1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/AsmParser/SlotMapping.h"
18 #include "llvm/IR/AutoUpgrade.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DebugInfo.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/Dwarf.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/SaveAndRestore.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
36 
37 static std::string getTypeString(Type *T) {
38   std::string Result;
39   raw_string_ostream Tmp(Result);
40   Tmp << *T;
41   return Tmp.str();
42 }
43 
44 /// Run: module ::= toplevelentity*
45 bool LLParser::Run() {
46   // Prime the lexer.
47   Lex.Lex();
48 
49   return ParseTopLevelEntities() ||
50          ValidateEndOfModule();
51 }
52 
53 bool LLParser::parseStandaloneConstantValue(Constant *&C,
54                                             const SlotMapping *Slots) {
55   restoreParsingState(Slots);
56   Lex.Lex();
57 
58   Type *Ty = nullptr;
59   if (ParseType(Ty) || parseConstantValue(Ty, C))
60     return true;
61   if (Lex.getKind() != lltok::Eof)
62     return Error(Lex.getLoc(), "expected end of string");
63   return false;
64 }
65 
66 bool LLParser::parseStandaloneType(Type *&Ty, const SlotMapping *Slots) {
67   restoreParsingState(Slots);
68   Lex.Lex();
69 
70   Ty = nullptr;
71   if (ParseType(Ty))
72     return true;
73   if (Lex.getKind() != lltok::Eof)
74     return Error(Lex.getLoc(), "expected end of string");
75   return false;
76 }
77 
78 void LLParser::restoreParsingState(const SlotMapping *Slots) {
79   if (!Slots)
80     return;
81   NumberedVals = Slots->GlobalValues;
82   NumberedMetadata = Slots->MetadataNodes;
83   for (const auto &I : Slots->NamedTypes)
84     NamedTypes.insert(
85         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
86   for (const auto &I : Slots->Types)
87     NumberedTypes.insert(
88         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
89 }
90 
91 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
92 /// module.
93 bool LLParser::ValidateEndOfModule() {
94   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
95     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
96 
97   // Handle any function attribute group forward references.
98   for (std::map<Value*, std::vector<unsigned> >::iterator
99          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
100          I != E; ++I) {
101     Value *V = I->first;
102     std::vector<unsigned> &Vec = I->second;
103     AttrBuilder B;
104 
105     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
106          VI != VE; ++VI)
107       B.merge(NumberedAttrBuilders[*VI]);
108 
109     if (Function *Fn = dyn_cast<Function>(V)) {
110       AttributeSet AS = Fn->getAttributes();
111       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
112       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
113                                AS.getFnAttributes());
114 
115       FnAttrs.merge(B);
116 
117       // If the alignment was parsed as an attribute, move to the alignment
118       // field.
119       if (FnAttrs.hasAlignmentAttr()) {
120         Fn->setAlignment(FnAttrs.getAlignment());
121         FnAttrs.removeAttribute(Attribute::Alignment);
122       }
123 
124       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
125                             AttributeSet::get(Context,
126                                               AttributeSet::FunctionIndex,
127                                               FnAttrs));
128       Fn->setAttributes(AS);
129     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
130       AttributeSet AS = CI->getAttributes();
131       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
132       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
133                                AS.getFnAttributes());
134       FnAttrs.merge(B);
135       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
136                             AttributeSet::get(Context,
137                                               AttributeSet::FunctionIndex,
138                                               FnAttrs));
139       CI->setAttributes(AS);
140     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
141       AttributeSet AS = II->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
143       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
144                                AS.getFnAttributes());
145       FnAttrs.merge(B);
146       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
147                             AttributeSet::get(Context,
148                                               AttributeSet::FunctionIndex,
149                                               FnAttrs));
150       II->setAttributes(AS);
151     } else {
152       llvm_unreachable("invalid object with forward attribute group reference");
153     }
154   }
155 
156   // If there are entries in ForwardRefBlockAddresses at this point, the
157   // function was never defined.
158   if (!ForwardRefBlockAddresses.empty())
159     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
160                  "expected function name in blockaddress");
161 
162   for (const auto &NT : NumberedTypes)
163     if (NT.second.second.isValid())
164       return Error(NT.second.second,
165                    "use of undefined type '%" + Twine(NT.first) + "'");
166 
167   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
168        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
169     if (I->second.second.isValid())
170       return Error(I->second.second,
171                    "use of undefined type named '" + I->getKey() + "'");
172 
173   if (!ForwardRefComdats.empty())
174     return Error(ForwardRefComdats.begin()->second,
175                  "use of undefined comdat '$" +
176                      ForwardRefComdats.begin()->first + "'");
177 
178   if (!ForwardRefVals.empty())
179     return Error(ForwardRefVals.begin()->second.second,
180                  "use of undefined value '@" + ForwardRefVals.begin()->first +
181                  "'");
182 
183   if (!ForwardRefValIDs.empty())
184     return Error(ForwardRefValIDs.begin()->second.second,
185                  "use of undefined value '@" +
186                  Twine(ForwardRefValIDs.begin()->first) + "'");
187 
188   if (!ForwardRefMDNodes.empty())
189     return Error(ForwardRefMDNodes.begin()->second.second,
190                  "use of undefined metadata '!" +
191                  Twine(ForwardRefMDNodes.begin()->first) + "'");
192 
193   // Resolve metadata cycles.
194   for (auto &N : NumberedMetadata) {
195     if (N.second && !N.second->isResolved())
196       N.second->resolveCycles();
197   }
198 
199   // Look for intrinsic functions and CallInst that need to be upgraded
200   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
201     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
202 
203   UpgradeDebugInfo(*M);
204 
205   if (!Slots)
206     return false;
207   // Initialize the slot mapping.
208   // Because by this point we've parsed and validated everything, we can "steal"
209   // the mapping from LLParser as it doesn't need it anymore.
210   Slots->GlobalValues = std::move(NumberedVals);
211   Slots->MetadataNodes = std::move(NumberedMetadata);
212   for (const auto &I : NamedTypes)
213     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
214   for (const auto &I : NumberedTypes)
215     Slots->Types.insert(std::make_pair(I.first, I.second.first));
216 
217   return false;
218 }
219 
220 //===----------------------------------------------------------------------===//
221 // Top-Level Entities
222 //===----------------------------------------------------------------------===//
223 
224 bool LLParser::ParseTopLevelEntities() {
225   while (1) {
226     switch (Lex.getKind()) {
227     default:         return TokError("expected top-level entity");
228     case lltok::Eof: return false;
229     case lltok::kw_declare: if (ParseDeclare()) return true; break;
230     case lltok::kw_define:  if (ParseDefine()) return true; break;
231     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
232     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
233     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
234     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
235     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
236     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
237     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
238     case lltok::ComdatVar:  if (parseComdat()) return true; break;
239     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
240     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
241 
242     // The Global variable production with no name can have many different
243     // optional leading prefixes, the production is:
244     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
245     //               OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr
246     //               ('constant'|'global') ...
