1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (parseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::validateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::parseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (parseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (parseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::parseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (parseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (parseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: 345 return tokError("expected top-level entity"); 346 case lltok::Eof: return false; 347 case lltok::kw_declare: 348 if (parseDeclare()) 349 return true; 350 break; 351 case lltok::kw_define: 352 if (parseDefine()) 353 return true; 354 break; 355 case lltok::kw_module: 356 if (parseModuleAsm()) 357 return true; 358 break; 359 case lltok::kw_deplibs: 360 if (parseDepLibs()) 361 return true; 362 break; 363 case lltok::LocalVarID: 364 if (parseUnnamedType()) 365 return true; 366 break; 367 case lltok::LocalVar: 368 if (parseNamedType()) 369 return true; 370 break; 371 case lltok::GlobalID: 372 if (parseUnnamedGlobal()) 373 return true; 374 break; 375 case lltok::GlobalVar: 376 if (parseNamedGlobal()) 377 return true; 378 break; 379 case lltok::ComdatVar: if (parseComdat()) return true; break; 380 case lltok::exclaim: 381 if (parseStandaloneMetadata()) 382 return true; 383 break; 384 case lltok::SummaryID: 385 if (parseSummaryEntry()) 386 return true; 387 break; 388 case lltok::MetadataVar: 389 if (parseNamedMetadata()) 390 return true; 391 break; 392 case lltok::kw_attributes: 393 if (parseUnnamedAttrGrp()) 394 return true; 395 break; 396 case lltok::kw_uselistorder: 397 if (parseUseListOrder()) 398 return true; 399 break; 400 case lltok::kw_uselistorder_bb: 401 if (parseUseListOrderBB()) 402 return true; 403 break; 404 } 405 } 406 } 407 408 /// toplevelentity 409 /// ::= 'module' 'asm' STRINGCONSTANT 410 bool LLParser::parseModuleAsm() { 411 assert(Lex.getKind() == lltok::kw_module); 412 Lex.Lex(); 413 414 std::string AsmStr; 415 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 416 parseStringConstant(AsmStr)) 417 return true; 418 419 M->appendModuleInlineAsm(AsmStr); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'target' 'triple' '=' STRINGCONSTANT 425 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 426 bool LLParser::parseTargetDefinition() { 427 assert(Lex.getKind() == lltok::kw_target); 428 std::string Str; 429 switch (Lex.Lex()) { 430 default: 431 return tokError("unknown target property"); 432 case lltok::kw_triple: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target triple") || 435 parseStringConstant(Str)) 436 return true; 437 M->setTargetTriple(Str); 438 return false; 439 case lltok::kw_datalayout: 440 Lex.Lex(); 441 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 442 parseStringConstant(Str)) 443 return true; 444 M->setDataLayout(Str); 445 return false; 446 } 447 } 448 449 /// toplevelentity 450 /// ::= 'source_filename' '=' STRINGCONSTANT 451 bool LLParser::parseSourceFileName() { 452 assert(Lex.getKind() == lltok::kw_source_filename); 453 Lex.Lex(); 454 if (parseToken(lltok::equal, "expected '=' after source_filename") || 455 parseStringConstant(SourceFileName)) 456 return true; 457 if (M) 458 M->setSourceFileName(SourceFileName); 459 return false; 460 } 461 462 /// toplevelentity 463 /// ::= 'deplibs' '=' '[' ']' 464 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 465 /// FIXME: Remove in 4.0. Currently parse, but ignore. 466 bool LLParser::parseDepLibs() { 467 assert(Lex.getKind() == lltok::kw_deplibs); 468 Lex.Lex(); 469 if (parseToken(lltok::equal, "expected '=' after deplibs") || 470 parseToken(lltok::lsquare, "expected '=' after deplibs")) 471 return true; 472 473 if (EatIfPresent(lltok::rsquare)) 474 return false; 475 476 do { 477 std::string Str; 478 if (parseStringConstant(Str)) 479 return true; 480 } while (EatIfPresent(lltok::comma)); 481 482 return parseToken(lltok::rsquare, "expected ']' at end of list"); 483 } 484 485 /// parseUnnamedType: 486 /// ::= LocalVarID '=' 'type' type 487 bool LLParser::parseUnnamedType() { 488 LocTy TypeLoc = Lex.getLoc(); 489 unsigned TypeID = Lex.getUIntVal(); 490 Lex.Lex(); // eat LocalVarID; 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after '='")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 502 if (Entry.first) 503 return error(TypeLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= LocalVar '=' 'type' type 513 bool LLParser::parseNamedType() { 514 std::string Name = Lex.getStrVal(); 515 LocTy NameLoc = Lex.getLoc(); 516 Lex.Lex(); // eat LocalVar. 517 518 if (parseToken(lltok::equal, "expected '=' after name") || 519 parseToken(lltok::kw_type, "expected 'type' after name")) 520 return true; 521 522 Type *Result = nullptr; 523 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 524 return true; 525 526 if (!isa<StructType>(Result)) { 527 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 528 if (Entry.first) 529 return error(NameLoc, "non-struct types may not be recursive"); 530 Entry.first = Result; 531 Entry.second = SMLoc(); 532 } 533 534 return false; 535 } 536 537 /// toplevelentity 538 /// ::= 'declare' FunctionHeader 539 bool LLParser::parseDeclare() { 540 assert(Lex.getKind() == lltok::kw_declare); 541 Lex.Lex(); 542 543 std::vector<std::pair<unsigned, MDNode *>> MDs; 544 while (Lex.getKind() == lltok::MetadataVar) { 545 unsigned MDK; 546 MDNode *N; 547 if (parseMetadataAttachment(MDK, N)) 548 return true; 549 MDs.push_back({MDK, N}); 550 } 551 552 Function *F; 553 if (parseFunctionHeader(F, false)) 554 return true; 555 for (auto &MD : MDs) 556 F->addMetadata(MD.first, *MD.second); 557 return false; 558 } 559 560 /// toplevelentity 561 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 562 bool LLParser::parseDefine() { 563 assert(Lex.getKind() == lltok::kw_define); 564 Lex.Lex(); 565 566 Function *F; 567 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 568 parseFunctionBody(*F); 569 } 570 571 /// parseGlobalType 572 /// ::= 'constant' 573 /// ::= 'global' 574 bool LLParser::parseGlobalType(bool &IsConstant) { 575 if (Lex.getKind() == lltok::kw_constant) 576 IsConstant = true; 577 else if (Lex.getKind() == lltok::kw_global) 578 IsConstant = false; 579 else { 580 IsConstant = false; 581 return tokError("expected 'global' or 'constant'"); 582 } 583 Lex.Lex(); 584 return false; 585 } 586 587 bool LLParser::parseOptionalUnnamedAddr( 588 GlobalVariable::UnnamedAddr &UnnamedAddr) { 589 if (EatIfPresent(lltok::kw_unnamed_addr)) 590 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 591 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 592 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 593 else 594 UnnamedAddr = GlobalValue::UnnamedAddr::None; 595 return false; 596 } 597 598 /// parseUnnamedGlobal: 599 /// OptionalVisibility (ALIAS | IFUNC) ... 600 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility 606 /// OptionalDLLStorageClass 607 /// ... -> global variable 608 bool LLParser::parseUnnamedGlobal() { 609 unsigned VarID = NumberedVals.size(); 610 std::string Name; 611 LocTy NameLoc = Lex.getLoc(); 612 613 // Handle the GlobalID form. 614 if (Lex.getKind() == lltok::GlobalID) { 615 if (Lex.getUIntVal() != VarID) 616 return error(Lex.getLoc(), 617 "variable expected to be numbered '%" + Twine(VarID) + "'"); 618 Lex.Lex(); // eat GlobalID; 619 620 if (parseToken(lltok::equal, "expected '=' after name")) 621 return true; 622 } 623 624 bool HasLinkage; 625 unsigned Linkage, Visibility, DLLStorageClass; 626 bool DSOLocal; 627 GlobalVariable::ThreadLocalMode TLM; 628 GlobalVariable::UnnamedAddr UnnamedAddr; 629 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 630 DSOLocal) || 631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 632 return true; 633 634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 640 } 641 642 /// parseNamedGlobal: 643 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 644 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 645 /// OptionalVisibility OptionalDLLStorageClass 646 /// ... -> global variable 647 bool LLParser::parseNamedGlobal() { 648 assert(Lex.getKind() == lltok::GlobalVar); 649 LocTy NameLoc = Lex.getLoc(); 650 std::string Name = Lex.getStrVal(); 651 Lex.Lex(); 652 653 bool HasLinkage; 654 unsigned Linkage, Visibility, DLLStorageClass; 655 bool DSOLocal; 656 GlobalVariable::ThreadLocalMode TLM; 657 GlobalVariable::UnnamedAddr UnnamedAddr; 658 if (parseToken(lltok::equal, "expected '=' in global variable") || 659 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 660 DSOLocal) || 661 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 662 return true; 663 664 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 665 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 666 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 667 668 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 672 bool LLParser::parseComdat() { 673 assert(Lex.getKind() == lltok::ComdatVar); 674 std::string Name = Lex.getStrVal(); 675 LocTy NameLoc = Lex.getLoc(); 676 Lex.Lex(); 677 678 if (parseToken(lltok::equal, "expected '=' here")) 679 return true; 680 681 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 682 return tokError("expected comdat type"); 683 684 Comdat::SelectionKind SK; 685 switch (Lex.getKind()) { 686 default: 687 return tokError("unknown selection kind"); 688 case lltok::kw_any: 689 SK = Comdat::Any; 690 break; 691 case lltok::kw_exactmatch: 692 SK = Comdat::ExactMatch; 693 break; 694 case lltok::kw_largest: 695 SK = Comdat::Largest; 696 break; 697 case lltok::kw_noduplicates: 698 SK = Comdat::NoDuplicates; 699 break; 700 case lltok::kw_samesize: 701 SK = Comdat::SameSize; 702 break; 703 } 704 Lex.Lex(); 705 706 // See if the comdat was forward referenced, if so, use the comdat. 707 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 708 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 709 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 710 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 711 712 Comdat *C; 713 if (I != ComdatSymTab.end()) 714 C = &I->second; 715 else 716 C = M->getOrInsertComdat(Name); 717 C->setSelectionKind(SK); 718 719 return false; 720 } 721 722 // MDString: 723 // ::= '!' STRINGCONSTANT 724 bool LLParser::parseMDString(MDString *&Result) { 725 std::string Str; 726 if (parseStringConstant(Str)) 727 return true; 728 Result = MDString::get(Context, Str); 729 return false; 730 } 731 732 // MDNode: 733 // ::= '!' MDNodeNumber 734 bool LLParser::parseMDNodeID(MDNode *&Result) { 735 // !{ ..., !42, ... } 736 LocTy IDLoc = Lex.getLoc(); 737 unsigned MID = 0; 738 if (parseUInt32(MID)) 739 return true; 740 741 // If not a forward reference, just return it now. 742 if (NumberedMetadata.count(MID)) { 743 Result = NumberedMetadata[MID]; 744 return false; 745 } 746 747 // Otherwise, create MDNode forward reference. 748 auto &FwdRef = ForwardRefMDNodes[MID]; 749 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 750 751 Result = FwdRef.first.get(); 752 NumberedMetadata[MID].reset(Result); 753 return false; 754 } 755 756 /// parseNamedMetadata: 757 /// !foo = !{ !1, !2 } 758 bool LLParser::parseNamedMetadata() { 759 assert(Lex.getKind() == lltok::MetadataVar); 760 std::string Name = Lex.getStrVal(); 761 Lex.Lex(); 762 763 if (parseToken(lltok::equal, "expected '=' here") || 764 parseToken(lltok::exclaim, "Expected '!' here") || 765 parseToken(lltok::lbrace, "Expected '{' here")) 766 return true; 767 768 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 769 if (Lex.getKind() != lltok::rbrace) 770 do { 771 MDNode *N = nullptr; 772 // parse DIExpressions inline as a special case. They are still MDNodes, 773 // so they can still appear in named metadata. Remove this logic if they 774 // become plain Metadata. 775 if (Lex.getKind() == lltok::MetadataVar && 776 Lex.getStrVal() == "DIExpression") { 777 if (parseDIExpression(N, /*IsDistinct=*/false)) 778 return true; 779 // DIArgLists should only appear inline in a function, as they may 780 // contain LocalAsMetadata arguments which require a function context. 781 } else if (Lex.getKind() == lltok::MetadataVar && 782 Lex.getStrVal() == "DIArgList") { 783 return tokError("found DIArgList outside of function"); 784 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 785 parseMDNodeID(N)) { 786 return true; 787 } 788 NMD->addOperand(N); 789 } while (EatIfPresent(lltok::comma)); 790 791 return parseToken(lltok::rbrace, "expected end of metadata node"); 792 } 793 794 /// parseStandaloneMetadata: 795 /// !42 = !{...} 796 bool LLParser::parseStandaloneMetadata() { 797 assert(Lex.getKind() == lltok::exclaim); 798 Lex.Lex(); 799 unsigned MetadataID = 0; 800 801 MDNode *Init; 802 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 803 return true; 804 805 // Detect common error, from old metadata syntax. 806 if (Lex.getKind() == lltok::Type) 807 return tokError("unexpected type in metadata definition"); 808 809 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 810 if (Lex.getKind() == lltok::MetadataVar) { 811 if (parseSpecializedMDNode(Init, IsDistinct)) 812 return true; 813 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 814 parseMDTuple(Init, IsDistinct)) 815 return true; 816 817 // See if this was forward referenced, if so, handle it. 818 auto FI = ForwardRefMDNodes.find(MetadataID); 819 if (FI != ForwardRefMDNodes.end()) { 820 FI->second.first->replaceAllUsesWith(Init); 821 ForwardRefMDNodes.erase(FI); 822 823 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 824 } else { 825 if (NumberedMetadata.count(MetadataID)) 826 return tokError("Metadata id is already used"); 827 NumberedMetadata[MetadataID].reset(Init); 828 } 829 830 return false; 831 } 832 833 // Skips a single module summary entry. 834 bool LLParser::skipModuleSummaryEntry() { 835 // Each module summary entry consists of a tag for the entry 836 // type, followed by a colon, then the fields which may be surrounded by 837 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 838 // support is in place we will look for the tokens corresponding to the 839 // expected tags. 840 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 841 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 842 Lex.getKind() != lltok::kw_blockcount) 843 return tokError( 844 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 845 "start of summary entry"); 846 if (Lex.getKind() == lltok::kw_flags) 847 return parseSummaryIndexFlags(); 848 if (Lex.getKind() == lltok::kw_blockcount) 849 return parseBlockCount(); 850 Lex.Lex(); 851 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 852 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 853 return true; 854 // Now walk through the parenthesized entry, until the number of open 855 // parentheses goes back down to 0 (the first '(' was parsed above). 856 unsigned NumOpenParen = 1; 857 do { 858 switch (Lex.getKind()) { 859 case lltok::lparen: 860 NumOpenParen++; 861 break; 862 case lltok::rparen: 863 NumOpenParen--; 864 break; 865 case lltok::Eof: 866 return tokError("found end of file while parsing summary entry"); 867 default: 868 // Skip everything in between parentheses. 869 break; 870 } 871 Lex.Lex(); 872 } while (NumOpenParen > 0); 873 return false; 874 } 875 876 /// SummaryEntry 877 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 878 bool LLParser::parseSummaryEntry() { 879 assert(Lex.getKind() == lltok::SummaryID); 880 unsigned SummaryID = Lex.getUIntVal(); 881 882 // For summary entries, colons should be treated as distinct tokens, 883 // not an indication of the end of a label token. 884 Lex.setIgnoreColonInIdentifiers(true); 885 886 Lex.Lex(); 887 if (parseToken(lltok::equal, "expected '=' here")) 888 return true; 889 890 // If we don't have an index object, skip the summary entry. 891 if (!Index) 892 return skipModuleSummaryEntry(); 893 894 bool result = false; 895 switch (Lex.getKind()) { 896 case lltok::kw_gv: 897 result = parseGVEntry(SummaryID); 898 break; 899 case lltok::kw_module: 900 result = parseModuleEntry(SummaryID); 901 break; 902 case lltok::kw_typeid: 903 result = parseTypeIdEntry(SummaryID); 904 break; 905 case lltok::kw_typeidCompatibleVTable: 906 result = parseTypeIdCompatibleVtableEntry(SummaryID); 907 break; 908 case lltok::kw_flags: 909 result = parseSummaryIndexFlags(); 910 break; 911 case lltok::kw_blockcount: 912 result = parseBlockCount(); 913 break; 914 default: 915 result = error(Lex.getLoc(), "unexpected summary kind"); 916 break; 917 } 918 Lex.setIgnoreColonInIdentifiers(false); 919 return result; 920 } 921 922 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 923 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 924 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 925 } 926 927 // If there was an explicit dso_local, update GV. In the absence of an explicit 928 // dso_local we keep the default value. 929 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 930 if (DSOLocal) 931 GV.setDSOLocal(true); 932 } 933 934 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 935 Type *Ty2) { 936 std::string ErrString; 937 raw_string_ostream ErrOS(ErrString); 938 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 939 return ErrOS.str(); 940 } 941 942 /// parseIndirectSymbol: 943 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 944 /// OptionalVisibility OptionalDLLStorageClass 945 /// OptionalThreadLocal OptionalUnnamedAddr 946 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 947 /// 948 /// IndirectSymbol 949 /// ::= TypeAndValue 950 /// 951 /// IndirectSymbolAttr 952 /// ::= ',' 'partition' StringConstant 953 /// 954 /// Everything through OptionalUnnamedAddr has already been parsed. 955 /// 956 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 957 unsigned L, unsigned Visibility, 958 unsigned DLLStorageClass, bool DSOLocal, 959 GlobalVariable::ThreadLocalMode TLM, 960 GlobalVariable::UnnamedAddr UnnamedAddr) { 961 bool IsAlias; 962 if (Lex.getKind() == lltok::kw_alias) 963 IsAlias = true; 964 else if (Lex.getKind() == lltok::kw_ifunc) 965 IsAlias = false; 966 else 967 llvm_unreachable("Not an alias or ifunc!"); 968 Lex.Lex(); 969 970 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 971 972 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 973 return error(NameLoc, "invalid linkage type for alias"); 974 975 if (!isValidVisibilityForLinkage(Visibility, L)) 976 return error(NameLoc, 977 "symbol with local linkage must have default visibility"); 978 979 Type *Ty; 980 LocTy ExplicitTypeLoc = Lex.getLoc(); 981 if (parseType(Ty) || 982 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 983 return true; 984 985 Constant *Aliasee; 986 LocTy AliaseeLoc = Lex.getLoc(); 987 if (Lex.getKind() != lltok::kw_bitcast && 988 Lex.getKind() != lltok::kw_getelementptr && 989 Lex.getKind() != lltok::kw_addrspacecast && 990 Lex.getKind() != lltok::kw_inttoptr) { 991 if (parseGlobalTypeAndValue(Aliasee)) 992 return true; 993 } else { 994 // The bitcast dest type is not present, it is implied by the dest type. 995 ValID ID; 996 if (parseValID(ID)) 997 return true; 998 if (ID.Kind != ValID::t_Constant) 999 return error(AliaseeLoc, "invalid aliasee"); 1000 Aliasee = ID.ConstantVal; 1001 } 1002 1003 Type *AliaseeType = Aliasee->getType(); 1004 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1005 if (!PTy) 1006 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1007 unsigned AddrSpace = PTy->getAddressSpace(); 1008 1009 if (IsAlias && Ty != PTy->getElementType()) { 1010 return error( 1011 ExplicitTypeLoc, 1012 typeComparisonErrorMessage( 1013 "explicit pointee type doesn't match operand's pointee type", Ty, 1014 PTy->getElementType())); 1015 } 1016 1017 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 1018 return error(ExplicitTypeLoc, 1019 "explicit pointee type should be a function type"); 1020 } 1021 1022 GlobalValue *GVal = nullptr; 1023 1024 // See if the alias was forward referenced, if so, prepare to replace the 1025 // forward reference. 1026 if (!Name.empty()) { 1027 GVal = M->getNamedValue(Name); 1028 if (GVal) { 1029 if (!ForwardRefVals.erase(Name)) 1030 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1031 } 1032 } else { 1033 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1034 if (I != ForwardRefValIDs.end()) { 1035 GVal = I->second.first; 1036 ForwardRefValIDs.erase(I); 1037 } 1038 } 1039 1040 // Okay, create the alias but do not insert it into the module yet. 1041 std::unique_ptr<GlobalIndirectSymbol> GA; 1042 if (IsAlias) 1043 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1044 (GlobalValue::LinkageTypes)Linkage, Name, 1045 Aliasee, /*Parent*/ nullptr)); 1046 else 1047 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1048 (GlobalValue::LinkageTypes)Linkage, Name, 1049 Aliasee, /*Parent*/ nullptr)); 1050 GA->setThreadLocalMode(TLM); 1051 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1052 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1053 GA->setUnnamedAddr(UnnamedAddr); 1054 maybeSetDSOLocal(DSOLocal, *GA); 1055 1056 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1057 // Now parse them if there are any. 1058 while (Lex.getKind() == lltok::comma) { 1059 Lex.Lex(); 1060 1061 if (Lex.getKind() == lltok::kw_partition) { 1062 Lex.Lex(); 1063 GA->setPartition(Lex.getStrVal()); 1064 if (parseToken(lltok::StringConstant, "expected partition string")) 1065 return true; 1066 } else { 1067 return tokError("unknown alias or ifunc property!"); 1068 } 1069 } 1070 1071 if (Name.empty()) 1072 NumberedVals.push_back(GA.get()); 1073 1074 if (GVal) { 1075 // Verify that types agree. 1076 if (GVal->getType() != GA->getType()) 1077 return error( 1078 ExplicitTypeLoc, 1079 "forward reference and definition of alias have different types"); 1080 1081 // If they agree, just RAUW the old value with the alias and remove the 1082 // forward ref info. 1083 GVal->replaceAllUsesWith(GA.get()); 1084 GVal->eraseFromParent(); 1085 } 1086 1087 // Insert into the module, we know its name won't collide now. 1088 if (IsAlias) 1089 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1090 else 1091 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1092 assert(GA->getName() == Name && "Should not be a name conflict!"); 1093 1094 // The module owns this now 1095 GA.release(); 1096 1097 return false; 1098 } 1099 1100 /// parseGlobal 1101 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1102 /// OptionalVisibility OptionalDLLStorageClass 1103 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1104 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1105 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1106 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1107 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1108 /// Const OptionalAttrs 1109 /// 1110 /// Everything up to and including OptionalUnnamedAddr has been parsed 1111 /// already. 1112 /// 1113 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1114 unsigned Linkage, bool HasLinkage, 1115 unsigned Visibility, unsigned DLLStorageClass, 1116 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1117 GlobalVariable::UnnamedAddr UnnamedAddr) { 1118 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1119 return error(NameLoc, 1120 "symbol with local linkage must have default visibility"); 1121 1122 unsigned AddrSpace; 1123 bool IsConstant, IsExternallyInitialized; 1124 LocTy IsExternallyInitializedLoc; 1125 LocTy TyLoc; 1126 1127 Type *Ty = nullptr; 1128 if (parseOptionalAddrSpace(AddrSpace) || 1129 parseOptionalToken(lltok::kw_externally_initialized, 1130 IsExternallyInitialized, 1131 &IsExternallyInitializedLoc) || 1132 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1133 return true; 1134 1135 // If the linkage is specified and is external, then no initializer is 1136 // present. 1137 Constant *Init = nullptr; 1138 if (!HasLinkage || 1139 !GlobalValue::isValidDeclarationLinkage( 1140 (GlobalValue::LinkageTypes)Linkage)) { 1141 if (parseGlobalValue(Ty, Init)) 1142 return true; 1143 } 1144 1145 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1146 return error(TyLoc, "invalid type for global variable"); 1147 1148 GlobalValue *GVal = nullptr; 1149 1150 // See if the global was forward referenced, if so, use the global. 1151 if (!Name.empty()) { 1152 GVal = M->getNamedValue(Name); 1153 if (GVal) { 1154 if (!ForwardRefVals.erase(Name)) 1155 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1156 } 1157 } else { 1158 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1159 if (I != ForwardRefValIDs.end()) { 1160 GVal = I->second.first; 1161 ForwardRefValIDs.erase(I); 1162 } 1163 } 1164 1165 GlobalVariable *GV; 1166 if (!GVal) { 1167 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1168 Name, nullptr, GlobalVariable::NotThreadLocal, 1169 AddrSpace); 1170 } else { 1171 if (GVal->getValueType() != Ty) 1172 return error( 1173 TyLoc, 1174 "forward reference and definition of global have different types"); 1175 1176 GV = cast<GlobalVariable>(GVal); 1177 1178 // Move the forward-reference to the correct spot in the module. 1179 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1180 } 1181 1182 if (Name.empty()) 1183 NumberedVals.push_back(GV); 1184 1185 // Set the parsed properties on the global. 1186 if (Init) 1187 GV->setInitializer(Init); 1188 GV->setConstant(IsConstant); 1189 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1190 maybeSetDSOLocal(DSOLocal, *GV); 1191 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1192 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1193 GV->setExternallyInitialized(IsExternallyInitialized); 1194 GV->setThreadLocalMode(TLM); 1195 GV->setUnnamedAddr(UnnamedAddr); 1196 1197 // parse attributes on the global. 1198 while (Lex.getKind() == lltok::comma) { 1199 Lex.Lex(); 1200 1201 if (Lex.getKind() == lltok::kw_section) { 1202 Lex.Lex(); 1203 GV->setSection(Lex.getStrVal()); 1204 if (parseToken(lltok::StringConstant, "expected global section string")) 1205 return true; 1206 } else if (Lex.getKind() == lltok::kw_partition) { 1207 Lex.Lex(); 1208 GV->setPartition(Lex.getStrVal()); 1209 if (parseToken(lltok::StringConstant, "expected partition string")) 1210 return true; 1211 } else if (Lex.getKind() == lltok::kw_align) { 1212 MaybeAlign Alignment; 1213 if (parseOptionalAlignment(Alignment)) 1214 return true; 1215 GV->setAlignment(Alignment); 1216 } else if (Lex.getKind() == lltok::MetadataVar) { 1217 if (parseGlobalObjectMetadataAttachment(*GV)) 1218 return true; 1219 } else { 1220 Comdat *C; 1221 if (parseOptionalComdat(Name, C)) 1222 return true; 1223 if (C) 1224 GV->setComdat(C); 1225 else 1226 return tokError("unknown global variable property!"); 1227 } 1228 } 1229 1230 AttrBuilder Attrs; 1231 LocTy BuiltinLoc; 1232 std::vector<unsigned> FwdRefAttrGrps; 1233 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1234 return true; 1235 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1236 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1237 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1238 } 1239 1240 return false; 1241 } 1242 1243 /// parseUnnamedAttrGrp 1244 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1245 bool LLParser::parseUnnamedAttrGrp() { 1246 assert(Lex.getKind() == lltok::kw_attributes); 1247 LocTy AttrGrpLoc = Lex.getLoc(); 1248 Lex.Lex(); 1249 1250 if (Lex.getKind() != lltok::AttrGrpID) 1251 return tokError("expected attribute group id"); 1252 1253 unsigned VarID = Lex.getUIntVal(); 1254 std::vector<unsigned> unused; 1255 LocTy BuiltinLoc; 1256 Lex.Lex(); 1257 1258 if (parseToken(lltok::equal, "expected '=' here") || 1259 parseToken(lltok::lbrace, "expected '{' here") || 1260 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1261 BuiltinLoc) || 1262 parseToken(lltok::rbrace, "expected end of attribute group")) 1263 return true; 1264 1265 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1266 return error(AttrGrpLoc, "attribute group has no attributes"); 1267 1268 return false; 1269 } 1270 1271 /// parseFnAttributeValuePairs 1272 /// ::= <attr> | <attr> '=' <value> 1273 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1274 std::vector<unsigned> &FwdRefAttrGrps, 1275 bool inAttrGrp, LocTy &BuiltinLoc) { 1276 bool HaveError = false; 1277 1278 B.clear(); 1279 1280 while (true) { 1281 lltok::Kind Token = Lex.getKind(); 1282 if (Token == lltok::kw_builtin) 1283 BuiltinLoc = Lex.getLoc(); 1284 switch (Token) { 1285 default: 1286 if (!inAttrGrp) return HaveError; 1287 return error(Lex.getLoc(), "unterminated attribute group"); 1288 case lltok::rbrace: 1289 // Finished. 1290 return false; 1291 1292 case lltok::AttrGrpID: { 1293 // Allow a function to reference an attribute group: 1294 // 1295 // define void @foo() #1 { ... } 1296 if (inAttrGrp) 1297 HaveError |= error( 1298 Lex.getLoc(), 1299 "cannot have an attribute group reference in an attribute group"); 1300 1301 unsigned AttrGrpNum = Lex.getUIntVal(); 1302 if (inAttrGrp) break; 1303 1304 // Save the reference to the attribute group. We'll fill it in later. 1305 FwdRefAttrGrps.push_back(AttrGrpNum); 1306 break; 1307 } 1308 // Target-dependent attributes: 1309 case lltok::StringConstant: { 1310 if (parseStringAttribute(B)) 1311 return true; 1312 continue; 1313 } 1314 1315 // Target-independent attributes: 1316 case lltok::kw_align: { 1317 // As a hack, we allow function alignment to be initially parsed as an 1318 // attribute on a function declaration/definition or added to an attribute 1319 // group and later moved to the alignment field. 1320 MaybeAlign Alignment; 1321 if (inAttrGrp) { 1322 Lex.Lex(); 1323 uint32_t Value = 0; 1324 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1325 return true; 1326 Alignment = Align(Value); 1327 } else { 1328 if (parseOptionalAlignment(Alignment)) 1329 return true; 1330 } 1331 B.addAlignmentAttr(Alignment); 1332 continue; 1333 } 1334 case lltok::kw_alignstack: { 1335 unsigned Alignment; 1336 if (inAttrGrp) { 1337 Lex.Lex(); 1338 if (parseToken(lltok::equal, "expected '=' here") || 1339 parseUInt32(Alignment)) 1340 return true; 1341 } else { 1342 if (parseOptionalStackAlignment(Alignment)) 1343 return true; 1344 } 1345 B.addStackAlignmentAttr(Alignment); 1346 continue; 1347 } 1348 case lltok::kw_allocsize: { 1349 unsigned ElemSizeArg; 1350 Optional<unsigned> NumElemsArg; 1351 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1352 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1353 return true; 1354 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1355 continue; 1356 } 1357 case lltok::kw_vscale_range: { 1358 unsigned MinValue, MaxValue; 1359 // inAttrGrp doesn't matter; we only support vscale_range(a[, b]) 1360 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1361 return true; 1362 B.addVScaleRangeAttr(MinValue, MaxValue); 1363 continue; 1364 } 1365 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1366 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1367 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1368 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1369 case lltok::kw_hot: B.addAttribute(Attribute::Hot); break; 1370 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1371 case lltok::kw_inaccessiblememonly: 1372 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1373 case lltok::kw_inaccessiblemem_or_argmemonly: 1374 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1375 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1376 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1377 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1378 case lltok::kw_mustprogress: 1379 B.addAttribute(Attribute::MustProgress); 1380 break; 1381 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1382 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1383 case lltok::kw_nocallback: 1384 B.addAttribute(Attribute::NoCallback); 1385 break; 1386 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1387 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1388 case lltok::kw_noimplicitfloat: 1389 B.addAttribute(Attribute::NoImplicitFloat); break; 1390 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1391 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1392 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1393 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1394 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1395 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1396 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1397 case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break; 1398 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1399 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1400 case lltok::kw_null_pointer_is_valid: 1401 B.addAttribute(Attribute::NullPointerIsValid); break; 1402 case lltok::kw_optforfuzzing: 1403 B.addAttribute(Attribute::OptForFuzzing); break; 1404 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1405 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1406 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1407 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1408 case lltok::kw_returns_twice: 1409 B.addAttribute(Attribute::ReturnsTwice); break; 1410 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1411 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1412 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1413 case lltok::kw_sspstrong: 1414 B.addAttribute(Attribute::StackProtectStrong); break; 1415 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1416 case lltok::kw_shadowcallstack: 1417 B.addAttribute(Attribute::ShadowCallStack); break; 1418 case lltok::kw_sanitize_address: 1419 B.addAttribute(Attribute::SanitizeAddress); break; 1420 case lltok::kw_sanitize_hwaddress: 1421 B.addAttribute(Attribute::SanitizeHWAddress); break; 1422 case lltok::kw_sanitize_memtag: 1423 B.addAttribute(Attribute::SanitizeMemTag); break; 1424 case lltok::kw_sanitize_thread: 1425 B.addAttribute(Attribute::SanitizeThread); break; 1426 case lltok::kw_sanitize_memory: 1427 B.addAttribute(Attribute::SanitizeMemory); break; 1428 case lltok::kw_speculative_load_hardening: 1429 B.addAttribute(Attribute::SpeculativeLoadHardening); 1430 break; 1431 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1432 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1433 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1434 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1435 case lltok::kw_preallocated: { 1436 Type *Ty; 1437 if (parsePreallocated(Ty)) 1438 return true; 1439 B.addPreallocatedAttr(Ty); 1440 break; 1441 } 1442 1443 // error handling. 1444 case lltok::kw_inreg: 1445 case lltok::kw_signext: 1446 case lltok::kw_zeroext: 1447 HaveError |= 1448 error(Lex.getLoc(), "invalid use of attribute on a function"); 1449 break; 1450 case lltok::kw_byval: 1451 case lltok::kw_dereferenceable: 1452 case lltok::kw_dereferenceable_or_null: 1453 case lltok::kw_inalloca: 1454 case lltok::kw_nest: 1455 case lltok::kw_noalias: 1456 case lltok::kw_noundef: 1457 case lltok::kw_nocapture: 1458 case lltok::kw_nonnull: 1459 case lltok::kw_returned: 1460 case lltok::kw_sret: 1461 case lltok::kw_swifterror: 1462 case lltok::kw_swiftself: 1463 case lltok::kw_swiftasync: 1464 case lltok::kw_immarg: 1465 case lltok::kw_byref: 1466 HaveError |= 1467 error(Lex.getLoc(), 1468 "invalid use of parameter-only attribute on a function"); 1469 break; 1470 } 1471 1472 // parsePreallocated() consumes token 1473 if (Token != lltok::kw_preallocated) 1474 Lex.Lex(); 1475 } 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // GlobalValue Reference/Resolution Routines. 1480 //===----------------------------------------------------------------------===// 1481 1482 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1483 const std::string &Name) { 1484 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1485 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1486 PTy->getAddressSpace(), Name, M); 1487 else 1488 return new GlobalVariable(*M, PTy->getElementType(), false, 1489 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1490 nullptr, GlobalVariable::NotThreadLocal, 1491 PTy->getAddressSpace()); 1492 } 1493 1494 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1495 Value *Val, bool IsCall) { 1496 if (Val->getType() == Ty) 1497 return Val; 1498 // For calls we also accept variables in the program address space. 1499 Type *SuggestedTy = Ty; 1500 if (IsCall && isa<PointerType>(Ty)) { 1501 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1502 M->getDataLayout().getProgramAddressSpace()); 1503 SuggestedTy = TyInProgAS; 1504 if (Val->getType() == TyInProgAS) 1505 return Val; 1506 } 1507 if (Ty->isLabelTy()) 1508 error(Loc, "'" + Name + "' is not a basic block"); 1509 else 1510 error(Loc, "'" + Name + "' defined with type '" + 1511 getTypeString(Val->getType()) + "' but expected '" + 1512 getTypeString(SuggestedTy) + "'"); 1513 return nullptr; 1514 } 1515 1516 /// getGlobalVal - Get a value with the specified name or ID, creating a 1517 /// forward reference record if needed. This can return null if the value 1518 /// exists but does not have the right type. 1519 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1520 LocTy Loc, bool IsCall) { 1521 PointerType *PTy = dyn_cast<PointerType>(Ty); 1522 if (!PTy) { 1523 error(Loc, "global variable reference must have pointer type"); 1524 return nullptr; 1525 } 1526 1527 // Look this name up in the normal function symbol table. 1528 GlobalValue *Val = 1529 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1530 1531 // If this is a forward reference for the value, see if we already created a 1532 // forward ref record. 