Opc = Lex.getUIntVal();
3014     Constant *Val0, *Val1;
3015     Lex.Lex();
3016     if (ParseCmpPredicate(PredVal, Opc) ||
3017         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3018         ParseGlobalTypeAndValue(Val0) ||
3019         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3020         ParseGlobalTypeAndValue(Val1) ||
3021         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3022       return true;
3023 
3024     if (Val0->getType() != Val1->getType())
3025       return Error(ID.Loc, "compare operands must have the same type");
3026 
3027     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3028 
3029     if (Opc == Instruction::FCmp) {
3030       if (!Val0->getType()->isFPOrFPVectorTy())
3031         return Error(ID.Loc, "fcmp requires floating point operands");
3032       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3033     } else {
3034       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3035       if (!Val0->getType()->isIntOrIntVectorTy() &&
3036           !Val0->getType()->getScalarType()->isPointerTy())
3037         return Error(ID.Loc, "icmp requires pointer or integer operands");
3038       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3039     }
3040     ID.Kind = ValID::t_Constant;
3041     return false;
3042   }
3043 
3044   // Binary Operators.
3045   case lltok::kw_add:
3046   case lltok::kw_fadd:
3047   case lltok::kw_sub:
3048   case lltok::kw_fsub:
3049   case lltok::kw_mul:
3050   case lltok::kw_fmul:
3051   case lltok::kw_udiv:
3052   case lltok::kw_sdiv:
3053   case lltok::kw_fdiv:
3054   case lltok::kw_urem:
3055   case lltok::kw_srem:
3056   case lltok::kw_frem:
3057   case lltok::kw_shl:
3058   case lltok::kw_lshr:
3059   case lltok::kw_ashr: {
3060     bool NUW = false;
3061     bool NSW = false;
3062     bool Exact = false;
3063     unsigned Opc = Lex.getUIntVal();
3064     Constant *Val0, *Val1;
3065     Lex.Lex();
3066     LocTy ModifierLoc = Lex.getLoc();
3067     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3068         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3069       if (EatIfPresent(lltok::kw_nuw))
3070         NUW = true;
3071       if (EatIfPresent(lltok::kw_nsw)) {
3072         NSW = true;
3073         if (EatIfPresent(lltok::kw_nuw))
3074           NUW = true;
3075       }
3076     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3077                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3078       if (EatIfPresent(lltok::kw_exact))
3079         Exact = true;
3080     }
3081     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3082         ParseGlobalTypeAndValue(Val0) ||
3083         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3084         ParseGlobalTypeAndValue(Val1) ||
3085         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3086       return true;
3087     if (Val0->getType() != Val1->getType())
3088       return Error(ID.Loc, "operands of constexpr must have same type");
3089     if (!Val0->getType()->isIntOrIntVectorTy()) {
3090       if (NUW)
3091         return Error(ModifierLoc, "nuw only applies to integer operations");
3092       if (NSW)
3093         return Error(ModifierLoc, "nsw only applies to integer operations");
3094     }
3095     // Check that the type is valid for the operator.
3096     switch (Opc) {
3097     case Instruction::Add:
3098     case Instruction::Sub:
3099     case Instruction::Mul:
3100     case Instruction::UDiv:
3101     case Instruction::SDiv:
3102     case Instruction::URem:
3103     case Instruction::SRem:
3104     case Instruction::Shl:
3105     case Instruction::AShr:
3106     case Instruction::LShr:
3107       if (!Val0->getType()->isIntOrIntVectorTy())
3108         return Error(ID.Loc, "constexpr requires integer operands");
3109       break;
3110     case Instruction::FAdd:
3111     case Instruction::FSub:
3112     case Instruction::FMul:
3113     case Instruction::FDiv:
3114     case Instruction::FRem:
3115       if (!Val0->getType()->isFPOrFPVectorTy())
3116         return Error(ID.Loc, "constexpr requires fp operands");
3117       break;
3118     default: llvm_unreachable("Unknown binary operator!");
3119     }
3120     unsigned Flags = 0;
3121     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3122     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3123     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3124     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3125     ID.ConstantVal = C;
3126     ID.Kind = ValID::t_Constant;
3127     return false;
3128   }
3129 
3130   // Logical Operations
3131   case lltok::kw_and:
3132   case lltok::kw_or:
3133   case lltok::kw_xor: {
3134     unsigned Opc = Lex.getUIntVal();
3135     Constant *Val0, *Val1;
3136     Lex.Lex();
3137     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3138         ParseGlobalTypeAndValue(Val0) ||
3139         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3140         ParseGlobalTypeAndValue(Val1) ||
3141         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3142       return true;
3143     if (Val0->getType() != Val1->getType())
3144       return Error(ID.Loc, "operands of constexpr must have same type");
3145     if (!Val0->getType()->isIntOrIntVectorTy())
3146       return Error(ID.Loc,
3147                    "constexpr requires integer or integer vector operands");
3148     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3149     ID.Kind = ValID::t_Constant;
3150     return false;
3151   }
3152 
3153   case lltok::kw_getelementptr:
3154   case lltok::kw_shufflevector:
3155   case lltok::kw_insertelement:
3156   case lltok::kw_extractelement:
3157   case lltok::kw_select: {
3158     unsigned Opc = Lex.getUIntVal();
3159     SmallVector<Constant*, 16> Elts;
3160     bool InBounds = false;
3161     Type *Ty;
3162     Lex.Lex();
3163 
3164     if (Opc == Instruction::GetElementPtr)
3165       InBounds = EatIfPresent(lltok::kw_inbounds);
3166 
3167     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3168       return true;
3169 
3170     LocTy ExplicitTypeLoc = Lex.getLoc();
3171     if (Opc == Instruction::GetElementPtr) {
3172       if (ParseType(Ty) ||
3173           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3174         return true;
3175     }
3176 
3177     if (ParseGlobalValueVector(Elts) ||
3178         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3179       return true;
3180 
3181     if (Opc == Instruction::GetElementPtr) {
3182       if (Elts.size() == 0 ||
3183           !Elts[0]->getType()->getScalarType()->isPointerTy())
3184         return Error(ID.Loc, "base of getelementptr must be a pointer");
3185 
3186       Type *BaseType = Elts[0]->getType();
3187       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3188       if (Ty != BasePointerType->getElementType())
3189         return Error(
3190             ExplicitTypeLoc,
3191             "explicit pointee type doesn't match operand's pointee type");
3192 
3193       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3194       for (Constant *Val : Indices) {
3195         Type *ValTy = Val->getType();
3196         if (!ValTy->getScalarType()->isIntegerTy())
3197           return Error(ID.Loc, "getelementptr index must be an integer");
3198         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3199           return Error(ID.Loc, "getelementptr index type missmatch");
3200         if (ValTy->isVectorTy()) {
3201           unsigned ValNumEl = ValTy->getVectorNumElements();
3202           unsigned PtrNumEl = BaseType->getVectorNumElements();
3203           if (ValNumEl != PtrNumEl)
3204             return Error(
3205                 ID.Loc,
3206                 "getelementptr vector index has a wrong number of elements");
3207         }
3208       }
3209 
3210       SmallPtrSet<Type*, 4> Visited;
3211       if (!Indices.empty() && !Ty->isSized(&Visited))
3212         return Error(ID.Loc, "base element of getelementptr must be sized");
3213 
3214       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3215         return Error(ID.Loc, "invalid getelementptr indices");
3216       ID.ConstantVal =
3217           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3218     } else if (Opc == Instruction::Select) {
3219       if (Elts.size() != 3)
3220         return Error(ID.Loc, "expected three operands to select");
3221       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3222                                                               Elts[2]))
3223         return Error(ID.Loc, Reason);
3224       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3225     } else if (Opc == Instruction::ShuffleVector) {
3226       if (Elts.size() != 3)
3227         return Error(ID.Loc, "expected three operands to shufflevector");
3228       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3229         return Error(ID.Loc, "invalid operands to shufflevector");
3230       ID.ConstantVal =
3231                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3232     } else if (Opc == Instruction::ExtractElement) {
3233       if (Elts.size() != 2)
3234         return Error(ID.Loc, "expected two operands to extractelement");
3235       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3236         return Error(ID.Loc, "invalid extractelement operands");
3237       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3238     } else {
3239       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3240       if (Elts.size() != 3)
3241       return Error(ID.Loc, "expected three operands to insertelement");
3242       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3243         return Error(ID.Loc, "invalid insertelement operands");
3244       ID.ConstantVal =
3245                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3246     }
3247 
3248     ID.Kind = ValID::t_Constant;
3249     return false;
3250   }
3251   }
3252 
3253   Lex.Lex();
3254   return false;
3255 }
3256 
3257 /// ParseGlobalValue - Parse a global value with the specified type.
3258 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3259   C = nullptr;
3260   ValID ID;
3261   Value *V = nullptr;
3262   bool Parsed = ParseValID(ID) ||
3263                 ConvertValIDToValue(Ty, ID, V, nullptr);
3264   if (V && !(C = dyn_cast<Constant>(V)))
3265     return Error(ID.Loc, "global values must be constants");
3266   return Parsed;
3267 }
3268 
3269 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3270   Type *Ty = nullptr;
3271   return ParseType(Ty) ||
3272          ParseGlobalValue(Ty, V);
3273 }
3274 
3275 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3276   C = nullptr;
3277 
3278   LocTy KwLoc = Lex.getLoc();
3279   if (!EatIfPresent(lltok::kw_comdat))
3280     return false;
3281 
3282   if (EatIfPresent(lltok::lparen)) {
3283     if (Lex.getKind() != lltok::ComdatVar)
3284       return TokError("expected comdat variable");
3285     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3286     Lex.Lex();
3287     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3288       return true;
3289   } else {
3290     if (GlobalName.empty())
3291       return TokError("comdat cannot be unnamed");
3292     C = getComdat(GlobalName, KwLoc);
3293   }
3294 
3295   return false;
3296 }
3297 
3298 /// ParseGlobalValueVector
3299 ///   ::= /*empty*/
3300 ///   ::= TypeAndValue (',' TypeAndValue)*
3301 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3302   // Empty list.
3303   if (Lex.getKind() == lltok::rbrace ||
3304       Lex.getKind() == lltok::rsquare ||
3305       Lex.getKind() == lltok::greater ||
3306       Lex.getKind() == lltok::rparen)
3307     return false;
3308 
3309   Constant *C;
3310   if (ParseGlobalTypeAndValue(C)) return true;
3311   Elts.push_back(C);
3312 
3313   while (EatIfPresent(lltok::comma)) {
3314     if (ParseGlobalTypeAndValue(C)) return true;
3315     Elts.push_back(C);
3316   }
3317 
3318   return false;
3319 }
3320 
3321 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3322   SmallVector<Metadata *, 16> Elts;
3323   if (ParseMDNodeVector(Elts))
3324     return true;
3325 
3326   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3327   return false;
3328 }
3329 
3330 /// MDNode:
3331 ///  ::= !{ ... }
3332 ///  ::= !7
3333 ///  ::= !DILocation(...)
3334 bool LLParser::ParseMDNode(MDNode *&N) {
3335   if (Lex.getKind() == lltok::MetadataVar)
3336     return ParseSpecializedMDNode(N);
3337 
3338   return ParseToken(lltok::exclaim, "expected '!' here") ||
3339          ParseMDNodeTail(N);
3340 }
3341 
3342 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3343   // !{ ... }
3344   if (Lex.getKind() == lltok::lbrace)
3345     return ParseMDTuple(N);
3346 
3347   // !42
3348   return ParseMDNodeID(N);
3349 }
3350 
3351 namespace {
3352 
3353 /// Structure to represent an optional metadata field.
