1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   bool result = false;
825   switch (Lex.getKind()) {
826   case lltok::kw_gv:
827     result = ParseGVEntry(SummaryID);
828     break;
829   case lltok::kw_module:
830     result = ParseModuleEntry(SummaryID);
831     break;
832   case lltok::kw_typeid:
833     result = ParseTypeIdEntry(SummaryID);
834     break;
835   case lltok::kw_typeidCompatibleVTable:
836     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
837     break;
838   case lltok::kw_flags:
839     result = ParseSummaryIndexFlags();
840     break;
841   default:
842     result = Error(Lex.getLoc(), "unexpected summary kind");
843     break;
844   }
845   Lex.setIgnoreColonInIdentifiers(false);
846   return result;
847 }
848 
849 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
850   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
851          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
852 }
853 
854 // If there was an explicit dso_local, update GV. In the absence of an explicit
855 // dso_local we keep the default value.
856 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
857   if (DSOLocal)
858     GV.setDSOLocal(true);
859 }
860 
861 /// parseIndirectSymbol:
862 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
863 ///                     OptionalVisibility OptionalDLLStorageClass
864 ///                     OptionalThreadLocal OptionalUnnamedAddr
865 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
866 ///
867 /// IndirectSymbol
868 ///   ::= TypeAndValue
869 ///
870 /// IndirectSymbolAttr
871 ///   ::= ',' 'partition' StringConstant
872 ///
873 /// Everything through OptionalUnnamedAddr has already been parsed.
874 ///
875 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
876                                    unsigned L, unsigned Visibility,
877                                    unsigned DLLStorageClass, bool DSOLocal,
878                                    GlobalVariable::ThreadLocalMode TLM,
879                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
880   bool IsAlias;
881   if (Lex.getKind() == lltok::kw_alias)
882     IsAlias = true;
883   else if (Lex.getKind() == lltok::kw_ifunc)
884     IsAlias = false;
885   else
886     llvm_unreachable("Not an alias or ifunc!");
887   Lex.Lex();
888 
889   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
890 
891   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
892     return Error(NameLoc, "invalid linkage type for alias");
893 
894   if (!isValidVisibilityForLinkage(Visibility, L))
895     return Error(NameLoc,
896                  "symbol with local linkage must have default visibility");
897 
898   Type *Ty;
899   LocTy ExplicitTypeLoc = Lex.getLoc();
900   if (ParseType(Ty) ||
901       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
902     return true;
903 
904   Constant *Aliasee;
905   LocTy AliaseeLoc = Lex.getLoc();
906   if (Lex.getKind() != lltok::kw_bitcast &&
907       Lex.getKind() != lltok::kw_getelementptr &&
908       Lex.getKind() != lltok::kw_addrspacecast &&
909       Lex.getKind() != lltok::kw_inttoptr) {
910     if (ParseGlobalTypeAndValue(Aliasee))
911       return true;
912   } else {
913     // The bitcast dest type is not present, it is implied by the dest type.
914     ValID ID;
915     if (ParseValID(ID))
916       return true;
917     if (ID.Kind != ValID::t_Constant)
918       return Error(AliaseeLoc, "invalid aliasee");
919     Aliasee = ID.ConstantVal;
920   }
921 
922   Type *AliaseeType = Aliasee->getType();
923   auto *PTy = dyn_cast<PointerType>(AliaseeType);
924   if (!PTy)
925     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
926   unsigned AddrSpace = PTy->getAddressSpace();
927 
928   if (IsAlias && Ty != PTy->getElementType())
929     return Error(
930         ExplicitTypeLoc,
931         "explicit pointee type doesn't match operand's pointee type");
932 
933   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
934     return Error(
935         ExplicitTypeLoc,
936         "explicit pointee type should be a function type");
937 
938   GlobalValue *GVal = nullptr;
939 
940   // See if the alias was forward referenced, if so, prepare to replace the
941   // forward reference.
942   if (!Name.empty()) {
943     GVal = M->getNamedValue(Name);
944     if (GVal) {
945       if (!ForwardRefVals.erase(Name))
946         return Error(NameLoc, "redefinition of global '@" + Name + "'");
947     }
948   } else {
949     auto I = ForwardRefValIDs.find(NumberedVals.size());
950     if (I != ForwardRefValIDs.end()) {
951       GVal = I->second.first;
952       ForwardRefValIDs.erase(I);
953     }
954   }
955 
956   // Okay, create the alias but do not insert it into the module yet.
957   std::unique_ptr<GlobalIndirectSymbol> GA;
958   if (IsAlias)
959     GA.reset(GlobalAlias::create(Ty, AddrSpace,
960                                  (GlobalValue::LinkageTypes)Linkage, Name,
961                                  Aliasee, /*Parent*/ nullptr));
962   else
963     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
964                                  (GlobalValue::LinkageTypes)Linkage, Name,
965                                  Aliasee, /*Parent*/ nullptr));
966   GA->setThreadLocalMode(TLM);
967   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
968   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
969   GA->setUnnamedAddr(UnnamedAddr);
970   maybeSetDSOLocal(DSOLocal, *GA);
971 
972   // At this point we've parsed everything except for the IndirectSymbolAttrs.
973   // Now parse them if there are any.
974   while (Lex.getKind() == lltok::comma) {
975     Lex.Lex();
976 
977     if (Lex.getKind() == lltok::kw_partition) {
978       Lex.Lex();
979       GA->setPartition(Lex.getStrVal());
980       if (ParseToken(lltok::StringConstant, "expected partition string"))
981         return true;
982     } else {
983       return TokError("unknown alias or ifunc property!");
984     }
985   }
986 
987   if (Name.empty())
988     NumberedVals.push_back(GA.get());
989 
990   if (GVal) {
991     // Verify that types agree.
992     if (GVal->getType() != GA->getType())
993       return Error(
994           ExplicitTypeLoc,
995           "forward reference and definition of alias have different types");
996 
997     // If they agree, just RAUW the old value with the alias and remove the
998     // forward ref info.
999     GVal->replaceAllUsesWith(GA.get());
1000     GVal->eraseFromParent();
1001   }
1002 
1003   // Insert into the module, we know its name won't collide now.
1004   if (IsAlias)
1005     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1006   else
1007     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1008   assert(GA->getName() == Name && "Should not be a name conflict!");
1009 
1010   // The module owns this now
1011   GA.release();
1012 
1013   return false;
1014 }
1015 
1016 /// ParseGlobal
1017 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1018 ///       OptionalVisibility OptionalDLLStorageClass
1019 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1020 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1021 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1022 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1023 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1024 ///       Const OptionalAttrs
1025 ///
1026 /// Everything up to and including OptionalUnnamedAddr has been parsed
1027 /// already.
1028 ///
1029 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1030                            unsigned Linkage, bool HasLinkage,
1031                            unsigned Visibility, unsigned DLLStorageClass,
1032                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1033                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1034   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1035     return Error(NameLoc,
1036                  "symbol with local linkage must have default visibility");
1037 
1038   unsigned AddrSpace;
1039   bool IsConstant, IsExternallyInitialized;
1040   LocTy IsExternallyInitializedLoc;
1041   LocTy TyLoc;
1042 
1043   Type *Ty = nullptr;
1044   if (ParseOptionalAddrSpace(AddrSpace) ||
1045       ParseOptionalToken(lltok::kw_externally_initialized,
1046                          IsExternallyInitialized,
1047                          &IsExternallyInitializedLoc) ||
1048       ParseGlobalType(IsConstant) ||
1049       ParseType(Ty, TyLoc))
1050     return true;
1051 
1052   // If the linkage is specified and is external, then no initializer is
1053   // present.
1054   Constant *Init = nullptr;
1055   if (!HasLinkage ||
1056       !GlobalValue::isValidDeclarationLinkage(
1057           (GlobalValue::LinkageTypes)Linkage)) {
1058     if (ParseGlobalValue(Ty, Init))
1059       return true;
1060   }
1061 
1062   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1063     return Error(TyLoc, "invalid type for global variable");
1064 
1065   GlobalValue *GVal = nullptr;
1066 
1067   // See if the global was forward referenced, if so, use the global.
1068   if (!Name.empty()) {
1069     GVal = M->getNamedValue(Name);
1070     if (GVal) {
1071       if (!ForwardRefVals.erase(Name))
1072         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1073     }
1074   } else {
1075     auto I = ForwardRefValIDs.find(NumberedVals.size());
1076     if (I != ForwardRefValIDs.end()) {
1077       GVal = I->second.first;
1078       ForwardRefValIDs.erase(I);
1079     }
1080   }
1081 
1082   GlobalVariable *GV;
1083   if (!GVal) {
1084     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1085                             Name, nullptr, GlobalVariable::NotThreadLocal,
1086                             AddrSpace);
1087   } else {
1088     if (GVal->getValueType() != Ty)
1089       return Error(TyLoc,
1090             "forward reference and definition of global have different types");
1091 
1092     GV = cast<GlobalVariable>(GVal);
1093 
1094     // Move the forward-reference to the correct spot in the module.
1095     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1096   }
1097 
1098   if (Name.empty())
1099     NumberedVals.push_back(GV);
1100 
1101   // Set the parsed properties on the global.
1102   if (Init)
1103     GV->setInitializer(Init);
1104   GV->setConstant(IsConstant);
1105   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1106   maybeSetDSOLocal(DSOLocal, *GV);
1107   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1108   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1109   GV->setExternallyInitialized(IsExternallyInitialized);
1110   GV->setThreadLocalMode(TLM);
1111   GV->setUnnamedAddr(UnnamedAddr);
1112 
1113   // Parse attributes on the global.
1114   while (Lex.getKind() == lltok::comma) {
1115     Lex.Lex();
1116 
1117     if (Lex.getKind() == lltok::kw_section) {
1118       Lex.Lex();
1119       GV->setSection(Lex.getStrVal());
1120       if (ParseToken(lltok::StringConstant, "expected global section string"))
1121         return true;
1122     } else if (Lex.getKind() == lltok::kw_partition) {
1123       Lex.Lex();
1124       GV->setPartition(Lex.getStrVal());
1125       if (ParseToken(lltok::StringConstant, "expected partition string"))
1126         return true;
1127     } else if (Lex.getKind() == lltok::kw_align) {
1128       MaybeAlign Alignment;
1129       if (ParseOptionalAlignment(Alignment)) return true;
1130       GV->setAlignment(Alignment);
1131     } else if (Lex.getKind() == lltok::MetadataVar) {
1132       if (ParseGlobalObjectMetadataAttachment(*GV))
1133         return true;
1134     } else {
1135       Comdat *C;
1136       if (parseOptionalComdat(Name, C))
1137         return true;
1138       if (C)
1139         GV->setComdat(C);
1140       else
1141         return TokError("unknown global variable property!");
1142     }
1143   }
1144 
1145   AttrBuilder Attrs;
1146   LocTy BuiltinLoc;
1147   std::vector<unsigned> FwdRefAttrGrps;
1148   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1149     return true;
1150   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1151     GV->setAttributes(AttributeSet::get(Context, Attrs));
1152     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1153   }
1154 
1155   return false;
1156 }
1157 
1158 /// ParseUnnamedAttrGrp
1159 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1160 bool LLParser::ParseUnnamedAttrGrp() {
1161   assert(Lex.getKind() == lltok::kw_attributes);
1162   LocTy AttrGrpLoc = Lex.getLoc();
1163   Lex.Lex();
1164 
1165   if (Lex.getKind() != lltok::AttrGrpID)
1166     return TokError("expected attribute group id");
1167 
1168   unsigned VarID = Lex.getUIntVal();
1169   std::vector<unsigned> unused;
1170   LocTy BuiltinLoc;
1171   Lex.Lex();
1172 
1173   if (ParseToken(lltok::equal, "expected '=' here") ||
1174       ParseToken(lltok::lbrace, "expected '{' here") ||
1175       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1176                                  BuiltinLoc) ||
1177       ParseToken(lltok::rbrace, "expected end of attribute group"))
1178     return true;
1179 
1180   if (!NumberedAttrBuilders[VarID].hasAttributes())
1181     return Error(AttrGrpLoc, "attribute group has no attributes");
1182 
1183   return false;
1184 }
1185 
1186 /// ParseFnAttributeValuePairs
1187 ///   ::= <attr> | <attr> '=' <value>
1188 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1189                                           std::vector<unsigned> &FwdRefAttrGrps,
1190                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1191   bool HaveError = false;
1192 
1193   B.clear();
1194 
1195   while (true) {
1196     lltok::Kind Token = Lex.getKind();
1197     if (Token == lltok::kw_builtin)
1198       BuiltinLoc = Lex.getLoc();
1199     switch (Token) {
1200     default:
1201       if (!inAttrGrp) return HaveError;
1202       return Error(Lex.getLoc(), "unterminated attribute group");
1203     case lltok::rbrace:
1204       // Finished.
1205       return false;
1206 
1207     case lltok::AttrGrpID: {
1208       // Allow a function to reference an attribute group:
1209       //
1210       //   define void @foo() #1 { ... }
1211       if (inAttrGrp)
1212         HaveError |=
1213           Error(Lex.getLoc(),
1214               "cannot have an attribute group reference in an attribute group");
1215 
1216       unsigned AttrGrpNum = Lex.getUIntVal();
1217       if (inAttrGrp) break;
1218 
1219       // Save the reference to the attribute group. We'll fill it in later.
1220       FwdRefAttrGrps.push_back(AttrGrpNum);
1221       break;
1222     }
1223     // Target-dependent attributes:
1224     case lltok::StringConstant: {
1225       if (ParseStringAttribute(B))
1226         return true;
1227       continue;
1228     }
1229 
1230     // Target-independent attributes:
1231     case lltok::kw_align: {
1232       // As a hack, we allow function alignment to be initially parsed as an
1233       // attribute on a function declaration/definition or added to an attribute
1234       // group and later moved to the alignment field.
1235       MaybeAlign Alignment;
1236       if (inAttrGrp) {
1237         Lex.Lex();
1238         uint32_t Value = 0;
1239         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1240           return true;
1241         Alignment = Align(Value);
1242       } else {
1243         if (ParseOptionalAlignment(Alignment))
1244           return true;
1245       }
1246       B.addAlignmentAttr(Alignment);
1247       continue;
1248     }
1249     case lltok::kw_alignstack: {
1250       unsigned Alignment;
1251       if (inAttrGrp) {
1252         Lex.Lex();
1253         if (ParseToken(lltok::equal, "expected '=' here") ||
1254             ParseUInt32(Alignment))
1255           return true;
1256       } else {
1257         if (ParseOptionalStackAlignment(Alignment))
1258           return true;
1259       }
1260       B.addStackAlignmentAttr(Alignment);
1261       continue;
1262     }
1263     case lltok::kw_allocsize: {
1264       unsigned ElemSizeArg;
1265       Optional<unsigned> NumElemsArg;
1266       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1267       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1268         return true;
1269       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1270       continue;
1271     }
1272     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1273     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1274     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1275     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1276     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1277     case lltok::kw_inaccessiblememonly:
1278       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1279     case lltok::kw_inaccessiblemem_or_argmemonly:
1280       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1281     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1282     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1283     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1284     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1285     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1286     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1287     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1288     case lltok::kw_noimplicitfloat:
1289       B.addAttribute(Attribute::NoImplicitFloat); break;
1290     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1291     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1292     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1293     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1294     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1295     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1296     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1297     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1298     case lltok::kw_optforfuzzing:
1299       B.addAttribute(Attribute::OptForFuzzing); break;
1300     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1301     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1302     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1303     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1304     case lltok::kw_returns_twice:
1305       B.addAttribute(Attribute::ReturnsTwice); break;
1306     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1307     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1308     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1309     case lltok::kw_sspstrong:
1310       B.addAttribute(Attribute::StackProtectStrong); break;
1311     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1312     case lltok::kw_shadowcallstack:
1313       B.addAttribute(Attribute::ShadowCallStack); break;
1314     case lltok::kw_sanitize_address:
1315       B.addAttribute(Attribute::SanitizeAddress); break;
1316     case lltok::kw_sanitize_hwaddress:
1317       B.addAttribute(Attribute::SanitizeHWAddress); break;
1318     case lltok::kw_sanitize_memtag:
1319       B.addAttribute(Attribute::SanitizeMemTag); break;
1320     case lltok::kw_sanitize_thread:
1321       B.addAttribute(Attribute::SanitizeThread); break;
1322     case lltok::kw_sanitize_memory:
1323       B.addAttribute(Attribute::SanitizeMemory); break;
1324     case lltok::kw_speculative_load_hardening:
1325       B.addAttribute(Attribute::SpeculativeLoadHardening);
1326       break;
1327     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1328     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1329     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1330     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1331 
1332     // Error handling.
1333     case lltok::kw_inreg:
1334     case lltok::kw_signext:
1335     case lltok::kw_zeroext:
1336       HaveError |=
1337         Error(Lex.getLoc(),
1338               "invalid use of attribute on a function");
1339       break;
1340     case lltok::kw_byval:
1341     case lltok::kw_dereferenceable:
1342     case lltok::kw_dereferenceable_or_null:
1343     case lltok::kw_inalloca:
1344     case lltok::kw_nest:
1345     case lltok::kw_noalias:
1346     case lltok::kw_nocapture:
1347     case lltok::kw_nonnull:
1348     case lltok::kw_returned:
1349     case lltok::kw_sret:
1350     case lltok::kw_swifterror:
1351     case lltok::kw_swiftself:
1352     case lltok::kw_immarg:
1353       HaveError |=
1354         Error(Lex.getLoc(),
1355               "invalid use of parameter-only attribute on a function");
1356       break;
1357     }
1358 
1359     Lex.Lex();
1360   }
1361 }
1362 
1363 //===----------------------------------------------------------------------===//
1364 // GlobalValue Reference/Resolution Routines.
1365 //===----------------------------------------------------------------------===//
1366 
1367 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1368                                               const std::string &Name) {
1369   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1370     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1371                             PTy->getAddressSpace(), Name, M);
1372   else
1373     return new GlobalVariable(*M, PTy->getElementType(), false,
1374                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1375                               nullptr, GlobalVariable::NotThreadLocal,
1376                               PTy->getAddressSpace());
1377 }
1378 
1379 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1380                                         Value *Val, bool IsCall) {
1381   if (Val->getType() == Ty)
1382     return Val;
1383   // For calls we also accept variables in the program address space.
1384   Type *SuggestedTy = Ty;
1385   if (IsCall && isa<PointerType>(Ty)) {
1386     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1387         M->getDataLayout().getProgramAddressSpace());
1388     SuggestedTy = TyInProgAS;
1389     if (Val->getType() == TyInProgAS)
1390       return Val;
1391   }
1392   if (Ty->isLabelTy())
1393     Error(Loc, "'" + Name + "' is not a basic block");
1394   else
1395     Error(Loc, "'" + Name + "' defined with type '" +
1396                    getTypeString(Val->getType()) + "' but expected '" +
1397                    getTypeString(SuggestedTy) + "'");
1398   return nullptr;
1399 }
1400 
1401 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1402 /// forward reference record if needed.  This can return null if the value
1403 /// exists but does not have the right type.
1404 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1405                                     LocTy Loc, bool IsCall) {
1406   PointerType *PTy = dyn_cast<PointerType>(Ty);
1407   if (!PTy) {
1408     Error(Loc, "global variable reference must have pointer type");
1409     return nullptr;
1410   }
1411 
1412   // Look this name up in the normal function symbol table.
1413   GlobalValue *Val =
1414     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1415 
1416   // If this is a forward reference for the value, see if we already created a
1417   // forward ref record.
1418   if (!Val) {
1419     auto I = ForwardRefVals.find(Name);
1420     if (I != ForwardRefVals.end())
1421       Val = I->second.first;
1422   }
1423 
1424   // If we have the value in the symbol table or fwd-ref table, return it.
1425   if (Val)
1426     return cast_or_null<GlobalValue>(
1427         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1428 
1429   // Otherwise, create a new forward reference for this value and remember it.
1430   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1431   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1432   return FwdVal;
1433 }
1434 
1435 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1436                                     bool IsCall) {
1437   PointerType *PTy = dyn_cast<PointerType>(Ty);
1438   if (!PTy) {
1439     Error(Loc, "global variable reference must have pointer type");
1440     return nullptr;
1441   }
1442 
1443   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1444 
1445   // If this is a forward reference for the value, see if we already created a
1446   // forward ref record.
1447   if (!Val) {
1448     auto I = ForwardRefValIDs.find(ID);
1449     if (I != ForwardRefValIDs.end())
1450       Val = I->second.first;
1451   }
1452 
1453   // If we have the value in the symbol table or fwd-ref table, return it.
1454   if (Val)
1455     return cast_or_null<GlobalValue>(
1456         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1457 
1458   // Otherwise, create a new forward reference for this value and remember it.
1459   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1460   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1461   return FwdVal;
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 // Comdat Reference/Resolution Routines.
1466 //===----------------------------------------------------------------------===//
1467 
1468 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1469   // Look this name up in the comdat symbol table.
1470   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1471   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1472   if (I != ComdatSymTab.end())
1473     return &I->second;
1474 
1475   // Otherwise, create a new forward reference for this value and remember it.
1476   Comdat *C = M->getOrInsertComdat(Name);
1477   ForwardRefComdats[Name] = Loc;
1478   return C;
1479 }
1480 
1481 //===----------------------------------------------------------------------===//
1482 // Helper Routines.
1483 //===----------------------------------------------------------------------===//
1484 
1485 /// ParseToken - If the current token has the specified kind, eat it and return
1486 /// success.  Otherwise, emit the specified error and return failure.
1487 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1488   if (Lex.getKind() != T)
1489     return TokError(ErrMsg);
1490   Lex.Lex();
1491   return false;
1492 }
1493 
1494 /// ParseStringConstant
1495 ///   ::= StringConstant
1496 bool LLParser::ParseStringConstant(std::string &Result) {
1497   if (Lex.getKind() != lltok::StringConstant)
1498     return TokError("expected string constant");
1499   Result = Lex.getStrVal();
1500   Lex.Lex();
1501   return false;
1502 }
1503 
1504 /// ParseUInt32
1505 ///   ::= uint32
1506 bool LLParser::ParseUInt32(uint32_t &Val) {
1507   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1508     return TokError("expected integer");
1509   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1510   if (Val64 != unsigned(Val64))
1511     return TokError("expected 32-bit integer (too large)");
1512   Val = Val64;
1513   Lex.Lex();
1514   return false;
1515 }
1516 
1517 /// ParseUInt64
1518 ///   ::= uint64
1519 bool LLParser::ParseUInt64(uint64_t &Val) {
1520   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1521     return TokError("expected integer");
1522   Val = Lex.getAPSIntVal().getLimitedValue();
1523   Lex.Lex();
1524   return false;
1525 }
1526 
1527 /// ParseTLSModel
1528 ///   := 'localdynamic'
1529 ///   := 'initialexec'
1530 ///   := 'localexec'
1531 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1532   switch (Lex.getKind()) {
1533     default:
1534       return TokError("expected localdynamic, initialexec or localexec");
1535     case lltok::kw_localdynamic:
1536       TLM = GlobalVariable::LocalDynamicTLSModel;
1537       break;
1538     case lltok::kw_initialexec:
1539       TLM = GlobalVariable::InitialExecTLSModel;
1540       break;
1541     case lltok::kw_localexec:
1542       TLM = GlobalVariable::LocalExecTLSModel;
1543       break;
1544   }
1545 
1546   Lex.Lex();
1547   return false;
1548 }
1549 
1550 /// ParseOptionalThreadLocal
1551 ///   := /*empty*/
1552 ///   := 'thread_local'
1553 ///   := 'thread_local' '(' tlsmodel ')'
1554 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1555   TLM = GlobalVariable::NotThreadLocal;
1556   if (!EatIfPresent(lltok::kw_thread_local))
1557     return false;
1558 
1559   TLM = GlobalVariable::GeneralDynamicTLSModel;
1560   if (Lex.getKind() == lltok::lparen) {
1561     Lex.Lex();
1562     return ParseTLSModel(TLM) ||
1563       ParseToken(lltok::rparen, "expected ')' after thread local model");
1564   }
1565   return false;
1566 }
1567 
1568 /// ParseOptionalAddrSpace
1569 ///   := /*empty*/
1570 ///   := 'addrspace' '(' uint32 ')'
1571 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1572   AddrSpace = DefaultAS;
1573   if (!EatIfPresent(lltok::kw_addrspace))
1574     return false;
1575   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1576          ParseUInt32(AddrSpace) ||
1577          ParseToken(lltok::rparen, "expected ')' in address space");
1578 }
1579 
1580 /// ParseStringAttribute
1581 ///   := StringConstant
1582 ///   := StringConstant '=' StringConstant
1583 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1584   std::string Attr = Lex.getStrVal();
1585   Lex.Lex();
1586   std::string Val;
1587   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1588     return true;
1589   B.addAttribute(Attr, Val);
1590   return false;
1591 }
1592 
1593 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1594 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1595   bool HaveError = false;
1596 
1597   B.clear();
1598 
1599   while (true) {
1600     lltok::Kind Token = Lex.getKind();
1601     switch (Token) {
1602     default:  // End of attributes.
1603       return HaveError;
1604     case lltok::StringConstant: {
1605       if (ParseStringAttribute(B))
1606         return true;
1607       continue;
1608     }
1609     case lltok::kw_align: {
1610       MaybeAlign Alignment;
1611       if (ParseOptionalAlignment(Alignment))
1612         return true;
1613       B.addAlignmentAttr(Alignment);
1614       continue;
1615     }
1616     case lltok::kw_byval: {
1617       Type *Ty;
1618       if (ParseByValWithOptionalType(Ty))
1619         return true;
1620       B.addByValAttr(Ty);
1621       continue;
1622     }
1623     case lltok::kw_dereferenceable: {
1624       uint64_t Bytes;
1625       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1626         return true;
1627       B.addDereferenceableAttr(Bytes);
1628       continue;
1629     }
1630     case lltok::kw_dereferenceable_or_null: {
1631       uint64_t Bytes;
1632       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1633         return true;
1634       B.addDereferenceableOrNullAttr(Bytes);
1635       continue;
1636     }
1637     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1638     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1639     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1640     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1641     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1642     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1643     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1644     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1645     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1646     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1647     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1648     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1649     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1650     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1651     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1652     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1653     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1654 
1655     case lltok::kw_alignstack:
1656     case lltok::kw_alwaysinline:
1657     case lltok::kw_argmemonly:
1658     case lltok::kw_builtin:
1659     case lltok::kw_inlinehint:
1660     case lltok::kw_jumptable:
1661     case lltok::kw_minsize:
1662     case lltok::kw_naked:
1663     case lltok::kw_nobuiltin:
1664     case lltok::kw_noduplicate:
1665     case lltok::kw_noimplicitfloat:
1666     case lltok::kw_noinline:
1667     case lltok::kw_nonlazybind:
1668     case lltok::kw_noredzone:
1669     case lltok::kw_noreturn:
1670     case lltok::kw_nocf_check:
1671     case lltok::kw_nounwind:
1672     case lltok::kw_optforfuzzing:
1673     case lltok::kw_optnone:
1674     case lltok::kw_optsize:
1675     case lltok::kw_returns_twice:
1676     case lltok::kw_sanitize_address:
1677     case lltok::kw_sanitize_hwaddress:
1678     case lltok::kw_sanitize_memtag:
1679     case lltok::kw_sanitize_memory:
1680     case lltok::kw_sanitize_thread:
1681     case lltok::kw_speculative_load_hardening:
1682     case lltok::kw_ssp:
1683     case lltok::kw_sspreq:
1684     case lltok::kw_sspstrong:
1685     case lltok::kw_safestack:
1686     case lltok::kw_shadowcallstack:
1687     case lltok::kw_strictfp:
1688     case lltok::kw_uwtable:
1689       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1690       break;
1691     }
1692 
1693     Lex.Lex();
1694   }
1695 }
1696 
1697 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1698 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1699   bool HaveError = false;
1700 
1701   B.clear();
1702 
1703   while (true) {
1704     lltok::Kind Token = Lex.getKind();
1705     switch (Token) {
1706     default:  // End of attributes.
1707       return HaveError;
1708     case lltok::StringConstant: {
1709       if (ParseStringAttribute(B))
1710         return true;
1711       continue;
1712     }
1713     case lltok::kw_dereferenceable: {
1714       uint64_t Bytes;
1715       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1716         return true;
1717       B.addDereferenceableAttr(Bytes);
1718       continue;
1719     }
1720     case lltok::kw_dereferenceable_or_null: {
1721       uint64_t Bytes;
1722       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1723         return true;
1724       B.addDereferenceableOrNullAttr(Bytes);
1725       continue;
1726     }
1727     case lltok::kw_align: {
1728       MaybeAlign Alignment;
1729       if (ParseOptionalAlignment(Alignment))
1730         return true;
1731       B.addAlignmentAttr(Alignment);
1732       continue;
1733     }
1734     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1735     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1736     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1737     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1738     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1739 
1740     // Error handling.