247     case lltok::kw_private:             // OptionalLinkage
248     case lltok::kw_internal:            // OptionalLinkage
249     case lltok::kw_weak:                // OptionalLinkage
250     case lltok::kw_weak_odr:            // OptionalLinkage
251     case lltok::kw_linkonce:            // OptionalLinkage
252     case lltok::kw_linkonce_odr:        // OptionalLinkage
253     case lltok::kw_appending:           // OptionalLinkage
254     case lltok::kw_common:              // OptionalLinkage
255     case lltok::kw_extern_weak:         // OptionalLinkage
256     case lltok::kw_external:            // OptionalLinkage
257     case lltok::kw_default:             // OptionalVisibility
258     case lltok::kw_hidden:              // OptionalVisibility
259     case lltok::kw_protected:           // OptionalVisibility
260     case lltok::kw_dllimport:           // OptionalDLLStorageClass
261     case lltok::kw_dllexport:           // OptionalDLLStorageClass
262     case lltok::kw_thread_local:        // OptionalThreadLocal
263     case lltok::kw_addrspace:           // OptionalAddrSpace
264     case lltok::kw_constant:            // GlobalType
265     case lltok::kw_global: {            // GlobalType
266       unsigned Linkage, Visibility, DLLStorageClass;
267       bool UnnamedAddr;
268       GlobalVariable::ThreadLocalMode TLM;
269       bool HasLinkage;
270       if (ParseOptionalLinkage(Linkage, HasLinkage) ||
271           ParseOptionalVisibility(Visibility) ||
272           ParseOptionalDLLStorageClass(DLLStorageClass) ||
273           ParseOptionalThreadLocal(TLM) ||
274           parseOptionalUnnamedAddr(UnnamedAddr) ||
275           ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
276                       DLLStorageClass, TLM, UnnamedAddr))
277         return true;
278       break;
279     }
280 
281     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
282     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
283     case lltok::kw_uselistorder_bb:
284                                  if (ParseUseListOrderBB()) return true; break;
285     }
286   }
287 }
288 
289 
290 /// toplevelentity
291 ///   ::= 'module' 'asm' STRINGCONSTANT
292 bool LLParser::ParseModuleAsm() {
293   assert(Lex.getKind() == lltok::kw_module);
294   Lex.Lex();
295 
296   std::string AsmStr;
297   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
298       ParseStringConstant(AsmStr)) return true;
299 
300   M->appendModuleInlineAsm(AsmStr);
301   return false;
302 }
303 
304 /// toplevelentity
305 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
306 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
307 bool LLParser::ParseTargetDefinition() {
308   assert(Lex.getKind() == lltok::kw_target);
309   std::string Str;
310   switch (Lex.Lex()) {
311   default: return TokError("unknown target property");
312   case lltok::kw_triple:
313     Lex.Lex();
314     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
315         ParseStringConstant(Str))
316       return true;
317     M->setTargetTriple(Str);
318     return false;
319   case lltok::kw_datalayout:
320     Lex.Lex();
321     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
322         ParseStringConstant(Str))
323       return true;
324     M->setDataLayout(Str);
325     return false;
326   }
327 }
328 
329 /// toplevelentity
330 ///   ::= 'deplibs' '=' '[' ']'
331 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
332 /// FIXME: Remove in 4.0. Currently parse, but ignore.
333 bool LLParser::ParseDepLibs() {
334   assert(Lex.getKind() == lltok::kw_deplibs);
335   Lex.Lex();
336   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
337       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
338     return true;
339 
340   if (EatIfPresent(lltok::rsquare))
341     return false;
342 
343   do {
344     std::string Str;
345     if (ParseStringConstant(Str)) return true;
346   } while (EatIfPresent(lltok::comma));
347 
348   return ParseToken(lltok::rsquare, "expected ']' at end of list");
349 }
350 
351 /// ParseUnnamedType:
352 ///   ::= LocalVarID '=' 'type' type
353 bool LLParser::ParseUnnamedType() {
354   LocTy TypeLoc = Lex.getLoc();
355   unsigned TypeID = Lex.getUIntVal();
356   Lex.Lex(); // eat LocalVarID;
357 
358   if (ParseToken(lltok::equal, "expected '=' after name") ||
359       ParseToken(lltok::kw_type, "expected 'type' after '='"))
360     return true;
361 
362   Type *Result = nullptr;
363   if (ParseStructDefinition(TypeLoc, "",
364                             NumberedTypes[TypeID], Result)) return true;
365 
366   if (!isa<StructType>(Result)) {
367     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
368     if (Entry.first)
369       return Error(TypeLoc, "non-struct types may not be recursive");
370     Entry.first = Result;
371     Entry.second = SMLoc();
372   }
373 
374   return false;
375 }
376 
377 
378 /// toplevelentity
379 ///   ::= LocalVar '=' 'type' type
380 bool LLParser::ParseNamedType() {
381   std::string Name = Lex.getStrVal();
382   LocTy NameLoc = Lex.getLoc();
383   Lex.Lex();  // eat LocalVar.
384 
385   if (ParseToken(lltok::equal, "expected '=' after name") ||
386       ParseToken(lltok::kw_type, "expected 'type' after name"))
387     return true;
388 
389   Type *Result = nullptr;
390   if (ParseStructDefinition(NameLoc, Name,
391                             NamedTypes[Name], Result)) return true;
392 
393   if (!isa<StructType>(Result)) {
394     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
395     if (Entry.first)
396       return Error(NameLoc, "non-struct types may not be recursive");
397     Entry.first = Result;
398     Entry.second = SMLoc();
399   }
400 
401   return false;
402 }
403 
404 
405 /// toplevelentity
406 ///   ::= 'declare' FunctionHeader
407 bool LLParser::ParseDeclare() {
408   assert(Lex.getKind() == lltok::kw_declare);
409   Lex.Lex();
410 
411   Function *F;
412   return ParseFunctionHeader(F, false);
413 }
414 
415 /// toplevelentity
416 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
417 bool LLParser::ParseDefine() {
418   assert(Lex.getKind() == lltok::kw_define);
419   Lex.Lex();
420 
421   Function *F;
422   return ParseFunctionHeader(F, true) ||
423          ParseOptionalFunctionMetadata(*F) ||
424          ParseFunctionBody(*F);
425 }
426 
427 /// ParseGlobalType
428 ///   ::= 'constant'
429 ///   ::= 'global'
430 bool LLParser::ParseGlobalType(bool &IsConstant) {
431   if (Lex.getKind() == lltok::kw_constant)
432     IsConstant = true;
433   else if (Lex.getKind() == lltok::kw_global)
434     IsConstant = false;
435   else {
436     IsConstant = false;
437     return TokError("expected 'global' or 'constant'");
438   }
439   Lex.Lex();
440   return false;
441 }
442 
443 /// ParseUnnamedGlobal:
444 ///   OptionalVisibility ALIAS ...
445 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
446 ///                                                     ...   -> global variable
447 ///   GlobalID '=' OptionalVisibility ALIAS ...
448 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
449 ///                                                     ...   -> global variable
450 bool LLParser::ParseUnnamedGlobal() {
451   unsigned VarID = NumberedVals.size();
452   std::string Name;
453   LocTy NameLoc = Lex.getLoc();
454 
455   // Handle the GlobalID form.
456   if (Lex.getKind() == lltok::GlobalID) {
457     if (Lex.getUIntVal() != VarID)
458       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
459                    Twine(VarID) + "'");
460     Lex.Lex(); // eat GlobalID;
461 
462     if (ParseToken(lltok::equal, "expected '=' after name"))
463       return true;
464   }
465 
466   bool HasLinkage;
467   unsigned Linkage, Visibility, DLLStorageClass;
468   GlobalVariable::ThreadLocalMode TLM;
469   bool UnnamedAddr;
470   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
471       ParseOptionalVisibility(Visibility) ||
472       ParseOptionalDLLStorageClass(DLLStorageClass) ||
473       ParseOptionalThreadLocal(TLM) ||
474       parseOptionalUnnamedAddr(UnnamedAddr))
475     return true;
476 
477   if (Lex.getKind() != lltok::kw_alias)
478     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
479                        DLLStorageClass, TLM, UnnamedAddr);
480   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
481                     UnnamedAddr);
482 }
483 
484 /// ParseNamedGlobal:
485 ///   GlobalVar '=' OptionalVisibility ALIAS ...