3354 template <class FieldTy> struct MDFieldImpl {
3355   typedef MDFieldImpl ImplTy;
3356   FieldTy Val;
3357   bool Seen;
3358 
3359   void assign(FieldTy Val) {
3360     Seen = true;
3361     this->Val = std::move(Val);
3362   }
3363 
3364   explicit MDFieldImpl(FieldTy Default)
3365       : Val(std::move(Default)), Seen(false) {}
3366 };
3367 
3368 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3369   uint64_t Max;
3370 
3371   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3372       : ImplTy(Default), Max(Max) {}
3373 };
3374 
3375 struct LineField : public MDUnsignedField {
3376   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3377 };
3378 
3379 struct ColumnField : public MDUnsignedField {
3380   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3381 };
3382 
3383 struct DwarfTagField : public MDUnsignedField {
3384   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3385   DwarfTagField(dwarf::Tag DefaultTag)
3386       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3387 };
3388 
3389 struct DwarfMacinfoTypeField : public MDUnsignedField {
3390   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3391   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3392     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3393 };
3394 
3395 struct DwarfAttEncodingField : public MDUnsignedField {
3396   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3397 };
3398 
3399 struct DwarfVirtualityField : public MDUnsignedField {
3400   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3401 };
3402 
3403 struct DwarfLangField : public MDUnsignedField {
3404   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3405 };
3406 
3407 struct DwarfCCField : public MDUnsignedField {
3408   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3409 };
3410 
3411 struct EmissionKindField : public MDUnsignedField {
3412   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3413 };
3414 
3415 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3416   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3417 };
3418 
3419 struct MDSignedField : public MDFieldImpl<int64_t> {
3420   int64_t Min;
3421   int64_t Max;
3422 
3423   MDSignedField(int64_t Default = 0)
3424       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3425   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3426       : ImplTy(Default), Min(Min), Max(Max) {}
3427 };
3428 
3429 struct MDBoolField : public MDFieldImpl<bool> {
3430   MDBoolField(bool Default = false) : ImplTy(Default) {}
3431 };
3432 
3433 struct MDField : public MDFieldImpl<Metadata *> {
3434   bool AllowNull;
3435 
3436   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3437 };
3438 
3439 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3440   MDConstant() : ImplTy(nullptr) {}
3441 };
3442 
3443 struct MDStringField : public MDFieldImpl<MDString *> {
3444   bool AllowEmpty;
3445   MDStringField(bool AllowEmpty = true)
3446       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3447 };
3448 
3449 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3450   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3451 };
3452 
3453 } // end anonymous namespace
3454 
3455 namespace llvm {
3456 
3457 template <>
3458 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3459                             MDUnsignedField &Result) {
3460   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3461     return TokError("expected unsigned integer");
3462 
3463   auto &U = Lex.getAPSIntVal();
3464   if (U.ugt(Result.Max))
3465     return TokError("value for '" + Name + "' too large, limit is " +
3466                     Twine(Result.Max));
3467   Result.assign(U.getZExtValue());
3468   assert(Result.Val <= Result.Max && "Expected value in range");
3469   Lex.Lex();
3470   return false;
3471 }
3472 
3473 template <>
3474 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3475   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3476 }
3477 template <>
3478 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3479   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3480 }
3481 
3482 template <>
3483 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3484   if (Lex.getKind() == lltok::APSInt)
3485     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3486 
3487   if (Lex.getKind() != lltok::DwarfTag)
3488     return TokError("expected DWARF tag");
3489 
3490   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3491   if (Tag == dwarf::DW_TAG_invalid)
3492     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3493   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3494 
3495   Result.assign(Tag);
3496   Lex.Lex();
3497   return false;
3498 }
3499 
3500 template <>
3501 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3502                             DwarfMacinfoTypeField &Result) {
3503   if (Lex.getKind() == lltok::APSInt)
3504     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3505 
3506   if (Lex.getKind() != lltok::DwarfMacinfo)
3507     return TokError("expected DWARF macinfo type");
3508 
3509   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3510   if (Macinfo == dwarf::DW_MACINFO_invalid)
3511     return TokError(
3512         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3513   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3514 
3515   Result.assign(Macinfo);
3516   Lex.Lex();
3517   return false;
3518 }
3519 
3520 template <>
3521 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3522                             DwarfVirtualityField &Result) {
3523   if (Lex.getKind() == lltok::APSInt)
3524     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3525 
3526   if (Lex.getKind() != lltok::DwarfVirtuality)
3527     return TokError("expected DWARF virtuality code");
3528 
3529   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3530   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3531     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3532                     Lex.getStrVal() + "'");
3533   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3534   Result.assign(Virtuality);
3535   Lex.Lex();
3536   return false;
3537 }
3538 
3539 template <>
3540 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3541   if (Lex.getKind() == lltok::APSInt)
3542     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3543 
3544   if (Lex.getKind() != lltok::DwarfLang)
3545     return TokError("expected DWARF language");
3546 
3547   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3548   if (!Lang)
3549     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3550                     "'");
3551   assert(Lang <= Result.Max && "Expected valid DWARF language");
3552   Result.assign(Lang);
3553   Lex.Lex();
3554   return false;
3555 }
3556 
3557 template <>
3558 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3559   if (Lex.getKind() == lltok::APSInt)
3560     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3561 
3562   if (Lex.getKind() != lltok::DwarfCC)
3563     return TokError("expected DWARF calling convention");
3564 
3565   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3566   if (!CC)
3567     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3568                     "'");
3569   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3570   Result.assign(CC);
3571   Lex.Lex();
3572   return false;
3573 }
3574 
3575 template <>
3576 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3577   if (Lex.getKind() == lltok::APSInt)
3578     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3579 
3580   if (Lex.getKind() != lltok::EmissionKind)
3581     return TokError("expected emission kind");
3582 
3583   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3584   if (!Kind)
3585     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3586                     "'");
3587   assert(*Kind <= Result.Max && "Expected valid emission kind");
3588   Result.assign(*Kind);
3589   Lex.Lex();
3590   return false;
3591 }
3592 
3593 template <>
3594 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3595                             DwarfAttEncodingField &Result) {
3596   if (Lex.getKind() == lltok::APSInt)
3597     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3598 
3599   if (Lex.getKind() != lltok::DwarfAttEncoding)
3600     return TokError("expected DWARF type attribute encoding");
3601 
3602   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3603   if (!Encoding)
3604     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3605                     Lex.getStrVal() + "'");
3606   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3607   Result.assign(Encoding);
3608   Lex.Lex();
3609   return false;
3610 }
3611 
3612 /// DIFlagField
3613 ///  ::= uint32
3614 ///  ::= DIFlagVector
3615 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3616 template <>
3617 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3618 
3619   // Parser for a single flag.
3620   auto parseFlag = [&](DINode::DIFlags &Val) {
3621     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3622       uint32_t TempVal = static_cast<uint32_t>(Val);
3623       bool Res = ParseUInt32(TempVal);
3624       Val = static_cast<DINode::DIFlags>(TempVal);
3625       return Res;
3626     }
3627 
3628     if (Lex.getKind() != lltok::DIFlag)
3629       return TokError("expected debug info flag");
3630 
3631     Val = DINode::getFlag(Lex.getStrVal());
3632     if (!Val)
3633       return TokError(Twine("invalid debug info flag flag '") +
3634                       Lex.getStrVal() + "'");
3635     Lex.Lex();
3636     return false;
3637   };
3638 
3639   // Parse the flags and combine them together.
3640   DINode::DIFlags Combined = DINode::FlagZero;
3641   do {
3642     DINode::DIFlags Val;
3643     if (parseFlag(Val))
3644       return true;
3645     Combined |= Val;
3646   } while (EatIfPresent(lltok::bar));
3647 
3648   Result.assign(Combined);
3649   return false;
3650 }
3651 
3652 template <>
3653 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3654                             MDSignedField &Result) {
3655   if (Lex.getKind() != lltok::APSInt)
3656     return TokError("expected signed integer");
3657 
3658   auto &S = Lex.getAPSIntVal();
3659   if (S < Result.Min)
3660     return TokError("value for '" + Name + "' too small, limit is " +
3661                     Twine(Result.Min));
3662   if (S > Result.Max)
3663     return TokError("value for '" + Name + "' too large, limit is " +
3664                     Twine(Result.Max));
3665   Result.assign(S.getExtValue());
3666   assert(Result.Val >= Result.Min && "Expected value in range");
3667   assert(Result.Val <= Result.Max && "Expected value in range");
3668   Lex.Lex();
3669   return false;
3670 }
3671 
3672 template <>
3673 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3674   switch (Lex.getKind()) {
3675   default:
3676     return TokError("expected 'true' or 'false'");
3677   case lltok::kw_true:
3678     Result.assign(true);
3679     break;
3680   case lltok::kw_false:
3681     Result.assign(false);
3682     break;
3683   }
3684   Lex.Lex();
3685   return false;
3686 }
3687 
3688 template <>
3689 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3690   if (Lex.getKind() == lltok::kw_null) {
3691     if (!Result.AllowNull)
3692       return TokError("'" + Name + "' cannot be null");
3693     Lex.Lex();
3694     Result.assign(nullptr);
3695     return false;
3696   }
3697 
3698   Metadata *MD;
3699   if (ParseMetadata(MD, nullptr))
3700     return true;
3701 
3702   Result.assign(MD);
3703   return false;
3704 }
3705 
3706 template <>
3707 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3708   LocTy ValueLoc = Lex.getLoc();
3709   std::string S;
3710   if (ParseStringConstant(S))
3711     return true;
3712 
3713   if (!Result.AllowEmpty && S.empty())
3714     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3715 
3716   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3717   return false;
3718 }
3719 
3720 template <>
3721 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3722   SmallVector<Metadata *, 4> MDs;
3723   if (ParseMDNodeVector(MDs))
3724     return true;
3725 
3726   Result.assign(std::move(MDs));
3727   return false;
3728 }
3729 
3730 } // end namespace llvm
3731 
3732 template <class ParserTy>
3733 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3734   do {
3735     if (Lex.getKind() != lltok::LabelStr)
3736       return TokError("expected field label here");
3737 
3738     if (parseField())
3739       return true;
3740   } while (EatIfPresent(lltok::comma));
3741 
3742   return false;
3743 }
3744 
3745 template <class ParserTy>
3746 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3747   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3748   Lex.Lex();
3749 
3750   if (ParseToken(lltok::lparen, "expected '(' here"))
3751     return true;
3752   if (Lex.getKind() != lltok::rparen)
3753     if (ParseMDFieldsImplBody(parseField))
3754       return true;
3755 
3756   ClosingLoc = Lex.getLoc();
3757   return ParseToken(lltok::rparen, "expected ')' here");
3758 }
3759 
3760 template <class FieldTy>
3761 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3762   if (Result.Seen)
3763     return TokError("field '" + Name + "' cannot be specified more than once");
3764 
3765   LocTy Loc = Lex.getLoc();
3766   Lex.Lex();
3767   return ParseMDField(Loc, Name, Result);
3768 }
3769 
3770 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3771   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3772 
3773 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3774   if (Lex.getStrVal() == #CLASS)                                               \
3775     return Parse##CLASS(N, IsDistinct);
3776 #include "llvm/IR/Metadata.def"
3777 
3778   return TokError("expected metadata type");
3779 }
3780 
3781 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3782 #define NOP_FIELD(NAME, TYPE, INIT)
3783 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3784   if (!NAME.Seen)                                                              \
3785     return Error(ClosingLoc, "missing required field '" #NAME "'");
3786 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3787   if (Lex.getStrVal() == #NAME)                                                \
3788     return ParseMDField(#NAME, NAME);
3789 #define PARSE_MD_FIELDS()                                                      \
3790   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3791   do {                                                                         \
3792     LocTy ClosingLoc;                                                          \
3793     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3794       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3795       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3796     }, ClosingLoc))                                                            \
3797       return true;                                                             \
3798     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3799   } while (false)
3800 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3801   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3802 
3803 /// ParseDILocationFields:
3804 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3805 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3806 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3807   OPTIONAL(line, LineField, );                                                 \
3808   OPTIONAL(column, ColumnField, );                                             \
3809   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3810   OPTIONAL(inlinedAt, MDField, );
3811   PARSE_MD_FIELDS();
3812 #undef VISIT_MD_FIELDS
3813 
3814   Result = GET_OR_DISTINCT(
3815       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3816   return false;
3817 }
3818 
3819 /// ParseGenericDINode:
3820 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3821 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3822 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3823   REQUIRED(tag, DwarfTagField, );                                              \
3824   OPTIONAL(header, MDStringField, );                                           \
3825   OPTIONAL(operands, MDFieldList, );
3826   PARSE_MD_FIELDS();
3827 #undef VISIT_MD_FIELDS
3828 
3829   Result = GET_OR_DISTINCT(GenericDINode,
3830                            (Context, tag.Val, header.Val, operands.Val));
3831   return false;
3832 }
3833 
3834 /// ParseDISubrange:
3835 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3836 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3837 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3838   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3839   OPTIONAL(lowerBound, MDSignedField, );
3840   PARSE_MD_FIELDS();
3841 #undef VISIT_MD_FIELDS
3842 
3843   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3844   return false;
3845 }
3846 
3847 /// ParseDIEnumerator:
3848 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3849 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3850 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3851   REQUIRED(name, MDStringField, );                                             \
3852   REQUIRED(value, MDSignedField, );
3853   PARSE_MD_FIELDS();
3854 #undef VISIT_MD_FIELDS
3855 
3856   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3857   return false;
3858 }
3859 
3860 /// ParseDIBasicType:
3861 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3862 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3863 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3864   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3865   OPTIONAL(name, MDStringField, );                                             \
3866   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3867   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3868   OPTIONAL(encoding, DwarfAttEncodingField, );
3869   PARSE_MD_FIELDS();
3870 #undef VISIT_MD_FIELDS
3871 
3872   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3873                                          align.Val, encoding.Val));
3874   return false;
3875 }
3876 
3877 /// ParseDIDerivedType:
3878 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3879 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3880 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3881 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3882 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3883   REQUIRED(tag, DwarfTagField, );                                              \
3884   OPTIONAL(name, MDStringField, );                                             \
3885   OPTIONAL(file, MDField, );                                                   \
3886   OPTIONAL(line, LineField, );                                                 \
3887   OPTIONAL(scope, MDField, );                                                  \
3888   REQUIRED(baseType, MDField, );                                               \
3889   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3890   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3891   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3892   OPTIONAL(flags, DIFlagField, );                                              \
3893   OPTIONAL(extraData, MDField, );
3894   PARSE_MD_FIELDS();
3895 #undef VISIT_MD_FIELDS
3896 
3897   Result = GET_OR_DISTINCT(DIDerivedType,
3898                            (Context, tag.Val, name.Val, file.Val, line.Val,
3899                             scope.Val, baseType.Val, size.Val, align.Val,
3900                             offset.Val, flags.Val, extraData.Val));
3901   return false;
3902 }
3903 
3904 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3905 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3906   REQUIRED(tag, DwarfTagField, );                                              \
3907   OPTIONAL(name, MDStringField, );                                             \
3908   OPTIONAL(file, MDField, );                                                   \
3909   OPTIONAL(line, LineField, );                                                 \
3910   OPTIONAL(scope, MDField, );                                                  \
3911   OPTIONAL(baseType, MDField, );                                               \
3912   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3913   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3914   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3915   OPTIONAL(flags, DIFlagField, );                                              \
3916   OPTIONAL(elements, MDField, );                                               \
3917   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3918   OPTIONAL(vtableHolder, MDField, );                                           \
3919   OPTIONAL(templateParams, MDField, );                                         \
3920   OPTIONAL(identifier, MDStringField, );
3921   PARSE_MD_FIELDS();
3922 #undef VISIT_MD_FIELDS
3923 
3924   // If this has an identifier try to build an ODR type.