1741     case lltok::kw_byval:
1742     case lltok::kw_inalloca:
1743     case lltok::kw_nest:
1744     case lltok::kw_nocapture:
1745     case lltok::kw_returned:
1746     case lltok::kw_sret:
1747     case lltok::kw_swifterror:
1748     case lltok::kw_swiftself:
1749     case lltok::kw_immarg:
1750       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1751       break;
1752 
1753     case lltok::kw_alignstack:
1754     case lltok::kw_alwaysinline:
1755     case lltok::kw_argmemonly:
1756     case lltok::kw_builtin:
1757     case lltok::kw_cold:
1758     case lltok::kw_inlinehint:
1759     case lltok::kw_jumptable:
1760     case lltok::kw_minsize:
1761     case lltok::kw_naked:
1762     case lltok::kw_nobuiltin:
1763     case lltok::kw_noduplicate:
1764     case lltok::kw_noimplicitfloat:
1765     case lltok::kw_noinline:
1766     case lltok::kw_nonlazybind:
1767     case lltok::kw_noredzone:
1768     case lltok::kw_noreturn:
1769     case lltok::kw_nocf_check:
1770     case lltok::kw_nounwind:
1771     case lltok::kw_optforfuzzing:
1772     case lltok::kw_optnone:
1773     case lltok::kw_optsize:
1774     case lltok::kw_returns_twice:
1775     case lltok::kw_sanitize_address:
1776     case lltok::kw_sanitize_hwaddress:
1777     case lltok::kw_sanitize_memtag:
1778     case lltok::kw_sanitize_memory:
1779     case lltok::kw_sanitize_thread:
1780     case lltok::kw_speculative_load_hardening:
1781     case lltok::kw_ssp:
1782     case lltok::kw_sspreq:
1783     case lltok::kw_sspstrong:
1784     case lltok::kw_safestack:
1785     case lltok::kw_shadowcallstack:
1786     case lltok::kw_strictfp:
1787     case lltok::kw_uwtable:
1788       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1789       break;
1790 
1791     case lltok::kw_readnone:
1792     case lltok::kw_readonly:
1793       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1794     }
1795 
1796     Lex.Lex();
1797   }
1798 }
1799 
1800 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1801   HasLinkage = true;
1802   switch (Kind) {
1803   default:
1804     HasLinkage = false;
1805     return GlobalValue::ExternalLinkage;
1806   case lltok::kw_private:
1807     return GlobalValue::PrivateLinkage;
1808   case lltok::kw_internal:
1809     return GlobalValue::InternalLinkage;
1810   case lltok::kw_weak:
1811     return GlobalValue::WeakAnyLinkage;
1812   case lltok::kw_weak_odr:
1813     return GlobalValue::WeakODRLinkage;
1814   case lltok::kw_linkonce:
1815     return GlobalValue::LinkOnceAnyLinkage;
1816   case lltok::kw_linkonce_odr:
1817     return GlobalValue::LinkOnceODRLinkage;
1818   case lltok::kw_available_externally:
1819     return GlobalValue::AvailableExternallyLinkage;
1820   case lltok::kw_appending:
1821     return GlobalValue::AppendingLinkage;
1822   case lltok::kw_common:
1823     return GlobalValue::CommonLinkage;
1824   case lltok::kw_extern_weak:
1825     return GlobalValue::ExternalWeakLinkage;
1826   case lltok::kw_external:
1827     return GlobalValue::ExternalLinkage;
1828   }
1829 }
1830 
1831 /// ParseOptionalLinkage
1832 ///   ::= /*empty*/
1833 ///   ::= 'private'
1834 ///   ::= 'internal'
1835 ///   ::= 'weak'
1836 ///   ::= 'weak_odr'
1837 ///   ::= 'linkonce'
1838 ///   ::= 'linkonce_odr'
1839 ///   ::= 'available_externally'
1840 ///   ::= 'appending'
1841 ///   ::= 'common'
1842 ///   ::= 'extern_weak'
1843 ///   ::= 'external'
1844 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1845                                     unsigned &Visibility,
1846                                     unsigned &DLLStorageClass,
1847                                     bool &DSOLocal) {
1848   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1849   if (HasLinkage)
1850     Lex.Lex();
1851   ParseOptionalDSOLocal(DSOLocal);
1852   ParseOptionalVisibility(Visibility);
1853   ParseOptionalDLLStorageClass(DLLStorageClass);
1854 
1855   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1856     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1857   }
1858 
1859   return false;
1860 }
1861 
1862 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1863   switch (Lex.getKind()) {
1864   default:
1865     DSOLocal = false;
1866     break;
1867   case lltok::kw_dso_local:
1868     DSOLocal = true;
1869     Lex.Lex();
1870     break;
1871   case lltok::kw_dso_preemptable:
1872     DSOLocal = false;
1873     Lex.Lex();
1874     break;
1875   }
1876 }
1877 
1878 /// ParseOptionalVisibility
1879 ///   ::= /*empty*/
1880 ///   ::= 'default'
1881 ///   ::= 'hidden'
1882 ///   ::= 'protected'
1883 ///
1884 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1885   switch (Lex.getKind()) {
1886   default:
1887     Res = GlobalValue::DefaultVisibility;
1888     return;
1889   case lltok::kw_default:
1890     Res = GlobalValue::DefaultVisibility;
1891     break;
1892   case lltok::kw_hidden:
1893     Res = GlobalValue::HiddenVisibility;
1894     break;
1895   case lltok::kw_protected:
1896     Res = GlobalValue::ProtectedVisibility;
1897     break;
1898   }
1899   Lex.Lex();
1900 }
1901 
1902 /// ParseOptionalDLLStorageClass
1903 ///   ::= /*empty*/
1904 ///   ::= 'dllimport'
1905 ///   ::= 'dllexport'
1906 ///
1907 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1908   switch (Lex.getKind()) {
1909   default:
1910     Res = GlobalValue::DefaultStorageClass;
1911     return;
1912   case lltok::kw_dllimport:
1913     Res = GlobalValue::DLLImportStorageClass;
1914     break;
1915   case lltok::kw_dllexport:
1916     Res = GlobalValue::DLLExportStorageClass;
1917     break;
1918   }
1919   Lex.Lex();
1920 }
1921 
1922 /// ParseOptionalCallingConv
1923 ///   ::= /*empty*/
1924 ///   ::= 'ccc'
1925 ///   ::= 'fastcc'
1926 ///   ::= 'intel_ocl_bicc'
1927 ///   ::= 'coldcc'
1928 ///   ::= 'cfguard_checkcc'
1929 ///   ::= 'x86_stdcallcc'
1930 ///   ::= 'x86_fastcallcc'
1931 ///   ::= 'x86_thiscallcc'
1932 ///   ::= 'x86_vectorcallcc'
1933 ///   ::= 'arm_apcscc'
1934 ///   ::= 'arm_aapcscc'
1935 ///   ::= 'arm_aapcs_vfpcc'
1936 ///   ::= 'aarch64_vector_pcs'
1937 ///   ::= 'aarch64_sve_vector_pcs'
1938 ///   ::= 'msp430_intrcc'
1939 ///   ::= 'avr_intrcc'
1940 ///   ::= 'avr_signalcc'
1941 ///   ::= 'ptx_kernel'
1942 ///   ::= 'ptx_device'
1943 ///   ::= 'spir_func'
1944 ///   ::= 'spir_kernel'
1945 ///   ::= 'x86_64_sysvcc'
1946 ///   ::= 'win64cc'
1947 ///   ::= 'webkit_jscc'
1948 ///   ::= 'anyregcc'
1949 ///   ::= 'preserve_mostcc'
1950 ///   ::= 'preserve_allcc'
1951 ///   ::= 'ghccc'
1952 ///   ::= 'swiftcc'
1953 ///   ::= 'x86_intrcc'
1954 ///   ::= 'hhvmcc'
1955 ///   ::= 'hhvm_ccc'
1956 ///   ::= 'cxx_fast_tlscc'
1957 ///   ::= 'amdgpu_vs'
1958 ///   ::= 'amdgpu_ls'
1959 ///   ::= 'amdgpu_hs'
1960 ///   ::= 'amdgpu_es'
1961 ///   ::= 'amdgpu_gs'
1962 ///   ::= 'amdgpu_ps'
1963 ///   ::= 'amdgpu_cs'
1964 ///   ::= 'amdgpu_kernel'
1965 ///   ::= 'tailcc'
1966 ///   ::= 'cc' UINT
1967 ///
1968 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1969   switch (Lex.getKind()) {
1970   default:                       CC = CallingConv::C; return false;
1971   case lltok::kw_ccc:            CC = CallingConv::C; break;
1972   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1973   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1974   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1975   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1976   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1977   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1978   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1979   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1980   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1981   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1982   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1983   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1984   case lltok::kw_aarch64_sve_vector_pcs:
1985     CC = CallingConv::AArch64_SVE_VectorCall;
1986     break;
1987   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1988   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1989   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1990   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1991   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1992   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1993   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1994   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1995   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1996   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1997   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1998   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1999   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2000   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2001   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2002   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2003   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2004   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2005   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2006   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2007   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2008   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2009   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2010   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2011   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2012   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2013   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2014   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2015   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2016   case lltok::kw_cc: {
2017       Lex.Lex();
2018       return ParseUInt32(CC);
2019     }
2020   }
2021 
2022   Lex.Lex();
2023   return false;
2024 }
2025 
2026 /// ParseMetadataAttachment
2027 ///   ::= !dbg !42
2028 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2029   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2030 
2031   std::string Name = Lex.getStrVal();
2032   Kind = M->getMDKindID(Name);
2033   Lex.Lex();
2034 
2035   return ParseMDNode(MD);
2036 }
2037 
2038 /// ParseInstructionMetadata
2039 ///   ::= !dbg !42 (',' !dbg !57)*
2040 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2041   do {
2042     if (Lex.getKind() != lltok::MetadataVar)
2043       return TokError("expected metadata after comma");
2044 
2045     unsigned MDK;
2046     MDNode *N;
2047     if (ParseMetadataAttachment(MDK, N))
2048       return true;
2049 
2050     Inst.setMetadata(MDK, N);
2051     if (MDK == LLVMContext::MD_tbaa)
2052       InstsWithTBAATag.push_back(&Inst);
2053 
2054     // If this is the end of the list, we're done.
2055   } while (EatIfPresent(lltok::comma));
2056   return false;
2057 }
2058 
2059 /// ParseGlobalObjectMetadataAttachment
2060 ///   ::= !dbg !57
2061 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2062   unsigned MDK;
2063   MDNode *N;
2064   if (ParseMetadataAttachment(MDK, N))
2065     return true;
2066 
2067   GO.addMetadata(MDK, *N);
2068   return false;
2069 }
2070 
2071 /// ParseOptionalFunctionMetadata
2072 ///   ::= (!dbg !57)*
2073 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2074   while (Lex.getKind() == lltok::MetadataVar)
2075     if (ParseGlobalObjectMetadataAttachment(F))
2076       return true;
2077   return false;
2078 }
2079 
2080 /// ParseOptionalAlignment
2081 ///   ::= /* empty */
2082 ///   ::= 'align' 4
2083 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2084   Alignment = None;
2085   if (!EatIfPresent(lltok::kw_align))
2086     return false;
2087   LocTy AlignLoc = Lex.getLoc();
2088   uint32_t Value = 0;
2089   if (ParseUInt32(Value))
2090     return true;
2091   if (!isPowerOf2_32(Value))
2092     return Error(AlignLoc, "alignment is not a power of two");
2093   if (Value > Value::MaximumAlignment)
2094     return Error(AlignLoc, "huge alignments are not supported yet");
2095   Alignment = Align(Value);
2096   return false;
2097 }
2098 
2099 /// ParseOptionalDerefAttrBytes
2100 ///   ::= /* empty */
2101 ///   ::= AttrKind '(' 4 ')'
2102 ///
2103 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2104 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2105                                            uint64_t &Bytes) {
2106   assert((AttrKind == lltok::kw_dereferenceable ||
2107           AttrKind == lltok::kw_dereferenceable_or_null) &&
2108          "contract!");
2109 
2110   Bytes = 0;
2111   if (!EatIfPresent(AttrKind))
2112     return false;
2113   LocTy ParenLoc = Lex.getLoc();
2114   if (!EatIfPresent(lltok::lparen))
2115     return Error(ParenLoc, "expected '('");
2116   LocTy DerefLoc = Lex.getLoc();
2117   if (ParseUInt64(Bytes)) return true;
2118   ParenLoc = Lex.getLoc();
2119   if (!EatIfPresent(lltok::rparen))
2120     return Error(ParenLoc, "expected ')'");
2121   if (!Bytes)
2122     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2123   return false;
2124 }
2125 
2126 /// ParseOptionalCommaAlign
2127 ///   ::=
2128 ///   ::= ',' align 4
2129 ///
2130 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2131 /// end.
2132 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2133                                        bool &AteExtraComma) {
2134   AteExtraComma = false;
2135   while (EatIfPresent(lltok::comma)) {
2136     // Metadata at the end is an early exit.
2137     if (Lex.getKind() == lltok::MetadataVar) {
2138       AteExtraComma = true;
2139       return false;
2140     }
2141 
2142     if (Lex.getKind() != lltok::kw_align)
2143       return Error(Lex.getLoc(), "expected metadata or 'align'");
2144 
2145     if (ParseOptionalAlignment(Alignment)) return true;
2146   }
2147 
2148   return false;
2149 }
2150 
2151 /// ParseOptionalCommaAddrSpace
2152 ///   ::=
2153 ///   ::= ',' addrspace(1)
2154 ///
2155 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2156 /// end.
2157 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2158                                            LocTy &Loc,
2159                                            bool &AteExtraComma) {
2160   AteExtraComma = false;
2161   while (EatIfPresent(lltok::comma)) {
2162     // Metadata at the end is an early exit.
2163     if (Lex.getKind() == lltok::MetadataVar) {
2164       AteExtraComma = true;
2165       return false;
2166     }
2167 
2168     Loc = Lex.getLoc();
2169     if (Lex.getKind() != lltok::kw_addrspace)
2170       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2171 
2172     if (ParseOptionalAddrSpace(AddrSpace))
2173       return true;
2174   }
2175 
2176   return false;
2177 }
2178 
2179 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2180                                        Optional<unsigned> &HowManyArg) {
2181   Lex.Lex();
2182 
2183   auto StartParen = Lex.getLoc();
2184   if (!EatIfPresent(lltok::lparen))
2185     return Error(StartParen, "expected '('");
2186 
2187   if (ParseUInt32(BaseSizeArg))
2188     return true;
2189 
2190   if (EatIfPresent(lltok::comma)) {
2191     auto HowManyAt = Lex.getLoc();
2192     unsigned HowMany;
2193     if (ParseUInt32(HowMany))
2194       return true;
2195     if (HowMany == BaseSizeArg)
2196       return Error(HowManyAt,
2197                    "'allocsize' indices can't refer to the same parameter");
2198     HowManyArg = HowMany;
2199   } else
2200     HowManyArg = None;
2201 
2202   auto EndParen = Lex.getLoc();
2203   if (!EatIfPresent(lltok::rparen))
2204     return Error(EndParen, "expected ')'");
2205   return false;
2206 }
2207 
2208 /// ParseScopeAndOrdering
2209 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2210 ///   else: ::=
2211 ///
2212 /// This sets Scope and Ordering to the parsed values.
2213 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2214                                      AtomicOrdering &Ordering) {
2215   if (!isAtomic)
2216     return false;
2217 
2218   return ParseScope(SSID) || ParseOrdering(Ordering);
2219 }
2220 
2221 /// ParseScope
2222 ///   ::= syncscope("singlethread" | "<target scope>")?
2223 ///
2224 /// This sets synchronization scope ID to the ID of the parsed value.
2225 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2226   SSID = SyncScope::System;
2227   if (EatIfPresent(lltok::kw_syncscope)) {
2228     auto StartParenAt = Lex.getLoc();
2229     if (!EatIfPresent(lltok::lparen))
2230       return Error(StartParenAt, "Expected '(' in syncscope");
2231 
2232     std::string SSN;
2233     auto SSNAt = Lex.getLoc();
2234     if (ParseStringConstant(SSN))
2235       return Error(SSNAt, "Expected synchronization scope name");
2236 
2237     auto EndParenAt = Lex.getLoc();
2238     if (!EatIfPresent(lltok::rparen))
2239       return Error(EndParenAt, "Expected ')' in syncscope");
2240 
2241     SSID = Context.getOrInsertSyncScopeID(SSN);
2242   }
2243 
2244   return false;
2245 }
2246 
2247 /// ParseOrdering
2248 ///   ::= AtomicOrdering
2249 ///
2250 /// This sets Ordering to the parsed value.
2251 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2252   switch (Lex.getKind()) {
2253   default: return TokError("Expected ordering on atomic instruction");
2254   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2255   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2256   // Not specified yet:
2257   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2258   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2259   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2260   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2261   case lltok::kw_seq_cst:
2262     Ordering = AtomicOrdering::SequentiallyConsistent;
2263     break;
2264   }
2265   Lex.Lex();
2266   return false;
2267 }
2268 
2269 /// ParseOptionalStackAlignment
2270 ///   ::= /* empty */
2271 ///   ::= 'alignstack' '(' 4 ')'
2272 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2273   Alignment = 0;
2274   if (!EatIfPresent(lltok::kw_alignstack))
2275     return false;
2276   LocTy ParenLoc = Lex.getLoc();
2277   if (!EatIfPresent(lltok::lparen))
2278     return Error(ParenLoc, "expected '('");
2279   LocTy AlignLoc = Lex.getLoc();
2280   if (ParseUInt32(Alignment)) return true;
2281   ParenLoc = Lex.getLoc();
2282   if (!EatIfPresent(lltok::rparen))
2283     return Error(ParenLoc, "expected ')'");
2284   if (!isPowerOf2_32(Alignment))
2285     return Error(AlignLoc, "stack alignment is not a power of two");
2286   return false;
2287 }
2288 
2289 /// ParseIndexList - This parses the index list for an insert/extractvalue
2290 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2291 /// comma at the end of the line and find that it is followed by metadata.
2292 /// Clients that don't allow metadata can call the version of this function that
2293 /// only takes one argument.
2294 ///
2295 /// ParseIndexList
2296 ///    ::=  (',' uint32)+
2297 ///
2298 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2299                               bool &AteExtraComma) {
2300   AteExtraComma = false;
2301 
2302   if (Lex.getKind() != lltok::comma)
2303     return TokError("expected ',' as start of index list");
2304 
2305   while (EatIfPresent(lltok::comma)) {
2306     if (Lex.getKind() == lltok::MetadataVar) {
2307       if (Indices.empty()) return TokError("expected index");
2308       AteExtraComma = true;
2309       return false;
2310     }
2311     unsigned Idx = 0;
2312     if (ParseUInt32(Idx)) return true;
2313     Indices.push_back(Idx);
2314   }
2315 
2316   return false;
2317 }
2318 
2319 //===----------------------------------------------------------------------===//
2320 // Type Parsing.
2321 //===----------------------------------------------------------------------===//
2322 
2323 /// ParseType - Parse a type.
2324 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2325   SMLoc TypeLoc = Lex.getLoc();
2326   switch (Lex.getKind()) {
2327   default:
2328     return TokError(Msg);
2329   case lltok::Type:
2330     // Type ::= 'float' | 'void' (etc)
2331     Result = Lex.getTyVal();
2332     Lex.Lex();
2333     break;
2334   case lltok::lbrace:
2335     // Type ::= StructType
2336     if (ParseAnonStructType(Result, false))
2337       return true;
2338     break;
2339   case lltok::lsquare:
2340     // Type ::= '[' ... ']'
2341     Lex.Lex(); // eat the lsquare.
2342     if (ParseArrayVectorType(Result, false))
2343       return true;
2344     break;
2345   case lltok::less: // Either vector or packed struct.
2346     // Type ::= '<' ... '>'
2347     Lex.Lex();
2348     if (Lex.getKind() == lltok::lbrace) {
2349       if (ParseAnonStructType(Result, true) ||
2350           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2351         return true;
2352     } else if (ParseArrayVectorType(Result, true))
2353       return true;
2354     break;
2355   case lltok::LocalVar: {
2356     // Type ::= %foo
2357     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2358 
2359     // If the type hasn't been defined yet, create a forward definition and
2360     // remember where that forward def'n was seen (in case it never is defined).
2361     if (!Entry.first) {
2362       Entry.first = StructType::create(Context, Lex.getStrVal());
2363       Entry.second = Lex.getLoc();
2364     }
2365     Result = Entry.first;
2366     Lex.Lex();
2367     break;
2368   }
2369 
2370   case lltok::LocalVarID: {
2371     // Type ::= %4
2372     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2373 
2374     // If the type hasn't been defined yet, create a forward definition and
2375     // remember where that forward def'n was seen (in case it never is defined).
2376     if (!Entry.first) {
2377       Entry.first = StructType::create(Context);
2378       Entry.second = Lex.getLoc();
2379     }
2380     Result = Entry.first;
2381     Lex.Lex();
2382     break;
2383   }
2384   }
2385 
2386   // Parse the type suffixes.
2387   while (true) {
2388     switch (Lex.getKind()) {
2389     // End of type.
2390     default:
2391       if (!AllowVoid && Result->isVoidTy())
2392         return Error(TypeLoc, "void type only allowed for function results");
2393       return false;
2394 
2395     // Type ::= Type '*'
2396     case lltok::star:
2397       if (Result->isLabelTy())
2398         return TokError("basic block pointers are invalid");
2399       if (Result->isVoidTy())
2400         return TokError("pointers to void are invalid - use i8* instead");
2401       if (!PointerType::isValidElementType(Result))
2402         return TokError("pointer to this type is invalid");
2403       Result = PointerType::getUnqual(Result);
2404       Lex.Lex();
2405       break;
2406 
2407     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2408     case lltok::kw_addrspace: {
2409       if (Result->isLabelTy())
2410         return TokError("basic block pointers are invalid");
2411       if (Result->isVoidTy())
2412         return TokError("pointers to void are invalid; use i8* instead");
2413       if (!PointerType::isValidElementType(Result))
2414         return TokError("pointer to this type is invalid");
2415       unsigned AddrSpace;
2416       if (ParseOptionalAddrSpace(AddrSpace) ||
2417           ParseToken(lltok::star, "expected '*' in address space"))
2418         return true;
2419 
2420       Result = PointerType::get(Result, AddrSpace);
2421       break;
2422     }
2423 
2424     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2425     case lltok::lparen:
2426       if (ParseFunctionType(Result))
2427         return true;
2428       break;
2429     }
2430   }
2431 }
2432 
2433 /// ParseParameterList
2434 ///    ::= '(' ')'
2435 ///    ::= '(' Arg (',' Arg)* ')'
2436 ///  Arg
2437 ///    ::= Type OptionalAttributes Value OptionalAttributes
2438 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2439                                   PerFunctionState &PFS, bool IsMustTailCall,
2440                                   bool InVarArgsFunc) {
2441   if (ParseToken(lltok::lparen, "expected '(' in call"))
2442     return true;
2443 
2444   while (Lex.getKind() != lltok::rparen) {
2445     // If this isn't the first argument, we need a comma.
2446     if (!ArgList.empty() &&
2447         ParseToken(lltok::comma, "expected ',' in argument list"))
2448       return true;
2449 
2450     // Parse an ellipsis if this is a musttail call in a variadic function.
2451     if (Lex.getKind() == lltok::dotdotdot) {
2452       const char *Msg = "unexpected ellipsis in argument list for ";
2453       if (!IsMustTailCall)
2454         return TokError(Twine(Msg) + "non-musttail call");
2455       if (!InVarArgsFunc)
2456         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2457       Lex.Lex();  // Lex the '...', it is purely for readability.
2458       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2459     }
2460 
2461     // Parse the argument.
2462     LocTy ArgLoc;
2463     Type *ArgTy = nullptr;
2464     AttrBuilder ArgAttrs;
2465     Value *V;
2466     if (ParseType(ArgTy, ArgLoc))
2467       return true;
2468 
2469     if (ArgTy->isMetadataTy()) {
2470       if (ParseMetadataAsValue(V, PFS))
2471         return true;
2472     } else {
2473       // Otherwise, handle normal operands.
2474       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2475         return true;
2476     }
2477     ArgList.push_back(ParamInfo(
2478         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2479   }
2480 
2481   if (IsMustTailCall && InVarArgsFunc)
2482     return TokError("expected '...' at end of argument list for musttail call "
2483                     "in varargs function");
2484 
2485   Lex.Lex();  // Lex the ')'.
2486   return false;
2487 }
2488 
2489 /// ParseByValWithOptionalType
2490 ///   ::= byval
2491 ///   ::= byval(<ty>)
2492 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2493   Result = nullptr;
2494   if (!EatIfPresent(lltok::kw_byval))
2495     return true;
2496   if (!EatIfPresent(lltok::lparen))
2497     return false;
2498   if (ParseType(Result))
2499     return true;
2500   if (!EatIfPresent(lltok::rparen))
2501     return Error(Lex.getLoc(), "expected ')'");
2502   return false;
2503 }
2504 
2505 /// ParseOptionalOperandBundles
2506 ///    ::= /*empty*/
2507 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2508 ///
2509 /// OperandBundle
2510 ///    ::= bundle-tag '(' ')'
2511 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2512 ///
2513 /// bundle-tag ::= String Constant
2514 bool LLParser::ParseOptionalOperandBundles(
2515     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2516   LocTy BeginLoc = Lex.getLoc();
2517   if (!EatIfPresent(lltok::lsquare))
2518     return false;
2519 
2520   while (Lex.getKind() != lltok::rsquare) {
2521     // If this isn't the first operand bundle, we need a comma.
2522     if (!BundleList.empty() &&
2523         ParseToken(lltok::comma, "expected ',' in input list"))
2524       return true;
2525 
2526     std::string Tag;
2527     if (ParseStringConstant(Tag))
2528       return true;
2529 
2530     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2531       return true;
2532 
2533     std::vector<Value *> Inputs;
2534     while (Lex.getKind() != lltok::rparen) {
2535       // If this isn't the first input, we need a comma.
2536       if (!Inputs.empty() &&
2537           ParseToken(lltok::comma, "expected ',' in input list"))
2538         return true;
2539 
2540       Type *Ty = nullptr;
2541       Value *Input = nullptr;
2542       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2543         return true;
2544       Inputs.push_back(Input);
2545     }
2546 
2547     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2548 
2549     Lex.Lex(); // Lex the ')'.
2550   }
2551 
2552   if (BundleList.empty())
2553     return Error(BeginLoc, "operand bundle set must not be empty");
2554 
2555   Lex.Lex(); // Lex the ']'.
2556   return false;
2557 }
2558 
2559 /// ParseArgumentList - Parse the argument list for a function type or function
2560 /// prototype.
2561 ///   ::= '(' ArgTypeListI ')'
2562 /// ArgTypeListI
2563 ///   ::= /*empty*/
2564 ///   ::= '...'
2565 ///   ::= ArgTypeList ',' '...'
2566 ///   ::= ArgType (',' ArgType)*
2567 ///
2568 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2569                                  bool &isVarArg){
2570   unsigned CurValID = 0;
2571   isVarArg = false;
2572   assert(Lex.getKind() == lltok::lparen);
2573   Lex.Lex(); // eat the (.
2574 
2575   if (Lex.getKind() == lltok::rparen) {
2576     // empty
2577   } else if (Lex.getKind() == lltok::dotdotdot) {
2578     isVarArg = true;
2579     Lex.Lex();
2580   } else {
2581     LocTy TypeLoc = Lex.getLoc();
2582     Type *ArgTy = nullptr;
2583     AttrBuilder Attrs;
2584     std::string Name;
2585 
2586     if (ParseType(ArgTy) ||
2587         ParseOptionalParamAttrs(Attrs)) return true;
2588 
2589     if (ArgTy->isVoidTy())
2590       return Error(TypeLoc, "argument can not have void type");
2591 
2592     if (Lex.getKind() == lltok::LocalVar) {
2593       Name = Lex.getStrVal();
2594       Lex.Lex();
2595     } else if (Lex.getKind() == lltok::LocalVarID) {
2596       if (Lex.getUIntVal() != CurValID)
2597         return Error(TypeLoc, "argument expected to be numbered '%" +
2598                                   Twine(CurValID) + "'");
2599       ++CurValID;
2600       Lex.Lex();
2601     }
2602 
2603     if (!FunctionType::isValidArgumentType(ArgTy))
2604       return Error(TypeLoc, "invalid type for function argument");
2605 
2606     ArgList.emplace_back(TypeLoc, ArgTy,
2607                          AttributeSet::get(ArgTy->getContext(), Attrs),
2608                          std::move(Name));
2609 
2610     while (EatIfPresent(lltok::comma)) {
2611       // Handle ... at end of arg list.
2612       if (EatIfPresent(lltok::dotdotdot)) {
2613         isVarArg = true;
2614         break;
2615       }
2616 
2617       // Otherwise must be an argument type.
2618       TypeLoc = Lex.getLoc();
2619       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2620 
2621       if (ArgTy->isVoidTy())
2622         return Error(TypeLoc, "argument can not have void type");
2623 
2624       if (Lex.getKind() == lltok::LocalVar) {
2625         Name = Lex.getStrVal();
2626         Lex.Lex();
2627       } else {
2628         if (Lex.getKind() == lltok::LocalVarID) {
2629           if (Lex.getUIntVal() != CurValID)
2630             return Error(TypeLoc, "argument expected to be numbered '%" +
2631                                       Twine(CurValID) + "'");
2632           Lex.Lex();
2633         }
2634         ++CurValID;
2635         Name = "";
2636       }
2637 
2638       if (!ArgTy->isFirstClassType())
2639         return Error(TypeLoc, "invalid type for function argument");
2640 
2641       ArgList.emplace_back(TypeLoc, ArgTy,
2642                            AttributeSet::get(ArgTy->getContext(), Attrs),
2643                            std::move(Name));
2644     }
2645   }
2646 
2647   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2648 }
2649 
2650 /// ParseFunctionType
2651 ///  ::= Type ArgumentList OptionalAttrs
2652 bool LLParser::ParseFunctionType(Type *&Result) {
2653   assert(Lex.getKind() == lltok::lparen);
2654 
2655   if (!FunctionType::isValidReturnType(Result))
2656     return TokError("invalid function return type");
2657 
2658   SmallVector<ArgInfo, 8> ArgList;
2659   bool isVarArg;
2660   if (ParseArgumentList(ArgList, isVarArg))
2661     return true;
2662 
2663   // Reject names on the arguments lists.
2664   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2665     if (!ArgList[i].Name.empty())
2666       return Error(ArgList[i].Loc, "argument name invalid in function type");
2667     if (ArgList[i].Attrs.hasAttributes())
2668       return Error(ArgList[i].Loc,
2669                    "argument attributes invalid in function type");
2670   }
2671 
2672   SmallVector<Type*, 16> ArgListTy;
2673   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2674     ArgListTy.push_back(ArgList[i].Ty);
2675 
2676   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2677   return false;
2678 }
2679 
2680 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2681 /// other structs.
2682 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2683   SmallVector<Type*, 8> Elts;
2684   if (ParseStructBody(Elts)) return true;
2685 
2686   Result = StructType::get(Context, Elts, Packed);
2687   return false;
2688 }
2689 
2690 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2691 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2692                                      std::pair<Type*, LocTy> &Entry,
2693                                      Type *&ResultTy) {
2694   // If the type was already defined, diagnose the redefinition.
2695   if (Entry.first && !Entry.second.isValid())
2696     return Error(TypeLoc, "redefinition of type");
2697 
2698   // If we have opaque, just return without filling in the definition for the
2699   // struct.  This counts as a definition as far as the .ll file goes.
2700   if (EatIfPresent(lltok::kw_opaque)) {
2701     // This type is being defined, so clear the location to indicate this.
2702     Entry.second = SMLoc();
2703 
2704     // If this type number has never been uttered, create it.
2705     if (!Entry.first)
2706       Entry.first = StructType::create(Context, Name);
2707     ResultTy = Entry.first;
2708     return false;
2709   }
2710 
2711   // If the type starts with '<', then it is either a packed struct or a vector.
2712   bool isPacked = EatIfPresent(lltok::less);
2713 
2714   // If we don't have a struct, then we have a random type alias, which we
2715   // accept for compatibility with old files.  These types are not allowed to be
2716   // forward referenced and not allowed to be recursive.
2717   if (Lex.getKind() != lltok::lbrace) {
2718     if (Entry.first)
2719       return Error(TypeLoc, "forward references to non-struct type");
2720 
2721     ResultTy = nullptr;
2722     if (isPacked)
2723       return ParseArrayVectorType(ResultTy, true);
2724     return ParseType(ResultTy);
2725   }
2726 
2727   // This type is being defined, so clear the location to indicate this.
2728   Entry.second = SMLoc();
2729 
2730   // If this type number has never been uttered, create it.
2731   if (!Entry.first)
2732     Entry.first = StructType::create(Context, Name);
2733 
2734   StructType *STy = cast<StructType>(Entry.first);
2735 
2736   SmallVector<Type*, 8> Body;
2737   if (ParseStructBody(Body) ||
2738       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2739     return true;
2740 
2741   STy->setBody(Body, isPacked);
2742   ResultTy = STy;
2743   return false;
2744 }
2745 
2746 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2747 ///   StructType
2748 ///     ::= '{' '}'
2749 ///     ::= '{' Type (',' Type)* '}'
2750 ///     ::= '<' '{' '}' '>'
2751 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2752 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2753   assert(Lex.getKind() == lltok::lbrace);
2754   Lex.Lex(); // Consume the '{'
2755 
2756   // Handle the empty struct.
2757   if (EatIfPresent(lltok::rbrace))
2758     return false;
2759 
2760   LocTy EltTyLoc = Lex.getLoc();
2761   Type *Ty = nullptr;
2762   if (ParseType(Ty)) return true;
2763   Body.push_back(Ty);
2764 
2765   if (!StructType::isValidElementType(Ty))
2766     return Error(EltTyLoc, "invalid element type for struct");
2767 
2768   while (EatIfPresent(lltok::comma)) {
2769     EltTyLoc = Lex.getLoc();
2770     if (ParseType(Ty)) return true;
2771 
2772     if (!StructType::isValidElementType(Ty))
2773       return Error(EltTyLoc, "invalid element type for struct");
2774 
2775     Body.push_back(Ty);
2776   }
2777 
2778   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2779 }
2780 
2781 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2782 /// token has already been consumed.