486 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
487 ///                                                     ...   -> global variable
488 bool LLParser::ParseNamedGlobal() {
489   assert(Lex.getKind() == lltok::GlobalVar);
490   LocTy NameLoc = Lex.getLoc();
491   std::string Name = Lex.getStrVal();
492   Lex.Lex();
493 
494   bool HasLinkage;
495   unsigned Linkage, Visibility, DLLStorageClass;
496   GlobalVariable::ThreadLocalMode TLM;
497   bool UnnamedAddr;
498   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
499       ParseOptionalLinkage(Linkage, HasLinkage) ||
500       ParseOptionalVisibility(Visibility) ||
501       ParseOptionalDLLStorageClass(DLLStorageClass) ||
502       ParseOptionalThreadLocal(TLM) ||
503       parseOptionalUnnamedAddr(UnnamedAddr))
504     return true;
505 
506   if (Lex.getKind() != lltok::kw_alias)
507     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
508                        DLLStorageClass, TLM, UnnamedAddr);
509 
510   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
511                     UnnamedAddr);
512 }
513 
514 bool LLParser::parseComdat() {
515   assert(Lex.getKind() == lltok::ComdatVar);
516   std::string Name = Lex.getStrVal();
517   LocTy NameLoc = Lex.getLoc();
518   Lex.Lex();
519 
520   if (ParseToken(lltok::equal, "expected '=' here"))
521     return true;
522 
523   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
524     return TokError("expected comdat type");
525 
526   Comdat::SelectionKind SK;
527   switch (Lex.getKind()) {
528   default:
529     return TokError("unknown selection kind");
530   case lltok::kw_any:
531     SK = Comdat::Any;
532     break;
533   case lltok::kw_exactmatch:
534     SK = Comdat::ExactMatch;
535     break;
536   case lltok::kw_largest:
537     SK = Comdat::Largest;
538     break;
539   case lltok::kw_noduplicates:
540     SK = Comdat::NoDuplicates;
541     break;
542   case lltok::kw_samesize:
543     SK = Comdat::SameSize;
544     break;
545   }
546   Lex.Lex();
547 
548   // See if the comdat was forward referenced, if so, use the comdat.
549   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
550   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
551   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
552     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
553 
554   Comdat *C;
555   if (I != ComdatSymTab.end())
556     C = &I->second;
557   else
558     C = M->getOrInsertComdat(Name);
559   C->setSelectionKind(SK);
560 
561   return false;
562 }
563 
564 // MDString:
565 //   ::= '!' STRINGCONSTANT
566 bool LLParser::ParseMDString(MDString *&Result) {
567   std::string Str;
568   if (ParseStringConstant(Str)) return true;
569   llvm::UpgradeMDStringConstant(Str);
570   Result = MDString::get(Context, Str);
571   return false;
572 }
573 
574 // MDNode:
575 //   ::= '!' MDNodeNumber
576 bool LLParser::ParseMDNodeID(MDNode *&Result) {
577   // !{ ..., !42, ... }
578   unsigned MID = 0;
579   if (ParseUInt32(MID))
580     return true;
581 
582   // If not a forward reference, just return it now.
583   if (NumberedMetadata.count(MID)) {
584     Result = NumberedMetadata[MID];
585     return false;
586   }
587 
588   // Otherwise, create MDNode forward reference.
589   auto &FwdRef = ForwardRefMDNodes[MID];
590   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc());
591 
592   Result = FwdRef.first.get();
593   NumberedMetadata[MID].reset(Result);
594   return false;
595 }
596 
597 /// ParseNamedMetadata:
598 ///   !foo = !{ !1, !2 }
599 bool LLParser::ParseNamedMetadata() {
600   assert(Lex.getKind() == lltok::MetadataVar);
601   std::string Name = Lex.getStrVal();
602   Lex.Lex();
603 
604   if (ParseToken(lltok::equal, "expected '=' here") ||
605       ParseToken(lltok::exclaim, "Expected '!' here") ||
606       ParseToken(lltok::lbrace, "Expected '{' here"))
607     return true;
608 
609   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
610   if (Lex.getKind() != lltok::rbrace)
611     do {
612       if (ParseToken(lltok::exclaim, "Expected '!' here"))
613         return true;
614 
615       MDNode *N = nullptr;
616       if (ParseMDNodeID(N)) return true;
617       NMD->addOperand(N);
618     } while (EatIfPresent(lltok::comma));
619 
620   return ParseToken(lltok::rbrace, "expected end of metadata node");
621 }
622 
623 /// ParseStandaloneMetadata:
624 ///   !42 = !{...}
625 bool LLParser::ParseStandaloneMetadata() {
626   assert(Lex.getKind() == lltok::exclaim);
627   Lex.Lex();
628   unsigned MetadataID = 0;
629 
630   MDNode *Init;
631   if (ParseUInt32(MetadataID) ||
632       ParseToken(lltok::equal, "expected '=' here"))
633     return true;
634 
635   // Detect common error, from old metadata syntax.
636   if (Lex.getKind() == lltok::Type)
637     return TokError("unexpected type in metadata definition");
638 
639   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
640   if (Lex.getKind() == lltok::MetadataVar) {
641     if (ParseSpecializedMDNode(Init, IsDistinct))
642       return true;
643   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
644              ParseMDTuple(Init, IsDistinct))
645     return true;
646 
647   // See if this was forward referenced, if so, handle it.
648   auto FI = ForwardRefMDNodes.find(MetadataID);
649   if (FI != ForwardRefMDNodes.end()) {
650     FI->second.first->replaceAllUsesWith(Init);
651     ForwardRefMDNodes.erase(FI);
652 
653     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
654   } else {
655     if (NumberedMetadata.count(MetadataID))
656       return TokError("Metadata id is already used");
657     NumberedMetadata[MetadataID].reset(Init);
658   }
659 
660   return false;
661 }
662 
663 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
664   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
665          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
666 }
667 
668 /// ParseAlias:
669 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
670 ///                     OptionalDLLStorageClass OptionalThreadLocal
671 ///                     OptionalUnnamedAddr 'alias' Aliasee
672 ///
673 /// Aliasee
674 ///   ::= TypeAndValue
675 ///
676 /// Everything through OptionalUnnamedAddr has already been parsed.
677 ///
678 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
679                           unsigned Visibility, unsigned DLLStorageClass,
680                           GlobalVariable::ThreadLocalMode TLM,
681                           bool UnnamedAddr) {
682   assert(Lex.getKind() == lltok::kw_alias);
683   Lex.Lex();
684 
685   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
686 
687   if(!GlobalAlias::isValidLinkage(Linkage))
688     return Error(NameLoc, "invalid linkage type for alias");
689 
690   if (!isValidVisibilityForLinkage(Visibility, L))
691     return Error(NameLoc,
692                  "symbol with local linkage must have default visibility");
693 
694   Type *Ty;
695   LocTy ExplicitTypeLoc = Lex.getLoc();
696   if (ParseType(Ty) ||
697       ParseToken(lltok::comma, "expected comma after alias's type"))
698     return true;
699 
700   Constant *Aliasee;
701   LocTy AliaseeLoc = Lex.getLoc();
702   if (Lex.getKind() != lltok::kw_bitcast &&
703       Lex.getKind() != lltok::kw_getelementptr &&
704       Lex.getKind() != lltok::kw_addrspacecast &&
705       Lex.getKind() != lltok::kw_inttoptr) {
706     if (ParseGlobalTypeAndValue(Aliasee))
707       return true;
708   } else {
709     // The bitcast dest type is not present, it is implied by the dest type.
710     ValID ID;
711     if (ParseValID(ID))
712       return true;
713     if (ID.Kind != ValID::t_Constant)
714       return Error(AliaseeLoc, "invalid aliasee");
715     Aliasee = ID.ConstantVal;
716   }
717 
718   Type *AliaseeType = Aliasee->getType();
719   auto *PTy = dyn_cast<PointerType>(AliaseeType);
720   if (!PTy)
721     return Error(AliaseeLoc, "An alias must have pointer type");
722   unsigned AddrSpace = PTy->getAddressSpace();
723 
724   if (Ty != PTy->getElementType())
725     return Error(
726         ExplicitTypeLoc,
727         "explicit pointee type doesn't match operand's pointee type");
728 
729   GlobalValue *GVal = nullptr;
730 
731   // See if the alias was forward referenced, if so, prepare to replace the
732   // forward reference.
733   if (!Name.empty()) {
734     GVal = M->getNamedValue(Name);
735     if (GVal) {
736       if (!ForwardRefVals.erase(Name))
737         return Error(NameLoc, "redefinition of global '@" + Name + "'");
738     }
739   } else {
740     auto I = ForwardRefValIDs.find(NumberedVals.size());
741     if (I != ForwardRefValIDs.end()) {
742       GVal = I->second.first;
743       ForwardRefValIDs.erase(I);
744     }
745   }
746 
747   // Okay, create the alias but do not insert it into the module yet.