3925   if (identifier.Val)
3926     if (auto *CT = DICompositeType::buildODRType(
3927             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
3928             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
3929             elements.Val, runtimeLang.Val, vtableHolder.Val,
3930             templateParams.Val)) {
3931       Result = CT;
3932       return false;
3933     }
3934 
3935   // Create a new node, and save it in the context if it belongs in the type
3936   // map.
3937   Result = GET_OR_DISTINCT(
3938       DICompositeType,
3939       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3940        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3941        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3942   return false;
3943 }
3944 
3945 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3946 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3947   OPTIONAL(flags, DIFlagField, );                                              \
3948   OPTIONAL(cc, DwarfCCField, );                                                \
3949   REQUIRED(types, MDField, );
3950   PARSE_MD_FIELDS();
3951 #undef VISIT_MD_FIELDS
3952 
3953   Result = GET_OR_DISTINCT(DISubroutineType,
3954                            (Context, flags.Val, cc.Val, types.Val));
3955   return false;
3956 }
3957 
3958 /// ParseDIFileType:
3959 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
3960 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3961 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3962   REQUIRED(filename, MDStringField, );                                         \
3963   REQUIRED(directory, MDStringField, );
3964   PARSE_MD_FIELDS();
3965 #undef VISIT_MD_FIELDS
3966 
3967   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3968   return false;
3969 }
3970 
3971 /// ParseDICompileUnit:
3972 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3973 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3974 ///                      splitDebugFilename: "abc.debug",
3975 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
3976 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
3977 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3978   if (!IsDistinct)
3979     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3980 
3981 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3982   REQUIRED(language, DwarfLangField, );                                        \
3983   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3984   OPTIONAL(producer, MDStringField, );                                         \
3985   OPTIONAL(isOptimized, MDBoolField, );                                        \
3986   OPTIONAL(flags, MDStringField, );                                            \
3987   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3988   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3989   OPTIONAL(emissionKind, EmissionKindField, );                                 \
3990   OPTIONAL(enums, MDField, );                                                  \
3991   OPTIONAL(retainedTypes, MDField, );                                          \
3992   OPTIONAL(globals, MDField, );                                                \
3993   OPTIONAL(imports, MDField, );                                                \
3994   OPTIONAL(macros, MDField, );                                                 \
3995   OPTIONAL(dwoId, MDUnsignedField, );                                          \
3996   OPTIONAL(splitDebugInlining, MDBoolField, = true);
3997   PARSE_MD_FIELDS();
3998 #undef VISIT_MD_FIELDS
3999 
4000   Result = DICompileUnit::getDistinct(
4001       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4002       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4003       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4004       splitDebugInlining.Val);
4005   return false;
4006 }
4007 
4008 /// ParseDISubprogram:
4009 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4010 ///                     file: !1, line: 7, type: !2, isLocal: false,
4011 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4012 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4013 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4014 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4015 ///                     variables: !6)
4016 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4017   auto Loc = Lex.getLoc();
4018 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4019   OPTIONAL(scope, MDField, );                                                  \
4020   OPTIONAL(name, MDStringField, );                                             \
4021   OPTIONAL(linkageName, MDStringField, );                                      \
4022   OPTIONAL(file, MDField, );                                                   \
4023   OPTIONAL(line, LineField, );                                                 \
4024   OPTIONAL(type, MDField, );                                                   \
4025   OPTIONAL(isLocal, MDBoolField, );                                            \
4026   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4027   OPTIONAL(scopeLine, LineField, );                                            \
4028   OPTIONAL(containingType, MDField, );                                         \
4029   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4030   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4031   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4032   OPTIONAL(flags, DIFlagField, );                                              \
4033   OPTIONAL(isOptimized, MDBoolField, );                                        \
4034   OPTIONAL(unit, MDField, );                                                   \
4035   OPTIONAL(templateParams, MDField, );                                         \
4036   OPTIONAL(declaration, MDField, );                                            \
4037   OPTIONAL(variables, MDField, );
4038   PARSE_MD_FIELDS();
4039 #undef VISIT_MD_FIELDS
4040 
4041   if (isDefinition.Val && !IsDistinct)
4042     return Lex.Error(
4043         Loc,
4044         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4045 
4046   Result = GET_OR_DISTINCT(
4047       DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4048                      line.Val, type.Val, isLocal.Val, isDefinition.Val,
4049                      scopeLine.Val, containingType.Val, virtuality.Val,
4050                      virtualIndex.Val, thisAdjustment.Val, flags.Val,
4051                      isOptimized.Val, unit.Val, templateParams.Val,
4052                      declaration.Val, variables.Val));
4053   return false;
4054 }
4055 
4056 /// ParseDILexicalBlock:
4057 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4058 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4059 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4060   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4061   OPTIONAL(file, MDField, );                                                   \
4062   OPTIONAL(line, LineField, );                                                 \
4063   OPTIONAL(column, ColumnField, );
4064   PARSE_MD_FIELDS();
4065 #undef VISIT_MD_FIELDS
4066 
4067   Result = GET_OR_DISTINCT(
4068       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4069   return false;
4070 }
4071 
4072 /// ParseDILexicalBlockFile:
4073 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4074 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4075 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4076   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4077   OPTIONAL(file, MDField, );                                                   \
4078   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4079   PARSE_MD_FIELDS();
4080 #undef VISIT_MD_FIELDS
4081 
4082   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4083                            (Context, scope.Val, file.Val, discriminator.Val));
4084   return false;
4085 }
4086 
4087 /// ParseDINamespace:
4088 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4089 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4090 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4091   REQUIRED(scope, MDField, );                                                  \
4092   OPTIONAL(file, MDField, );                                                   \
4093   OPTIONAL(name, MDStringField, );                                             \
4094   OPTIONAL(line, LineField, );
4095   PARSE_MD_FIELDS();
4096 #undef VISIT_MD_FIELDS
4097 
4098   Result = GET_OR_DISTINCT(DINamespace,
4099                            (Context, scope.Val, file.Val, name.Val, line.Val));
4100   return false;
4101 }
4102 
4103 /// ParseDIMacro:
4104 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4105 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4106 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4107   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4108   REQUIRED(line, LineField, );                                                 \
4109   REQUIRED(name, MDStringField, );                                             \
4110   OPTIONAL(value, MDStringField, );
4111   PARSE_MD_FIELDS();
4112 #undef VISIT_MD_FIELDS
4113 
4114   Result = GET_OR_DISTINCT(DIMacro,
4115                            (Context, type.Val, line.Val, name.Val, value.Val));
4116   return false;
4117 }
4118 
4119 /// ParseDIMacroFile:
4120 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4121 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4122 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4123   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4124   REQUIRED(line, LineField, );                                                 \
4125   REQUIRED(file, MDField, );                                                   \
4126   OPTIONAL(nodes, MDField, );
4127   PARSE_MD_FIELDS();
4128 #undef VISIT_MD_FIELDS
4129 
4130   Result = GET_OR_DISTINCT(DIMacroFile,
4131                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4132   return false;
4133 }
4134 
4135 /// ParseDIModule:
4136 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4137 ///                 includePath: "/usr/include", isysroot: "/")
4138 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4139 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4140   REQUIRED(scope, MDField, );                                                  \
4141   REQUIRED(name, MDStringField, );                                             \
4142   OPTIONAL(configMacros, MDStringField, );                                     \
4143   OPTIONAL(includePath, MDStringField, );                                      \
4144   OPTIONAL(isysroot, MDStringField, );
4145   PARSE_MD_FIELDS();
4146 #undef VISIT_MD_FIELDS
4147 
4148   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4149                            configMacros.Val, includePath.Val, isysroot.Val));
4150   return false;
4151 }
4152 
4153 /// ParseDITemplateTypeParameter:
4154 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4155 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4156 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4157   OPTIONAL(name, MDStringField, );                                             \
4158   REQUIRED(type, MDField, );
4159   PARSE_MD_FIELDS();
4160 #undef VISIT_MD_FIELDS
4161 
4162   Result =
4163       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4164   return false;
4165 }
4166 
4167 /// ParseDITemplateValueParameter:
4168 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4169 ///                                 name: "V", type: !1, value: i32 7)
4170 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4171 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4172   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4173   OPTIONAL(name, MDStringField, );                                             \
4174   OPTIONAL(type, MDField, );                                                   \
4175   REQUIRED(value, MDField, );
4176   PARSE_MD_FIELDS();
4177 #undef VISIT_MD_FIELDS
4178 
4179   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4180                            (Context, tag.Val, name.Val, type.Val, value.Val));
4181   return false;
4182 }
4183 
4184 /// ParseDIGlobalVariable:
4185 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4186 ///                         file: !1, line: 7, type: !2, isLocal: false,
4187 ///                         isDefinition: true, variable: i32* @foo,
4188 ///                         declaration: !3)
4189 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4190 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4191   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4192   OPTIONAL(scope, MDField, );                                                  \
4193   OPTIONAL(linkageName, MDStringField, );                                      \
4194   OPTIONAL(file, MDField, );                                                   \
4195   OPTIONAL(line, LineField, );                                                 \
4196   OPTIONAL(type, MDField, );                                                   \
4197   OPTIONAL(isLocal, MDBoolField, );                                            \
4198   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4199   OPTIONAL(expr, MDField, );                                                   \
4200   OPTIONAL(declaration, MDField, );
4201   PARSE_MD_FIELDS();
4202 #undef VISIT_MD_FIELDS
4203 
4204   Result = GET_OR_DISTINCT(DIGlobalVariable,
4205                            (Context, scope.Val, name.Val, linkageName.Val,
4206                             file.Val, line.Val, type.Val, isLocal.Val,
4207                             isDefinition.Val, expr.Val, declaration.Val));
4208   return false;
4209 }
4210 
4211 /// ParseDILocalVariable:
4212 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4213 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4214 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4215 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4216 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4218   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4219   OPTIONAL(name, MDStringField, );                                             \
4220   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4221   OPTIONAL(file, MDField, );                                                   \
4222   OPTIONAL(line, LineField, );                                                 \
4223   OPTIONAL(type, MDField, );                                                   \
4224   OPTIONAL(flags, DIFlagField, );
4225   PARSE_MD_FIELDS();
4226 #undef VISIT_MD_FIELDS
4227 
4228   Result = GET_OR_DISTINCT(DILocalVariable,
4229                            (Context, scope.Val, name.Val, file.Val, line.Val,
4230                             type.Val, arg.Val, flags.Val));
4231   return false;
4232 }
4233 
4234 /// ParseDIExpression:
4235 ///   ::= !DIExpression(0, 7, -1)
4236 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4237   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4238   Lex.Lex();
4239 
4240   if (ParseToken(lltok::lparen, "expected '(' here"))
4241     return true;
4242 
4243   SmallVector<uint64_t, 8> Elements;
4244   if (Lex.getKind() != lltok::rparen)
4245     do {
4246       if (Lex.getKind() == lltok::DwarfOp) {
4247         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4248           Lex.Lex();
4249           Elements.push_back(Op);
4250           continue;
4251         }
4252         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4253       }
4254 
4255       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4256         return TokError("expected unsigned integer");
4257 
4258       auto &U = Lex.getAPSIntVal();
4259       if (U.ugt(UINT64_MAX))
4260         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4261       Elements.push_back(U.getZExtValue());
4262       Lex.Lex();
4263     } while (EatIfPresent(lltok::comma));
4264 
4265   if (ParseToken(lltok::rparen, "expected ')' here"))
4266     return true;
4267 
4268   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4269   return false;
4270 }
4271 
4272 /// ParseDIObjCProperty:
4273 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4274 ///                       getter: "getFoo", attributes: 7, type: !2)
4275 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4276 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4277   OPTIONAL(name, MDStringField, );                                             \
4278   OPTIONAL(file, MDField, );                                                   \
4279   OPTIONAL(line, LineField, );                                                 \
4280   OPTIONAL(setter, MDStringField, );                                           \
4281   OPTIONAL(getter, MDStringField, );                                           \
4282   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4283   OPTIONAL(type, MDField, );
4284   PARSE_MD_FIELDS();
4285 #undef VISIT_MD_FIELDS
4286 
4287   Result = GET_OR_DISTINCT(DIObjCProperty,
4288                            (Context, name.Val, file.Val, line.Val, setter.Val,
4289                             getter.Val, attributes.Val, type.Val));
4290   return false;
4291 }
4292 
4293 /// ParseDIImportedEntity:
4294 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4295 ///                         line: 7, name: "foo")
4296 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4297 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4298   REQUIRED(tag, DwarfTagField, );                                              \
4299   REQUIRED(scope, MDField, );                                                  \
4300   OPTIONAL(entity, MDField, );                                                 \
4301   OPTIONAL(line, LineField, );                                                 \
4302   OPTIONAL(name, MDStringField, );
4303   PARSE_MD_FIELDS();
4304 #undef VISIT_MD_FIELDS
4305 
4306   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4307                                               entity.Val, line.Val, name.Val));
4308   return false;
4309 }
4310 
4311 #undef PARSE_MD_FIELD
4312 #undef NOP_FIELD
4313 #undef REQUIRE_FIELD
4314 #undef DECLARE_FIELD
4315 
4316 /// ParseMetadataAsValue
4317 ///  ::= metadata i32 %local
4318 ///  ::= metadata i32 @global
4319 ///  ::= metadata i32 7
4320 ///  ::= metadata !0
4321 ///  ::= metadata !{...}
4322 ///  ::= metadata !"string"
4323 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4324   // Note: the type 'metadata' has already been parsed.