1533 if (!Val) { 1534 auto I = ForwardRefVals.find(Name); 1535 if (I != ForwardRefVals.end()) 1536 Val = I->second.first; 1537 } 1538 1539 // If we have the value in the symbol table or fwd-ref table, return it. 1540 if (Val) 1541 return cast_or_null<GlobalValue>( 1542 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1543 1544 // Otherwise, create a new forward reference for this value and remember it. 1545 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1546 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1547 return FwdVal; 1548 } 1549 1550 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1551 bool IsCall) { 1552 PointerType *PTy = dyn_cast<PointerType>(Ty); 1553 if (!PTy) { 1554 error(Loc, "global variable reference must have pointer type"); 1555 return nullptr; 1556 } 1557 1558 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1559 1560 // If this is a forward reference for the value, see if we already created a 1561 // forward ref record. 1562 if (!Val) { 1563 auto I = ForwardRefValIDs.find(ID); 1564 if (I != ForwardRefValIDs.end()) 1565 Val = I->second.first; 1566 } 1567 1568 // If we have the value in the symbol table or fwd-ref table, return it. 1569 if (Val) 1570 return cast_or_null<GlobalValue>( 1571 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1572 1573 // Otherwise, create a new forward reference for this value and remember it. 1574 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1575 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1576 return FwdVal; 1577 } 1578 1579 //===----------------------------------------------------------------------===// 1580 // Comdat Reference/Resolution Routines. 1581 //===----------------------------------------------------------------------===// 1582 1583 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1584 // Look this name up in the comdat symbol table. 1585 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1586 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1587 if (I != ComdatSymTab.end()) 1588 return &I->second; 1589 1590 // Otherwise, create a new forward reference for this value and remember it. 1591 Comdat *C = M->getOrInsertComdat(Name); 1592 ForwardRefComdats[Name] = Loc; 1593 return C; 1594 } 1595 1596 //===----------------------------------------------------------------------===// 1597 // Helper Routines. 1598 //===----------------------------------------------------------------------===// 1599 1600 /// parseToken - If the current token has the specified kind, eat it and return 1601 /// success. Otherwise, emit the specified error and return failure. 1602 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1603 if (Lex.getKind() != T) 1604 return tokError(ErrMsg); 1605 Lex.Lex(); 1606 return false; 1607 } 1608 1609 /// parseStringConstant 1610 /// ::= StringConstant 1611 bool LLParser::parseStringConstant(std::string &Result) { 1612 if (Lex.getKind() != lltok::StringConstant) 1613 return tokError("expected string constant"); 1614 Result = Lex.getStrVal(); 1615 Lex.Lex(); 1616 return false; 1617 } 1618 1619 /// parseUInt32 1620 /// ::= uint32 1621 bool LLParser::parseUInt32(uint32_t &Val) { 1622 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1623 return tokError("expected integer"); 1624 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1625 if (Val64 != unsigned(Val64)) 1626 return tokError("expected 32-bit integer (too large)"); 1627 Val = Val64; 1628 Lex.Lex(); 1629 return false; 1630 } 1631 1632 /// parseUInt64 1633 /// ::= uint64 1634 bool LLParser::parseUInt64(uint64_t &Val) { 1635 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1636 return tokError("expected integer"); 1637 Val = Lex.getAPSIntVal().getLimitedValue(); 1638 Lex.Lex(); 1639 return false; 1640 } 1641 1642 /// parseTLSModel 1643 /// := 'localdynamic' 1644 /// := 'initialexec' 1645 /// := 'localexec' 1646 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1647 switch (Lex.getKind()) { 1648 default: 1649 return tokError("expected localdynamic, initialexec or localexec"); 1650 case lltok::kw_localdynamic: 1651 TLM = GlobalVariable::LocalDynamicTLSModel; 1652 break; 1653 case lltok::kw_initialexec: 1654 TLM = GlobalVariable::InitialExecTLSModel; 1655 break; 1656 case lltok::kw_localexec: 1657 TLM = GlobalVariable::LocalExecTLSModel; 1658 break; 1659 } 1660 1661 Lex.Lex(); 1662 return false; 1663 } 1664 1665 /// parseOptionalThreadLocal 1666 /// := /*empty*/ 1667 /// := 'thread_local' 1668 /// := 'thread_local' '(' tlsmodel ')' 1669 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1670 TLM = GlobalVariable::NotThreadLocal; 1671 if (!EatIfPresent(lltok::kw_thread_local)) 1672 return false; 1673 1674 TLM = GlobalVariable::GeneralDynamicTLSModel; 1675 if (Lex.getKind() == lltok::lparen) { 1676 Lex.Lex(); 1677 return parseTLSModel(TLM) || 1678 parseToken(lltok::rparen, "expected ')' after thread local model"); 1679 } 1680 return false; 1681 } 1682 1683 /// parseOptionalAddrSpace 1684 /// := /*empty*/ 1685 /// := 'addrspace' '(' uint32 ')' 1686 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1687 AddrSpace = DefaultAS; 1688 if (!EatIfPresent(lltok::kw_addrspace)) 1689 return false; 1690 return parseToken(lltok::lparen, "expected '(' in address space") || 1691 parseUInt32(AddrSpace) || 1692 parseToken(lltok::rparen, "expected ')' in address space"); 1693 } 1694 1695 /// parseStringAttribute 1696 /// := StringConstant 1697 /// := StringConstant '=' StringConstant 1698 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1699 std::string Attr = Lex.getStrVal(); 1700 Lex.Lex(); 1701 std::string Val; 1702 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1703 return true; 1704 B.addAttribute(Attr, Val); 1705 return false; 1706 } 1707 1708 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1709 /// attributes. 1710 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1711 bool HaveError = false; 1712 1713 B.clear(); 1714 1715 while (true) { 1716 lltok::Kind Token = Lex.getKind(); 1717 switch (Token) { 1718 default: // End of attributes. 1719 return HaveError; 1720 case lltok::StringConstant: { 1721 if (parseStringAttribute(B)) 1722 return true; 1723 continue; 1724 } 1725 case lltok::kw_align: { 1726 MaybeAlign Alignment; 1727 if (parseOptionalAlignment(Alignment, true)) 1728 return true; 1729 B.addAlignmentAttr(Alignment); 1730 continue; 1731 } 1732 case lltok::kw_alignstack: { 1733 unsigned Alignment; 1734 if (parseOptionalStackAlignment(Alignment)) 1735 return true; 1736 B.addStackAlignmentAttr(Alignment); 1737 continue; 1738 } 1739 case lltok::kw_byval: { 1740 Type *Ty; 1741 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1742 return true; 1743 B.addByValAttr(Ty); 1744 continue; 1745 } 1746 case lltok::kw_sret: { 1747 Type *Ty; 1748 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1749 return true; 1750 B.addStructRetAttr(Ty); 1751 continue; 1752 } 1753 case lltok::kw_preallocated: { 1754 Type *Ty; 1755 if (parsePreallocated(Ty)) 1756 return true; 1757 B.addPreallocatedAttr(Ty); 1758 continue; 1759 } 1760 case lltok::kw_inalloca: { 1761 Type *Ty; 1762 if (parseInalloca(Ty)) 1763 return true; 1764 B.addInAllocaAttr(Ty); 1765 continue; 1766 } 1767 case lltok::kw_dereferenceable: { 1768 uint64_t Bytes; 1769 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1770 return true; 1771 B.addDereferenceableAttr(Bytes); 1772 continue; 1773 } 1774 case lltok::kw_dereferenceable_or_null: { 1775 uint64_t Bytes; 1776 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1777 return true; 1778 B.addDereferenceableOrNullAttr(Bytes); 1779 continue; 1780 } 1781 case lltok::kw_byref: { 1782 Type *Ty; 1783 if (parseByRef(Ty)) 1784 return true; 1785 B.addByRefAttr(Ty); 1786 continue; 1787 } 1788 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1789 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1790 case lltok::kw_noundef: 1791 B.addAttribute(Attribute::NoUndef); 1792 break; 1793 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1794 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1795 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1796 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1797 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1798 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1799 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1800 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1801 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1802 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1803 case lltok::kw_swiftasync: B.addAttribute(Attribute::SwiftAsync); break; 1804 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1805 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1806 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1807 1808 case lltok::kw_alwaysinline: 1809 case lltok::kw_argmemonly: 1810 case lltok::kw_builtin: 1811 case lltok::kw_inlinehint: 1812 case lltok::kw_jumptable: 1813 case lltok::kw_minsize: 1814 case lltok::kw_mustprogress: 1815 case lltok::kw_naked: 1816 case lltok::kw_nobuiltin: 1817 case lltok::kw_noduplicate: 1818 case lltok::kw_noimplicitfloat: 1819 case lltok::kw_noinline: 1820 case lltok::kw_nonlazybind: 1821 case lltok::kw_nomerge: 1822 case lltok::kw_noprofile: 1823 case lltok::kw_noredzone: 1824 case lltok::kw_noreturn: 1825 case lltok::kw_nocf_check: 1826 case lltok::kw_nounwind: 1827 case lltok::kw_optforfuzzing: 1828 case lltok::kw_optnone: 1829 case lltok::kw_optsize: 1830 case lltok::kw_returns_twice: 1831 case lltok::kw_sanitize_address: 1832 case lltok::kw_sanitize_hwaddress: 1833 case lltok::kw_sanitize_memtag: 1834 case lltok::kw_sanitize_memory: 1835 case lltok::kw_sanitize_thread: 1836 case lltok::kw_speculative_load_hardening: 1837 case lltok::kw_ssp: 1838 case lltok::kw_sspreq: 1839 case lltok::kw_sspstrong: 1840 case lltok::kw_safestack: 1841 case lltok::kw_shadowcallstack: 1842 case lltok::kw_strictfp: 1843 case lltok::kw_uwtable: 1844 case lltok::kw_vscale_range: 1845 HaveError |= 1846 error(Lex.getLoc(), "invalid use of function-only attribute"); 1847 break; 1848 } 1849 1850 Lex.Lex(); 1851 } 1852 } 1853 1854 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1855 /// attributes. 1856 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1857 bool HaveError = false; 1858 1859 B.clear(); 1860 1861 while (true) { 1862 lltok::Kind Token = Lex.getKind(); 1863 switch (Token) { 1864 default: // End of attributes. 1865 return HaveError; 1866 case lltok::StringConstant: { 1867 if (parseStringAttribute(B)) 1868 return true; 1869 continue; 1870 } 1871 case lltok::kw_dereferenceable: { 1872 uint64_t Bytes; 1873 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1874 return true; 1875 B.addDereferenceableAttr(Bytes); 1876 continue; 1877 } 1878 case lltok::kw_dereferenceable_or_null: { 1879 uint64_t Bytes; 1880 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1881 return true; 1882 B.addDereferenceableOrNullAttr(Bytes); 1883 continue; 1884 } 1885 case lltok::kw_align: { 1886 MaybeAlign Alignment; 1887 if (parseOptionalAlignment(Alignment)) 1888 return true; 1889 B.addAlignmentAttr(Alignment); 1890 continue; 1891 } 1892 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1893 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1894 case lltok::kw_noundef: 1895 B.addAttribute(Attribute::NoUndef); 1896 break; 1897 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1898 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1899 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1900 1901 // error handling. 1902 case lltok::kw_byval: 1903 case lltok::kw_inalloca: 1904 case lltok::kw_nest: 1905 case lltok::kw_nocapture: 1906 case lltok::kw_returned: 1907 case lltok::kw_sret: 1908 case lltok::kw_swifterror: 1909 case lltok::kw_swiftself: 1910 case lltok::kw_swiftasync: 1911 case lltok::kw_immarg: 1912 case lltok::kw_byref: 1913 HaveError |= 1914 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1915 break; 1916 1917 case lltok::kw_alignstack: 1918 case lltok::kw_alwaysinline: 1919 case lltok::kw_argmemonly: 1920 case lltok::kw_builtin: 1921 case lltok::kw_cold: 1922 case lltok::kw_inlinehint: 1923 case lltok::kw_jumptable: 1924 case lltok::kw_minsize: 1925 case lltok::kw_mustprogress: 1926 case lltok::kw_naked: 1927 case lltok::kw_nobuiltin: 1928 case lltok::kw_noduplicate: 1929 case lltok::kw_noimplicitfloat: 1930 case lltok::kw_noinline: 1931 case lltok::kw_nonlazybind: 1932 case lltok::kw_nomerge: 1933 case lltok::kw_noprofile: 1934 case lltok::kw_noredzone: 1935 case lltok::kw_noreturn: 1936 case lltok::kw_nocf_check: 1937 case lltok::kw_nounwind: 1938 case lltok::kw_optforfuzzing: 1939 case lltok::kw_optnone: 1940 case lltok::kw_optsize: 1941 case lltok::kw_returns_twice: 1942 case lltok::kw_sanitize_address: 1943 case lltok::kw_sanitize_hwaddress: 1944 case lltok::kw_sanitize_memtag: 1945 case lltok::kw_sanitize_memory: 1946 case lltok::kw_sanitize_thread: 1947 case lltok::kw_speculative_load_hardening: 1948 case lltok::kw_ssp: 1949 case lltok::kw_sspreq: 1950 case lltok::kw_sspstrong: 1951 case lltok::kw_safestack: 1952 case lltok::kw_shadowcallstack: 1953 case lltok::kw_strictfp: 1954 case lltok::kw_uwtable: 1955 case lltok::kw_vscale_range: 1956 HaveError |= 1957 error(Lex.getLoc(), "invalid use of function-only attribute"); 1958 break; 1959 case lltok::kw_readnone: 1960 case lltok::kw_readonly: 1961 HaveError |= 1962 error(Lex.getLoc(), "invalid use of attribute on return type"); 1963 break; 1964 case lltok::kw_preallocated: 1965 HaveError |= 1966 error(Lex.getLoc(), 1967 "invalid use of parameter-only/call site-only attribute"); 1968 break; 1969 } 1970 1971 Lex.Lex(); 1972 } 1973 } 1974 1975 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1976 HasLinkage = true; 1977 switch (Kind) { 1978 default: 1979 HasLinkage = false; 1980 return GlobalValue::ExternalLinkage; 1981 case lltok::kw_private: 1982 return GlobalValue::PrivateLinkage; 1983 case lltok::kw_internal: 1984 return GlobalValue::InternalLinkage; 1985 case lltok::kw_weak: 1986 return GlobalValue::WeakAnyLinkage; 1987 case lltok::kw_weak_odr: 1988 return GlobalValue::WeakODRLinkage; 1989 case lltok::kw_linkonce: 1990 return GlobalValue::LinkOnceAnyLinkage; 1991 case lltok::kw_linkonce_odr: 1992 return GlobalValue::LinkOnceODRLinkage; 1993 case lltok::kw_available_externally: 1994 return GlobalValue::AvailableExternallyLinkage; 1995 case lltok::kw_appending: 1996 return GlobalValue::AppendingLinkage; 1997 case lltok::kw_common: 1998 return GlobalValue::CommonLinkage; 1999 case lltok::kw_extern_weak: 2000 return GlobalValue::ExternalWeakLinkage; 2001 case lltok::kw_external: 2002 return GlobalValue::ExternalLinkage; 2003 } 2004 } 2005 2006 /// parseOptionalLinkage 2007 /// ::= /*empty*/ 2008 /// ::= 'private' 2009 /// ::= 'internal' 2010 /// ::= 'weak' 2011 /// ::= 'weak_odr' 2012 /// ::= 'linkonce' 2013 /// ::= 'linkonce_odr' 2014 /// ::= 'available_externally' 2015 /// ::= 'appending' 2016 /// ::= 'common' 2017 /// ::= 'extern_weak' 2018 /// ::= 'external' 2019 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 2020 unsigned &Visibility, 2021 unsigned &DLLStorageClass, bool &DSOLocal) { 2022 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 2023 if (HasLinkage) 2024 Lex.Lex(); 2025 parseOptionalDSOLocal(DSOLocal); 2026 parseOptionalVisibility(Visibility); 2027 parseOptionalDLLStorageClass(DLLStorageClass); 2028 2029 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 2030 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 2031 } 2032 2033 return false; 2034 } 2035 2036 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 2037 switch (Lex.getKind()) { 2038 default: 2039 DSOLocal = false; 2040 break; 2041 case lltok::kw_dso_local: 2042 DSOLocal = true; 2043 Lex.Lex(); 2044 break; 2045 case lltok::kw_dso_preemptable: 2046 DSOLocal = false; 2047 Lex.Lex(); 2048 break; 2049 } 2050 } 2051 2052 /// parseOptionalVisibility 2053 /// ::= /*empty*/ 2054 /// ::= 'default' 2055 /// ::= 'hidden' 2056 /// ::= 'protected' 2057 /// 2058 void LLParser::parseOptionalVisibility(unsigned &Res) { 2059 switch (Lex.getKind()) { 2060 default: 2061 Res = GlobalValue::DefaultVisibility; 2062 return; 2063 case lltok::kw_default: 2064 Res = GlobalValue::DefaultVisibility; 2065 break; 2066 case lltok::kw_hidden: 2067 Res = GlobalValue::HiddenVisibility; 2068 break; 2069 case lltok::kw_protected: 2070 Res = GlobalValue::ProtectedVisibility; 2071 break; 2072 } 2073 Lex.Lex(); 2074 } 2075 2076 /// parseOptionalDLLStorageClass 2077 /// ::= /*empty*/ 2078 /// ::= 'dllimport' 2079 /// ::= 'dllexport' 2080 /// 2081 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2082 switch (Lex.getKind()) { 2083 default: 2084 Res = GlobalValue::DefaultStorageClass; 2085 return; 2086 case lltok::kw_dllimport: 2087 Res = GlobalValue::DLLImportStorageClass; 2088 break; 2089 case lltok::kw_dllexport: 2090 Res = GlobalValue::DLLExportStorageClass; 2091 break; 2092 } 2093 Lex.Lex(); 2094 } 2095 2096 /// parseOptionalCallingConv 2097 /// ::= /*empty*/ 2098 /// ::= 'ccc' 2099 /// ::= 'fastcc' 2100 /// ::= 'intel_ocl_bicc' 2101 /// ::= 'coldcc' 2102 /// ::= 'cfguard_checkcc' 2103 /// ::= 'x86_stdcallcc' 2104 /// ::= 'x86_fastcallcc' 2105 /// ::= 'x86_thiscallcc' 2106 /// ::= 'x86_vectorcallcc' 2107 /// ::= 'arm_apcscc' 2108 /// ::= 'arm_aapcscc' 2109 /// ::= 'arm_aapcs_vfpcc' 2110 /// ::= 'aarch64_vector_pcs' 2111 /// ::= 'aarch64_sve_vector_pcs' 2112 /// ::= 'msp430_intrcc' 2113 /// ::= 'avr_intrcc' 2114 /// ::= 'avr_signalcc' 2115 /// ::= 'ptx_kernel' 2116 /// ::= 'ptx_device' 2117 /// ::= 'spir_func' 2118 /// ::= 'spir_kernel' 2119 /// ::= 'x86_64_sysvcc' 2120 /// ::= 'win64cc' 2121 /// ::= 'webkit_jscc' 2122 /// ::= 'anyregcc' 2123 /// ::= 'preserve_mostcc' 2124 /// ::= 'preserve_allcc' 2125 /// ::= 'ghccc' 2126 /// ::= 'swiftcc' 2127 /// ::= 'x86_intrcc' 2128 /// ::= 'hhvmcc' 2129 /// ::= 'hhvm_ccc' 2130 /// ::= 'cxx_fast_tlscc' 2131 /// ::= 'amdgpu_vs' 2132 /// ::= 'amdgpu_ls' 2133 /// ::= 'amdgpu_hs' 2134 /// ::= 'amdgpu_es' 2135 /// ::= 'amdgpu_gs' 2136 /// ::= 'amdgpu_ps' 2137 /// ::= 'amdgpu_cs' 2138 /// ::= 'amdgpu_kernel' 2139 /// ::= 'tailcc' 2140 /// ::= 'cc' UINT 2141 /// 2142 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2143 switch (Lex.getKind()) { 2144 default: CC = CallingConv::C; return false; 2145 case lltok::kw_ccc: CC = CallingConv::C; break; 2146 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2147 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2148 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2149 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2150 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2151 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2152 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2153 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2154 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2155 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2156 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2157 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2158 case lltok::kw_aarch64_sve_vector_pcs: 2159 CC = CallingConv::AArch64_SVE_VectorCall; 2160 break; 2161 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2162 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2163 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2164 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2165 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2166 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2167 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2168 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2169 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2170 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2171 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2172 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2173 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2174 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2175 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2176 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2177 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2178 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2179 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2180 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2181 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2182 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2183 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2184 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2185 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2186 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2187 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2188 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2189 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2190 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2191 case lltok::kw_cc: { 2192 Lex.Lex(); 2193 return parseUInt32(CC); 2194 } 2195 } 2196 2197 Lex.Lex(); 2198 return false; 2199 } 2200 2201 /// parseMetadataAttachment 2202 /// ::= !dbg !42 2203 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2204 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2205 2206 std::string Name = Lex.getStrVal(); 2207 Kind = M->getMDKindID(Name); 2208 Lex.Lex(); 2209 2210 return parseMDNode(MD); 2211 } 2212 2213 /// parseInstructionMetadata 2214 /// ::= !dbg !42 (',' !dbg !57)* 2215 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2216 do { 2217 if (Lex.getKind() != lltok::MetadataVar) 2218 return tokError("expected metadata after comma"); 2219 2220 unsigned MDK; 2221 MDNode *N; 2222 if (parseMetadataAttachment(MDK, N)) 2223 return true; 2224 2225 Inst.setMetadata(MDK, N); 2226 if (MDK == LLVMContext::MD_tbaa) 2227 InstsWithTBAATag.push_back(&Inst); 2228 2229 // If this is the end of the list, we're done. 2230 } while (EatIfPresent(lltok::comma)); 2231 return false; 2232 } 2233 2234 /// parseGlobalObjectMetadataAttachment 2235 /// ::= !dbg !57 2236 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2237 unsigned MDK; 2238 MDNode *N; 2239 if (parseMetadataAttachment(MDK, N)) 2240 return true; 2241 2242 GO.addMetadata(MDK, *N); 2243 return false; 2244 } 2245 2246 /// parseOptionalFunctionMetadata 2247 /// ::= (!dbg !57)* 2248 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2249 while (Lex.getKind() == lltok::MetadataVar) 2250 if (parseGlobalObjectMetadataAttachment(F)) 2251 return true; 2252 return false; 2253 } 2254 2255 /// parseOptionalAlignment 2256 /// ::= /* empty */ 2257 /// ::= 'align' 4 2258 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2259 Alignment = None; 2260 if (!EatIfPresent(lltok::kw_align)) 2261 return false; 2262 LocTy AlignLoc = Lex.getLoc(); 2263 uint32_t Value = 0; 2264 2265 LocTy ParenLoc = Lex.getLoc(); 2266 bool HaveParens = false; 2267 if (AllowParens) { 2268 if (EatIfPresent(lltok::lparen)) 2269 HaveParens = true; 2270 } 2271 2272 if (parseUInt32(Value)) 2273 return true; 2274 2275 if (HaveParens && !EatIfPresent(lltok::rparen)) 2276 return error(ParenLoc, "expected ')'"); 2277 2278 if (!isPowerOf2_32(Value)) 2279 return error(AlignLoc, "alignment is not a power of two"); 2280 if (Value > Value::MaximumAlignment) 2281 return error(AlignLoc, "huge alignments are not supported yet"); 2282 Alignment = Align(Value); 2283 return false; 2284 } 2285 2286 /// parseOptionalDerefAttrBytes 2287 /// ::= /* empty */ 2288 /// ::= AttrKind '(' 4 ')' 2289 /// 2290 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2291 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2292 uint64_t &Bytes) { 2293 assert((AttrKind == lltok::kw_dereferenceable || 2294 AttrKind == lltok::kw_dereferenceable_or_null) && 2295 "contract!"); 2296 2297 Bytes = 0; 2298 if (!EatIfPresent(AttrKind)) 2299 return false; 2300 LocTy ParenLoc = Lex.getLoc(); 2301 if (!EatIfPresent(lltok::lparen)) 2302 return error(ParenLoc, "expected '('"); 2303 LocTy DerefLoc = Lex.getLoc(); 2304 if (parseUInt64(Bytes)) 2305 return true; 2306 ParenLoc = Lex.getLoc(); 2307 if (!EatIfPresent(lltok::rparen)) 2308 return error(ParenLoc, "expected ')'"); 2309 if (!Bytes) 2310 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2311 return false; 2312 } 2313 2314 /// parseOptionalCommaAlign 2315 /// ::= 2316 /// ::= ',' align 4 2317 /// 2318 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2319 /// end. 2320 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2321 bool &AteExtraComma) { 2322 AteExtraComma = false; 2323 while (EatIfPresent(lltok::comma)) { 2324 // Metadata at the end is an early exit. 2325 if (Lex.getKind() == lltok::MetadataVar) { 2326 AteExtraComma = true; 2327 return false; 2328 } 2329 2330 if (Lex.getKind() != lltok::kw_align) 2331 return error(Lex.getLoc(), "expected metadata or 'align'"); 2332 2333 if (parseOptionalAlignment(Alignment)) 2334 return true; 2335 } 2336 2337 return false; 2338 } 2339 2340 /// parseOptionalCommaAddrSpace 2341 /// ::= 2342 /// ::= ',' addrspace(1) 2343 /// 2344 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2345 /// end. 2346 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2347 bool &AteExtraComma) { 2348 AteExtraComma = false; 2349 while (EatIfPresent(lltok::comma)) { 2350 // Metadata at the end is an early exit. 2351 if (Lex.getKind() == lltok::MetadataVar) { 2352 AteExtraComma = true; 2353 return false; 2354 } 2355 2356 Loc = Lex.getLoc(); 2357 if (Lex.getKind() != lltok::kw_addrspace) 2358 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2359 2360 if (parseOptionalAddrSpace(AddrSpace)) 2361 return true; 2362 } 2363 2364 return false; 2365 } 2366 2367 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2368 Optional<unsigned> &HowManyArg) { 2369 Lex.Lex(); 2370 2371 auto StartParen = Lex.getLoc(); 2372 if (!EatIfPresent(lltok::lparen)) 2373 return error(StartParen, "expected '('"); 2374 2375 if (parseUInt32(BaseSizeArg)) 2376 return true; 2377 2378 if (EatIfPresent(lltok::comma)) { 2379 auto HowManyAt = Lex.getLoc(); 2380 unsigned HowMany; 2381 if (parseUInt32(HowMany)) 2382 return true; 2383 if (HowMany == BaseSizeArg) 2384 return error(HowManyAt, 2385 "'allocsize' indices can't refer to the same parameter"); 2386 HowManyArg = HowMany; 2387 } else 2388 HowManyArg = None; 2389 2390 auto EndParen = Lex.getLoc(); 2391 if (!EatIfPresent(lltok::rparen)) 2392 return error(EndParen, "expected ')'"); 2393 return false; 2394 } 2395 2396 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2397 unsigned &MaxValue) { 2398 Lex.Lex(); 2399 2400 auto StartParen = Lex.getLoc(); 2401 if (!EatIfPresent(lltok::lparen)) 2402 return error(StartParen, "expected '('"); 2403 2404 if (parseUInt32(MinValue)) 2405 return true; 2406 2407 if (EatIfPresent(lltok::comma)) { 2408 if (parseUInt32(MaxValue)) 2409 return true; 2410 } else 2411 MaxValue = MinValue; 2412 2413 auto EndParen = Lex.getLoc(); 2414 if (!EatIfPresent(lltok::rparen)) 2415 return error(EndParen, "expected ')'"); 2416 return false; 2417 } 2418 2419 /// parseScopeAndOrdering 2420 /// if isAtomic: ::= SyncScope? AtomicOrdering 2421 /// else: ::= 2422 /// 2423 /// This sets Scope and Ordering to the parsed values. 2424 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2425 AtomicOrdering &Ordering) { 2426 if (!IsAtomic) 2427 return false; 2428 2429 return parseScope(SSID) || parseOrdering(Ordering); 2430 } 2431 2432 /// parseScope 2433 /// ::= syncscope("singlethread" | "<target scope>")? 2434 /// 2435 /// This sets synchronization scope ID to the ID of the parsed value. 2436 bool LLParser::parseScope(SyncScope::ID &SSID) { 2437 SSID = SyncScope::System; 2438 if (EatIfPresent(lltok::kw_syncscope)) { 2439 auto StartParenAt = Lex.getLoc(); 2440 if (!EatIfPresent(lltok::lparen)) 2441 return error(StartParenAt, "Expected '(' in syncscope"); 2442 2443 std::string SSN; 2444 auto SSNAt = Lex.getLoc(); 2445 if (parseStringConstant(SSN)) 2446 return error(SSNAt, "Expected synchronization scope name"); 2447 2448 auto EndParenAt = Lex.getLoc(); 2449 if (!EatIfPresent(lltok::rparen)) 2450 return error(EndParenAt, "Expected ')' in syncscope"); 2451 2452 SSID = Context.getOrInsertSyncScopeID(SSN); 2453 } 2454 2455 return false; 2456 } 2457 2458 /// parseOrdering 2459 /// ::= AtomicOrdering 2460 /// 2461 /// This sets Ordering to the parsed value. 2462 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2463 switch (Lex.getKind()) { 2464 default: 2465 return tokError("Expected ordering on atomic instruction"); 2466 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2467 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2468 // Not specified yet: 2469 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2470 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2471 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2472 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2473 case lltok::kw_seq_cst: 2474 Ordering = AtomicOrdering::SequentiallyConsistent; 2475 break; 2476 } 2477 Lex.Lex(); 2478 return false; 2479 } 2480 2481 /// parseOptionalStackAlignment 2482 /// ::= /* empty */ 2483 /// ::= 'alignstack' '(' 4 ')' 2484 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2485 Alignment = 0; 2486 if (!EatIfPresent(lltok::kw_alignstack)) 2487 return false; 2488 LocTy ParenLoc = Lex.getLoc(); 2489 if (!EatIfPresent(lltok::lparen)) 2490 return error(ParenLoc, "expected '('"); 2491 LocTy AlignLoc = Lex.getLoc(); 2492 if (parseUInt32(Alignment)) 2493 return true; 2494 ParenLoc = Lex.getLoc(); 2495 if (!EatIfPresent(lltok::rparen)) 2496 return error(ParenLoc, "expected ')'"); 2497 if (!isPowerOf2_32(Alignment)) 2498 return error(AlignLoc, "stack alignment is not a power of two"); 2499 return false; 2500 } 2501 2502 /// parseIndexList - This parses the index list for an insert/extractvalue 2503 /// instruction. This sets AteExtraComma in the case where we eat an extra 2504 /// comma at the end of the line and find that it is followed by metadata. 2505 /// Clients that don't allow metadata can call the version of this function that 2506 /// only takes one argument. 2507 /// 2508 /// parseIndexList 2509 /// ::= (',' uint32)+ 2510 /// 2511 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2512 bool &AteExtraComma) { 2513 AteExtraComma = false; 2514 2515 if (Lex.getKind() != lltok::comma) 2516 return tokError("expected ',' as start of index list"); 2517 2518 while (EatIfPresent(lltok::comma)) { 2519 if (Lex.getKind() == lltok::MetadataVar) { 2520 if (Indices.empty()) 2521 return tokError("expected index"); 2522 AteExtraComma = true; 2523 return false; 2524 } 2525 unsigned Idx = 0; 2526 if (parseUInt32(Idx)) 2527 return true; 2528 Indices.push_back(Idx); 2529 } 2530 2531 return false; 2532 } 2533 2534 //===----------------------------------------------------------------------===// 2535 // Type Parsing. 2536 //===----------------------------------------------------------------------===// 2537 2538 /// parseType - parse a type. 2539 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2540 SMLoc TypeLoc = Lex.getLoc(); 2541 switch (Lex.getKind()) { 2542 default: 2543 return tokError(Msg); 2544 case lltok::Type: 2545 // Type ::= 'float' | 'void' (etc) 2546 Result = Lex.getTyVal(); 2547 Lex.Lex(); 2548 break; 2549 case lltok::lbrace: 2550 // Type ::= StructType 2551 if (parseAnonStructType(Result, false)) 2552 return true; 2553 break; 2554 case lltok::lsquare: 2555 // Type ::= '[' ... ']' 2556 Lex.Lex(); // eat the lsquare. 2557 if (parseArrayVectorType(Result, false)) 2558 return true; 2559 break; 2560 case lltok::less: // Either vector or packed struct. 2561 // Type ::= '<' ... '>' 2562 Lex.Lex(); 2563 if (Lex.getKind() == lltok::lbrace) { 2564 if (parseAnonStructType(Result, true) || 2565 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2566 return true; 2567 } else if (parseArrayVectorType(Result, true)) 2568 return true; 2569 break; 2570 case lltok::LocalVar: { 2571 // Type ::= %foo 2572 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2573 2574 // If the type hasn't been defined yet, create a forward definition and 2575 // remember where that forward def'n was seen (in case it never is defined). 2576 if (!Entry.first) { 2577 Entry.first = StructType::create(Context, Lex.getStrVal()); 2578 Entry.second = Lex.getLoc(); 2579 } 2580 Result = Entry.first; 2581 Lex.Lex(); 2582 break; 2583 } 2584 2585 case lltok::LocalVarID: { 2586 // Type ::= %4 2587 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2588 2589 // If the type hasn't been defined yet, create a forward definition and 2590 // remember where that forward def'n was seen (in case it never is defined). 2591 if (!Entry.first) { 2592 Entry.first = StructType::create(Context); 2593 Entry.second = Lex.getLoc(); 2594 } 2595 Result = Entry.first; 2596 Lex.Lex(); 2597 break; 2598 } 2599 } 2600 2601 if (Result->isPointerTy() && cast<PointerType>(Result)->isOpaque()) { 2602 unsigned AddrSpace; 2603 if (parseOptionalAddrSpace(AddrSpace)) 2604 return true; 2605 Result = PointerType::get(getContext(), AddrSpace); 2606 } 2607 2608 // parse the type suffixes. 2609 while (true) { 2610 switch (Lex.getKind()) { 2611 // End of type. 2612 default: 2613 if (!AllowVoid && Result->isVoidTy()) 2614 return error(TypeLoc, "void type only allowed for function results"); 2615 return false; 2616 2617 // Type ::= Type '*' 2618 case lltok::star: 2619 if (Result->isLabelTy()) 2620 return tokError("basic block pointers are invalid"); 2621 if (Result->isVoidTy()) 2622 return tokError("pointers to void are invalid - use i8* instead"); 2623 if (!PointerType::isValidElementType(Result)) 2624 return tokError("pointer to this type is invalid"); 2625 Result = PointerType::getUnqual(Result); 2626 Lex.Lex(); 2627 break; 2628 2629 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2630 case lltok::kw_addrspace: { 2631 if (Result->isLabelTy()) 2632 return tokError("basic block pointers are invalid"); 2633 if (Result->isVoidTy()) 2634 return tokError("pointers to void are invalid; use i8* instead"); 2635 if (!PointerType::isValidElementType(Result)) 2636 return tokError("pointer to this type is invalid"); 2637 unsigned AddrSpace; 2638 if (parseOptionalAddrSpace(AddrSpace) || 2639 parseToken(lltok::star, "expected '*' in address space")) 2640 return true; 2641 2642 Result = PointerType::get(Result, AddrSpace); 2643 break; 2644 } 2645 2646 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2647 case lltok::lparen: 2648 if (parseFunctionType(Result)) 2649 return true; 2650 break; 2651 } 2652 } 2653 } 2654 2655 /// parseParameterList 2656 /// ::= '(' ')' 2657 /// ::= '(' Arg (',' Arg)* ')' 2658 /// Arg 2659 /// ::= Type OptionalAttributes Value OptionalAttributes 2660 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2661 PerFunctionState &PFS, bool IsMustTailCall, 2662 bool InVarArgsFunc) { 2663 if (parseToken(lltok::lparen, "expected '(' in call")) 2664 return true; 2665 2666 while (Lex.getKind() != lltok::rparen) { 2667 // If this isn't the first argument, we need a comma. 2668 if (!ArgList.empty() && 2669 parseToken(lltok::comma, "expected ',' in argument list")) 2670 return true; 2671 2672 // parse an ellipsis if this is a musttail call in a variadic function. 2673 if (Lex.getKind() == lltok::dotdotdot) { 2674 const char *Msg = "unexpected ellipsis in argument list for "; 2675 if (!IsMustTailCall) 2676 return tokError(Twine(Msg) + "non-musttail call"); 2677 if (!InVarArgsFunc) 2678 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2679 Lex.Lex(); // Lex the '...', it is purely for readability. 2680 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2681 } 2682 2683 // parse the argument. 2684 LocTy ArgLoc; 2685 Type *ArgTy = nullptr; 2686 AttrBuilder ArgAttrs; 2687 Value *V; 2688 if (parseType(ArgTy, ArgLoc)) 2689 return true; 2690 2691 if (ArgTy->isMetadataTy()) { 2692 if (parseMetadataAsValue(V, PFS)) 2693 return true; 2694 } else { 2695 // Otherwise, handle normal operands. 2696 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2697 return true; 2698 } 2699 ArgList.push_back(ParamInfo( 2700 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2701 } 2702 2703 if (IsMustTailCall && InVarArgsFunc) 2704 return tokError("expected '...' at end of argument list for musttail call " 2705 "in varargs function"); 2706 2707 Lex.Lex(); // Lex the ')'. 2708 return false; 2709 } 2710 2711 /// parseRequiredTypeAttr 2712 /// ::= attrname(<ty>) 2713 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2714 Result = nullptr; 2715 if (!EatIfPresent(AttrName)) 2716 return true; 2717 if (!EatIfPresent(lltok::lparen)) 2718 return error(Lex.getLoc(), "expected '('"); 2719 if (parseType(Result)) 2720 return true; 2721 if (!EatIfPresent(lltok::rparen)) 2722 return error(Lex.getLoc(), "expected ')'"); 2723 return false; 2724 } 2725 2726 /// parsePreallocated 2727 /// ::= preallocated(<ty>) 2728 bool LLParser::parsePreallocated(Type *&Result) { 2729 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2730 } 2731 2732 /// parseInalloca 2733 /// ::= inalloca(<ty>) 2734 bool LLParser::parseInalloca(Type *&Result) { 2735 return parseRequiredTypeAttr(Result, lltok::kw_inalloca); 2736 } 2737 2738 /// parseByRef 2739 /// ::= byref(<type>) 2740 bool LLParser::parseByRef(Type *&Result) { 2741 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2742 } 2743 2744 /// parseOptionalOperandBundles 2745 /// ::= /*empty*/ 2746 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2747 /// 2748 /// OperandBundle 2749 /// ::= bundle-tag '(' ')' 2750 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2751 /// 2752 /// bundle-tag ::= String Constant 2753 bool LLParser::parseOptionalOperandBundles( 2754 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2755 LocTy BeginLoc = Lex.getLoc(); 2756 if (!EatIfPresent(lltok::lsquare)) 2757 return false; 2758 2759 while (Lex.getKind() != lltok::rsquare) { 2760 // If this isn't the first operand bundle, we need a comma. 2761 if (!BundleList.empty() && 2762 parseToken(lltok::comma, "expected ',' in input list")) 2763 return true; 2764 2765 std::string Tag; 2766 if (parseStringConstant(Tag)) 2767 return true; 2768 2769 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2770 return true; 2771 2772 std::vector<Value *> Inputs; 2773 while (Lex.getKind() != lltok::rparen) { 2774 // If this isn't the first input, we need a comma. 2775 if (!Inputs.empty() && 2776 parseToken(lltok::comma, "expected ',' in input list")) 2777 return true; 2778 2779 Type *Ty = nullptr; 2780 Value *Input = nullptr; 2781 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2782 return true; 2783 Inputs.push_back(Input); 2784 } 2785 2786 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2787 2788 Lex.Lex(); // Lex the ')'. 