748   std::unique_ptr<GlobalAlias> GA(
749       GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage,
750                           Name, Aliasee, /*Parent*/ nullptr));
751   GA->setThreadLocalMode(TLM);
752   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
753   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
754   GA->setUnnamedAddr(UnnamedAddr);
755 
756   if (Name.empty())
757     NumberedVals.push_back(GA.get());
758 
759   if (GVal) {
760     // Verify that types agree.
761     if (GVal->getType() != GA->getType())
762       return Error(
763           ExplicitTypeLoc,
764           "forward reference and definition of alias have different types");
765 
766     // If they agree, just RAUW the old value with the alias and remove the
767     // forward ref info.
768     GVal->replaceAllUsesWith(GA.get());
769     GVal->eraseFromParent();
770   }
771 
772   // Insert into the module, we know its name won't collide now.
773   M->getAliasList().push_back(GA.get());
774   assert(GA->getName() == Name && "Should not be a name conflict!");
775 
776   // The module owns this now
777   GA.release();
778 
779   return false;
780 }
781 
782 /// ParseGlobal
783 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
784 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
785 ///       OptionalExternallyInitialized GlobalType Type Const
786 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
787 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
788 ///       OptionalExternallyInitialized GlobalType Type Const
789 ///
790 /// Everything up to and including OptionalUnnamedAddr has been parsed
791 /// already.
792 ///
793 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
794                            unsigned Linkage, bool HasLinkage,
795                            unsigned Visibility, unsigned DLLStorageClass,
796                            GlobalVariable::ThreadLocalMode TLM,
797                            bool UnnamedAddr) {
798   if (!isValidVisibilityForLinkage(Visibility, Linkage))
799     return Error(NameLoc,
800                  "symbol with local linkage must have default visibility");
801 
802   unsigned AddrSpace;
803   bool IsConstant, IsExternallyInitialized;
804   LocTy IsExternallyInitializedLoc;
805   LocTy TyLoc;
806 
807   Type *Ty = nullptr;
808   if (ParseOptionalAddrSpace(AddrSpace) ||
809       ParseOptionalToken(lltok::kw_externally_initialized,
810                          IsExternallyInitialized,
811                          &IsExternallyInitializedLoc) ||
812       ParseGlobalType(IsConstant) ||
813       ParseType(Ty, TyLoc))
814     return true;
815 
816   // If the linkage is specified and is external, then no initializer is
817   // present.
818   Constant *Init = nullptr;
819   if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
820                       Linkage != GlobalValue::ExternalLinkage)) {
821     if (ParseGlobalValue(Ty, Init))
822       return true;
823   }
824 
825   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
826     return Error(TyLoc, "invalid type for global variable");
827 
828   GlobalValue *GVal = nullptr;
829 
830   // See if the global was forward referenced, if so, use the global.
831   if (!Name.empty()) {
832     GVal = M->getNamedValue(Name);
833     if (GVal) {
834       if (!ForwardRefVals.erase(Name))
835         return Error(NameLoc, "redefinition of global '@" + Name + "'");
836     }
837   } else {
838     auto I = ForwardRefValIDs.find(NumberedVals.size());
839     if (I != ForwardRefValIDs.end()) {
840       GVal = I->second.first;
841       ForwardRefValIDs.erase(I);
842     }
843   }
844 
845   GlobalVariable *GV;
846   if (!GVal) {
847     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
848                             Name, nullptr, GlobalVariable::NotThreadLocal,
849                             AddrSpace);
850   } else {
851     if (GVal->getValueType() != Ty)
852       return Error(TyLoc,
853             "forward reference and definition of global have different types");
854 
855     GV = cast<GlobalVariable>(GVal);
856 
857     // Move the forward-reference to the correct spot in the module.
858     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
859   }
860 
861   if (Name.empty())
862     NumberedVals.push_back(GV);
863 
864   // Set the parsed properties on the global.
865   if (Init)
866     GV->setInitializer(Init);
867   GV->setConstant(IsConstant);
868   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
869   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
870   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
871   GV->setExternallyInitialized(IsExternallyInitialized);
872   GV->setThreadLocalMode(TLM);
873   GV->setUnnamedAddr(UnnamedAddr);
874 
875   // Parse attributes on the global.
876   while (Lex.getKind() == lltok::comma) {
877     Lex.Lex();
878 
879     if (Lex.getKind() == lltok::kw_section) {
880       Lex.Lex();
881       GV->setSection(Lex.getStrVal());
882       if (ParseToken(lltok::StringConstant, "expected global section string"))
883         return true;
884     } else if (Lex.getKind() == lltok::kw_align) {
885       unsigned Alignment;
886       if (ParseOptionalAlignment(Alignment)) return true;
887       GV->setAlignment(Alignment);
888     } else {
889       Comdat *C;
890       if (parseOptionalComdat(Name, C))
891         return true;
892       if (C)
893         GV->setComdat(C);
894       else
895         return TokError("unknown global variable property!");
896     }
897   }
898 
899   return false;
900 }
901 
902 /// ParseUnnamedAttrGrp
903 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
904 bool LLParser::ParseUnnamedAttrGrp() {
905   assert(Lex.getKind() == lltok::kw_attributes);
906   LocTy AttrGrpLoc = Lex.getLoc();
907   Lex.Lex();
908 
909   if (Lex.getKind() != lltok::AttrGrpID)
910     return TokError("expected attribute group id");
911 
912   unsigned VarID = Lex.getUIntVal();
913   std::vector<unsigned> unused;
914   LocTy BuiltinLoc;
915   Lex.Lex();
916 
917   if (ParseToken(lltok::equal, "expected '=' here") ||
918       ParseToken(lltok::lbrace, "expected '{' here") ||
919       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
920                                  BuiltinLoc) ||
921       ParseToken(lltok::rbrace, "expected end of attribute group"))
922     return true;
923 
924   if (!NumberedAttrBuilders[VarID].hasAttributes())
925     return Error(AttrGrpLoc, "attribute group has no attributes");
926 
927   return false;
928 }
929 
930 /// ParseFnAttributeValuePairs
931 ///   ::= <attr> | <attr> '=' <value>
932 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
933                                           std::vector<unsigned> &FwdRefAttrGrps,
934                                           bool inAttrGrp, LocTy &BuiltinLoc) {
935   bool HaveError = false;
936 
937   B.clear();
938 
939   while (true) {
940     lltok::Kind Token = Lex.getKind();
941     if (Token == lltok::kw_builtin)
942       BuiltinLoc = Lex.getLoc();
943     switch (Token) {
944     default:
945       if (!inAttrGrp) return HaveError;
946       return Error(Lex.getLoc(), "unterminated attribute group");
947     case lltok::rbrace:
948       // Finished.
949       return false;
950 
951     case lltok::AttrGrpID: {
952       // Allow a function to reference an attribute group:
953       //
954       //   define void @foo() #1 { ... }
955       if (inAttrGrp)
956         HaveError |=
957           Error(Lex.getLoc(),
958               "cannot have an attribute group reference in an attribute group");
959 
960       unsigned AttrGrpNum = Lex.getUIntVal();
961       if (inAttrGrp) break;
962 
963       // Save the reference to the attribute group. We'll fill it in later.
964       FwdRefAttrGrps.push_back(AttrGrpNum);
965       break;
966     }
967     // Target-dependent attributes:
968     case lltok::StringConstant: {
969       if (ParseStringAttribute(B))
970         return true;
971       continue;
972     }
973 
974     // Target-independent attributes:
975     case lltok::kw_align: {
976       // As a hack, we allow function alignment to be initially parsed as an
977       // attribute on a function declaration/definition or added to an attribute
978       // group and later moved to the alignment field.