4325   Metadata *MD;
4326   if (ParseMetadata(MD, &PFS))
4327     return true;
4328 
4329   V = MetadataAsValue::get(Context, MD);
4330   return false;
4331 }
4332 
4333 /// ParseValueAsMetadata
4334 ///  ::= i32 %local
4335 ///  ::= i32 @global
4336 ///  ::= i32 7
4337 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4338                                     PerFunctionState *PFS) {
4339   Type *Ty;
4340   LocTy Loc;
4341   if (ParseType(Ty, TypeMsg, Loc))
4342     return true;
4343   if (Ty->isMetadataTy())
4344     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4345 
4346   Value *V;
4347   if (ParseValue(Ty, V, PFS))
4348     return true;
4349 
4350   MD = ValueAsMetadata::get(V);
4351   return false;
4352 }
4353 
4354 /// ParseMetadata
4355 ///  ::= i32 %local
4356 ///  ::= i32 @global
4357 ///  ::= i32 7
4358 ///  ::= !42
4359 ///  ::= !{...}
4360 ///  ::= !"string"
4361 ///  ::= !DILocation(...)
4362 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4363   if (Lex.getKind() == lltok::MetadataVar) {
4364     MDNode *N;
4365     if (ParseSpecializedMDNode(N))
4366       return true;
4367     MD = N;
4368     return false;
4369   }
4370 
4371   // ValueAsMetadata:
4372   // <type> <value>
4373   if (Lex.getKind() != lltok::exclaim)
4374     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4375 
4376   // '!'.
4377   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4378   Lex.Lex();
4379 
4380   // MDString:
4381   //   ::= '!' STRINGCONSTANT
4382   if (Lex.getKind() == lltok::StringConstant) {
4383     MDString *S;
4384     if (ParseMDString(S))
4385       return true;
4386     MD = S;
4387     return false;
4388   }
4389 
4390   // MDNode:
4391   // !{ ... }
4392   // !7
4393   MDNode *N;
4394   if (ParseMDNodeTail(N))
4395     return true;
4396   MD = N;
4397   return false;
4398 }
4399 
4400 //===----------------------------------------------------------------------===//
4401 // Function Parsing.
4402 //===----------------------------------------------------------------------===//
4403 
4404 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4405                                    PerFunctionState *PFS) {
4406   if (Ty->isFunctionTy())
4407     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4408 
4409   switch (ID.Kind) {
4410   case ValID::t_LocalID:
4411     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4412     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4413     return V == nullptr;
4414   case ValID::t_LocalName:
4415     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4416     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4417     return V == nullptr;
4418   case ValID::t_InlineAsm: {
4419     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4420       return Error(ID.Loc, "invalid type for inline asm constraint string");
4421     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4422                        (ID.UIntVal >> 1) & 1,
4423                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4424     return false;
4425   }
4426   case ValID::t_GlobalName:
4427     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4428     return V == nullptr;
4429   case ValID::t_GlobalID:
4430     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4431     return V == nullptr;
4432   case ValID::t_APSInt:
4433     if (!Ty->isIntegerTy())
4434       return Error(ID.Loc, "integer constant must have integer type");
4435     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4436     V = ConstantInt::get(Context, ID.APSIntVal);
4437     return false;
4438   case ValID::t_APFloat:
4439     if (!Ty->isFloatingPointTy() ||
4440         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4441       return Error(ID.Loc, "floating point constant invalid for type");
4442 
4443     // The lexer has no type info, so builds all half, float, and double FP
4444     // constants as double.  Fix this here.  Long double does not need this.
4445     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4446       bool Ignored;
4447       if (Ty->isHalfTy())
4448         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4449                               &Ignored);
4450       else if (Ty->isFloatTy())
4451         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4452                               &Ignored);
4453     }
4454     V = ConstantFP::get(Context, ID.APFloatVal);
4455 
4456     if (V->getType() != Ty)
4457       return Error(ID.Loc, "floating point constant does not have type '" +
4458                    getTypeString(Ty) + "'");
4459 
4460     return false;
4461   case ValID::t_Null:
4462     if (!Ty->isPointerTy())
4463       return Error(ID.Loc, "null must be a pointer type");
4464     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4465     return false;
4466   case ValID::t_Undef:
4467     // FIXME: LabelTy should not be a first-class type.
4468     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4469       return Error(ID.Loc, "invalid type for undef constant");
4470     V = UndefValue::get(Ty);
4471     return false;
4472   case ValID::t_EmptyArray:
4473     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4474       return Error(ID.Loc, "invalid empty array initializer");
4475     V = UndefValue::get(Ty);
4476     return false;
4477   case ValID::t_Zero:
4478     // FIXME: LabelTy should not be a first-class type.
4479     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4480       return Error(ID.Loc, "invalid type for null constant");
4481     V = Constant::getNullValue(Ty);
4482     return false;
4483   case ValID::t_None:
4484     if (!Ty->isTokenTy())
4485       return Error(ID.Loc, "invalid type for none constant");
4486     V = Constant::getNullValue(Ty);
4487     return false;
4488   case ValID::t_Constant:
4489     if (ID.ConstantVal->getType() != Ty)
4490       return Error(ID.Loc, "constant expression type mismatch");
4491 
4492     V = ID.ConstantVal;
4493     return false;
4494   case ValID::t_ConstantStruct:
4495   case ValID::t_PackedConstantStruct:
4496     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4497       if (ST->getNumElements() != ID.UIntVal)
4498         return Error(ID.Loc,
4499                      "initializer with struct type has wrong # elements");
4500       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4501         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4502 
4503       // Verify that the elements are compatible with the structtype.
4504       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4505         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4506           return Error(ID.Loc, "element " + Twine(i) +
4507                     " of struct initializer doesn't match struct element type");
4508 
4509       V = ConstantStruct::get(
4510           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4511     } else
4512       return Error(ID.Loc, "constant expression type mismatch");
4513     return false;
4514   }
4515   llvm_unreachable("Invalid ValID");
4516 }
4517 
4518 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4519   C = nullptr;
4520   ValID ID;
4521   auto Loc = Lex.getLoc();
4522   if (ParseValID(ID, /*PFS=*/nullptr))
4523     return true;
4524   switch (ID.Kind) {
4525   case ValID::t_APSInt:
4526   case ValID::t_APFloat:
4527   case ValID::t_Undef:
4528   case ValID::t_Constant:
4529   case ValID::t_ConstantStruct:
4530   case ValID::t_PackedConstantStruct: {
4531     Value *V;
4532     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4533       return true;
4534     assert(isa<Constant>(V) && "Expected a constant value");
4535     C = cast<Constant>(V);
4536     return false;
4537   }
4538   default:
4539     return Error(Loc, "expected a constant value");
4540   }
4541 }
4542 
4543 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4544   V = nullptr;
4545   ValID ID;
4546   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4547 }
4548 
4549 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4550   Type *Ty = nullptr;
4551   return ParseType(Ty) ||
4552          ParseValue(Ty, V, PFS);
4553 }
4554 
4555 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4556                                       PerFunctionState &PFS) {
4557   Value *V;
4558   Loc = Lex.getLoc();
4559   if (ParseTypeAndValue(V, PFS)) return true;
4560   if (!isa<BasicBlock>(V))
4561     return Error(Loc, "expected a basic block");
4562   BB = cast<BasicBlock>(V);
4563   return false;
4564 }
4565 
4566 /// FunctionHeader
4567 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4568 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4569 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4570 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4571   // Parse the linkage.
4572   LocTy LinkageLoc = Lex.getLoc();
4573   unsigned Linkage;
4574 
4575   unsigned Visibility;
4576   unsigned DLLStorageClass;
4577   AttrBuilder RetAttrs;
4578   unsigned CC;
4579   bool HasLinkage;
4580   Type *RetType = nullptr;
4581   LocTy RetTypeLoc = Lex.getLoc();
4582   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4583       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4584       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4585     return true;
4586 
4587   // Verify that the linkage is ok.
4588   switch ((GlobalValue::LinkageTypes)Linkage) {
4589   case GlobalValue::ExternalLinkage:
4590     break; // always ok.
4591   case GlobalValue::ExternalWeakLinkage:
4592     if (isDefine)
4593       return Error(LinkageLoc, "invalid linkage for function definition");
4594     break;
4595   case GlobalValue::PrivateLinkage:
4596   case GlobalValue::InternalLinkage:
4597   case GlobalValue::AvailableExternallyLinkage:
4598   case GlobalValue::LinkOnceAnyLinkage:
4599   case GlobalValue::LinkOnceODRLinkage:
4600   case GlobalValue::WeakAnyLinkage:
4601   case GlobalValue::WeakODRLinkage:
4602     if (!isDefine)
4603       return Error(LinkageLoc, "invalid linkage for function declaration");
4604     break;
4605   case GlobalValue::AppendingLinkage:
4606   case GlobalValue::CommonLinkage:
4607     return Error(LinkageLoc, "invalid function linkage type");
4608   }
4609 
4610   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4611     return Error(LinkageLoc,
4612                  "symbol with local linkage must have default visibility");
4613 
4614   if (!FunctionType::isValidReturnType(RetType))
4615     return Error(RetTypeLoc, "invalid function return type");
4616 
4617   LocTy NameLoc = Lex.getLoc();
4618 
4619   std::string FunctionName;
4620   if (Lex.getKind() == lltok::GlobalVar) {
4621     FunctionName = Lex.getStrVal();
4622   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4623     unsigned NameID = Lex.getUIntVal();
4624 
4625     if (NameID != NumberedVals.size())
4626       return TokError("function expected to be numbered '%" +
4627                       Twine(NumberedVals.size()) + "'");
4628   } else {
4629     return TokError("expected function name");
4630   }
4631 
4632   Lex.Lex();
4633 
4634   if (Lex.getKind() != lltok::lparen)
4635     return TokError("expected '(' in function argument list");
4636 
4637   SmallVector<ArgInfo, 8> ArgList;
4638   bool isVarArg;
4639   AttrBuilder FuncAttrs;
4640   std::vector<unsigned> FwdRefAttrGrps;
4641   LocTy BuiltinLoc;
4642   std::string Section;
4643   unsigned Alignment;
4644   std::string GC;
4645   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4646   LocTy UnnamedAddrLoc;
4647   Constant *Prefix = nullptr;
4648   Constant *Prologue = nullptr;
4649   Constant *PersonalityFn = nullptr;
4650   Comdat *C;
4651 
4652   if (ParseArgumentList(ArgList, isVarArg) ||
4653       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4654       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4655                                  BuiltinLoc) ||
4656       (EatIfPresent(lltok::kw_section) &&
4657        ParseStringConstant(Section)) ||
4658       parseOptionalComdat(FunctionName, C) ||
4659       ParseOptionalAlignment(Alignment) ||
4660       (EatIfPresent(lltok::kw_gc) &&
4661        ParseStringConstant(GC)) ||
4662       (EatIfPresent(lltok::kw_prefix) &&
4663        ParseGlobalTypeAndValue(Prefix)) ||
4664       (EatIfPresent(lltok::kw_prologue) &&
4665        ParseGlobalTypeAndValue(Prologue)) ||
4666       (EatIfPresent(lltok::kw_personality) &&
4667        ParseGlobalTypeAndValue(PersonalityFn)))
4668     return true;
4669 
4670   if (FuncAttrs.contains(Attribute::Builtin))
4671     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4672 
4673   // If the alignment was parsed as an attribute, move to the alignment field.
4674   if (FuncAttrs.hasAlignmentAttr()) {
4675     Alignment = FuncAttrs.getAlignment();
4676     FuncAttrs.removeAttribute(Attribute::Alignment);
4677   }
4678 
4679   // Okay, if we got here, the function is syntactically valid.  Convert types
4680   // and do semantic checks.
4681   std::vector<Type*> ParamTypeList;
4682   SmallVector<AttributeSet, 8> Attrs;
4683 
4684   if (RetAttrs.hasAttributes())
4685     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4686                                       AttributeSet::ReturnIndex,
4687                                       RetAttrs));
4688 
4689   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4690     ParamTypeList.push_back(ArgList[i].Ty);
4691     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4692       AttrBuilder B(ArgList[i].Attrs, i + 1);
4693       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4694     }
4695   }
4696 
4697   if (FuncAttrs.hasAttributes())
4698     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4699                                       AttributeSet::FunctionIndex,
4700                                       FuncAttrs));
4701 
4702   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4703 
4704   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4705     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4706 
4707   FunctionType *FT =
4708     FunctionType::get(RetType, ParamTypeList, isVarArg);
4709   PointerType *PFT = PointerType::getUnqual(FT);
4710 
4711   Fn = nullptr;
4712   if (!FunctionName.empty()) {
4713     // If this was a definition of a forward reference, remove the definition
4714     // from the forward reference table and fill in the forward ref.