2789 } 2790 2791 if (BundleList.empty()) 2792 return error(BeginLoc, "operand bundle set must not be empty"); 2793 2794 Lex.Lex(); // Lex the ']'. 2795 return false; 2796 } 2797 2798 /// parseArgumentList - parse the argument list for a function type or function 2799 /// prototype. 2800 /// ::= '(' ArgTypeListI ')' 2801 /// ArgTypeListI 2802 /// ::= /*empty*/ 2803 /// ::= '...' 2804 /// ::= ArgTypeList ',' '...' 2805 /// ::= ArgType (',' ArgType)* 2806 /// 2807 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2808 bool &IsVarArg) { 2809 unsigned CurValID = 0; 2810 IsVarArg = false; 2811 assert(Lex.getKind() == lltok::lparen); 2812 Lex.Lex(); // eat the (. 2813 2814 if (Lex.getKind() == lltok::rparen) { 2815 // empty 2816 } else if (Lex.getKind() == lltok::dotdotdot) { 2817 IsVarArg = true; 2818 Lex.Lex(); 2819 } else { 2820 LocTy TypeLoc = Lex.getLoc(); 2821 Type *ArgTy = nullptr; 2822 AttrBuilder Attrs; 2823 std::string Name; 2824 2825 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2826 return true; 2827 2828 if (ArgTy->isVoidTy()) 2829 return error(TypeLoc, "argument can not have void type"); 2830 2831 if (Lex.getKind() == lltok::LocalVar) { 2832 Name = Lex.getStrVal(); 2833 Lex.Lex(); 2834 } else if (Lex.getKind() == lltok::LocalVarID) { 2835 if (Lex.getUIntVal() != CurValID) 2836 return error(TypeLoc, "argument expected to be numbered '%" + 2837 Twine(CurValID) + "'"); 2838 ++CurValID; 2839 Lex.Lex(); 2840 } 2841 2842 if (!FunctionType::isValidArgumentType(ArgTy)) 2843 return error(TypeLoc, "invalid type for function argument"); 2844 2845 ArgList.emplace_back(TypeLoc, ArgTy, 2846 AttributeSet::get(ArgTy->getContext(), Attrs), 2847 std::move(Name)); 2848 2849 while (EatIfPresent(lltok::comma)) { 2850 // Handle ... at end of arg list. 2851 if (EatIfPresent(lltok::dotdotdot)) { 2852 IsVarArg = true; 2853 break; 2854 } 2855 2856 // Otherwise must be an argument type. 2857 TypeLoc = Lex.getLoc(); 2858 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2859 return true; 2860 2861 if (ArgTy->isVoidTy()) 2862 return error(TypeLoc, "argument can not have void type"); 2863 2864 if (Lex.getKind() == lltok::LocalVar) { 2865 Name = Lex.getStrVal(); 2866 Lex.Lex(); 2867 } else { 2868 if (Lex.getKind() == lltok::LocalVarID) { 2869 if (Lex.getUIntVal() != CurValID) 2870 return error(TypeLoc, "argument expected to be numbered '%" + 2871 Twine(CurValID) + "'"); 2872 Lex.Lex(); 2873 } 2874 ++CurValID; 2875 Name = ""; 2876 } 2877 2878 if (!ArgTy->isFirstClassType()) 2879 return error(TypeLoc, "invalid type for function argument"); 2880 2881 ArgList.emplace_back(TypeLoc, ArgTy, 2882 AttributeSet::get(ArgTy->getContext(), Attrs), 2883 std::move(Name)); 2884 } 2885 } 2886 2887 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2888 } 2889 2890 /// parseFunctionType 2891 /// ::= Type ArgumentList OptionalAttrs 2892 bool LLParser::parseFunctionType(Type *&Result) { 2893 assert(Lex.getKind() == lltok::lparen); 2894 2895 if (!FunctionType::isValidReturnType(Result)) 2896 return tokError("invalid function return type"); 2897 2898 SmallVector<ArgInfo, 8> ArgList; 2899 bool IsVarArg; 2900 if (parseArgumentList(ArgList, IsVarArg)) 2901 return true; 2902 2903 // Reject names on the arguments lists. 2904 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2905 if (!ArgList[i].Name.empty()) 2906 return error(ArgList[i].Loc, "argument name invalid in function type"); 2907 if (ArgList[i].Attrs.hasAttributes()) 2908 return error(ArgList[i].Loc, 2909 "argument attributes invalid in function type"); 2910 } 2911 2912 SmallVector<Type*, 16> ArgListTy; 2913 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2914 ArgListTy.push_back(ArgList[i].Ty); 2915 2916 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2917 return false; 2918 } 2919 2920 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2921 /// other structs. 2922 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2923 SmallVector<Type*, 8> Elts; 2924 if (parseStructBody(Elts)) 2925 return true; 2926 2927 Result = StructType::get(Context, Elts, Packed); 2928 return false; 2929 } 2930 2931 /// parseStructDefinition - parse a struct in a 'type' definition. 2932 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2933 std::pair<Type *, LocTy> &Entry, 2934 Type *&ResultTy) { 2935 // If the type was already defined, diagnose the redefinition. 2936 if (Entry.first && !Entry.second.isValid()) 2937 return error(TypeLoc, "redefinition of type"); 2938 2939 // If we have opaque, just return without filling in the definition for the 2940 // struct. This counts as a definition as far as the .ll file goes. 2941 if (EatIfPresent(lltok::kw_opaque)) { 2942 // This type is being defined, so clear the location to indicate this. 2943 Entry.second = SMLoc(); 2944 2945 // If this type number has never been uttered, create it. 2946 if (!Entry.first) 2947 Entry.first = StructType::create(Context, Name); 2948 ResultTy = Entry.first; 2949 return false; 2950 } 2951 2952 // If the type starts with '<', then it is either a packed struct or a vector. 2953 bool isPacked = EatIfPresent(lltok::less); 2954 2955 // If we don't have a struct, then we have a random type alias, which we 2956 // accept for compatibility with old files. These types are not allowed to be 2957 // forward referenced and not allowed to be recursive. 2958 if (Lex.getKind() != lltok::lbrace) { 2959 if (Entry.first) 2960 return error(TypeLoc, "forward references to non-struct type"); 2961 2962 ResultTy = nullptr; 2963 if (isPacked) 2964 return parseArrayVectorType(ResultTy, true); 2965 return parseType(ResultTy); 2966 } 2967 2968 // This type is being defined, so clear the location to indicate this. 2969 Entry.second = SMLoc(); 2970 2971 // If this type number has never been uttered, create it. 2972 if (!Entry.first) 2973 Entry.first = StructType::create(Context, Name); 2974 2975 StructType *STy = cast<StructType>(Entry.first); 2976 2977 SmallVector<Type*, 8> Body; 2978 if (parseStructBody(Body) || 2979 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2980 return true; 2981 2982 STy->setBody(Body, isPacked); 2983 ResultTy = STy; 2984 return false; 2985 } 2986 2987 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2988 /// StructType 2989 /// ::= '{' '}' 2990 /// ::= '{' Type (',' Type)* '}' 2991 /// ::= '<' '{' '}' '>' 2992 /// ::= '<' '{' Type (',' Type)* '}' '>' 2993 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2994 assert(Lex.getKind() == lltok::lbrace); 2995 Lex.Lex(); // Consume the '{' 2996 2997 // Handle the empty struct. 2998 if (EatIfPresent(lltok::rbrace)) 2999 return false; 3000 3001 LocTy EltTyLoc = Lex.getLoc(); 3002 Type *Ty = nullptr; 3003 if (parseType(Ty)) 3004 return true; 3005 Body.push_back(Ty); 3006 3007 if (!StructType::isValidElementType(Ty)) 3008 return error(EltTyLoc, "invalid element type for struct"); 3009 3010 while (EatIfPresent(lltok::comma)) { 3011 EltTyLoc = Lex.getLoc(); 3012 if (parseType(Ty)) 3013 return true; 3014 3015 if (!StructType::isValidElementType(Ty)) 3016 return error(EltTyLoc, "invalid element type for struct"); 3017 3018 Body.push_back(Ty); 3019 } 3020 3021 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3022 } 3023 3024 /// parseArrayVectorType - parse an array or vector type, assuming the first 3025 /// token has already been consumed. 3026 /// Type 3027 /// ::= '[' APSINTVAL 'x' Types ']' 3028 /// ::= '<' APSINTVAL 'x' Types '>' 3029 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3030 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3031 bool Scalable = false; 3032 3033 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3034 Lex.Lex(); // consume the 'vscale' 3035 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3036 return true; 3037 3038 Scalable = true; 3039 } 3040 3041 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3042 Lex.getAPSIntVal().getBitWidth() > 64) 3043 return tokError("expected number in address space"); 3044 3045 LocTy SizeLoc = Lex.getLoc(); 3046 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3047 Lex.Lex(); 3048 3049 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3050 return true; 3051 3052 LocTy TypeLoc = Lex.getLoc(); 3053 Type *EltTy = nullptr; 3054 if (parseType(EltTy)) 3055 return true; 3056 3057 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3058 "expected end of sequential type")) 3059 return true; 3060 3061 if (IsVector) { 3062 if (Size == 0) 3063 return error(SizeLoc, "zero element vector is illegal"); 3064 if ((unsigned)Size != Size) 3065 return error(SizeLoc, "size too large for vector"); 3066 if (!VectorType::isValidElementType(EltTy)) 3067 return error(TypeLoc, "invalid vector element type"); 3068 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3069 } else { 3070 if (!ArrayType::isValidElementType(EltTy)) 3071 return error(TypeLoc, "invalid array element type"); 3072 Result = ArrayType::get(EltTy, Size); 3073 } 3074 return false; 3075 } 3076 3077 //===----------------------------------------------------------------------===// 3078 // Function Semantic Analysis. 3079 //===----------------------------------------------------------------------===// 3080 3081 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3082 int functionNumber) 3083 : P(p), F(f), FunctionNumber(functionNumber) { 3084 3085 // Insert unnamed arguments into the NumberedVals list. 3086 for (Argument &A : F.args()) 3087 if (!A.hasName()) 3088 NumberedVals.push_back(&A); 3089 } 3090 3091 LLParser::PerFunctionState::~PerFunctionState() { 3092 // If there were any forward referenced non-basicblock values, delete them. 3093 3094 for (const auto &P : ForwardRefVals) { 3095 if (isa<BasicBlock>(P.second.first)) 3096 continue; 3097 P.second.first->replaceAllUsesWith( 3098 UndefValue::get(P.second.first->getType())); 3099 P.second.first->deleteValue(); 3100 } 3101 3102 for (const auto &P : ForwardRefValIDs) { 3103 if (isa<BasicBlock>(P.second.first)) 3104 continue; 3105 P.second.first->replaceAllUsesWith( 3106 UndefValue::get(P.second.first->getType())); 3107 P.second.first->deleteValue(); 3108 } 3109 } 3110 3111 bool LLParser::PerFunctionState::finishFunction() { 3112 if (!ForwardRefVals.empty()) 3113 return P.error(ForwardRefVals.begin()->second.second, 3114 "use of undefined value '%" + ForwardRefVals.begin()->first + 3115 "'"); 3116 if (!ForwardRefValIDs.empty()) 3117 return P.error(ForwardRefValIDs.begin()->second.second, 3118 "use of undefined value '%" + 3119 Twine(ForwardRefValIDs.begin()->first) + "'"); 3120 return false; 3121 } 3122 3123 /// getVal - Get a value with the specified name or ID, creating a 3124 /// forward reference record if needed. This can return null if the value 3125 /// exists but does not have the right type. 3126 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3127 LocTy Loc, bool IsCall) { 3128 // Look this name up in the normal function symbol table. 3129 Value *Val = F.getValueSymbolTable()->lookup(Name); 3130 3131 // If this is a forward reference for the value, see if we already created a 3132 // forward ref record. 3133 if (!Val) { 3134 auto I = ForwardRefVals.find(Name); 3135 if (I != ForwardRefVals.end()) 3136 Val = I->second.first; 3137 } 3138 3139 // If we have the value in the symbol table or fwd-ref table, return it. 3140 if (Val) 3141 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3142 3143 // Don't make placeholders with invalid type. 3144 if (!Ty->isFirstClassType()) { 3145 P.error(Loc, "invalid use of a non-first-class type"); 3146 return nullptr; 3147 } 3148 3149 // Otherwise, create a new forward reference for this value and remember it. 3150 Value *FwdVal; 3151 if (Ty->isLabelTy()) { 3152 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3153 } else { 3154 FwdVal = new Argument(Ty, Name); 3155 } 3156 3157 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3158 return FwdVal; 3159 } 3160 3161 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3162 bool IsCall) { 3163 // Look this name up in the normal function symbol table. 3164 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3165 3166 // If this is a forward reference for the value, see if we already created a 3167 // forward ref record. 3168 if (!Val) { 3169 auto I = ForwardRefValIDs.find(ID); 3170 if (I != ForwardRefValIDs.end()) 3171 Val = I->second.first; 3172 } 3173 3174 // If we have the value in the symbol table or fwd-ref table, return it. 3175 if (Val) 3176 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3177 3178 if (!Ty->isFirstClassType()) { 3179 P.error(Loc, "invalid use of a non-first-class type"); 3180 return nullptr; 3181 } 3182 3183 // Otherwise, create a new forward reference for this value and remember it. 3184 Value *FwdVal; 3185 if (Ty->isLabelTy()) { 3186 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3187 } else { 3188 FwdVal = new Argument(Ty); 3189 } 3190 3191 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3192 return FwdVal; 3193 } 3194 3195 /// setInstName - After an instruction is parsed and inserted into its 3196 /// basic block, this installs its name. 3197 bool LLParser::PerFunctionState::setInstName(int NameID, 3198 const std::string &NameStr, 3199 LocTy NameLoc, Instruction *Inst) { 3200 // If this instruction has void type, it cannot have a name or ID specified. 3201 if (Inst->getType()->isVoidTy()) { 3202 if (NameID != -1 || !NameStr.empty()) 3203 return P.error(NameLoc, "instructions returning void cannot have a name"); 3204 return false; 3205 } 3206 3207 // If this was a numbered instruction, verify that the instruction is the 3208 // expected value and resolve any forward references. 3209 if (NameStr.empty()) { 3210 // If neither a name nor an ID was specified, just use the next ID. 3211 if (NameID == -1) 3212 NameID = NumberedVals.size(); 3213 3214 if (unsigned(NameID) != NumberedVals.size()) 3215 return P.error(NameLoc, "instruction expected to be numbered '%" + 3216 Twine(NumberedVals.size()) + "'"); 3217 3218 auto FI = ForwardRefValIDs.find(NameID); 3219 if (FI != ForwardRefValIDs.end()) { 3220 Value *Sentinel = FI->second.first; 3221 if (Sentinel->getType() != Inst->getType()) 3222 return P.error(NameLoc, "instruction forward referenced with type '" + 3223 getTypeString(FI->second.first->getType()) + 3224 "'"); 3225 3226 Sentinel->replaceAllUsesWith(Inst); 3227 Sentinel->deleteValue(); 3228 ForwardRefValIDs.erase(FI); 3229 } 3230 3231 NumberedVals.push_back(Inst); 3232 return false; 3233 } 3234 3235 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3236 auto FI = ForwardRefVals.find(NameStr); 3237 if (FI != ForwardRefVals.end()) { 3238 Value *Sentinel = FI->second.first; 3239 if (Sentinel->getType() != Inst->getType()) 3240 return P.error(NameLoc, "instruction forward referenced with type '" + 3241 getTypeString(FI->second.first->getType()) + 3242 "'"); 3243 3244 Sentinel->replaceAllUsesWith(Inst); 3245 Sentinel->deleteValue(); 3246 ForwardRefVals.erase(FI); 3247 } 3248 3249 // Set the name on the instruction. 3250 Inst->setName(NameStr); 3251 3252 if (Inst->getName() != NameStr) 3253 return P.error(NameLoc, "multiple definition of local value named '" + 3254 NameStr + "'"); 3255 return false; 3256 } 3257 3258 /// getBB - Get a basic block with the specified name or ID, creating a 3259 /// forward reference record if needed. 3260 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3261 LocTy Loc) { 3262 return dyn_cast_or_null<BasicBlock>( 3263 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3264 } 3265 3266 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3267 return dyn_cast_or_null<BasicBlock>( 3268 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3269 } 3270 3271 /// defineBB - Define the specified basic block, which is either named or 3272 /// unnamed. If there is an error, this returns null otherwise it returns 3273 /// the block being defined. 3274 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3275 int NameID, LocTy Loc) { 3276 BasicBlock *BB; 3277 if (Name.empty()) { 3278 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3279 P.error(Loc, "label expected to be numbered '" + 3280 Twine(NumberedVals.size()) + "'"); 3281 return nullptr; 3282 } 3283 BB = getBB(NumberedVals.size(), Loc); 3284 if (!BB) { 3285 P.error(Loc, "unable to create block numbered '" + 3286 Twine(NumberedVals.size()) + "'"); 3287 return nullptr; 3288 } 3289 } else { 3290 BB = getBB(Name, Loc); 3291 if (!BB) { 3292 P.error(Loc, "unable to create block named '" + Name + "'"); 3293 return nullptr; 3294 } 3295 } 3296 3297 // Move the block to the end of the function. Forward ref'd blocks are 3298 // inserted wherever they happen to be referenced. 3299 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3300 3301 // Remove the block from forward ref sets. 3302 if (Name.empty()) { 3303 ForwardRefValIDs.erase(NumberedVals.size()); 3304 NumberedVals.push_back(BB); 3305 } else { 3306 // BB forward references are already in the function symbol table. 3307 ForwardRefVals.erase(Name); 3308 } 3309 3310 return BB; 3311 } 3312 3313 //===----------------------------------------------------------------------===// 3314 // Constants. 3315 //===----------------------------------------------------------------------===// 3316 3317 /// parseValID - parse an abstract value that doesn't necessarily have a 3318 /// type implied. For example, if we parse "4" we don't know what integer type 3319 /// it has. The value will later be combined with its type and checked for 3320 /// sanity. PFS is used to convert function-local operands of metadata (since 3321 /// metadata operands are not just parsed here but also converted to values). 3322 /// PFS can be null when we are not parsing metadata values inside a function. 3323 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3324 ID.Loc = Lex.getLoc(); 3325 switch (Lex.getKind()) { 3326 default: 3327 return tokError("expected value token"); 3328 case lltok::GlobalID: // @42 3329 ID.UIntVal = Lex.getUIntVal(); 3330 ID.Kind = ValID::t_GlobalID; 3331 break; 3332 case lltok::GlobalVar: // @foo 3333 ID.StrVal = Lex.getStrVal(); 3334 ID.Kind = ValID::t_GlobalName; 3335 break; 3336 case lltok::LocalVarID: // %42 3337 ID.UIntVal = Lex.getUIntVal(); 3338 ID.Kind = ValID::t_LocalID; 3339 break; 3340 case lltok::LocalVar: // %foo 3341 ID.StrVal = Lex.getStrVal(); 3342 ID.Kind = ValID::t_LocalName; 3343 break; 3344 case lltok::APSInt: 3345 ID.APSIntVal = Lex.getAPSIntVal(); 3346 ID.Kind = ValID::t_APSInt; 3347 break; 3348 case lltok::APFloat: 3349 ID.APFloatVal = Lex.getAPFloatVal(); 3350 ID.Kind = ValID::t_APFloat; 3351 break; 3352 case lltok::kw_true: 3353 ID.ConstantVal = ConstantInt::getTrue(Context); 3354 ID.Kind = ValID::t_Constant; 3355 break; 3356 case lltok::kw_false: 3357 ID.ConstantVal = ConstantInt::getFalse(Context); 3358 ID.Kind = ValID::t_Constant; 3359 break; 3360 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3361 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3362 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3363 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3364 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3365 3366 case lltok::lbrace: { 3367 // ValID ::= '{' ConstVector '}' 3368 Lex.Lex(); 3369 SmallVector<Constant*, 16> Elts; 3370 if (parseGlobalValueVector(Elts) || 3371 parseToken(lltok::rbrace, "expected end of struct constant")) 3372 return true; 3373 3374 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3375 ID.UIntVal = Elts.size(); 3376 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3377 Elts.size() * sizeof(Elts[0])); 3378 ID.Kind = ValID::t_ConstantStruct; 3379 return false; 3380 } 3381 case lltok::less: { 3382 // ValID ::= '<' ConstVector '>' --> Vector. 3383 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3384 Lex.Lex(); 3385 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3386 3387 SmallVector<Constant*, 16> Elts; 3388 LocTy FirstEltLoc = Lex.getLoc(); 3389 if (parseGlobalValueVector(Elts) || 3390 (isPackedStruct && 3391 parseToken(lltok::rbrace, "expected end of packed struct")) || 3392 parseToken(lltok::greater, "expected end of constant")) 3393 return true; 3394 3395 if (isPackedStruct) { 3396 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3397 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3398 Elts.size() * sizeof(Elts[0])); 3399 ID.UIntVal = Elts.size(); 3400 ID.Kind = ValID::t_PackedConstantStruct; 3401 return false; 3402 } 3403 3404 if (Elts.empty()) 3405 return error(ID.Loc, "constant vector must not be empty"); 3406 3407 if (!Elts[0]->getType()->isIntegerTy() && 3408 !Elts[0]->getType()->isFloatingPointTy() && 3409 !Elts[0]->getType()->isPointerTy()) 3410 return error( 3411 FirstEltLoc, 3412 "vector elements must have integer, pointer or floating point type"); 3413 3414 // Verify that all the vector elements have the same type. 3415 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3416 if (Elts[i]->getType() != Elts[0]->getType()) 3417 return error(FirstEltLoc, "vector element #" + Twine(i) + 3418 " is not of type '" + 3419 getTypeString(Elts[0]->getType())); 3420 3421 ID.ConstantVal = ConstantVector::get(Elts); 3422 ID.Kind = ValID::t_Constant; 3423 return false; 3424 } 3425 case lltok::lsquare: { // Array Constant 3426 Lex.Lex(); 3427 SmallVector<Constant*, 16> Elts; 3428 LocTy FirstEltLoc = Lex.getLoc(); 3429 if (parseGlobalValueVector(Elts) || 3430 parseToken(lltok::rsquare, "expected end of array constant")) 3431 return true; 3432 3433 // Handle empty element. 3434 if (Elts.empty()) { 3435 // Use undef instead of an array because it's inconvenient to determine 3436 // the element type at this point, there being no elements to examine. 3437 ID.Kind = ValID::t_EmptyArray; 3438 return false; 3439 } 3440 3441 if (!Elts[0]->getType()->isFirstClassType()) 3442 return error(FirstEltLoc, "invalid array element type: " + 3443 getTypeString(Elts[0]->getType())); 3444 3445 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3446 3447 // Verify all elements are correct type! 3448 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3449 if (Elts[i]->getType() != Elts[0]->getType()) 3450 return error(FirstEltLoc, "array element #" + Twine(i) + 3451 " is not of type '" + 3452 getTypeString(Elts[0]->getType())); 3453 } 3454 3455 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3456 ID.Kind = ValID::t_Constant; 3457 return false; 3458 } 3459 case lltok::kw_c: // c "foo" 3460 Lex.Lex(); 3461 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3462 false); 3463 if (parseToken(lltok::StringConstant, "expected string")) 3464 return true; 3465 ID.Kind = ValID::t_Constant; 3466 return false; 3467 3468 case lltok::kw_asm: { 3469 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3470 // STRINGCONSTANT 3471 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3472 Lex.Lex(); 3473 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3474 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3475 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3476 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3477 parseStringConstant(ID.StrVal) || 3478 parseToken(lltok::comma, "expected comma in inline asm expression") || 3479 parseToken(lltok::StringConstant, "expected constraint string")) 3480 return true; 3481 ID.StrVal2 = Lex.getStrVal(); 3482 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3483 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3484 ID.Kind = ValID::t_InlineAsm; 3485 return false; 3486 } 3487 3488 case lltok::kw_blockaddress: { 3489 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3490 Lex.Lex(); 3491 3492 ValID Fn, Label; 3493 3494 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3495 parseValID(Fn) || 3496 parseToken(lltok::comma, 3497 "expected comma in block address expression") || 3498 parseValID(Label) || 3499 parseToken(lltok::rparen, "expected ')' in block address expression")) 3500 return true; 3501 3502 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3503 return error(Fn.Loc, "expected function name in blockaddress"); 3504 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3505 return error(Label.Loc, "expected basic block name in blockaddress"); 3506 3507 // Try to find the function (but skip it if it's forward-referenced). 3508 GlobalValue *GV = nullptr; 3509 if (Fn.Kind == ValID::t_GlobalID) { 3510 if (Fn.UIntVal < NumberedVals.size()) 3511 GV = NumberedVals[Fn.UIntVal]; 3512 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3513 GV = M->getNamedValue(Fn.StrVal); 3514 } 3515 Function *F = nullptr; 3516 if (GV) { 3517 // Confirm that it's actually a function with a definition. 3518 if (!isa<Function>(GV)) 3519 return error(Fn.Loc, "expected function name in blockaddress"); 3520 F = cast<Function>(GV); 3521 if (F->isDeclaration()) 3522 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3523 } 3524 3525 if (!F) { 3526 // Make a global variable as a placeholder for this reference. 3527 GlobalValue *&FwdRef = 3528 ForwardRefBlockAddresses.insert(std::make_pair( 3529 std::move(Fn), 3530 std::map<ValID, GlobalValue *>())) 3531 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3532 .first->second; 3533 if (!FwdRef) 3534 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3535 GlobalValue::InternalLinkage, nullptr, ""); 3536 ID.ConstantVal = FwdRef; 3537 ID.Kind = ValID::t_Constant; 3538 return false; 3539 } 3540 3541 // We found the function; now find the basic block. Don't use PFS, since we 3542 // might be inside a constant expression. 3543 BasicBlock *BB; 3544 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3545 if (Label.Kind == ValID::t_LocalID) 3546 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3547 else 3548 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3549 if (!BB) 3550 return error(Label.Loc, "referenced value is not a basic block"); 3551 } else { 3552 if (Label.Kind == ValID::t_LocalID) 3553 return error(Label.Loc, "cannot take address of numeric label after " 3554 "the function is defined"); 3555 BB = dyn_cast_or_null<BasicBlock>( 3556 F->getValueSymbolTable()->lookup(Label.StrVal)); 3557 if (!BB) 3558 return error(Label.Loc, "referenced value is not a basic block"); 3559 } 3560 3561 ID.ConstantVal = BlockAddress::get(F, BB); 3562 ID.Kind = ValID::t_Constant; 3563 return false; 3564 } 3565 3566 case lltok::kw_dso_local_equivalent: { 3567 // ValID ::= 'dso_local_equivalent' @foo 3568 Lex.Lex(); 3569 3570 ValID Fn; 3571 3572 if (parseValID(Fn)) 3573 return true; 3574 3575 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3576 return error(Fn.Loc, 3577 "expected global value name in dso_local_equivalent"); 3578 3579 // Try to find the function (but skip it if it's forward-referenced). 3580 GlobalValue *GV = nullptr; 3581 if (Fn.Kind == ValID::t_GlobalID) { 3582 if (Fn.UIntVal < NumberedVals.size()) 3583 GV = NumberedVals[Fn.UIntVal]; 3584 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3585 GV = M->getNamedValue(Fn.StrVal); 3586 } 3587 3588 assert(GV && "Could not find a corresponding global variable"); 3589 3590 if (!GV->getValueType()->isFunctionTy()) 3591 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3592 "in dso_local_equivalent"); 3593 3594 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3595 ID.Kind = ValID::t_Constant; 3596 return false; 3597 } 3598 3599 case lltok::kw_trunc: 3600 case lltok::kw_zext: 3601 case lltok::kw_sext: 3602 case lltok::kw_fptrunc: 3603 case lltok::kw_fpext: 3604 case lltok::kw_bitcast: 3605 case lltok::kw_addrspacecast: 3606 case lltok::kw_uitofp: 3607 case lltok::kw_sitofp: 3608 case lltok::kw_fptoui: 3609 case lltok::kw_fptosi: 3610 case lltok::kw_inttoptr: 3611 case lltok::kw_ptrtoint: { 3612 unsigned Opc = Lex.getUIntVal(); 3613 Type *DestTy = nullptr; 3614 Constant *SrcVal; 3615 Lex.Lex(); 3616 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3617 parseGlobalTypeAndValue(SrcVal) || 3618 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3619 parseType(DestTy) || 3620 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3621 return true; 3622 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3623 return error(ID.Loc, "invalid cast opcode for cast from '" + 3624 getTypeString(SrcVal->getType()) + "' to '" + 3625 getTypeString(DestTy) + "'"); 3626 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3627 SrcVal, DestTy); 3628 ID.Kind = ValID::t_Constant; 3629 return false; 3630 } 3631 case lltok::kw_extractvalue: { 3632 Lex.Lex(); 3633 Constant *Val; 3634 SmallVector<unsigned, 4> Indices; 3635 if (parseToken(lltok::lparen, 3636 "expected '(' in extractvalue constantexpr") || 3637 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3638 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3639 return true; 3640 3641 if (!Val->getType()->isAggregateType()) 3642 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3643 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3644 return error(ID.Loc, "invalid indices for extractvalue"); 3645 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3646 ID.Kind = ValID::t_Constant; 3647 return false; 3648 } 3649 case lltok::kw_insertvalue: { 3650 Lex.Lex(); 3651 Constant *Val0, *Val1; 3652 SmallVector<unsigned, 4> Indices; 3653 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3654 parseGlobalTypeAndValue(Val0) || 3655 parseToken(lltok::comma, 3656 "expected comma in insertvalue constantexpr") || 3657 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3658 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3659 return true; 3660 if (!Val0->getType()->isAggregateType()) 3661 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3662 Type *IndexedType = 3663 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3664 if (!IndexedType) 3665 return error(ID.Loc, "invalid indices for insertvalue"); 3666 if (IndexedType != Val1->getType()) 3667 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3668 getTypeString(Val1->getType()) + 3669 "' instead of '" + getTypeString(IndexedType) + 3670 "'"); 3671 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3672 ID.Kind = ValID::t_Constant; 3673 return false; 3674 } 3675 case lltok::kw_icmp: 3676 case lltok::kw_fcmp: { 3677 unsigned PredVal, Opc = Lex.getUIntVal(); 3678 Constant *Val0, *Val1; 3679 Lex.Lex(); 3680 if (parseCmpPredicate(PredVal, Opc) || 3681 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3682 parseGlobalTypeAndValue(Val0) || 3683 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3684 parseGlobalTypeAndValue(Val1) || 3685 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3686 return true; 3687 3688 if (Val0->getType() != Val1->getType()) 3689 return error(ID.Loc, "compare operands must have the same type"); 3690 3691 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3692 3693 if (Opc == Instruction::FCmp) { 3694 if (!Val0->getType()->isFPOrFPVectorTy()) 3695 return error(ID.Loc, "fcmp requires floating point operands"); 3696 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3697 } else { 3698 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3699 if (!Val0->getType()->isIntOrIntVectorTy() && 3700 !Val0->getType()->isPtrOrPtrVectorTy()) 3701 return error(ID.Loc, "icmp requires pointer or integer operands"); 3702 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3703 } 3704 ID.Kind = ValID::t_Constant; 3705 return false; 3706 } 3707 3708 // Unary Operators. 3709 case lltok::kw_fneg: { 3710 unsigned Opc = Lex.getUIntVal(); 3711 Constant *Val; 3712 Lex.Lex(); 3713 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3714 parseGlobalTypeAndValue(Val) || 3715 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3716 return true; 3717 3718 // Check that the type is valid for the operator. 3719 switch (Opc) { 3720 case Instruction::FNeg: 3721 if (!Val->getType()->isFPOrFPVectorTy()) 3722 return error(ID.Loc, "constexpr requires fp operands"); 3723 break; 3724 default: llvm_unreachable("Unknown unary operator!"); 3725 } 3726 unsigned Flags = 0; 3727 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3728 ID.ConstantVal = C; 3729 ID.Kind = ValID::t_Constant; 3730 return false; 3731 } 3732 // Binary Operators. 3733 case lltok::kw_add: 3734 case lltok::kw_fadd: 3735 case lltok::kw_sub: 3736 case lltok::kw_fsub: 3737 case lltok::kw_mul: 3738 case lltok::kw_fmul: 3739 case lltok::kw_udiv: 3740 case lltok::kw_sdiv: 3741 case lltok::kw_fdiv: 3742 case lltok::kw_urem: 3743 case lltok::kw_srem: 3744 case lltok::kw_frem: 3745 case lltok::kw_shl: 3746 case lltok::kw_lshr: 3747 case lltok::kw_ashr: { 3748 bool NUW = false; 3749 bool NSW = false; 3750 bool Exact = false; 3751 unsigned Opc = Lex.getUIntVal(); 3752 Constant *Val0, *Val1; 3753 Lex.Lex(); 3754 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3755 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3756 if (EatIfPresent(lltok::kw_nuw)) 3757 NUW = true; 3758 if (EatIfPresent(lltok::kw_nsw)) { 3759 NSW = true; 3760 if (EatIfPresent(lltok::kw_nuw)) 3761 NUW = true; 3762 } 3763 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3764 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3765 if (EatIfPresent(lltok::kw_exact)) 3766 Exact = true; 3767 } 3768 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3769 parseGlobalTypeAndValue(Val0) || 3770 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3771 parseGlobalTypeAndValue(Val1) || 3772 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3773 return true; 3774 if (Val0->getType() != Val1->getType()) 3775 return error(ID.Loc, "operands of constexpr must have same type"); 3776 // Check that the type is valid for the operator. 3777 switch (Opc) { 3778 case Instruction::Add: 3779 case Instruction::Sub: 3780 case Instruction::Mul: 3781 case Instruction::UDiv: 3782 case Instruction::SDiv: 3783 case Instruction::URem: 3784 case Instruction::SRem: 3785 case Instruction::Shl: 3786 case Instruction::AShr: 3787 case Instruction::LShr: 3788 if (!Val0->getType()->isIntOrIntVectorTy()) 3789 return error(ID.Loc, "constexpr requires integer operands"); 3790 break; 3791 case Instruction::FAdd: 3792 case Instruction::FSub: 3793 case Instruction::FMul: 3794 case Instruction::FDiv: 3795 case Instruction::FRem: 3796 if (!Val0->getType()->isFPOrFPVectorTy()) 3797 return error(ID.Loc, "constexpr requires fp operands"); 3798 break; 3799 default: llvm_unreachable("Unknown binary operator!"); 3800 } 3801 unsigned Flags = 0; 3802 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3803 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3804 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3805 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3806 ID.ConstantVal = C; 3807 ID.Kind = ValID::t_Constant; 3808 return false; 3809 } 3810 3811 // Logical Operations 3812 case lltok::kw_and: 3813 case lltok::kw_or: 3814 case lltok::kw_xor: { 3815 unsigned Opc = Lex.getUIntVal(); 3816 Constant *Val0, *Val1; 3817 Lex.Lex(); 3818 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3819 parseGlobalTypeAndValue(Val0) || 3820 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3821 parseGlobalTypeAndValue(Val1) || 3822 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3823 return true; 3824 if (Val0->getType() != Val1->getType()) 3825 return error(ID.Loc, "operands of constexpr must have same type"); 3826 if (!Val0->getType()->isIntOrIntVectorTy()) 3827 return error(ID.Loc, 3828 "constexpr requires integer or integer vector operands"); 3829 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3830 ID.Kind = ValID::t_Constant; 3831 return false; 3832 } 3833 3834 case lltok::kw_getelementptr: 3835 case lltok::kw_shufflevector: 3836 case lltok::kw_insertelement: 3837 case lltok::kw_extractelement: 3838 case lltok::kw_select: { 3839 unsigned Opc = Lex.getUIntVal(); 3840 SmallVector<Constant*, 16> Elts; 3841 bool InBounds = false; 3842 Type *Ty; 3843 Lex.Lex(); 3844 3845 if (Opc == Instruction::GetElementPtr) 3846 InBounds = EatIfPresent(lltok::kw_inbounds); 3847 3848 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3849 return true; 3850 3851 LocTy ExplicitTypeLoc = Lex.getLoc(); 3852 if (Opc == Instruction::GetElementPtr) { 3853 if (parseType(Ty) || 3854 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3855 return true; 3856 } 3857 3858 Optional<unsigned> InRangeOp; 3859 if (parseGlobalValueVector( 3860 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3861 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3862 return true; 3863 3864 if (Opc == Instruction::GetElementPtr) { 3865 if (Elts.size() == 0 || 3866 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3867 return error(ID.Loc, "base of getelementptr must be a pointer"); 3868 3869 Type *BaseType = Elts[0]->getType(); 3870 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3871 if (Ty != BasePointerType->getElementType()) { 3872 return error( 3873 ExplicitTypeLoc, 3874 typeComparisonErrorMessage( 3875 "explicit pointee type doesn't match operand's pointee type", 3876 Ty, BasePointerType->getElementType())); 3877 } 3878 3879 unsigned GEPWidth = 3880 BaseType->isVectorTy() 3881 ? cast<FixedVectorType>(BaseType)->getNumElements() 3882 : 0; 3883 3884 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3885 for (Constant *Val : Indices) { 3886 Type *ValTy = Val->getType(); 3887 if (!ValTy->isIntOrIntVectorTy()) 3888 return error(ID.Loc, "getelementptr index must be an integer"); 3889 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3890 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3891 if (GEPWidth && (ValNumEl != GEPWidth)) 3892 return error( 3893 ID.Loc, 3894 "getelementptr vector index has a wrong number of elements"); 3895 // GEPWidth may have been unknown because the base is a scalar, 3896 // but it is known now. 3897 GEPWidth = ValNumEl; 3898 } 3899 } 3900 3901 SmallPtrSet<Type*, 4> Visited; 3902 if (!Indices.empty() && !Ty->isSized(&Visited)) 3903 return error(ID.Loc, "base element of getelementptr must be sized"); 3904 3905 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3906 return error(ID.Loc, "invalid getelementptr indices"); 3907 3908 if (InRangeOp) { 3909 if (*InRangeOp == 0) 3910 return error(ID.Loc, 3911 "inrange keyword may not appear on pointer operand"); 3912 --*InRangeOp; 3913 } 3914 3915 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3916 InBounds, InRangeOp); 3917 } else if (Opc == Instruction::Select) { 3918 if (Elts.size() != 3) 3919 return error(ID.Loc, "expected three operands to select"); 3920 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3921 Elts[2])) 3922 return error(ID.Loc, Reason); 3923 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3924 } else if (Opc == Instruction::ShuffleVector) { 3925 if (Elts.size() != 3) 3926 return error(ID.Loc, "expected three operands to shufflevector"); 3927 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3928 return error(ID.Loc, "invalid operands to shufflevector"); 3929 SmallVector<int, 16> Mask; 3930 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3931 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3932 } else if (Opc == Instruction::ExtractElement) { 3933 if (Elts.size() != 2) 3934 return error(ID.Loc, "expected two operands to extractelement"); 3935 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3936 return error(ID.Loc, "invalid extractelement operands"); 3937 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3938 } else { 3939 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3940 if (Elts.size() != 3) 3941 return error(ID.Loc, "expected three operands to insertelement"); 3942 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3943 return error(ID.Loc, "invalid insertelement operands"); 3944 ID.ConstantVal = 3945 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3946 } 3947 3948 ID.Kind = ValID::t_Constant; 3949 return false; 3950 } 3951 } 3952 3953 Lex.Lex(); 3954 return false; 3955 } 3956 3957 /// parseGlobalValue - parse a global value with the specified type. 3958 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3959 C = nullptr; 3960 ValID ID; 3961 Value *V = nullptr; 3962 bool Parsed = parseValID(ID) || 3963 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3964 if (V && !