979       unsigned Alignment;
980       if (inAttrGrp) {
981         Lex.Lex();
982         if (ParseToken(lltok::equal, "expected '=' here") ||
983             ParseUInt32(Alignment))
984           return true;
985       } else {
986         if (ParseOptionalAlignment(Alignment))
987           return true;
988       }
989       B.addAlignmentAttr(Alignment);
990       continue;
991     }
992     case lltok::kw_alignstack: {
993       unsigned Alignment;
994       if (inAttrGrp) {
995         Lex.Lex();
996         if (ParseToken(lltok::equal, "expected '=' here") ||
997             ParseUInt32(Alignment))
998           return true;
999       } else {
1000         if (ParseOptionalStackAlignment(Alignment))
1001           return true;
1002       }
1003       B.addStackAlignmentAttr(Alignment);
1004       continue;
1005     }
1006     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1007     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1008     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1009     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1010     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1011     case lltok::kw_inaccessiblememonly:
1012       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1013     case lltok::kw_inaccessiblemem_or_argmemonly:
1014       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1015     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1016     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1017     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1018     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1019     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1020     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1021     case lltok::kw_noimplicitfloat:
1022       B.addAttribute(Attribute::NoImplicitFloat); break;
1023     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1024     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1025     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1026     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1027     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1028     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1029     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1030     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1031     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1032     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1033     case lltok::kw_returns_twice:
1034       B.addAttribute(Attribute::ReturnsTwice); break;
1035     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1036     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1037     case lltok::kw_sspstrong:
1038       B.addAttribute(Attribute::StackProtectStrong); break;
1039     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1040     case lltok::kw_sanitize_address:
1041       B.addAttribute(Attribute::SanitizeAddress); break;
1042     case lltok::kw_sanitize_thread:
1043       B.addAttribute(Attribute::SanitizeThread); break;
1044     case lltok::kw_sanitize_memory:
1045       B.addAttribute(Attribute::SanitizeMemory); break;
1046     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1047 
1048     // Error handling.
1049     case lltok::kw_inreg:
1050     case lltok::kw_signext:
1051     case lltok::kw_zeroext:
1052       HaveError |=
1053         Error(Lex.getLoc(),
1054               "invalid use of attribute on a function");
1055       break;
1056     case lltok::kw_byval:
1057     case lltok::kw_dereferenceable:
1058     case lltok::kw_dereferenceable_or_null:
1059     case lltok::kw_inalloca:
1060     case lltok::kw_nest:
1061     case lltok::kw_noalias:
1062     case lltok::kw_nocapture:
1063     case lltok::kw_nonnull:
1064     case lltok::kw_returned:
1065     case lltok::kw_sret:
1066       HaveError |=
1067         Error(Lex.getLoc(),
1068               "invalid use of parameter-only attribute on a function");
1069       break;
1070     }
1071 
1072     Lex.Lex();
1073   }
1074 }
1075 
1076 //===----------------------------------------------------------------------===//
1077 // GlobalValue Reference/Resolution Routines.
1078 //===----------------------------------------------------------------------===//
1079 
1080 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1081                                               const std::string &Name) {
1082   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1083     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1084   else
1085     return new GlobalVariable(*M, PTy->getElementType(), false,
1086                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1087                               nullptr, GlobalVariable::NotThreadLocal,
1088                               PTy->getAddressSpace());
1089 }
1090 
1091 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1092 /// forward reference record if needed.  This can return null if the value
1093 /// exists but does not have the right type.
1094 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1095                                     LocTy Loc) {
1096   PointerType *PTy = dyn_cast<PointerType>(Ty);
1097   if (!PTy) {
1098     Error(Loc, "global variable reference must have pointer type");
1099     return nullptr;
1100   }
1101 
1102   // Look this name up in the normal function symbol table.
1103   GlobalValue *Val =
1104     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1105 
1106   // If this is a forward reference for the value, see if we already created a
1107   // forward ref record.
1108   if (!Val) {
1109     auto I = ForwardRefVals.find(Name);
1110     if (I != ForwardRefVals.end())
1111       Val = I->second.first;
1112   }
1113 
1114   // If we have the value in the symbol table or fwd-ref table, return it.
1115   if (Val) {
1116     if (Val->getType() == Ty) return Val;
1117     Error(Loc, "'@" + Name + "' defined with type '" +
1118           getTypeString(Val->getType()) + "'");
1119     return nullptr;
1120   }
1121 
1122   // Otherwise, create a new forward reference for this value and remember it.
1123   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1124   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1125   return FwdVal;
1126 }
1127 
1128 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1129   PointerType *PTy = dyn_cast<PointerType>(Ty);
1130   if (!PTy) {
1131     Error(Loc, "global variable reference must have pointer type");
1132     return nullptr;
1133   }
1134 
1135   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1136 
1137   // If this is a forward reference for the value, see if we already created a
1138   // forward ref record.
1139   if (!Val) {
1140     auto I = ForwardRefValIDs.find(ID);
1141     if (I != ForwardRefValIDs.end())
1142       Val = I->second.first;
1143   }
1144 
1145   // If we have the value in the symbol table or fwd-ref table, return it.
1146   if (Val) {
1147     if (Val->getType() == Ty) return Val;
1148     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1149           getTypeString(Val->getType()) + "'");
1150     return nullptr;
1151   }
1152 
1153   // Otherwise, create a new forward reference for this value and remember it.
1154   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1155   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1156   return FwdVal;
1157 }
1158 
1159 
1160 //===----------------------------------------------------------------------===//
1161 // Comdat Reference/Resolution Routines.
1162 //===----------------------------------------------------------------------===//
1163 
1164 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1165   // Look this name up in the comdat symbol table.
1166   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1167   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1168   if (I != ComdatSymTab.end())
1169     return &I->second;
1170 
1171   // Otherwise, create a new forward reference for this value and remember it.
1172   Comdat *C = M->getOrInsertComdat(Name);
1173   ForwardRefComdats[Name] = Loc;
1174   return C;
1175 }
1176 
1177 
1178 //===----------------------------------------------------------------------===//
1179 // Helper Routines.
1180 //===----------------------------------------------------------------------===//
1181 
1182 /// ParseToken - If the current token has the specified kind, eat it and return
1183 /// success.  Otherwise, emit the specified error and return failure.
1184 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1185   if (Lex.getKind() != T)
1186     return TokError(ErrMsg);
1187   Lex.Lex();
1188   return false;
1189 }
1190 
1191 /// ParseStringConstant
1192 ///   ::= StringConstant
1193 bool LLParser::ParseStringConstant(std::string &Result) {
1194   if (Lex.getKind() != lltok::StringConstant)
1195     return TokError("expected string constant");
1196   Result = Lex.getStrVal();
1197   Lex.Lex();
1198   return false;
1199 }
1200 
1201 /// ParseUInt32
1202 ///   ::= uint32
1203 bool LLParser::ParseUInt32(unsigned &Val) {
1204   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1205     return TokError("expected integer");
1206   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1207   if (Val64 != unsigned(Val64))
1208     return TokError("expected 32-bit integer (too large)");
1209   Val = Val64;
1210   Lex.Lex();
1211   return false;
1212 }
1213 
1214 /// ParseUInt64
1215 ///   ::= uint64
1216 bool LLParser::ParseUInt64(uint64_t &Val) {
1217   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1218     return TokError("expected integer");
1219   Val = Lex.getAPSIntVal().getLimitedValue();
1220   Lex.Lex();
1221   return false;
1222 }
1223 
1224 /// ParseTLSModel
1225 ///   := 'localdynamic'
1226 ///   := 'initialexec'
1227 ///   := 'localexec'
1228 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1229   switch (Lex.getKind()) {
1230     default:
1231       return TokError("expected localdynamic, initialexec or localexec");
1232     case lltok::kw_localdynamic:
1233       TLM = GlobalVariable::LocalDynamicTLSModel;
1234       break;
1235     case lltok::kw_initialexec:
1236       TLM = GlobalVariable::InitialExecTLSModel;
1237       break;
1238     case lltok::kw_localexec:
1239       TLM = GlobalVariable::LocalExecTLSModel;
1240       break;
1241   }
1242 
1243   Lex.Lex();
1244   return false;
1245 }
1246 
1247 /// ParseOptionalThreadLocal
1248 ///   := /*empty*/
1249 ///   := 'thread_local'
1250 ///   := 'thread_local' '(' tlsmodel ')'
1251 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1252   TLM = GlobalVariable::NotThreadLocal;
1253   if (!EatIfPresent(lltok::kw_thread_local))
1254     return false;
1255 
1256   TLM = GlobalVariable::GeneralDynamicTLSModel;
1257   if (Lex.getKind() == lltok::lparen) {
1258     Lex.Lex();
1259     return ParseTLSModel(TLM) ||
1260       ParseToken(lltok::rparen, "expected ')' after thread local model");
1261   }
1262   return false;
1263 }
1264 
1265 /// ParseOptionalAddrSpace
1266 ///   := /*empty*/
1267 ///   := 'addrspace' '(' uint32 ')'
1268 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1269   AddrSpace = 0;
1270   if (!EatIfPresent(lltok::kw_addrspace))
1271     return false;
1272   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1273          ParseUInt32(AddrSpace) ||
1274          ParseToken(lltok::rparen, "expected ')' in address space");
1275 }
1276 
1277 /// ParseStringAttribute
1278 ///   := StringConstant
1279 ///   := StringConstant '=' StringConstant
1280 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1281   std::string Attr = Lex.getStrVal();
1282   Lex.Lex();
1283   std::string Val;
1284   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1285     return true;
1286   B.addAttribute(Attr, Val);
1287   return false;
1288 }
1289 
1290 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1291 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1292   bool HaveError = false;
1293 
1294   B.clear();
1295 
1296   while (1) {
1297     lltok::Kind Token = Lex.getKind();
1298     switch (Token) {
1299     default:  // End of attributes.