2783 ///   Type
2784 ///     ::= '[' APSINTVAL 'x' Types ']'
2785 ///     ::= '<' APSINTVAL 'x' Types '>'
2786 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2787 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2788   bool Scalable = false;
2789 
2790   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2791     Lex.Lex(); // consume the 'vscale'
2792     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2793       return true;
2794 
2795     Scalable = true;
2796   }
2797 
2798   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2799       Lex.getAPSIntVal().getBitWidth() > 64)
2800     return TokError("expected number in address space");
2801 
2802   LocTy SizeLoc = Lex.getLoc();
2803   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2804   Lex.Lex();
2805 
2806   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2807       return true;
2808 
2809   LocTy TypeLoc = Lex.getLoc();
2810   Type *EltTy = nullptr;
2811   if (ParseType(EltTy)) return true;
2812 
2813   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2814                  "expected end of sequential type"))
2815     return true;
2816 
2817   if (isVector) {
2818     if (Size == 0)
2819       return Error(SizeLoc, "zero element vector is illegal");
2820     if ((unsigned)Size != Size)
2821       return Error(SizeLoc, "size too large for vector");
2822     if (!VectorType::isValidElementType(EltTy))
2823       return Error(TypeLoc, "invalid vector element type");
2824     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2825   } else {
2826     if (!ArrayType::isValidElementType(EltTy))
2827       return Error(TypeLoc, "invalid array element type");
2828     Result = ArrayType::get(EltTy, Size);
2829   }
2830   return false;
2831 }
2832 
2833 //===----------------------------------------------------------------------===//
2834 // Function Semantic Analysis.
2835 //===----------------------------------------------------------------------===//
2836 
2837 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2838                                              int functionNumber)
2839   : P(p), F(f), FunctionNumber(functionNumber) {
2840 
2841   // Insert unnamed arguments into the NumberedVals list.
2842   for (Argument &A : F.args())
2843     if (!A.hasName())
2844       NumberedVals.push_back(&A);
2845 }
2846 
2847 LLParser::PerFunctionState::~PerFunctionState() {
2848   // If there were any forward referenced non-basicblock values, delete them.
2849 
2850   for (const auto &P : ForwardRefVals) {
2851     if (isa<BasicBlock>(P.second.first))
2852       continue;
2853     P.second.first->replaceAllUsesWith(
2854         UndefValue::get(P.second.first->getType()));
2855     P.second.first->deleteValue();
2856   }
2857 
2858   for (const auto &P : ForwardRefValIDs) {
2859     if (isa<BasicBlock>(P.second.first))
2860       continue;
2861     P.second.first->replaceAllUsesWith(
2862         UndefValue::get(P.second.first->getType()));
2863     P.second.first->deleteValue();
2864   }
2865 }
2866 
2867 bool LLParser::PerFunctionState::FinishFunction() {
2868   if (!ForwardRefVals.empty())
2869     return P.Error(ForwardRefVals.begin()->second.second,
2870                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2871                    "'");
2872   if (!ForwardRefValIDs.empty())
2873     return P.Error(ForwardRefValIDs.begin()->second.second,
2874                    "use of undefined value '%" +
2875                    Twine(ForwardRefValIDs.begin()->first) + "'");
2876   return false;
2877 }
2878 
2879 /// GetVal - Get a value with the specified name or ID, creating a
2880 /// forward reference record if needed.  This can return null if the value
2881 /// exists but does not have the right type.
2882 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2883                                           LocTy Loc, bool IsCall) {
2884   // Look this name up in the normal function symbol table.
2885   Value *Val = F.getValueSymbolTable()->lookup(Name);
2886 
2887   // If this is a forward reference for the value, see if we already created a
2888   // forward ref record.
2889   if (!Val) {
2890     auto I = ForwardRefVals.find(Name);
2891     if (I != ForwardRefVals.end())
2892       Val = I->second.first;
2893   }
2894 
2895   // If we have the value in the symbol table or fwd-ref table, return it.
2896   if (Val)
2897     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2898 
2899   // Don't make placeholders with invalid type.
2900   if (!Ty->isFirstClassType()) {
2901     P.Error(Loc, "invalid use of a non-first-class type");
2902     return nullptr;
2903   }
2904 
2905   // Otherwise, create a new forward reference for this value and remember it.
2906   Value *FwdVal;
2907   if (Ty->isLabelTy()) {
2908     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2909   } else {
2910     FwdVal = new Argument(Ty, Name);
2911   }
2912 
2913   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2914   return FwdVal;
2915 }
2916 
2917 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2918                                           bool IsCall) {
2919   // Look this name up in the normal function symbol table.
2920   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2921 
2922   // If this is a forward reference for the value, see if we already created a
2923   // forward ref record.
2924   if (!Val) {
2925     auto I = ForwardRefValIDs.find(ID);
2926     if (I != ForwardRefValIDs.end())
2927       Val = I->second.first;
2928   }
2929 
2930   // If we have the value in the symbol table or fwd-ref table, return it.
2931   if (Val)
2932     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2933 
2934   if (!Ty->isFirstClassType()) {
2935     P.Error(Loc, "invalid use of a non-first-class type");
2936     return nullptr;
2937   }
2938 
2939   // Otherwise, create a new forward reference for this value and remember it.
2940   Value *FwdVal;
2941   if (Ty->isLabelTy()) {
2942     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2943   } else {
2944     FwdVal = new Argument(Ty);
2945   }
2946 
2947   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2948   return FwdVal;
2949 }
2950 
2951 /// SetInstName - After an instruction is parsed and inserted into its
2952 /// basic block, this installs its name.
2953 bool LLParser::PerFunctionState::SetInstName(int NameID,
2954                                              const std::string &NameStr,
2955                                              LocTy NameLoc, Instruction *Inst) {
2956   // If this instruction has void type, it cannot have a name or ID specified.
2957   if (Inst->getType()->isVoidTy()) {
2958     if (NameID != -1 || !NameStr.empty())
2959       return P.Error(NameLoc, "instructions returning void cannot have a name");
2960     return false;
2961   }
2962 
2963   // If this was a numbered instruction, verify that the instruction is the
2964   // expected value and resolve any forward references.
2965   if (NameStr.empty()) {
2966     // If neither a name nor an ID was specified, just use the next ID.
2967     if (NameID == -1)
2968       NameID = NumberedVals.size();
2969 
2970     if (unsigned(NameID) != NumberedVals.size())
2971       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2972                      Twine(NumberedVals.size()) + "'");
2973 
2974     auto FI = ForwardRefValIDs.find(NameID);
2975     if (FI != ForwardRefValIDs.end()) {
2976       Value *Sentinel = FI->second.first;
2977       if (Sentinel->getType() != Inst->getType())
2978         return P.Error(NameLoc, "instruction forward referenced with type '" +
2979                        getTypeString(FI->second.first->getType()) + "'");
2980 
2981       Sentinel->replaceAllUsesWith(Inst);
2982       Sentinel->deleteValue();
2983       ForwardRefValIDs.erase(FI);
2984     }
2985 
2986     NumberedVals.push_back(Inst);
2987     return false;
2988   }
2989 
2990   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2991   auto FI = ForwardRefVals.find(NameStr);
2992   if (FI != ForwardRefVals.end()) {
2993     Value *Sentinel = FI->second.first;
2994     if (Sentinel->getType() != Inst->getType())
2995       return P.Error(NameLoc, "instruction forward referenced with type '" +
2996                      getTypeString(FI->second.first->getType()) + "'");
2997 
2998     Sentinel->replaceAllUsesWith(Inst);
2999     Sentinel->deleteValue();
3000     ForwardRefVals.erase(FI);
3001   }
3002 
3003   // Set the name on the instruction.
3004   Inst->setName(NameStr);
3005 
3006   if (Inst->getName() != NameStr)
3007     return P.Error(NameLoc, "multiple definition of local value named '" +
3008                    NameStr + "'");
3009   return false;
3010 }
3011 
3012 /// GetBB - Get a basic block with the specified name or ID, creating a
3013 /// forward reference record if needed.
3014 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3015                                               LocTy Loc) {
3016   return dyn_cast_or_null<BasicBlock>(
3017       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3018 }
3019 
3020 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3021   return dyn_cast_or_null<BasicBlock>(
3022       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3023 }
3024 
3025 /// DefineBB - Define the specified basic block, which is either named or
3026 /// unnamed.  If there is an error, this returns null otherwise it returns
3027 /// the block being defined.
3028 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3029                                                  int NameID, LocTy Loc) {
3030   BasicBlock *BB;
3031   if (Name.empty()) {
3032     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3033       P.Error(Loc, "label expected to be numbered '" +
3034                        Twine(NumberedVals.size()) + "'");
3035       return nullptr;
3036     }
3037     BB = GetBB(NumberedVals.size(), Loc);
3038     if (!BB) {
3039       P.Error(Loc, "unable to create block numbered '" +
3040                        Twine(NumberedVals.size()) + "'");
3041       return nullptr;
3042     }
3043   } else {
3044     BB = GetBB(Name, Loc);
3045     if (!BB) {
3046       P.Error(Loc, "unable to create block named '" + Name + "'");
3047       return nullptr;
3048     }
3049   }
3050 
3051   // Move the block to the end of the function.  Forward ref'd blocks are
3052   // inserted wherever they happen to be referenced.
3053   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3054 
3055   // Remove the block from forward ref sets.
3056   if (Name.empty()) {
3057     ForwardRefValIDs.erase(NumberedVals.size());
3058     NumberedVals.push_back(BB);
3059   } else {
3060     // BB forward references are already in the function symbol table.
3061     ForwardRefVals.erase(Name);
3062   }
3063 
3064   return BB;
3065 }
3066 
3067 //===----------------------------------------------------------------------===//
3068 // Constants.
3069 //===----------------------------------------------------------------------===//
3070 
3071 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3072 /// type implied.  For example, if we parse "4" we don't know what integer type
3073 /// it has.  The value will later be combined with its type and checked for
3074 /// sanity.  PFS is used to convert function-local operands of metadata (since
3075 /// metadata operands are not just parsed here but also converted to values).
3076 /// PFS can be null when we are not parsing metadata values inside a function.
3077 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3078   ID.Loc = Lex.getLoc();
3079   switch (Lex.getKind()) {
3080   default: return TokError("expected value token");
3081   case lltok::GlobalID:  // @42
3082     ID.UIntVal = Lex.getUIntVal();
3083     ID.Kind = ValID::t_GlobalID;
3084     break;
3085   case lltok::GlobalVar:  // @foo
3086     ID.StrVal = Lex.getStrVal();
3087     ID.Kind = ValID::t_GlobalName;
3088     break;
3089   case lltok::LocalVarID:  // %42
3090     ID.UIntVal = Lex.getUIntVal();
3091     ID.Kind = ValID::t_LocalID;
3092     break;
3093   case lltok::LocalVar:  // %foo
3094     ID.StrVal = Lex.getStrVal();
3095     ID.Kind = ValID::t_LocalName;
3096     break;
3097   case lltok::APSInt:
3098     ID.APSIntVal = Lex.getAPSIntVal();
3099     ID.Kind = ValID::t_APSInt;
3100     break;
3101   case lltok::APFloat:
3102     ID.APFloatVal = Lex.getAPFloatVal();
3103     ID.Kind = ValID::t_APFloat;
3104     break;
3105   case lltok::kw_true:
3106     ID.ConstantVal = ConstantInt::getTrue(Context);
3107     ID.Kind = ValID::t_Constant;
3108     break;
3109   case lltok::kw_false:
3110     ID.ConstantVal = ConstantInt::getFalse(Context);
3111     ID.Kind = ValID::t_Constant;
3112     break;
3113   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3114   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3115   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3116   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3117 
3118   case lltok::lbrace: {
3119     // ValID ::= '{' ConstVector '}'
3120     Lex.Lex();
3121     SmallVector<Constant*, 16> Elts;
3122     if (ParseGlobalValueVector(Elts) ||
3123         ParseToken(lltok::rbrace, "expected end of struct constant"))
3124       return true;
3125 
3126     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3127     ID.UIntVal = Elts.size();
3128     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3129            Elts.size() * sizeof(Elts[0]));
3130     ID.Kind = ValID::t_ConstantStruct;
3131     return false;
3132   }
3133   case lltok::less: {
3134     // ValID ::= '<' ConstVector '>'         --> Vector.
3135     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3136     Lex.Lex();
3137     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3138 
3139     SmallVector<Constant*, 16> Elts;
3140     LocTy FirstEltLoc = Lex.getLoc();
3141     if (ParseGlobalValueVector(Elts) ||
3142         (isPackedStruct &&
3143          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3144         ParseToken(lltok::greater, "expected end of constant"))
3145       return true;
3146 
3147     if (isPackedStruct) {
3148       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3149       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3150              Elts.size() * sizeof(Elts[0]));
3151       ID.UIntVal = Elts.size();
3152       ID.Kind = ValID::t_PackedConstantStruct;
3153       return false;
3154     }
3155 
3156     if (Elts.empty())
3157       return Error(ID.Loc, "constant vector must not be empty");
3158 
3159     if (!Elts[0]->getType()->isIntegerTy() &&
3160         !Elts[0]->getType()->isFloatingPointTy() &&
3161         !Elts[0]->getType()->isPointerTy())
3162       return Error(FirstEltLoc,
3163             "vector elements must have integer, pointer or floating point type");
3164 
3165     // Verify that all the vector elements have the same type.
3166     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3167       if (Elts[i]->getType() != Elts[0]->getType())
3168         return Error(FirstEltLoc,
3169                      "vector element #" + Twine(i) +
3170                     " is not of type '" + getTypeString(Elts[0]->getType()));
3171 
3172     ID.ConstantVal = ConstantVector::get(Elts);
3173     ID.Kind = ValID::t_Constant;
3174     return false;
3175   }
3176   case lltok::lsquare: {   // Array Constant
3177     Lex.Lex();
3178     SmallVector<Constant*, 16> Elts;
3179     LocTy FirstEltLoc = Lex.getLoc();
3180     if (ParseGlobalValueVector(Elts) ||
3181         ParseToken(lltok::rsquare, "expected end of array constant"))
3182       return true;
3183 
3184     // Handle empty element.
3185     if (Elts.empty()) {
3186       // Use undef instead of an array because it's inconvenient to determine
3187       // the element type at this point, there being no elements to examine.
3188       ID.Kind = ValID::t_EmptyArray;
3189       return false;
3190     }
3191 
3192     if (!Elts[0]->getType()->isFirstClassType())
3193       return Error(FirstEltLoc, "invalid array element type: " +
3194                    getTypeString(Elts[0]->getType()));
3195 
3196     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3197 
3198     // Verify all elements are correct type!
3199     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3200       if (Elts[i]->getType() != Elts[0]->getType())
3201         return Error(FirstEltLoc,
3202                      "array element #" + Twine(i) +
3203                      " is not of type '" + getTypeString(Elts[0]->getType()));
3204     }
3205 
3206     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3207     ID.Kind = ValID::t_Constant;
3208     return false;
3209   }
3210   case lltok::kw_c:  // c "foo"
3211     Lex.Lex();
3212     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3213                                                   false);
3214     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3215     ID.Kind = ValID::t_Constant;
3216     return false;
3217 
3218   case lltok::kw_asm: {
3219     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3220     //             STRINGCONSTANT
3221     bool HasSideEffect, AlignStack, AsmDialect;
3222     Lex.Lex();
3223     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3224         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3225         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3226         ParseStringConstant(ID.StrVal) ||
3227         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3228         ParseToken(lltok::StringConstant, "expected constraint string"))
3229       return true;
3230     ID.StrVal2 = Lex.getStrVal();
3231     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3232       (unsigned(AsmDialect)<<2);
3233     ID.Kind = ValID::t_InlineAsm;
3234     return false;
3235   }
3236 
3237   case lltok::kw_blockaddress: {
3238     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3239     Lex.Lex();
3240 
3241     ValID Fn, Label;
3242 
3243     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3244         ParseValID(Fn) ||
3245         ParseToken(lltok::comma, "expected comma in block address expression")||
3246         ParseValID(Label) ||
3247         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3248       return true;
3249 
3250     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3251       return Error(Fn.Loc, "expected function name in blockaddress");
3252     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3253       return Error(Label.Loc, "expected basic block name in blockaddress");
3254 
3255     // Try to find the function (but skip it if it's forward-referenced).
3256     GlobalValue *GV = nullptr;
3257     if (Fn.Kind == ValID::t_GlobalID) {
3258       if (Fn.UIntVal < NumberedVals.size())
3259         GV = NumberedVals[Fn.UIntVal];
3260     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3261       GV = M->getNamedValue(Fn.StrVal);
3262     }
3263     Function *F = nullptr;
3264     if (GV) {
3265       // Confirm that it's actually a function with a definition.
3266       if (!isa<Function>(GV))
3267         return Error(Fn.Loc, "expected function name in blockaddress");
3268       F = cast<Function>(GV);
3269       if (F->isDeclaration())
3270         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3271     }
3272 
3273     if (!F) {
3274       // Make a global variable as a placeholder for this reference.
3275       GlobalValue *&FwdRef =
3276           ForwardRefBlockAddresses.insert(std::make_pair(
3277                                               std::move(Fn),
3278                                               std::map<ValID, GlobalValue *>()))
3279               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3280               .first->second;
3281       if (!FwdRef)
3282         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3283                                     GlobalValue::InternalLinkage, nullptr, "");
3284       ID.ConstantVal = FwdRef;
3285       ID.Kind = ValID::t_Constant;
3286       return false;
3287     }
3288 
3289     // We found the function; now find the basic block.  Don't use PFS, since we
3290     // might be inside a constant expression.
3291     BasicBlock *BB;
3292     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3293       if (Label.Kind == ValID::t_LocalID)
3294         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3295       else
3296         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3297       if (!BB)
3298         return Error(Label.Loc, "referenced value is not a basic block");
3299     } else {
3300       if (Label.Kind == ValID::t_LocalID)
3301         return Error(Label.Loc, "cannot take address of numeric label after "
3302                                 "the function is defined");
3303       BB = dyn_cast_or_null<BasicBlock>(
3304           F->getValueSymbolTable()->lookup(Label.StrVal));
3305       if (!BB)
3306         return Error(Label.Loc, "referenced value is not a basic block");
3307     }
3308 
3309     ID.ConstantVal = BlockAddress::get(F, BB);
3310     ID.Kind = ValID::t_Constant;
3311     return false;
3312   }
3313 
3314   case lltok::kw_trunc:
3315   case lltok::kw_zext:
3316   case lltok::kw_sext:
3317   case lltok::kw_fptrunc:
3318   case lltok::kw_fpext:
3319   case lltok::kw_bitcast:
3320   case lltok::kw_addrspacecast:
3321   case lltok::kw_uitofp:
3322   case lltok::kw_sitofp:
3323   case lltok::kw_fptoui:
3324   case lltok::kw_fptosi:
3325   case lltok::kw_inttoptr:
3326   case lltok::kw_ptrtoint: {
3327     unsigned Opc = Lex.getUIntVal();
3328     Type *DestTy = nullptr;
3329     Constant *SrcVal;
3330     Lex.Lex();
3331     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3332         ParseGlobalTypeAndValue(SrcVal) ||
3333         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3334         ParseType(DestTy) ||
3335         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3336       return true;
3337     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3338       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3339                    getTypeString(SrcVal->getType()) + "' to '" +
3340                    getTypeString(DestTy) + "'");
3341     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3342                                                  SrcVal, DestTy);
3343     ID.Kind = ValID::t_Constant;
3344     return false;
3345   }
3346   case lltok::kw_extractvalue: {
3347     Lex.Lex();
3348     Constant *Val;
3349     SmallVector<unsigned, 4> Indices;
3350     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3351         ParseGlobalTypeAndValue(Val) ||
3352         ParseIndexList(Indices) ||
3353         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3354       return true;
3355 
3356     if (!Val->getType()->isAggregateType())
3357       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3358     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3359       return Error(ID.Loc, "invalid indices for extractvalue");
3360     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3361     ID.Kind = ValID::t_Constant;
3362     return false;
3363   }
3364   case lltok::kw_insertvalue: {
3365     Lex.Lex();
3366     Constant *Val0, *Val1;
3367     SmallVector<unsigned, 4> Indices;
3368     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3369         ParseGlobalTypeAndValue(Val0) ||
3370         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3371         ParseGlobalTypeAndValue(Val1) ||
3372         ParseIndexList(Indices) ||
3373         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3374       return true;
3375     if (!Val0->getType()->isAggregateType())
3376       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3377     Type *IndexedType =
3378         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3379     if (!IndexedType)
3380       return Error(ID.Loc, "invalid indices for insertvalue");
3381     if (IndexedType != Val1->getType())
3382       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3383                                getTypeString(Val1->getType()) +
3384                                "' instead of '" + getTypeString(IndexedType) +
3385                                "'");
3386     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3387     ID.Kind = ValID::t_Constant;
3388     return false;
3389   }
3390   case lltok::kw_icmp:
3391   case lltok::kw_fcmp: {
3392     unsigned PredVal, Opc = Lex.getUIntVal();
3393     Constant *Val0, *Val1;
3394     Lex.Lex();
3395     if (ParseCmpPredicate(PredVal, Opc) ||
3396         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3397         ParseGlobalTypeAndValue(Val0) ||
3398         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3399         ParseGlobalTypeAndValue(Val1) ||
3400         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3401       return true;
3402 
3403     if (Val0->getType() != Val1->getType())
3404       return Error(ID.Loc, "compare operands must have the same type");
3405 
3406     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3407 
3408     if (Opc == Instruction::FCmp) {
3409       if (!Val0->getType()->isFPOrFPVectorTy())
3410         return Error(ID.Loc, "fcmp requires floating point operands");
3411       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3412     } else {
3413       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3414       if (!Val0->getType()->isIntOrIntVectorTy() &&
3415           !Val0->getType()->isPtrOrPtrVectorTy())
3416         return Error(ID.Loc, "icmp requires pointer or integer operands");
3417       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3418     }
3419     ID.Kind = ValID::t_Constant;
3420     return false;
3421   }
3422 
3423   // Unary Operators.
3424   case lltok::kw_fneg: {
3425     unsigned Opc = Lex.getUIntVal();
3426     Constant *Val;
3427     Lex.Lex();
3428     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3429         ParseGlobalTypeAndValue(Val) ||
3430         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3431       return true;
3432 
3433     // Check that the type is valid for the operator.
3434     switch (Opc) {
3435     case Instruction::FNeg:
3436       if (!Val->getType()->isFPOrFPVectorTy())
3437         return Error(ID.Loc, "constexpr requires fp operands");
3438       break;
3439     default: llvm_unreachable("Unknown unary operator!");
3440     }
3441     unsigned Flags = 0;
3442     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3443     ID.ConstantVal = C;
3444     ID.Kind = ValID::t_Constant;
3445     return false;
3446   }
3447   // Binary Operators.
3448   case lltok::kw_add:
3449   case lltok::kw_fadd:
3450   case lltok::kw_sub:
3451   case lltok::kw_fsub:
3452   case lltok::kw_mul:
3453   case lltok::kw_fmul:
3454   case lltok::kw_udiv:
3455   case lltok::kw_sdiv:
3456   case lltok::kw_fdiv:
3457   case lltok::kw_urem:
3458   case lltok::kw_srem:
3459   case lltok::kw_frem:
3460   case lltok::kw_shl:
3461   case lltok::kw_lshr:
3462   case lltok::kw_ashr: {
3463     bool NUW = false;
3464     bool NSW = false;
3465     bool Exact = false;
3466     unsigned Opc = Lex.getUIntVal();
3467     Constant *Val0, *Val1;
3468     Lex.Lex();
3469     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3470         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3471       if (EatIfPresent(lltok::kw_nuw))
3472         NUW = true;
3473       if (EatIfPresent(lltok::kw_nsw)) {
3474         NSW = true;
3475         if (EatIfPresent(lltok::kw_nuw))
3476           NUW = true;
3477       }
3478     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3479                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3480       if (EatIfPresent(lltok::kw_exact))
3481         Exact = true;
3482     }
3483     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3484         ParseGlobalTypeAndValue(Val0) ||
3485         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3486         ParseGlobalTypeAndValue(Val1) ||
3487         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3488       return true;
3489     if (Val0->getType() != Val1->getType())
3490       return Error(ID.Loc, "operands of constexpr must have same type");
3491     // Check that the type is valid for the operator.
3492     switch (Opc) {
3493     case Instruction::Add:
3494     case Instruction::Sub:
3495     case Instruction::Mul:
3496     case Instruction::UDiv:
3497     case Instruction::SDiv:
3498     case Instruction::URem:
3499     case Instruction::SRem:
3500     case Instruction::Shl:
3501     case Instruction::AShr:
3502     case Instruction::LShr:
3503       if (!Val0->getType()->isIntOrIntVectorTy())
3504         return Error(ID.Loc, "constexpr requires integer operands");
3505       break;
3506     case Instruction::FAdd:
3507     case Instruction::FSub:
3508     case Instruction::FMul:
3509     case Instruction::FDiv:
3510     case Instruction::FRem:
3511       if (!Val0->getType()->isFPOrFPVectorTy())
3512         return Error(ID.Loc, "constexpr requires fp operands");
3513       break;
3514     default: llvm_unreachable("Unknown binary operator!");
3515     }
3516     unsigned Flags = 0;
3517     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3518     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3519     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3520     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3521     ID.ConstantVal = C;
3522     ID.Kind = ValID::t_Constant;
3523     return false;
3524   }
3525 
3526   // Logical Operations
3527   case lltok::kw_and:
3528   case lltok::kw_or:
3529   case lltok::kw_xor: {
3530     unsigned Opc = Lex.getUIntVal();
3531     Constant *Val0, *Val1;
3532     Lex.Lex();
3533     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3534         ParseGlobalTypeAndValue(Val0) ||
3535         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3536         ParseGlobalTypeAndValue(Val1) ||
3537         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3538       return true;
3539     if (Val0->getType() != Val1->getType())
3540       return Error(ID.Loc, "operands of constexpr must have same type");
3541     if (!Val0->getType()->isIntOrIntVectorTy())
3542       return Error(ID.Loc,
3543                    "constexpr requires integer or integer vector operands");
3544     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3545     ID.Kind = ValID::t_Constant;
3546     return false;
3547   }
3548 
3549   case lltok::kw_getelementptr:
3550   case lltok::kw_shufflevector:
3551   case lltok::kw_insertelement:
3552   case lltok::kw_extractelement:
3553   case lltok::kw_select: {
3554     unsigned Opc = Lex.getUIntVal();
3555     SmallVector<Constant*, 16> Elts;
3556     bool InBounds = false;
3557     Type *Ty;
3558     Lex.Lex();
3559 
3560     if (Opc == Instruction::GetElementPtr)
3561       InBounds = EatIfPresent(lltok::kw_inbounds);
3562 
3563     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3564       return true;
3565 
3566     LocTy ExplicitTypeLoc = Lex.getLoc();
3567     if (Opc == Instruction::GetElementPtr) {
3568       if (ParseType(Ty) ||
3569           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3570         return true;
3571     }
3572 
3573     Optional<unsigned> InRangeOp;
3574     if (ParseGlobalValueVector(
3575             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3576         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3577       return true;
3578 
3579     if (Opc == Instruction::GetElementPtr) {
3580       if (Elts.size() == 0 ||
3581           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3582         return Error(ID.Loc, "base of getelementptr must be a pointer");
3583 
3584       Type *BaseType = Elts[0]->getType();
3585       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3586       if (Ty != BasePointerType->getElementType())
3587         return Error(
3588             ExplicitTypeLoc,
3589             "explicit pointee type doesn't match operand's pointee type");
3590 
3591       unsigned GEPWidth =
3592           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3593 
3594       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3595       for (Constant *Val : Indices) {
3596         Type *ValTy = Val->getType();
3597         if (!ValTy->isIntOrIntVectorTy())
3598           return Error(ID.Loc, "getelementptr index must be an integer");
3599         if (ValTy->isVectorTy()) {
3600           unsigned ValNumEl = ValTy->getVectorNumElements();
3601           if (GEPWidth && (ValNumEl != GEPWidth))
3602             return Error(
3603                 ID.Loc,
3604                 "getelementptr vector index has a wrong number of elements");
3605           // GEPWidth may have been unknown because the base is a scalar,
3606           // but it is known now.
3607           GEPWidth = ValNumEl;
3608         }
3609       }
3610 
3611       SmallPtrSet<Type*, 4> Visited;
3612       if (!Indices.empty() && !Ty->isSized(&Visited))
3613         return Error(ID.Loc, "base element of getelementptr must be sized");
3614 
3615       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3616         return Error(ID.Loc, "invalid getelementptr indices");
3617 
3618       if (InRangeOp) {
3619         if (*InRangeOp == 0)
3620           return Error(ID.Loc,
3621                        "inrange keyword may not appear on pointer operand");
3622         --*InRangeOp;
3623       }
3624 
3625       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3626                                                       InBounds, InRangeOp);
3627     } else if (Opc == Instruction::Select) {
3628       if (Elts.size() != 3)
3629         return Error(ID.Loc, "expected three operands to select");
3630       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3631                                                               Elts[2]))
3632         return Error(ID.Loc, Reason);
3633       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3634     } else if (Opc == Instruction::ShuffleVector) {
3635       if (Elts.size() != 3)
3636         return Error(ID.Loc, "expected three operands to shufflevector");
3637       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3638         return Error(ID.Loc, "invalid operands to shufflevector");
3639       SmallVector<int, 16> Mask;
3640       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3641       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3642     } else if (Opc == Instruction::ExtractElement) {
3643       if (Elts.size() != 2)
3644         return Error(ID.Loc, "expected two operands to extractelement");
3645       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3646         return Error(ID.Loc, "invalid extractelement operands");
3647       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3648     } else {
3649       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3650       if (Elts.size() != 3)
3651       return Error(ID.Loc, "expected three operands to insertelement");
3652       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3653         return Error(ID.Loc, "invalid insertelement operands");
3654       ID.ConstantVal =
3655                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3656     }
3657 
3658     ID.Kind = ValID::t_Constant;
3659     return false;
3660   }
3661   }
3662 
3663   Lex.Lex();
3664   return false;
3665 }
3666 
3667 /// ParseGlobalValue - Parse a global value with the specified type.
3668 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3669   C = nullptr;
3670   ValID ID;
3671   Value *V = nullptr;
3672   bool Parsed = ParseValID(ID) ||
3673                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3674   if (V && !(C = dyn_cast<Constant>(V)))
3675     return Error(ID.Loc, "global values must be constants");
3676   return Parsed;
3677 }
3678 
3679 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3680   Type *Ty = nullptr;
3681   return ParseType(Ty) ||
3682          ParseGlobalValue(Ty, V);
3683 }
3684 
3685 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3686   C = nullptr;
3687 
3688   LocTy KwLoc = Lex.getLoc();
3689   if (!EatIfPresent(lltok::kw_comdat))
3690     return false;
3691 
3692   if (EatIfPresent(lltok::lparen)) {
3693     if (Lex.getKind() != lltok::ComdatVar)
3694       return TokError("expected comdat variable");
3695     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3696     Lex.Lex();
3697     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3698       return true;
3699   } else {
3700     if (GlobalName.empty())
3701       return TokError("comdat cannot be unnamed");
3702     C = getComdat(std::string(GlobalName), KwLoc);
3703   }
3704 
3705   return false;
3706 }
3707 
3708 /// ParseGlobalValueVector
3709 ///   ::= /*empty*/
3710 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3711 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3712                                       Optional<unsigned> *InRangeOp) {
3713   // Empty list.