(C = dyn_cast<Constant>(V))) 3965 return error(ID.Loc, "global values must be constants"); 3966 return Parsed; 3967 } 3968 3969 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3970 Type *Ty = nullptr; 3971 return parseType(Ty) || parseGlobalValue(Ty, V); 3972 } 3973 3974 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3975 C = nullptr; 3976 3977 LocTy KwLoc = Lex.getLoc(); 3978 if (!EatIfPresent(lltok::kw_comdat)) 3979 return false; 3980 3981 if (EatIfPresent(lltok::lparen)) { 3982 if (Lex.getKind() != lltok::ComdatVar) 3983 return tokError("expected comdat variable"); 3984 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3985 Lex.Lex(); 3986 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3987 return true; 3988 } else { 3989 if (GlobalName.empty()) 3990 return tokError("comdat cannot be unnamed"); 3991 C = getComdat(std::string(GlobalName), KwLoc); 3992 } 3993 3994 return false; 3995 } 3996 3997 /// parseGlobalValueVector 3998 /// ::= /*empty*/ 3999 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 4000 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 4001 Optional<unsigned> *InRangeOp) { 4002 // Empty list. 4003 if (Lex.getKind() == lltok::rbrace || 4004 Lex.getKind() == lltok::rsquare || 4005 Lex.getKind() == lltok::greater || 4006 Lex.getKind() == lltok::rparen) 4007 return false; 4008 4009 do { 4010 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 4011 *InRangeOp = Elts.size(); 4012 4013 Constant *C; 4014 if (parseGlobalTypeAndValue(C)) 4015 return true; 4016 Elts.push_back(C); 4017 } while (EatIfPresent(lltok::comma)); 4018 4019 return false; 4020 } 4021 4022 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4023 SmallVector<Metadata *, 16> Elts; 4024 if (parseMDNodeVector(Elts)) 4025 return true; 4026 4027 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4028 return false; 4029 } 4030 4031 /// MDNode: 4032 /// ::= !{ ... } 4033 /// ::= !7 4034 /// ::= !DILocation(...) 4035 bool LLParser::parseMDNode(MDNode *&N) { 4036 if (Lex.getKind() == lltok::MetadataVar) 4037 return parseSpecializedMDNode(N); 4038 4039 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4040 } 4041 4042 bool LLParser::parseMDNodeTail(MDNode *&N) { 4043 // !{ ... } 4044 if (Lex.getKind() == lltok::lbrace) 4045 return parseMDTuple(N); 4046 4047 // !42 4048 return parseMDNodeID(N); 4049 } 4050 4051 namespace { 4052 4053 /// Structure to represent an optional metadata field. 4054 template <class FieldTy> struct MDFieldImpl { 4055 typedef MDFieldImpl ImplTy; 4056 FieldTy Val; 4057 bool Seen; 4058 4059 void assign(FieldTy Val) { 4060 Seen = true; 4061 this->Val = std::move(Val); 4062 } 4063 4064 explicit MDFieldImpl(FieldTy Default) 4065 : Val(std::move(Default)), Seen(false) {} 4066 }; 4067 4068 /// Structure to represent an optional metadata field that 4069 /// can be of either type (A or B) and encapsulates the 4070 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4071 /// to reimplement the specifics for representing each Field. 4072 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4073 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4074 FieldTypeA A; 4075 FieldTypeB B; 4076 bool Seen; 4077 4078 enum { 4079 IsInvalid = 0, 4080 IsTypeA = 1, 4081 IsTypeB = 2 4082 } WhatIs; 4083 4084 void assign(FieldTypeA A) { 4085 Seen = true; 4086 this->A = std::move(A); 4087 WhatIs = IsTypeA; 4088 } 4089 4090 void assign(FieldTypeB B) { 4091 Seen = true; 4092 this->B = std::move(B); 4093 WhatIs = IsTypeB; 4094 } 4095 4096 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4097 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4098 WhatIs(IsInvalid) {} 4099 }; 4100 4101 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4102 uint64_t Max; 4103 4104 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4105 : ImplTy(Default), Max(Max) {} 4106 }; 4107 4108 struct LineField : public MDUnsignedField { 4109 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4110 }; 4111 4112 struct ColumnField : public MDUnsignedField { 4113 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4114 }; 4115 4116 struct DwarfTagField : public MDUnsignedField { 4117 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4118 DwarfTagField(dwarf::Tag DefaultTag) 4119 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4120 }; 4121 4122 struct DwarfMacinfoTypeField : public MDUnsignedField { 4123 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4124 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4125 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4126 }; 4127 4128 struct DwarfAttEncodingField : public MDUnsignedField { 4129 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4130 }; 4131 4132 struct DwarfVirtualityField : public MDUnsignedField { 4133 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4134 }; 4135 4136 struct DwarfLangField : public MDUnsignedField { 4137 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4138 }; 4139 4140 struct DwarfCCField : public MDUnsignedField { 4141 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4142 }; 4143 4144 struct EmissionKindField : public MDUnsignedField { 4145 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4146 }; 4147 4148 struct NameTableKindField : public MDUnsignedField { 4149 NameTableKindField() 4150 : MDUnsignedField( 4151 0, (unsigned) 4152 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4153 }; 4154 4155 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4156 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4157 }; 4158 4159 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4160 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4161 }; 4162 4163 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4164 MDAPSIntField() : ImplTy(APSInt()) {} 4165 }; 4166 4167 struct MDSignedField : public MDFieldImpl<int64_t> { 4168 int64_t Min; 4169 int64_t Max; 4170 4171 MDSignedField(int64_t Default = 0) 4172 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4173 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4174 : ImplTy(Default), Min(Min), Max(Max) {} 4175 }; 4176 4177 struct MDBoolField : public MDFieldImpl<bool> { 4178 MDBoolField(bool Default = false) : ImplTy(Default) {} 4179 }; 4180 4181 struct MDField : public MDFieldImpl<Metadata *> { 4182 bool AllowNull; 4183 4184 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4185 }; 4186 4187 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4188 MDConstant() : ImplTy(nullptr) {} 4189 }; 4190 4191 struct MDStringField : public MDFieldImpl<MDString *> { 4192 bool AllowEmpty; 4193 MDStringField(bool AllowEmpty = true) 4194 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4195 }; 4196 4197 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4198 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4199 }; 4200 4201 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4202 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4203 }; 4204 4205 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4206 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4207 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4208 4209 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4210 bool AllowNull = true) 4211 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4212 4213 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4214 bool isMDField() const { return WhatIs == IsTypeB; } 4215 int64_t getMDSignedValue() const { 4216 assert(isMDSignedField() && "Wrong field type"); 4217 return A.Val; 4218 } 4219 Metadata *getMDFieldValue() const { 4220 assert(isMDField() && "Wrong field type"); 4221 return B.Val; 4222 } 4223 }; 4224 4225 struct MDSignedOrUnsignedField 4226 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4227 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4228 4229 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4230 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4231 int64_t getMDSignedValue() const { 4232 assert(isMDSignedField() && "Wrong field type"); 4233 return A.Val; 4234 } 4235 uint64_t getMDUnsignedValue() const { 4236 assert(isMDUnsignedField() && "Wrong field type"); 4237 return B.Val; 4238 } 4239 }; 4240 4241 } // end anonymous namespace 4242 4243 namespace llvm { 4244 4245 template <> 4246 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4247 if (Lex.getKind() != lltok::APSInt) 4248 return tokError("expected integer"); 4249 4250 Result.assign(Lex.getAPSIntVal()); 4251 Lex.Lex(); 4252 return false; 4253 } 4254 4255 template <> 4256 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4257 MDUnsignedField &Result) { 4258 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4259 return tokError("expected unsigned integer"); 4260 4261 auto &U = Lex.getAPSIntVal(); 4262 if (U.ugt(Result.Max)) 4263 return tokError("value for '" + Name + "' too large, limit is " + 4264 Twine(Result.Max)); 4265 Result.assign(U.getZExtValue()); 4266 assert(Result.Val <= Result.Max && "Expected value in range"); 4267 Lex.Lex(); 4268 return false; 4269 } 4270 4271 template <> 4272 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4273 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4274 } 4275 template <> 4276 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4277 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4278 } 4279 4280 template <> 4281 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4282 if (Lex.getKind() == lltok::APSInt) 4283 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4284 4285 if (Lex.getKind() != lltok::DwarfTag) 4286 return tokError("expected DWARF tag"); 4287 4288 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4289 if (Tag == dwarf::DW_TAG_invalid) 4290 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4291 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4292 4293 Result.assign(Tag); 4294 Lex.Lex(); 4295 return false; 4296 } 4297 4298 template <> 4299 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4300 DwarfMacinfoTypeField &Result) { 4301 if (Lex.getKind() == lltok::APSInt) 4302 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4303 4304 if (Lex.getKind() != lltok::DwarfMacinfo) 4305 return tokError("expected DWARF macinfo type"); 4306 4307 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4308 if (Macinfo == dwarf::DW_MACINFO_invalid) 4309 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4310 Lex.getStrVal() + "'"); 4311 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4312 4313 Result.assign(Macinfo); 4314 Lex.Lex(); 4315 return false; 4316 } 4317 4318 template <> 4319 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4320 DwarfVirtualityField &Result) { 4321 if (Lex.getKind() == lltok::APSInt) 4322 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4323 4324 if (Lex.getKind() != lltok::DwarfVirtuality) 4325 return tokError("expected DWARF virtuality code"); 4326 4327 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4328 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4329 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4330 Lex.getStrVal() + "'"); 4331 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4332 Result.assign(Virtuality); 4333 Lex.Lex(); 4334 return false; 4335 } 4336 4337 template <> 4338 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4339 if (Lex.getKind() == lltok::APSInt) 4340 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4341 4342 if (Lex.getKind() != lltok::DwarfLang) 4343 return tokError("expected DWARF language"); 4344 4345 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4346 if (!Lang) 4347 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4348 "'"); 4349 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4350 Result.assign(Lang); 4351 Lex.Lex(); 4352 return false; 4353 } 4354 4355 template <> 4356 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4357 if (Lex.getKind() == lltok::APSInt) 4358 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4359 4360 if (Lex.getKind() != lltok::DwarfCC) 4361 return tokError("expected DWARF calling convention"); 4362 4363 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4364 if (!CC) 4365 return tokError("invalid DWARF calling convention" + Twine(" '") + 4366 Lex.getStrVal() + "'"); 4367 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4368 Result.assign(CC); 4369 Lex.Lex(); 4370 return false; 4371 } 4372 4373 template <> 4374 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4375 EmissionKindField &Result) { 4376 if (Lex.getKind() == lltok::APSInt) 4377 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4378 4379 if (Lex.getKind() != lltok::EmissionKind) 4380 return tokError("expected emission kind"); 4381 4382 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4383 if (!Kind) 4384 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4385 "'"); 4386 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4387 Result.assign(*Kind); 4388 Lex.Lex(); 4389 return false; 4390 } 4391 4392 template <> 4393 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4394 NameTableKindField &Result) { 4395 if (Lex.getKind() == lltok::APSInt) 4396 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4397 4398 if (Lex.getKind() != lltok::NameTableKind) 4399 return tokError("expected nameTable kind"); 4400 4401 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4402 if (!Kind) 4403 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4404 "'"); 4405 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4406 Result.assign((unsigned)*Kind); 4407 Lex.Lex(); 4408 return false; 4409 } 4410 4411 template <> 4412 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4413 DwarfAttEncodingField &Result) { 4414 if (Lex.getKind() == lltok::APSInt) 4415 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4416 4417 if (Lex.getKind() != lltok::DwarfAttEncoding) 4418 return tokError("expected DWARF type attribute encoding"); 4419 4420 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4421 if (!Encoding) 4422 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4423 Lex.getStrVal() + "'"); 4424 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4425 Result.assign(Encoding); 4426 Lex.Lex(); 4427 return false; 4428 } 4429 4430 /// DIFlagField 4431 /// ::= uint32 4432 /// ::= DIFlagVector 4433 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4434 template <> 4435 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4436 4437 // parser for a single flag. 4438 auto parseFlag = [&](DINode::DIFlags &Val) { 4439 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4440 uint32_t TempVal = static_cast<uint32_t>(Val); 4441 bool Res = parseUInt32(TempVal); 4442 Val = static_cast<DINode::DIFlags>(TempVal); 4443 return Res; 4444 } 4445 4446 if (Lex.getKind() != lltok::DIFlag) 4447 return tokError("expected debug info flag"); 4448 4449 Val = DINode::getFlag(Lex.getStrVal()); 4450 if (!Val) 4451 return tokError(Twine("invalid debug info flag flag '") + 4452 Lex.getStrVal() + "'"); 4453 Lex.Lex(); 4454 return false; 4455 }; 4456 4457 // parse the flags and combine them together. 4458 DINode::DIFlags Combined = DINode::FlagZero; 4459 do { 4460 DINode::DIFlags Val; 4461 if (parseFlag(Val)) 4462 return true; 4463 Combined |= Val; 4464 } while (EatIfPresent(lltok::bar)); 4465 4466 Result.assign(Combined); 4467 return false; 4468 } 4469 4470 /// DISPFlagField 4471 /// ::= uint32 4472 /// ::= DISPFlagVector 4473 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4474 template <> 4475 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4476 4477 // parser for a single flag. 4478 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4479 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4480 uint32_t TempVal = static_cast<uint32_t>(Val); 4481 bool Res = parseUInt32(TempVal); 4482 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4483 return Res; 4484 } 4485 4486 if (Lex.getKind() != lltok::DISPFlag) 4487 return tokError("expected debug info flag"); 4488 4489 Val = DISubprogram::getFlag(Lex.getStrVal()); 4490 if (!Val) 4491 return tokError(Twine("invalid subprogram debug info flag '") + 4492 Lex.getStrVal() + "'"); 4493 Lex.Lex(); 4494 return false; 4495 }; 4496 4497 // parse the flags and combine them together. 4498 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4499 do { 4500 DISubprogram::DISPFlags Val; 4501 if (parseFlag(Val)) 4502 return true; 4503 Combined |= Val; 4504 } while (EatIfPresent(lltok::bar)); 4505 4506 Result.assign(Combined); 4507 return false; 4508 } 4509 4510 template <> 4511 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4512 if (Lex.getKind() != lltok::APSInt) 4513 return tokError("expected signed integer"); 4514 4515 auto &S = Lex.getAPSIntVal(); 4516 if (S < Result.Min) 4517 return tokError("value for '" + Name + "' too small, limit is " + 4518 Twine(Result.Min)); 4519 if (S > Result.Max) 4520 return tokError("value for '" + Name + "' too large, limit is " + 4521 Twine(Result.Max)); 4522 Result.assign(S.getExtValue()); 4523 assert(Result.Val >= Result.Min && "Expected value in range"); 4524 assert(Result.Val <= Result.Max && "Expected value in range"); 4525 Lex.Lex(); 4526 return false; 4527 } 4528 4529 template <> 4530 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4531 switch (Lex.getKind()) { 4532 default: 4533 return tokError("expected 'true' or 'false'"); 4534 case lltok::kw_true: 4535 Result.assign(true); 4536 break; 4537 case lltok::kw_false: 4538 Result.assign(false); 4539 break; 4540 } 4541 Lex.Lex(); 4542 return false; 4543 } 4544 4545 template <> 4546 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4547 if (Lex.getKind() == lltok::kw_null) { 4548 if (!Result.AllowNull) 4549 return tokError("'" + Name + "' cannot be null"); 4550 Lex.Lex(); 4551 Result.assign(nullptr); 4552 return false; 4553 } 4554 4555 Metadata *MD; 4556 if (parseMetadata(MD, nullptr)) 4557 return true; 4558 4559 Result.assign(MD); 4560 return false; 4561 } 4562 4563 template <> 4564 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4565 MDSignedOrMDField &Result) { 4566 // Try to parse a signed int. 4567 if (Lex.getKind() == lltok::APSInt) { 4568 MDSignedField Res = Result.A; 4569 if (!parseMDField(Loc, Name, Res)) { 4570 Result.assign(Res); 4571 return false; 4572 } 4573 return true; 4574 } 4575 4576 // Otherwise, try to parse as an MDField. 4577 MDField Res = Result.B; 4578 if (!parseMDField(Loc, Name, Res)) { 4579 Result.assign(Res); 4580 return false; 4581 } 4582 4583 return true; 4584 } 4585 4586 template <> 4587 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4588 LocTy ValueLoc = Lex.getLoc(); 4589 std::string S; 4590 if (parseStringConstant(S)) 4591 return true; 4592 4593 if (!Result.AllowEmpty && S.empty()) 4594 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4595 4596 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4597 return false; 4598 } 4599 4600 template <> 4601 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4602 SmallVector<Metadata *, 4> MDs; 4603 if (parseMDNodeVector(MDs)) 4604 return true; 4605 4606 Result.assign(std::move(MDs)); 4607 return false; 4608 } 4609 4610 template <> 4611 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4612 ChecksumKindField &Result) { 4613 Optional<DIFile::ChecksumKind> CSKind = 4614 DIFile::getChecksumKind(Lex.getStrVal()); 4615 4616 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4617 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4618 "'"); 4619 4620 Result.assign(*CSKind); 4621 Lex.Lex(); 4622 return false; 4623 } 4624 4625 } // end namespace llvm 4626 4627 template <class ParserTy> 4628 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4629 do { 4630 if (Lex.getKind() != lltok::LabelStr) 4631 return tokError("expected field label here"); 4632 4633 if (ParseField()) 4634 return true; 4635 } while (EatIfPresent(lltok::comma)); 4636 4637 return false; 4638 } 4639 4640 template <class ParserTy> 4641 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4642 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4643 Lex.Lex(); 4644 4645 if (parseToken(lltok::lparen, "expected '(' here")) 4646 return true; 4647 if (Lex.getKind() != lltok::rparen) 4648 if (parseMDFieldsImplBody(ParseField)) 4649 return true; 4650 4651 ClosingLoc = Lex.getLoc(); 4652 return parseToken(lltok::rparen, "expected ')' here"); 4653 } 4654 4655 template <class FieldTy> 4656 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4657 if (Result.Seen) 4658 return tokError("field '" + Name + "' cannot be specified more than once"); 4659 4660 LocTy Loc = Lex.getLoc(); 4661 Lex.Lex(); 4662 return parseMDField(Loc, Name, Result); 4663 } 4664 4665 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4666 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4667 4668 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4669 if (Lex.getStrVal() == #CLASS) \ 4670 return parse##CLASS(N, IsDistinct); 4671 #include "llvm/IR/Metadata.def" 4672 4673 return tokError("expected metadata type"); 4674 } 4675 4676 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4677 #define NOP_FIELD(NAME, TYPE, INIT) 4678 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4679 if (!NAME.Seen) \ 4680 return error(ClosingLoc, "missing required field '" #NAME "'"); 4681 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4682 if (Lex.getStrVal() == #NAME) \ 4683 return parseMDField(#NAME, NAME); 4684 #define PARSE_MD_FIELDS() \ 4685 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4686 do { \ 4687 LocTy ClosingLoc; \ 4688 if (parseMDFieldsImpl( \ 4689 [&]() -> bool { \ 4690 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4691 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4692 "'"); \ 4693 }, \ 4694 ClosingLoc)) \ 4695 return true; \ 4696 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4697 } while (false) 4698 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4699 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4700 4701 /// parseDILocationFields: 4702 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4703 /// isImplicitCode: true) 4704 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4705 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4706 OPTIONAL(line, LineField, ); \ 4707 OPTIONAL(column, ColumnField, ); \ 4708 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4709 OPTIONAL(inlinedAt, MDField, ); \ 4710 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4711 PARSE_MD_FIELDS(); 4712 #undef VISIT_MD_FIELDS 4713 4714 Result = 4715 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4716 inlinedAt.Val, isImplicitCode.Val)); 4717 return false; 4718 } 4719 4720 /// parseGenericDINode: 4721 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4722 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4723 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4724 REQUIRED(tag, DwarfTagField, ); \ 4725 OPTIONAL(header, MDStringField, ); \ 4726 OPTIONAL(operands, MDFieldList, ); 4727 PARSE_MD_FIELDS(); 4728 #undef VISIT_MD_FIELDS 4729 4730 Result = GET_OR_DISTINCT(GenericDINode, 4731 (Context, tag.Val, header.Val, operands.Val)); 4732 return false; 4733 } 4734 4735 /// parseDISubrange: 4736 /// ::= !DISubrange(count: 30, lowerBound: 2) 4737 /// ::= !DISubrange(count: !node, lowerBound: 2) 4738 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4739 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4740 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4741 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4742 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4743 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4744 OPTIONAL(stride, MDSignedOrMDField, ); 4745 PARSE_MD_FIELDS(); 4746 #undef VISIT_MD_FIELDS 4747 4748 Metadata *Count = nullptr; 4749 Metadata *LowerBound = nullptr; 4750 Metadata *UpperBound = nullptr; 4751 Metadata *Stride = nullptr; 4752 4753 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4754 if (Bound.isMDSignedField()) 4755 return ConstantAsMetadata::get(ConstantInt::getSigned( 4756 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4757 if (Bound.isMDField()) 4758 return Bound.getMDFieldValue(); 4759 return nullptr; 4760 }; 4761 4762 Count = convToMetadata(count); 4763 LowerBound = convToMetadata(lowerBound); 4764 UpperBound = convToMetadata(upperBound); 4765 Stride = convToMetadata(stride); 4766 4767 Result = GET_OR_DISTINCT(DISubrange, 4768 (Context, Count, LowerBound, UpperBound, Stride)); 4769 4770 return false; 4771 } 4772 4773 /// parseDIGenericSubrange: 4774 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4775 /// !node3) 4776 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4777 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4778 OPTIONAL(count, MDSignedOrMDField, ); \ 4779 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4780 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4781 OPTIONAL(stride, MDSignedOrMDField, ); 4782 PARSE_MD_FIELDS(); 4783 #undef VISIT_MD_FIELDS 4784 4785 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4786 if (Bound.isMDSignedField()) 4787 return DIExpression::get( 4788 Context, {dwarf::DW_OP_consts, 4789 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4790 if (Bound.isMDField()) 4791 return Bound.getMDFieldValue(); 4792 return nullptr; 4793 }; 4794 4795 Metadata *Count = ConvToMetadata(count); 4796 Metadata *LowerBound = ConvToMetadata(lowerBound); 4797 Metadata *UpperBound = ConvToMetadata(upperBound); 4798 Metadata *Stride = ConvToMetadata(stride); 4799 4800 Result = GET_OR_DISTINCT(DIGenericSubrange, 4801 (Context, Count, LowerBound, UpperBound, Stride)); 4802 4803 return false; 4804 } 4805 4806 /// parseDIEnumerator: 4807 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4808 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4809 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4810 REQUIRED(name, MDStringField, ); \ 4811 REQUIRED(value, MDAPSIntField, ); \ 4812 OPTIONAL(isUnsigned, MDBoolField, (false)); 4813 PARSE_MD_FIELDS(); 4814 #undef VISIT_MD_FIELDS 4815 4816 if (isUnsigned.Val && value.Val.isNegative()) 4817 return tokError("unsigned enumerator with negative value"); 4818 4819 APSInt Value(value.Val); 4820 // Add a leading zero so that unsigned values with the msb set are not 4821 // mistaken for negative values when used for signed enumerators. 4822 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4823 Value = Value.zext(Value.getBitWidth() + 1); 4824 4825 Result = 4826 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4827 4828 return false; 4829 } 4830 4831 /// parseDIBasicType: 4832 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4833 /// encoding: DW_ATE_encoding, flags: 0) 4834 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4835 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4836 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4837 OPTIONAL(name, MDStringField, ); \ 4838 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4839 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4840 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4841 OPTIONAL(flags, DIFlagField, ); 4842 PARSE_MD_FIELDS(); 4843 #undef VISIT_MD_FIELDS 4844 4845 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4846 align.Val, encoding.Val, flags.Val)); 4847 return false; 4848 } 4849 4850 /// parseDIStringType: 4851 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4852 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4853 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4854 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4855 OPTIONAL(name, MDStringField, ); \ 4856 OPTIONAL(stringLength, MDField, ); \ 4857 OPTIONAL(stringLengthExpression, MDField, ); \ 4858 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4859 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4860 OPTIONAL(encoding, DwarfAttEncodingField, ); 4861 PARSE_MD_FIELDS(); 4862 #undef VISIT_MD_FIELDS 4863 4864 Result = GET_OR_DISTINCT(DIStringType, 4865 (Context, tag.Val, name.Val, stringLength.Val, 4866 stringLengthExpression.Val, size.Val, align.Val, 4867 encoding.Val)); 4868 return false; 4869 } 4870 4871 /// parseDIDerivedType: 4872 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4873 /// line: 7, scope: !1, baseType: !2, size: 32, 4874 /// align: 32, offset: 0, flags: 0, extraData: !3, 4875 /// dwarfAddressSpace: 3) 4876 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4877 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4878 REQUIRED(tag, DwarfTagField, ); \ 4879 OPTIONAL(name, MDStringField, ); \ 4880 OPTIONAL(file, MDField, ); \ 4881 OPTIONAL(line, LineField, ); \ 4882 OPTIONAL(scope, MDField, ); \ 4883 REQUIRED(baseType, MDField, ); \ 4884 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4885 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4886 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4887 OPTIONAL(flags, DIFlagField, ); \ 4888 OPTIONAL(extraData, MDField, ); \ 4889 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4890 PARSE_MD_FIELDS(); 4891 #undef VISIT_MD_FIELDS 4892 4893 Optional<unsigned> DWARFAddressSpace; 4894 if (dwarfAddressSpace.Val != UINT32_MAX) 4895 DWARFAddressSpace = dwarfAddressSpace.Val; 4896 4897 Result = GET_OR_DISTINCT(DIDerivedType, 4898 (Context, tag.Val, name.Val, file.Val, line.Val, 4899 scope.Val, baseType.Val, size.Val, align.Val, 4900 offset.Val, DWARFAddressSpace, flags.Val, 4901 extraData.Val)); 4902 return false; 4903 } 4904 4905 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4906 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4907 REQUIRED(tag, DwarfTagField, ); \ 4908 OPTIONAL(name, MDStringField, ); \ 4909 OPTIONAL(file, MDField, ); \ 4910 OPTIONAL(line, LineField, ); \ 4911 OPTIONAL(scope, MDField, ); \ 4912 OPTIONAL(baseType, MDField, ); \ 4913 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4914 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4915 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4916 OPTIONAL(flags, DIFlagField, ); \ 4917 OPTIONAL(elements, MDField, ); \ 4918 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4919 OPTIONAL(vtableHolder, MDField, ); \ 4920 OPTIONAL(templateParams, MDField, ); \ 4921 OPTIONAL(identifier, MDStringField, ); \ 4922 OPTIONAL(discriminator, MDField, ); \ 4923 OPTIONAL(dataLocation, MDField, ); \ 4924 OPTIONAL(associated, MDField, ); \ 4925 OPTIONAL(allocated, MDField, ); \ 4926 OPTIONAL(rank, MDSignedOrMDField, ); 4927 PARSE_MD_FIELDS(); 4928 #undef VISIT_MD_FIELDS 4929 4930 Metadata *Rank = nullptr; 4931 if (rank.isMDSignedField()) 4932 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4933 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4934 else if (rank.isMDField()) 4935 Rank = rank.getMDFieldValue(); 4936 4937 // If this has an identifier try to build an ODR type. 4938 if (identifier.Val) 4939 if (auto *CT = DICompositeType::buildODRType( 4940 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4941 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4942 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4943 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4944 Rank)) { 4945 Result = CT; 4946 return false; 4947 } 4948 4949 // Create a new node, and save it in the context if it belongs in the type 4950 // map. 4951 Result = GET_OR_DISTINCT( 4952 DICompositeType, 4953 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4954 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4955 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4956 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4957 Rank)); 4958 return false; 4959 } 4960 4961 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4963 OPTIONAL(flags, DIFlagField, ); \ 4964 OPTIONAL(cc, DwarfCCField, ); \ 4965 REQUIRED(types, MDField, ); 4966 PARSE_MD_FIELDS(); 4967 #undef VISIT_MD_FIELDS 4968 4969 Result = GET_OR_DISTINCT(DISubroutineType, 4970 (Context, flags.Val, cc.Val, types.Val)); 4971 return false; 4972 } 4973 4974 /// parseDIFileType: 4975 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4976 /// checksumkind: CSK_MD5, 4977 /// checksum: "000102030405060708090a0b0c0d0e0f", 4978 /// source: "source file contents") 4979 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4980 // The default constructed value for checksumkind is required, but will never 4981 // be used, as the parser checks if the field was actually Seen before using 4982 // the Val. 4983 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4984 REQUIRED(filename, MDStringField, ); \ 4985 REQUIRED(directory, MDStringField, ); \ 4986 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4987 OPTIONAL(checksum, MDStringField, ); \ 4988 OPTIONAL(source, MDStringField, ); 4989 PARSE_MD_FIELDS(); 4990 #undef VISIT_MD_FIELDS 4991 4992 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4993 if (checksumkind.Seen && checksum.Seen) 4994 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4995 else if (checksumkind.Seen || checksum.Seen) 4996 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4997 4998 Optional<MDString *> OptSource; 4999 if (source.Seen) 5000 OptSource = source.Val; 5001 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 5002 OptChecksum, OptSource)); 5003 return false; 5004 } 5005 5006 /// parseDICompileUnit: 5007 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 5008 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 5009 /// splitDebugFilename: "abc.debug", 5010 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5011 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5012 /// sysroot: "/", sdk: "MacOSX.sdk") 5013 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5014 if (!IsDistinct) 5015 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 5016 5017 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5018 REQUIRED(language, DwarfLangField, ); \ 5019 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5020 OPTIONAL(producer, MDStringField, ); \ 5021 OPTIONAL(isOptimized, MDBoolField, ); \ 5022 OPTIONAL(flags, MDStringField, ); \ 5023 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5024 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5025 OPTIONAL(emissionKind, EmissionKindField, ); \ 5026 OPTIONAL(enums, MDField, ); \ 5027 OPTIONAL(retainedTypes, MDField, ); \ 5028 OPTIONAL(globals, MDField, ); \ 5029 OPTIONAL(imports, MDField, ); \ 5030 OPTIONAL(macros, MDField, ); \ 5031 OPTIONAL(dwoId, MDUnsignedField, ); \ 5032 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5033 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5034 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5035 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5036 OPTIONAL(sysroot, MDStringField, ); \ 5037 OPTIONAL(sdk, MDStringField, ); 5038 PARSE_MD_FIELDS(); 5039 #undef VISIT_MD_FIELDS 5040 5041 Result = DICompileUnit::getDistinct( 5042 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5043 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5044 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5045 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5046 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5047 return false; 5048 } 5049 5050 /// parseDISubprogram: 5051 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5052 /// file: !1, line: 7, type: !2, isLocal: false, 5053 /// isDefinition: true, scopeLine: 8, containingType: !3, 5054 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5055 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5056 /// spFlags: 10, isOptimized: false, templateParams: !4, 5057 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 5058 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5059 auto Loc = Lex.getLoc(); 5060 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5061 OPTIONAL(scope, MDField, ); \ 5062 OPTIONAL(name, MDStringField, ); \ 5063 OPTIONAL(linkageName, MDStringField, ); \ 5064 OPTIONAL(file, MDField, ); \ 5065 OPTIONAL(line, LineField, ); \ 5066 OPTIONAL(type, MDField, ); \ 5067 OPTIONAL(isLocal, MDBoolField, ); \ 5068 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5069 OPTIONAL(scopeLine, LineField, ); \ 5070 OPTIONAL(containingType, MDField, ); \ 5071 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5072 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5073 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5074 OPTIONAL(flags, DIFlagField, ); \ 5075 OPTIONAL(spFlags, DISPFlagField, ); \ 5076 OPTIONAL(isOptimized, MDBoolField, ); \ 5077 OPTIONAL(unit, MDField, ); \ 5078 OPTIONAL(templateParams, MDField, ); \ 5079 OPTIONAL(declaration, MDField, ); \ 5080 OPTIONAL(retainedNodes, MDField, ); \ 5081 OPTIONAL(thrownTypes, MDField, ); 5082 PARSE_MD_FIELDS(); 5083 #undef VISIT_MD_FIELDS 5084 5085 // An explicit spFlags field takes precedence over individual fields in 5086 // older IR versions. 