1300       return HaveError;
1301     case lltok::StringConstant: {
1302       if (ParseStringAttribute(B))
1303         return true;
1304       continue;
1305     }
1306     case lltok::kw_align: {
1307       unsigned Alignment;
1308       if (ParseOptionalAlignment(Alignment))
1309         return true;
1310       B.addAlignmentAttr(Alignment);
1311       continue;
1312     }
1313     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1314     case lltok::kw_dereferenceable: {
1315       uint64_t Bytes;
1316       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1317         return true;
1318       B.addDereferenceableAttr(Bytes);
1319       continue;
1320     }
1321     case lltok::kw_dereferenceable_or_null: {
1322       uint64_t Bytes;
1323       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1324         return true;
1325       B.addDereferenceableOrNullAttr(Bytes);
1326       continue;
1327     }
1328     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1329     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1330     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1331     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1332     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1333     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1334     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1335     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1336     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1337     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1338     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1339     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1340 
1341     case lltok::kw_alignstack:
1342     case lltok::kw_alwaysinline:
1343     case lltok::kw_argmemonly:
1344     case lltok::kw_builtin:
1345     case lltok::kw_inlinehint:
1346     case lltok::kw_jumptable:
1347     case lltok::kw_minsize:
1348     case lltok::kw_naked:
1349     case lltok::kw_nobuiltin:
1350     case lltok::kw_noduplicate:
1351     case lltok::kw_noimplicitfloat:
1352     case lltok::kw_noinline:
1353     case lltok::kw_nonlazybind:
1354     case lltok::kw_noredzone:
1355     case lltok::kw_noreturn:
1356     case lltok::kw_nounwind:
1357     case lltok::kw_optnone:
1358     case lltok::kw_optsize:
1359     case lltok::kw_returns_twice:
1360     case lltok::kw_sanitize_address:
1361     case lltok::kw_sanitize_memory:
1362     case lltok::kw_sanitize_thread:
1363     case lltok::kw_ssp:
1364     case lltok::kw_sspreq:
1365     case lltok::kw_sspstrong:
1366     case lltok::kw_safestack:
1367     case lltok::kw_uwtable:
1368       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1369       break;
1370     }
1371 
1372     Lex.Lex();
1373   }
1374 }
1375 
1376 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1377 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1378   bool HaveError = false;
1379 
1380   B.clear();
1381 
1382   while (1) {
1383     lltok::Kind Token = Lex.getKind();
1384     switch (Token) {
1385     default:  // End of attributes.
1386       return HaveError;
1387     case lltok::StringConstant: {
1388       if (ParseStringAttribute(B))
1389         return true;
1390       continue;
1391     }
1392     case lltok::kw_dereferenceable: {
1393       uint64_t Bytes;
1394       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1395         return true;
1396       B.addDereferenceableAttr(Bytes);
1397       continue;
1398     }
1399     case lltok::kw_dereferenceable_or_null: {
1400       uint64_t Bytes;
1401       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1402         return true;
1403       B.addDereferenceableOrNullAttr(Bytes);
1404       continue;
1405     }
1406     case lltok::kw_align: {
1407       unsigned Alignment;
1408       if (ParseOptionalAlignment(Alignment))
1409         return true;
1410       B.addAlignmentAttr(Alignment);
1411       continue;
1412     }
1413     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1414     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1415     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1416     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1417     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1418 
1419     // Error handling.
1420     case lltok::kw_byval:
1421     case lltok::kw_inalloca:
1422     case lltok::kw_nest:
1423     case lltok::kw_nocapture:
1424     case lltok::kw_returned:
1425     case lltok::kw_sret:
1426       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1427       break;
1428 
1429     case lltok::kw_alignstack:
1430     case lltok::kw_alwaysinline:
1431     case lltok::kw_argmemonly:
1432     case lltok::kw_builtin:
1433     case lltok::kw_cold:
1434     case lltok::kw_inlinehint:
1435     case lltok::kw_jumptable:
1436     case lltok::kw_minsize:
1437     case lltok::kw_naked:
1438     case lltok::kw_nobuiltin:
1439     case lltok::kw_noduplicate:
1440     case lltok::kw_noimplicitfloat:
1441     case lltok::kw_noinline:
1442     case lltok::kw_nonlazybind:
1443     case lltok::kw_noredzone:
1444     case lltok::kw_noreturn:
1445     case lltok::kw_nounwind:
1446     case lltok::kw_optnone:
1447     case lltok::kw_optsize:
1448     case lltok::kw_returns_twice:
1449     case lltok::kw_sanitize_address:
1450     case lltok::kw_sanitize_memory:
1451     case lltok::kw_sanitize_thread:
1452     case lltok::kw_ssp:
1453     case lltok::kw_sspreq:
1454     case lltok::kw_sspstrong:
1455     case lltok::kw_safestack:
1456     case lltok::kw_uwtable:
1457       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1458       break;
1459 
1460     case lltok::kw_readnone:
1461     case lltok::kw_readonly:
1462       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1463     }
1464 
1465     Lex.Lex();
1466   }
1467 }
1468 
1469 /// ParseOptionalLinkage
1470 ///   ::= /*empty*/
1471 ///   ::= 'private'
1472 ///   ::= 'internal'
1473 ///   ::= 'weak'
1474 ///   ::= 'weak_odr'
1475 ///   ::= 'linkonce'
1476 ///   ::= 'linkonce_odr'
1477 ///   ::= 'available_externally'
1478 ///   ::= 'appending'
1479 ///   ::= 'common'
1480 ///   ::= 'extern_weak'
1481 ///   ::= 'external'
1482 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1483   HasLinkage = false;
1484   switch (Lex.getKind()) {
1485   default:                       Res=GlobalValue::ExternalLinkage; return false;
1486   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1487   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1488   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1489   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1490   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1491   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1492   case lltok::kw_available_externally:
1493     Res = GlobalValue::AvailableExternallyLinkage;
1494     break;
1495   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1496   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1497   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1498   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1499   }
1500   Lex.Lex();
1501   HasLinkage = true;
1502   return false;
1503 }
1504 
1505 /// ParseOptionalVisibility
1506 ///   ::= /*empty*/
1507 ///   ::= 'default'
1508 ///   ::= 'hidden'
1509 ///   ::= 'protected'
1510 ///
1511 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1512   switch (Lex.getKind()) {
1513   default:                  Res = GlobalValue::DefaultVisibility; return false;
1514   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1515   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1516   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1517   }
1518   Lex.Lex();
1519   return false;
1520 }
1521 