3714   if (Lex.getKind() == lltok::rbrace ||
3715       Lex.getKind() == lltok::rsquare ||
3716       Lex.getKind() == lltok::greater ||
3717       Lex.getKind() == lltok::rparen)
3718     return false;
3719 
3720   do {
3721     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3722       *InRangeOp = Elts.size();
3723 
3724     Constant *C;
3725     if (ParseGlobalTypeAndValue(C)) return true;
3726     Elts.push_back(C);
3727   } while (EatIfPresent(lltok::comma));
3728 
3729   return false;
3730 }
3731 
3732 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3733   SmallVector<Metadata *, 16> Elts;
3734   if (ParseMDNodeVector(Elts))
3735     return true;
3736 
3737   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3738   return false;
3739 }
3740 
3741 /// MDNode:
3742 ///  ::= !{ ... }
3743 ///  ::= !7
3744 ///  ::= !DILocation(...)
3745 bool LLParser::ParseMDNode(MDNode *&N) {
3746   if (Lex.getKind() == lltok::MetadataVar)
3747     return ParseSpecializedMDNode(N);
3748 
3749   return ParseToken(lltok::exclaim, "expected '!' here") ||
3750          ParseMDNodeTail(N);
3751 }
3752 
3753 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3754   // !{ ... }
3755   if (Lex.getKind() == lltok::lbrace)
3756     return ParseMDTuple(N);
3757 
3758   // !42
3759   return ParseMDNodeID(N);
3760 }
3761 
3762 namespace {
3763 
3764 /// Structure to represent an optional metadata field.
3765 template <class FieldTy> struct MDFieldImpl {
3766   typedef MDFieldImpl ImplTy;
3767   FieldTy Val;
3768   bool Seen;
3769 
3770   void assign(FieldTy Val) {
3771     Seen = true;
3772     this->Val = std::move(Val);
3773   }
3774 
3775   explicit MDFieldImpl(FieldTy Default)
3776       : Val(std::move(Default)), Seen(false) {}
3777 };
3778 
3779 /// Structure to represent an optional metadata field that
3780 /// can be of either type (A or B) and encapsulates the
3781 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3782 /// to reimplement the specifics for representing each Field.
3783 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3784   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3785   FieldTypeA A;
3786   FieldTypeB B;
3787   bool Seen;
3788 
3789   enum {
3790     IsInvalid = 0,
3791     IsTypeA = 1,
3792     IsTypeB = 2
3793   } WhatIs;
3794 
3795   void assign(FieldTypeA A) {
3796     Seen = true;
3797     this->A = std::move(A);
3798     WhatIs = IsTypeA;
3799   }
3800 
3801   void assign(FieldTypeB B) {
3802     Seen = true;
3803     this->B = std::move(B);
3804     WhatIs = IsTypeB;
3805   }
3806 
3807   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3808       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3809         WhatIs(IsInvalid) {}
3810 };
3811 
3812 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3813   uint64_t Max;
3814 
3815   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3816       : ImplTy(Default), Max(Max) {}
3817 };
3818 
3819 struct LineField : public MDUnsignedField {
3820   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3821 };
3822 
3823 struct ColumnField : public MDUnsignedField {
3824   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3825 };
3826 
3827 struct DwarfTagField : public MDUnsignedField {
3828   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3829   DwarfTagField(dwarf::Tag DefaultTag)
3830       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3831 };
3832 
3833 struct DwarfMacinfoTypeField : public MDUnsignedField {
3834   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3835   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3836     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3837 };
3838 
3839 struct DwarfAttEncodingField : public MDUnsignedField {
3840   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3841 };
3842 
3843 struct DwarfVirtualityField : public MDUnsignedField {
3844   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3845 };
3846 
3847 struct DwarfLangField : public MDUnsignedField {
3848   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3849 };
3850 
3851 struct DwarfCCField : public MDUnsignedField {
3852   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3853 };
3854 
3855 struct EmissionKindField : public MDUnsignedField {
3856   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3857 };
3858 
3859 struct NameTableKindField : public MDUnsignedField {
3860   NameTableKindField()
3861       : MDUnsignedField(
3862             0, (unsigned)
3863                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3864 };
3865 
3866 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3867   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3868 };
3869 
3870 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3871   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3872 };
3873 
3874 struct MDSignedField : public MDFieldImpl<int64_t> {
3875   int64_t Min;
3876   int64_t Max;
3877 
3878   MDSignedField(int64_t Default = 0)
3879       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3880   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3881       : ImplTy(Default), Min(Min), Max(Max) {}
3882 };
3883 
3884 struct MDBoolField : public MDFieldImpl<bool> {
3885   MDBoolField(bool Default = false) : ImplTy(Default) {}
3886 };
3887 
3888 struct MDField : public MDFieldImpl<Metadata *> {
3889   bool AllowNull;
3890 
3891   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3892 };
3893 
3894 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3895   MDConstant() : ImplTy(nullptr) {}
3896 };
3897 
3898 struct MDStringField : public MDFieldImpl<MDString *> {
3899   bool AllowEmpty;
3900   MDStringField(bool AllowEmpty = true)
3901       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3902 };
3903 
3904 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3905   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3906 };
3907 
3908 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3909   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3910 };
3911 
3912 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3913   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3914       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3915 
3916   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3917                     bool AllowNull = true)
3918       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3919 
3920   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3921   bool isMDField() const { return WhatIs == IsTypeB; }
3922   int64_t getMDSignedValue() const {
3923     assert(isMDSignedField() && "Wrong field type");
3924     return A.Val;
3925   }
3926   Metadata *getMDFieldValue() const {
3927     assert(isMDField() && "Wrong field type");
3928     return B.Val;
3929   }
3930 };
3931 
3932 struct MDSignedOrUnsignedField
3933     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3934   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3935 
3936   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3937   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3938   int64_t getMDSignedValue() const {
3939     assert(isMDSignedField() && "Wrong field type");
3940     return A.Val;
3941   }
3942   uint64_t getMDUnsignedValue() const {
3943     assert(isMDUnsignedField() && "Wrong field type");
3944     return B.Val;
3945   }
3946 };
3947 
3948 } // end anonymous namespace
3949 
3950 namespace llvm {
3951 
3952 template <>
3953 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3954                             MDUnsignedField &Result) {
3955   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3956     return TokError("expected unsigned integer");
3957 
3958   auto &U = Lex.getAPSIntVal();
3959   if (U.ugt(Result.Max))
3960     return TokError("value for '" + Name + "' too large, limit is " +
3961                     Twine(Result.Max));
3962   Result.assign(U.getZExtValue());
3963   assert(Result.Val <= Result.Max && "Expected value in range");
3964   Lex.Lex();
3965   return false;
3966 }
3967 
3968 template <>
3969 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3970   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3971 }
3972 template <>
3973 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3974   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3975 }
3976 
3977 template <>
3978 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3979   if (Lex.getKind() == lltok::APSInt)
3980     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3981 
3982   if (Lex.getKind() != lltok::DwarfTag)
3983     return TokError("expected DWARF tag");
3984 
3985   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3986   if (Tag == dwarf::DW_TAG_invalid)
3987     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3988   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3989 
3990   Result.assign(Tag);
3991   Lex.Lex();
3992   return false;
3993 }
3994 
3995 template <>
3996 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3997                             DwarfMacinfoTypeField &Result) {
3998   if (Lex.getKind() == lltok::APSInt)
3999     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4000 
4001   if (Lex.getKind() != lltok::DwarfMacinfo)
4002     return TokError("expected DWARF macinfo type");
4003 
4004   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4005   if (Macinfo == dwarf::DW_MACINFO_invalid)
4006     return TokError(
4007         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4008   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4009 
4010   Result.assign(Macinfo);
4011   Lex.Lex();
4012   return false;
4013 }
4014 
4015 template <>
4016 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4017                             DwarfVirtualityField &Result) {
4018   if (Lex.getKind() == lltok::APSInt)
4019     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4020 
4021   if (Lex.getKind() != lltok::DwarfVirtuality)
4022     return TokError("expected DWARF virtuality code");
4023 
4024   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4025   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4026     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4027                     Lex.getStrVal() + "'");
4028   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4029   Result.assign(Virtuality);
4030   Lex.Lex();
4031   return false;
4032 }
4033 
4034 template <>
4035 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4036   if (Lex.getKind() == lltok::APSInt)
4037     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4038 
4039   if (Lex.getKind() != lltok::DwarfLang)
4040     return TokError("expected DWARF language");
4041 
4042   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4043   if (!Lang)
4044     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4045                     "'");
4046   assert(Lang <= Result.Max && "Expected valid DWARF language");
4047   Result.assign(Lang);
4048   Lex.Lex();
4049   return false;
4050 }
4051 
4052 template <>
4053 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4054   if (Lex.getKind() == lltok::APSInt)
4055     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4056 
4057   if (Lex.getKind() != lltok::DwarfCC)
4058     return TokError("expected DWARF calling convention");
4059 
4060   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4061   if (!CC)
4062     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4063                     "'");
4064   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4065   Result.assign(CC);
4066   Lex.Lex();
4067   return false;
4068 }
4069 
4070 template <>
4071 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4072   if (Lex.getKind() == lltok::APSInt)
4073     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4074 
4075   if (Lex.getKind() != lltok::EmissionKind)
4076     return TokError("expected emission kind");
4077 
4078   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4079   if (!Kind)
4080     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4081                     "'");
4082   assert(*Kind <= Result.Max && "Expected valid emission kind");
4083   Result.assign(*Kind);
4084   Lex.Lex();
4085   return false;
4086 }
4087 
4088 template <>
4089 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4090                             NameTableKindField &Result) {
4091   if (Lex.getKind() == lltok::APSInt)
4092     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4093 
4094   if (Lex.getKind() != lltok::NameTableKind)
4095     return TokError("expected nameTable kind");
4096 
4097   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4098   if (!Kind)
4099     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4100                     "'");
4101   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4102   Result.assign((unsigned)*Kind);
4103   Lex.Lex();
4104   return false;
4105 }
4106 
4107 template <>
4108 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4109                             DwarfAttEncodingField &Result) {
4110   if (Lex.getKind() == lltok::APSInt)
4111     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4112 
4113   if (Lex.getKind() != lltok::DwarfAttEncoding)
4114     return TokError("expected DWARF type attribute encoding");
4115 
4116   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4117   if (!Encoding)
4118     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4119                     Lex.getStrVal() + "'");
4120   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4121   Result.assign(Encoding);
4122   Lex.Lex();
4123   return false;
4124 }
4125 
4126 /// DIFlagField
4127 ///  ::= uint32
4128 ///  ::= DIFlagVector
4129 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4130 template <>
4131 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4132 
4133   // Parser for a single flag.
4134   auto parseFlag = [&](DINode::DIFlags &Val) {
4135     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4136       uint32_t TempVal = static_cast<uint32_t>(Val);
4137       bool Res = ParseUInt32(TempVal);
4138       Val = static_cast<DINode::DIFlags>(TempVal);
4139       return Res;
4140     }
4141 
4142     if (Lex.getKind() != lltok::DIFlag)
4143       return TokError("expected debug info flag");
4144 
4145     Val = DINode::getFlag(Lex.getStrVal());
4146     if (!Val)
4147       return TokError(Twine("invalid debug info flag flag '") +
4148                       Lex.getStrVal() + "'");
4149     Lex.Lex();
4150     return false;
4151   };
4152 
4153   // Parse the flags and combine them together.
4154   DINode::DIFlags Combined = DINode::FlagZero;
4155   do {
4156     DINode::DIFlags Val;
4157     if (parseFlag(Val))
4158       return true;
4159     Combined |= Val;
4160   } while (EatIfPresent(lltok::bar));
4161 
4162   Result.assign(Combined);
4163   return false;
4164 }
4165 
4166 /// DISPFlagField
4167 ///  ::= uint32
4168 ///  ::= DISPFlagVector
4169 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4170 template <>
4171 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4172 
4173   // Parser for a single flag.
4174   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4175     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4176       uint32_t TempVal = static_cast<uint32_t>(Val);
4177       bool Res = ParseUInt32(TempVal);
4178       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4179       return Res;
4180     }
4181 
4182     if (Lex.getKind() != lltok::DISPFlag)
4183       return TokError("expected debug info flag");
4184 
4185     Val = DISubprogram::getFlag(Lex.getStrVal());
4186     if (!Val)
4187       return TokError(Twine("invalid subprogram debug info flag '") +
4188                       Lex.getStrVal() + "'");
4189     Lex.Lex();
4190     return false;
4191   };
4192 
4193   // Parse the flags and combine them together.
4194   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4195   do {
4196     DISubprogram::DISPFlags Val;
4197     if (parseFlag(Val))
4198       return true;
4199     Combined |= Val;
4200   } while (EatIfPresent(lltok::bar));
4201 
4202   Result.assign(Combined);
4203   return false;
4204 }
4205 
4206 template <>
4207 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4208                             MDSignedField &Result) {
4209   if (Lex.getKind() != lltok::APSInt)
4210     return TokError("expected signed integer");
4211 
4212   auto &S = Lex.getAPSIntVal();
4213   if (S < Result.Min)
4214     return TokError("value for '" + Name + "' too small, limit is " +
4215                     Twine(Result.Min));
4216   if (S > Result.Max)
4217     return TokError("value for '" + Name + "' too large, limit is " +
4218                     Twine(Result.Max));
4219   Result.assign(S.getExtValue());
4220   assert(Result.Val >= Result.Min && "Expected value in range");
4221   assert(Result.Val <= Result.Max && "Expected value in range");
4222   Lex.Lex();
4223   return false;
4224 }
4225 
4226 template <>
4227 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4228   switch (Lex.getKind()) {
4229   default:
4230     return TokError("expected 'true' or 'false'");
4231   case lltok::kw_true:
4232     Result.assign(true);
4233     break;
4234   case lltok::kw_false:
4235     Result.assign(false);
4236     break;
4237   }
4238   Lex.Lex();
4239   return false;
4240 }
4241 
4242 template <>
4243 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4244   if (Lex.getKind() == lltok::kw_null) {
4245     if (!Result.AllowNull)
4246       return TokError("'" + Name + "' cannot be null");
4247     Lex.Lex();
4248     Result.assign(nullptr);
4249     return false;
4250   }
4251 
4252   Metadata *MD;
4253   if (ParseMetadata(MD, nullptr))
4254     return true;
4255 
4256   Result.assign(MD);
4257   return false;
4258 }
4259 
4260 template <>
4261 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4262                             MDSignedOrMDField &Result) {
4263   // Try to parse a signed int.
4264   if (Lex.getKind() == lltok::APSInt) {
4265     MDSignedField Res = Result.A;
4266     if (!ParseMDField(Loc, Name, Res)) {
4267       Result.assign(Res);
4268       return false;
4269     }
4270     return true;
4271   }
4272 
4273   // Otherwise, try to parse as an MDField.
4274   MDField Res = Result.B;
4275   if (!ParseMDField(Loc, Name, Res)) {
4276     Result.assign(Res);
4277     return false;
4278   }
4279 
4280   return true;
4281 }
4282 
4283 template <>
4284 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4285                             MDSignedOrUnsignedField &Result) {
4286   if (Lex.getKind() != lltok::APSInt)
4287     return false;
4288 
4289   if (Lex.getAPSIntVal().isSigned()) {
4290     MDSignedField Res = Result.A;
4291     if (ParseMDField(Loc, Name, Res))
4292       return true;
4293     Result.assign(Res);
4294     return false;
4295   }
4296 
4297   MDUnsignedField Res = Result.B;
4298   if (ParseMDField(Loc, Name, Res))
4299     return true;
4300   Result.assign(Res);
4301   return false;
4302 }
4303 
4304 template <>
4305 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4306   LocTy ValueLoc = Lex.getLoc();
4307   std::string S;
4308   if (ParseStringConstant(S))
4309     return true;
4310 
4311   if (!Result.AllowEmpty && S.empty())
4312     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4313 
4314   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4315   return false;
4316 }
4317 
4318 template <>
4319 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4320   SmallVector<Metadata *, 4> MDs;
4321   if (ParseMDNodeVector(MDs))
4322     return true;
4323 
4324   Result.assign(std::move(MDs));
4325   return false;
4326 }
4327 
4328 template <>
4329 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4330                             ChecksumKindField &Result) {
4331   Optional<DIFile::ChecksumKind> CSKind =
4332       DIFile::getChecksumKind(Lex.getStrVal());
4333 
4334   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4335     return TokError(
4336         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4337 
4338   Result.assign(*CSKind);
4339   Lex.Lex();
4340   return false;
4341 }
4342 
4343 } // end namespace llvm
4344 
4345 template <class ParserTy>
4346 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4347   do {
4348     if (Lex.getKind() != lltok::LabelStr)
4349       return TokError("expected field label here");
4350 
4351     if (parseField())
4352       return true;
4353   } while (EatIfPresent(lltok::comma));
4354 
4355   return false;
4356 }
4357 
4358 template <class ParserTy>
4359 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4360   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4361   Lex.Lex();
4362 
4363   if (ParseToken(lltok::lparen, "expected '(' here"))
4364     return true;
4365   if (Lex.getKind() != lltok::rparen)
4366     if (ParseMDFieldsImplBody(parseField))
4367       return true;
4368 
4369   ClosingLoc = Lex.getLoc();
4370   return ParseToken(lltok::rparen, "expected ')' here");
4371 }
4372 
4373 template <class FieldTy>
4374 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4375   if (Result.Seen)
4376     return TokError("field '" + Name + "' cannot be specified more than once");
4377 
4378   LocTy Loc = Lex.getLoc();
4379   Lex.Lex();
4380   return ParseMDField(Loc, Name, Result);
4381 }
4382 
4383 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4384   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4385 
4386 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4387   if (Lex.getStrVal() == #CLASS)                                               \
4388     return Parse##CLASS(N, IsDistinct);
4389 #include "llvm/IR/Metadata.def"
4390 
4391   return TokError("expected metadata type");
4392 }
4393 
4394 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4395 #define NOP_FIELD(NAME, TYPE, INIT)
4396 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4397   if (!NAME.Seen)                                                              \
4398     return Error(ClosingLoc, "missing required field '" #NAME "'");
4399 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4400   if (Lex.getStrVal() == #NAME)                                                \
4401     return ParseMDField(#NAME, NAME);
4402 #define PARSE_MD_FIELDS()                                                      \
4403   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4404   do {                                                                         \
4405     LocTy ClosingLoc;                                                          \
4406     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4407       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4408       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4409     }, ClosingLoc))                                                            \
4410       return true;                                                             \
4411     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4412   } while (false)
4413 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4414   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4415 
4416 /// ParseDILocationFields:
4417 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4418 ///   isImplicitCode: true)
4419 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4420 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4421   OPTIONAL(line, LineField, );                                                 \
4422   OPTIONAL(column, ColumnField, );                                             \
4423   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4424   OPTIONAL(inlinedAt, MDField, );                                              \
4425   OPTIONAL(isImplicitCode, MDBoolField, (false));
4426   PARSE_MD_FIELDS();
4427 #undef VISIT_MD_FIELDS
4428 
4429   Result =
4430       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4431                                    inlinedAt.Val, isImplicitCode.Val));
4432   return false;
4433 }
4434 
4435 /// ParseGenericDINode:
4436 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4437 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4438 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4439   REQUIRED(tag, DwarfTagField, );                                              \
4440   OPTIONAL(header, MDStringField, );                                           \
4441   OPTIONAL(operands, MDFieldList, );
4442   PARSE_MD_FIELDS();
4443 #undef VISIT_MD_FIELDS
4444 
4445   Result = GET_OR_DISTINCT(GenericDINode,
4446                            (Context, tag.Val, header.Val, operands.Val));
4447   return false;
4448 }
4449 
4450 /// ParseDISubrange:
4451 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4452 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4453 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4454 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4455   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4456   OPTIONAL(lowerBound, MDSignedField, );
4457   PARSE_MD_FIELDS();
4458 #undef VISIT_MD_FIELDS
4459 
4460   if (count.isMDSignedField())
4461     Result = GET_OR_DISTINCT(
4462         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4463   else if (count.isMDField())
4464     Result = GET_OR_DISTINCT(
4465         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4466   else
4467     return true;
4468 
4469   return false;
4470 }
4471 
4472 /// ParseDIEnumerator:
4473 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4474 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4475 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4476   REQUIRED(name, MDStringField, );                                             \
4477   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4478   OPTIONAL(isUnsigned, MDBoolField, (false));
4479   PARSE_MD_FIELDS();
4480 #undef VISIT_MD_FIELDS
4481 
4482   if (isUnsigned.Val && value.isMDSignedField())
4483     return TokError("unsigned enumerator with negative value");
4484 
4485   int64_t Value = value.isMDSignedField()
4486                       ? value.getMDSignedValue()
4487                       : static_cast<int64_t>(value.getMDUnsignedValue());
4488   Result =
4489       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4490 
4491   return false;
4492 }
4493 
4494 /// ParseDIBasicType:
4495 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4496 ///                    encoding: DW_ATE_encoding, flags: 0)
4497 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4498 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4499   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4500   OPTIONAL(name, MDStringField, );                                             \
4501   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4502   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4503   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4504   OPTIONAL(flags, DIFlagField, );
4505   PARSE_MD_FIELDS();
4506 #undef VISIT_MD_FIELDS
4507 
4508   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4509                                          align.Val, encoding.Val, flags.Val));
4510   return false;
4511 }
4512 
4513 /// ParseDIDerivedType:
4514 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4515 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4516 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4517 ///                      dwarfAddressSpace: 3)
4518 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4519 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4520   REQUIRED(tag, DwarfTagField, );                                              \
4521   OPTIONAL(name, MDStringField, );                                             \
4522   OPTIONAL(file, MDField, );                                                   \
4523   OPTIONAL(line, LineField, );                                                 \
4524   OPTIONAL(scope, MDField, );                                                  \
4525   REQUIRED(baseType, MDField, );                                               \
4526   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4527   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4528   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4529   OPTIONAL(flags, DIFlagField, );                                              \
4530   OPTIONAL(extraData, MDField, );                                              \
4531   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4532   PARSE_MD_FIELDS();
4533 #undef VISIT_MD_FIELDS
4534 
4535   Optional<unsigned> DWARFAddressSpace;
4536   if (dwarfAddressSpace.Val != UINT32_MAX)
4537     DWARFAddressSpace = dwarfAddressSpace.Val;
4538 
4539   Result = GET_OR_DISTINCT(DIDerivedType,
4540                            (Context, tag.Val, name.Val, file.Val, line.Val,
4541                             scope.Val, baseType.Val, size.Val, align.Val,
4542                             offset.Val, DWARFAddressSpace, flags.Val,
4543                             extraData.Val));
4544   return false;
4545 }
4546 
4547 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4548 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4549   REQUIRED(tag, DwarfTagField, );                                              \
4550   OPTIONAL(name, MDStringField, );                                             \
4551   OPTIONAL(file, MDField, );                                                   \
4552   OPTIONAL(line, LineField, );                                                 \
4553   OPTIONAL(scope, MDField, );                                                  \
4554   OPTIONAL(baseType, MDField, );                                               \
4555   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4556   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4557   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4558   OPTIONAL(flags, DIFlagField, );                                              \
4559   OPTIONAL(elements, MDField, );                                               \
4560   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4561   OPTIONAL(vtableHolder, MDField, );                                           \
4562   OPTIONAL(templateParams, MDField, );                                         \
4563   OPTIONAL(identifier, MDStringField, );                                       \
4564   OPTIONAL(discriminator, MDField, );
4565   PARSE_MD_FIELDS();
4566 #undef VISIT_MD_FIELDS
4567 
4568   // If this has an identifier try to build an ODR type.
4569   if (identifier.Val)
4570     if (auto *CT = DICompositeType::buildODRType(
4571             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4572             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4573             elements.Val, runtimeLang.Val, vtableHolder.Val,
4574             templateParams.Val, discriminator.Val)) {
4575       Result = CT;
4576       return false;
4577     }
4578 
4579   // Create a new node, and save it in the context if it belongs in the type
4580   // map.
4581   Result = GET_OR_DISTINCT(
4582       DICompositeType,
4583       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4584        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4585        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4586        discriminator.Val));
4587   return false;
4588 }
4589 
4590 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4591 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4592   OPTIONAL(flags, DIFlagField, );                                              \
4593   OPTIONAL(cc, DwarfCCField, );                                                \
4594   REQUIRED(types, MDField, );
4595   PARSE_MD_FIELDS();
4596 #undef VISIT_MD_FIELDS
4597 
4598   Result = GET_OR_DISTINCT(DISubroutineType,
4599                            (Context, flags.Val, cc.Val, types.Val));
4600   return false;
4601 }
4602 
4603 /// ParseDIFileType:
4604 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4605 ///                   checksumkind: CSK_MD5,
4606 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4607 ///                   source: "source file contents")
4608 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4609   // The default constructed value for checksumkind is required, but will never
4610   // be used, as the parser checks if the field was actually Seen before using
4611   // the Val.
4612 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4613   REQUIRED(filename, MDStringField, );                                         \
4614   REQUIRED(directory, MDStringField, );                                        \
4615   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4616   OPTIONAL(checksum, MDStringField, );                                         \
4617   OPTIONAL(source, MDStringField, );
4618   PARSE_MD_FIELDS();
4619 #undef VISIT_MD_FIELDS
4620 
4621   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4622   if (checksumkind.Seen && checksum.Seen)
4623     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4624   else if (checksumkind.Seen || checksum.Seen)
4625     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4626 
4627   Optional<MDString *> OptSource;
4628   if (source.Seen)
4629     OptSource = source.Val;
4630   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4631                                     OptChecksum, OptSource));
4632   return false;
4633 }
4634 
4635 /// ParseDICompileUnit:
4636 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4637 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4638 ///                      splitDebugFilename: "abc.debug",
4639 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4640 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4641 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4642 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4643   if (!IsDistinct)
4644     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4645 
4646 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4647   REQUIRED(language, DwarfLangField, );                                        \
4648   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4649   OPTIONAL(producer, MDStringField, );                                         \
4650   OPTIONAL(isOptimized, MDBoolField, );                                        \
4651   OPTIONAL(flags, MDStringField, );                                            \
4652   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4653   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4654   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4655   OPTIONAL(enums, MDField, );                                                  \
4656   OPTIONAL(retainedTypes, MDField, );                                          \
4657   OPTIONAL(globals, MDField, );                                                \
4658   OPTIONAL(imports, MDField, );                                                \
4659   OPTIONAL(macros, MDField, );                                                 \
4660   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4661   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4662   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4663   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4664   OPTIONAL(debugBaseAddress, MDBoolField, = false);                            \
4665   OPTIONAL(sysroot, MDStringField, );                                          \
4666   OPTIONAL(sdk, MDStringField, );
4667   PARSE_MD_FIELDS();
4668 #undef VISIT_MD_FIELDS
4669 
4670   Result = DICompileUnit::getDistinct(
4671       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4672       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4673       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4674       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4675       debugBaseAddress.Val, sysroot.Val, sdk.Val);
4676   return false;
4677 }
4678 
4679 /// ParseDISubprogram:
4680 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4681 ///                     file: !1, line: 7, type: !2, isLocal: false,
4682 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4683 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4684 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4685 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4686 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4687 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4688   auto Loc = Lex.getLoc();
4689 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4690   OPTIONAL(scope, MDField, );                                                  \
4691   OPTIONAL(name, MDStringField, );                                             \
4692   OPTIONAL(linkageName, MDStringField, );                                      \
4693   OPTIONAL(file, MDField, );                                                   \
4694   OPTIONAL(line, LineField, );                                                 \
4695   OPTIONAL(type, MDField, );                                                   \
4696   OPTIONAL(isLocal, MDBoolField, );                                            \
4697   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4698   OPTIONAL(scopeLine, LineField, );                                            \
4699   OPTIONAL(containingType, MDField, );                                         \
4700   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4701   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4702   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4703   OPTIONAL(flags, DIFlagField, );                                              \
4704   OPTIONAL(spFlags, DISPFlagField, );                                          \
4705   OPTIONAL(isOptimized, MDBoolField, );                                        \
4706   OPTIONAL(unit, MDField, );                                                   \
4707   OPTIONAL(templateParams, MDField, );                                         \
4708   OPTIONAL(declaration, MDField, );                                            \
4709   OPTIONAL(retainedNodes, MDField, );                                          \
4710   OPTIONAL(thrownTypes, MDField, );
4711   PARSE_MD_FIELDS();
4712 #undef VISIT_MD_FIELDS
4713 
4714   // An explicit spFlags field takes precedence over individual fields in
4715   // older IR versions.