5087 DISubprogram::DISPFlags SPFlags = 5088 spFlags.Seen ? spFlags.Val 5089 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5090 isOptimized.Val, virtuality.Val); 5091 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5092 return Lex.Error( 5093 Loc, 5094 "missing 'distinct', required for !DISubprogram that is a Definition"); 5095 Result = GET_OR_DISTINCT( 5096 DISubprogram, 5097 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5098 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5099 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5100 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5101 return false; 5102 } 5103 5104 /// parseDILexicalBlock: 5105 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5106 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5107 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5108 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5109 OPTIONAL(file, MDField, ); \ 5110 OPTIONAL(line, LineField, ); \ 5111 OPTIONAL(column, ColumnField, ); 5112 PARSE_MD_FIELDS(); 5113 #undef VISIT_MD_FIELDS 5114 5115 Result = GET_OR_DISTINCT( 5116 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5117 return false; 5118 } 5119 5120 /// parseDILexicalBlockFile: 5121 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5122 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5123 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5124 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5125 OPTIONAL(file, MDField, ); \ 5126 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5127 PARSE_MD_FIELDS(); 5128 #undef VISIT_MD_FIELDS 5129 5130 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5131 (Context, scope.Val, file.Val, discriminator.Val)); 5132 return false; 5133 } 5134 5135 /// parseDICommonBlock: 5136 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5137 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5138 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5139 REQUIRED(scope, MDField, ); \ 5140 OPTIONAL(declaration, MDField, ); \ 5141 OPTIONAL(name, MDStringField, ); \ 5142 OPTIONAL(file, MDField, ); \ 5143 OPTIONAL(line, LineField, ); 5144 PARSE_MD_FIELDS(); 5145 #undef VISIT_MD_FIELDS 5146 5147 Result = GET_OR_DISTINCT(DICommonBlock, 5148 (Context, scope.Val, declaration.Val, name.Val, 5149 file.Val, line.Val)); 5150 return false; 5151 } 5152 5153 /// parseDINamespace: 5154 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5155 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5156 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5157 REQUIRED(scope, MDField, ); \ 5158 OPTIONAL(name, MDStringField, ); \ 5159 OPTIONAL(exportSymbols, MDBoolField, ); 5160 PARSE_MD_FIELDS(); 5161 #undef VISIT_MD_FIELDS 5162 5163 Result = GET_OR_DISTINCT(DINamespace, 5164 (Context, scope.Val, name.Val, exportSymbols.Val)); 5165 return false; 5166 } 5167 5168 /// parseDIMacro: 5169 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5170 /// "SomeValue") 5171 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5172 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5173 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5174 OPTIONAL(line, LineField, ); \ 5175 REQUIRED(name, MDStringField, ); \ 5176 OPTIONAL(value, MDStringField, ); 5177 PARSE_MD_FIELDS(); 5178 #undef VISIT_MD_FIELDS 5179 5180 Result = GET_OR_DISTINCT(DIMacro, 5181 (Context, type.Val, line.Val, name.Val, value.Val)); 5182 return false; 5183 } 5184 5185 /// parseDIMacroFile: 5186 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5187 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5188 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5189 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5190 OPTIONAL(line, LineField, ); \ 5191 REQUIRED(file, MDField, ); \ 5192 OPTIONAL(nodes, MDField, ); 5193 PARSE_MD_FIELDS(); 5194 #undef VISIT_MD_FIELDS 5195 5196 Result = GET_OR_DISTINCT(DIMacroFile, 5197 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5198 return false; 5199 } 5200 5201 /// parseDIModule: 5202 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5203 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5204 /// file: !1, line: 4, isDecl: false) 5205 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5206 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5207 REQUIRED(scope, MDField, ); \ 5208 REQUIRED(name, MDStringField, ); \ 5209 OPTIONAL(configMacros, MDStringField, ); \ 5210 OPTIONAL(includePath, MDStringField, ); \ 5211 OPTIONAL(apinotes, MDStringField, ); \ 5212 OPTIONAL(file, MDField, ); \ 5213 OPTIONAL(line, LineField, ); \ 5214 OPTIONAL(isDecl, MDBoolField, ); 5215 PARSE_MD_FIELDS(); 5216 #undef VISIT_MD_FIELDS 5217 5218 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5219 configMacros.Val, includePath.Val, 5220 apinotes.Val, line.Val, isDecl.Val)); 5221 return false; 5222 } 5223 5224 /// parseDITemplateTypeParameter: 5225 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5226 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5227 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5228 OPTIONAL(name, MDStringField, ); \ 5229 REQUIRED(type, MDField, ); \ 5230 OPTIONAL(defaulted, MDBoolField, ); 5231 PARSE_MD_FIELDS(); 5232 #undef VISIT_MD_FIELDS 5233 5234 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5235 (Context, name.Val, type.Val, defaulted.Val)); 5236 return false; 5237 } 5238 5239 /// parseDITemplateValueParameter: 5240 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5241 /// name: "V", type: !1, defaulted: false, 5242 /// value: i32 7) 5243 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5244 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5245 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5246 OPTIONAL(name, MDStringField, ); \ 5247 OPTIONAL(type, MDField, ); \ 5248 OPTIONAL(defaulted, MDBoolField, ); \ 5249 REQUIRED(value, MDField, ); 5250 5251 PARSE_MD_FIELDS(); 5252 #undef VISIT_MD_FIELDS 5253 5254 Result = GET_OR_DISTINCT( 5255 DITemplateValueParameter, 5256 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5257 return false; 5258 } 5259 5260 /// parseDIGlobalVariable: 5261 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5262 /// file: !1, line: 7, type: !2, isLocal: false, 5263 /// isDefinition: true, templateParams: !3, 5264 /// declaration: !4, align: 8) 5265 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5266 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5267 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5268 OPTIONAL(scope, MDField, ); \ 5269 OPTIONAL(linkageName, MDStringField, ); \ 5270 OPTIONAL(file, MDField, ); \ 5271 OPTIONAL(line, LineField, ); \ 5272 OPTIONAL(type, MDField, ); \ 5273 OPTIONAL(isLocal, MDBoolField, ); \ 5274 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5275 OPTIONAL(templateParams, MDField, ); \ 5276 OPTIONAL(declaration, MDField, ); \ 5277 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5278 PARSE_MD_FIELDS(); 5279 #undef VISIT_MD_FIELDS 5280 5281 Result = 5282 GET_OR_DISTINCT(DIGlobalVariable, 5283 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5284 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5285 declaration.Val, templateParams.Val, align.Val)); 5286 return false; 5287 } 5288 5289 /// parseDILocalVariable: 5290 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5291 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5292 /// align: 8) 5293 /// ::= !DILocalVariable(scope: !0, name: "foo", 5294 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5295 /// align: 8) 5296 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5297 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5298 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5299 OPTIONAL(name, MDStringField, ); \ 5300 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5301 OPTIONAL(file, MDField, ); \ 5302 OPTIONAL(line, LineField, ); \ 5303 OPTIONAL(type, MDField, ); \ 5304 OPTIONAL(flags, DIFlagField, ); \ 5305 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5306 PARSE_MD_FIELDS(); 5307 #undef VISIT_MD_FIELDS 5308 5309 Result = GET_OR_DISTINCT(DILocalVariable, 5310 (Context, scope.Val, name.Val, file.Val, line.Val, 5311 type.Val, arg.Val, flags.Val, align.Val)); 5312 return false; 5313 } 5314 5315 /// parseDILabel: 5316 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5317 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5318 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5319 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5320 REQUIRED(name, MDStringField, ); \ 5321 REQUIRED(file, MDField, ); \ 5322 REQUIRED(line, LineField, ); 5323 PARSE_MD_FIELDS(); 5324 #undef VISIT_MD_FIELDS 5325 5326 Result = GET_OR_DISTINCT(DILabel, 5327 (Context, scope.Val, name.Val, file.Val, line.Val)); 5328 return false; 5329 } 5330 5331 /// parseDIExpression: 5332 /// ::= !DIExpression(0, 7, -1) 5333 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5334 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5335 Lex.Lex(); 5336 5337 if (parseToken(lltok::lparen, "expected '(' here")) 5338 return true; 5339 5340 SmallVector<uint64_t, 8> Elements; 5341 if (Lex.getKind() != lltok::rparen) 5342 do { 5343 if (Lex.getKind() == lltok::DwarfOp) { 5344 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5345 Lex.Lex(); 5346 Elements.push_back(Op); 5347 continue; 5348 } 5349 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5350 } 5351 5352 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5353 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5354 Lex.Lex(); 5355 Elements.push_back(Op); 5356 continue; 5357 } 5358 return tokError(Twine("invalid DWARF attribute encoding '") + 5359 Lex.getStrVal() + "'"); 5360 } 5361 5362 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5363 return tokError("expected unsigned integer"); 5364 5365 auto &U = Lex.getAPSIntVal(); 5366 if (U.ugt(UINT64_MAX)) 5367 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5368 Elements.push_back(U.getZExtValue()); 5369 Lex.Lex(); 5370 } while (EatIfPresent(lltok::comma)); 5371 5372 if (parseToken(lltok::rparen, "expected ')' here")) 5373 return true; 5374 5375 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5376 return false; 5377 } 5378 5379 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5380 return parseDIArgList(Result, IsDistinct, nullptr); 5381 } 5382 /// ParseDIArgList: 5383 /// ::= !DIArgList(i32 7, i64 %0) 5384 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5385 PerFunctionState *PFS) { 5386 assert(PFS && "Expected valid function state"); 5387 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5388 Lex.Lex(); 5389 5390 if (parseToken(lltok::lparen, "expected '(' here")) 5391 return true; 5392 5393 SmallVector<ValueAsMetadata *, 4> Args; 5394 if (Lex.getKind() != lltok::rparen) 5395 do { 5396 Metadata *MD; 5397 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5398 return true; 5399 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5400 } while (EatIfPresent(lltok::comma)); 5401 5402 if (parseToken(lltok::rparen, "expected ')' here")) 5403 return true; 5404 5405 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5406 return false; 5407 } 5408 5409 /// parseDIGlobalVariableExpression: 5410 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5411 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5412 bool IsDistinct) { 5413 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5414 REQUIRED(var, MDField, ); \ 5415 REQUIRED(expr, MDField, ); 5416 PARSE_MD_FIELDS(); 5417 #undef VISIT_MD_FIELDS 5418 5419 Result = 5420 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5421 return false; 5422 } 5423 5424 /// parseDIObjCProperty: 5425 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5426 /// getter: "getFoo", attributes: 7, type: !2) 5427 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5428 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5429 OPTIONAL(name, MDStringField, ); \ 5430 OPTIONAL(file, MDField, ); \ 5431 OPTIONAL(line, LineField, ); \ 5432 OPTIONAL(setter, MDStringField, ); \ 5433 OPTIONAL(getter, MDStringField, ); \ 5434 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5435 OPTIONAL(type, MDField, ); 5436 PARSE_MD_FIELDS(); 5437 #undef VISIT_MD_FIELDS 5438 5439 Result = GET_OR_DISTINCT(DIObjCProperty, 5440 (Context, name.Val, file.Val, line.Val, setter.Val, 5441 getter.Val, attributes.Val, type.Val)); 5442 return false; 5443 } 5444 5445 /// parseDIImportedEntity: 5446 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5447 /// line: 7, name: "foo") 5448 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5449 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5450 REQUIRED(tag, DwarfTagField, ); \ 5451 REQUIRED(scope, MDField, ); \ 5452 OPTIONAL(entity, MDField, ); \ 5453 OPTIONAL(file, MDField, ); \ 5454 OPTIONAL(line, LineField, ); \ 5455 OPTIONAL(name, MDStringField, ); 5456 PARSE_MD_FIELDS(); 5457 #undef VISIT_MD_FIELDS 5458 5459 Result = GET_OR_DISTINCT( 5460 DIImportedEntity, 5461 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5462 return false; 5463 } 5464 5465 #undef PARSE_MD_FIELD 5466 #undef NOP_FIELD 5467 #undef REQUIRE_FIELD 5468 #undef DECLARE_FIELD 5469 5470 /// parseMetadataAsValue 5471 /// ::= metadata i32 %local 5472 /// ::= metadata i32 @global 5473 /// ::= metadata i32 7 5474 /// ::= metadata !0 5475 /// ::= metadata !{...} 5476 /// ::= metadata !"string" 5477 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5478 // Note: the type 'metadata' has already been parsed. 5479 Metadata *MD; 5480 if (parseMetadata(MD, &PFS)) 5481 return true; 5482 5483 V = MetadataAsValue::get(Context, MD); 5484 return false; 5485 } 5486 5487 /// parseValueAsMetadata 5488 /// ::= i32 %local 5489 /// ::= i32 @global 5490 /// ::= i32 7 5491 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5492 PerFunctionState *PFS) { 5493 Type *Ty; 5494 LocTy Loc; 5495 if (parseType(Ty, TypeMsg, Loc)) 5496 return true; 5497 if (Ty->isMetadataTy()) 5498 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5499 5500 Value *V; 5501 if (parseValue(Ty, V, PFS)) 5502 return true; 5503 5504 MD = ValueAsMetadata::get(V); 5505 return false; 5506 } 5507 5508 /// parseMetadata 5509 /// ::= i32 %local 5510 /// ::= i32 @global 5511 /// ::= i32 7 5512 /// ::= !42 5513 /// ::= !{...} 5514 /// ::= !"string" 5515 /// ::= !DILocation(...) 5516 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5517 if (Lex.getKind() == lltok::MetadataVar) { 5518 MDNode *N; 5519 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5520 // so parsing this requires a Function State. 5521 if (Lex.getStrVal() == "DIArgList") { 5522 if (parseDIArgList(N, false, PFS)) 5523 return true; 5524 } else if (parseSpecializedMDNode(N)) { 5525 return true; 5526 } 5527 MD = N; 5528 return false; 5529 } 5530 5531 // ValueAsMetadata: 5532 // <type> <value> 5533 if (Lex.getKind() != lltok::exclaim) 5534 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5535 5536 // '!'. 5537 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5538 Lex.Lex(); 5539 5540 // MDString: 5541 // ::= '!' STRINGCONSTANT 5542 if (Lex.getKind() == lltok::StringConstant) { 5543 MDString *S; 5544 if (parseMDString(S)) 5545 return true; 5546 MD = S; 5547 return false; 5548 } 5549 5550 // MDNode: 5551 // !{ ... } 5552 // !7 5553 MDNode *N; 5554 if (parseMDNodeTail(N)) 5555 return true; 5556 MD = N; 5557 return false; 5558 } 5559 5560 //===----------------------------------------------------------------------===// 5561 // Function Parsing. 5562 //===----------------------------------------------------------------------===// 5563 5564 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5565 PerFunctionState *PFS, bool IsCall) { 5566 if (Ty->isFunctionTy()) 5567 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5568 5569 switch (ID.Kind) { 5570 case ValID::t_LocalID: 5571 if (!PFS) 5572 return error(ID.Loc, "invalid use of function-local name"); 5573 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5574 return V == nullptr; 5575 case ValID::t_LocalName: 5576 if (!PFS) 5577 return error(ID.Loc, "invalid use of function-local name"); 5578 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5579 return V == nullptr; 5580 case ValID::t_InlineAsm: { 5581 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5582 return error(ID.Loc, "invalid type for inline asm constraint string"); 5583 V = InlineAsm::get( 5584 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5585 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5586 return false; 5587 } 5588 case ValID::t_GlobalName: 5589 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5590 return V == nullptr; 5591 case ValID::t_GlobalID: 5592 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5593 return V == nullptr; 5594 case ValID::t_APSInt: 5595 if (!Ty->isIntegerTy()) 5596 return error(ID.Loc, "integer constant must have integer type"); 5597 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5598 V = ConstantInt::get(Context, ID.APSIntVal); 5599 return false; 5600 case ValID::t_APFloat: 5601 if (!Ty->isFloatingPointTy() || 5602 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5603 return error(ID.Loc, "floating point constant invalid for type"); 5604 5605 // The lexer has no type info, so builds all half, bfloat, float, and double 5606 // FP constants as double. Fix this here. Long double does not need this. 5607 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5608 // Check for signaling before potentially converting and losing that info. 5609 bool IsSNAN = ID.APFloatVal.isSignaling(); 5610 bool Ignored; 5611 if (Ty->isHalfTy()) 5612 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5613 &Ignored); 5614 else if (Ty->isBFloatTy()) 5615 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5616 &Ignored); 5617 else if (Ty->isFloatTy()) 5618 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5619 &Ignored); 5620 if (IsSNAN) { 5621 // The convert call above may quiet an SNaN, so manufacture another 5622 // SNaN. The bitcast works because the payload (significand) parameter 5623 // is truncated to fit. 5624 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5625 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5626 ID.APFloatVal.isNegative(), &Payload); 5627 } 5628 } 5629 V = ConstantFP::get(Context, ID.APFloatVal); 5630 5631 if (V->getType() != Ty) 5632 return error(ID.Loc, "floating point constant does not have type '" + 5633 getTypeString(Ty) + "'"); 5634 5635 return false; 5636 case ValID::t_Null: 5637 if (!Ty->isPointerTy()) 5638 return error(ID.Loc, "null must be a pointer type"); 5639 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5640 return false; 5641 case ValID::t_Undef: 5642 // FIXME: LabelTy should not be a first-class type. 5643 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5644 return error(ID.Loc, "invalid type for undef constant"); 5645 V = UndefValue::get(Ty); 5646 return false; 5647 case ValID::t_EmptyArray: 5648 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5649 return error(ID.Loc, "invalid empty array initializer"); 5650 V = UndefValue::get(Ty); 5651 return false; 5652 case ValID::t_Zero: 5653 // FIXME: LabelTy should not be a first-class type. 5654 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5655 return error(ID.Loc, "invalid type for null constant"); 5656 V = Constant::getNullValue(Ty); 5657 return false; 5658 case ValID::t_None: 5659 if (!Ty->isTokenTy()) 5660 return error(ID.Loc, "invalid type for none constant"); 5661 V = Constant::getNullValue(Ty); 5662 return false; 5663 case ValID::t_Poison: 5664 // FIXME: LabelTy should not be a first-class type. 5665 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5666 return error(ID.Loc, "invalid type for poison constant"); 5667 V = PoisonValue::get(Ty); 5668 return false; 5669 case ValID::t_Constant: 5670 if (ID.ConstantVal->getType() != Ty) 5671 return error(ID.Loc, "constant expression type mismatch"); 5672 V = ID.ConstantVal; 5673 return false; 5674 case ValID::t_ConstantStruct: 5675 case ValID::t_PackedConstantStruct: 5676 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5677 if (ST->getNumElements() != ID.UIntVal) 5678 return error(ID.Loc, 5679 "initializer with struct type has wrong # elements"); 5680 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5681 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5682 5683 // Verify that the elements are compatible with the structtype. 5684 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5685 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5686 return error( 5687 ID.Loc, 5688 "element " + Twine(i) + 5689 " of struct initializer doesn't match struct element type"); 5690 5691 V = ConstantStruct::get( 5692 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5693 } else 5694 return error(ID.Loc, "constant expression type mismatch"); 5695 return false; 5696 } 5697 llvm_unreachable("Invalid ValID"); 5698 } 5699 5700 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5701 C = nullptr; 5702 ValID ID; 5703 auto Loc = Lex.getLoc(); 5704 if (parseValID(ID, /*PFS=*/nullptr)) 5705 return true; 5706 switch (ID.Kind) { 5707 case ValID::t_APSInt: 5708 case ValID::t_APFloat: 5709 case ValID::t_Undef: 5710 case ValID::t_Constant: 5711 case ValID::t_ConstantStruct: 5712 case ValID::t_PackedConstantStruct: { 5713 Value *V; 5714 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5715 return true; 5716 assert(isa<Constant>(V) && "Expected a constant value"); 5717 C = cast<Constant>(V); 5718 return false; 5719 } 5720 case ValID::t_Null: 5721 C = Constant::getNullValue(Ty); 5722 return false; 5723 default: 5724 return error(Loc, "expected a constant value"); 5725 } 5726 } 5727 5728 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5729 V = nullptr; 5730 ValID ID; 5731 return parseValID(ID, PFS) || 5732 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5733 } 5734 5735 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5736 Type *Ty = nullptr; 5737 return parseType(Ty) || parseValue(Ty, V, PFS); 5738 } 5739 5740 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5741 PerFunctionState &PFS) { 5742 Value *V; 5743 Loc = Lex.getLoc(); 5744 if (parseTypeAndValue(V, PFS)) 5745 return true; 5746 if (!isa<BasicBlock>(V)) 5747 return error(Loc, "expected a basic block"); 5748 BB = cast<BasicBlock>(V); 5749 return false; 5750 } 5751 5752 /// FunctionHeader 5753 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5754 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5755 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5756 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5757 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5758 // parse the linkage. 5759 LocTy LinkageLoc = Lex.getLoc(); 5760 unsigned Linkage; 5761 unsigned Visibility; 5762 unsigned DLLStorageClass; 5763 bool DSOLocal; 5764 AttrBuilder RetAttrs; 5765 unsigned CC; 5766 bool HasLinkage; 5767 Type *RetType = nullptr; 5768 LocTy RetTypeLoc = Lex.getLoc(); 5769 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5770 DSOLocal) || 5771 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5772 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5773 return true; 5774 5775 // Verify that the linkage is ok. 5776 switch ((GlobalValue::LinkageTypes)Linkage) { 5777 case GlobalValue::ExternalLinkage: 5778 break; // always ok. 5779 case GlobalValue::ExternalWeakLinkage: 5780 if (IsDefine) 5781 return error(LinkageLoc, "invalid linkage for function definition"); 5782 break; 5783 case GlobalValue::PrivateLinkage: 5784 case GlobalValue::InternalLinkage: 5785 case GlobalValue::AvailableExternallyLinkage: 5786 case GlobalValue::LinkOnceAnyLinkage: 5787 case GlobalValue::LinkOnceODRLinkage: 5788 case GlobalValue::WeakAnyLinkage: 5789 case GlobalValue::WeakODRLinkage: 5790 if (!IsDefine) 5791 return error(LinkageLoc, "invalid linkage for function declaration"); 5792 break; 5793 case GlobalValue::AppendingLinkage: 5794 case GlobalValue::CommonLinkage: 5795 return error(LinkageLoc, "invalid function linkage type"); 5796 } 5797 5798 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5799 return error(LinkageLoc, 5800 "symbol with local linkage must have default visibility"); 5801 5802 if (!FunctionType::isValidReturnType(RetType)) 5803 return error(RetTypeLoc, "invalid function return type"); 5804 5805 LocTy NameLoc = Lex.getLoc(); 5806 5807 std::string FunctionName; 5808 if (Lex.getKind() == lltok::GlobalVar) { 5809 FunctionName = Lex.getStrVal(); 5810 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5811 unsigned NameID = Lex.getUIntVal(); 5812 5813 if (NameID != NumberedVals.size()) 5814 return tokError("function expected to be numbered '%" + 5815 Twine(NumberedVals.size()) + "'"); 5816 } else { 5817 return tokError("expected function name"); 5818 } 5819 5820 Lex.Lex(); 5821 5822 if (Lex.getKind() != lltok::lparen) 5823 return tokError("expected '(' in function argument list"); 5824 5825 SmallVector<ArgInfo, 8> ArgList; 5826 bool IsVarArg; 5827 AttrBuilder FuncAttrs; 5828 std::vector<unsigned> FwdRefAttrGrps; 5829 LocTy BuiltinLoc; 5830 std::string Section; 5831 std::string Partition; 5832 MaybeAlign Alignment; 5833 std::string GC; 5834 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5835 unsigned AddrSpace = 0; 5836 Constant *Prefix = nullptr; 5837 Constant *Prologue = nullptr; 5838 Constant *PersonalityFn = nullptr; 5839 Comdat *C; 5840 5841 if (parseArgumentList(ArgList, IsVarArg) || 5842 parseOptionalUnnamedAddr(UnnamedAddr) || 5843 parseOptionalProgramAddrSpace(AddrSpace) || 5844 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5845 BuiltinLoc) || 5846 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5847 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5848 parseOptionalComdat(FunctionName, C) || 5849 parseOptionalAlignment(Alignment) || 5850 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5851 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5852 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5853 (EatIfPresent(lltok::kw_personality) && 5854 parseGlobalTypeAndValue(PersonalityFn))) 5855 return true; 5856 5857 if (FuncAttrs.contains(Attribute::Builtin)) 5858 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5859 5860 // If the alignment was parsed as an attribute, move to the alignment field. 5861 if (FuncAttrs.hasAlignmentAttr()) { 5862 Alignment = FuncAttrs.getAlignment(); 5863 FuncAttrs.removeAttribute(Attribute::Alignment); 5864 } 5865 5866 // Okay, if we got here, the function is syntactically valid. Convert types 5867 // and do semantic checks. 5868 std::vector<Type*> ParamTypeList; 5869 SmallVector<AttributeSet, 8> Attrs; 5870 5871 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5872 ParamTypeList.push_back(ArgList[i].Ty); 5873 Attrs.push_back(ArgList[i].Attrs); 5874 } 5875 5876 AttributeList PAL = 5877 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5878 AttributeSet::get(Context, RetAttrs), Attrs); 5879 5880 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5881 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5882 5883 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5884 PointerType *PFT = PointerType::get(FT, AddrSpace); 5885 5886 Fn = nullptr; 5887 if (!FunctionName.empty()) { 5888 // If this was a definition of a forward reference, remove the definition 5889 // from the forward reference table and fill in the forward ref. 5890 auto FRVI = ForwardRefVals.find(FunctionName); 5891 if (FRVI != ForwardRefVals.end()) { 5892 Fn = M->getFunction(FunctionName); 5893 if (!Fn) 5894 return error(FRVI->second.second, "invalid forward reference to " 5895 "function as global value!"); 5896 if (Fn->getType() != PFT) 5897 return error(FRVI->second.second, 5898 "invalid forward reference to " 5899 "function '" + 5900 FunctionName + 5901 "' with wrong type: " 5902 "expected '" + 5903 getTypeString(PFT) + "' but was '" + 5904 getTypeString(Fn->getType()) + "'"); 5905 ForwardRefVals.erase(FRVI); 5906 } else if ((Fn = M->getFunction(FunctionName))) { 5907 // Reject redefinitions. 5908 return error(NameLoc, 5909 "invalid redefinition of function '" + FunctionName + "'"); 5910 } else if (M->getNamedValue(FunctionName)) { 5911 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5912 } 5913 5914 } else { 5915 // If this is a definition of a forward referenced function, make sure the 5916 // types agree. 5917 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5918 if (I != ForwardRefValIDs.end()) { 5919 Fn = cast<Function>(I->second.first); 5920 if (Fn->getType() != PFT) 5921 return error(NameLoc, "type of definition and forward reference of '@" + 5922 Twine(NumberedVals.size()) + 5923 "' disagree: " 5924 "expected '" + 5925 getTypeString(PFT) + "' but was '" + 5926 getTypeString(Fn->getType()) + "'"); 5927 ForwardRefValIDs.erase(I); 5928 } 5929 } 5930 5931 if (!Fn) 5932 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5933 FunctionName, M); 5934 else // Move the forward-reference to the correct spot in the module. 5935 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5936 5937 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5938 5939 if (FunctionName.empty()) 5940 NumberedVals.push_back(Fn); 5941 5942 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5943 maybeSetDSOLocal(DSOLocal, *Fn); 5944 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5945 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5946 Fn->setCallingConv(CC); 5947 Fn->setAttributes(PAL); 5948 Fn->setUnnamedAddr(UnnamedAddr); 5949 Fn->setAlignment(MaybeAlign(Alignment)); 5950 Fn->setSection(Section); 5951 Fn->setPartition(Partition); 5952 Fn->setComdat(C); 5953 Fn->setPersonalityFn(PersonalityFn); 5954 if (!GC.empty()) Fn->setGC(GC); 5955 Fn->setPrefixData(Prefix); 5956 Fn->setPrologueData(Prologue); 5957 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5958 5959 // Add all of the arguments we parsed to the function. 5960 Function::arg_iterator ArgIt = Fn->arg_begin(); 5961 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5962 // If the argument has a name, insert it into the argument symbol table. 5963 if (ArgList[i].Name.empty()) continue; 5964 5965 // Set the name, if it conflicted, it will be auto-renamed. 5966 ArgIt->setName(ArgList[i].Name); 5967 5968 if (ArgIt->getName() != ArgList[i].Name) 5969 return error(ArgList[i].Loc, 5970 "redefinition of argument '%" + ArgList[i].Name + "'"); 5971 } 5972 5973 if (IsDefine) 5974 return false; 5975 5976 // Check the declaration has no block address forward references. 5977 ValID ID; 5978 if (FunctionName.empty()) { 5979 ID.Kind = ValID::t_GlobalID; 5980 ID.UIntVal = NumberedVals.size() - 1; 5981 } else { 5982 ID.Kind = ValID::t_GlobalName; 5983 ID.StrVal = FunctionName; 5984 } 5985 auto Blocks = ForwardRefBlockAddresses.find(ID); 5986 if (Blocks != ForwardRefBlockAddresses.end()) 5987 return error(Blocks->first.Loc, 5988 "cannot take blockaddress inside a declaration"); 5989 return false; 5990 } 5991 5992 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5993 ValID ID; 5994 if (FunctionNumber == -1) { 5995 ID.Kind = ValID::t_GlobalName; 5996 ID.StrVal = std::string(F.getName()); 5997 } else { 5998 ID.Kind = ValID::t_GlobalID; 5999 ID.UIntVal = FunctionNumber; 6000 } 6001 6002 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 6003 if (Blocks == P.ForwardRefBlockAddresses.end()) 6004 return false; 6005 6006 for (const auto &I : Blocks->second) { 6007 const ValID &BBID = I.first; 6008 GlobalValue *GV = I.second; 6009 6010 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6011 "Expected local id or name"); 6012 BasicBlock *BB; 6013 if (BBID.Kind == ValID::t_LocalName) 6014 BB = getBB(BBID.StrVal, BBID.Loc); 6015 else 6016 BB = getBB(BBID.UIntVal, BBID.Loc); 6017 if (!BB) 6018 return P.error(BBID.Loc, "referenced value is not a basic block"); 6019 6020 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 6021 GV->eraseFromParent(); 6022 } 6023 6024 P.ForwardRefBlockAddresses.erase(Blocks); 6025 return false; 6026 } 6027 6028 /// parseFunctionBody 6029 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6030 bool LLParser::parseFunctionBody(Function &Fn) { 6031 if (Lex.getKind() != lltok::lbrace) 6032 return tokError("expected '{' in function body"); 6033 Lex.Lex(); // eat the {. 6034 6035 int FunctionNumber = -1; 6036 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6037 6038 PerFunctionState PFS(*this, Fn, FunctionNumber); 6039 6040 // Resolve block addresses and allow basic blocks to be forward-declared 6041 // within this function. 6042 if (PFS.resolveForwardRefBlockAddresses()) 6043 return true; 6044 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 6045 6046 // We need at least one basic block. 6047 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6048 return tokError("function body requires at least one basic block"); 6049 6050 while (Lex.getKind() != lltok::rbrace && 6051 Lex.getKind() != lltok::kw_uselistorder) 6052 if (parseBasicBlock(PFS)) 6053 return true; 6054 6055 while (Lex.getKind() != lltok::rbrace) 6056 if (parseUseListOrder(&PFS)) 6057 return true; 6058 6059 // Eat the }. 6060 Lex.Lex(); 6061 6062 // Verify function is ok. 6063 return PFS.finishFunction(); 6064 } 6065 6066 /// parseBasicBlock 6067 /// ::= (LabelStr|LabelID)? Instruction* 6068 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6069 // If this basic block starts out with a name, remember it. 6070 std::string Name; 6071 int NameID = -1; 6072 LocTy NameLoc = Lex.getLoc(); 6073 if (Lex.getKind() == lltok::LabelStr) { 6074 Name = Lex.getStrVal(); 6075 Lex.Lex(); 6076 } else if (Lex.getKind() == lltok::LabelID) { 6077 NameID = Lex.getUIntVal(); 6078 Lex.Lex(); 6079 } 6080 6081 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6082 if (!BB) 6083 return true; 6084 6085 std::string NameStr; 6086 6087 // parse the instructions in this block until we get a terminator. 6088 Instruction *Inst; 6089 do { 6090 // This instruction may have three possibilities for a name: a) none 6091 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6092 LocTy NameLoc = Lex.getLoc(); 6093 int NameID = -1; 6094 NameStr = ""; 6095 6096 if (Lex.getKind() == lltok::LocalVarID) { 6097 NameID = Lex.getUIntVal(); 6098 Lex.Lex(); 6099 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6100 return true; 6101 } else if (Lex.getKind() == lltok::LocalVar) { 6102 NameStr = Lex.getStrVal(); 6103 Lex.Lex(); 6104 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6105 return true; 6106 } 6107 6108 switch (parseInstruction(Inst, BB, PFS)) { 6109 default: 6110 llvm_unreachable("Unknown parseInstruction result!"); 6111 case InstError: return true; 6112 case InstNormal: 6113 BB->getInstList().push_back(Inst); 6114 6115 // With a normal result, we check to see if the instruction is followed by 6116 // a comma and metadata. 6117 if (EatIfPresent(lltok::comma)) 6118 if (parseInstructionMetadata(*Inst)) 6119 return true; 6120 break; 6121 case InstExtraComma: 6122 BB->getInstList().push_back(Inst); 6123 6124 // If the instruction parser ate an extra comma at the end of it, it 6125 // *must* be followed by metadata. 6126 if (parseInstructionMetadata(*Inst)) 6127 return true; 6128 break; 6129 } 6130 6131 // Set the name on the instruction. 6132 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6133 return true; 6134 } while (!Inst->isTerminator()); 6135 6136 return false; 6137 } 6138 6139 //===----------------------------------------------------------------------===// 6140 // Instruction Parsing. 6141 //===----------------------------------------------------------------------===// 6142 6143 /// parseInstruction - parse one of the many different instructions. 6144 /// 6145 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6146 PerFunctionState &PFS) { 6147 lltok::Kind Token = Lex.getKind(); 6148 if (Token == lltok::Eof) 6149 return tokError("found end of file when expecting more instructions"); 6150 LocTy Loc = Lex.getLoc(); 6151 unsigned KeywordVal = Lex.getUIntVal(); 6152 Lex.Lex(); // Eat the keyword. 6153 6154 switch (Token) { 6155 default: 6156 return error(Loc, "expected instruction opcode"); 6157 // Terminator Instructions. 6158 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6159 case lltok::kw_ret: 6160 return parseRet(Inst, BB, PFS); 6161 case lltok::kw_br: 6162 return parseBr(Inst, PFS); 6163 case lltok::kw_switch: 6164 return parseSwitch(Inst, PFS); 6165 case lltok::kw_indirectbr: 6166 return parseIndirectBr(Inst, PFS); 6167 case lltok::kw_invoke: 6168 return parseInvoke(Inst, PFS); 6169 case lltok::kw_resume: 6170 return parseResume(Inst, PFS); 6171 case lltok::kw_cleanupret: 6172 return parseCleanupRet(Inst, PFS); 6173 case lltok::kw_catchret: 6174 return parseCatchRet(Inst, PFS); 6175 case lltok::kw_catchswitch: 6176 return parseCatchSwitch(Inst, PFS); 6177 case lltok::kw_catchpad: 6178 return parseCatchPad(Inst, PFS); 6179 case lltok::kw_cleanuppad: 6180 return parseCleanupPad(Inst, PFS); 6181 case lltok::kw_callbr: 6182 return parseCallBr(Inst, PFS); 6183 // Unary Operators. 6184 case lltok::kw_fneg: { 6185 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6186 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6187 if (Res != 0) 6188 return Res; 6189 if (FMF.any()) 6190 Inst->setFastMathFlags(FMF); 6191 return false; 6192 } 6193 // Binary Operators. 