1522 /// ParseOptionalDLLStorageClass
1523 ///   ::= /*empty*/
1524 ///   ::= 'dllimport'
1525 ///   ::= 'dllexport'
1526 ///
1527 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1528   switch (Lex.getKind()) {
1529   default:                  Res = GlobalValue::DefaultStorageClass; return false;
1530   case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
1531   case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
1532   }
1533   Lex.Lex();
1534   return false;
1535 }
1536 
1537 /// ParseOptionalCallingConv
1538 ///   ::= /*empty*/
1539 ///   ::= 'ccc'
1540 ///   ::= 'fastcc'
1541 ///   ::= 'intel_ocl_bicc'
1542 ///   ::= 'coldcc'
1543 ///   ::= 'x86_stdcallcc'
1544 ///   ::= 'x86_fastcallcc'
1545 ///   ::= 'x86_thiscallcc'
1546 ///   ::= 'x86_vectorcallcc'
1547 ///   ::= 'arm_apcscc'
1548 ///   ::= 'arm_aapcscc'
1549 ///   ::= 'arm_aapcs_vfpcc'
1550 ///   ::= 'msp430_intrcc'
1551 ///   ::= 'avr_intrcc'
1552 ///   ::= 'avr_signalcc'
1553 ///   ::= 'ptx_kernel'
1554 ///   ::= 'ptx_device'
1555 ///   ::= 'spir_func'
1556 ///   ::= 'spir_kernel'
1557 ///   ::= 'x86_64_sysvcc'
1558 ///   ::= 'x86_64_win64cc'
1559 ///   ::= 'webkit_jscc'
1560 ///   ::= 'anyregcc'
1561 ///   ::= 'preserve_mostcc'
1562 ///   ::= 'preserve_allcc'
1563 ///   ::= 'ghccc'
1564 ///   ::= 'x86_intrcc'
1565 ///   ::= 'hhvmcc'
1566 ///   ::= 'hhvm_ccc'
1567 ///   ::= 'cxx_fast_tlscc'
1568 ///   ::= 'cc' UINT
1569 ///
1570 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1571   switch (Lex.getKind()) {
1572   default:                       CC = CallingConv::C; return false;
1573   case lltok::kw_ccc:            CC = CallingConv::C; break;
1574   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1575   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1576   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1577   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1578   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1579   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1580   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1581   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1582   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1583   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1584   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1585   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1586   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1587   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1588   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1589   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1590   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1591   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1592   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1593   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1594   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1595   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1596   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1597   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1598   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1599   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1600   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1601   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1602   case lltok::kw_cc: {
1603       Lex.Lex();
1604       return ParseUInt32(CC);
1605     }
1606   }
1607 
1608   Lex.Lex();
1609   return false;
1610 }
1611 
1612 /// ParseMetadataAttachment
1613 ///   ::= !dbg !42
1614 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1615   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1616 
1617   std::string Name = Lex.getStrVal();
1618   Kind = M->getMDKindID(Name);
1619   Lex.Lex();
1620 
1621   return ParseMDNode(MD);
1622 }
1623 
1624 /// ParseInstructionMetadata
1625 ///   ::= !dbg !42 (',' !dbg !57)*
1626 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1627   do {
1628     if (Lex.getKind() != lltok::MetadataVar)
1629       return TokError("expected metadata after comma");
1630 
1631     unsigned MDK;
1632     MDNode *N;
1633     if (ParseMetadataAttachment(MDK, N))
1634       return true;
1635 
1636     Inst.setMetadata(MDK, N);
1637     if (MDK == LLVMContext::MD_tbaa)
1638       InstsWithTBAATag.push_back(&Inst);
1639 
1640     // If this is the end of the list, we're done.
1641   } while (EatIfPresent(lltok::comma));
1642   return false;
1643 }
1644 
1645 /// ParseOptionalFunctionMetadata
1646 ///   ::= (!dbg !57)*
1647 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1648   while (Lex.getKind() == lltok::MetadataVar) {
1649     unsigned MDK;
1650     MDNode *N;
1651     if (ParseMetadataAttachment(MDK, N))
1652       return true;
1653 
1654     F.setMetadata(MDK, N);
1655   }
1656   return false;
1657 }
1658 
1659 /// ParseOptionalAlignment
1660 ///   ::= /* empty */
1661 ///   ::= 'align' 4
1662 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1663   Alignment = 0;
1664   if (!EatIfPresent(lltok::kw_align))
1665     return false;
1666   LocTy AlignLoc = Lex.getLoc();
1667   if (ParseUInt32(Alignment)) return true;
1668   if (!isPowerOf2_32(Alignment))
1669     return Error(AlignLoc, "alignment is not a power of two");
1670   if (Alignment > Value::MaximumAlignment)
1671     return Error(AlignLoc, "huge alignments are not supported yet");
1672   return false;
1673 }
1674 
1675 /// ParseOptionalDerefAttrBytes
1676 ///   ::= /* empty */
1677 ///   ::= AttrKind '(' 4 ')'
1678 ///
1679 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1680 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1681                                            uint64_t &Bytes) {
1682   assert((AttrKind == lltok::kw_dereferenceable ||
1683           AttrKind == lltok::kw_dereferenceable_or_null) &&
1684          "contract!");
1685 
1686   Bytes = 0;
1687   if (!EatIfPresent(AttrKind))
1688     return false;
1689   LocTy ParenLoc = Lex.getLoc();
1690   if (!EatIfPresent(lltok::lparen))
1691     return Error(ParenLoc, "expected '('");
1692   LocTy DerefLoc = Lex.getLoc();
1693   if (ParseUInt64(Bytes)) return true;
1694   ParenLoc = Lex.getLoc();
1695   if (!EatIfPresent(lltok::rparen))
1696     return Error(ParenLoc, "expected ')'");
1697   if (!Bytes)
1698     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1699   return false;
1700 }
1701 
1702 /// ParseOptionalCommaAlign
1703 ///   ::=
1704 ///   ::= ',' align 4
1705 ///
1706 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1707 /// end.
1708 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1709                                        bool &AteExtraComma) {
1710   AteExtraComma = false;
1711   while (EatIfPresent(lltok::comma)) {
1712     // Metadata at the end is an early exit.
1713     if (Lex.getKind() == lltok::MetadataVar) {
1714       AteExtraComma = true;
1715       return false;
1716     }
1717 
1718     if (Lex.getKind() != lltok::kw_align)
1719       return Error(Lex.getLoc(), "expected metadata or 'align'");
1720 
1721     if (ParseOptionalAlignment(Alignment)) return true;
1722   }
1723 
1724   return false;
1725 }
1726 
1727 /// ParseScopeAndOrdering
1728 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1729 ///   else: ::=
1730 ///
1731 /// This sets Scope and Ordering to the parsed values.
1732 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1733                                      AtomicOrdering &Ordering) {
1734   if (!isAtomic)
1735     return false;
1736 
1737   Scope = CrossThread;
1738   if (EatIfPresent(lltok::kw_singlethread))
1739     Scope = SingleThread;
1740 
1741   return ParseOrdering(Ordering);
1742 }
1743 
1744 /// ParseOrdering
1745 ///   ::= AtomicOrdering
1746 ///
1747 /// This sets Ordering to the parsed value.