4715     auto FRVI = ForwardRefVals.find(FunctionName);
4716     if (FRVI != ForwardRefVals.end()) {
4717       Fn = M->getFunction(FunctionName);
4718       if (!Fn)
4719         return Error(FRVI->second.second, "invalid forward reference to "
4720                      "function as global value!");
4721       if (Fn->getType() != PFT)
4722         return Error(FRVI->second.second, "invalid forward reference to "
4723                      "function '" + FunctionName + "' with wrong type!");
4724 
4725       ForwardRefVals.erase(FRVI);
4726     } else if ((Fn = M->getFunction(FunctionName))) {
4727       // Reject redefinitions.
4728       return Error(NameLoc, "invalid redefinition of function '" +
4729                    FunctionName + "'");
4730     } else if (M->getNamedValue(FunctionName)) {
4731       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4732     }
4733 
4734   } else {
4735     // If this is a definition of a forward referenced function, make sure the
4736     // types agree.
4737     auto I = ForwardRefValIDs.find(NumberedVals.size());
4738     if (I != ForwardRefValIDs.end()) {
4739       Fn = cast<Function>(I->second.first);
4740       if (Fn->getType() != PFT)
4741         return Error(NameLoc, "type of definition and forward reference of '@" +
4742                      Twine(NumberedVals.size()) + "' disagree");
4743       ForwardRefValIDs.erase(I);
4744     }
4745   }
4746 
4747   if (!Fn)
4748     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4749   else // Move the forward-reference to the correct spot in the module.
4750     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4751 
4752   if (FunctionName.empty())
4753     NumberedVals.push_back(Fn);
4754 
4755   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4756   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4757   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4758   Fn->setCallingConv(CC);
4759   Fn->setAttributes(PAL);
4760   Fn->setUnnamedAddr(UnnamedAddr);
4761   Fn->setAlignment(Alignment);
4762   Fn->setSection(Section);
4763   Fn->setComdat(C);
4764   Fn->setPersonalityFn(PersonalityFn);
4765   if (!GC.empty()) Fn->setGC(GC);
4766   Fn->setPrefixData(Prefix);
4767   Fn->setPrologueData(Prologue);
4768   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4769 
4770   // Add all of the arguments we parsed to the function.
4771   Function::arg_iterator ArgIt = Fn->arg_begin();
4772   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4773     // If the argument has a name, insert it into the argument symbol table.
4774     if (ArgList[i].Name.empty()) continue;
4775 
4776     // Set the name, if it conflicted, it will be auto-renamed.
4777     ArgIt->setName(ArgList[i].Name);
4778 
4779     if (ArgIt->getName() != ArgList[i].Name)
4780       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4781                    ArgList[i].Name + "'");
4782   }
4783 
4784   if (isDefine)
4785     return false;
4786 
4787   // Check the declaration has no block address forward references.
4788   ValID ID;
4789   if (FunctionName.empty()) {
4790     ID.Kind = ValID::t_GlobalID;
4791     ID.UIntVal = NumberedVals.size() - 1;
4792   } else {
4793     ID.Kind = ValID::t_GlobalName;
4794     ID.StrVal = FunctionName;
4795   }
4796   auto Blocks = ForwardRefBlockAddresses.find(ID);
4797   if (Blocks != ForwardRefBlockAddresses.end())
4798     return Error(Blocks->first.Loc,
4799                  "cannot take blockaddress inside a declaration");
4800   return false;
4801 }
4802 
4803 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4804   ValID ID;
4805   if (FunctionNumber == -1) {
4806     ID.Kind = ValID::t_GlobalName;
4807     ID.StrVal = F.getName();
4808   } else {
4809     ID.Kind = ValID::t_GlobalID;
4810     ID.UIntVal = FunctionNumber;
4811   }
4812 
4813   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4814   if (Blocks == P.ForwardRefBlockAddresses.end())
4815     return false;
4816 
4817   for (const auto &I : Blocks->second) {
4818     const ValID &BBID = I.first;
4819     GlobalValue *GV = I.second;
4820 
4821     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4822            "Expected local id or name");
4823     BasicBlock *BB;
4824     if (BBID.Kind == ValID::t_LocalName)
4825       BB = GetBB(BBID.StrVal, BBID.Loc);
4826     else
4827       BB = GetBB(BBID.UIntVal, BBID.Loc);
4828     if (!BB)
4829       return P.Error(BBID.Loc, "referenced value is not a basic block");
4830 
4831     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4832     GV->eraseFromParent();
4833   }
4834 
4835   P.ForwardRefBlockAddresses.erase(Blocks);
4836   return false;
4837 }
4838 
4839 /// ParseFunctionBody
4840 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4841 bool LLParser::ParseFunctionBody(Function &Fn) {
4842   if (Lex.getKind() != lltok::lbrace)
4843     return TokError("expected '{' in function body");
4844   Lex.Lex();  // eat the {.
4845 
4846   int FunctionNumber = -1;
4847   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4848 
4849   PerFunctionState PFS(*this, Fn, FunctionNumber);
4850 
4851   // Resolve block addresses and allow basic blocks to be forward-declared
4852   // within this function.
4853   if (PFS.resolveForwardRefBlockAddresses())
4854     return true;
4855   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4856 
4857   // We need at least one basic block.
4858   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4859     return TokError("function body requires at least one basic block");
4860 
4861   while (Lex.getKind() != lltok::rbrace &&
4862          Lex.getKind() != lltok::kw_uselistorder)
4863     if (ParseBasicBlock(PFS)) return true;
4864 
4865   while (Lex.getKind() != lltok::rbrace)
4866     if (ParseUseListOrder(&PFS))
4867       return true;
4868 
4869   // Eat the }.
4870   Lex.Lex();
4871 
4872   // Verify function is ok.
4873   return PFS.FinishFunction();
4874 }
4875 
4876 /// ParseBasicBlock
4877 ///   ::= LabelStr? Instruction*
4878 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4879   // If this basic block starts out with a name, remember it.
4880   std::string Name;
4881   LocTy NameLoc = Lex.getLoc();
4882   if (Lex.getKind() == lltok::LabelStr) {
4883     Name = Lex.getStrVal();
4884     Lex.Lex();
4885   }
4886 
4887   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4888   if (!BB)
4889     return Error(NameLoc,
4890                  "unable to create block named '" + Name + "'");
4891 
4892   std::string NameStr;
4893 
4894   // Parse the instructions in this block until we get a terminator.
4895   Instruction *Inst;
4896   do {
4897     // This instruction may have three possibilities for a name: a) none
4898     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4899     LocTy NameLoc = Lex.getLoc();
4900     int NameID = -1;
4901     NameStr = "";
4902 
4903     if (Lex.getKind() == lltok::LocalVarID) {
4904       NameID = Lex.getUIntVal();
4905       Lex.Lex();
4906       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4907         return true;
4908     } else if (Lex.getKind() == lltok::LocalVar) {
4909       NameStr = Lex.getStrVal();
4910       Lex.Lex();
4911       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4912         return true;
4913     }
4914 
4915     switch (ParseInstruction(Inst, BB, PFS)) {
4916     default: llvm_unreachable("Unknown ParseInstruction result!");
4917     case InstError: return true;
4918     case InstNormal:
4919       BB->getInstList().push_back(Inst);
4920 
4921       // With a normal result, we check to see if the instruction is followed by
4922       // a comma and metadata.
4923       if (EatIfPresent(lltok::comma))
4924         if (ParseInstructionMetadata(*Inst))
4925           return true;
4926       break;
4927     case InstExtraComma:
4928       BB->getInstList().push_back(Inst);
4929 
4930       // If the instruction parser ate an extra comma at the end of it, it
4931       // *must* be followed by metadata.
4932       if (ParseInstructionMetadata(*Inst))
4933         return true;
4934       break;
4935     }
4936 
4937     // Set the name on the instruction.
4938     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4939   } while (!isa<TerminatorInst>(Inst));
4940 
4941   return false;
4942 }
4943 
4944 //===----------------------------------------------------------------------===//
4945 // Instruction Parsing.
4946 //===----------------------------------------------------------------------===//
4947 
4948 /// ParseInstruction - Parse one of the many different instructions.
4949 ///
4950 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4951                                PerFunctionState &PFS) {
4952   lltok::Kind Token = Lex.getKind();
4953   if (Token == lltok::Eof)
4954     return TokError("found end of file when expecting more instructions");
4955   LocTy Loc = Lex.getLoc();
4956   unsigned KeywordVal = Lex.getUIntVal();
4957   Lex.Lex();  // Eat the keyword.
4958 
4959   switch (Token) {
4960   default:                    return Error(Loc, "expected instruction opcode");
4961   // Terminator Instructions.
4962   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4963   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4964   case lltok::kw_br:          return ParseBr(Inst, PFS);
4965   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4966   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4967   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4968   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4969   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4970   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4971   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4972   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4973   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4974   // Binary Operators.
4975   case lltok::kw_add:
4976   case lltok::kw_sub:
4977   case lltok::kw_mul:
4978   case lltok::kw_shl: {
4979     bool NUW = EatIfPresent(lltok::kw_nuw);
4980     bool NSW = EatIfPresent(lltok::kw_nsw);
4981     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4982 
4983     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4984 
4985     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4986     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4987     return false;
4988   }
4989   case lltok::kw_fadd:
4990   case lltok::kw_fsub:
4991   case lltok::kw_fmul:
4992   case lltok::kw_fdiv:
4993   case lltok::kw_frem: {
4994     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4995     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4996     if (Res != 0)
4997       return Res;
4998     if (FMF.any())
4999       Inst->setFastMathFlags(FMF);
5000     return 0;
5001   }
5002 
5003   case lltok::kw_sdiv:
5004   case lltok::kw_udiv:
5005   case lltok::kw_lshr:
5006   case lltok::kw_ashr: {
5007     bool Exact = EatIfPresent(lltok::kw_exact);
5008 
5009     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5010     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5011     return false;
5012   }
5013 
5014   case lltok::kw_urem:
5015   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5016   case lltok::kw_and:
5017   case lltok::kw_or:
5018   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5019   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5020   case lltok::kw_fcmp: {
5021     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5022     int Res = ParseCompare(Inst, PFS, KeywordVal);
5023     if (Res != 0)
5024       return Res;
5025     if (FMF.any())
5026       Inst->setFastMathFlags(FMF);
5027     return 0;
5028   }
5029 
5030   // Casts.
5031   case lltok::kw_trunc:
5032   case lltok::kw_zext:
5033   case lltok::kw_sext:
5034   case lltok::kw_fptrunc:
5035   case lltok::kw_fpext:
5036   case lltok::kw_bitcast:
5037   case lltok::kw_addrspacecast:
5038   case lltok::kw_uitofp:
5039   case lltok::kw_sitofp:
5040   case lltok::kw_fptoui:
5041   case lltok::kw_fptosi:
5042   case lltok::kw_inttoptr:
5043   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5044   // Other.
5045   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5046   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5047   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5048   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5049   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5050   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5051   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5052   // Call.
5053   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5054   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5055   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5056   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5057   // Memory.
5058   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5059   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5060   case lltok::kw_store:          return ParseStore(Inst, PFS);
5061   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5062   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5063   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5064   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5065   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5066   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5067   }
5068 }
5069 
5070 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5071 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5072   if (Opc == Instruction::FCmp) {
5073     switch (Lex.getKind()) {
5074     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5075     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5076     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5077     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5078     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5079     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5080     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5081     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5082     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5083     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5084     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5085     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5086     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5087     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5088     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5089     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5090     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5091     }
5092   } else {
5093     switch (Lex.getKind()) {
5094     default: return TokError("expected icmp predicate (e.g. 'eq')");
5095     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5096     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5097     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5098     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5099     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5100     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5101     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5102     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5103     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5104     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5105     }
5106   }
5107   Lex.Lex();
5108   return false;
5109 }
5110 
5111 //===----------------------------------------------------------------------===//
5112 // Terminator Instructions.
5113 //===----------------------------------------------------------------------===//
5114 
5115 /// ParseRet - Parse a return instruction.
5116 ///   ::= 'ret' void (',' !dbg, !1)*
5117 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5118 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5119                         PerFunctionState &PFS) {
5120   SMLoc TypeLoc = Lex.getLoc();
5121   Type *Ty = nullptr;
5122   if (ParseType(Ty, true /*void allowed*/)) return true;
5123 
5124   Type *ResType = PFS.getFunction().getReturnType();
5125 
5126   if (Ty->isVoidTy()) {
5127     if (!ResType->isVoidTy())
5128       return Error(TypeLoc, "value doesn't match function result type '" +
5129                    getTypeString(ResType) + "'");
5130 
5131     Inst = ReturnInst::Create(Context);
5132     return false;
5133   }
5134 
5135   Value *RV;
5136   if (ParseValue(Ty, RV, PFS)) return true;
5137 
5138   if (ResType != RV->getType())
5139     return Error(TypeLoc, "value doesn't match function result type '" +
5140                  getTypeString(ResType) + "'");
5141 
5142   Inst = ReturnInst::Create(Context, RV);
5143   return false;
5144 }
5145 
5146 /// ParseBr
5147 ///   ::= 'br' TypeAndValue
5148 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5149 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5150   LocTy Loc, Loc2;
5151   Value *Op0;
5152   BasicBlock *Op1, *Op2;
5153   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5154 
5155   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5156     Inst = BranchInst::Create(BB);
5157     return false;
5158   }
5159 
5160   if (Op0->getType() != Type::getInt1Ty(Context))
5161     return Error(Loc, "branch condition must have 'i1' type");
5162 
5163   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5164       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5165       ParseToken(lltok::comma, "expected ',' after true destination") ||
5166       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5167     return true;
5168 
5169   Inst = BranchInst::Create(Op1, Op2, Op0);
5170   return false;
5171 }
5172 
5173 /// ParseSwitch
5174 ///  Instruction
5175 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5176 ///  JumpTable
5177 ///    ::= (TypeAndValue ',' TypeAndValue)*
5178 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5179   LocTy CondLoc, BBLoc;
5180   Value *Cond;
5181   BasicBlock *DefaultBB;
5182   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5183       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5184       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5185       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5186     return true;
5187 
5188   if (!Cond->getType()->isIntegerTy())
5189     return Error(CondLoc, "switch condition must have integer type");
5190 
5191   // Parse the jump table pairs.