4716   DISubprogram::DISPFlags SPFlags =
4717       spFlags.Seen ? spFlags.Val
4718                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4719                                              isOptimized.Val, virtuality.Val);
4720   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4721     return Lex.Error(
4722         Loc,
4723         "missing 'distinct', required for !DISubprogram that is a Definition");
4724   Result = GET_OR_DISTINCT(
4725       DISubprogram,
4726       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4727        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4728        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4729        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4730   return false;
4731 }
4732 
4733 /// ParseDILexicalBlock:
4734 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4735 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4737   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4738   OPTIONAL(file, MDField, );                                                   \
4739   OPTIONAL(line, LineField, );                                                 \
4740   OPTIONAL(column, ColumnField, );
4741   PARSE_MD_FIELDS();
4742 #undef VISIT_MD_FIELDS
4743 
4744   Result = GET_OR_DISTINCT(
4745       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4746   return false;
4747 }
4748 
4749 /// ParseDILexicalBlockFile:
4750 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4751 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4752 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4753   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4754   OPTIONAL(file, MDField, );                                                   \
4755   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4756   PARSE_MD_FIELDS();
4757 #undef VISIT_MD_FIELDS
4758 
4759   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4760                            (Context, scope.Val, file.Val, discriminator.Val));
4761   return false;
4762 }
4763 
4764 /// ParseDICommonBlock:
4765 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4766 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4767 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4768   REQUIRED(scope, MDField, );                                                  \
4769   OPTIONAL(declaration, MDField, );                                            \
4770   OPTIONAL(name, MDStringField, );                                             \
4771   OPTIONAL(file, MDField, );                                                   \
4772   OPTIONAL(line, LineField, );
4773   PARSE_MD_FIELDS();
4774 #undef VISIT_MD_FIELDS
4775 
4776   Result = GET_OR_DISTINCT(DICommonBlock,
4777                            (Context, scope.Val, declaration.Val, name.Val,
4778                             file.Val, line.Val));
4779   return false;
4780 }
4781 
4782 /// ParseDINamespace:
4783 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4784 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4785 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4786   REQUIRED(scope, MDField, );                                                  \
4787   OPTIONAL(name, MDStringField, );                                             \
4788   OPTIONAL(exportSymbols, MDBoolField, );
4789   PARSE_MD_FIELDS();
4790 #undef VISIT_MD_FIELDS
4791 
4792   Result = GET_OR_DISTINCT(DINamespace,
4793                            (Context, scope.Val, name.Val, exportSymbols.Val));
4794   return false;
4795 }
4796 
4797 /// ParseDIMacro:
4798 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4799 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4800 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4801   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4802   OPTIONAL(line, LineField, );                                                 \
4803   REQUIRED(name, MDStringField, );                                             \
4804   OPTIONAL(value, MDStringField, );
4805   PARSE_MD_FIELDS();
4806 #undef VISIT_MD_FIELDS
4807 
4808   Result = GET_OR_DISTINCT(DIMacro,
4809                            (Context, type.Val, line.Val, name.Val, value.Val));
4810   return false;
4811 }
4812 
4813 /// ParseDIMacroFile:
4814 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4815 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4816 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4817   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4818   OPTIONAL(line, LineField, );                                                 \
4819   REQUIRED(file, MDField, );                                                   \
4820   OPTIONAL(nodes, MDField, );
4821   PARSE_MD_FIELDS();
4822 #undef VISIT_MD_FIELDS
4823 
4824   Result = GET_OR_DISTINCT(DIMacroFile,
4825                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4826   return false;
4827 }
4828 
4829 /// ParseDIModule:
4830 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4831 ///                 includePath: "/usr/include", apinotes: "module.apinotes")
4832 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4833 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4834   REQUIRED(scope, MDField, );                                                  \
4835   REQUIRED(name, MDStringField, );                                             \
4836   OPTIONAL(configMacros, MDStringField, );                                     \
4837   OPTIONAL(includePath, MDStringField, );                                      \
4838   OPTIONAL(apinotes, MDStringField, );
4839   PARSE_MD_FIELDS();
4840 #undef VISIT_MD_FIELDS
4841 
4842   Result =
4843       GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, configMacros.Val,
4844                                  includePath.Val, apinotes.Val));
4845   return false;
4846 }
4847 
4848 /// ParseDITemplateTypeParameter:
4849 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4850 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4851 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4852   OPTIONAL(name, MDStringField, );                                             \
4853   REQUIRED(type, MDField, );                                                   \
4854   OPTIONAL(defaulted, MDBoolField, );
4855   PARSE_MD_FIELDS();
4856 #undef VISIT_MD_FIELDS
4857 
4858   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4859                            (Context, name.Val, type.Val, defaulted.Val));
4860   return false;
4861 }
4862 
4863 /// ParseDITemplateValueParameter:
4864 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4865 ///                                 name: "V", type: !1, defaulted: false,
4866 ///                                 value: i32 7)
4867 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4868 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4869   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4870   OPTIONAL(name, MDStringField, );                                             \
4871   OPTIONAL(type, MDField, );                                                   \
4872   OPTIONAL(defaulted, MDBoolField, );                                          \
4873   REQUIRED(value, MDField, );
4874 
4875   PARSE_MD_FIELDS();
4876 #undef VISIT_MD_FIELDS
4877 
4878   Result = GET_OR_DISTINCT(
4879       DITemplateValueParameter,
4880       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4881   return false;
4882 }
4883 
4884 /// ParseDIGlobalVariable:
4885 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4886 ///                         file: !1, line: 7, type: !2, isLocal: false,
4887 ///                         isDefinition: true, templateParams: !3,
4888 ///                         declaration: !4, align: 8)
4889 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4890 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4891   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4892   OPTIONAL(scope, MDField, );                                                  \
4893   OPTIONAL(linkageName, MDStringField, );                                      \
4894   OPTIONAL(file, MDField, );                                                   \
4895   OPTIONAL(line, LineField, );                                                 \
4896   OPTIONAL(type, MDField, );                                                   \
4897   OPTIONAL(isLocal, MDBoolField, );                                            \
4898   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4899   OPTIONAL(templateParams, MDField, );                                         \
4900   OPTIONAL(declaration, MDField, );                                            \
4901   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4902   PARSE_MD_FIELDS();
4903 #undef VISIT_MD_FIELDS
4904 
4905   Result =
4906       GET_OR_DISTINCT(DIGlobalVariable,
4907                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4908                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4909                        declaration.Val, templateParams.Val, align.Val));
4910   return false;
4911 }
4912 
4913 /// ParseDILocalVariable:
4914 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4915 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4916 ///                        align: 8)
4917 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4918 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4919 ///                        align: 8)
4920 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4921 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4922   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4923   OPTIONAL(name, MDStringField, );                                             \
4924   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4925   OPTIONAL(file, MDField, );                                                   \
4926   OPTIONAL(line, LineField, );                                                 \
4927   OPTIONAL(type, MDField, );                                                   \
4928   OPTIONAL(flags, DIFlagField, );                                              \
4929   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4930   PARSE_MD_FIELDS();
4931 #undef VISIT_MD_FIELDS
4932 
4933   Result = GET_OR_DISTINCT(DILocalVariable,
4934                            (Context, scope.Val, name.Val, file.Val, line.Val,
4935                             type.Val, arg.Val, flags.Val, align.Val));
4936   return false;
4937 }
4938 
4939 /// ParseDILabel:
4940 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4941 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4942 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4943   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4944   REQUIRED(name, MDStringField, );                                             \
4945   REQUIRED(file, MDField, );                                                   \
4946   REQUIRED(line, LineField, );
4947   PARSE_MD_FIELDS();
4948 #undef VISIT_MD_FIELDS
4949 
4950   Result = GET_OR_DISTINCT(DILabel,
4951                            (Context, scope.Val, name.Val, file.Val, line.Val));
4952   return false;
4953 }
4954 
4955 /// ParseDIExpression:
4956 ///   ::= !DIExpression(0, 7, -1)
4957 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4958   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4959   Lex.Lex();
4960 
4961   if (ParseToken(lltok::lparen, "expected '(' here"))
4962     return true;
4963 
4964   SmallVector<uint64_t, 8> Elements;
4965   if (Lex.getKind() != lltok::rparen)
4966     do {
4967       if (Lex.getKind() == lltok::DwarfOp) {
4968         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4969           Lex.Lex();
4970           Elements.push_back(Op);
4971           continue;
4972         }
4973         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4974       }
4975 
4976       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4977         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4978           Lex.Lex();
4979           Elements.push_back(Op);
4980           continue;
4981         }
4982         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4983       }
4984 
4985       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4986         return TokError("expected unsigned integer");
4987 
4988       auto &U = Lex.getAPSIntVal();
4989       if (U.ugt(UINT64_MAX))
4990         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4991       Elements.push_back(U.getZExtValue());
4992       Lex.Lex();
4993     } while (EatIfPresent(lltok::comma));
4994 
4995   if (ParseToken(lltok::rparen, "expected ')' here"))
4996     return true;
4997 
4998   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4999   return false;
5000 }
5001 
5002 /// ParseDIGlobalVariableExpression:
5003 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5004 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5005                                                bool IsDistinct) {
5006 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5007   REQUIRED(var, MDField, );                                                    \
5008   REQUIRED(expr, MDField, );
5009   PARSE_MD_FIELDS();
5010 #undef VISIT_MD_FIELDS
5011 
5012   Result =
5013       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5014   return false;
5015 }
5016 
5017 /// ParseDIObjCProperty:
5018 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5019 ///                       getter: "getFoo", attributes: 7, type: !2)
5020 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5021 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5022   OPTIONAL(name, MDStringField, );                                             \
5023   OPTIONAL(file, MDField, );                                                   \
5024   OPTIONAL(line, LineField, );                                                 \
5025   OPTIONAL(setter, MDStringField, );                                           \
5026   OPTIONAL(getter, MDStringField, );                                           \
5027   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5028   OPTIONAL(type, MDField, );
5029   PARSE_MD_FIELDS();
5030 #undef VISIT_MD_FIELDS
5031 
5032   Result = GET_OR_DISTINCT(DIObjCProperty,
5033                            (Context, name.Val, file.Val, line.Val, setter.Val,
5034                             getter.Val, attributes.Val, type.Val));
5035   return false;
5036 }
5037 
5038 /// ParseDIImportedEntity:
5039 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5040 ///                         line: 7, name: "foo")
5041 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5042 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5043   REQUIRED(tag, DwarfTagField, );                                              \
5044   REQUIRED(scope, MDField, );                                                  \
5045   OPTIONAL(entity, MDField, );                                                 \
5046   OPTIONAL(file, MDField, );                                                   \
5047   OPTIONAL(line, LineField, );                                                 \
5048   OPTIONAL(name, MDStringField, );
5049   PARSE_MD_FIELDS();
5050 #undef VISIT_MD_FIELDS
5051 
5052   Result = GET_OR_DISTINCT(
5053       DIImportedEntity,
5054       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5055   return false;
5056 }
5057 
5058 #undef PARSE_MD_FIELD
5059 #undef NOP_FIELD
5060 #undef REQUIRE_FIELD
5061 #undef DECLARE_FIELD
5062 
5063 /// ParseMetadataAsValue
5064 ///  ::= metadata i32 %local
5065 ///  ::= metadata i32 @global
5066 ///  ::= metadata i32 7
5067 ///  ::= metadata !0
5068 ///  ::= metadata !{...}
5069 ///  ::= metadata !"string"
5070 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5071   // Note: the type 'metadata' has already been parsed.
5072   Metadata *MD;
5073   if (ParseMetadata(MD, &PFS))
5074     return true;
5075 
5076   V = MetadataAsValue::get(Context, MD);
5077   return false;
5078 }
5079 
5080 /// ParseValueAsMetadata
5081 ///  ::= i32 %local
5082 ///  ::= i32 @global
5083 ///  ::= i32 7
5084 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5085                                     PerFunctionState *PFS) {
5086   Type *Ty;
5087   LocTy Loc;
5088   if (ParseType(Ty, TypeMsg, Loc))
5089     return true;
5090   if (Ty->isMetadataTy())
5091     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5092 
5093   Value *V;
5094   if (ParseValue(Ty, V, PFS))
5095     return true;
5096 
5097   MD = ValueAsMetadata::get(V);
5098   return false;
5099 }
5100 
5101 /// ParseMetadata
5102 ///  ::= i32 %local
5103 ///  ::= i32 @global
5104 ///  ::= i32 7
5105 ///  ::= !42
5106 ///  ::= !{...}
5107 ///  ::= !"string"
5108 ///  ::= !DILocation(...)
5109 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5110   if (Lex.getKind() == lltok::MetadataVar) {
5111     MDNode *N;
5112     if (ParseSpecializedMDNode(N))
5113       return true;
5114     MD = N;
5115     return false;
5116   }
5117 
5118   // ValueAsMetadata:
5119   // <type> <value>
5120   if (Lex.getKind() != lltok::exclaim)
5121     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5122 
5123   // '!'.
5124   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5125   Lex.Lex();
5126 
5127   // MDString:
5128   //   ::= '!' STRINGCONSTANT
5129   if (Lex.getKind() == lltok::StringConstant) {
5130     MDString *S;
5131     if (ParseMDString(S))
5132       return true;
5133     MD = S;
5134     return false;
5135   }
5136 
5137   // MDNode:
5138   // !{ ... }
5139   // !7
5140   MDNode *N;
5141   if (ParseMDNodeTail(N))
5142     return true;
5143   MD = N;
5144   return false;
5145 }
5146 
5147 //===----------------------------------------------------------------------===//
5148 // Function Parsing.
5149 //===----------------------------------------------------------------------===//
5150 
5151 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5152                                    PerFunctionState *PFS, bool IsCall) {
5153   if (Ty->isFunctionTy())
5154     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5155 
5156   switch (ID.Kind) {
5157   case ValID::t_LocalID:
5158     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5159     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5160     return V == nullptr;
5161   case ValID::t_LocalName:
5162     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5163     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5164     return V == nullptr;
5165   case ValID::t_InlineAsm: {
5166     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5167       return Error(ID.Loc, "invalid type for inline asm constraint string");
5168     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5169                        (ID.UIntVal >> 1) & 1,
5170                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5171     return false;
5172   }
5173   case ValID::t_GlobalName:
5174     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5175     return V == nullptr;
5176   case ValID::t_GlobalID:
5177     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5178     return V == nullptr;
5179   case ValID::t_APSInt:
5180     if (!Ty->isIntegerTy())
5181       return Error(ID.Loc, "integer constant must have integer type");
5182     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5183     V = ConstantInt::get(Context, ID.APSIntVal);
5184     return false;
5185   case ValID::t_APFloat:
5186     if (!Ty->isFloatingPointTy() ||
5187         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5188       return Error(ID.Loc, "floating point constant invalid for type");
5189 
5190     // The lexer has no type info, so builds all half, float, and double FP
5191     // constants as double.  Fix this here.  Long double does not need this.
5192     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5193       bool Ignored;
5194       if (Ty->isHalfTy())
5195         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5196                               &Ignored);
5197       else if (Ty->isFloatTy())
5198         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5199                               &Ignored);
5200     }
5201     V = ConstantFP::get(Context, ID.APFloatVal);
5202 
5203     if (V->getType() != Ty)
5204       return Error(ID.Loc, "floating point constant does not have type '" +
5205                    getTypeString(Ty) + "'");
5206 
5207     return false;
5208   case ValID::t_Null:
5209     if (!Ty->isPointerTy())
5210       return Error(ID.Loc, "null must be a pointer type");
5211     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5212     return false;
5213   case ValID::t_Undef:
5214     // FIXME: LabelTy should not be a first-class type.
5215     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5216       return Error(ID.Loc, "invalid type for undef constant");
5217     V = UndefValue::get(Ty);
5218     return false;
5219   case ValID::t_EmptyArray:
5220     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5221       return Error(ID.Loc, "invalid empty array initializer");
5222     V = UndefValue::get(Ty);
5223     return false;
5224   case ValID::t_Zero:
5225     // FIXME: LabelTy should not be a first-class type.
5226     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5227       return Error(ID.Loc, "invalid type for null constant");
5228     V = Constant::getNullValue(Ty);
5229     return false;
5230   case ValID::t_None:
5231     if (!Ty->isTokenTy())
5232       return Error(ID.Loc, "invalid type for none constant");
5233     V = Constant::getNullValue(Ty);
5234     return false;
5235   case ValID::t_Constant:
5236     if (ID.ConstantVal->getType() != Ty)
5237       return Error(ID.Loc, "constant expression type mismatch");
5238 
5239     V = ID.ConstantVal;
5240     return false;
5241   case ValID::t_ConstantStruct:
5242   case ValID::t_PackedConstantStruct:
5243     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5244       if (ST->getNumElements() != ID.UIntVal)
5245         return Error(ID.Loc,
5246                      "initializer with struct type has wrong # elements");
5247       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5248         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5249 
5250       // Verify that the elements are compatible with the structtype.
5251       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5252         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5253           return Error(ID.Loc, "element " + Twine(i) +
5254                     " of struct initializer doesn't match struct element type");
5255 
5256       V = ConstantStruct::get(
5257           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5258     } else
5259       return Error(ID.Loc, "constant expression type mismatch");
5260     return false;
5261   }
5262   llvm_unreachable("Invalid ValID");
5263 }
5264 
5265 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5266   C = nullptr;
5267   ValID ID;
5268   auto Loc = Lex.getLoc();
5269   if (ParseValID(ID, /*PFS=*/nullptr))
5270     return true;
5271   switch (ID.Kind) {
5272   case ValID::t_APSInt:
5273   case ValID::t_APFloat:
5274   case ValID::t_Undef:
5275   case ValID::t_Constant:
5276   case ValID::t_ConstantStruct:
5277   case ValID::t_PackedConstantStruct: {
5278     Value *V;
5279     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5280       return true;
5281     assert(isa<Constant>(V) && "Expected a constant value");
5282     C = cast<Constant>(V);
5283     return false;
5284   }
5285   case ValID::t_Null:
5286     C = Constant::getNullValue(Ty);
5287     return false;
5288   default:
5289     return Error(Loc, "expected a constant value");
5290   }
5291 }
5292 
5293 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5294   V = nullptr;
5295   ValID ID;
5296   return ParseValID(ID, PFS) ||
5297          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5298 }
5299 
5300 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5301   Type *Ty = nullptr;
5302   return ParseType(Ty) ||
5303          ParseValue(Ty, V, PFS);
5304 }
5305 
5306 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5307                                       PerFunctionState &PFS) {
5308   Value *V;
5309   Loc = Lex.getLoc();
5310   if (ParseTypeAndValue(V, PFS)) return true;
5311   if (!isa<BasicBlock>(V))
5312     return Error(Loc, "expected a basic block");
5313   BB = cast<BasicBlock>(V);
5314   return false;
5315 }
5316 
5317 /// FunctionHeader
5318 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5319 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5320 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5321 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5322 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5323   // Parse the linkage.
5324   LocTy LinkageLoc = Lex.getLoc();
5325   unsigned Linkage;
5326   unsigned Visibility;
5327   unsigned DLLStorageClass;
5328   bool DSOLocal;
5329   AttrBuilder RetAttrs;
5330   unsigned CC;
5331   bool HasLinkage;
5332   Type *RetType = nullptr;
5333   LocTy RetTypeLoc = Lex.getLoc();
5334   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5335                            DSOLocal) ||
5336       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5337       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5338     return true;
5339 
5340   // Verify that the linkage is ok.
5341   switch ((GlobalValue::LinkageTypes)Linkage) {
5342   case GlobalValue::ExternalLinkage:
5343     break; // always ok.
5344   case GlobalValue::ExternalWeakLinkage:
5345     if (isDefine)
5346       return Error(LinkageLoc, "invalid linkage for function definition");
5347     break;
5348   case GlobalValue::PrivateLinkage:
5349   case GlobalValue::InternalLinkage:
5350   case GlobalValue::AvailableExternallyLinkage:
5351   case GlobalValue::LinkOnceAnyLinkage:
5352   case GlobalValue::LinkOnceODRLinkage:
5353   case GlobalValue::WeakAnyLinkage:
5354   case GlobalValue::WeakODRLinkage:
5355     if (!isDefine)
5356       return Error(LinkageLoc, "invalid linkage for function declaration");
5357     break;
5358   case GlobalValue::AppendingLinkage:
5359   case GlobalValue::CommonLinkage:
5360     return Error(LinkageLoc, "invalid function linkage type");
5361   }
5362 
5363   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5364     return Error(LinkageLoc,
5365                  "symbol with local linkage must have default visibility");
5366 
5367   if (!FunctionType::isValidReturnType(RetType))
5368     return Error(RetTypeLoc, "invalid function return type");
5369 
5370   LocTy NameLoc = Lex.getLoc();
5371 
5372   std::string FunctionName;
5373   if (Lex.getKind() == lltok::GlobalVar) {
5374     FunctionName = Lex.getStrVal();
5375   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5376     unsigned NameID = Lex.getUIntVal();
5377 
5378     if (NameID != NumberedVals.size())
5379       return TokError("function expected to be numbered '%" +
5380                       Twine(NumberedVals.size()) + "'");
5381   } else {
5382     return TokError("expected function name");
5383   }
5384 
5385   Lex.Lex();
5386 
5387   if (Lex.getKind() != lltok::lparen)
5388     return TokError("expected '(' in function argument list");
5389 
5390   SmallVector<ArgInfo, 8> ArgList;
5391   bool isVarArg;
5392   AttrBuilder FuncAttrs;
5393   std::vector<unsigned> FwdRefAttrGrps;
5394   LocTy BuiltinLoc;
5395   std::string Section;
5396   std::string Partition;
5397   MaybeAlign Alignment;
5398   std::string GC;
5399   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5400   unsigned AddrSpace = 0;
5401   Constant *Prefix = nullptr;
5402   Constant *Prologue = nullptr;
5403   Constant *PersonalityFn = nullptr;
5404   Comdat *C;
5405 
5406   if (ParseArgumentList(ArgList, isVarArg) ||
5407       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5408       ParseOptionalProgramAddrSpace(AddrSpace) ||
5409       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5410                                  BuiltinLoc) ||
5411       (EatIfPresent(lltok::kw_section) &&
5412        ParseStringConstant(Section)) ||
5413       (EatIfPresent(lltok::kw_partition) &&
5414        ParseStringConstant(Partition)) ||
5415       parseOptionalComdat(FunctionName, C) ||
5416       ParseOptionalAlignment(Alignment) ||
5417       (EatIfPresent(lltok::kw_gc) &&
5418        ParseStringConstant(GC)) ||
5419       (EatIfPresent(lltok::kw_prefix) &&
5420        ParseGlobalTypeAndValue(Prefix)) ||
5421       (EatIfPresent(lltok::kw_prologue) &&
5422        ParseGlobalTypeAndValue(Prologue)) ||
5423       (EatIfPresent(lltok::kw_personality) &&
5424        ParseGlobalTypeAndValue(PersonalityFn)))
5425     return true;
5426 
5427   if (FuncAttrs.contains(Attribute::Builtin))
5428     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5429 
5430   // If the alignment was parsed as an attribute, move to the alignment field.
5431   if (FuncAttrs.hasAlignmentAttr()) {
5432     Alignment = FuncAttrs.getAlignment();
5433     FuncAttrs.removeAttribute(Attribute::Alignment);
5434   }
5435 
5436   // Okay, if we got here, the function is syntactically valid.  Convert types
5437   // and do semantic checks.
5438   std::vector<Type*> ParamTypeList;
5439   SmallVector<AttributeSet, 8> Attrs;
5440 
5441   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5442     ParamTypeList.push_back(ArgList[i].Ty);
5443     Attrs.push_back(ArgList[i].Attrs);
5444   }
5445 
5446   AttributeList PAL =
5447       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5448                          AttributeSet::get(Context, RetAttrs), Attrs);
5449 
5450   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5451     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5452 
5453   FunctionType *FT =
5454     FunctionType::get(RetType, ParamTypeList, isVarArg);
5455   PointerType *PFT = PointerType::get(FT, AddrSpace);
5456 
5457   Fn = nullptr;
5458   if (!FunctionName.empty()) {
5459     // If this was a definition of a forward reference, remove the definition
5460     // from the forward reference table and fill in the forward ref.
5461     auto FRVI = ForwardRefVals.find(FunctionName);
5462     if (FRVI != ForwardRefVals.end()) {
5463       Fn = M->getFunction(FunctionName);
5464       if (!Fn)
5465         return Error(FRVI->second.second, "invalid forward reference to "
5466                      "function as global value!");
5467       if (Fn->getType() != PFT)
5468         return Error(FRVI->second.second, "invalid forward reference to "
5469                      "function '" + FunctionName + "' with wrong type: "
5470                      "expected '" + getTypeString(PFT) + "' but was '" +
5471                      getTypeString(Fn->getType()) + "'");
5472       ForwardRefVals.erase(FRVI);
5473     } else if ((Fn = M->getFunction(FunctionName))) {
5474       // Reject redefinitions.
5475       return Error(NameLoc, "invalid redefinition of function '" +
5476                    FunctionName + "'");
5477     } else if (M->getNamedValue(FunctionName)) {
5478       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5479     }
5480 
5481   } else {
5482     // If this is a definition of a forward referenced function, make sure the
5483     // types agree.
5484     auto I = ForwardRefValIDs.find(NumberedVals.size());
5485     if (I != ForwardRefValIDs.end()) {
5486       Fn = cast<Function>(I->second.first);
5487       if (Fn->getType() != PFT)
5488         return Error(NameLoc, "type of definition and forward reference of '@" +
5489                      Twine(NumberedVals.size()) + "' disagree: "
5490                      "expected '" + getTypeString(PFT) + "' but was '" +
5491                      getTypeString(Fn->getType()) + "'");
5492       ForwardRefValIDs.erase(I);
5493     }
5494   }
5495 
5496   if (!Fn)
5497     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5498                           FunctionName, M);
5499   else // Move the forward-reference to the correct spot in the module.
5500     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5501 
5502   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5503 
5504   if (FunctionName.empty())
5505     NumberedVals.push_back(Fn);
5506 
5507   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5508   maybeSetDSOLocal(DSOLocal, *Fn);
5509   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5510   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5511   Fn->setCallingConv(CC);
5512   Fn->setAttributes(PAL);
5513   Fn->setUnnamedAddr(UnnamedAddr);
5514   Fn->setAlignment(MaybeAlign(Alignment));
5515   Fn->setSection(Section);
5516   Fn->setPartition(Partition);
5517   Fn->setComdat(C);
5518   Fn->setPersonalityFn(PersonalityFn);
5519   if (!GC.empty()) Fn->setGC(GC);
5520   Fn->setPrefixData(Prefix);
5521   Fn->setPrologueData(Prologue);
5522   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5523 
5524   // Add all of the arguments we parsed to the function.
5525   Function::arg_iterator ArgIt = Fn->arg_begin();
5526   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5527     // If the argument has a name, insert it into the argument symbol table.
5528     if (ArgList[i].Name.empty()) continue;
5529 
5530     // Set the name, if it conflicted, it will be auto-renamed.
5531     ArgIt->setName(ArgList[i].Name);
5532 
5533     if (ArgIt->getName() != ArgList[i].Name)
5534       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5535                    ArgList[i].Name + "'");
5536   }
5537 
5538   if (isDefine)
5539     return false;
5540 
5541   // Check the declaration has no block address forward references.
5542   ValID ID;
5543   if (FunctionName.empty()) {
5544     ID.Kind = ValID::t_GlobalID;
5545     ID.UIntVal = NumberedVals.size() - 1;
5546   } else {
5547     ID.Kind = ValID::t_GlobalName;
5548     ID.StrVal = FunctionName;
5549   }
5550   auto Blocks = ForwardRefBlockAddresses.find(ID);
5551   if (Blocks != ForwardRefBlockAddresses.end())
5552     return Error(Blocks->first.Loc,
5553                  "cannot take blockaddress inside a declaration");
5554   return false;
5555 }
5556 
5557 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5558   ValID ID;
5559   if (FunctionNumber == -1) {
5560     ID.Kind = ValID::t_GlobalName;
5561     ID.StrVal = std::string(F.getName());
5562   } else {
5563     ID.Kind = ValID::t_GlobalID;
5564     ID.UIntVal = FunctionNumber;
5565   }
5566 
5567   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5568   if (Blocks == P.ForwardRefBlockAddresses.end())
5569     return false;
5570 
5571   for (const auto &I : Blocks->second) {
5572     const ValID &BBID = I.first;
5573     GlobalValue *GV = I.second;
5574 
5575     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5576            "Expected local id or name");
5577     BasicBlock *BB;
5578     if (BBID.Kind == ValID::t_LocalName)
5579       BB = GetBB(BBID.StrVal, BBID.Loc);
5580     else
5581       BB = GetBB(BBID.UIntVal, BBID.Loc);
5582     if (!BB)
5583       return P.Error(BBID.Loc, "referenced value is not a basic block");
5584 
5585     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5586     GV->eraseFromParent();
5587   }
5588 
5589   P.ForwardRefBlockAddresses.erase(Blocks);
5590   return false;
5591 }
5592 
5593 /// ParseFunctionBody
5594 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5595 bool LLParser::ParseFunctionBody(Function &Fn) {
5596   if (Lex.getKind() != lltok::lbrace)
5597     return TokError("expected '{' in function body");
5598   Lex.Lex();  // eat the {.
5599 
5600   int FunctionNumber = -1;
5601   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5602 
5603   PerFunctionState PFS(*this, Fn, FunctionNumber);
5604 
5605   // Resolve block addresses and allow basic blocks to be forward-declared
5606   // within this function.
5607   if (PFS.resolveForwardRefBlockAddresses())
5608     return true;
5609   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5610 
5611   // We need at least one basic block.
5612   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5613     return TokError("function body requires at least one basic block");
5614 
5615   while (Lex.getKind() != lltok::rbrace &&
5616          Lex.getKind() != lltok::kw_uselistorder)
5617     if (ParseBasicBlock(PFS)) return true;
5618 
5619   while (Lex.getKind() != lltok::rbrace)
5620     if (ParseUseListOrder(&PFS))
5621       return true;
5622 
5623   // Eat the }.
5624   Lex.Lex();
5625 
5626   // Verify function is ok.
5627   return PFS.FinishFunction();
5628 }
5629 
5630 /// ParseBasicBlock
5631 ///   ::= (LabelStr|LabelID)? Instruction*
5632 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5633   // If this basic block starts out with a name, remember it.
5634   std::string Name;
5635   int NameID = -1;
5636   LocTy NameLoc = Lex.getLoc();
5637   if (Lex.getKind() == lltok::LabelStr) {
5638     Name = Lex.getStrVal();
5639     Lex.Lex();
5640   } else if (Lex.getKind() == lltok::LabelID) {
5641     NameID = Lex.getUIntVal();
5642     Lex.Lex();
5643   }
5644 
5645   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5646   if (!BB)
5647     return true;
5648 
5649   std::string NameStr;
5650 
5651   // Parse the instructions in this block until we get a terminator.
5652   Instruction *Inst;
5653   do {
5654     // This instruction may have three possibilities for a name: a) none
5655     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5656     LocTy NameLoc = Lex.getLoc();
5657     int NameID = -1;
5658     NameStr = "";
5659 
5660     if (Lex.getKind() == lltok::LocalVarID) {
5661       NameID = Lex.getUIntVal();
5662       Lex.Lex();
5663       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5664         return true;
5665     } else if (Lex.getKind() == lltok::LocalVar) {
5666       NameStr = Lex.getStrVal();
5667       Lex.Lex();
5668       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5669         return true;
5670     }
5671 
5672     switch (ParseInstruction(Inst, BB, PFS)) {
5673     default: llvm_unreachable("Unknown ParseInstruction result!");
5674     case InstError: return true;
5675     case InstNormal:
5676       BB->getInstList().push_back(Inst);
5677 
5678       // With a normal result, we check to see if the instruction is followed by
5679       // a comma and metadata.
5680       if (EatIfPresent(lltok::comma))
5681         if (ParseInstructionMetadata(*Inst))
5682           return true;
5683       break;
5684     case InstExtraComma:
5685       BB->getInstList().push_back(Inst);
5686 
5687       // If the instruction parser ate an extra comma at the end of it, it
5688       // *must* be followed by metadata.
5689       if (ParseInstructionMetadata(*Inst))
5690         return true;
5691       break;
5692     }
5693 
5694     // Set the name on the instruction.
5695     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5696   } while (!Inst->isTerminator());
5697 
5698   return false;
5699 }
5700 
5701 //===----------------------------------------------------------------------===//
5702 // Instruction Parsing.
5703 //===----------------------------------------------------------------------===//
5704 
5705 /// ParseInstruction - Parse one of the many different instructions.
5706 ///
5707 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5708                                PerFunctionState &PFS) {
5709   lltok::Kind Token = Lex.getKind();
5710   if (Token == lltok::Eof)
5711     return TokError("found end of file when expecting more instructions");
5712   LocTy Loc = Lex.getLoc();
5713   unsigned KeywordVal = Lex.getUIntVal();
5714   Lex.Lex();  // Eat the keyword.
5715 
5716   switch (Token) {
5717   default:                    return Error(Loc, "expected instruction opcode");
5718   // Terminator Instructions.
5719   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5720   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5721   case lltok::kw_br:          return ParseBr(Inst, PFS);
5722   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5723   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5724   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5725   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5726   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5727   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5728   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5729   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5730   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5731   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5732   // Unary Operators.
5733   case lltok::kw_fneg: {
5734     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5735     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5736     if (Res != 0)
5737       return Res;
5738     if (FMF.any())
5739       Inst->setFastMathFlags(FMF);
5740     return false;
5741   }
5742   // Binary Operators.
5743   case lltok::kw_add:
5744   case lltok::kw_sub:
5745   case lltok::kw_mul:
5746   case lltok::kw_shl: {
5747     bool NUW = EatIfPresent(lltok::kw_nuw);
5748     bool NSW = EatIfPresent(lltok::kw_nsw);
5749     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5750 
5751     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5752 
5753     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5754     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5755     return false;
5756   }
5757   case lltok::kw_fadd:
5758   case lltok::kw_fsub:
5759   case lltok::kw_fmul:
5760   case lltok::kw_fdiv:
5761   case lltok::kw_frem: {
5762     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5763     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5764     if (Res != 0)
5765       return Res;
5766     if (FMF.any())
5767       Inst->setFastMathFlags(FMF);
5768     return 0;
5769   }
5770 
5771   case lltok::kw_sdiv:
5772   case lltok::kw_udiv:
5773   case lltok::kw_lshr:
5774   case lltok::kw_ashr: {
5775     bool Exact = EatIfPresent(lltok::kw_exact);
5776 
5777     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5778     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5779     return false;
5780   }
5781 
5782   case lltok::kw_urem:
5783   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5784                                                 /*IsFP*/false);
5785   case lltok::kw_and:
5786   case lltok::kw_or:
5787   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5788   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5789   case lltok::kw_fcmp: {
5790     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5791     int Res = ParseCompare(Inst, PFS, KeywordVal);
5792     if (Res != 0)
5793       return Res;
5794     if (FMF.any())
5795       Inst->setFastMathFlags(FMF);
5796     return 0;
5797   }
5798 
5799   // Casts.