6194 case lltok::kw_add: 6195 case lltok::kw_sub: 6196 case lltok::kw_mul: 6197 case lltok::kw_shl: { 6198 bool NUW = EatIfPresent(lltok::kw_nuw); 6199 bool NSW = EatIfPresent(lltok::kw_nsw); 6200 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6201 6202 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6203 return true; 6204 6205 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6206 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6207 return false; 6208 } 6209 case lltok::kw_fadd: 6210 case lltok::kw_fsub: 6211 case lltok::kw_fmul: 6212 case lltok::kw_fdiv: 6213 case lltok::kw_frem: { 6214 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6215 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6216 if (Res != 0) 6217 return Res; 6218 if (FMF.any()) 6219 Inst->setFastMathFlags(FMF); 6220 return 0; 6221 } 6222 6223 case lltok::kw_sdiv: 6224 case lltok::kw_udiv: 6225 case lltok::kw_lshr: 6226 case lltok::kw_ashr: { 6227 bool Exact = EatIfPresent(lltok::kw_exact); 6228 6229 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6230 return true; 6231 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6232 return false; 6233 } 6234 6235 case lltok::kw_urem: 6236 case lltok::kw_srem: 6237 return parseArithmetic(Inst, PFS, KeywordVal, 6238 /*IsFP*/ false); 6239 case lltok::kw_and: 6240 case lltok::kw_or: 6241 case lltok::kw_xor: 6242 return parseLogical(Inst, PFS, KeywordVal); 6243 case lltok::kw_icmp: 6244 return parseCompare(Inst, PFS, KeywordVal); 6245 case lltok::kw_fcmp: { 6246 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6247 int Res = parseCompare(Inst, PFS, KeywordVal); 6248 if (Res != 0) 6249 return Res; 6250 if (FMF.any()) 6251 Inst->setFastMathFlags(FMF); 6252 return 0; 6253 } 6254 6255 // Casts. 6256 case lltok::kw_trunc: 6257 case lltok::kw_zext: 6258 case lltok::kw_sext: 6259 case lltok::kw_fptrunc: 6260 case lltok::kw_fpext: 6261 case lltok::kw_bitcast: 6262 case lltok::kw_addrspacecast: 6263 case lltok::kw_uitofp: 6264 case lltok::kw_sitofp: 6265 case lltok::kw_fptoui: 6266 case lltok::kw_fptosi: 6267 case lltok::kw_inttoptr: 6268 case lltok::kw_ptrtoint: 6269 return parseCast(Inst, PFS, KeywordVal); 6270 // Other. 6271 case lltok::kw_select: { 6272 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6273 int Res = parseSelect(Inst, PFS); 6274 if (Res != 0) 6275 return Res; 6276 if (FMF.any()) { 6277 if (!isa<FPMathOperator>(Inst)) 6278 return error(Loc, "fast-math-flags specified for select without " 6279 "floating-point scalar or vector return type"); 6280 Inst->setFastMathFlags(FMF); 6281 } 6282 return 0; 6283 } 6284 case lltok::kw_va_arg: 6285 return parseVAArg(Inst, PFS); 6286 case lltok::kw_extractelement: 6287 return parseExtractElement(Inst, PFS); 6288 case lltok::kw_insertelement: 6289 return parseInsertElement(Inst, PFS); 6290 case lltok::kw_shufflevector: 6291 return parseShuffleVector(Inst, PFS); 6292 case lltok::kw_phi: { 6293 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6294 int Res = parsePHI(Inst, PFS); 6295 if (Res != 0) 6296 return Res; 6297 if (FMF.any()) { 6298 if (!isa<FPMathOperator>(Inst)) 6299 return error(Loc, "fast-math-flags specified for phi without " 6300 "floating-point scalar or vector return type"); 6301 Inst->setFastMathFlags(FMF); 6302 } 6303 return 0; 6304 } 6305 case lltok::kw_landingpad: 6306 return parseLandingPad(Inst, PFS); 6307 case lltok::kw_freeze: 6308 return parseFreeze(Inst, PFS); 6309 // Call. 6310 case lltok::kw_call: 6311 return parseCall(Inst, PFS, CallInst::TCK_None); 6312 case lltok::kw_tail: 6313 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6314 case lltok::kw_musttail: 6315 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6316 case lltok::kw_notail: 6317 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6318 // Memory. 6319 case lltok::kw_alloca: 6320 return parseAlloc(Inst, PFS); 6321 case lltok::kw_load: 6322 return parseLoad(Inst, PFS); 6323 case lltok::kw_store: 6324 return parseStore(Inst, PFS); 6325 case lltok::kw_cmpxchg: 6326 return parseCmpXchg(Inst, PFS); 6327 case lltok::kw_atomicrmw: 6328 return parseAtomicRMW(Inst, PFS); 6329 case lltok::kw_fence: 6330 return parseFence(Inst, PFS); 6331 case lltok::kw_getelementptr: 6332 return parseGetElementPtr(Inst, PFS); 6333 case lltok::kw_extractvalue: 6334 return parseExtractValue(Inst, PFS); 6335 case lltok::kw_insertvalue: 6336 return parseInsertValue(Inst, PFS); 6337 } 6338 } 6339 6340 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6341 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6342 if (Opc == Instruction::FCmp) { 6343 switch (Lex.getKind()) { 6344 default: 6345 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6346 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6347 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6348 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6349 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6350 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6351 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6352 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6353 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6354 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6355 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6356 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6357 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6358 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6359 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6360 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6361 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6362 } 6363 } else { 6364 switch (Lex.getKind()) { 6365 default: 6366 return tokError("expected icmp predicate (e.g. 'eq')"); 6367 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6368 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6369 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6370 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6371 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6372 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6373 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6374 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6375 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6376 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6377 } 6378 } 6379 Lex.Lex(); 6380 return false; 6381 } 6382 6383 //===----------------------------------------------------------------------===// 6384 // Terminator Instructions. 6385 //===----------------------------------------------------------------------===// 6386 6387 /// parseRet - parse a return instruction. 6388 /// ::= 'ret' void (',' !dbg, !1)* 6389 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6390 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6391 PerFunctionState &PFS) { 6392 SMLoc TypeLoc = Lex.getLoc(); 6393 Type *Ty = nullptr; 6394 if (parseType(Ty, true /*void allowed*/)) 6395 return true; 6396 6397 Type *ResType = PFS.getFunction().getReturnType(); 6398 6399 if (Ty->isVoidTy()) { 6400 if (!ResType->isVoidTy()) 6401 return error(TypeLoc, "value doesn't match function result type '" + 6402 getTypeString(ResType) + "'"); 6403 6404 Inst = ReturnInst::Create(Context); 6405 return false; 6406 } 6407 6408 Value *RV; 6409 if (parseValue(Ty, RV, PFS)) 6410 return true; 6411 6412 if (ResType != RV->getType()) 6413 return error(TypeLoc, "value doesn't match function result type '" + 6414 getTypeString(ResType) + "'"); 6415 6416 Inst = ReturnInst::Create(Context, RV); 6417 return false; 6418 } 6419 6420 /// parseBr 6421 /// ::= 'br' TypeAndValue 6422 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6423 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6424 LocTy Loc, Loc2; 6425 Value *Op0; 6426 BasicBlock *Op1, *Op2; 6427 if (parseTypeAndValue(Op0, Loc, PFS)) 6428 return true; 6429 6430 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6431 Inst = BranchInst::Create(BB); 6432 return false; 6433 } 6434 6435 if (Op0->getType() != Type::getInt1Ty(Context)) 6436 return error(Loc, "branch condition must have 'i1' type"); 6437 6438 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6439 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6440 parseToken(lltok::comma, "expected ',' after true destination") || 6441 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6442 return true; 6443 6444 Inst = BranchInst::Create(Op1, Op2, Op0); 6445 return false; 6446 } 6447 6448 /// parseSwitch 6449 /// Instruction 6450 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6451 /// JumpTable 6452 /// ::= (TypeAndValue ',' TypeAndValue)* 6453 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6454 LocTy CondLoc, BBLoc; 6455 Value *Cond; 6456 BasicBlock *DefaultBB; 6457 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6458 parseToken(lltok::comma, "expected ',' after switch condition") || 6459 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6460 parseToken(lltok::lsquare, "expected '[' with switch table")) 6461 return true; 6462 6463 if (!Cond->getType()->isIntegerTy()) 6464 return error(CondLoc, "switch condition must have integer type"); 6465 6466 // parse the jump table pairs. 6467 SmallPtrSet<Value*, 32> SeenCases; 6468 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6469 while (Lex.getKind() != lltok::rsquare) { 6470 Value *Constant; 6471 BasicBlock *DestBB; 6472 6473 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6474 parseToken(lltok::comma, "expected ',' after case value") || 6475 parseTypeAndBasicBlock(DestBB, PFS)) 6476 return true; 6477 6478 if (!SeenCases.insert(Constant).second) 6479 return error(CondLoc, "duplicate case value in switch"); 6480 if (!isa<ConstantInt>(Constant)) 6481 return error(CondLoc, "case value is not a constant integer"); 6482 6483 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6484 } 6485 6486 Lex.Lex(); // Eat the ']'. 6487 6488 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6489 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6490 SI->addCase(Table[i].first, Table[i].second); 6491 Inst = SI; 6492 return false; 6493 } 6494 6495 /// parseIndirectBr 6496 /// Instruction 6497 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6498 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6499 LocTy AddrLoc; 6500 Value *Address; 6501 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6502 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6503 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6504 return true; 6505 6506 if (!Address->getType()->isPointerTy()) 6507 return error(AddrLoc, "indirectbr address must have pointer type"); 6508 6509 // parse the destination list. 6510 SmallVector<BasicBlock*, 16> DestList; 6511 6512 if (Lex.getKind() != lltok::rsquare) { 6513 BasicBlock *DestBB; 6514 if (parseTypeAndBasicBlock(DestBB, PFS)) 6515 return true; 6516 DestList.push_back(DestBB); 6517 6518 while (EatIfPresent(lltok::comma)) { 6519 if (parseTypeAndBasicBlock(DestBB, PFS)) 6520 return true; 6521 DestList.push_back(DestBB); 6522 } 6523 } 6524 6525 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6526 return true; 6527 6528 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6529 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6530 IBI->addDestination(DestList[i]); 6531 Inst = IBI; 6532 return false; 6533 } 6534 6535 /// parseInvoke 6536 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6537 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6538 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6539 LocTy CallLoc = Lex.getLoc(); 6540 AttrBuilder RetAttrs, FnAttrs; 6541 std::vector<unsigned> FwdRefAttrGrps; 6542 LocTy NoBuiltinLoc; 6543 unsigned CC; 6544 unsigned InvokeAddrSpace; 6545 Type *RetType = nullptr; 6546 LocTy RetTypeLoc; 6547 ValID CalleeID; 6548 SmallVector<ParamInfo, 16> ArgList; 6549 SmallVector<OperandBundleDef, 2> BundleList; 6550 6551 BasicBlock *NormalBB, *UnwindBB; 6552 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6553 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6554 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6555 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6556 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6557 NoBuiltinLoc) || 6558 parseOptionalOperandBundles(BundleList, PFS) || 6559 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6560 parseTypeAndBasicBlock(NormalBB, PFS) || 6561 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6562 parseTypeAndBasicBlock(UnwindBB, PFS)) 6563 return true; 6564 6565 // If RetType is a non-function pointer type, then this is the short syntax 6566 // for the call, which means that RetType is just the return type. Infer the 6567 // rest of the function argument types from the arguments that are present. 6568 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6569 if (!Ty) { 6570 // Pull out the types of all of the arguments... 6571 std::vector<Type*> ParamTypes; 6572 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6573 ParamTypes.push_back(ArgList[i].V->getType()); 6574 6575 if (!FunctionType::isValidReturnType(RetType)) 6576 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6577 6578 Ty = FunctionType::get(RetType, ParamTypes, false); 6579 } 6580 6581 CalleeID.FTy = Ty; 6582 6583 // Look up the callee. 6584 Value *Callee; 6585 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6586 Callee, &PFS, /*IsCall=*/true)) 6587 return true; 6588 6589 // Set up the Attribute for the function. 6590 SmallVector<Value *, 8> Args; 6591 SmallVector<AttributeSet, 8> ArgAttrs; 6592 6593 // Loop through FunctionType's arguments and ensure they are specified 6594 // correctly. Also, gather any parameter attributes. 6595 FunctionType::param_iterator I = Ty->param_begin(); 6596 FunctionType::param_iterator E = Ty->param_end(); 6597 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6598 Type *ExpectedTy = nullptr; 6599 if (I != E) { 6600 ExpectedTy = *I++; 6601 } else if (!Ty->isVarArg()) { 6602 return error(ArgList[i].Loc, "too many arguments specified"); 6603 } 6604 6605 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6606 return error(ArgList[i].Loc, "argument is not of expected type '" + 6607 getTypeString(ExpectedTy) + "'"); 6608 Args.push_back(ArgList[i].V); 6609 ArgAttrs.push_back(ArgList[i].Attrs); 6610 } 6611 6612 if (I != E) 6613 return error(CallLoc, "not enough parameters specified for call"); 6614 6615 if (FnAttrs.hasAlignmentAttr()) 6616 return error(CallLoc, "invoke instructions may not have an alignment"); 6617 6618 // Finish off the Attribute and check them 6619 AttributeList PAL = 6620 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6621 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6622 6623 InvokeInst *II = 6624 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6625 II->setCallingConv(CC); 6626 II->setAttributes(PAL); 6627 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6628 Inst = II; 6629 return false; 6630 } 6631 6632 /// parseResume 6633 /// ::= 'resume' TypeAndValue 6634 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6635 Value *Exn; LocTy ExnLoc; 6636 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6637 return true; 6638 6639 ResumeInst *RI = ResumeInst::Create(Exn); 6640 Inst = RI; 6641 return false; 6642 } 6643 6644 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6645 PerFunctionState &PFS) { 6646 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6647 return true; 6648 6649 while (Lex.getKind() != lltok::rsquare) { 6650 // If this isn't the first argument, we need a comma. 6651 if (!Args.empty() && 6652 parseToken(lltok::comma, "expected ',' in argument list")) 6653 return true; 6654 6655 // parse the argument. 6656 LocTy ArgLoc; 6657 Type *ArgTy = nullptr; 6658 if (parseType(ArgTy, ArgLoc)) 6659 return true; 6660 6661 Value *V; 6662 if (ArgTy->isMetadataTy()) { 6663 if (parseMetadataAsValue(V, PFS)) 6664 return true; 6665 } else { 6666 if (parseValue(ArgTy, V, PFS)) 6667 return true; 6668 } 6669 Args.push_back(V); 6670 } 6671 6672 Lex.Lex(); // Lex the ']'. 6673 return false; 6674 } 6675 6676 /// parseCleanupRet 6677 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6678 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6679 Value *CleanupPad = nullptr; 6680 6681 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6682 return true; 6683 6684 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6685 return true; 6686 6687 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6688 return true; 6689 6690 BasicBlock *UnwindBB = nullptr; 6691 if (Lex.getKind() == lltok::kw_to) { 6692 Lex.Lex(); 6693 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6694 return true; 6695 } else { 6696 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6697 return true; 6698 } 6699 } 6700 6701 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6702 return false; 6703 } 6704 6705 /// parseCatchRet 6706 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6707 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6708 Value *CatchPad = nullptr; 6709 6710 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6711 return true; 6712 6713 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6714 return true; 6715 6716 BasicBlock *BB; 6717 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6718 parseTypeAndBasicBlock(BB, PFS)) 6719 return true; 6720 6721 Inst = CatchReturnInst::Create(CatchPad, BB); 6722 return false; 6723 } 6724 6725 /// parseCatchSwitch 6726 /// ::= 'catchswitch' within Parent 6727 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6728 Value *ParentPad; 6729 6730 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6731 return true; 6732 6733 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6734 Lex.getKind() != lltok::LocalVarID) 6735 return tokError("expected scope value for catchswitch"); 6736 6737 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6738 return true; 6739 6740 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6741 return true; 6742 6743 SmallVector<BasicBlock *, 32> Table; 6744 do { 6745 BasicBlock *DestBB; 6746 if (parseTypeAndBasicBlock(DestBB, PFS)) 6747 return true; 6748 Table.push_back(DestBB); 6749 } while (EatIfPresent(lltok::comma)); 6750 6751 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6752 return true; 6753 6754 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6755 return true; 6756 6757 BasicBlock *UnwindBB = nullptr; 6758 if (EatIfPresent(lltok::kw_to)) { 6759 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6760 return true; 6761 } else { 6762 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6763 return true; 6764 } 6765 6766 auto *CatchSwitch = 6767 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6768 for (BasicBlock *DestBB : Table) 6769 CatchSwitch->addHandler(DestBB); 6770 Inst = CatchSwitch; 6771 return false; 6772 } 6773 6774 /// parseCatchPad 6775 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6776 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6777 Value *CatchSwitch = nullptr; 6778 6779 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6780 return true; 6781 6782 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6783 return tokError("expected scope value for catchpad"); 6784 6785 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6786 return true; 6787 6788 SmallVector<Value *, 8> Args; 6789 if (parseExceptionArgs(Args, PFS)) 6790 return true; 6791 6792 Inst = CatchPadInst::Create(CatchSwitch, Args); 6793 return false; 6794 } 6795 6796 /// parseCleanupPad 6797 /// ::= 'cleanuppad' within Parent ParamList 6798 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6799 Value *ParentPad = nullptr; 6800 6801 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6802 return true; 6803 6804 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6805 Lex.getKind() != lltok::LocalVarID) 6806 return tokError("expected scope value for cleanuppad"); 6807 6808 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6809 return true; 6810 6811 SmallVector<Value *, 8> Args; 6812 if (parseExceptionArgs(Args, PFS)) 6813 return true; 6814 6815 Inst = CleanupPadInst::Create(ParentPad, Args); 6816 return false; 6817 } 6818 6819 //===----------------------------------------------------------------------===// 6820 // Unary Operators. 6821 //===----------------------------------------------------------------------===// 6822 6823 /// parseUnaryOp 6824 /// ::= UnaryOp TypeAndValue ',' Value 6825 /// 6826 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6827 /// operand is allowed. 6828 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6829 unsigned Opc, bool IsFP) { 6830 LocTy Loc; Value *LHS; 6831 if (parseTypeAndValue(LHS, Loc, PFS)) 6832 return true; 6833 6834 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6835 : LHS->getType()->isIntOrIntVectorTy(); 6836 6837 if (!Valid) 6838 return error(Loc, "invalid operand type for instruction"); 6839 6840 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6841 return false; 6842 } 6843 6844 /// parseCallBr 6845 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6846 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6847 /// '[' LabelList ']' 6848 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6849 LocTy CallLoc = Lex.getLoc(); 6850 AttrBuilder RetAttrs, FnAttrs; 6851 std::vector<unsigned> FwdRefAttrGrps; 6852 LocTy NoBuiltinLoc; 6853 unsigned CC; 6854 Type *RetType = nullptr; 6855 LocTy RetTypeLoc; 6856 ValID CalleeID; 6857 SmallVector<ParamInfo, 16> ArgList; 6858 SmallVector<OperandBundleDef, 2> BundleList; 6859 6860 BasicBlock *DefaultDest; 6861 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6862 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6863 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6864 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6865 NoBuiltinLoc) || 6866 parseOptionalOperandBundles(BundleList, PFS) || 6867 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6868 parseTypeAndBasicBlock(DefaultDest, PFS) || 6869 parseToken(lltok::lsquare, "expected '[' in callbr")) 6870 return true; 6871 6872 // parse the destination list. 6873 SmallVector<BasicBlock *, 16> IndirectDests; 6874 6875 if (Lex.getKind() != lltok::rsquare) { 6876 BasicBlock *DestBB; 6877 if (parseTypeAndBasicBlock(DestBB, PFS)) 6878 return true; 6879 IndirectDests.push_back(DestBB); 6880 6881 while (EatIfPresent(lltok::comma)) { 6882 if (parseTypeAndBasicBlock(DestBB, PFS)) 6883 return true; 6884 IndirectDests.push_back(DestBB); 6885 } 6886 } 6887 6888 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6889 return true; 6890 6891 // If RetType is a non-function pointer type, then this is the short syntax 6892 // for the call, which means that RetType is just the return type. Infer the 6893 // rest of the function argument types from the arguments that are present. 6894 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6895 if (!Ty) { 6896 // Pull out the types of all of the arguments... 6897 std::vector<Type *> ParamTypes; 6898 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6899 ParamTypes.push_back(ArgList[i].V->getType()); 6900 6901 if (!FunctionType::isValidReturnType(RetType)) 6902 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6903 6904 Ty = FunctionType::get(RetType, ParamTypes, false); 6905 } 6906 6907 CalleeID.FTy = Ty; 6908 6909 // Look up the callee. 6910 Value *Callee; 6911 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6912 /*IsCall=*/true)) 6913 return true; 6914 6915 // Set up the Attribute for the function. 6916 SmallVector<Value *, 8> Args; 6917 SmallVector<AttributeSet, 8> ArgAttrs; 6918 6919 // Loop through FunctionType's arguments and ensure they are specified 6920 // correctly. Also, gather any parameter attributes. 6921 FunctionType::param_iterator I = Ty->param_begin(); 6922 FunctionType::param_iterator E = Ty->param_end(); 6923 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6924 Type *ExpectedTy = nullptr; 6925 if (I != E) { 6926 ExpectedTy = *I++; 6927 } else if (!Ty->isVarArg()) { 6928 return error(ArgList[i].Loc, "too many arguments specified"); 6929 } 6930 6931 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6932 return error(ArgList[i].Loc, "argument is not of expected type '" + 6933 getTypeString(ExpectedTy) + "'"); 6934 Args.push_back(ArgList[i].V); 6935 ArgAttrs.push_back(ArgList[i].Attrs); 6936 } 6937 6938 if (I != E) 6939 return error(CallLoc, "not enough parameters specified for call"); 6940 6941 if (FnAttrs.hasAlignmentAttr()) 6942 return error(CallLoc, "callbr instructions may not have an alignment"); 6943 6944 // Finish off the Attribute and check them 6945 AttributeList PAL = 6946 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6947 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6948 6949 CallBrInst *CBI = 6950 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6951 BundleList); 6952 CBI->setCallingConv(CC); 6953 CBI->setAttributes(PAL); 6954 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6955 Inst = CBI; 6956 return false; 6957 } 6958 6959 //===----------------------------------------------------------------------===// 6960 // Binary Operators. 6961 //===----------------------------------------------------------------------===// 6962 6963 /// parseArithmetic 6964 /// ::= ArithmeticOps TypeAndValue ',' Value 6965 /// 6966 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6967 /// operand is allowed. 6968 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6969 unsigned Opc, bool IsFP) { 6970 LocTy Loc; Value *LHS, *RHS; 6971 if (parseTypeAndValue(LHS, Loc, PFS) || 6972 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6973 parseValue(LHS->getType(), RHS, PFS)) 6974 return true; 6975 6976 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6977 : LHS->getType()->isIntOrIntVectorTy(); 6978 6979 if (!Valid) 6980 return error(Loc, "invalid operand type for instruction"); 6981 6982 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6983 return false; 6984 } 6985 6986 /// parseLogical 6987 /// ::= ArithmeticOps TypeAndValue ',' Value { 6988 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6989 unsigned Opc) { 6990 LocTy Loc; Value *LHS, *RHS; 6991 if (parseTypeAndValue(LHS, Loc, PFS) || 6992 parseToken(lltok::comma, "expected ',' in logical operation") || 6993 parseValue(LHS->getType(), RHS, PFS)) 6994 return true; 6995 6996 if (!LHS->getType()->isIntOrIntVectorTy()) 6997 return error(Loc, 6998 "instruction requires integer or integer vector operands"); 6999 7000 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7001 return false; 7002 } 7003 7004 /// parseCompare 7005 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 7006 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 7007 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 7008 unsigned Opc) { 7009 // parse the integer/fp comparison predicate. 7010 LocTy Loc; 7011 unsigned Pred; 7012 Value *LHS, *RHS; 7013 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7014 parseToken(lltok::comma, "expected ',' after compare value") || 7015 parseValue(LHS->getType(), RHS, PFS)) 7016 return true; 7017 7018 if (Opc == Instruction::FCmp) { 7019 if (!LHS->getType()->isFPOrFPVectorTy()) 7020 return error(Loc, "fcmp requires floating point operands"); 7021 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7022 } else { 7023 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7024 if (!LHS->getType()->isIntOrIntVectorTy() && 7025 !LHS->getType()->isPtrOrPtrVectorTy()) 7026 return error(Loc, "icmp requires integer operands"); 7027 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7028 } 7029 return false; 7030 } 7031 7032 //===----------------------------------------------------------------------===// 7033 // Other Instructions. 7034 //===----------------------------------------------------------------------===// 7035 7036 /// parseCast 7037 /// ::= CastOpc TypeAndValue 'to' Type 7038 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7039 unsigned Opc) { 7040 LocTy Loc; 7041 Value *Op; 7042 Type *DestTy = nullptr; 7043 if (parseTypeAndValue(Op, Loc, PFS) || 7044 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7045 parseType(DestTy)) 7046 return true; 7047 7048 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7049 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7050 return error(Loc, "invalid cast opcode for cast from '" + 7051 getTypeString(Op->getType()) + "' to '" + 7052 getTypeString(DestTy) + "'"); 7053 } 7054 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7055 return false; 7056 } 7057 7058 /// parseSelect 7059 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7060 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7061 LocTy Loc; 7062 Value *Op0, *Op1, *Op2; 7063 if (parseTypeAndValue(Op0, Loc, PFS) || 7064 parseToken(lltok::comma, "expected ',' after select condition") || 7065 parseTypeAndValue(Op1, PFS) || 7066 parseToken(lltok::comma, "expected ',' after select value") || 7067 parseTypeAndValue(Op2, PFS)) 7068 return true; 7069 7070 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7071 return error(Loc, Reason); 7072 7073 Inst = SelectInst::Create(Op0, Op1, Op2); 7074 return false; 7075 } 7076 7077 /// parseVAArg 7078 /// ::= 'va_arg' TypeAndValue ',' Type 7079 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7080 Value *Op; 7081 Type *EltTy = nullptr; 7082 LocTy TypeLoc; 7083 if (parseTypeAndValue(Op, PFS) || 7084 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7085 parseType(EltTy, TypeLoc)) 7086 return true; 7087 7088 if (!EltTy->isFirstClassType()) 7089 return error(TypeLoc, "va_arg requires operand with first class type"); 7090 7091 Inst = new VAArgInst(Op, EltTy); 7092 return false; 7093 } 7094 7095 /// parseExtractElement 7096 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7097 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7098 LocTy Loc; 7099 Value *Op0, *Op1; 7100 if (parseTypeAndValue(Op0, Loc, PFS) || 7101 parseToken(lltok::comma, "expected ',' after extract value") || 7102 parseTypeAndValue(Op1, PFS)) 7103 return true; 7104 7105 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7106 return error(Loc, "invalid extractelement operands"); 7107 7108 Inst = ExtractElementInst::Create(Op0, Op1); 7109 return false; 7110 } 7111 7112 /// parseInsertElement 7113 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7114 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7115 LocTy Loc; 7116 Value *Op0, *Op1, *Op2; 7117 if (parseTypeAndValue(Op0, Loc, PFS) || 7118 parseToken(lltok::comma, "expected ',' after insertelement value") || 7119 parseTypeAndValue(Op1, PFS) || 7120 parseToken(lltok::comma, "expected ',' after insertelement value") || 7121 parseTypeAndValue(Op2, PFS)) 7122 return true; 7123 7124 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7125 return error(Loc, "invalid insertelement operands"); 7126 7127 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7128 return false; 7129 } 7130 7131 /// parseShuffleVector 7132 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7133 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7134 LocTy Loc; 7135 Value *Op0, *Op1, *Op2; 7136 if (parseTypeAndValue(Op0, Loc, PFS) || 7137 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7138 parseTypeAndValue(Op1, PFS) || 7139 parseToken(lltok::comma, "expected ',' after shuffle value") || 7140 parseTypeAndValue(Op2, PFS)) 7141 return true; 7142 7143 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7144 return error(Loc, "invalid shufflevector operands"); 7145 7146 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7147 return false; 7148 } 7149 7150 /// parsePHI 7151 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7152 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7153 Type *Ty = nullptr; LocTy TypeLoc; 7154 Value *Op0, *Op1; 7155 7156 if (parseType(Ty, TypeLoc) || 7157 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7158 parseValue(Ty, Op0, PFS) || 7159 parseToken(lltok::comma, "expected ',' after insertelement value") || 7160 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7161 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7162 return true; 7163 7164 bool AteExtraComma = false; 7165 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7166 7167 while (true) { 7168 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7169 7170 if (!EatIfPresent(lltok::comma)) 7171 break; 7172 7173 if (Lex.getKind() == lltok::MetadataVar) { 7174 AteExtraComma = true; 7175 break; 7176 } 7177 7178 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7179 parseValue(Ty, Op0, PFS) || 7180 parseToken(lltok::comma, "expected ',' after insertelement value") || 7181 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7182 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7183 return true; 7184 } 7185 7186 if (!Ty->isFirstClassType()) 7187 return error(TypeLoc, "phi node must have first class type"); 7188 7189 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7190 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7191 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7192 Inst = PN; 7193 return AteExtraComma ? InstExtraComma : InstNormal; 7194 } 7195 7196 /// parseLandingPad 7197 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7198 /// Clause 7199 /// ::= 'catch' TypeAndValue 7200 /// ::= 'filter' 7201 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7202 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7203 Type *Ty = nullptr; LocTy TyLoc; 7204 7205 if (parseType(Ty, TyLoc)) 7206 return true; 7207 7208 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7209 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7210 7211 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7212 LandingPadInst::ClauseType CT; 7213 if (EatIfPresent(lltok::kw_catch)) 7214 CT = LandingPadInst::Catch; 7215 else if (EatIfPresent(lltok::kw_filter)) 7216 CT = LandingPadInst::Filter; 7217 else 7218 return tokError("expected 'catch' or 'filter' clause type"); 7219 7220 Value *V; 7221 LocTy VLoc; 7222 if (parseTypeAndValue(V, VLoc, PFS)) 7223 return true; 7224 7225 // A 'catch' type expects a non-array constant. A filter clause expects an 7226 // array constant. 7227 if (CT == LandingPadInst::Catch) { 7228 if (isa<ArrayType>(V->getType())) 7229 error(VLoc, "'catch' clause has an invalid type"); 7230 } else { 7231 if (!isa<ArrayType>(V->getType())) 7232 error(VLoc, "'filter' clause has an invalid type"); 7233 } 7234 7235 Constant *CV = dyn_cast<Constant>(V); 7236 if (!CV) 7237 return error(VLoc, "clause argument must be a constant"); 7238 LP->addClause(CV); 7239 } 7240 7241 Inst = LP.release(); 7242 return false; 7243 } 7244 7245 /// parseFreeze 7246 /// ::= 'freeze' Type Value 7247 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7248 LocTy Loc; 7249 Value *Op; 7250 if (parseTypeAndValue(Op, Loc, PFS)) 7251 return true; 7252 7253 Inst = new FreezeInst(Op); 7254 return false; 7255 } 7256 7257 /// parseCall 7258 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7259 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7260 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7261 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7262 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7263 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7264 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7265 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7266 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7267 CallInst::TailCallKind TCK) { 7268 AttrBuilder RetAttrs, FnAttrs; 7269 std::vector<unsigned> FwdRefAttrGrps; 7270 LocTy BuiltinLoc; 7271 unsigned CallAddrSpace; 7272 unsigned CC; 7273 Type *RetType = nullptr; 7274 LocTy RetTypeLoc; 7275 ValID CalleeID; 7276 SmallVector<ParamInfo, 16> ArgList; 7277 SmallVector<OperandBundleDef, 2> BundleList; 7278 LocTy CallLoc = Lex.getLoc(); 7279 7280 if (TCK != CallInst::TCK_None && 7281 parseToken(lltok::kw_call, 7282 "expected 'tail call', 'musttail call', or 'notail call'")) 7283 return true; 7284 7285 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7286 7287 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7288 parseOptionalProgramAddrSpace(CallAddrSpace) || 7289 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7290 parseValID(CalleeID) || 7291 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7292 PFS.getFunction().isVarArg()) || 7293 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7294 parseOptionalOperandBundles(BundleList, PFS)) 7295 return true; 7296 7297 // If RetType is a non-function pointer type, then this is the short syntax 7298 // for the call, which means that RetType is just the return type. Infer the 7299 // rest of the function argument types from the arguments that are present. 7300 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7301 if (!Ty) { 7302 // Pull out the types of all of the arguments... 7303 std::vector<Type*> ParamTypes; 7304 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7305 ParamTypes.push_back(ArgList[i].V->getType()); 7306 7307 if (!FunctionType::isValidReturnType(RetType)) 7308 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7309 7310 Ty = FunctionType::get(RetType, ParamTypes, false); 7311 } 7312 7313 CalleeID.FTy = Ty; 7314 7315 // Look up the callee. 7316 Value *Callee; 7317 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7318 &PFS, /*IsCall=*/true)) 7319 return true; 7320 7321 // Set up the Attribute for the function. 7322 SmallVector<AttributeSet, 8> Attrs; 7323 7324 SmallVector<Value*, 8> Args; 7325 7326 // Loop through FunctionType's arguments and ensure they are specified 7327 // correctly. Also, gather any parameter attributes. 7328 FunctionType::param_iterator I = Ty->param_begin(); 7329 FunctionType::param_iterator E = Ty->param_end(); 7330 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7331 Type *ExpectedTy = nullptr; 7332 if (I != E) { 7333 ExpectedTy = *I++; 7334 } else if (!Ty->isVarArg()) { 7335 return error(ArgList[i].Loc, "too many arguments specified"); 7336 } 7337 7338 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7339 return error(ArgList[i].Loc, "argument is not of expected type '" + 7340 getTypeString(ExpectedTy) + "'"); 7341 Args.push_back(ArgList[i].V); 7342 Attrs.push_back(ArgList[i].Attrs); 7343 } 7344 7345 if (I != E) 7346 return error(CallLoc, "not enough parameters specified for call"); 7347 7348 if (FnAttrs.hasAlignmentAttr()) 7349 return error(CallLoc, "call instructions may not have an alignment"); 7350 7351 // Finish off the Attribute and check them 7352 AttributeList PAL = 7353 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7354 AttributeSet::get(Context, RetAttrs), Attrs); 7355 7356 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7357 CI->setTailCallKind(TCK); 7358 CI->setCallingConv(CC); 7359 if (FMF.any()) { 7360 if (!isa<FPMathOperator>(CI)) { 7361 CI->deleteValue(); 7362 return error(CallLoc, "fast-math-flags specified for call without " 7363 "floating-point scalar or vector return type"); 7364 } 7365 CI->setFastMathFlags(FMF); 7366 } 7367 CI->setAttributes(PAL); 7368 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7369 Inst = CI; 7370 return false; 7371 } 7372 7373 //===----------------------------------------------------------------------===// 7374 // Memory Instructions. 