5192   SmallPtrSet<Value*, 32> SeenCases;
5193   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5194   while (Lex.getKind() != lltok::rsquare) {
5195     Value *Constant;
5196     BasicBlock *DestBB;
5197 
5198     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5199         ParseToken(lltok::comma, "expected ',' after case value") ||
5200         ParseTypeAndBasicBlock(DestBB, PFS))
5201       return true;
5202 
5203     if (!SeenCases.insert(Constant).second)
5204       return Error(CondLoc, "duplicate case value in switch");
5205     if (!isa<ConstantInt>(Constant))
5206       return Error(CondLoc, "case value is not a constant integer");
5207 
5208     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5209   }
5210 
5211   Lex.Lex();  // Eat the ']'.
5212 
5213   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5214   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5215     SI->addCase(Table[i].first, Table[i].second);
5216   Inst = SI;
5217   return false;
5218 }
5219 
5220 /// ParseIndirectBr
5221 ///  Instruction
5222 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5223 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5224   LocTy AddrLoc;
5225   Value *Address;
5226   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5227       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5228       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5229     return true;
5230 
5231   if (!Address->getType()->isPointerTy())
5232     return Error(AddrLoc, "indirectbr address must have pointer type");
5233 
5234   // Parse the destination list.
5235   SmallVector<BasicBlock*, 16> DestList;
5236 
5237   if (Lex.getKind() != lltok::rsquare) {
5238     BasicBlock *DestBB;
5239     if (ParseTypeAndBasicBlock(DestBB, PFS))
5240       return true;
5241     DestList.push_back(DestBB);
5242 
5243     while (EatIfPresent(lltok::comma)) {
5244       if (ParseTypeAndBasicBlock(DestBB, PFS))
5245         return true;
5246       DestList.push_back(DestBB);
5247     }
5248   }
5249 
5250   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5251     return true;
5252 
5253   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5254   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5255     IBI->addDestination(DestList[i]);
5256   Inst = IBI;
5257   return false;
5258 }
5259 
5260 /// ParseInvoke
5261 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5262 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5263 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5264   LocTy CallLoc = Lex.getLoc();
5265   AttrBuilder RetAttrs, FnAttrs;
5266   std::vector<unsigned> FwdRefAttrGrps;
5267   LocTy NoBuiltinLoc;
5268   unsigned CC;
5269   Type *RetType = nullptr;
5270   LocTy RetTypeLoc;
5271   ValID CalleeID;
5272   SmallVector<ParamInfo, 16> ArgList;
5273   SmallVector<OperandBundleDef, 2> BundleList;
5274 
5275   BasicBlock *NormalBB, *UnwindBB;
5276   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5277       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5278       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5279       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5280                                  NoBuiltinLoc) ||
5281       ParseOptionalOperandBundles(BundleList, PFS) ||
5282       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5283       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5284       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5285       ParseTypeAndBasicBlock(UnwindBB, PFS))
5286     return true;
5287 
5288   // If RetType is a non-function pointer type, then this is the short syntax
5289   // for the call, which means that RetType is just the return type.  Infer the
5290   // rest of the function argument types from the arguments that are present.
5291   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5292   if (!Ty) {
5293     // Pull out the types of all of the arguments...
5294     std::vector<Type*> ParamTypes;
5295     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5296       ParamTypes.push_back(ArgList[i].V->getType());
5297 
5298     if (!FunctionType::isValidReturnType(RetType))
5299       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5300 
5301     Ty = FunctionType::get(RetType, ParamTypes, false);
5302   }
5303 
5304   CalleeID.FTy = Ty;
5305 
5306   // Look up the callee.
5307   Value *Callee;
5308   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5309     return true;
5310 
5311   // Set up the Attribute for the function.
5312   SmallVector<AttributeSet, 8> Attrs;
5313   if (RetAttrs.hasAttributes())
5314     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5315                                       AttributeSet::ReturnIndex,
5316                                       RetAttrs));
5317 
5318   SmallVector<Value*, 8> Args;
5319 
5320   // Loop through FunctionType's arguments and ensure they are specified
5321   // correctly.  Also, gather any parameter attributes.
5322   FunctionType::param_iterator I = Ty->param_begin();
5323   FunctionType::param_iterator E = Ty->param_end();
5324   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5325     Type *ExpectedTy = nullptr;
5326     if (I != E) {
5327       ExpectedTy = *I++;
5328     } else if (!Ty->isVarArg()) {
5329       return Error(ArgList[i].Loc, "too many arguments specified");
5330     }
5331 
5332     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5333       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5334                    getTypeString(ExpectedTy) + "'");
5335     Args.push_back(ArgList[i].V);
5336     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5337       AttrBuilder B(ArgList[i].Attrs, i + 1);
5338       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5339     }
5340   }
5341 
5342   if (I != E)
5343     return Error(CallLoc, "not enough parameters specified for call");
5344 
5345   if (FnAttrs.hasAttributes()) {
5346     if (FnAttrs.hasAlignmentAttr())
5347       return Error(CallLoc, "invoke instructions may not have an alignment");
5348 
5349     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5350                                       AttributeSet::FunctionIndex,
5351                                       FnAttrs));
5352   }
5353 
5354   // Finish off the Attribute and check them
5355   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5356 
5357   InvokeInst *II =
5358       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5359   II->setCallingConv(CC);
5360   II->setAttributes(PAL);
5361   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5362   Inst = II;
5363   return false;
5364 }
5365 
5366 /// ParseResume
5367 ///   ::= 'resume' TypeAndValue
5368 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5369   Value *Exn; LocTy ExnLoc;
5370   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5371     return true;
5372 
5373   ResumeInst *RI = ResumeInst::Create(Exn);
5374   Inst = RI;
5375   return false;
5376 }
5377 
5378 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5379                                   PerFunctionState &PFS) {
5380   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5381     return true;
5382 
5383   while (Lex.getKind() != lltok::rsquare) {
5384     // If this isn't the first argument, we need a comma.
5385     if (!Args.empty() &&
5386         ParseToken(lltok::comma, "expected ',' in argument list"))
5387       return true;
5388 
5389     // Parse the argument.
5390     LocTy ArgLoc;
5391     Type *ArgTy = nullptr;
5392     if (ParseType(ArgTy, ArgLoc))
5393       return true;
5394 
5395     Value *V;
5396     if (ArgTy->isMetadataTy()) {
5397       if (ParseMetadataAsValue(V, PFS))
5398         return true;
5399     } else {
5400       if (ParseValue(ArgTy, V, PFS))
5401         return true;
5402     }
5403     Args.push_back(V);
5404   }
5405 
5406   Lex.Lex();  // Lex the ']'.
5407   return false;
5408 }
5409 
5410 /// ParseCleanupRet
5411 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5412 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5413   Value *CleanupPad = nullptr;
5414 
5415   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5416     return true;
5417 
5418   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5419     return true;
5420 
5421   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5422     return true;
5423 
5424   BasicBlock *UnwindBB = nullptr;
5425   if (Lex.getKind() == lltok::kw_to) {
5426     Lex.Lex();
5427     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5428       return true;
5429   } else {
5430     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5431       return true;
5432     }
5433   }
5434 
5435   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5436   return false;
5437 }
5438 
5439 /// ParseCatchRet
5440 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5441 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5442   Value *CatchPad = nullptr;
5443 
5444   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5445     return true;
5446 
5447   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5448     return true;
5449 
5450   BasicBlock *BB;
5451   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5452       ParseTypeAndBasicBlock(BB, PFS))
5453       return true;
5454 
5455   Inst = CatchReturnInst::Create(CatchPad, BB);
5456   return false;
5457 }
5458 
5459 /// ParseCatchSwitch
5460 ///   ::= 'catchswitch' within Parent
5461 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5462   Value *ParentPad;
5463   LocTy BBLoc;
5464 
5465   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5466     return true;
5467 
5468   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5469       Lex.getKind() != lltok::LocalVarID)
5470     return TokError("expected scope value for catchswitch");
5471 
5472   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5473     return true;
5474 
5475   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5476     return true;
5477 
5478   SmallVector<BasicBlock *, 32> Table;
5479   do {
5480     BasicBlock *DestBB;
5481     if (ParseTypeAndBasicBlock(DestBB, PFS))
5482       return true;
5483     Table.push_back(DestBB);
5484   } while (EatIfPresent(lltok::comma));
5485 
5486   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5487     return true;
5488 
5489   if (ParseToken(lltok::kw_unwind,
5490                  "expected 'unwind' after catchswitch scope"))
5491     return true;
5492 
5493   BasicBlock *UnwindBB = nullptr;
5494   if (EatIfPresent(lltok::kw_to)) {
5495     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5496       return true;
5497   } else {
5498     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5499       return true;
5500   }
5501 
5502   auto *CatchSwitch =
5503       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5504   for (BasicBlock *DestBB : Table)
5505     CatchSwitch->addHandler(DestBB);
5506   Inst = CatchSwitch;
5507   return false;
5508 }
5509 
5510 /// ParseCatchPad
5511 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5512 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5513   Value *CatchSwitch = nullptr;
5514 
5515   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5516     return true;
5517 
5518   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5519     return TokError("expected scope value for catchpad");
5520 
5521   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5522     return true;
5523 
5524   SmallVector<Value *, 8> Args;
5525   if (ParseExceptionArgs(Args, PFS))
5526     return true;
5527 
5528   Inst = CatchPadInst::Create(CatchSwitch, Args);
5529   return false;
5530 }
5531 
5532 /// ParseCleanupPad
5533 ///   ::= 'cleanuppad' within Parent ParamList
5534 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5535   Value *ParentPad = nullptr;
5536 
5537   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5538     return true;
5539 
5540   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5541       Lex.getKind() != lltok::LocalVarID)
5542     return TokError("expected scope value for cleanuppad");
5543 
5544   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5545     return true;
5546 
5547   SmallVector<Value *, 8> Args;
5548   if (ParseExceptionArgs(Args, PFS))
5549     return true;
5550 
5551   Inst = CleanupPadInst::Create(ParentPad, Args);
5552   return false;
5553 }
5554 
5555 //===----------------------------------------------------------------------===//
5556 // Binary Operators.
5557 //===----------------------------------------------------------------------===//
5558 
5559 /// ParseArithmetic
5560 ///  ::= ArithmeticOps TypeAndValue ',' Value
5561 ///
5562 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5563 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5564 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5565                                unsigned Opc, unsigned OperandType) {
5566   LocTy Loc; Value *LHS, *RHS;
5567   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5568       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5569       ParseValue(LHS->getType(), RHS, PFS))
5570     return true;
5571 
5572   bool Valid;
5573   switch (OperandType) {
5574   default: llvm_unreachable("Unknown operand type!");
5575   case 0: // int or FP.
5576     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5577             LHS->getType()->isFPOrFPVectorTy();
5578     break;
5579   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5580   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5581   }
5582 
5583   if (!Valid)
5584     return Error(Loc, "invalid operand type for instruction");
5585 
5586   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5587   return false;
5588 }
5589 
5590 /// ParseLogical
5591 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5592 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5593                             unsigned Opc) {
5594   LocTy Loc; Value *LHS, *RHS;
5595   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5596       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5597       ParseValue(LHS->getType(), RHS, PFS))
5598     return true;
5599 
5600   if (!LHS->getType()->isIntOrIntVectorTy())
5601     return Error(Loc,"instruction requires integer or integer vector operands");
5602 
5603   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5604   return false;
5605 }
5606 
5607 /// ParseCompare
5608 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5609 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5610 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5611                             unsigned Opc) {
5612   // Parse the integer/fp comparison predicate.
5613   LocTy Loc;
5614   unsigned Pred;
5615   Value *LHS, *RHS;
5616   if (ParseCmpPredicate(Pred, Opc) ||
5617       ParseTypeAndValue(LHS, Loc, PFS) ||
5618       ParseToken(lltok::comma, "expected ',' after compare value") ||
5619       ParseValue(LHS->getType(), RHS, PFS))
5620     return true;
5621 
5622   if (Opc == Instruction::FCmp) {
5623     if (!LHS->getType()->isFPOrFPVectorTy())
5624       return Error(Loc, "fcmp requires floating point operands");
5625     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5626   } else {
5627     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5628     if (!LHS->getType()->isIntOrIntVectorTy() &&
5629         !LHS->getType()->getScalarType()->isPointerTy())
5630       return Error(Loc, "icmp requires integer operands");
5631     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5632   }
5633   return false;
5634 }
5635 
5636 //===----------------------------------------------------------------------===//
5637 // Other Instructions.