5800   case lltok::kw_trunc:
5801   case lltok::kw_zext:
5802   case lltok::kw_sext:
5803   case lltok::kw_fptrunc:
5804   case lltok::kw_fpext:
5805   case lltok::kw_bitcast:
5806   case lltok::kw_addrspacecast:
5807   case lltok::kw_uitofp:
5808   case lltok::kw_sitofp:
5809   case lltok::kw_fptoui:
5810   case lltok::kw_fptosi:
5811   case lltok::kw_inttoptr:
5812   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5813   // Other.
5814   case lltok::kw_select: {
5815     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5816     int Res = ParseSelect(Inst, PFS);
5817     if (Res != 0)
5818       return Res;
5819     if (FMF.any()) {
5820       if (!isa<FPMathOperator>(Inst))
5821         return Error(Loc, "fast-math-flags specified for select without "
5822                           "floating-point scalar or vector return type");
5823       Inst->setFastMathFlags(FMF);
5824     }
5825     return 0;
5826   }
5827   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5828   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5829   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5830   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5831   case lltok::kw_phi: {
5832     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5833     int Res = ParsePHI(Inst, PFS);
5834     if (Res != 0)
5835       return Res;
5836     if (FMF.any()) {
5837       if (!isa<FPMathOperator>(Inst))
5838         return Error(Loc, "fast-math-flags specified for phi without "
5839                           "floating-point scalar or vector return type");
5840       Inst->setFastMathFlags(FMF);
5841     }
5842     return 0;
5843   }
5844   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5845   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5846   // Call.
5847   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5848   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5849   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5850   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5851   // Memory.
5852   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5853   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5854   case lltok::kw_store:          return ParseStore(Inst, PFS);
5855   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5856   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5857   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5858   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5859   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5860   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5861   }
5862 }
5863 
5864 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5865 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5866   if (Opc == Instruction::FCmp) {
5867     switch (Lex.getKind()) {
5868     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5869     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5870     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5871     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5872     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5873     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5874     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5875     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5876     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5877     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5878     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5879     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5880     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5881     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5882     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5883     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5884     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5885     }
5886   } else {
5887     switch (Lex.getKind()) {
5888     default: return TokError("expected icmp predicate (e.g. 'eq')");
5889     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5890     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5891     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5892     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5893     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5894     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5895     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5896     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5897     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5898     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5899     }
5900   }
5901   Lex.Lex();
5902   return false;
5903 }
5904 
5905 //===----------------------------------------------------------------------===//
5906 // Terminator Instructions.
5907 //===----------------------------------------------------------------------===//
5908 
5909 /// ParseRet - Parse a return instruction.
5910 ///   ::= 'ret' void (',' !dbg, !1)*
5911 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5912 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5913                         PerFunctionState &PFS) {
5914   SMLoc TypeLoc = Lex.getLoc();
5915   Type *Ty = nullptr;
5916   if (ParseType(Ty, true /*void allowed*/)) return true;
5917 
5918   Type *ResType = PFS.getFunction().getReturnType();
5919 
5920   if (Ty->isVoidTy()) {
5921     if (!ResType->isVoidTy())
5922       return Error(TypeLoc, "value doesn't match function result type '" +
5923                    getTypeString(ResType) + "'");
5924 
5925     Inst = ReturnInst::Create(Context);
5926     return false;
5927   }
5928 
5929   Value *RV;
5930   if (ParseValue(Ty, RV, PFS)) return true;
5931 
5932   if (ResType != RV->getType())
5933     return Error(TypeLoc, "value doesn't match function result type '" +
5934                  getTypeString(ResType) + "'");
5935 
5936   Inst = ReturnInst::Create(Context, RV);
5937   return false;
5938 }
5939 
5940 /// ParseBr
5941 ///   ::= 'br' TypeAndValue
5942 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5943 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5944   LocTy Loc, Loc2;
5945   Value *Op0;
5946   BasicBlock *Op1, *Op2;
5947   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5948 
5949   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5950     Inst = BranchInst::Create(BB);
5951     return false;
5952   }
5953 
5954   if (Op0->getType() != Type::getInt1Ty(Context))
5955     return Error(Loc, "branch condition must have 'i1' type");
5956 
5957   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5958       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5959       ParseToken(lltok::comma, "expected ',' after true destination") ||
5960       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5961     return true;
5962 
5963   Inst = BranchInst::Create(Op1, Op2, Op0);
5964   return false;
5965 }
5966 
5967 /// ParseSwitch
5968 ///  Instruction
5969 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5970 ///  JumpTable
5971 ///    ::= (TypeAndValue ',' TypeAndValue)*
5972 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5973   LocTy CondLoc, BBLoc;
5974   Value *Cond;
5975   BasicBlock *DefaultBB;
5976   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5977       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5978       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5979       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5980     return true;
5981 
5982   if (!Cond->getType()->isIntegerTy())
5983     return Error(CondLoc, "switch condition must have integer type");
5984 
5985   // Parse the jump table pairs.
5986   SmallPtrSet<Value*, 32> SeenCases;
5987   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5988   while (Lex.getKind() != lltok::rsquare) {
5989     Value *Constant;
5990     BasicBlock *DestBB;
5991 
5992     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5993         ParseToken(lltok::comma, "expected ',' after case value") ||
5994         ParseTypeAndBasicBlock(DestBB, PFS))
5995       return true;
5996 
5997     if (!SeenCases.insert(Constant).second)
5998       return Error(CondLoc, "duplicate case value in switch");
5999     if (!isa<ConstantInt>(Constant))
6000       return Error(CondLoc, "case value is not a constant integer");
6001 
6002     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6003   }
6004 
6005   Lex.Lex();  // Eat the ']'.
6006 
6007   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6008   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6009     SI->addCase(Table[i].first, Table[i].second);
6010   Inst = SI;
6011   return false;
6012 }
6013 
6014 /// ParseIndirectBr
6015 ///  Instruction
6016 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6017 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6018   LocTy AddrLoc;
6019   Value *Address;
6020   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6021       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6022       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6023     return true;
6024 
6025   if (!Address->getType()->isPointerTy())
6026     return Error(AddrLoc, "indirectbr address must have pointer type");
6027 
6028   // Parse the destination list.
6029   SmallVector<BasicBlock*, 16> DestList;
6030 
6031   if (Lex.getKind() != lltok::rsquare) {
6032     BasicBlock *DestBB;
6033     if (ParseTypeAndBasicBlock(DestBB, PFS))
6034       return true;
6035     DestList.push_back(DestBB);
6036 
6037     while (EatIfPresent(lltok::comma)) {
6038       if (ParseTypeAndBasicBlock(DestBB, PFS))
6039         return true;
6040       DestList.push_back(DestBB);
6041     }
6042   }
6043 
6044   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6045     return true;
6046 
6047   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6048   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6049     IBI->addDestination(DestList[i]);
6050   Inst = IBI;
6051   return false;
6052 }
6053 
6054 /// ParseInvoke
6055 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6056 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6057 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6058   LocTy CallLoc = Lex.getLoc();
6059   AttrBuilder RetAttrs, FnAttrs;
6060   std::vector<unsigned> FwdRefAttrGrps;
6061   LocTy NoBuiltinLoc;
6062   unsigned CC;
6063   unsigned InvokeAddrSpace;
6064   Type *RetType = nullptr;
6065   LocTy RetTypeLoc;
6066   ValID CalleeID;
6067   SmallVector<ParamInfo, 16> ArgList;
6068   SmallVector<OperandBundleDef, 2> BundleList;
6069 
6070   BasicBlock *NormalBB, *UnwindBB;
6071   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6072       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6073       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6074       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6075       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6076                                  NoBuiltinLoc) ||
6077       ParseOptionalOperandBundles(BundleList, PFS) ||
6078       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6079       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6080       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6081       ParseTypeAndBasicBlock(UnwindBB, PFS))
6082     return true;
6083 
6084   // If RetType is a non-function pointer type, then this is the short syntax
6085   // for the call, which means that RetType is just the return type.  Infer the
6086   // rest of the function argument types from the arguments that are present.
6087   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6088   if (!Ty) {
6089     // Pull out the types of all of the arguments...
6090     std::vector<Type*> ParamTypes;
6091     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6092       ParamTypes.push_back(ArgList[i].V->getType());
6093 
6094     if (!FunctionType::isValidReturnType(RetType))
6095       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6096 
6097     Ty = FunctionType::get(RetType, ParamTypes, false);
6098   }
6099 
6100   CalleeID.FTy = Ty;
6101 
6102   // Look up the callee.
6103   Value *Callee;
6104   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6105                           Callee, &PFS, /*IsCall=*/true))
6106     return true;
6107 
6108   // Set up the Attribute for the function.
6109   SmallVector<Value *, 8> Args;
6110   SmallVector<AttributeSet, 8> ArgAttrs;
6111 
6112   // Loop through FunctionType's arguments and ensure they are specified
6113   // correctly.  Also, gather any parameter attributes.
6114   FunctionType::param_iterator I = Ty->param_begin();
6115   FunctionType::param_iterator E = Ty->param_end();
6116   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6117     Type *ExpectedTy = nullptr;
6118     if (I != E) {
6119       ExpectedTy = *I++;
6120     } else if (!Ty->isVarArg()) {
6121       return Error(ArgList[i].Loc, "too many arguments specified");
6122     }
6123 
6124     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6125       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6126                    getTypeString(ExpectedTy) + "'");
6127     Args.push_back(ArgList[i].V);
6128     ArgAttrs.push_back(ArgList[i].Attrs);
6129   }
6130 
6131   if (I != E)
6132     return Error(CallLoc, "not enough parameters specified for call");
6133 
6134   if (FnAttrs.hasAlignmentAttr())
6135     return Error(CallLoc, "invoke instructions may not have an alignment");
6136 
6137   // Finish off the Attribute and check them
6138   AttributeList PAL =
6139       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6140                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6141 
6142   InvokeInst *II =
6143       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6144   II->setCallingConv(CC);
6145   II->setAttributes(PAL);
6146   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6147   Inst = II;
6148   return false;
6149 }
6150 
6151 /// ParseResume
6152 ///   ::= 'resume' TypeAndValue
6153 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6154   Value *Exn; LocTy ExnLoc;
6155   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6156     return true;
6157 
6158   ResumeInst *RI = ResumeInst::Create(Exn);
6159   Inst = RI;
6160   return false;
6161 }
6162 
6163 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6164                                   PerFunctionState &PFS) {
6165   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6166     return true;
6167 
6168   while (Lex.getKind() != lltok::rsquare) {
6169     // If this isn't the first argument, we need a comma.
6170     if (!Args.empty() &&
6171         ParseToken(lltok::comma, "expected ',' in argument list"))
6172       return true;
6173 
6174     // Parse the argument.
6175     LocTy ArgLoc;
6176     Type *ArgTy = nullptr;
6177     if (ParseType(ArgTy, ArgLoc))
6178       return true;
6179 
6180     Value *V;
6181     if (ArgTy->isMetadataTy()) {
6182       if (ParseMetadataAsValue(V, PFS))
6183         return true;
6184     } else {
6185       if (ParseValue(ArgTy, V, PFS))
6186         return true;
6187     }
6188     Args.push_back(V);
6189   }
6190 
6191   Lex.Lex();  // Lex the ']'.
6192   return false;
6193 }
6194 
6195 /// ParseCleanupRet
6196 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6197 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6198   Value *CleanupPad = nullptr;
6199 
6200   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6201     return true;
6202 
6203   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6204     return true;
6205 
6206   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6207     return true;
6208 
6209   BasicBlock *UnwindBB = nullptr;
6210   if (Lex.getKind() == lltok::kw_to) {
6211     Lex.Lex();
6212     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6213       return true;
6214   } else {
6215     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6216       return true;
6217     }
6218   }
6219 
6220   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6221   return false;
6222 }
6223 
6224 /// ParseCatchRet
6225 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6226 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6227   Value *CatchPad = nullptr;
6228 
6229   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6230     return true;
6231 
6232   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6233     return true;
6234 
6235   BasicBlock *BB;
6236   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6237       ParseTypeAndBasicBlock(BB, PFS))
6238       return true;
6239 
6240   Inst = CatchReturnInst::Create(CatchPad, BB);
6241   return false;
6242 }
6243 
6244 /// ParseCatchSwitch
6245 ///   ::= 'catchswitch' within Parent
6246 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6247   Value *ParentPad;
6248 
6249   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6250     return true;
6251 
6252   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6253       Lex.getKind() != lltok::LocalVarID)
6254     return TokError("expected scope value for catchswitch");
6255 
6256   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6257     return true;
6258 
6259   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6260     return true;
6261 
6262   SmallVector<BasicBlock *, 32> Table;
6263   do {
6264     BasicBlock *DestBB;
6265     if (ParseTypeAndBasicBlock(DestBB, PFS))
6266       return true;
6267     Table.push_back(DestBB);
6268   } while (EatIfPresent(lltok::comma));
6269 
6270   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6271     return true;
6272 
6273   if (ParseToken(lltok::kw_unwind,
6274                  "expected 'unwind' after catchswitch scope"))
6275     return true;
6276 
6277   BasicBlock *UnwindBB = nullptr;
6278   if (EatIfPresent(lltok::kw_to)) {
6279     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6280       return true;
6281   } else {
6282     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6283       return true;
6284   }
6285 
6286   auto *CatchSwitch =
6287       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6288   for (BasicBlock *DestBB : Table)
6289     CatchSwitch->addHandler(DestBB);
6290   Inst = CatchSwitch;
6291   return false;
6292 }
6293 
6294 /// ParseCatchPad
6295 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6296 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6297   Value *CatchSwitch = nullptr;
6298 
6299   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6300     return true;
6301 
6302   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6303     return TokError("expected scope value for catchpad");
6304 
6305   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6306     return true;
6307 
6308   SmallVector<Value *, 8> Args;
6309   if (ParseExceptionArgs(Args, PFS))
6310     return true;
6311 
6312   Inst = CatchPadInst::Create(CatchSwitch, Args);
6313   return false;
6314 }
6315 
6316 /// ParseCleanupPad
6317 ///   ::= 'cleanuppad' within Parent ParamList
6318 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6319   Value *ParentPad = nullptr;
6320 
6321   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6322     return true;
6323 
6324   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6325       Lex.getKind() != lltok::LocalVarID)
6326     return TokError("expected scope value for cleanuppad");
6327 
6328   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6329     return true;
6330 
6331   SmallVector<Value *, 8> Args;
6332   if (ParseExceptionArgs(Args, PFS))
6333     return true;
6334 
6335   Inst = CleanupPadInst::Create(ParentPad, Args);
6336   return false;
6337 }
6338 
6339 //===----------------------------------------------------------------------===//
6340 // Unary Operators.
6341 //===----------------------------------------------------------------------===//
6342 
6343 /// ParseUnaryOp
6344 ///  ::= UnaryOp TypeAndValue ',' Value
6345 ///
6346 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6347 /// operand is allowed.
6348 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6349                             unsigned Opc, bool IsFP) {
6350   LocTy Loc; Value *LHS;
6351   if (ParseTypeAndValue(LHS, Loc, PFS))
6352     return true;
6353 
6354   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6355                     : LHS->getType()->isIntOrIntVectorTy();
6356 
6357   if (!Valid)
6358     return Error(Loc, "invalid operand type for instruction");
6359 
6360   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6361   return false;
6362 }
6363 
6364 /// ParseCallBr
6365 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6366 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6367 ///       '[' LabelList ']'
6368 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6369   LocTy CallLoc = Lex.getLoc();
6370   AttrBuilder RetAttrs, FnAttrs;
6371   std::vector<unsigned> FwdRefAttrGrps;
6372   LocTy NoBuiltinLoc;
6373   unsigned CC;
6374   Type *RetType = nullptr;
6375   LocTy RetTypeLoc;
6376   ValID CalleeID;
6377   SmallVector<ParamInfo, 16> ArgList;
6378   SmallVector<OperandBundleDef, 2> BundleList;
6379 
6380   BasicBlock *DefaultDest;
6381   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6382       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6383       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6384       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6385                                  NoBuiltinLoc) ||
6386       ParseOptionalOperandBundles(BundleList, PFS) ||
6387       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6388       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6389       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6390     return true;
6391 
6392   // Parse the destination list.
6393   SmallVector<BasicBlock *, 16> IndirectDests;
6394 
6395   if (Lex.getKind() != lltok::rsquare) {
6396     BasicBlock *DestBB;
6397     if (ParseTypeAndBasicBlock(DestBB, PFS))
6398       return true;
6399     IndirectDests.push_back(DestBB);
6400 
6401     while (EatIfPresent(lltok::comma)) {
6402       if (ParseTypeAndBasicBlock(DestBB, PFS))
6403         return true;
6404       IndirectDests.push_back(DestBB);
6405     }
6406   }
6407 
6408   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6409     return true;
6410 
6411   // If RetType is a non-function pointer type, then this is the short syntax
6412   // for the call, which means that RetType is just the return type.  Infer the
6413   // rest of the function argument types from the arguments that are present.
6414   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6415   if (!Ty) {
6416     // Pull out the types of all of the arguments...
6417     std::vector<Type *> ParamTypes;
6418     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6419       ParamTypes.push_back(ArgList[i].V->getType());
6420 
6421     if (!FunctionType::isValidReturnType(RetType))
6422       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6423 
6424     Ty = FunctionType::get(RetType, ParamTypes, false);
6425   }
6426 
6427   CalleeID.FTy = Ty;
6428 
6429   // Look up the callee.
6430   Value *Callee;
6431   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6432                           /*IsCall=*/true))
6433     return true;
6434 
6435   // Set up the Attribute for the function.
6436   SmallVector<Value *, 8> Args;
6437   SmallVector<AttributeSet, 8> ArgAttrs;
6438 
6439   // Loop through FunctionType's arguments and ensure they are specified
6440   // correctly.  Also, gather any parameter attributes.
6441   FunctionType::param_iterator I = Ty->param_begin();
6442   FunctionType::param_iterator E = Ty->param_end();
6443   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6444     Type *ExpectedTy = nullptr;
6445     if (I != E) {
6446       ExpectedTy = *I++;
6447     } else if (!Ty->isVarArg()) {
6448       return Error(ArgList[i].Loc, "too many arguments specified");
6449     }
6450 
6451     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6452       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6453                                        getTypeString(ExpectedTy) + "'");
6454     Args.push_back(ArgList[i].V);
6455     ArgAttrs.push_back(ArgList[i].Attrs);
6456   }
6457 
6458   if (I != E)
6459     return Error(CallLoc, "not enough parameters specified for call");
6460 
6461   if (FnAttrs.hasAlignmentAttr())
6462     return Error(CallLoc, "callbr instructions may not have an alignment");
6463 
6464   // Finish off the Attribute and check them
6465   AttributeList PAL =
6466       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6467                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6468 
6469   CallBrInst *CBI =
6470       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6471                          BundleList);
6472   CBI->setCallingConv(CC);
6473   CBI->setAttributes(PAL);
6474   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6475   Inst = CBI;
6476   return false;
6477 }
6478 
6479 //===----------------------------------------------------------------------===//
6480 // Binary Operators.
6481 //===----------------------------------------------------------------------===//
6482 
6483 /// ParseArithmetic
6484 ///  ::= ArithmeticOps TypeAndValue ',' Value
6485 ///
6486 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6487 /// operand is allowed.
6488 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6489                                unsigned Opc, bool IsFP) {
6490   LocTy Loc; Value *LHS, *RHS;
6491   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6492       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6493       ParseValue(LHS->getType(), RHS, PFS))
6494     return true;
6495 
6496   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6497                     : LHS->getType()->isIntOrIntVectorTy();
6498 
6499   if (!Valid)
6500     return Error(Loc, "invalid operand type for instruction");
6501 
6502   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6503   return false;
6504 }
6505 
6506 /// ParseLogical
6507 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6508 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6509                             unsigned Opc) {
6510   LocTy Loc; Value *LHS, *RHS;
6511   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6512       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6513       ParseValue(LHS->getType(), RHS, PFS))
6514     return true;
6515 
6516   if (!LHS->getType()->isIntOrIntVectorTy())
6517     return Error(Loc,"instruction requires integer or integer vector operands");
6518 
6519   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6520   return false;
6521 }
6522 
6523 /// ParseCompare
6524 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6525 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6526 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6527                             unsigned Opc) {
6528   // Parse the integer/fp comparison predicate.
6529   LocTy Loc;
6530   unsigned Pred;
6531   Value *LHS, *RHS;
6532   if (ParseCmpPredicate(Pred, Opc) ||
6533       ParseTypeAndValue(LHS, Loc, PFS) ||
6534       ParseToken(lltok::comma, "expected ',' after compare value") ||
6535       ParseValue(LHS->getType(), RHS, PFS))
6536     return true;
6537 
6538   if (Opc == Instruction::FCmp) {
6539     if (!LHS->getType()->isFPOrFPVectorTy())
6540       return Error(Loc, "fcmp requires floating point operands");
6541     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6542   } else {
6543     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6544     if (!LHS->getType()->isIntOrIntVectorTy() &&
6545         !LHS->getType()->isPtrOrPtrVectorTy())
6546       return Error(Loc, "icmp requires integer operands");
6547     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6548   }
6549   return false;
6550 }
6551 
6552 //===----------------------------------------------------------------------===//
6553 // Other Instructions.
6554 //===----------------------------------------------------------------------===//
6555 
6556 
6557 /// ParseCast
6558 ///   ::= CastOpc TypeAndValue 'to' Type
6559 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6560                          unsigned Opc) {
6561   LocTy Loc;
6562   Value *Op;
6563   Type *DestTy = nullptr;
6564   if (ParseTypeAndValue(Op, Loc, PFS) ||
6565       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6566       ParseType(DestTy))
6567     return true;
6568 
6569   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6570     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6571     return Error(Loc, "invalid cast opcode for cast from '" +
6572                  getTypeString(Op->getType()) + "' to '" +
6573                  getTypeString(DestTy) + "'");
6574   }
6575   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6576   return false;
6577 }
6578 
6579 /// ParseSelect
6580 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6581 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6582   LocTy Loc;
6583   Value *Op0, *Op1, *Op2;
6584   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6585       ParseToken(lltok::comma, "expected ',' after select condition") ||
6586       ParseTypeAndValue(Op1, PFS) ||
6587       ParseToken(lltok::comma, "expected ',' after select value") ||
6588       ParseTypeAndValue(Op2, PFS))
6589     return true;
6590 
6591   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6592     return Error(Loc, Reason);
6593 
6594   Inst = SelectInst::Create(Op0, Op1, Op2);
6595   return false;
6596 }
6597 
6598 /// ParseVA_Arg
6599 ///   ::= 'va_arg' TypeAndValue ',' Type
6600 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6601   Value *Op;
6602   Type *EltTy = nullptr;
6603   LocTy TypeLoc;
6604   if (ParseTypeAndValue(Op, PFS) ||
6605       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6606       ParseType(EltTy, TypeLoc))
6607     return true;
6608 
6609   if (!EltTy->isFirstClassType())
6610     return Error(TypeLoc, "va_arg requires operand with first class type");
6611 
6612   Inst = new VAArgInst(Op, EltTy);
6613   return false;
6614 }
6615 
6616 /// ParseExtractElement
6617 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6618 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6619   LocTy Loc;
6620   Value *Op0, *Op1;
6621   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6622       ParseToken(lltok::comma, "expected ',' after extract value") ||
6623       ParseTypeAndValue(Op1, PFS))
6624     return true;
6625 
6626   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6627     return Error(Loc, "invalid extractelement operands");
6628 
6629   Inst = ExtractElementInst::Create(Op0, Op1);
6630   return false;
6631 }
6632 
6633 /// ParseInsertElement
6634 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6635 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6636   LocTy Loc;
6637   Value *Op0, *Op1, *Op2;
6638   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6639       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6640       ParseTypeAndValue(Op1, PFS) ||
6641       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6642       ParseTypeAndValue(Op2, PFS))
6643     return true;
6644 
6645   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6646     return Error(Loc, "invalid insertelement operands");
6647 
6648   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6649   return false;
6650 }
6651 
6652 /// ParseShuffleVector
6653 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6654 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6655   LocTy Loc;
6656   Value *Op0, *Op1, *Op2;
6657   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6658       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6659       ParseTypeAndValue(Op1, PFS) ||
6660       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6661       ParseTypeAndValue(Op2, PFS))
6662     return true;
6663 
6664   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6665     return Error(Loc, "invalid shufflevector operands");
6666 
6667   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6668   return false;
6669 }
6670 
6671 /// ParsePHI
6672 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6673 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6674   Type *Ty = nullptr;  LocTy TypeLoc;
6675   Value *Op0, *Op1;
6676 
6677   if (ParseType(Ty, TypeLoc) ||
6678       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6679       ParseValue(Ty, Op0, PFS) ||
6680       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6681       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6682       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6683     return true;
6684 
6685   bool AteExtraComma = false;
6686   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6687 
6688   while (true) {
6689     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6690 
6691     if (!EatIfPresent(lltok::comma))
6692       break;
6693 
6694     if (Lex.getKind() == lltok::MetadataVar) {
6695       AteExtraComma = true;
6696       break;
6697     }
6698 
6699     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6700         ParseValue(Ty, Op0, PFS) ||
6701         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6702         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6703         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6704       return true;
6705   }
6706 
6707   if (!Ty->isFirstClassType())
6708     return Error(TypeLoc, "phi node must have first class type");
6709 
6710   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6711   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6712     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6713   Inst = PN;
6714   return AteExtraComma ? InstExtraComma : InstNormal;
6715 }
6716 
6717 /// ParseLandingPad
6718 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6719 /// Clause
6720 ///   ::= 'catch' TypeAndValue
6721 ///   ::= 'filter'
6722 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6723 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6724   Type *Ty = nullptr; LocTy TyLoc;
6725 
6726   if (ParseType(Ty, TyLoc))
6727     return true;
6728 
6729   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6730   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6731 
6732   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6733     LandingPadInst::ClauseType CT;
6734     if (EatIfPresent(lltok::kw_catch))
6735       CT = LandingPadInst::Catch;
6736     else if (EatIfPresent(lltok::kw_filter))
6737       CT = LandingPadInst::Filter;
6738     else
6739       return TokError("expected 'catch' or 'filter' clause type");
6740 
6741     Value *V;
6742     LocTy VLoc;
6743     if (ParseTypeAndValue(V, VLoc, PFS))
6744       return true;
6745 
6746     // A 'catch' type expects a non-array constant. A filter clause expects an
6747     // array constant.
6748     if (CT == LandingPadInst::Catch) {
6749       if (isa<ArrayType>(V->getType()))
6750         Error(VLoc, "'catch' clause has an invalid type");
6751     } else {
6752       if (!isa<ArrayType>(V->getType()))
6753         Error(VLoc, "'filter' clause has an invalid type");
6754     }
6755 
6756     Constant *CV = dyn_cast<Constant>(V);
6757     if (!CV)
6758       return Error(VLoc, "clause argument must be a constant");
6759     LP->addClause(CV);
6760   }
6761 
6762   Inst = LP.release();
6763   return false;
6764 }
6765 
6766 /// ParseFreeze
6767 ///   ::= 'freeze' Type Value
6768 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6769   LocTy Loc;
6770   Value *Op;
6771   if (ParseTypeAndValue(Op, Loc, PFS))
6772     return true;
6773 
6774   Inst = new FreezeInst(Op);
6775   return false;
6776 }
6777 
6778 /// ParseCall
6779 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6780 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6781 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6782 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6783 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6784 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6785 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6786 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6787 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6788                          CallInst::TailCallKind TCK) {
6789   AttrBuilder RetAttrs, FnAttrs;
6790   std::vector<unsigned> FwdRefAttrGrps;
6791   LocTy BuiltinLoc;
6792   unsigned CallAddrSpace;
6793   unsigned CC;
6794   Type *RetType = nullptr;
6795   LocTy RetTypeLoc;
6796   ValID CalleeID;
6797   SmallVector<ParamInfo, 16> ArgList;
6798   SmallVector<OperandBundleDef, 2> BundleList;
6799   LocTy CallLoc = Lex.getLoc();
6800 
6801   if (TCK != CallInst::TCK_None &&
6802       ParseToken(lltok::kw_call,
6803                  "expected 'tail call', 'musttail call', or 'notail call'"))
6804     return true;
6805 
6806   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6807 
6808   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6809       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6810       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6811       ParseValID(CalleeID) ||
6812       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6813                          PFS.getFunction().isVarArg()) ||
6814       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6815       ParseOptionalOperandBundles(BundleList, PFS))
6816     return true;
6817 
6818   // If RetType is a non-function pointer type, then this is the short syntax
6819   // for the call, which means that RetType is just the return type.  Infer the
6820   // rest of the function argument types from the arguments that are present.
6821   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6822   if (!Ty) {
6823     // Pull out the types of all of the arguments...
6824     std::vector<Type*> ParamTypes;
6825     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6826       ParamTypes.push_back(ArgList[i].V->getType());
6827 
6828     if (!FunctionType::isValidReturnType(RetType))
6829       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6830 
6831     Ty = FunctionType::get(RetType, ParamTypes, false);
6832   }
6833 
6834   CalleeID.FTy = Ty;
6835 
6836   // Look up the callee.
6837   Value *Callee;
6838   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6839                           &PFS, /*IsCall=*/true))
6840     return true;
6841 
6842   // Set up the Attribute for the function.
6843   SmallVector<AttributeSet, 8> Attrs;
6844 
6845   SmallVector<Value*, 8> Args;
6846 
6847   // Loop through FunctionType's arguments and ensure they are specified
6848   // correctly.  Also, gather any parameter attributes.
6849   FunctionType::param_iterator I = Ty->param_begin();
6850   FunctionType::param_iterator E = Ty->param_end();
6851   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6852     Type *ExpectedTy = nullptr;
6853     if (I != E) {
6854       ExpectedTy = *I++;
6855     } else if (!Ty->isVarArg()) {
6856       return Error(ArgList[i].Loc, "too many arguments specified");
6857     }
6858 
6859     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6860       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6861                    getTypeString(ExpectedTy) + "'");
6862     Args.push_back(ArgList[i].V);
6863     Attrs.push_back(ArgList[i].Attrs);
6864   }
6865 
6866   if (I != E)
6867     return Error(CallLoc, "not enough parameters specified for call");
6868 
6869   if (FnAttrs.hasAlignmentAttr())
6870     return Error(CallLoc, "call instructions may not have an alignment");
6871 
6872   // Finish off the Attribute and check them
6873   AttributeList PAL =
6874       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6875                          AttributeSet::get(Context, RetAttrs), Attrs);
6876 
6877   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6878   CI->setTailCallKind(TCK);
6879   CI->setCallingConv(CC);
6880   if (FMF.any()) {
6881     if (!isa<FPMathOperator>(CI))
6882       return Error(CallLoc, "fast-math-flags specified for call without "
6883                    "floating-point scalar or vector return type");
6884     CI->setFastMathFlags(FMF);
6885   }
6886   CI->setAttributes(PAL);
6887   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6888   Inst = CI;
6889   return false;
6890 }
6891 
6892 //===----------------------------------------------------------------------===//
6893 // Memory Instructions.