7375 //===----------------------------------------------------------------------===// 7376 7377 /// parseAlloc 7378 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7379 /// (',' 'align' i32)? (',', 'addrspace(n))? 7380 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7381 Value *Size = nullptr; 7382 LocTy SizeLoc, TyLoc, ASLoc; 7383 MaybeAlign Alignment; 7384 unsigned AddrSpace = 0; 7385 Type *Ty = nullptr; 7386 7387 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7388 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7389 7390 if (parseType(Ty, TyLoc)) 7391 return true; 7392 7393 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7394 return error(TyLoc, "invalid type for alloca"); 7395 7396 bool AteExtraComma = false; 7397 if (EatIfPresent(lltok::comma)) { 7398 if (Lex.getKind() == lltok::kw_align) { 7399 if (parseOptionalAlignment(Alignment)) 7400 return true; 7401 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7402 return true; 7403 } else if (Lex.getKind() == lltok::kw_addrspace) { 7404 ASLoc = Lex.getLoc(); 7405 if (parseOptionalAddrSpace(AddrSpace)) 7406 return true; 7407 } else if (Lex.getKind() == lltok::MetadataVar) { 7408 AteExtraComma = true; 7409 } else { 7410 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7411 return true; 7412 if (EatIfPresent(lltok::comma)) { 7413 if (Lex.getKind() == lltok::kw_align) { 7414 if (parseOptionalAlignment(Alignment)) 7415 return true; 7416 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7417 return true; 7418 } else if (Lex.getKind() == lltok::kw_addrspace) { 7419 ASLoc = Lex.getLoc(); 7420 if (parseOptionalAddrSpace(AddrSpace)) 7421 return true; 7422 } else if (Lex.getKind() == lltok::MetadataVar) { 7423 AteExtraComma = true; 7424 } 7425 } 7426 } 7427 } 7428 7429 if (Size && !Size->getType()->isIntegerTy()) 7430 return error(SizeLoc, "element count must have integer type"); 7431 7432 SmallPtrSet<Type *, 4> Visited; 7433 if (!Alignment && !Ty->isSized(&Visited)) 7434 return error(TyLoc, "Cannot allocate unsized type"); 7435 if (!Alignment) 7436 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7437 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7438 AI->setUsedWithInAlloca(IsInAlloca); 7439 AI->setSwiftError(IsSwiftError); 7440 Inst = AI; 7441 return AteExtraComma ? InstExtraComma : InstNormal; 7442 } 7443 7444 /// parseLoad 7445 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7446 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7447 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7448 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7449 Value *Val; LocTy Loc; 7450 MaybeAlign Alignment; 7451 bool AteExtraComma = false; 7452 bool isAtomic = false; 7453 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7454 SyncScope::ID SSID = SyncScope::System; 7455 7456 if (Lex.getKind() == lltok::kw_atomic) { 7457 isAtomic = true; 7458 Lex.Lex(); 7459 } 7460 7461 bool isVolatile = false; 7462 if (Lex.getKind() == lltok::kw_volatile) { 7463 isVolatile = true; 7464 Lex.Lex(); 7465 } 7466 7467 Type *Ty; 7468 LocTy ExplicitTypeLoc = Lex.getLoc(); 7469 if (parseType(Ty) || 7470 parseToken(lltok::comma, "expected comma after load's type") || 7471 parseTypeAndValue(Val, Loc, PFS) || 7472 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7473 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7474 return true; 7475 7476 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7477 return error(Loc, "load operand must be a pointer to a first class type"); 7478 if (isAtomic && !Alignment) 7479 return error(Loc, "atomic load must have explicit non-zero alignment"); 7480 if (Ordering == AtomicOrdering::Release || 7481 Ordering == AtomicOrdering::AcquireRelease) 7482 return error(Loc, "atomic load cannot use Release ordering"); 7483 7484 if (Ty != cast<PointerType>(Val->getType())->getElementType()) { 7485 return error( 7486 ExplicitTypeLoc, 7487 typeComparisonErrorMessage( 7488 "explicit pointee type doesn't match operand's pointee type", Ty, 7489 cast<PointerType>(Val->getType())->getElementType())); 7490 } 7491 SmallPtrSet<Type *, 4> Visited; 7492 if (!Alignment && !Ty->isSized(&Visited)) 7493 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7494 if (!Alignment) 7495 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7496 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7497 return AteExtraComma ? InstExtraComma : InstNormal; 7498 } 7499 7500 /// parseStore 7501 7502 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7503 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7504 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7505 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7506 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7507 MaybeAlign Alignment; 7508 bool AteExtraComma = false; 7509 bool isAtomic = false; 7510 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7511 SyncScope::ID SSID = SyncScope::System; 7512 7513 if (Lex.getKind() == lltok::kw_atomic) { 7514 isAtomic = true; 7515 Lex.Lex(); 7516 } 7517 7518 bool isVolatile = false; 7519 if (Lex.getKind() == lltok::kw_volatile) { 7520 isVolatile = true; 7521 Lex.Lex(); 7522 } 7523 7524 if (parseTypeAndValue(Val, Loc, PFS) || 7525 parseToken(lltok::comma, "expected ',' after store operand") || 7526 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7527 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7528 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7529 return true; 7530 7531 if (!Ptr->getType()->isPointerTy()) 7532 return error(PtrLoc, "store operand must be a pointer"); 7533 if (!Val->getType()->isFirstClassType()) 7534 return error(Loc, "store operand must be a first class value"); 7535 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7536 return error(Loc, "stored value and pointer type do not match"); 7537 if (isAtomic && !Alignment) 7538 return error(Loc, "atomic store must have explicit non-zero alignment"); 7539 if (Ordering == AtomicOrdering::Acquire || 7540 Ordering == AtomicOrdering::AcquireRelease) 7541 return error(Loc, "atomic store cannot use Acquire ordering"); 7542 SmallPtrSet<Type *, 4> Visited; 7543 if (!Alignment && !Val->getType()->isSized(&Visited)) 7544 return error(Loc, "storing unsized types is not allowed"); 7545 if (!Alignment) 7546 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7547 7548 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7549 return AteExtraComma ? InstExtraComma : InstNormal; 7550 } 7551 7552 /// parseCmpXchg 7553 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7554 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7555 /// 'Align'? 7556 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7557 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7558 bool AteExtraComma = false; 7559 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7560 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7561 SyncScope::ID SSID = SyncScope::System; 7562 bool isVolatile = false; 7563 bool isWeak = false; 7564 MaybeAlign Alignment; 7565 7566 if (EatIfPresent(lltok::kw_weak)) 7567 isWeak = true; 7568 7569 if (EatIfPresent(lltok::kw_volatile)) 7570 isVolatile = true; 7571 7572 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7573 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7574 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7575 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7576 parseTypeAndValue(New, NewLoc, PFS) || 7577 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7578 parseOrdering(FailureOrdering) || 7579 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7580 return true; 7581 7582 if (SuccessOrdering == AtomicOrdering::Unordered || 7583 FailureOrdering == AtomicOrdering::Unordered) 7584 return tokError("cmpxchg cannot be unordered"); 7585 if (FailureOrdering == AtomicOrdering::Release || 7586 FailureOrdering == AtomicOrdering::AcquireRelease) 7587 return tokError( 7588 "cmpxchg failure ordering cannot include release semantics"); 7589 if (!Ptr->getType()->isPointerTy()) 7590 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7591 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7592 return error(CmpLoc, "compare value and pointer type do not match"); 7593 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7594 return error(NewLoc, "new value and pointer type do not match"); 7595 if (!New->getType()->isFirstClassType()) 7596 return error(NewLoc, "cmpxchg operand must be a first class value"); 7597 7598 const Align DefaultAlignment( 7599 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7600 Cmp->getType())); 7601 7602 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7603 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7604 FailureOrdering, SSID); 7605 CXI->setVolatile(isVolatile); 7606 CXI->setWeak(isWeak); 7607 7608 Inst = CXI; 7609 return AteExtraComma ? InstExtraComma : InstNormal; 7610 } 7611 7612 /// parseAtomicRMW 7613 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7614 /// 'singlethread'? AtomicOrdering 7615 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7616 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7617 bool AteExtraComma = false; 7618 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7619 SyncScope::ID SSID = SyncScope::System; 7620 bool isVolatile = false; 7621 bool IsFP = false; 7622 AtomicRMWInst::BinOp Operation; 7623 MaybeAlign Alignment; 7624 7625 if (EatIfPresent(lltok::kw_volatile)) 7626 isVolatile = true; 7627 7628 switch (Lex.getKind()) { 7629 default: 7630 return tokError("expected binary operation in atomicrmw"); 7631 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7632 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7633 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7634 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7635 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7636 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7637 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7638 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7639 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7640 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7641 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7642 case lltok::kw_fadd: 7643 Operation = AtomicRMWInst::FAdd; 7644 IsFP = true; 7645 break; 7646 case lltok::kw_fsub: 7647 Operation = AtomicRMWInst::FSub; 7648 IsFP = true; 7649 break; 7650 } 7651 Lex.Lex(); // Eat the operation. 7652 7653 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7654 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7655 parseTypeAndValue(Val, ValLoc, PFS) || 7656 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7657 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7658 return true; 7659 7660 if (Ordering == AtomicOrdering::Unordered) 7661 return tokError("atomicrmw cannot be unordered"); 7662 if (!Ptr->getType()->isPointerTy()) 7663 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7664 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7665 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7666 7667 if (Operation == AtomicRMWInst::Xchg) { 7668 if (!Val->getType()->isIntegerTy() && 7669 !Val->getType()->isFloatingPointTy()) { 7670 return error(ValLoc, 7671 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7672 " operand must be an integer or floating point type"); 7673 } 7674 } else if (IsFP) { 7675 if (!Val->getType()->isFloatingPointTy()) { 7676 return error(ValLoc, "atomicrmw " + 7677 AtomicRMWInst::getOperationName(Operation) + 7678 " operand must be a floating point type"); 7679 } 7680 } else { 7681 if (!Val->getType()->isIntegerTy()) { 7682 return error(ValLoc, "atomicrmw " + 7683 AtomicRMWInst::getOperationName(Operation) + 7684 " operand must be an integer"); 7685 } 7686 } 7687 7688 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7689 if (Size < 8 || (Size & (Size - 1))) 7690 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7691 " integer"); 7692 const Align DefaultAlignment( 7693 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7694 Val->getType())); 7695 AtomicRMWInst *RMWI = 7696 new AtomicRMWInst(Operation, Ptr, Val, 7697 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7698 RMWI->setVolatile(isVolatile); 7699 Inst = RMWI; 7700 return AteExtraComma ? InstExtraComma : InstNormal; 7701 } 7702 7703 /// parseFence 7704 /// ::= 'fence' 'singlethread'? AtomicOrdering 7705 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7706 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7707 SyncScope::ID SSID = SyncScope::System; 7708 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7709 return true; 7710 7711 if (Ordering == AtomicOrdering::Unordered) 7712 return tokError("fence cannot be unordered"); 7713 if (Ordering == AtomicOrdering::Monotonic) 7714 return tokError("fence cannot be monotonic"); 7715 7716 Inst = new FenceInst(Context, Ordering, SSID); 7717 return InstNormal; 7718 } 7719 7720 /// parseGetElementPtr 7721 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7722 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7723 Value *Ptr = nullptr; 7724 Value *Val = nullptr; 7725 LocTy Loc, EltLoc; 7726 7727 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7728 7729 Type *Ty = nullptr; 7730 LocTy ExplicitTypeLoc = Lex.getLoc(); 7731 if (parseType(Ty) || 7732 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7733 parseTypeAndValue(Ptr, Loc, PFS)) 7734 return true; 7735 7736 Type *BaseType = Ptr->getType(); 7737 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7738 if (!BasePointerType) 7739 return error(Loc, "base of getelementptr must be a pointer"); 7740 7741 if (Ty != BasePointerType->getElementType()) { 7742 return error( 7743 ExplicitTypeLoc, 7744 typeComparisonErrorMessage( 7745 "explicit pointee type doesn't match operand's pointee type", Ty, 7746 BasePointerType->getElementType())); 7747 } 7748 7749 SmallVector<Value*, 16> Indices; 7750 bool AteExtraComma = false; 7751 // GEP returns a vector of pointers if at least one of parameters is a vector. 7752 // All vector parameters should have the same vector width. 7753 ElementCount GEPWidth = BaseType->isVectorTy() 7754 ? cast<VectorType>(BaseType)->getElementCount() 7755 : ElementCount::getFixed(0); 7756 7757 while (EatIfPresent(lltok::comma)) { 7758 if (Lex.getKind() == lltok::MetadataVar) { 7759 AteExtraComma = true; 7760 break; 7761 } 7762 if (parseTypeAndValue(Val, EltLoc, PFS)) 7763 return true; 7764 if (!Val->getType()->isIntOrIntVectorTy()) 7765 return error(EltLoc, "getelementptr index must be an integer"); 7766 7767 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7768 ElementCount ValNumEl = ValVTy->getElementCount(); 7769 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7770 return error( 7771 EltLoc, 7772 "getelementptr vector index has a wrong number of elements"); 7773 GEPWidth = ValNumEl; 7774 } 7775 Indices.push_back(Val); 7776 } 7777 7778 SmallPtrSet<Type*, 4> Visited; 7779 if (!Indices.empty() && !Ty->isSized(&Visited)) 7780 return error(Loc, "base element of getelementptr must be sized"); 7781 7782 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7783 return error(Loc, "invalid getelementptr indices"); 7784 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7785 if (InBounds) 7786 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7787 return AteExtraComma ? InstExtraComma : InstNormal; 7788 } 7789 7790 /// parseExtractValue 7791 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7792 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7793 Value *Val; LocTy Loc; 7794 SmallVector<unsigned, 4> Indices; 7795 bool AteExtraComma; 7796 if (parseTypeAndValue(Val, Loc, PFS) || 7797 parseIndexList(Indices, AteExtraComma)) 7798 return true; 7799 7800 if (!Val->getType()->isAggregateType()) 7801 return error(Loc, "extractvalue operand must be aggregate type"); 7802 7803 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7804 return error(Loc, "invalid indices for extractvalue"); 7805 Inst = ExtractValueInst::Create(Val, Indices); 7806 return AteExtraComma ? InstExtraComma : InstNormal; 7807 } 7808 7809 /// parseInsertValue 7810 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7811 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7812 Value *Val0, *Val1; LocTy Loc0, Loc1; 7813 SmallVector<unsigned, 4> Indices; 7814 bool AteExtraComma; 7815 if (parseTypeAndValue(Val0, Loc0, PFS) || 7816 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7817 parseTypeAndValue(Val1, Loc1, PFS) || 7818 parseIndexList(Indices, AteExtraComma)) 7819 return true; 7820 7821 if (!Val0->getType()->isAggregateType()) 7822 return error(Loc0, "insertvalue operand must be aggregate type"); 7823 7824 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7825 if (!IndexedType) 7826 return error(Loc0, "invalid indices for insertvalue"); 7827 if (IndexedType != Val1->getType()) 7828 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7829 getTypeString(Val1->getType()) + "' instead of '" + 7830 getTypeString(IndexedType) + "'"); 7831 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7832 return AteExtraComma ? InstExtraComma : InstNormal; 7833 } 7834 7835 //===----------------------------------------------------------------------===// 7836 // Embedded metadata. 7837 //===----------------------------------------------------------------------===// 7838 7839 /// parseMDNodeVector 7840 /// ::= { Element (',' Element)* } 7841 /// Element 7842 /// ::= 'null' | TypeAndValue 7843 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7844 if (parseToken(lltok::lbrace, "expected '{' here")) 7845 return true; 7846 7847 // Check for an empty list. 7848 if (EatIfPresent(lltok::rbrace)) 7849 return false; 7850 7851 do { 7852 // Null is a special case since it is typeless. 7853 if (EatIfPresent(lltok::kw_null)) { 7854 Elts.push_back(nullptr); 7855 continue; 7856 } 7857 7858 Metadata *MD; 7859 if (parseMetadata(MD, nullptr)) 7860 return true; 7861 Elts.push_back(MD); 7862 } while (EatIfPresent(lltok::comma)); 7863 7864 return parseToken(lltok::rbrace, "expected end of metadata node"); 7865 } 7866 7867 //===----------------------------------------------------------------------===// 7868 // Use-list order directives. 7869 //===----------------------------------------------------------------------===// 7870 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7871 SMLoc Loc) { 7872 if (V->use_empty()) 7873 return error(Loc, "value has no uses"); 7874 7875 unsigned NumUses = 0; 7876 SmallDenseMap<const Use *, unsigned, 16> Order; 7877 for (const Use &U : V->uses()) { 7878 if (++NumUses > Indexes.size()) 7879 break; 7880 Order[&U] = Indexes[NumUses - 1]; 7881 } 7882 if (NumUses < 2) 7883 return error(Loc, "value only has one use"); 7884 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7885 return error(Loc, 7886 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7887 7888 V->sortUseList([&](const Use &L, const Use &R) { 7889 return Order.lookup(&L) < Order.lookup(&R); 7890 }); 7891 return false; 7892 } 7893 7894 /// parseUseListOrderIndexes 7895 /// ::= '{' uint32 (',' uint32)+ '}' 7896 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7897 SMLoc Loc = Lex.getLoc(); 7898 if (parseToken(lltok::lbrace, "expected '{' here")) 7899 return true; 7900 if (Lex.getKind() == lltok::rbrace) 7901 return Lex.Error("expected non-empty list of uselistorder indexes"); 7902 7903 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7904 // indexes should be distinct numbers in the range [0, size-1], and should 7905 // not be in order. 7906 unsigned Offset = 0; 7907 unsigned Max = 0; 7908 bool IsOrdered = true; 7909 assert(Indexes.empty() && "Expected empty order vector"); 7910 do { 7911 unsigned Index; 7912 if (parseUInt32(Index)) 7913 return true; 7914 7915 // Update consistency checks. 7916 Offset += Index - Indexes.size(); 7917 Max = std::max(Max, Index); 7918 IsOrdered &= Index == Indexes.size(); 7919 7920 Indexes.push_back(Index); 7921 } while (EatIfPresent(lltok::comma)); 7922 7923 if (parseToken(lltok::rbrace, "expected '}' here")) 7924 return true; 7925 7926 if (Indexes.size() < 2) 7927 return error(Loc, "expected >= 2 uselistorder indexes"); 7928 if (Offset != 0 || Max >= Indexes.size()) 7929 return error(Loc, 7930 "expected distinct uselistorder indexes in range [0, size)"); 7931 if (IsOrdered) 7932 return error(Loc, "expected uselistorder indexes to change the order"); 7933 7934 return false; 7935 } 7936 7937 /// parseUseListOrder 7938 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7939 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7940 SMLoc Loc = Lex.getLoc(); 7941 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7942 return true; 7943 7944 Value *V; 7945 SmallVector<unsigned, 16> Indexes; 7946 if (parseTypeAndValue(V, PFS) || 7947 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7948 parseUseListOrderIndexes(Indexes)) 7949 return true; 7950 7951 return sortUseListOrder(V, Indexes, Loc); 7952 } 7953 7954 /// parseUseListOrderBB 7955 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7956 bool LLParser::parseUseListOrderBB() { 7957 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7958 SMLoc Loc = Lex.getLoc(); 7959 Lex.Lex(); 7960 7961 ValID Fn, Label; 7962 SmallVector<unsigned, 16> Indexes; 7963 if (parseValID(Fn) || 7964 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7965 parseValID(Label) || 7966 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7967 parseUseListOrderIndexes(Indexes)) 7968 return true; 7969 7970 // Check the function. 7971 GlobalValue *GV; 7972 if (Fn.Kind == ValID::t_GlobalName) 7973 GV = M->getNamedValue(Fn.StrVal); 7974 else if (Fn.Kind == ValID::t_GlobalID) 7975 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7976 else 7977 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7978 if (!GV) 7979 return error(Fn.Loc, 7980 "invalid function forward reference in uselistorder_bb"); 7981 auto *F = dyn_cast<Function>(GV); 7982 if (!F) 7983 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7984 if (F->isDeclaration()) 7985 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7986 7987 // Check the basic block. 7988 if (Label.Kind == ValID::t_LocalID) 7989 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7990 if (Label.Kind != ValID::t_LocalName) 7991 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7992 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7993 if (!V) 7994 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7995 if (!isa<BasicBlock>(V)) 7996 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7997 7998 return sortUseListOrder(V, Indexes, Loc); 7999 } 8000 8001 /// ModuleEntry 8002 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 8003 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 8004 bool LLParser::parseModuleEntry(unsigned ID) { 8005 assert(Lex.getKind() == lltok::kw_module); 8006 Lex.Lex(); 8007 8008 std::string Path; 8009 if (parseToken(lltok::colon, "expected ':' here") || 8010 parseToken(lltok::lparen, "expected '(' here") || 8011 parseToken(lltok::kw_path, "expected 'path' here") || 8012 parseToken(lltok::colon, "expected ':' here") || 8013 parseStringConstant(Path) || 8014 parseToken(lltok::comma, "expected ',' here") || 8015 parseToken(lltok::kw_hash, "expected 'hash' here") || 8016 parseToken(lltok::colon, "expected ':' here") || 8017 parseToken(lltok::lparen, "expected '(' here")) 8018 return true; 8019 8020 ModuleHash Hash; 8021 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8022 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8023 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8024 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8025 parseUInt32(Hash[4])) 8026 return true; 8027 8028 if (parseToken(lltok::rparen, "expected ')' here") || 8029 parseToken(lltok::rparen, "expected ')' here")) 8030 return true; 8031 8032 auto ModuleEntry = Index->addModule(Path, ID, Hash); 8033 ModuleIdMap[ID] = ModuleEntry->first(); 8034 8035 return false; 8036 } 8037 8038 /// TypeIdEntry 8039 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8040 bool LLParser::parseTypeIdEntry(unsigned ID) { 8041 assert(Lex.getKind() == lltok::kw_typeid); 8042 Lex.Lex(); 8043 8044 std::string Name; 8045 if (parseToken(lltok::colon, "expected ':' here") || 8046 parseToken(lltok::lparen, "expected '(' here") || 8047 parseToken(lltok::kw_name, "expected 'name' here") || 8048 parseToken(lltok::colon, "expected ':' here") || 8049 parseStringConstant(Name)) 8050 return true; 8051 8052 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8053 if (parseToken(lltok::comma, "expected ',' here") || 8054 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8055 return true; 8056 8057 // Check if this ID was forward referenced, and if so, update the 8058 // corresponding GUIDs. 8059 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8060 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8061 for (auto TIDRef : FwdRefTIDs->second) { 8062 assert(!*TIDRef.first && 8063 "Forward referenced type id GUID expected to be 0"); 8064 *TIDRef.first = GlobalValue::getGUID(Name); 8065 } 8066 ForwardRefTypeIds.erase(FwdRefTIDs); 8067 } 8068 8069 return false; 8070 } 8071 8072 /// TypeIdSummary 8073 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8074 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8075 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8076 parseToken(lltok::colon, "expected ':' here") || 8077 parseToken(lltok::lparen, "expected '(' here") || 8078 parseTypeTestResolution(TIS.TTRes)) 8079 return true; 8080 8081 if (EatIfPresent(lltok::comma)) { 8082 // Expect optional wpdResolutions field 8083 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8084 return true; 8085 } 8086 8087 if (parseToken(lltok::rparen, "expected ')' here")) 8088 return true; 8089 8090 return false; 8091 } 8092 8093 static ValueInfo EmptyVI = 8094 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8095 8096 /// TypeIdCompatibleVtableEntry 8097 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8098 /// TypeIdCompatibleVtableInfo 8099 /// ')' 8100 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8101 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8102 Lex.Lex(); 8103 8104 std::string Name; 8105 if (parseToken(lltok::colon, "expected ':' here") || 8106 parseToken(lltok::lparen, "expected '(' here") || 8107 parseToken(lltok::kw_name, "expected 'name' here") || 8108 parseToken(lltok::colon, "expected ':' here") || 8109 parseStringConstant(Name)) 8110 return true; 8111 8112 TypeIdCompatibleVtableInfo &TI = 8113 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8114 if (parseToken(lltok::comma, "expected ',' here") || 8115 parseToken(lltok::kw_summary, "expected 'summary' here") || 8116 parseToken(lltok::colon, "expected ':' here") || 8117 parseToken(lltok::lparen, "expected '(' here")) 8118 return true; 8119 8120 IdToIndexMapType IdToIndexMap; 8121 // parse each call edge 8122 do { 8123 uint64_t Offset; 8124 if (parseToken(lltok::lparen, "expected '(' here") || 8125 parseToken(lltok::kw_offset, "expected 'offset' here") || 8126 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8127 parseToken(lltok::comma, "expected ',' here")) 8128 return true; 8129 8130 LocTy Loc = Lex.getLoc(); 8131 unsigned GVId; 8132 ValueInfo VI; 8133 if (parseGVReference(VI, GVId)) 8134 return true; 8135 8136 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8137 // forward reference. We will save the location of the ValueInfo needing an 8138 // update, but can only do so once the std::vector is finalized. 8139 if (VI == EmptyVI) 8140 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8141 TI.push_back({Offset, VI}); 8142 8143 if (parseToken(lltok::rparen, "expected ')' in call")) 8144 return true; 8145 } while (EatIfPresent(lltok::comma)); 8146 8147 // Now that the TI vector is finalized, it is safe to save the locations 8148 // of any forward GV references that need updating later. 8149 for (auto I : IdToIndexMap) { 8150 auto &Infos = ForwardRefValueInfos[I.first]; 8151 for (auto P : I.second) { 8152 assert(TI[P.first].VTableVI == EmptyVI && 8153 "Forward referenced ValueInfo expected to be empty"); 8154 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8155 } 8156 } 8157 8158 if (parseToken(lltok::rparen, "expected ')' here") || 8159 parseToken(lltok::rparen, "expected ')' here")) 8160 return true; 8161 8162 // Check if this ID was forward referenced, and if so, update the 8163 // corresponding GUIDs. 8164 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8165 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8166 for (auto TIDRef : FwdRefTIDs->second) { 8167 assert(!*TIDRef.first && 8168 "Forward referenced type id GUID expected to be 0"); 8169 *TIDRef.first = GlobalValue::getGUID(Name); 8170 } 8171 ForwardRefTypeIds.erase(FwdRefTIDs); 8172 } 8173 8174 return false; 8175 } 8176 8177 /// TypeTestResolution 8178 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8179 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8180 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8181 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8182 /// [',' 'inlinesBits' ':' UInt64]? ')' 8183 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8184 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8185 parseToken(lltok::colon, "expected ':' here") || 8186 parseToken(lltok::lparen, "expected '(' here") || 8187 parseToken(lltok::kw_kind, "expected 'kind' here") || 8188 parseToken(lltok::colon, "expected ':' here")) 8189 return true; 8190 8191 switch (Lex.getKind()) { 8192 case lltok::kw_unknown: 8193 TTRes.TheKind = TypeTestResolution::Unknown; 8194 break; 8195 case lltok::kw_unsat: 8196 TTRes.TheKind = TypeTestResolution::Unsat; 8197 break; 8198 case lltok::kw_byteArray: 8199 TTRes.TheKind = TypeTestResolution::ByteArray; 8200 break; 8201 case lltok::kw_inline: 8202 TTRes.TheKind = TypeTestResolution::Inline; 8203 break; 8204 case lltok::kw_single: 8205 TTRes.TheKind = TypeTestResolution::Single; 8206 break; 8207 case lltok::kw_allOnes: 8208 TTRes.TheKind = TypeTestResolution::AllOnes; 8209 break; 8210 default: 8211 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8212 } 8213 Lex.Lex(); 8214 8215 if (parseToken(lltok::comma, "expected ',' here") || 8216 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8217 parseToken(lltok::colon, "expected ':' here") || 8218 parseUInt32(TTRes.SizeM1BitWidth)) 8219 return true; 8220 8221 // parse optional fields 8222 while (EatIfPresent(lltok::comma)) { 8223 switch (Lex.getKind()) { 8224 case lltok::kw_alignLog2: 8225 Lex.Lex(); 8226 if (parseToken(lltok::colon, "expected ':'") || 8227 parseUInt64(TTRes.AlignLog2)) 8228 return true; 8229 break; 8230 case lltok::kw_sizeM1: 8231 Lex.Lex(); 8232 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8233 return true; 8234 break; 8235 case lltok::kw_bitMask: { 8236 unsigned Val; 8237 Lex.Lex(); 8238 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8239 return true; 8240 assert(Val <= 0xff); 8241 TTRes.BitMask = (uint8_t)Val; 8242 break; 8243 } 8244 case lltok::kw_inlineBits: 8245 Lex.Lex(); 8246 if (parseToken(lltok::colon, "expected ':'") || 8247 parseUInt64(TTRes.InlineBits)) 8248 return true; 8249 break; 8250 default: 8251 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8252 } 8253 } 8254 8255 if (parseToken(lltok::rparen, "expected ')' here")) 8256 return true; 8257 8258 return false; 8259 } 8260 8261 /// OptionalWpdResolutions 8262 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8263 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8264 bool LLParser::parseOptionalWpdResolutions( 8265 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8266 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8267 parseToken(lltok::colon, "expected ':' here") || 8268 parseToken(lltok::lparen, "expected '(' here")) 8269 return true; 8270 8271 do { 8272 uint64_t Offset; 8273 WholeProgramDevirtResolution WPDRes; 8274 if (parseToken(lltok::lparen, "expected '(' here") || 8275 parseToken(lltok::kw_offset, "expected 'offset' here") || 8276 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8277 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8278 parseToken(lltok::rparen, "expected ')' here")) 8279 return true; 8280 WPDResMap[Offset] = WPDRes; 8281 } while (EatIfPresent(lltok::comma)); 8282 8283 if (parseToken(lltok::rparen, "expected ')' here")) 8284 return true; 8285 8286 return false; 8287 } 8288 8289 /// WpdRes 8290 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8291 /// [',' OptionalResByArg]? ')' 8292 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8293 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8294 /// [',' OptionalResByArg]? ')' 8295 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8296 /// [',' OptionalResByArg]? ')' 8297 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8298 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8299 parseToken(lltok::colon, "expected ':' here") || 8300 parseToken(lltok::lparen, "expected '(' here") || 8301 parseToken(lltok::kw_kind, "expected 'kind' here") || 8302 parseToken(lltok::colon, "expected ':' here")) 8303 return true; 8304 8305 switch (Lex.getKind()) { 8306 case lltok::kw_indir: 8307 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8308 break; 8309 case lltok::kw_singleImpl: 8310 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8311 break; 8312 case lltok::kw_branchFunnel: 8313 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8314 break; 8315 default: 8316 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8317 } 8318 Lex.Lex(); 8319 8320 // parse optional fields 8321 while (EatIfPresent(lltok::comma)) { 8322 switch (Lex.getKind()) { 8323 case lltok::kw_singleImplName: 8324 Lex.Lex(); 8325 if (parseToken(lltok::colon, "expected ':' here") || 8326 parseStringConstant(WPDRes.SingleImplName)) 8327 return true; 8328 break; 8329 case lltok::kw_resByArg: 8330 if (parseOptionalResByArg(WPDRes.ResByArg)) 8331 return true; 8332 break; 8333 default: 8334 return error(Lex.getLoc(), 8335 "expected optional WholeProgramDevirtResolution field"); 8336 } 8337 } 8338 8339 if (parseToken(lltok::rparen, "expected ')' here")) 8340 return true; 8341 8342 return false; 8343 } 8344 8345 /// OptionalResByArg 8346 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8347 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8348 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8349 /// 'virtualConstProp' ) 8350 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8351 /// [',' 'bit' ':' UInt32]? ')' 8352 bool LLParser::parseOptionalResByArg( 8353 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8354 &ResByArg) { 8355 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8356 parseToken(lltok::colon, "expected ':' here") || 8357 parseToken(lltok::lparen, "expected '(' here")) 8358 return true; 8359 8360 do { 8361 std::vector<uint64_t> Args; 8362 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8363 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8364 parseToken(lltok::colon, "expected ':' here") || 8365 parseToken(lltok::lparen, "expected '(' here") || 8366 parseToken(lltok::kw_kind, "expected 'kind' here") || 8367 parseToken(lltok::colon, "expected ':' here")) 8368 return true; 8369 8370 WholeProgramDevirtResolution::ByArg ByArg; 8371 switch (Lex.getKind()) { 8372 case lltok::kw_indir: 8373 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8374 break; 8375 case lltok::kw_uniformRetVal: 8376 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8377 break; 8378 case lltok::kw_uniqueRetVal: 8379 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8380 break; 8381 case lltok::kw_virtualConstProp: 8382 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8383 break; 8384 default: 8385 return error(Lex.getLoc(), 8386 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8387 } 8388 Lex.Lex(); 8389 8390 // parse optional fields 8391 while (EatIfPresent(lltok::comma)) { 8392 switch (Lex.getKind()) { 8393 case lltok::kw_info: 8394 Lex.Lex(); 8395 if (parseToken(lltok::colon, "expected ':' here") || 8396 parseUInt64(ByArg.Info)) 8397 return true; 8398 break; 8399 case lltok::kw_byte: 8400 Lex.Lex(); 8401 if (parseToken(lltok::colon, "expected ':' here") || 8402 parseUInt32(ByArg.Byte)) 8403 return true; 8404 break; 8405 case lltok::kw_bit: 8406 Lex.Lex(); 8407 if (parseToken(lltok::colon, "expected ':' here") || 8408 parseUInt32(ByArg.Bit)) 8409 return true; 8410 break; 8411 default: 8412 return error(Lex.getLoc(), 8413 "expected optional whole program devirt field"); 8414 } 8415 } 8416 8417 if (parseToken(lltok::rparen, "expected ')' here")) 8418 return true; 8419 8420 ResByArg[Args] = ByArg; 8421 } while (EatIfPresent(lltok::comma)); 8422 8423 if (parseToken(lltok::rparen, "expected ')' here")) 8424 return true; 8425 8426 return false; 8427 } 8428 8429 /// OptionalResByArg 8430 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8431 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8432 if (parseToken(lltok::kw_args, "expected 'args' here") || 8433 parseToken(lltok::colon, "expected ':' here") || 8434 parseToken(lltok::lparen, "expected '(' here")) 8435 return true; 8436 8437 do { 8438 uint64_t Val; 8439 if (parseUInt64(Val)) 8440 return true; 8441 Args.push_back(Val); 8442 } while (EatIfPresent(lltok::comma)); 8443 8444 if (parseToken(lltok::rparen, "expected ')' here")) 8445 return true; 8446 8447 return false; 8448 } 8449 8450 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8451 8452 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8453 bool ReadOnly = Fwd->isReadOnly(); 8454 bool WriteOnly = Fwd->isWriteOnly(); 8455 assert(!