5638 //===----------------------------------------------------------------------===//
5639 
5640 
5641 /// ParseCast
5642 ///   ::= CastOpc TypeAndValue 'to' Type
5643 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5644                          unsigned Opc) {
5645   LocTy Loc;
5646   Value *Op;
5647   Type *DestTy = nullptr;
5648   if (ParseTypeAndValue(Op, Loc, PFS) ||
5649       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5650       ParseType(DestTy))
5651     return true;
5652 
5653   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5654     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5655     return Error(Loc, "invalid cast opcode for cast from '" +
5656                  getTypeString(Op->getType()) + "' to '" +
5657                  getTypeString(DestTy) + "'");
5658   }
5659   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5660   return false;
5661 }
5662 
5663 /// ParseSelect
5664 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5665 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5666   LocTy Loc;
5667   Value *Op0, *Op1, *Op2;
5668   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5669       ParseToken(lltok::comma, "expected ',' after select condition") ||
5670       ParseTypeAndValue(Op1, PFS) ||
5671       ParseToken(lltok::comma, "expected ',' after select value") ||
5672       ParseTypeAndValue(Op2, PFS))
5673     return true;
5674 
5675   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5676     return Error(Loc, Reason);
5677 
5678   Inst = SelectInst::Create(Op0, Op1, Op2);
5679   return false;
5680 }
5681 
5682 /// ParseVA_Arg
5683 ///   ::= 'va_arg' TypeAndValue ',' Type
5684 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5685   Value *Op;
5686   Type *EltTy = nullptr;
5687   LocTy TypeLoc;
5688   if (ParseTypeAndValue(Op, PFS) ||
5689       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5690       ParseType(EltTy, TypeLoc))
5691     return true;
5692 
5693   if (!EltTy->isFirstClassType())
5694     return Error(TypeLoc, "va_arg requires operand with first class type");
5695 
5696   Inst = new VAArgInst(Op, EltTy);
5697   return false;
5698 }
5699 
5700 /// ParseExtractElement
5701 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5702 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5703   LocTy Loc;
5704   Value *Op0, *Op1;
5705   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5706       ParseToken(lltok::comma, "expected ',' after extract value") ||
5707       ParseTypeAndValue(Op1, PFS))
5708     return true;
5709 
5710   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5711     return Error(Loc, "invalid extractelement operands");
5712 
5713   Inst = ExtractElementInst::Create(Op0, Op1);
5714   return false;
5715 }
5716 
5717 /// ParseInsertElement
5718 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5719 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5720   LocTy Loc;
5721   Value *Op0, *Op1, *Op2;
5722   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5723       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5724       ParseTypeAndValue(Op1, PFS) ||
5725       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5726       ParseTypeAndValue(Op2, PFS))
5727     return true;
5728 
5729   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5730     return Error(Loc, "invalid insertelement operands");
5731 
5732   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5733   return false;
5734 }
5735 
5736 /// ParseShuffleVector
5737 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5738 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5739   LocTy Loc;
5740   Value *Op0, *Op1, *Op2;
5741   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5742       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5743       ParseTypeAndValue(Op1, PFS) ||
5744       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5745       ParseTypeAndValue(Op2, PFS))
5746     return true;
5747 
5748   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5749     return Error(Loc, "invalid shufflevector operands");
5750 
5751   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5752   return false;
5753 }
5754 
5755 /// ParsePHI
5756 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5757 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5758   Type *Ty = nullptr;  LocTy TypeLoc;
5759   Value *Op0, *Op1;
5760 
5761   if (ParseType(Ty, TypeLoc) ||
5762       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5763       ParseValue(Ty, Op0, PFS) ||
5764       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5765       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5766       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5767     return true;
5768 
5769   bool AteExtraComma = false;
5770   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5771 
5772   while (true) {
5773     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5774 
5775     if (!EatIfPresent(lltok::comma))
5776       break;
5777 
5778     if (Lex.getKind() == lltok::MetadataVar) {
5779       AteExtraComma = true;
5780       break;
5781     }
5782 
5783     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5784         ParseValue(Ty, Op0, PFS) ||
5785         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5786         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5787         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5788       return true;
5789   }
5790 
5791   if (!Ty->isFirstClassType())
5792     return Error(TypeLoc, "phi node must have first class type");
5793 
5794   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5795   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5796     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5797   Inst = PN;
5798   return AteExtraComma ? InstExtraComma : InstNormal;
5799 }
5800 
5801 /// ParseLandingPad
5802 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5803 /// Clause
5804 ///   ::= 'catch' TypeAndValue
5805 ///   ::= 'filter'
5806 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5807 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5808   Type *Ty = nullptr; LocTy TyLoc;
5809 
5810   if (ParseType(Ty, TyLoc))
5811     return true;
5812 
5813   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5814   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5815 
5816   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5817     LandingPadInst::ClauseType CT;
5818     if (EatIfPresent(lltok::kw_catch))
5819       CT = LandingPadInst::Catch;
5820     else if (EatIfPresent(lltok::kw_filter))
5821       CT = LandingPadInst::Filter;
5822     else
5823       return TokError("expected 'catch' or 'filter' clause type");
5824 
5825     Value *V;
5826     LocTy VLoc;
5827     if (ParseTypeAndValue(V, VLoc, PFS))
5828       return true;
5829 
5830     // A 'catch' type expects a non-array constant. A filter clause expects an
5831     // array constant.
5832     if (CT == LandingPadInst::Catch) {
5833       if (isa<ArrayType>(V->getType()))
5834         Error(VLoc, "'catch' clause has an invalid type");
5835     } else {
5836       if (!isa<ArrayType>(V->getType()))
5837         Error(VLoc, "'filter' clause has an invalid type");
5838     }
5839 
5840     Constant *CV = dyn_cast<Constant>(V);
5841     if (!CV)
5842       return Error(VLoc, "clause argument must be a constant");
5843     LP->addClause(CV);
5844   }
5845 
5846   Inst = LP.release();
5847   return false;
5848 }
5849 
5850 /// ParseCall
5851 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5852 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5853 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5854 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5855 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5856 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5857 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5858 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5859 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5860                          CallInst::TailCallKind TCK) {
5861   AttrBuilder RetAttrs, FnAttrs;
5862   std::vector<unsigned> FwdRefAttrGrps;
5863   LocTy BuiltinLoc;
5864   unsigned CC;
5865   Type *RetType = nullptr;
5866   LocTy RetTypeLoc;
5867   ValID CalleeID;
5868   SmallVector<ParamInfo, 16> ArgList;
5869   SmallVector<OperandBundleDef, 2> BundleList;
5870   LocTy CallLoc = Lex.getLoc();
5871 
5872   if (TCK != CallInst::TCK_None &&
5873       ParseToken(lltok::kw_call,
5874                  "expected 'tail call', 'musttail call', or 'notail call'"))
5875     return true;
5876 
5877   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5878 
5879   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5880       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5881       ParseValID(CalleeID) ||
5882       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5883                          PFS.getFunction().isVarArg()) ||
5884       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5885       ParseOptionalOperandBundles(BundleList, PFS))
5886     return true;
5887 
5888   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5889     return Error(CallLoc, "fast-math-flags specified for call without "
5890                           "floating-point scalar or vector return type");
5891 
5892   // If RetType is a non-function pointer type, then this is the short syntax
5893   // for the call, which means that RetType is just the return type.  Infer the
5894   // rest of the function argument types from the arguments that are present.
5895   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5896   if (!Ty) {
5897     // Pull out the types of all of the arguments...
5898     std::vector<Type*> ParamTypes;
5899     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5900       ParamTypes.push_back(ArgList[i].V->getType());
5901 
5902     if (!FunctionType::isValidReturnType(RetType))
5903       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5904 
5905     Ty = FunctionType::get(RetType, ParamTypes, false);
5906   }
5907 
5908   CalleeID.FTy = Ty;
5909 
5910   // Look up the callee.
5911   Value *Callee;
5912   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5913     return true;
5914 
5915   // Set up the Attribute for the function.
5916   SmallVector<AttributeSet, 8> Attrs;
5917   if (RetAttrs.hasAttributes())
5918     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5919                                       AttributeSet::ReturnIndex,
5920                                       RetAttrs));
5921 
5922   SmallVector<Value*, 8> Args;
5923 
5924   // Loop through FunctionType's arguments and ensure they are specified
5925   // correctly.  Also, gather any parameter attributes.
5926   FunctionType::param_iterator I = Ty->param_begin();
5927   FunctionType::param_iterator E = Ty->param_end();
5928   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5929     Type *ExpectedTy = nullptr;
5930     if (I != E) {
5931       ExpectedTy = *I++;
5932     } else if (!Ty->isVarArg()) {
5933       return Error(ArgList[i].Loc, "too many arguments specified");
5934     }
5935 
5936     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5937       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5938                    getTypeString(ExpectedTy) + "'");
5939     Args.push_back(ArgList[i].V);
5940     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5941       AttrBuilder B(ArgList[i].Attrs, i + 1);
5942       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5943     }
5944   }
5945 
5946   if (I != E)
5947     return Error(CallLoc, "not enough parameters specified for call");
5948 
5949   if (FnAttrs.hasAttributes()) {
5950     if (FnAttrs.hasAlignmentAttr())
5951       return Error(CallLoc, "call instructions may not have an alignment");
5952 
5953     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5954                                       AttributeSet::FunctionIndex,
5955                                       FnAttrs));
5956   }
5957 
5958   // Finish off the Attribute and check them
5959   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5960 
5961   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5962   CI->setTailCallKind(TCK);
5963   CI->setCallingConv(CC);
5964   if (FMF.any())
5965     CI->setFastMathFlags(FMF);
5966   CI->setAttributes(PAL);
5967   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5968   Inst = CI;
5969   return false;
5970 }
5971 
5972 //===----------------------------------------------------------------------===//
5973 // Memory Instructions.
5974 //===----------------------------------------------------------------------===//
5975 
5976 /// ParseAlloc
5977 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
5978 ///       (',' 'align' i32)?
5979 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5980   Value *Size = nullptr;
5981   LocTy SizeLoc, TyLoc;
5982   unsigned Alignment = 0;
5983   Type *Ty = nullptr;
5984 
5985   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5986   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
5987 
5988   if (ParseType(Ty, TyLoc)) return true;
5989 
5990   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5991     return Error(TyLoc, "invalid type for alloca");
5992 
5993   bool AteExtraComma = false;
5994   if (EatIfPresent(lltok::comma)) {
5995     if (Lex.getKind() == lltok::kw_align) {
5996       if (ParseOptionalAlignment(Alignment)) return true;
5997     } else if (Lex.getKind() == lltok::MetadataVar) {
5998       AteExtraComma = true;
5999     } else {
6000       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
6001           ParseOptionalCommaAlign(Alignment, AteExtraComma))
6002         return true;
6003     }
6004   }
6005 
6006   if (Size && !Size->getType()->isIntegerTy())
6007     return Error(SizeLoc, "element count must have integer type");
6008 
6009   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
6010   AI->setUsedWithInAlloca(IsInAlloca);
6011   AI->setSwiftError(IsSwiftError);
6012   Inst = AI;
6013   return AteExtraComma ? InstExtraComma : InstNormal;
6014 }
6015 
6016 /// ParseLoad
6017 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6018 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6019 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6020 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6021   Value *Val; LocTy Loc;
6022   unsigned Alignment = 0;
6023   bool AteExtraComma = false;
6024   bool isAtomic = false;
6025   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6026   SynchronizationScope Scope = CrossThread;
6027 
6028   if (Lex.getKind() == lltok::kw_atomic) {
6029     isAtomic = true;
6030     Lex.Lex();
6031   }
6032 
6033   bool isVolatile = false;
6034   if (Lex.getKind() == lltok::kw_volatile) {
6035     isVolatile = true;
6036     Lex.Lex();
6037   }
6038 
6039   Type *Ty;
6040   LocTy ExplicitTypeLoc = Lex.getLoc();
6041   if (ParseType(Ty) ||
6042       ParseToken(lltok::comma, "expected comma after load's type") ||
6043       ParseTypeAndValue(Val, Loc, PFS) ||
6044       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6045       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6046     return true;
6047 
6048   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6049     return Error(Loc, "load operand must be a pointer to a first class type");
6050   if (isAtomic && !Alignment)
6051     return Error(Loc, "atomic load must have explicit non-zero alignment");
6052   if (Ordering == AtomicOrdering::Release ||
6053       Ordering == AtomicOrdering::AcquireRelease)
6054     return Error(Loc, "atomic load cannot use Release ordering");
6055 
6056   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6057     return Error(ExplicitTypeLoc,
6058                  "explicit pointee type doesn't match operand's pointee type");
6059 
6060   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
6061   return AteExtraComma ? InstExtraComma : InstNormal;
6062 }
6063 
6064 /// ParseStore
6065 
6066 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6067 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6068 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6069 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6070   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6071   unsigned Alignment = 0;
6072   bool AteExtraComma = false;
6073   bool isAtomic = false;
6074   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6075   SynchronizationScope Scope = CrossThread;
6076 
6077   if (Lex.getKind() == lltok::kw_atomic) {
6078     isAtomic = true;
6079     Lex.Lex();
6080   }
6081 
6082   bool isVolatile = false;
6083   if (Lex.getKind() == lltok::kw_volatile) {
6084     isVolatile = true;
6085     Lex.Lex();
6086   }
6087 
6088   if (ParseTypeAndValue(Val, Loc, PFS) ||
6089       ParseToken(lltok::comma, "expected ',' after store operand") ||
6090       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6091       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6092       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6093     return true;
6094 
6095   if (!Ptr->getType()->isPointerTy())
6096     return Error(PtrLoc, "store operand must be a pointer");
6097   if (!Val->getType()->isFirstClassType())
6098     return Error(Loc, "store operand must be a first class value");
6099   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6100     return Error(Loc, "stored value and pointer type do not match");
6101   if (isAtomic && !Alignment)
6102     return Error(Loc, "atomic store must have explicit non-zero alignment");
6103   if (Ordering == AtomicOrdering::Acquire ||
6104       Ordering == AtomicOrdering::AcquireRelease)
6105     return Error(Loc, "atomic store cannot use Acquire ordering");
6106 
6107   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
6108   return AteExtraComma ? InstExtraComma : InstNormal;
6109 }
6110 
6111 /// ParseCmpXchg
6112 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6113 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6114 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6115   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6116   bool AteExtraComma = false;
6117   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6118   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6119   SynchronizationScope Scope = CrossThread;
6120   bool isVolatile = false;
6121   bool isWeak = false;
6122 
6123   if (EatIfPresent(lltok::kw_weak))
6124     isWeak = true;
6125 
6126   if (EatIfPresent(lltok::kw_volatile))
6127     isVolatile = true;
6128 
6129   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6130       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6131       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6132       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6133       ParseTypeAndValue(New, NewLoc, PFS) ||
6134       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
6135       ParseOrdering(FailureOrdering))
6136     return true;
6137 
6138   if (SuccessOrdering == AtomicOrdering::Unordered ||
6139       FailureOrdering == AtomicOrdering::Unordered)
6140     return TokError("cmpxchg cannot be unordered");
6141   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6142     return TokError("cmpxchg failure argument shall be no stronger than the "
6143                     "success argument");
6144   if (FailureOrdering == AtomicOrdering::Release ||
6145       FailureOrdering == AtomicOrdering::AcquireRelease)
6146     return TokError(
6147         "cmpxchg failure ordering cannot include release semantics");
6148   if (!Ptr->getType()->isPointerTy())
6149     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6150   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6151     return Error(CmpLoc, "compare value and pointer type do not match");
6152   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6153     return Error(NewLoc, "new value and pointer type do not match");
6154   if (!New->getType()->isFirstClassType())
6155     return Error(NewLoc, "cmpxchg operand must be a first class value");
6156   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6157       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
6158   CXI->setVolatile(isVolatile);
6159   CXI->setWeak(isWeak);
6160   Inst = CXI;
6161   return AteExtraComma ? InstExtraComma : InstNormal;
6162 }
6163 
6164 /// ParseAtomicRMW
6165 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6166 ///       'singlethread'? AtomicOrdering
6167 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6168   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6169   bool AteExtraComma = false;
6170   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6171   SynchronizationScope Scope = CrossThread;
6172   bool isVolatile = false;
6173   AtomicRMWInst::BinOp Operation;
6174 
6175   if (EatIfPresent(lltok::kw_volatile))
6176     isVolatile = true;
6177 
6178   switch (Lex.getKind()) {
6179   default: return TokError("expected binary operation in atomicrmw");
6180   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6181   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6182   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6183   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6184   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6185   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6186   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6187   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6188   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6189   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6190   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6191   }