6894 //===----------------------------------------------------------------------===//
6895 
6896 /// ParseAlloc
6897 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6898 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6899 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6900   Value *Size = nullptr;
6901   LocTy SizeLoc, TyLoc, ASLoc;
6902   MaybeAlign Alignment;
6903   unsigned AddrSpace = 0;
6904   Type *Ty = nullptr;
6905 
6906   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6907   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6908 
6909   if (ParseType(Ty, TyLoc)) return true;
6910 
6911   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6912     return Error(TyLoc, "invalid type for alloca");
6913 
6914   bool AteExtraComma = false;
6915   if (EatIfPresent(lltok::comma)) {
6916     if (Lex.getKind() == lltok::kw_align) {
6917       if (ParseOptionalAlignment(Alignment))
6918         return true;
6919       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6920         return true;
6921     } else if (Lex.getKind() == lltok::kw_addrspace) {
6922       ASLoc = Lex.getLoc();
6923       if (ParseOptionalAddrSpace(AddrSpace))
6924         return true;
6925     } else if (Lex.getKind() == lltok::MetadataVar) {
6926       AteExtraComma = true;
6927     } else {
6928       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6929         return true;
6930       if (EatIfPresent(lltok::comma)) {
6931         if (Lex.getKind() == lltok::kw_align) {
6932           if (ParseOptionalAlignment(Alignment))
6933             return true;
6934           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6935             return true;
6936         } else if (Lex.getKind() == lltok::kw_addrspace) {
6937           ASLoc = Lex.getLoc();
6938           if (ParseOptionalAddrSpace(AddrSpace))
6939             return true;
6940         } else if (Lex.getKind() == lltok::MetadataVar) {
6941           AteExtraComma = true;
6942         }
6943       }
6944     }
6945   }
6946 
6947   if (Size && !Size->getType()->isIntegerTy())
6948     return Error(SizeLoc, "element count must have integer type");
6949 
6950   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6951   AI->setUsedWithInAlloca(IsInAlloca);
6952   AI->setSwiftError(IsSwiftError);
6953   Inst = AI;
6954   return AteExtraComma ? InstExtraComma : InstNormal;
6955 }
6956 
6957 /// ParseLoad
6958 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6959 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6960 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6961 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6962   Value *Val; LocTy Loc;
6963   MaybeAlign Alignment;
6964   bool AteExtraComma = false;
6965   bool isAtomic = false;
6966   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6967   SyncScope::ID SSID = SyncScope::System;
6968 
6969   if (Lex.getKind() == lltok::kw_atomic) {
6970     isAtomic = true;
6971     Lex.Lex();
6972   }
6973 
6974   bool isVolatile = false;
6975   if (Lex.getKind() == lltok::kw_volatile) {
6976     isVolatile = true;
6977     Lex.Lex();
6978   }
6979 
6980   Type *Ty;
6981   LocTy ExplicitTypeLoc = Lex.getLoc();
6982   if (ParseType(Ty) ||
6983       ParseToken(lltok::comma, "expected comma after load's type") ||
6984       ParseTypeAndValue(Val, Loc, PFS) ||
6985       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6986       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6987     return true;
6988 
6989   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6990     return Error(Loc, "load operand must be a pointer to a first class type");
6991   if (isAtomic && !Alignment)
6992     return Error(Loc, "atomic load must have explicit non-zero alignment");
6993   if (Ordering == AtomicOrdering::Release ||
6994       Ordering == AtomicOrdering::AcquireRelease)
6995     return Error(Loc, "atomic load cannot use Release ordering");
6996 
6997   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6998     return Error(ExplicitTypeLoc,
6999                  "explicit pointee type doesn't match operand's pointee type");
7000 
7001   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
7002   return AteExtraComma ? InstExtraComma : InstNormal;
7003 }
7004 
7005 /// ParseStore
7006 
7007 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7008 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7009 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7010 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7011   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7012   MaybeAlign Alignment;
7013   bool AteExtraComma = false;
7014   bool isAtomic = false;
7015   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7016   SyncScope::ID SSID = SyncScope::System;
7017 
7018   if (Lex.getKind() == lltok::kw_atomic) {
7019     isAtomic = true;
7020     Lex.Lex();
7021   }
7022 
7023   bool isVolatile = false;
7024   if (Lex.getKind() == lltok::kw_volatile) {
7025     isVolatile = true;
7026     Lex.Lex();
7027   }
7028 
7029   if (ParseTypeAndValue(Val, Loc, PFS) ||
7030       ParseToken(lltok::comma, "expected ',' after store operand") ||
7031       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7032       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7033       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7034     return true;
7035 
7036   if (!Ptr->getType()->isPointerTy())
7037     return Error(PtrLoc, "store operand must be a pointer");
7038   if (!Val->getType()->isFirstClassType())
7039     return Error(Loc, "store operand must be a first class value");
7040   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7041     return Error(Loc, "stored value and pointer type do not match");
7042   if (isAtomic && !Alignment)
7043     return Error(Loc, "atomic store must have explicit non-zero alignment");
7044   if (Ordering == AtomicOrdering::Acquire ||
7045       Ordering == AtomicOrdering::AcquireRelease)
7046     return Error(Loc, "atomic store cannot use Acquire ordering");
7047 
7048   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7049   return AteExtraComma ? InstExtraComma : InstNormal;
7050 }
7051 
7052 /// ParseCmpXchg
7053 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7054 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7055 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7056   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7057   bool AteExtraComma = false;
7058   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7059   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7060   SyncScope::ID SSID = SyncScope::System;
7061   bool isVolatile = false;
7062   bool isWeak = false;
7063 
7064   if (EatIfPresent(lltok::kw_weak))
7065     isWeak = true;
7066 
7067   if (EatIfPresent(lltok::kw_volatile))
7068     isVolatile = true;
7069 
7070   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7071       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7072       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7073       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7074       ParseTypeAndValue(New, NewLoc, PFS) ||
7075       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7076       ParseOrdering(FailureOrdering))
7077     return true;
7078 
7079   if (SuccessOrdering == AtomicOrdering::Unordered ||
7080       FailureOrdering == AtomicOrdering::Unordered)
7081     return TokError("cmpxchg cannot be unordered");
7082   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7083     return TokError("cmpxchg failure argument shall be no stronger than the "
7084                     "success argument");
7085   if (FailureOrdering == AtomicOrdering::Release ||
7086       FailureOrdering == AtomicOrdering::AcquireRelease)
7087     return TokError(
7088         "cmpxchg failure ordering cannot include release semantics");
7089   if (!Ptr->getType()->isPointerTy())
7090     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7091   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7092     return Error(CmpLoc, "compare value and pointer type do not match");
7093   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7094     return Error(NewLoc, "new value and pointer type do not match");
7095   if (!New->getType()->isFirstClassType())
7096     return Error(NewLoc, "cmpxchg operand must be a first class value");
7097   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7098       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7099   CXI->setVolatile(isVolatile);
7100   CXI->setWeak(isWeak);
7101   Inst = CXI;
7102   return AteExtraComma ? InstExtraComma : InstNormal;
7103 }
7104 
7105 /// ParseAtomicRMW
7106 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7107 ///       'singlethread'? AtomicOrdering
7108 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7109   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7110   bool AteExtraComma = false;
7111   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7112   SyncScope::ID SSID = SyncScope::System;
7113   bool isVolatile = false;
7114   bool IsFP = false;
7115   AtomicRMWInst::BinOp Operation;
7116 
7117   if (EatIfPresent(lltok::kw_volatile))
7118     isVolatile = true;
7119 
7120   switch (Lex.getKind()) {
7121   default: return TokError("expected binary operation in atomicrmw");
7122   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7123   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7124   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7125   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7126   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7127   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7128   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7129   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7130   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7131   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7132   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7133   case lltok::kw_fadd:
7134     Operation = AtomicRMWInst::FAdd;
7135     IsFP = true;
7136     break;
7137   case lltok::kw_fsub:
7138     Operation = AtomicRMWInst::FSub;
7139     IsFP = true;
7140     break;
7141   }
7142   Lex.Lex();  // Eat the operation.
7143 
7144   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7145       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7146       ParseTypeAndValue(Val, ValLoc, PFS) ||
7147       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7148     return true;
7149 
7150   if (Ordering == AtomicOrdering::Unordered)
7151     return TokError("atomicrmw cannot be unordered");
7152   if (!Ptr->getType()->isPointerTy())
7153     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7154   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7155     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7156 
7157   if (Operation == AtomicRMWInst::Xchg) {
7158     if (!Val->getType()->isIntegerTy() &&
7159         !Val->getType()->isFloatingPointTy()) {
7160       return Error(ValLoc, "atomicrmw " +
7161                    AtomicRMWInst::getOperationName(Operation) +
7162                    " operand must be an integer or floating point type");
7163     }
7164   } else if (IsFP) {
7165     if (!Val->getType()->isFloatingPointTy()) {
7166       return Error(ValLoc, "atomicrmw " +
7167                    AtomicRMWInst::getOperationName(Operation) +
7168                    " operand must be a floating point type");
7169     }
7170   } else {
7171     if (!Val->getType()->isIntegerTy()) {
7172       return Error(ValLoc, "atomicrmw " +
7173                    AtomicRMWInst::getOperationName(Operation) +
7174                    " operand must be an integer");
7175     }
7176   }
7177 
7178   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7179   if (Size < 8 || (Size & (Size - 1)))
7180     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7181                          " integer");
7182 
7183   AtomicRMWInst *RMWI =
7184     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7185   RMWI->setVolatile(isVolatile);
7186   Inst = RMWI;
7187   return AteExtraComma ? InstExtraComma : InstNormal;
7188 }
7189 
7190 /// ParseFence
7191 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7192 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7193   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7194   SyncScope::ID SSID = SyncScope::System;
7195   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7196     return true;
7197 
7198   if (Ordering == AtomicOrdering::Unordered)
7199     return TokError("fence cannot be unordered");
7200   if (Ordering == AtomicOrdering::Monotonic)
7201     return TokError("fence cannot be monotonic");
7202 
7203   Inst = new FenceInst(Context, Ordering, SSID);
7204   return InstNormal;
7205 }
7206 
7207 /// ParseGetElementPtr
7208 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7209 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7210   Value *Ptr = nullptr;
7211   Value *Val = nullptr;
7212   LocTy Loc, EltLoc;
7213 
7214   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7215 
7216   Type *Ty = nullptr;
7217   LocTy ExplicitTypeLoc = Lex.getLoc();
7218   if (ParseType(Ty) ||
7219       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7220       ParseTypeAndValue(Ptr, Loc, PFS))
7221     return true;
7222 
7223   Type *BaseType = Ptr->getType();
7224   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7225   if (!BasePointerType)
7226     return Error(Loc, "base of getelementptr must be a pointer");
7227 
7228   if (Ty != BasePointerType->getElementType())
7229     return Error(ExplicitTypeLoc,
7230                  "explicit pointee type doesn't match operand's pointee type");
7231 
7232   SmallVector<Value*, 16> Indices;
7233   bool AteExtraComma = false;
7234   // GEP returns a vector of pointers if at least one of parameters is a vector.
7235   // All vector parameters should have the same vector width.
7236   ElementCount GEPWidth = BaseType->isVectorTy() ?
7237     BaseType->getVectorElementCount() : ElementCount(0, false);
7238 
7239   while (EatIfPresent(lltok::comma)) {
7240     if (Lex.getKind() == lltok::MetadataVar) {
7241       AteExtraComma = true;
7242       break;
7243     }
7244     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7245     if (!Val->getType()->isIntOrIntVectorTy())
7246       return Error(EltLoc, "getelementptr index must be an integer");
7247 
7248     if (Val->getType()->isVectorTy()) {
7249       ElementCount ValNumEl = Val->getType()->getVectorElementCount();
7250       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7251         return Error(EltLoc,
7252           "getelementptr vector index has a wrong number of elements");
7253       GEPWidth = ValNumEl;
7254     }
7255     Indices.push_back(Val);
7256   }
7257 
7258   SmallPtrSet<Type*, 4> Visited;
7259   if (!Indices.empty() && !Ty->isSized(&Visited))
7260     return Error(Loc, "base element of getelementptr must be sized");
7261 
7262   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7263     return Error(Loc, "invalid getelementptr indices");
7264   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7265   if (InBounds)
7266     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7267   return AteExtraComma ? InstExtraComma : InstNormal;
7268 }
7269 
7270 /// ParseExtractValue
7271 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7272 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7273   Value *Val; LocTy Loc;
7274   SmallVector<unsigned, 4> Indices;
7275   bool AteExtraComma;
7276   if (ParseTypeAndValue(Val, Loc, PFS) ||
7277       ParseIndexList(Indices, AteExtraComma))
7278     return true;
7279 
7280   if (!Val->getType()->isAggregateType())
7281     return Error(Loc, "extractvalue operand must be aggregate type");
7282 
7283   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7284     return Error(Loc, "invalid indices for extractvalue");
7285   Inst = ExtractValueInst::Create(Val, Indices);
7286   return AteExtraComma ? InstExtraComma : InstNormal;
7287 }
7288 
7289 /// ParseInsertValue
7290 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7291 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7292   Value *Val0, *Val1; LocTy Loc0, Loc1;
7293   SmallVector<unsigned, 4> Indices;
7294   bool AteExtraComma;
7295   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7296       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7297       ParseTypeAndValue(Val1, Loc1, PFS) ||
7298       ParseIndexList(Indices, AteExtraComma))
7299     return true;
7300 
7301   if (!Val0->getType()->isAggregateType())
7302     return Error(Loc0, "insertvalue operand must be aggregate type");
7303 
7304   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7305   if (!IndexedType)
7306     return Error(Loc0, "invalid indices for insertvalue");
7307   if (IndexedType != Val1->getType())
7308     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7309                            getTypeString(Val1->getType()) + "' instead of '" +
7310                            getTypeString(IndexedType) + "'");
7311   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7312   return AteExtraComma ? InstExtraComma : InstNormal;
7313 }
7314 
7315 //===----------------------------------------------------------------------===//
7316 // Embedded metadata.
7317 //===----------------------------------------------------------------------===//
7318 
7319 /// ParseMDNodeVector
7320 ///   ::= { Element (',' Element)* }
7321 /// Element
7322 ///   ::= 'null' | TypeAndValue
7323 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7324   if (ParseToken(lltok::lbrace, "expected '{' here"))
7325     return true;
7326 
7327   // Check for an empty list.
7328   if (EatIfPresent(lltok::rbrace))
7329     return false;
7330 
7331   do {
7332     // Null is a special case since it is typeless.
7333     if (EatIfPresent(lltok::kw_null)) {
7334       Elts.push_back(nullptr);
7335       continue;
7336     }
7337 
7338     Metadata *MD;
7339     if (ParseMetadata(MD, nullptr))
7340       return true;
7341     Elts.push_back(MD);
7342   } while (EatIfPresent(lltok::comma));
7343 
7344   return ParseToken(lltok::rbrace, "expected end of metadata node");
7345 }
7346 
7347 //===----------------------------------------------------------------------===//
7348 // Use-list order directives.
7349 //===----------------------------------------------------------------------===//
7350 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7351                                 SMLoc Loc) {
7352   if (V->use_empty())
7353     return Error(Loc, "value has no uses");
7354 
7355   unsigned NumUses = 0;
7356   SmallDenseMap<const Use *, unsigned, 16> Order;
7357   for (const Use &U : V->uses()) {
7358     if (++NumUses > Indexes.size())
7359       break;
7360     Order[&U] = Indexes[NumUses - 1];
7361   }
7362   if (NumUses < 2)
7363     return Error(Loc, "value only has one use");
7364   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7365     return Error(Loc,
7366                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7367 
7368   V->sortUseList([&](const Use &L, const Use &R) {
7369     return Order.lookup(&L) < Order.lookup(&R);
7370   });
7371   return false;
7372 }
7373 
7374 /// ParseUseListOrderIndexes
7375 ///   ::= '{' uint32 (',' uint32)+ '}'
7376 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7377   SMLoc Loc = Lex.getLoc();
7378   if (ParseToken(lltok::lbrace, "expected '{' here"))
7379     return true;
7380   if (Lex.getKind() == lltok::rbrace)
7381     return Lex.Error("expected non-empty list of uselistorder indexes");
7382 
7383   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7384   // indexes should be distinct numbers in the range [0, size-1], and should
7385   // not be in order.
7386   unsigned Offset = 0;
7387   unsigned Max = 0;
7388   bool IsOrdered = true;
7389   assert(Indexes.empty() && "Expected empty order vector");
7390   do {
7391     unsigned Index;
7392     if (ParseUInt32(Index))
7393       return true;
7394 
7395     // Update consistency checks.
7396     Offset += Index - Indexes.size();
7397     Max = std::max(Max, Index);
7398     IsOrdered &= Index == Indexes.size();
7399 
7400     Indexes.push_back(Index);
7401   } while (EatIfPresent(lltok::comma));
7402 
7403   if (ParseToken(lltok::rbrace, "expected '}' here"))
7404     return true;
7405 
7406   if (Indexes.size() < 2)
7407     return Error(Loc, "expected >= 2 uselistorder indexes");
7408   if (Offset != 0 || Max >= Indexes.size())
7409     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7410   if (IsOrdered)
7411     return Error(Loc, "expected uselistorder indexes to change the order");
7412 
7413   return false;
7414 }
7415 
7416 /// ParseUseListOrder
7417 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7418 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7419   SMLoc Loc = Lex.getLoc();
7420   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7421     return true;
7422 
7423   Value *V;
7424   SmallVector<unsigned, 16> Indexes;
7425   if (ParseTypeAndValue(V, PFS) ||
7426       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7427       ParseUseListOrderIndexes(Indexes))
7428     return true;
7429 
7430   return sortUseListOrder(V, Indexes, Loc);
7431 }
7432 
7433 /// ParseUseListOrderBB
7434 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7435 bool LLParser::ParseUseListOrderBB() {
7436   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7437   SMLoc Loc = Lex.getLoc();
7438   Lex.Lex();
7439 
7440   ValID Fn, Label;
7441   SmallVector<unsigned, 16> Indexes;
7442   if (ParseValID(Fn) ||
7443       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7444       ParseValID(Label) ||
7445       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7446       ParseUseListOrderIndexes(Indexes))
7447     return true;
7448 
7449   // Check the function.
7450   GlobalValue *GV;
7451   if (Fn.Kind == ValID::t_GlobalName)
7452     GV = M->getNamedValue(Fn.StrVal);
7453   else if (Fn.Kind == ValID::t_GlobalID)
7454     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7455   else
7456     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7457   if (!GV)
7458     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7459   auto *F = dyn_cast<Function>(GV);
7460   if (!F)
7461     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7462   if (F->isDeclaration())
7463     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7464 
7465   // Check the basic block.
7466   if (Label.Kind == ValID::t_LocalID)
7467     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7468   if (Label.Kind != ValID::t_LocalName)
7469     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7470   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7471   if (!V)
7472     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7473   if (!isa<BasicBlock>(V))
7474     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7475 
7476   return sortUseListOrder(V, Indexes, Loc);
7477 }
7478 
7479 /// ModuleEntry
7480 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7481 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7482 bool LLParser::ParseModuleEntry(unsigned ID) {
7483   assert(Lex.getKind() == lltok::kw_module);
7484   Lex.Lex();
7485 
7486   std::string Path;
7487   if (ParseToken(lltok::colon, "expected ':' here") ||
7488       ParseToken(lltok::lparen, "expected '(' here") ||
7489       ParseToken(lltok::kw_path, "expected 'path' here") ||
7490       ParseToken(lltok::colon, "expected ':' here") ||
7491       ParseStringConstant(Path) ||
7492       ParseToken(lltok::comma, "expected ',' here") ||
7493       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7494       ParseToken(lltok::colon, "expected ':' here") ||
7495       ParseToken(lltok::lparen, "expected '(' here"))
7496     return true;
7497 
7498   ModuleHash Hash;
7499   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7500       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7501       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7502       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7503       ParseUInt32(Hash[4]))
7504     return true;
7505 
7506   if (ParseToken(lltok::rparen, "expected ')' here") ||
7507       ParseToken(lltok::rparen, "expected ')' here"))
7508     return true;
7509 
7510   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7511   ModuleIdMap[ID] = ModuleEntry->first();
7512 
7513   return false;
7514 }
7515 
7516 /// TypeIdEntry
7517 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7518 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7519   assert(Lex.getKind() == lltok::kw_typeid);
7520   Lex.Lex();
7521 
7522   std::string Name;
7523   if (ParseToken(lltok::colon, "expected ':' here") ||
7524       ParseToken(lltok::lparen, "expected '(' here") ||
7525       ParseToken(lltok::kw_name, "expected 'name' here") ||
7526       ParseToken(lltok::colon, "expected ':' here") ||
7527       ParseStringConstant(Name))
7528     return true;
7529 
7530   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7531   if (ParseToken(lltok::comma, "expected ',' here") ||
7532       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7533     return true;
7534 
7535   // Check if this ID was forward referenced, and if so, update the
7536   // corresponding GUIDs.
7537   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7538   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7539     for (auto TIDRef : FwdRefTIDs->second) {
7540       assert(!*TIDRef.first &&
7541              "Forward referenced type id GUID expected to be 0");
7542       *TIDRef.first = GlobalValue::getGUID(Name);
7543     }
7544     ForwardRefTypeIds.erase(FwdRefTIDs);
7545   }
7546 
7547   return false;
7548 }
7549 
7550 /// TypeIdSummary
7551 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7552 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7553   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7554       ParseToken(lltok::colon, "expected ':' here") ||
7555       ParseToken(lltok::lparen, "expected '(' here") ||
7556       ParseTypeTestResolution(TIS.TTRes))
7557     return true;
7558 
7559   if (EatIfPresent(lltok::comma)) {
7560     // Expect optional wpdResolutions field
7561     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7562       return true;
7563   }
7564 
7565   if (ParseToken(lltok::rparen, "expected ')' here"))
7566     return true;
7567 
7568   return false;
7569 }
7570 
7571 static ValueInfo EmptyVI =
7572     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7573 
7574 /// TypeIdCompatibleVtableEntry
7575 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7576 ///   TypeIdCompatibleVtableInfo
7577 ///   ')'
7578 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7579   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7580   Lex.Lex();
7581 
7582   std::string Name;
7583   if (ParseToken(lltok::colon, "expected ':' here") ||
7584       ParseToken(lltok::lparen, "expected '(' here") ||
7585       ParseToken(lltok::kw_name, "expected 'name' here") ||
7586       ParseToken(lltok::colon, "expected ':' here") ||
7587       ParseStringConstant(Name))
7588     return true;
7589 
7590   TypeIdCompatibleVtableInfo &TI =
7591       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7592   if (ParseToken(lltok::comma, "expected ',' here") ||
7593       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7594       ParseToken(lltok::colon, "expected ':' here") ||
7595       ParseToken(lltok::lparen, "expected '(' here"))
7596     return true;
7597 
7598   IdToIndexMapType IdToIndexMap;
7599   // Parse each call edge
7600   do {
7601     uint64_t Offset;
7602     if (ParseToken(lltok::lparen, "expected '(' here") ||
7603         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7604         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7605         ParseToken(lltok::comma, "expected ',' here"))
7606       return true;
7607 
7608     LocTy Loc = Lex.getLoc();
7609     unsigned GVId;
7610     ValueInfo VI;
7611     if (ParseGVReference(VI, GVId))
7612       return true;
7613 
7614     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7615     // forward reference. We will save the location of the ValueInfo needing an
7616     // update, but can only do so once the std::vector is finalized.
7617     if (VI == EmptyVI)
7618       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7619     TI.push_back({Offset, VI});
7620 
7621     if (ParseToken(lltok::rparen, "expected ')' in call"))
7622       return true;
7623   } while (EatIfPresent(lltok::comma));
7624 
7625   // Now that the TI vector is finalized, it is safe to save the locations
7626   // of any forward GV references that need updating later.
7627   for (auto I : IdToIndexMap) {
7628     for (auto P : I.second) {
7629       assert(TI[P.first].VTableVI == EmptyVI &&
7630              "Forward referenced ValueInfo expected to be empty");
7631       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7632           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7633       FwdRef.first->second.push_back(
7634           std::make_pair(&TI[P.first].VTableVI, P.second));
7635     }
7636   }
7637 
7638   if (ParseToken(lltok::rparen, "expected ')' here") ||
7639       ParseToken(lltok::rparen, "expected ')' here"))
7640     return true;
7641 
7642   // Check if this ID was forward referenced, and if so, update the
7643   // corresponding GUIDs.
7644   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7645   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7646     for (auto TIDRef : FwdRefTIDs->second) {
7647       assert(!*TIDRef.first &&
7648              "Forward referenced type id GUID expected to be 0");
7649       *TIDRef.first = GlobalValue::getGUID(Name);
7650     }
7651     ForwardRefTypeIds.erase(FwdRefTIDs);
7652   }
7653 
7654   return false;
7655 }
7656 
7657 /// TypeTestResolution
7658 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7659 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7660 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7661 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7662 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7663 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7664   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7665       ParseToken(lltok::colon, "expected ':' here") ||
7666       ParseToken(lltok::lparen, "expected '(' here") ||
7667       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7668       ParseToken(lltok::colon, "expected ':' here"))
7669     return true;
7670 
7671   switch (Lex.getKind()) {
7672   case lltok::kw_unsat:
7673     TTRes.TheKind = TypeTestResolution::Unsat;
7674     break;
7675   case lltok::kw_byteArray:
7676     TTRes.TheKind = TypeTestResolution::ByteArray;
7677     break;
7678   case lltok::kw_inline:
7679     TTRes.TheKind = TypeTestResolution::Inline;
7680     break;
7681   case lltok::kw_single:
7682     TTRes.TheKind = TypeTestResolution::Single;
7683     break;
7684   case lltok::kw_allOnes:
7685     TTRes.TheKind = TypeTestResolution::AllOnes;
7686     break;
7687   default:
7688     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7689   }
7690   Lex.Lex();
7691 
7692   if (ParseToken(lltok::comma, "expected ',' here") ||
7693       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7694       ParseToken(lltok::colon, "expected ':' here") ||
7695       ParseUInt32(TTRes.SizeM1BitWidth))
7696     return true;
7697 
7698   // Parse optional fields
7699   while (EatIfPresent(lltok::comma)) {
7700     switch (Lex.getKind()) {
7701     case lltok::kw_alignLog2:
7702       Lex.Lex();
7703       if (ParseToken(lltok::colon, "expected ':'") ||
7704           ParseUInt64(TTRes.AlignLog2))
7705         return true;
7706       break;
7707     case lltok::kw_sizeM1:
7708       Lex.Lex();
7709       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7710         return true;
7711       break;
7712     case lltok::kw_bitMask: {
7713       unsigned Val;
7714       Lex.Lex();
7715       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7716         return true;
7717       assert(Val <= 0xff);
7718       TTRes.BitMask = (uint8_t)Val;
7719       break;
7720     }
7721     case lltok::kw_inlineBits:
7722       Lex.Lex();
7723       if (ParseToken(lltok::colon, "expected ':'") ||
7724           ParseUInt64(TTRes.InlineBits))
7725         return true;
7726       break;
7727     default:
7728       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7729     }
7730   }
7731 
7732   if (ParseToken(lltok::rparen, "expected ')' here"))
7733     return true;
7734 
7735   return false;
7736 }
7737 
7738 /// OptionalWpdResolutions
7739 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7740 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7741 bool LLParser::ParseOptionalWpdResolutions(
7742     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7743   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7744       ParseToken(lltok::colon, "expected ':' here") ||
7745       ParseToken(lltok::lparen, "expected '(' here"))
7746     return true;
7747 
7748   do {
7749     uint64_t Offset;
7750     WholeProgramDevirtResolution WPDRes;
7751     if (ParseToken(lltok::lparen, "expected '(' here") ||
7752         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7753         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7754         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7755         ParseToken(lltok::rparen, "expected ')' here"))
7756       return true;
7757     WPDResMap[Offset] = WPDRes;
7758   } while (EatIfPresent(lltok::comma));
7759 
7760   if (ParseToken(lltok::rparen, "expected ')' here"))
7761     return true;
7762 
7763   return false;
7764 }
7765 
7766 /// WpdRes
7767 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7768 ///         [',' OptionalResByArg]? ')'
7769 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7770 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7771 ///         [',' OptionalResByArg]? ')'
7772 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7773 ///         [',' OptionalResByArg]? ')'
7774 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7775   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7776       ParseToken(lltok::colon, "expected ':' here") ||
7777       ParseToken(lltok::lparen, "expected '(' here") ||
7778       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7779       ParseToken(lltok::colon, "expected ':' here"))
7780     return true;
7781 
7782   switch (Lex.getKind()) {
7783   case lltok::kw_indir:
7784     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7785     break;
7786   case lltok::kw_singleImpl:
7787     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7788     break;
7789   case lltok::kw_branchFunnel:
7790     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7791     break;
7792   default:
7793     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7794   }
7795   Lex.Lex();
7796 
7797   // Parse optional fields
7798   while (EatIfPresent(lltok::comma)) {
7799     switch (Lex.getKind()) {
7800     case lltok::kw_singleImplName:
7801       Lex.Lex();
7802       if (ParseToken(lltok::colon, "expected ':' here") ||
7803           ParseStringConstant(WPDRes.SingleImplName))
7804         return true;
7805       break;
7806     case lltok::kw_resByArg:
7807       if (ParseOptionalResByArg(WPDRes.ResByArg))
7808         return true;
7809       break;
7810     default:
7811       return Error(Lex.getLoc(),
7812                    "expected optional WholeProgramDevirtResolution field");
7813     }
7814   }
7815 
7816   if (ParseToken(lltok::rparen, "expected ')' here"))
7817     return true;
7818 
7819   return false;
7820 }
7821 
7822 /// OptionalResByArg
7823 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7824 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7825 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7826 ///                  'virtualConstProp' )
7827 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7828 ///                [',' 'bit' ':' UInt32]? ')'
7829 bool LLParser::ParseOptionalResByArg(
7830     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7831         &ResByArg) {
7832   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7833       ParseToken(lltok::colon, "expected ':' here") ||
7834       ParseToken(lltok::lparen, "expected '(' here"))
7835     return true;
7836 
7837   do {
7838     std::vector<uint64_t> Args;
7839     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7840         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7841         ParseToken(lltok::colon, "expected ':' here") ||
7842         ParseToken(lltok::lparen, "expected '(' here") ||
7843         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7844         ParseToken(lltok::colon, "expected ':' here"))
7845       return true;
7846 
7847     WholeProgramDevirtResolution::ByArg ByArg;
7848     switch (Lex.getKind()) {
7849     case lltok::kw_indir:
7850       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7851       break;
7852     case lltok::kw_uniformRetVal:
7853       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7854       break;
7855     case lltok::kw_uniqueRetVal:
7856       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7857       break;
7858     case lltok::kw_virtualConstProp:
7859       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7860       break;
7861     default:
7862       return Error(Lex.getLoc(),
7863                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7864     }
7865     Lex.Lex();
7866 
7867     // Parse optional fields
7868     while (EatIfPresent(lltok::comma)) {
7869       switch (Lex.getKind()) {
7870       case lltok::kw_info:
7871         Lex.Lex();
7872         if (ParseToken(lltok::colon, "expected ':' here") ||
7873             ParseUInt64(ByArg.Info))
7874           return true;
7875         break;
7876       case lltok::kw_byte:
7877         Lex.Lex();
7878         if (ParseToken(lltok::colon, "expected ':' here") ||
7879             ParseUInt32(ByArg.Byte))
7880           return true;
7881         break;
7882       case lltok::kw_bit:
7883         Lex.Lex();
7884         if (ParseToken(lltok::colon, "expected ':' here") ||
7885             ParseUInt32(ByArg.Bit))
7886           return true;
7887         break;
7888       default:
7889         return Error(Lex.getLoc(),
7890                      "expected optional whole program devirt field");
7891       }
7892     }
7893 
7894     if (ParseToken(lltok::rparen, "expected ')' here"))
7895       return true;
7896 
7897     ResByArg[Args] = ByArg;
7898   } while (EatIfPresent(lltok::comma));
7899 
7900   if (ParseToken(lltok::rparen, "expected ')' here"))
7901     return true;
7902 
7903   return false;
7904 }
7905 
7906 /// OptionalResByArg
7907 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7908 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7909   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7910       ParseToken(lltok::colon, "expected ':' here") ||
7911       ParseToken(lltok::lparen, "expected '(' here"))
7912     return true;
7913 
7914   do {
7915     uint64_t Val;
7916     if (ParseUInt64(Val))
7917       return true;
7918     Args.push_back(Val);
7919   } while (EatIfPresent(lltok::comma));
7920 
7921   if (ParseToken(lltok::rparen, "expected ')' here"))
7922     return true;
7923 
7924   return false;
7925 }
7926 
7927 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7928 
7929 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7930   bool ReadOnly = Fwd->isReadOnly();
7931   bool WriteOnly = Fwd->isWriteOnly();
7932   assert(!(ReadOnly && WriteOnly));
7933   *Fwd = Resolved;
7934   if (ReadOnly)
7935     Fwd->setReadOnly();
7936   if (WriteOnly)
7937     Fwd->setWriteOnly();
7938 }
7939 
7940 /// Stores the given Name/GUID and associated summary into the Index.