(ReadOnly && WriteOnly)); 8456 *Fwd = Resolved; 8457 if (ReadOnly) 8458 Fwd->setReadOnly(); 8459 if (WriteOnly) 8460 Fwd->setWriteOnly(); 8461 } 8462 8463 /// Stores the given Name/GUID and associated summary into the Index. 8464 /// Also updates any forward references to the associated entry ID. 8465 void LLParser::addGlobalValueToIndex( 8466 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8467 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8468 // First create the ValueInfo utilizing the Name or GUID. 8469 ValueInfo VI; 8470 if (GUID != 0) { 8471 assert(Name.empty()); 8472 VI = Index->getOrInsertValueInfo(GUID); 8473 } else { 8474 assert(!Name.empty()); 8475 if (M) { 8476 auto *GV = M->getNamedValue(Name); 8477 assert(GV); 8478 VI = Index->getOrInsertValueInfo(GV); 8479 } else { 8480 assert( 8481 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8482 "Need a source_filename to compute GUID for local"); 8483 GUID = GlobalValue::getGUID( 8484 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8485 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8486 } 8487 } 8488 8489 // Resolve forward references from calls/refs 8490 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8491 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8492 for (auto VIRef : FwdRefVIs->second) { 8493 assert(VIRef.first->getRef() == FwdVIRef && 8494 "Forward referenced ValueInfo expected to be empty"); 8495 resolveFwdRef(VIRef.first, VI); 8496 } 8497 ForwardRefValueInfos.erase(FwdRefVIs); 8498 } 8499 8500 // Resolve forward references from aliases 8501 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8502 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8503 for (auto AliaseeRef : FwdRefAliasees->second) { 8504 assert(!AliaseeRef.first->hasAliasee() && 8505 "Forward referencing alias already has aliasee"); 8506 assert(Summary && "Aliasee must be a definition"); 8507 AliaseeRef.first->setAliasee(VI, Summary.get()); 8508 } 8509 ForwardRefAliasees.erase(FwdRefAliasees); 8510 } 8511 8512 // Add the summary if one was provided. 8513 if (Summary) 8514 Index->addGlobalValueSummary(VI, std::move(Summary)); 8515 8516 // Save the associated ValueInfo for use in later references by ID. 8517 if (ID == NumberedValueInfos.size()) 8518 NumberedValueInfos.push_back(VI); 8519 else { 8520 // Handle non-continuous numbers (to make test simplification easier). 8521 if (ID > NumberedValueInfos.size()) 8522 NumberedValueInfos.resize(ID + 1); 8523 NumberedValueInfos[ID] = VI; 8524 } 8525 } 8526 8527 /// parseSummaryIndexFlags 8528 /// ::= 'flags' ':' UInt64 8529 bool LLParser::parseSummaryIndexFlags() { 8530 assert(Lex.getKind() == lltok::kw_flags); 8531 Lex.Lex(); 8532 8533 if (parseToken(lltok::colon, "expected ':' here")) 8534 return true; 8535 uint64_t Flags; 8536 if (parseUInt64(Flags)) 8537 return true; 8538 if (Index) 8539 Index->setFlags(Flags); 8540 return false; 8541 } 8542 8543 /// parseBlockCount 8544 /// ::= 'blockcount' ':' UInt64 8545 bool LLParser::parseBlockCount() { 8546 assert(Lex.getKind() == lltok::kw_blockcount); 8547 Lex.Lex(); 8548 8549 if (parseToken(lltok::colon, "expected ':' here")) 8550 return true; 8551 uint64_t BlockCount; 8552 if (parseUInt64(BlockCount)) 8553 return true; 8554 if (Index) 8555 Index->setBlockCount(BlockCount); 8556 return false; 8557 } 8558 8559 /// parseGVEntry 8560 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8561 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8562 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8563 bool LLParser::parseGVEntry(unsigned ID) { 8564 assert(Lex.getKind() == lltok::kw_gv); 8565 Lex.Lex(); 8566 8567 if (parseToken(lltok::colon, "expected ':' here") || 8568 parseToken(lltok::lparen, "expected '(' here")) 8569 return true; 8570 8571 std::string Name; 8572 GlobalValue::GUID GUID = 0; 8573 switch (Lex.getKind()) { 8574 case lltok::kw_name: 8575 Lex.Lex(); 8576 if (parseToken(lltok::colon, "expected ':' here") || 8577 parseStringConstant(Name)) 8578 return true; 8579 // Can't create GUID/ValueInfo until we have the linkage. 8580 break; 8581 case lltok::kw_guid: 8582 Lex.Lex(); 8583 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8584 return true; 8585 break; 8586 default: 8587 return error(Lex.getLoc(), "expected name or guid tag"); 8588 } 8589 8590 if (!EatIfPresent(lltok::comma)) { 8591 // No summaries. Wrap up. 8592 if (parseToken(lltok::rparen, "expected ')' here")) 8593 return true; 8594 // This was created for a call to an external or indirect target. 8595 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8596 // created for indirect calls with VP. A Name with no GUID came from 8597 // an external definition. We pass ExternalLinkage since that is only 8598 // used when the GUID must be computed from Name, and in that case 8599 // the symbol must have external linkage. 8600 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8601 nullptr); 8602 return false; 8603 } 8604 8605 // Have a list of summaries 8606 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8607 parseToken(lltok::colon, "expected ':' here") || 8608 parseToken(lltok::lparen, "expected '(' here")) 8609 return true; 8610 do { 8611 switch (Lex.getKind()) { 8612 case lltok::kw_function: 8613 if (parseFunctionSummary(Name, GUID, ID)) 8614 return true; 8615 break; 8616 case lltok::kw_variable: 8617 if (parseVariableSummary(Name, GUID, ID)) 8618 return true; 8619 break; 8620 case lltok::kw_alias: 8621 if (parseAliasSummary(Name, GUID, ID)) 8622 return true; 8623 break; 8624 default: 8625 return error(Lex.getLoc(), "expected summary type"); 8626 } 8627 } while (EatIfPresent(lltok::comma)); 8628 8629 if (parseToken(lltok::rparen, "expected ')' here") || 8630 parseToken(lltok::rparen, "expected ')' here")) 8631 return true; 8632 8633 return false; 8634 } 8635 8636 /// FunctionSummary 8637 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8638 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8639 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8640 /// [',' OptionalRefs]? ')' 8641 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8642 unsigned ID) { 8643 assert(Lex.getKind() == lltok::kw_function); 8644 Lex.Lex(); 8645 8646 StringRef ModulePath; 8647 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8648 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8649 /*NotEligibleToImport=*/false, 8650 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8651 unsigned InstCount; 8652 std::vector<FunctionSummary::EdgeTy> Calls; 8653 FunctionSummary::TypeIdInfo TypeIdInfo; 8654 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8655 std::vector<ValueInfo> Refs; 8656 // Default is all-zeros (conservative values). 8657 FunctionSummary::FFlags FFlags = {}; 8658 if (parseToken(lltok::colon, "expected ':' here") || 8659 parseToken(lltok::lparen, "expected '(' here") || 8660 parseModuleReference(ModulePath) || 8661 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8662 parseToken(lltok::comma, "expected ',' here") || 8663 parseToken(lltok::kw_insts, "expected 'insts' here") || 8664 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8665 return true; 8666 8667 // parse optional fields 8668 while (EatIfPresent(lltok::comma)) { 8669 switch (Lex.getKind()) { 8670 case lltok::kw_funcFlags: 8671 if (parseOptionalFFlags(FFlags)) 8672 return true; 8673 break; 8674 case lltok::kw_calls: 8675 if (parseOptionalCalls(Calls)) 8676 return true; 8677 break; 8678 case lltok::kw_typeIdInfo: 8679 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8680 return true; 8681 break; 8682 case lltok::kw_refs: 8683 if (parseOptionalRefs(Refs)) 8684 return true; 8685 break; 8686 case lltok::kw_params: 8687 if (parseOptionalParamAccesses(ParamAccesses)) 8688 return true; 8689 break; 8690 default: 8691 return error(Lex.getLoc(), "expected optional function summary field"); 8692 } 8693 } 8694 8695 if (parseToken(lltok::rparen, "expected ')' here")) 8696 return true; 8697 8698 auto FS = std::make_unique<FunctionSummary>( 8699 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8700 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8701 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8702 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8703 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8704 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8705 std::move(ParamAccesses)); 8706 8707 FS->setModulePath(ModulePath); 8708 8709 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8710 ID, std::move(FS)); 8711 8712 return false; 8713 } 8714 8715 /// VariableSummary 8716 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8717 /// [',' OptionalRefs]? ')' 8718 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8719 unsigned ID) { 8720 assert(Lex.getKind() == lltok::kw_variable); 8721 Lex.Lex(); 8722 8723 StringRef ModulePath; 8724 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8725 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8726 /*NotEligibleToImport=*/false, 8727 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8728 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8729 /* WriteOnly */ false, 8730 /* Constant */ false, 8731 GlobalObject::VCallVisibilityPublic); 8732 std::vector<ValueInfo> Refs; 8733 VTableFuncList VTableFuncs; 8734 if (parseToken(lltok::colon, "expected ':' here") || 8735 parseToken(lltok::lparen, "expected '(' here") || 8736 parseModuleReference(ModulePath) || 8737 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8738 parseToken(lltok::comma, "expected ',' here") || 8739 parseGVarFlags(GVarFlags)) 8740 return true; 8741 8742 // parse optional fields 8743 while (EatIfPresent(lltok::comma)) { 8744 switch (Lex.getKind()) { 8745 case lltok::kw_vTableFuncs: 8746 if (parseOptionalVTableFuncs(VTableFuncs)) 8747 return true; 8748 break; 8749 case lltok::kw_refs: 8750 if (parseOptionalRefs(Refs)) 8751 return true; 8752 break; 8753 default: 8754 return error(Lex.getLoc(), "expected optional variable summary field"); 8755 } 8756 } 8757 8758 if (parseToken(lltok::rparen, "expected ')' here")) 8759 return true; 8760 8761 auto GS = 8762 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8763 8764 GS->setModulePath(ModulePath); 8765 GS->setVTableFuncs(std::move(VTableFuncs)); 8766 8767 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8768 ID, std::move(GS)); 8769 8770 return false; 8771 } 8772 8773 /// AliasSummary 8774 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8775 /// 'aliasee' ':' GVReference ')' 8776 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8777 unsigned ID) { 8778 assert(Lex.getKind() == lltok::kw_alias); 8779 LocTy Loc = Lex.getLoc(); 8780 Lex.Lex(); 8781 8782 StringRef ModulePath; 8783 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8784 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8785 /*NotEligibleToImport=*/false, 8786 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8787 if (parseToken(lltok::colon, "expected ':' here") || 8788 parseToken(lltok::lparen, "expected '(' here") || 8789 parseModuleReference(ModulePath) || 8790 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8791 parseToken(lltok::comma, "expected ',' here") || 8792 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8793 parseToken(lltok::colon, "expected ':' here")) 8794 return true; 8795 8796 ValueInfo AliaseeVI; 8797 unsigned GVId; 8798 if (parseGVReference(AliaseeVI, GVId)) 8799 return true; 8800 8801 if (parseToken(lltok::rparen, "expected ')' here")) 8802 return true; 8803 8804 auto AS = std::make_unique<AliasSummary>(GVFlags); 8805 8806 AS->setModulePath(ModulePath); 8807 8808 // Record forward reference if the aliasee is not parsed yet. 8809 if (AliaseeVI.getRef() == FwdVIRef) { 8810 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8811 } else { 8812 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8813 assert(Summary && "Aliasee must be a definition"); 8814 AS->setAliasee(AliaseeVI, Summary); 8815 } 8816 8817 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8818 ID, std::move(AS)); 8819 8820 return false; 8821 } 8822 8823 /// Flag 8824 /// ::= [0|1] 8825 bool LLParser::parseFlag(unsigned &Val) { 8826 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8827 return tokError("expected integer"); 8828 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8829 Lex.Lex(); 8830 return false; 8831 } 8832 8833 /// OptionalFFlags 8834 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8835 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8836 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8837 /// [',' 'noInline' ':' Flag]? ')' 8838 /// [',' 'alwaysInline' ':' Flag]? ')' 8839 8840 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8841 assert(Lex.getKind() == lltok::kw_funcFlags); 8842 Lex.Lex(); 8843 8844 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8845 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8846 return true; 8847 8848 do { 8849 unsigned Val = 0; 8850 switch (Lex.getKind()) { 8851 case lltok::kw_readNone: 8852 Lex.Lex(); 8853 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8854 return true; 8855 FFlags.ReadNone = Val; 8856 break; 8857 case lltok::kw_readOnly: 8858 Lex.Lex(); 8859 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8860 return true; 8861 FFlags.ReadOnly = Val; 8862 break; 8863 case lltok::kw_noRecurse: 8864 Lex.Lex(); 8865 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8866 return true; 8867 FFlags.NoRecurse = Val; 8868 break; 8869 case lltok::kw_returnDoesNotAlias: 8870 Lex.Lex(); 8871 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8872 return true; 8873 FFlags.ReturnDoesNotAlias = Val; 8874 break; 8875 case lltok::kw_noInline: 8876 Lex.Lex(); 8877 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8878 return true; 8879 FFlags.NoInline = Val; 8880 break; 8881 case lltok::kw_alwaysInline: 8882 Lex.Lex(); 8883 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8884 return true; 8885 FFlags.AlwaysInline = Val; 8886 break; 8887 default: 8888 return error(Lex.getLoc(), "expected function flag type"); 8889 } 8890 } while (EatIfPresent(lltok::comma)); 8891 8892 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8893 return true; 8894 8895 return false; 8896 } 8897 8898 /// OptionalCalls 8899 /// := 'calls' ':' '(' Call [',' Call]* ')' 8900 /// Call ::= '(' 'callee' ':' GVReference 8901 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8902 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8903 assert(Lex.getKind() == lltok::kw_calls); 8904 Lex.Lex(); 8905 8906 if (parseToken(lltok::colon, "expected ':' in calls") | 8907 parseToken(lltok::lparen, "expected '(' in calls")) 8908 return true; 8909 8910 IdToIndexMapType IdToIndexMap; 8911 // parse each call edge 8912 do { 8913 ValueInfo VI; 8914 if (parseToken(lltok::lparen, "expected '(' in call") || 8915 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8916 parseToken(lltok::colon, "expected ':'")) 8917 return true; 8918 8919 LocTy Loc = Lex.getLoc(); 8920 unsigned GVId; 8921 if (parseGVReference(VI, GVId)) 8922 return true; 8923 8924 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8925 unsigned RelBF = 0; 8926 if (EatIfPresent(lltok::comma)) { 8927 // Expect either hotness or relbf 8928 if (EatIfPresent(lltok::kw_hotness)) { 8929 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8930 return true; 8931 } else { 8932 if (parseToken(lltok::kw_relbf, "expected relbf") || 8933 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8934 return true; 8935 } 8936 } 8937 // Keep track of the Call array index needing a forward reference. 8938 // We will save the location of the ValueInfo needing an update, but 8939 // can only do so once the std::vector is finalized. 8940 if (VI.getRef() == FwdVIRef) 8941 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8942 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8943 8944 if (parseToken(lltok::rparen, "expected ')' in call")) 8945 return true; 8946 } while (EatIfPresent(lltok::comma)); 8947 8948 // Now that the Calls vector is finalized, it is safe to save the locations 8949 // of any forward GV references that need updating later. 8950 for (auto I : IdToIndexMap) { 8951 auto &Infos = ForwardRefValueInfos[I.first]; 8952 for (auto P : I.second) { 8953 assert(Calls[P.first].first.getRef() == FwdVIRef && 8954 "Forward referenced ValueInfo expected to be empty"); 8955 Infos.emplace_back(&Calls[P.first].first, P.second); 8956 } 8957 } 8958 8959 if (parseToken(lltok::rparen, "expected ')' in calls")) 8960 return true; 8961 8962 return false; 8963 } 8964 8965 /// Hotness 8966 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8967 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8968 switch (Lex.getKind()) { 8969 case lltok::kw_unknown: 8970 Hotness = CalleeInfo::HotnessType::Unknown; 8971 break; 8972 case lltok::kw_cold: 8973 Hotness = CalleeInfo::HotnessType::Cold; 8974 break; 8975 case lltok::kw_none: 8976 Hotness = CalleeInfo::HotnessType::None; 8977 break; 8978 case lltok::kw_hot: 8979 Hotness = CalleeInfo::HotnessType::Hot; 8980 break; 8981 case lltok::kw_critical: 8982 Hotness = CalleeInfo::HotnessType::Critical; 8983 break; 8984 default: 8985 return error(Lex.getLoc(), "invalid call edge hotness"); 8986 } 8987 Lex.Lex(); 8988 return false; 8989 } 8990 8991 /// OptionalVTableFuncs 8992 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8993 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8994 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8995 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8996 Lex.Lex(); 8997 8998 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8999 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 9000 return true; 9001 9002 IdToIndexMapType IdToIndexMap; 9003 // parse each virtual function pair 9004 do { 9005 ValueInfo VI; 9006 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 9007 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9008 parseToken(lltok::colon, "expected ':'")) 9009 return true; 9010 9011 LocTy Loc = Lex.getLoc(); 9012 unsigned GVId; 9013 if (parseGVReference(VI, GVId)) 9014 return true; 9015 9016 uint64_t Offset; 9017 if (parseToken(lltok::comma, "expected comma") || 9018 parseToken(lltok::kw_offset, "expected offset") || 9019 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9020 return true; 9021 9022 // Keep track of the VTableFuncs array index needing a forward reference. 9023 // We will save the location of the ValueInfo needing an update, but 9024 // can only do so once the std::vector is finalized. 9025 if (VI == EmptyVI) 9026 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9027 VTableFuncs.push_back({VI, Offset}); 9028 9029 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9030 return true; 9031 } while (EatIfPresent(lltok::comma)); 9032 9033 // Now that the VTableFuncs vector is finalized, it is safe to save the 9034 // locations of any forward GV references that need updating later. 9035 for (auto I : IdToIndexMap) { 9036 auto &Infos = ForwardRefValueInfos[I.first]; 9037 for (auto P : I.second) { 9038 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9039 "Forward referenced ValueInfo expected to be empty"); 9040 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9041 } 9042 } 9043 9044 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9045 return true; 9046 9047 return false; 9048 } 9049 9050 /// ParamNo := 'param' ':' UInt64 9051 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9052 if (parseToken(lltok::kw_param, "expected 'param' here") || 9053 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9054 return true; 9055 return false; 9056 } 9057 9058 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9059 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9060 APSInt Lower; 9061 APSInt Upper; 9062 auto ParseAPSInt = [&](APSInt &Val) { 9063 if (Lex.getKind() != lltok::APSInt) 9064 return tokError("expected integer"); 9065 Val = Lex.getAPSIntVal(); 9066 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9067 Val.setIsSigned(true); 9068 Lex.Lex(); 9069 return false; 9070 }; 9071 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9072 parseToken(lltok::colon, "expected ':' here") || 9073 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9074 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9075 parseToken(lltok::rsquare, "expected ']' here")) 9076 return true; 9077 9078 ++Upper; 9079 Range = 9080 (Lower == Upper && !Lower.isMaxValue()) 9081 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9082 : ConstantRange(Lower, Upper); 9083 9084 return false; 9085 } 9086 9087 /// ParamAccessCall 9088 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9089 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9090 IdLocListType &IdLocList) { 9091 if (parseToken(lltok::lparen, "expected '(' here") || 9092 parseToken(lltok::kw_callee, "expected 'callee' here") || 9093 parseToken(lltok::colon, "expected ':' here")) 9094 return true; 9095 9096 unsigned GVId; 9097 ValueInfo VI; 9098 LocTy Loc = Lex.getLoc(); 9099 if (parseGVReference(VI, GVId)) 9100 return true; 9101 9102 Call.Callee = VI; 9103 IdLocList.emplace_back(GVId, Loc); 9104 9105 if (parseToken(lltok::comma, "expected ',' here") || 9106 parseParamNo(Call.ParamNo) || 9107 parseToken(lltok::comma, "expected ',' here") || 9108 parseParamAccessOffset(Call.Offsets)) 9109 return true; 9110 9111 if (parseToken(lltok::rparen, "expected ')' here")) 9112 return true; 9113 9114 return false; 9115 } 9116 9117 /// ParamAccess 9118 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9119 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9120 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9121 IdLocListType &IdLocList) { 9122 if (parseToken(lltok::lparen, "expected '(' here") || 9123 parseParamNo(Param.ParamNo) || 9124 parseToken(lltok::comma, "expected ',' here") || 9125 parseParamAccessOffset(Param.Use)) 9126 return true; 9127 9128 if (EatIfPresent(lltok::comma)) { 9129 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9130 parseToken(lltok::colon, "expected ':' here") || 9131 parseToken(lltok::lparen, "expected '(' here")) 9132 return true; 9133 do { 9134 FunctionSummary::ParamAccess::Call Call; 9135 if (parseParamAccessCall(Call, IdLocList)) 9136 return true; 9137 Param.Calls.push_back(Call); 9138 } while (EatIfPresent(lltok::comma)); 9139 9140 if (parseToken(lltok::rparen, "expected ')' here")) 9141 return true; 9142 } 9143 9144 if (parseToken(lltok::rparen, "expected ')' here")) 9145 return true; 9146 9147 return false; 9148 } 9149 9150 /// OptionalParamAccesses 9151 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9152 bool LLParser::parseOptionalParamAccesses( 9153 std::vector<FunctionSummary::ParamAccess> &Params) { 9154 assert(Lex.getKind() == lltok::kw_params); 9155 Lex.Lex(); 9156 9157 if (parseToken(lltok::colon, "expected ':' here") || 9158 parseToken(lltok::lparen, "expected '(' here")) 9159 return true; 9160 9161 IdLocListType VContexts; 9162 size_t CallsNum = 0; 9163 do { 9164 FunctionSummary::ParamAccess ParamAccess; 9165 if (parseParamAccess(ParamAccess, VContexts)) 9166 return true; 9167 CallsNum += ParamAccess.Calls.size(); 9168 assert(VContexts.size() == CallsNum); 9169 Params.emplace_back(std::move(ParamAccess)); 9170 } while (EatIfPresent(lltok::comma)); 9171 9172 if (parseToken(lltok::rparen, "expected ')' here")) 9173 return true; 9174 9175 // Now that the Params is finalized, it is safe to save the locations 9176 // of any forward GV references that need updating later. 9177 IdLocListType::const_iterator ItContext = VContexts.begin(); 9178 for (auto &PA : Params) { 9179 for (auto &C : PA.Calls) { 9180 if (C.Callee.getRef() == FwdVIRef) 9181 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9182 ItContext->second); 9183 ++ItContext; 9184 } 9185 } 9186 assert(ItContext == VContexts.end()); 9187 9188 return false; 9189 } 9190 9191 /// OptionalRefs 9192 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9193 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9194 assert(Lex.getKind() == lltok::kw_refs); 9195 Lex.Lex(); 9196 9197 if (parseToken(lltok::colon, "expected ':' in refs") || 9198 parseToken(lltok::lparen, "expected '(' in refs")) 9199 return true; 9200 9201 struct ValueContext { 9202 ValueInfo VI; 9203 unsigned GVId; 9204 LocTy Loc; 9205 }; 9206 std::vector<ValueContext> VContexts; 9207 // parse each ref edge 9208 do { 9209 ValueContext VC; 9210 VC.Loc = Lex.getLoc(); 9211 if (parseGVReference(VC.VI, VC.GVId)) 9212 return true; 9213 VContexts.push_back(VC); 9214 } while (EatIfPresent(lltok::comma)); 9215 9216 // Sort value contexts so that ones with writeonly 9217 // and readonly ValueInfo are at the end of VContexts vector. 9218 // See FunctionSummary::specialRefCounts() 9219 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9220 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9221 }); 9222 9223 IdToIndexMapType IdToIndexMap; 9224 for (auto &VC : VContexts) { 9225 // Keep track of the Refs array index needing a forward reference. 9226 // We will save the location of the ValueInfo needing an update, but 9227 // can only do so once the std::vector is finalized. 9228 if (VC.VI.getRef() == FwdVIRef) 9229 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9230 Refs.push_back(VC.VI); 9231 } 9232 9233 // Now that the Refs vector is finalized, it is safe to save the locations 9234 // of any forward GV references that need updating later. 9235 for (auto I : IdToIndexMap) { 9236 auto &Infos = ForwardRefValueInfos[I.first]; 9237 for (auto P : I.second) { 9238 assert(Refs[P.first].getRef() == FwdVIRef && 9239 "Forward referenced ValueInfo expected to be empty"); 9240 Infos.emplace_back(&Refs[P.first], P.second); 9241 } 9242 } 9243 9244 if (parseToken(lltok::rparen, "expected ')' in refs")) 9245 return true; 9246 9247 return false; 9248 } 9249 9250 /// OptionalTypeIdInfo 9251 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9252 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9253 /// [',' TypeCheckedLoadConstVCalls]? ')' 9254 bool LLParser::parseOptionalTypeIdInfo( 9255 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9256 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9257 Lex.Lex(); 9258 9259 if (parseToken(lltok::colon, "expected ':' here") || 9260 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9261 return true; 9262 9263 do { 9264 switch (Lex.getKind()) { 9265 case lltok::kw_typeTests: 9266 if (parseTypeTests(TypeIdInfo.TypeTests)) 9267 return true; 9268 break; 9269 case lltok::kw_typeTestAssumeVCalls: 9270 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9271 TypeIdInfo.TypeTestAssumeVCalls)) 9272 return true; 9273 break; 9274 case lltok::kw_typeCheckedLoadVCalls: 9275 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9276 TypeIdInfo.TypeCheckedLoadVCalls)) 9277 return true; 9278 break; 9279 case lltok::kw_typeTestAssumeConstVCalls: 9280 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9281 TypeIdInfo.TypeTestAssumeConstVCalls)) 9282 return true; 9283 break; 9284 case lltok::kw_typeCheckedLoadConstVCalls: 9285 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9286 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9287 return true; 9288 break; 9289 default: 9290 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9291 } 9292 } while (EatIfPresent(lltok::comma)); 9293 9294 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9295 return true; 9296 9297 return false; 9298 } 9299 9300 /// TypeTests 9301 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9302 /// [',' (SummaryID | UInt64)]* ')' 9303 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9304 assert(Lex.getKind() == lltok::kw_typeTests); 9305 Lex.Lex(); 9306 9307 if (parseToken(lltok::colon, "expected ':' here") || 9308 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9309 return true; 9310 9311 IdToIndexMapType IdToIndexMap; 9312 do { 9313 GlobalValue::GUID GUID = 0; 9314 if (Lex.getKind() == lltok::SummaryID) { 9315 unsigned ID = Lex.getUIntVal(); 9316 LocTy Loc = Lex.getLoc(); 9317 // Keep track of the TypeTests array index needing a forward reference. 9318 // We will save the location of the GUID needing an update, but 9319 // can only do so once the std::vector is finalized. 9320 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9321 Lex.Lex(); 9322 } else if (parseUInt64(GUID)) 9323 return true; 9324 TypeTests.push_back(GUID); 9325 } while (EatIfPresent(lltok::comma)); 9326 9327 // Now that the TypeTests vector is finalized, it is safe to save the 9328 // locations of any forward GV references that need updating later. 9329 for (auto I : IdToIndexMap) { 9330 auto &Ids = ForwardRefTypeIds[I.first]; 9331 for (auto P : I.second) { 9332 assert(TypeTests[P.first] == 0 && 9333 "Forward referenced type id GUID expected to be 0"); 9334 Ids.emplace_back(&TypeTests[P.first], P.second); 9335 } 9336 } 9337 9338 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9339 return true; 9340 9341 return false; 9342 } 9343 9344 /// VFuncIdList 9345 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9346 bool LLParser::parseVFuncIdList( 9347 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9348 assert(Lex.getKind() == Kind); 9349 Lex.Lex(); 9350 9351 if (parseToken(lltok::colon, "expected ':' here") || 9352 parseToken(lltok::lparen, "expected '(' here")) 9353 return true; 9354 9355 IdToIndexMapType IdToIndexMap; 9356 do { 9357 FunctionSummary::VFuncId VFuncId; 9358 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9359 return true; 9360 VFuncIdList.push_back(VFuncId); 9361 } while (EatIfPresent(lltok::comma)); 9362 9363 if (parseToken(lltok::rparen, "expected ')' here")) 9364 return true; 9365 9366 // Now that the VFuncIdList vector is finalized, it is safe to save the 9367 // locations of any forward GV references that need updating later. 9368 for (auto I : IdToIndexMap) { 9369 auto &Ids = ForwardRefTypeIds[I.first]; 9370 for (auto P : I.second) { 9371 assert(VFuncIdList[P.first].GUID == 0 && 9372 "Forward referenced type id GUID expected to be 0"); 9373 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9374 } 9375 } 9376 9377 return false; 9378 } 9379 9380 /// ConstVCallList 9381 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9382 bool LLParser::parseConstVCallList( 9383 lltok::Kind Kind, 9384 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9385 assert(Lex.getKind() == Kind); 9386 Lex.Lex(); 9387 9388 if (parseToken(lltok::colon, "expected ':' here") || 9389 parseToken(lltok::lparen, "expected '(' here")) 9390 return true; 9391 9392 IdToIndexMapType IdToIndexMap; 9393 do { 9394 FunctionSummary::ConstVCall ConstVCall; 9395 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9396 return true; 9397 ConstVCallList.push_back(ConstVCall); 9398 } while (EatIfPresent(lltok::comma)); 9399 9400 if (parseToken(lltok::rparen, "expected ')' here")) 9401 return true; 9402 9403 // Now that the ConstVCallList vector is finalized, it is safe to save the 9404 // locations of any forward GV references that need updating later. 9405 for (auto I : IdToIndexMap) { 9406 auto &Ids = ForwardRefTypeIds[I.first]; 9407 for (auto P : I.second) { 9408 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9409 "Forward referenced type id GUID expected to be 0"); 9410 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9411 } 9412 } 9413 9414 return false; 9415 } 9416 9417 /// ConstVCall 9418 /// ::= '(' VFuncId ',' Args ')' 9419 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9420 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9421 if (parseToken(lltok::lparen, "expected '(' here") || 9422 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9423 return true; 9424 9425 if (EatIfPresent(lltok::comma)) 9426 if (parseArgs(ConstVCall.Args)) 9427 return true; 9428 9429 if (parseToken(lltok::rparen, "expected ')' here")) 9430 return true; 9431 9432 return false; 9433 } 9434 9435 /// VFuncId 9436 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9437 /// 'offset' ':' UInt64 ')' 9438 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9439 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9440 assert(Lex.getKind() == lltok::kw_vFuncId); 9441 Lex.Lex(); 9442 9443 if (parseToken(lltok::colon, "expected ':' here") || 9444 parseToken(lltok::lparen, "expected '(' here")) 9445 return true; 9446 9447 if (Lex.getKind() == lltok::SummaryID) { 9448 VFuncId.GUID = 0; 9449 unsigned ID = Lex.getUIntVal(); 9450 LocTy Loc = Lex.getLoc(); 9451 // Keep track of the array index needing a forward reference. 9452 // We will save the location of the GUID needing an update, but 9453 // can only do so once the caller's std::vector is finalized. 9454 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9455 Lex.Lex(); 9456 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9457 parseToken(lltok::colon, "expected ':' here") || 9458 parseUInt64(VFuncId.GUID)) 9459 return true; 9460 9461 if (parseToken(lltok::comma, "expected ',' here") || 9462 parseToken(lltok::kw_offset, "expected 'offset' here") || 9463 parseToken(lltok::colon, "expected ':' here") || 9464 parseUInt64(VFuncId.Offset) || 9465 parseToken(lltok::rparen, "expected ')' here")) 9466 return true; 9467 9468 return false; 9469 } 9470 9471 /// GVFlags 9472 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9473 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9474 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9475 /// 'canAutoHide' ':' Flag ',' ')' 9476 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9477 assert(Lex.getKind() == lltok::kw_flags); 9478 Lex.Lex(); 9479 9480 if (parseToken(lltok::colon, "expected ':' here") || 9481 parseToken(lltok::lparen, "expected '(' here")) 9482 return true; 9483 9484 do { 9485 unsigned Flag = 0; 9486 switch (Lex.getKind()) { 9487 case lltok::kw_linkage: 9488 Lex.Lex(); 9489 if (parseToken(lltok::colon, "expected ':'")) 9490 return true; 9491 bool HasLinkage; 9492 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9493 assert(HasLinkage && "Linkage not optional in summary entry"); 9494 Lex.Lex(); 9495 break; 9496 case lltok::kw_visibility: 9497 Lex.Lex(); 9498 if (parseToken(lltok::colon, "expected ':'")) 9499 return true; 9500 parseOptionalVisibility(Flag); 9501 GVFlags.Visibility = Flag; 9502 break; 9503 case lltok::kw_notEligibleToImport: 9504 Lex.Lex(); 9505 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9506 return true; 9507 GVFlags.NotEligibleToImport = Flag; 9508 break; 9509 case lltok::kw_live: 9510 Lex.Lex(); 9511 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9512 return true; 9513 GVFlags.Live = Flag; 9514 break; 9515 case lltok::kw_dsoLocal: 9516 Lex.Lex(); 9517 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9518 return true; 9519 GVFlags.DSOLocal = Flag; 9520 break; 9521 case lltok::kw_canAutoHide: 9522 Lex.Lex(); 9523 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9524 return true; 9525 GVFlags.CanAutoHide = Flag; 9526 break; 9527 default: 9528 return error(Lex.getLoc(), "expected gv flag type"); 9529 } 9530 } while (EatIfPresent(lltok::comma)); 9531 9532 if (parseToken(lltok::rparen, "expected ')' here")) 9533 return true; 9534 9535 return false; 9536 } 9537 9538 /// GVarFlags 9539 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9540 /// ',' 'writeonly' ':' Flag 9541 /// ',' 'constant' ':' Flag ')' 9542 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9543 assert(Lex.getKind() == lltok::kw_varFlags); 9544 Lex.Lex(); 9545 9546 if (parseToken(lltok::colon, "expected ':' here") || 9547 parseToken(lltok::lparen, "expected '(' here")) 9548 return true; 9549 9550 auto ParseRest = [this](unsigned int &Val) { 9551 Lex.Lex(); 9552 if (parseToken(lltok::colon, "expected ':'")) 9553 return true; 9554 return parseFlag(Val); 9555 }; 9556 9557 do { 9558 unsigned Flag = 0; 9559 switch (Lex.getKind()) { 9560 case lltok::kw_readonly: 9561 if (ParseRest(Flag)) 9562 return true; 9563 GVarFlags.MaybeReadOnly = Flag; 9564 break; 9565 case lltok::kw_writeonly: 9566 if (ParseRest(Flag)) 9567 return true; 9568 GVarFlags.MaybeWriteOnly = Flag; 9569 break; 9570 case lltok::kw_constant: 9571 if (ParseRest(Flag)) 9572 return true; 9573 GVarFlags.Constant = Flag; 9574 break; 9575 case lltok::kw_vcall_visibility: 9576 if (ParseRest(Flag)) 9577 return true; 9578 GVarFlags.VCallVisibility = Flag; 9579 break; 9580 default: 9581 return error(Lex.getLoc(), "expected gvar flag type"); 9582 } 9583 } while (EatIfPresent(lltok::comma)); 9584 return parseToken(lltok::rparen, "expected ')' here"); 9585 } 9586 9587 /// ModuleReference 9588 /// ::= 'module' ':' UInt 9589 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9590 // parse module id. 9591 if (parseToken(lltok::kw_module, "expected 'module' here") || 9592 parseToken(lltok::colon, "expected ':' here") || 9593 parseToken(lltok::SummaryID, "expected module ID")) 9594 return true; 9595 9596 unsigned ModuleID = Lex.getUIntVal(); 9597 auto I = ModuleIdMap.find(ModuleID); 9598 // We should have already parsed all module IDs 9599 assert(I != ModuleIdMap.end()); 9600 ModulePath = I->second; 9601 return false; 9602 } 9603 9604 /// GVReference 9605 /// ::= SummaryID 9606 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9607 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9608 if (!ReadOnly) 9609 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9610 if (parseToken(lltok::SummaryID, "expected GV ID")) 9611 return true; 9612 9613 GVId = Lex.getUIntVal(); 9614 // Check if we already have a VI for this GV 9615 if (GVId < NumberedValueInfos.size()) { 9616 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9617 VI = NumberedValueInfos[GVId]; 9618 } else 9619 // We will create a forward reference to the stored location. 9620 VI = ValueInfo(false, FwdVIRef); 9621 9622 if (ReadOnly) 9623 VI.setReadOnly(); 9624 if (WriteOnly) 9625 VI.setWriteOnly(); 9626 return false; 9627 } 9628