6192   Lex.Lex();  // Eat the operation.
6193 
6194   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6195       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6196       ParseTypeAndValue(Val, ValLoc, PFS) ||
6197       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6198     return true;
6199 
6200   if (Ordering == AtomicOrdering::Unordered)
6201     return TokError("atomicrmw cannot be unordered");
6202   if (!Ptr->getType()->isPointerTy())
6203     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6204   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6205     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6206   if (!Val->getType()->isIntegerTy())
6207     return Error(ValLoc, "atomicrmw operand must be an integer");
6208   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6209   if (Size < 8 || (Size & (Size - 1)))
6210     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6211                          " integer");
6212 
6213   AtomicRMWInst *RMWI =
6214     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
6215   RMWI->setVolatile(isVolatile);
6216   Inst = RMWI;
6217   return AteExtraComma ? InstExtraComma : InstNormal;
6218 }
6219 
6220 /// ParseFence
6221 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6222 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6223   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6224   SynchronizationScope Scope = CrossThread;
6225   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6226     return true;
6227 
6228   if (Ordering == AtomicOrdering::Unordered)
6229     return TokError("fence cannot be unordered");
6230   if (Ordering == AtomicOrdering::Monotonic)
6231     return TokError("fence cannot be monotonic");
6232 
6233   Inst = new FenceInst(Context, Ordering, Scope);
6234   return InstNormal;
6235 }
6236 
6237 /// ParseGetElementPtr
6238 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6239 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6240   Value *Ptr = nullptr;
6241   Value *Val = nullptr;
6242   LocTy Loc, EltLoc;
6243 
6244   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6245 
6246   Type *Ty = nullptr;
6247   LocTy ExplicitTypeLoc = Lex.getLoc();
6248   if (ParseType(Ty) ||
6249       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6250       ParseTypeAndValue(Ptr, Loc, PFS))
6251     return true;
6252 
6253   Type *BaseType = Ptr->getType();
6254   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6255   if (!BasePointerType)
6256     return Error(Loc, "base of getelementptr must be a pointer");
6257 
6258   if (Ty != BasePointerType->getElementType())
6259     return Error(ExplicitTypeLoc,
6260                  "explicit pointee type doesn't match operand's pointee type");
6261 
6262   SmallVector<Value*, 16> Indices;
6263   bool AteExtraComma = false;
6264   // GEP returns a vector of pointers if at least one of parameters is a vector.
6265   // All vector parameters should have the same vector width.
6266   unsigned GEPWidth = BaseType->isVectorTy() ?
6267     BaseType->getVectorNumElements() : 0;
6268 
6269   while (EatIfPresent(lltok::comma)) {
6270     if (Lex.getKind() == lltok::MetadataVar) {
6271       AteExtraComma = true;
6272       break;
6273     }
6274     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6275     if (!Val->getType()->getScalarType()->isIntegerTy())
6276       return Error(EltLoc, "getelementptr index must be an integer");
6277 
6278     if (Val->getType()->isVectorTy()) {
6279       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6280       if (GEPWidth && GEPWidth != ValNumEl)
6281         return Error(EltLoc,
6282           "getelementptr vector index has a wrong number of elements");
6283       GEPWidth = ValNumEl;
6284     }
6285     Indices.push_back(Val);
6286   }
6287 
6288   SmallPtrSet<Type*, 4> Visited;
6289   if (!Indices.empty() && !Ty->isSized(&Visited))
6290     return Error(Loc, "base element of getelementptr must be sized");
6291 
6292   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6293     return Error(Loc, "invalid getelementptr indices");
6294   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6295   if (InBounds)
6296     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6297   return AteExtraComma ? InstExtraComma : InstNormal;
6298 }
6299 
6300 /// ParseExtractValue
6301 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6302 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6303   Value *Val; LocTy Loc;
6304   SmallVector<unsigned, 4> Indices;
6305   bool AteExtraComma;
6306   if (ParseTypeAndValue(Val, Loc, PFS) ||
6307       ParseIndexList(Indices, AteExtraComma))
6308     return true;
6309 
6310   if (!Val->getType()->isAggregateType())
6311     return Error(Loc, "extractvalue operand must be aggregate type");
6312 
6313   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6314     return Error(Loc, "invalid indices for extractvalue");
6315   Inst = ExtractValueInst::Create(Val, Indices);
6316   return AteExtraComma ? InstExtraComma : InstNormal;
6317 }
6318 
6319 /// ParseInsertValue
6320 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6321 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6322   Value *Val0, *Val1; LocTy Loc0, Loc1;
6323   SmallVector<unsigned, 4> Indices;
6324   bool AteExtraComma;
6325   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6326       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6327       ParseTypeAndValue(Val1, Loc1, PFS) ||
6328       ParseIndexList(Indices, AteExtraComma))
6329     return true;
6330 
6331   if (!Val0->getType()->isAggregateType())
6332     return Error(Loc0, "insertvalue operand must be aggregate type");
6333 
6334   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6335   if (!IndexedType)
6336     return Error(Loc0, "invalid indices for insertvalue");
6337   if (IndexedType != Val1->getType())
6338     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6339                            getTypeString(Val1->getType()) + "' instead of '" +
6340                            getTypeString(IndexedType) + "'");
6341   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6342   return AteExtraComma ? InstExtraComma : InstNormal;
6343 }
6344 
6345 //===----------------------------------------------------------------------===//
6346 // Embedded metadata.
6347 //===----------------------------------------------------------------------===//
6348 
6349 /// ParseMDNodeVector
6350 ///   ::= { Element (',' Element)* }
6351 /// Element
6352 ///   ::= 'null' | TypeAndValue
6353 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6354   if (ParseToken(lltok::lbrace, "expected '{' here"))
6355     return true;
6356 
6357   // Check for an empty list.
6358   if (EatIfPresent(lltok::rbrace))
6359     return false;
6360 
6361   do {
6362     // Null is a special case since it is typeless.
6363     if (EatIfPresent(lltok::kw_null)) {
6364       Elts.push_back(nullptr);
6365       continue;
6366     }
6367 
6368     Metadata *MD;
6369     if (ParseMetadata(MD, nullptr))
6370       return true;
6371     Elts.push_back(MD);
6372   } while (EatIfPresent(lltok::comma));
6373 
6374   return ParseToken(lltok::rbrace, "expected end of metadata node");
6375 }
6376 
6377 //===----------------------------------------------------------------------===//
6378 // Use-list order directives.
6379 //===----------------------------------------------------------------------===//
6380 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6381                                 SMLoc Loc) {
6382   if (V->use_empty())
6383     return Error(Loc, "value has no uses");
6384 
6385   unsigned NumUses = 0;
6386   SmallDenseMap<const Use *, unsigned, 16> Order;
6387   for (const Use &U : V->uses()) {
6388     if (++NumUses > Indexes.size())
6389       break;
6390     Order[&U] = Indexes[NumUses - 1];
6391   }
6392   if (NumUses < 2)
6393     return Error(Loc, "value only has one use");
6394   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6395     return Error(Loc, "wrong number of indexes, expected " +
6396                           Twine(std::distance(V->use_begin(), V->use_end())));
6397 
6398   V->sortUseList([&](const Use &L, const Use &R) {
6399     return Order.lookup(&L) < Order.lookup(&R);
6400   });
6401   return false;
6402 }
6403 
6404 /// ParseUseListOrderIndexes
6405 ///   ::= '{' uint32 (',' uint32)+ '}'
6406 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6407   SMLoc Loc = Lex.getLoc();
6408   if (ParseToken(lltok::lbrace, "expected '{' here"))
6409     return true;
6410   if (Lex.getKind() == lltok::rbrace)
6411     return Lex.Error("expected non-empty list of uselistorder indexes");
6412 
6413   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6414   // indexes should be distinct numbers in the range [0, size-1], and should
6415   // not be in order.
6416   unsigned Offset = 0;
6417   unsigned Max = 0;
6418   bool IsOrdered = true;
6419   assert(Indexes.empty() && "Expected empty order vector");
6420   do {
6421     unsigned Index;
6422     if (ParseUInt32(Index))
6423       return true;
6424 
6425     // Update consistency checks.
6426     Offset += Index - Indexes.size();
6427     Max = std::max(Max, Index);
6428     IsOrdered &= Index == Indexes.size();
6429 
6430     Indexes.push_back(Index);
6431   } while (EatIfPresent(lltok::comma));
6432 
6433   if (ParseToken(lltok::rbrace, "expected '}' here"))
6434     return true;
6435 
6436   if (Indexes.size() < 2)
6437     return Error(Loc, "expected >= 2 uselistorder indexes");
6438   if (Offset != 0 || Max >= Indexes.size())
6439     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6440   if (IsOrdered)
6441     return Error(Loc, "expected uselistorder indexes to change the order");
6442 
6443   return false;
6444 }
6445 
6446 /// ParseUseListOrder
6447 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6448 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6449   SMLoc Loc = Lex.getLoc();
6450   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6451     return true;
6452 
6453   Value *V;
6454   SmallVector<unsigned, 16> Indexes;
6455   if (ParseTypeAndValue(V, PFS) ||
6456       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6457       ParseUseListOrderIndexes(Indexes))
6458     return true;
6459 
6460   return sortUseListOrder(V, Indexes, Loc);
6461 }
6462 
6463 /// ParseUseListOrderBB
6464 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6465 bool LLParser::ParseUseListOrderBB() {
6466   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6467   SMLoc Loc = Lex.getLoc();
6468   Lex.Lex();
6469 
6470   ValID Fn, Label;
6471   SmallVector<unsigned, 16> Indexes;
6472   if (ParseValID(Fn) ||
6473       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6474       ParseValID(Label) ||
6475       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6476       ParseUseListOrderIndexes(Indexes))
6477     return true;
6478 
6479   // Check the function.
6480   GlobalValue *GV;
6481   if (Fn.Kind == ValID::t_GlobalName)
6482     GV = M->getNamedValue(Fn.StrVal);
6483   else if (Fn.Kind == ValID::t_GlobalID)
6484     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6485   else
6486     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6487   if (!GV)
6488     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6489   auto *F = dyn_cast<Function>(GV);
6490   if (!F)
6491     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6492   if (F->isDeclaration())
6493     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6494 
6495   // Check the basic block.
6496   if (Label.Kind == ValID::t_LocalID)
6497     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6498   if (Label.Kind != ValID::t_LocalName)
6499     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6500   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6501   if (!V)
6502     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6503   if (!isa<BasicBlock>(V))
6504     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6505 
6506   return sortUseListOrder(V, Indexes, Loc);
6507 }
6508