7941 /// Also updates any forward references to the associated entry ID.
7942 void LLParser::AddGlobalValueToIndex(
7943     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7944     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7945   // First create the ValueInfo utilizing the Name or GUID.
7946   ValueInfo VI;
7947   if (GUID != 0) {
7948     assert(Name.empty());
7949     VI = Index->getOrInsertValueInfo(GUID);
7950   } else {
7951     assert(!Name.empty());
7952     if (M) {
7953       auto *GV = M->getNamedValue(Name);
7954       assert(GV);
7955       VI = Index->getOrInsertValueInfo(GV);
7956     } else {
7957       assert(
7958           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7959           "Need a source_filename to compute GUID for local");
7960       GUID = GlobalValue::getGUID(
7961           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7962       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7963     }
7964   }
7965 
7966   // Resolve forward references from calls/refs
7967   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7968   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7969     for (auto VIRef : FwdRefVIs->second) {
7970       assert(VIRef.first->getRef() == FwdVIRef &&
7971              "Forward referenced ValueInfo expected to be empty");
7972       resolveFwdRef(VIRef.first, VI);
7973     }
7974     ForwardRefValueInfos.erase(FwdRefVIs);
7975   }
7976 
7977   // Resolve forward references from aliases
7978   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7979   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7980     for (auto AliaseeRef : FwdRefAliasees->second) {
7981       assert(!AliaseeRef.first->hasAliasee() &&
7982              "Forward referencing alias already has aliasee");
7983       assert(Summary && "Aliasee must be a definition");
7984       AliaseeRef.first->setAliasee(VI, Summary.get());
7985     }
7986     ForwardRefAliasees.erase(FwdRefAliasees);
7987   }
7988 
7989   // Add the summary if one was provided.
7990   if (Summary)
7991     Index->addGlobalValueSummary(VI, std::move(Summary));
7992 
7993   // Save the associated ValueInfo for use in later references by ID.
7994   if (ID == NumberedValueInfos.size())
7995     NumberedValueInfos.push_back(VI);
7996   else {
7997     // Handle non-continuous numbers (to make test simplification easier).
7998     if (ID > NumberedValueInfos.size())
7999       NumberedValueInfos.resize(ID + 1);
8000     NumberedValueInfos[ID] = VI;
8001   }
8002 }
8003 
8004 /// ParseSummaryIndexFlags
8005 ///   ::= 'flags' ':' UInt64
8006 bool LLParser::ParseSummaryIndexFlags() {
8007   assert(Lex.getKind() == lltok::kw_flags);
8008   Lex.Lex();
8009 
8010   if (ParseToken(lltok::colon, "expected ':' here"))
8011     return true;
8012   uint64_t Flags;
8013   if (ParseUInt64(Flags))
8014     return true;
8015   Index->setFlags(Flags);
8016   return false;
8017 }
8018 
8019 /// ParseGVEntry
8020 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8021 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8022 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8023 bool LLParser::ParseGVEntry(unsigned ID) {
8024   assert(Lex.getKind() == lltok::kw_gv);
8025   Lex.Lex();
8026 
8027   if (ParseToken(lltok::colon, "expected ':' here") ||
8028       ParseToken(lltok::lparen, "expected '(' here"))
8029     return true;
8030 
8031   std::string Name;
8032   GlobalValue::GUID GUID = 0;
8033   switch (Lex.getKind()) {
8034   case lltok::kw_name:
8035     Lex.Lex();
8036     if (ParseToken(lltok::colon, "expected ':' here") ||
8037         ParseStringConstant(Name))
8038       return true;
8039     // Can't create GUID/ValueInfo until we have the linkage.
8040     break;
8041   case lltok::kw_guid:
8042     Lex.Lex();
8043     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8044       return true;
8045     break;
8046   default:
8047     return Error(Lex.getLoc(), "expected name or guid tag");
8048   }
8049 
8050   if (!EatIfPresent(lltok::comma)) {
8051     // No summaries. Wrap up.
8052     if (ParseToken(lltok::rparen, "expected ')' here"))
8053       return true;
8054     // This was created for a call to an external or indirect target.
8055     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8056     // created for indirect calls with VP. A Name with no GUID came from
8057     // an external definition. We pass ExternalLinkage since that is only
8058     // used when the GUID must be computed from Name, and in that case
8059     // the symbol must have external linkage.
8060     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8061                           nullptr);
8062     return false;
8063   }
8064 
8065   // Have a list of summaries
8066   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8067       ParseToken(lltok::colon, "expected ':' here") ||
8068       ParseToken(lltok::lparen, "expected '(' here"))
8069     return true;
8070   do {
8071     switch (Lex.getKind()) {
8072     case lltok::kw_function:
8073       if (ParseFunctionSummary(Name, GUID, ID))
8074         return true;
8075       break;
8076     case lltok::kw_variable:
8077       if (ParseVariableSummary(Name, GUID, ID))
8078         return true;
8079       break;
8080     case lltok::kw_alias:
8081       if (ParseAliasSummary(Name, GUID, ID))
8082         return true;
8083       break;
8084     default:
8085       return Error(Lex.getLoc(), "expected summary type");
8086     }
8087   } while (EatIfPresent(lltok::comma));
8088 
8089   if (ParseToken(lltok::rparen, "expected ')' here") ||
8090       ParseToken(lltok::rparen, "expected ')' here"))
8091     return true;
8092 
8093   return false;
8094 }
8095 
8096 /// FunctionSummary
8097 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8098 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8099 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8100 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8101                                     unsigned ID) {
8102   assert(Lex.getKind() == lltok::kw_function);
8103   Lex.Lex();
8104 
8105   StringRef ModulePath;
8106   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8107       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8108       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8109   unsigned InstCount;
8110   std::vector<FunctionSummary::EdgeTy> Calls;
8111   FunctionSummary::TypeIdInfo TypeIdInfo;
8112   std::vector<ValueInfo> Refs;
8113   // Default is all-zeros (conservative values).
8114   FunctionSummary::FFlags FFlags = {};
8115   if (ParseToken(lltok::colon, "expected ':' here") ||
8116       ParseToken(lltok::lparen, "expected '(' here") ||
8117       ParseModuleReference(ModulePath) ||
8118       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8119       ParseToken(lltok::comma, "expected ',' here") ||
8120       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8121       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8122     return true;
8123 
8124   // Parse optional fields
8125   while (EatIfPresent(lltok::comma)) {
8126     switch (Lex.getKind()) {
8127     case lltok::kw_funcFlags:
8128       if (ParseOptionalFFlags(FFlags))
8129         return true;
8130       break;
8131     case lltok::kw_calls:
8132       if (ParseOptionalCalls(Calls))
8133         return true;
8134       break;
8135     case lltok::kw_typeIdInfo:
8136       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8137         return true;
8138       break;
8139     case lltok::kw_refs:
8140       if (ParseOptionalRefs(Refs))
8141         return true;
8142       break;
8143     default:
8144       return Error(Lex.getLoc(), "expected optional function summary field");
8145     }
8146   }
8147 
8148   if (ParseToken(lltok::rparen, "expected ')' here"))
8149     return true;
8150 
8151   auto FS = std::make_unique<FunctionSummary>(
8152       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8153       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8154       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8155       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8156       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8157       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8158 
8159   FS->setModulePath(ModulePath);
8160 
8161   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8162                         ID, std::move(FS));
8163 
8164   return false;
8165 }
8166 
8167 /// VariableSummary
8168 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8169 ///         [',' OptionalRefs]? ')'
8170 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8171                                     unsigned ID) {
8172   assert(Lex.getKind() == lltok::kw_variable);
8173   Lex.Lex();
8174 
8175   StringRef ModulePath;
8176   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8177       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8178       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8179   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8180                                         /* WriteOnly */ false,
8181                                         /* Constant */ false,
8182                                         GlobalObject::VCallVisibilityPublic);
8183   std::vector<ValueInfo> Refs;
8184   VTableFuncList VTableFuncs;
8185   if (ParseToken(lltok::colon, "expected ':' here") ||
8186       ParseToken(lltok::lparen, "expected '(' here") ||
8187       ParseModuleReference(ModulePath) ||
8188       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8189       ParseToken(lltok::comma, "expected ',' here") ||
8190       ParseGVarFlags(GVarFlags))
8191     return true;
8192 
8193   // Parse optional fields
8194   while (EatIfPresent(lltok::comma)) {
8195     switch (Lex.getKind()) {
8196     case lltok::kw_vTableFuncs:
8197       if (ParseOptionalVTableFuncs(VTableFuncs))
8198         return true;
8199       break;
8200     case lltok::kw_refs:
8201       if (ParseOptionalRefs(Refs))
8202         return true;
8203       break;
8204     default:
8205       return Error(Lex.getLoc(), "expected optional variable summary field");
8206     }
8207   }
8208 
8209   if (ParseToken(lltok::rparen, "expected ')' here"))
8210     return true;
8211 
8212   auto GS =
8213       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8214 
8215   GS->setModulePath(ModulePath);
8216   GS->setVTableFuncs(std::move(VTableFuncs));
8217 
8218   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8219                         ID, std::move(GS));
8220 
8221   return false;
8222 }
8223 
8224 /// AliasSummary
8225 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8226 ///         'aliasee' ':' GVReference ')'
8227 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8228                                  unsigned ID) {
8229   assert(Lex.getKind() == lltok::kw_alias);
8230   LocTy Loc = Lex.getLoc();
8231   Lex.Lex();
8232 
8233   StringRef ModulePath;
8234   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8235       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8236       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8237   if (ParseToken(lltok::colon, "expected ':' here") ||
8238       ParseToken(lltok::lparen, "expected '(' here") ||
8239       ParseModuleReference(ModulePath) ||
8240       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8241       ParseToken(lltok::comma, "expected ',' here") ||
8242       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8243       ParseToken(lltok::colon, "expected ':' here"))
8244     return true;
8245 
8246   ValueInfo AliaseeVI;
8247   unsigned GVId;
8248   if (ParseGVReference(AliaseeVI, GVId))
8249     return true;
8250 
8251   if (ParseToken(lltok::rparen, "expected ')' here"))
8252     return true;
8253 
8254   auto AS = std::make_unique<AliasSummary>(GVFlags);
8255 
8256   AS->setModulePath(ModulePath);
8257 
8258   // Record forward reference if the aliasee is not parsed yet.
8259   if (AliaseeVI.getRef() == FwdVIRef) {
8260     auto FwdRef = ForwardRefAliasees.insert(
8261         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8262     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8263   } else {
8264     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8265     assert(Summary && "Aliasee must be a definition");
8266     AS->setAliasee(AliaseeVI, Summary);
8267   }
8268 
8269   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8270                         ID, std::move(AS));
8271 
8272   return false;
8273 }
8274 
8275 /// Flag
8276 ///   ::= [0|1]
8277 bool LLParser::ParseFlag(unsigned &Val) {
8278   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8279     return TokError("expected integer");
8280   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8281   Lex.Lex();
8282   return false;
8283 }
8284 
8285 /// OptionalFFlags
8286 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8287 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8288 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8289 ///        [',' 'noInline' ':' Flag]? ')'
8290 ///        [',' 'alwaysInline' ':' Flag]? ')'
8291 
8292 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8293   assert(Lex.getKind() == lltok::kw_funcFlags);
8294   Lex.Lex();
8295 
8296   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8297       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8298     return true;
8299 
8300   do {
8301     unsigned Val = 0;
8302     switch (Lex.getKind()) {
8303     case lltok::kw_readNone:
8304       Lex.Lex();
8305       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8306         return true;
8307       FFlags.ReadNone = Val;
8308       break;
8309     case lltok::kw_readOnly:
8310       Lex.Lex();
8311       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8312         return true;
8313       FFlags.ReadOnly = Val;
8314       break;
8315     case lltok::kw_noRecurse:
8316       Lex.Lex();
8317       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8318         return true;
8319       FFlags.NoRecurse = Val;
8320       break;
8321     case lltok::kw_returnDoesNotAlias:
8322       Lex.Lex();
8323       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8324         return true;
8325       FFlags.ReturnDoesNotAlias = Val;
8326       break;
8327     case lltok::kw_noInline:
8328       Lex.Lex();
8329       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8330         return true;
8331       FFlags.NoInline = Val;
8332       break;
8333     case lltok::kw_alwaysInline:
8334       Lex.Lex();
8335       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8336         return true;
8337       FFlags.AlwaysInline = Val;
8338       break;
8339     default:
8340       return Error(Lex.getLoc(), "expected function flag type");
8341     }
8342   } while (EatIfPresent(lltok::comma));
8343 
8344   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8345     return true;
8346 
8347   return false;
8348 }
8349 
8350 /// OptionalCalls
8351 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8352 /// Call ::= '(' 'callee' ':' GVReference
8353 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8354 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8355   assert(Lex.getKind() == lltok::kw_calls);
8356   Lex.Lex();
8357 
8358   if (ParseToken(lltok::colon, "expected ':' in calls") |
8359       ParseToken(lltok::lparen, "expected '(' in calls"))
8360     return true;
8361 
8362   IdToIndexMapType IdToIndexMap;
8363   // Parse each call edge
8364   do {
8365     ValueInfo VI;
8366     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8367         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8368         ParseToken(lltok::colon, "expected ':'"))
8369       return true;
8370 
8371     LocTy Loc = Lex.getLoc();
8372     unsigned GVId;
8373     if (ParseGVReference(VI, GVId))
8374       return true;
8375 
8376     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8377     unsigned RelBF = 0;
8378     if (EatIfPresent(lltok::comma)) {
8379       // Expect either hotness or relbf
8380       if (EatIfPresent(lltok::kw_hotness)) {
8381         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8382           return true;
8383       } else {
8384         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8385             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8386           return true;
8387       }
8388     }
8389     // Keep track of the Call array index needing a forward reference.
8390     // We will save the location of the ValueInfo needing an update, but
8391     // can only do so once the std::vector is finalized.
8392     if (VI.getRef() == FwdVIRef)
8393       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8394     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8395 
8396     if (ParseToken(lltok::rparen, "expected ')' in call"))
8397       return true;
8398   } while (EatIfPresent(lltok::comma));
8399 
8400   // Now that the Calls vector is finalized, it is safe to save the locations
8401   // of any forward GV references that need updating later.
8402   for (auto I : IdToIndexMap) {
8403     for (auto P : I.second) {
8404       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8405              "Forward referenced ValueInfo expected to be empty");
8406       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8407           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8408       FwdRef.first->second.push_back(
8409           std::make_pair(&Calls[P.first].first, P.second));
8410     }
8411   }
8412 
8413   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8414     return true;
8415 
8416   return false;
8417 }
8418 
8419 /// Hotness
8420 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8421 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8422   switch (Lex.getKind()) {
8423   case lltok::kw_unknown:
8424     Hotness = CalleeInfo::HotnessType::Unknown;
8425     break;
8426   case lltok::kw_cold:
8427     Hotness = CalleeInfo::HotnessType::Cold;
8428     break;
8429   case lltok::kw_none:
8430     Hotness = CalleeInfo::HotnessType::None;
8431     break;
8432   case lltok::kw_hot:
8433     Hotness = CalleeInfo::HotnessType::Hot;
8434     break;
8435   case lltok::kw_critical:
8436     Hotness = CalleeInfo::HotnessType::Critical;
8437     break;
8438   default:
8439     return Error(Lex.getLoc(), "invalid call edge hotness");
8440   }
8441   Lex.Lex();
8442   return false;
8443 }
8444 
8445 /// OptionalVTableFuncs
8446 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8447 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8448 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8449   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8450   Lex.Lex();
8451 
8452   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8453       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8454     return true;
8455 
8456   IdToIndexMapType IdToIndexMap;
8457   // Parse each virtual function pair
8458   do {
8459     ValueInfo VI;
8460     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8461         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8462         ParseToken(lltok::colon, "expected ':'"))
8463       return true;
8464 
8465     LocTy Loc = Lex.getLoc();
8466     unsigned GVId;
8467     if (ParseGVReference(VI, GVId))
8468       return true;
8469 
8470     uint64_t Offset;
8471     if (ParseToken(lltok::comma, "expected comma") ||
8472         ParseToken(lltok::kw_offset, "expected offset") ||
8473         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8474       return true;
8475 
8476     // Keep track of the VTableFuncs array index needing a forward reference.
8477     // We will save the location of the ValueInfo needing an update, but
8478     // can only do so once the std::vector is finalized.
8479     if (VI == EmptyVI)
8480       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8481     VTableFuncs.push_back({VI, Offset});
8482 
8483     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8484       return true;
8485   } while (EatIfPresent(lltok::comma));
8486 
8487   // Now that the VTableFuncs vector is finalized, it is safe to save the
8488   // locations of any forward GV references that need updating later.
8489   for (auto I : IdToIndexMap) {
8490     for (auto P : I.second) {
8491       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8492              "Forward referenced ValueInfo expected to be empty");
8493       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8494           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8495       FwdRef.first->second.push_back(
8496           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8497     }
8498   }
8499 
8500   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8501     return true;
8502 
8503   return false;
8504 }
8505 
8506 /// OptionalRefs
8507 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8508 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8509   assert(Lex.getKind() == lltok::kw_refs);
8510   Lex.Lex();
8511 
8512   if (ParseToken(lltok::colon, "expected ':' in refs") |
8513       ParseToken(lltok::lparen, "expected '(' in refs"))
8514     return true;
8515 
8516   struct ValueContext {
8517     ValueInfo VI;
8518     unsigned GVId;
8519     LocTy Loc;
8520   };
8521   std::vector<ValueContext> VContexts;
8522   // Parse each ref edge
8523   do {
8524     ValueContext VC;
8525     VC.Loc = Lex.getLoc();
8526     if (ParseGVReference(VC.VI, VC.GVId))
8527       return true;
8528     VContexts.push_back(VC);
8529   } while (EatIfPresent(lltok::comma));
8530 
8531   // Sort value contexts so that ones with writeonly
8532   // and readonly ValueInfo  are at the end of VContexts vector.
8533   // See FunctionSummary::specialRefCounts()
8534   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8535     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8536   });
8537 
8538   IdToIndexMapType IdToIndexMap;
8539   for (auto &VC : VContexts) {
8540     // Keep track of the Refs array index needing a forward reference.
8541     // We will save the location of the ValueInfo needing an update, but
8542     // can only do so once the std::vector is finalized.
8543     if (VC.VI.getRef() == FwdVIRef)
8544       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8545     Refs.push_back(VC.VI);
8546   }
8547 
8548   // Now that the Refs vector is finalized, it is safe to save the locations
8549   // of any forward GV references that need updating later.
8550   for (auto I : IdToIndexMap) {
8551     for (auto P : I.second) {
8552       assert(Refs[P.first].getRef() == FwdVIRef &&
8553              "Forward referenced ValueInfo expected to be empty");
8554       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8555           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8556       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8557     }
8558   }
8559 
8560   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8561     return true;
8562 
8563   return false;
8564 }
8565 
8566 /// OptionalTypeIdInfo
8567 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8568 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8569 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8570 bool LLParser::ParseOptionalTypeIdInfo(
8571     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8572   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8573   Lex.Lex();
8574 
8575   if (ParseToken(lltok::colon, "expected ':' here") ||
8576       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8577     return true;
8578 
8579   do {
8580     switch (Lex.getKind()) {
8581     case lltok::kw_typeTests:
8582       if (ParseTypeTests(TypeIdInfo.TypeTests))
8583         return true;
8584       break;
8585     case lltok::kw_typeTestAssumeVCalls:
8586       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8587                            TypeIdInfo.TypeTestAssumeVCalls))
8588         return true;
8589       break;
8590     case lltok::kw_typeCheckedLoadVCalls:
8591       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8592                            TypeIdInfo.TypeCheckedLoadVCalls))
8593         return true;
8594       break;
8595     case lltok::kw_typeTestAssumeConstVCalls:
8596       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8597                               TypeIdInfo.TypeTestAssumeConstVCalls))
8598         return true;
8599       break;
8600     case lltok::kw_typeCheckedLoadConstVCalls:
8601       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8602                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8603         return true;
8604       break;
8605     default:
8606       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8607     }
8608   } while (EatIfPresent(lltok::comma));
8609 
8610   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8611     return true;
8612 
8613   return false;
8614 }
8615 
8616 /// TypeTests
8617 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8618 ///         [',' (SummaryID | UInt64)]* ')'
8619 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8620   assert(Lex.getKind() == lltok::kw_typeTests);
8621   Lex.Lex();
8622 
8623   if (ParseToken(lltok::colon, "expected ':' here") ||
8624       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8625     return true;
8626 
8627   IdToIndexMapType IdToIndexMap;
8628   do {
8629     GlobalValue::GUID GUID = 0;
8630     if (Lex.getKind() == lltok::SummaryID) {
8631       unsigned ID = Lex.getUIntVal();
8632       LocTy Loc = Lex.getLoc();
8633       // Keep track of the TypeTests array index needing a forward reference.
8634       // We will save the location of the GUID needing an update, but
8635       // can only do so once the std::vector is finalized.
8636       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8637       Lex.Lex();
8638     } else if (ParseUInt64(GUID))
8639       return true;
8640     TypeTests.push_back(GUID);
8641   } while (EatIfPresent(lltok::comma));
8642 
8643   // Now that the TypeTests vector is finalized, it is safe to save the
8644   // locations of any forward GV references that need updating later.
8645   for (auto I : IdToIndexMap) {
8646     for (auto P : I.second) {
8647       assert(TypeTests[P.first] == 0 &&
8648              "Forward referenced type id GUID expected to be 0");
8649       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8650           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8651       FwdRef.first->second.push_back(
8652           std::make_pair(&TypeTests[P.first], P.second));
8653     }
8654   }
8655 
8656   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8657     return true;
8658 
8659   return false;
8660 }
8661 
8662 /// VFuncIdList
8663 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8664 bool LLParser::ParseVFuncIdList(
8665     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8666   assert(Lex.getKind() == Kind);
8667   Lex.Lex();
8668 
8669   if (ParseToken(lltok::colon, "expected ':' here") ||
8670       ParseToken(lltok::lparen, "expected '(' here"))
8671     return true;
8672 
8673   IdToIndexMapType IdToIndexMap;
8674   do {
8675     FunctionSummary::VFuncId VFuncId;
8676     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8677       return true;
8678     VFuncIdList.push_back(VFuncId);
8679   } while (EatIfPresent(lltok::comma));
8680 
8681   if (ParseToken(lltok::rparen, "expected ')' here"))
8682     return true;
8683 
8684   // Now that the VFuncIdList vector is finalized, it is safe to save the
8685   // locations of any forward GV references that need updating later.
8686   for (auto I : IdToIndexMap) {
8687     for (auto P : I.second) {
8688       assert(VFuncIdList[P.first].GUID == 0 &&
8689              "Forward referenced type id GUID expected to be 0");
8690       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8691           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8692       FwdRef.first->second.push_back(
8693           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8694     }
8695   }
8696 
8697   return false;
8698 }
8699 
8700 /// ConstVCallList
8701 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8702 bool LLParser::ParseConstVCallList(
8703     lltok::Kind Kind,
8704     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8705   assert(Lex.getKind() == Kind);
8706   Lex.Lex();
8707 
8708   if (ParseToken(lltok::colon, "expected ':' here") ||
8709       ParseToken(lltok::lparen, "expected '(' here"))
8710     return true;
8711 
8712   IdToIndexMapType IdToIndexMap;
8713   do {
8714     FunctionSummary::ConstVCall ConstVCall;
8715     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8716       return true;
8717     ConstVCallList.push_back(ConstVCall);
8718   } while (EatIfPresent(lltok::comma));
8719 
8720   if (ParseToken(lltok::rparen, "expected ')' here"))
8721     return true;
8722 
8723   // Now that the ConstVCallList vector is finalized, it is safe to save the
8724   // locations of any forward GV references that need updating later.
8725   for (auto I : IdToIndexMap) {
8726     for (auto P : I.second) {
8727       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8728              "Forward referenced type id GUID expected to be 0");
8729       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8730           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8731       FwdRef.first->second.push_back(
8732           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8733     }
8734   }
8735 
8736   return false;
8737 }
8738 
8739 /// ConstVCall
8740 ///   ::= '(' VFuncId ',' Args ')'
8741 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8742                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8743   if (ParseToken(lltok::lparen, "expected '(' here") ||
8744       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8745     return true;
8746 
8747   if (EatIfPresent(lltok::comma))
8748     if (ParseArgs(ConstVCall.Args))
8749       return true;
8750 
8751   if (ParseToken(lltok::rparen, "expected ')' here"))
8752     return true;
8753 
8754   return false;
8755 }
8756 
8757 /// VFuncId
8758 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8759 ///         'offset' ':' UInt64 ')'
8760 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8761                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8762   assert(Lex.getKind() == lltok::kw_vFuncId);
8763   Lex.Lex();
8764 
8765   if (ParseToken(lltok::colon, "expected ':' here") ||
8766       ParseToken(lltok::lparen, "expected '(' here"))
8767     return true;
8768 
8769   if (Lex.getKind() == lltok::SummaryID) {
8770     VFuncId.GUID = 0;
8771     unsigned ID = Lex.getUIntVal();
8772     LocTy Loc = Lex.getLoc();
8773     // Keep track of the array index needing a forward reference.
8774     // We will save the location of the GUID needing an update, but
8775     // can only do so once the caller's std::vector is finalized.
8776     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8777     Lex.Lex();
8778   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8779              ParseToken(lltok::colon, "expected ':' here") ||
8780              ParseUInt64(VFuncId.GUID))
8781     return true;
8782 
8783   if (ParseToken(lltok::comma, "expected ',' here") ||
8784       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8785       ParseToken(lltok::colon, "expected ':' here") ||
8786       ParseUInt64(VFuncId.Offset) ||
8787       ParseToken(lltok::rparen, "expected ')' here"))
8788     return true;
8789 
8790   return false;
8791 }
8792 
8793 /// GVFlags
8794 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8795 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8796 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8797 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8798   assert(Lex.getKind() == lltok::kw_flags);
8799   Lex.Lex();
8800 
8801   if (ParseToken(lltok::colon, "expected ':' here") ||
8802       ParseToken(lltok::lparen, "expected '(' here"))
8803     return true;
8804 
8805   do {
8806     unsigned Flag = 0;
8807     switch (Lex.getKind()) {
8808     case lltok::kw_linkage:
8809       Lex.Lex();
8810       if (ParseToken(lltok::colon, "expected ':'"))
8811         return true;
8812       bool HasLinkage;
8813       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8814       assert(HasLinkage && "Linkage not optional in summary entry");
8815       Lex.Lex();
8816       break;
8817     case lltok::kw_notEligibleToImport:
8818       Lex.Lex();
8819       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8820         return true;
8821       GVFlags.NotEligibleToImport = Flag;
8822       break;
8823     case lltok::kw_live:
8824       Lex.Lex();
8825       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8826         return true;
8827       GVFlags.Live = Flag;
8828       break;
8829     case lltok::kw_dsoLocal:
8830       Lex.Lex();
8831       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8832         return true;
8833       GVFlags.DSOLocal = Flag;
8834       break;
8835     case lltok::kw_canAutoHide:
8836       Lex.Lex();
8837       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8838         return true;
8839       GVFlags.CanAutoHide = Flag;
8840       break;
8841     default:
8842       return Error(Lex.getLoc(), "expected gv flag type");
8843     }
8844   } while (EatIfPresent(lltok::comma));
8845 
8846   if (ParseToken(lltok::rparen, "expected ')' here"))
8847     return true;
8848 
8849   return false;
8850 }
8851 
8852 /// GVarFlags
8853 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8854 ///                      ',' 'writeonly' ':' Flag
8855 ///                      ',' 'constant' ':' Flag ')'
8856 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8857   assert(Lex.getKind() == lltok::kw_varFlags);
8858   Lex.Lex();
8859 
8860   if (ParseToken(lltok::colon, "expected ':' here") ||
8861       ParseToken(lltok::lparen, "expected '(' here"))
8862     return true;
8863 
8864   auto ParseRest = [this](unsigned int &Val) {
8865     Lex.Lex();
8866     if (ParseToken(lltok::colon, "expected ':'"))
8867       return true;
8868     return ParseFlag(Val);
8869   };
8870 
8871   do {
8872     unsigned Flag = 0;
8873     switch (Lex.getKind()) {
8874     case lltok::kw_readonly:
8875       if (ParseRest(Flag))
8876         return true;
8877       GVarFlags.MaybeReadOnly = Flag;
8878       break;
8879     case lltok::kw_writeonly:
8880       if (ParseRest(Flag))
8881         return true;
8882       GVarFlags.MaybeWriteOnly = Flag;
8883       break;
8884     case lltok::kw_constant:
8885       if (ParseRest(Flag))
8886         return true;
8887       GVarFlags.Constant = Flag;
8888       break;
8889     case lltok::kw_vcall_visibility:
8890       if (ParseRest(Flag))
8891         return true;
8892       GVarFlags.VCallVisibility = Flag;
8893       break;
8894     default:
8895       return Error(Lex.getLoc(), "expected gvar flag type");
8896     }
8897   } while (EatIfPresent(lltok::comma));
8898   return ParseToken(lltok::rparen, "expected ')' here");
8899 }
8900 
8901 /// ModuleReference
8902 ///   ::= 'module' ':' UInt
8903 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8904   // Parse module id.
8905   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8906       ParseToken(lltok::colon, "expected ':' here") ||
8907       ParseToken(lltok::SummaryID, "expected module ID"))
8908     return true;
8909 
8910   unsigned ModuleID = Lex.getUIntVal();
8911   auto I = ModuleIdMap.find(ModuleID);
8912   // We should have already parsed all module IDs
8913   assert(I != ModuleIdMap.end());
8914   ModulePath = I->second;
8915   return false;
8916 }
8917 
8918 /// GVReference
8919 ///   ::= SummaryID
8920 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8921   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8922   if (!ReadOnly)
8923     WriteOnly = EatIfPresent(lltok::kw_writeonly);
8924   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8925     return true;
8926 
8927   GVId = Lex.getUIntVal();
8928   // Check if we already have a VI for this GV
8929   if (GVId < NumberedValueInfos.size()) {
8930     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8931     VI = NumberedValueInfos[GVId];
8932   } else
8933     // We will create a forward reference to the stored location.
8934     VI = ValueInfo(false, FwdVIRef);
8935 
8936   if (ReadOnly)
8937     VI.setReadOnly();
8938   if (WriteOnly)
8939     VI.setWriteOnly();
8940   return false;
8941 }
8942