1748 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1749   switch (Lex.getKind()) {
1750   default: return TokError("Expected ordering on atomic instruction");
1751   case lltok::kw_unordered: Ordering = Unordered; break;
1752   case lltok::kw_monotonic: Ordering = Monotonic; break;
1753   case lltok::kw_acquire: Ordering = Acquire; break;
1754   case lltok::kw_release: Ordering = Release; break;
1755   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1756   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1757   }
1758   Lex.Lex();
1759   return false;
1760 }
1761 
1762 /// ParseOptionalStackAlignment
1763 ///   ::= /* empty */
1764 ///   ::= 'alignstack' '(' 4 ')'
1765 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1766   Alignment = 0;
1767   if (!EatIfPresent(lltok::kw_alignstack))
1768     return false;
1769   LocTy ParenLoc = Lex.getLoc();
1770   if (!EatIfPresent(lltok::lparen))
1771     return Error(ParenLoc, "expected '('");
1772   LocTy AlignLoc = Lex.getLoc();
1773   if (ParseUInt32(Alignment)) return true;
1774   ParenLoc = Lex.getLoc();
1775   if (!EatIfPresent(lltok::rparen))
1776     return Error(ParenLoc, "expected ')'");
1777   if (!isPowerOf2_32(Alignment))
1778     return Error(AlignLoc, "stack alignment is not a power of two");
1779   return false;
1780 }
1781 
1782 /// ParseIndexList - This parses the index list for an insert/extractvalue
1783 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1784 /// comma at the end of the line and find that it is followed by metadata.
1785 /// Clients that don't allow metadata can call the version of this function that
1786 /// only takes one argument.
1787 ///
1788 /// ParseIndexList
1789 ///    ::=  (',' uint32)+
1790 ///
1791 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1792                               bool &AteExtraComma) {
1793   AteExtraComma = false;
1794 
1795   if (Lex.getKind() != lltok::comma)
1796     return TokError("expected ',' as start of index list");
1797 
1798   while (EatIfPresent(lltok::comma)) {
1799     if (Lex.getKind() == lltok::MetadataVar) {
1800       if (Indices.empty()) return TokError("expected index");
1801       AteExtraComma = true;
1802       return false;
1803     }
1804     unsigned Idx = 0;
1805     if (ParseUInt32(Idx)) return true;
1806     Indices.push_back(Idx);
1807   }
1808 
1809   return false;
1810 }
1811 
1812 //===----------------------------------------------------------------------===//
1813 // Type Parsing.
1814 //===----------------------------------------------------------------------===//
1815 
1816 /// ParseType - Parse a type.
1817 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1818   SMLoc TypeLoc = Lex.getLoc();
1819   switch (Lex.getKind()) {
1820   default:
1821     return TokError(Msg);
1822   case lltok::Type:
1823     // Type ::= 'float' | 'void' (etc)
1824     Result = Lex.getTyVal();
1825     Lex.Lex();
1826     break;
1827   case lltok::lbrace:
1828     // Type ::= StructType
1829     if (ParseAnonStructType(Result, false))
1830       return true;
1831     break;
1832   case lltok::lsquare:
1833     // Type ::= '[' ... ']'
1834     Lex.Lex(); // eat the lsquare.
1835     if (ParseArrayVectorType(Result, false))
1836       return true;
1837     break;
1838   case lltok::less: // Either vector or packed struct.
1839     // Type ::= '<' ... '>'
1840     Lex.Lex();
1841     if (Lex.getKind() == lltok::lbrace) {
1842       if (ParseAnonStructType(Result, true) ||
1843           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1844         return true;
1845     } else if (ParseArrayVectorType(Result, true))
1846       return true;
1847     break;
1848   case lltok::LocalVar: {
1849     // Type ::= %foo
1850     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1851 
1852     // If the type hasn't been defined yet, create a forward definition and
1853     // remember where that forward def'n was seen (in case it never is defined).
1854     if (!Entry.first) {
1855       Entry.first = StructType::create(Context, Lex.getStrVal());
1856       Entry.second = Lex.getLoc();
1857     }
1858     Result = Entry.first;
1859     Lex.Lex();
1860     break;
1861   }
1862 
1863   case lltok::LocalVarID: {
1864     // Type ::= %4
1865     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1866 
1867     // If the type hasn't been defined yet, create a forward definition and
1868     // remember where that forward def'n was seen (in case it never is defined).
1869     if (!Entry.first) {
1870       Entry.first = StructType::create(Context);
1871       Entry.second = Lex.getLoc();
1872     }
1873     Result = Entry.first;
1874     Lex.Lex();
1875     break;
1876   }
1877   }
1878 
1879   // Parse the type suffixes.
1880   while (1) {
1881     switch (Lex.getKind()) {
1882     // End of type.
1883     default:
1884       if (!AllowVoid && Result->isVoidTy())
1885         return Error(TypeLoc, "void type only allowed for function results");
1886       return false;
1887 
1888     // Type ::= Type '*'
1889     case lltok::star:
1890       if (Result->isLabelTy())
1891         return TokError("basic block pointers are invalid");
1892       if (Result->isVoidTy())
1893         return TokError("pointers to void are invalid - use i8* instead");
1894       if (!PointerType::isValidElementType(Result))
1895         return TokError("pointer to this type is invalid");
1896       Result = PointerType::getUnqual(Result);
1897       Lex.Lex();
1898       break;
1899 
1900     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1901     case lltok::kw_addrspace: {
1902       if (Result->isLabelTy())
1903         return TokError("basic block pointers are invalid");
1904       if (Result->isVoidTy())
1905         return TokError("pointers to void are invalid; use i8* instead");
1906       if (!PointerType::isValidElementType(Result))
1907         return TokError("pointer to this type is invalid");
1908       unsigned AddrSpace;
1909       if (ParseOptionalAddrSpace(AddrSpace) ||
1910           ParseToken(lltok::star, "expected '*' in address space"))
1911         return true;
1912 
1913       Result = PointerType::get(Result, AddrSpace);
1914       break;
1915     }
1916 
1917     /// Types '(' ArgTypeListI ')' OptFuncAttrs
1918     case lltok::lparen:
1919       if (ParseFunctionType(Result))
1920         return true;
1921       break;
1922     }
1923   }
1924 }
1925 
1926 /// ParseParameterList
1927 ///    ::= '(' ')'
1928 ///    ::= '(' Arg (',' Arg)* ')'
1929 ///  Arg
1930 ///    ::= Type OptionalAttributes Value OptionalAttributes
1931 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1932                                   PerFunctionState &PFS, bool IsMustTailCall,
1933                                   bool InVarArgsFunc) {
1934   if (ParseToken(lltok::lparen, "expected '(' in call"))
1935     return true;
1936 
1937   unsigned AttrIndex = 1;
1938   while (Lex.getKind() != lltok::rparen) {
1939     // If this isn't the first argument, we need a comma.
1940     if (!ArgList.empty() &&
1941         ParseToken(lltok::comma, "expected ',' in argument list"))
1942       return true;
1943 
1944     // Parse an ellipsis if this is a musttail call in a variadic function.
1945     if (Lex.getKind() == lltok::dotdotdot) {
1946       const char *Msg = "unexpected ellipsis in argument list for ";
1947       if (!IsMustTailCall)
1948         return TokError(Twine(Msg) + "non-musttail call");
1949       if (!InVarArgsFunc)
1950         return TokError(Twine(Msg) + "musttail call in non-varargs function");
1951       Lex.Lex();  // Lex the '...', it is purely for readability.
1952       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1953     }
1954 
1955     // Parse the argument.
1956     LocTy ArgLoc;
1957     Type *ArgTy = nullptr;
1958     AttrBuilder ArgAttrs;
1959     Value *V;
1960     if (ParseType(ArgTy, ArgLoc))
1961       return true;
1962 
1963     if (ArgTy->isMetadataTy()) {
1964       if (ParseMetadataAsValue(V, PFS))
1965         return true;
1966     } else {
1967       // Otherwise, handle normal operands.
1968       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1969         return true;
1970     }
1971     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1972                                                              AttrIndex++,
1973                                                              ArgAttrs)));
1974   }
1975 
1976   if (IsMustTailCall && InVarArgsFunc)
1977     return TokError("expected '...' at end of argument list for musttail call "
1978                     "in varargs function");
1979 
1980   Lex.Lex();  // Lex the ')'.
1981   return false;
1982 }
1983 
1984 /// ParseOptionalOperandBundles
1985 ///    ::= /*empty*/
1986 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
1987 ///
1988 /// OperandBundle
1989 ///    ::= bundle-tag '(' ')'
1990 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
1991 ///
1992 /// bundle-tag ::= String Constant
1993 bool LLParser::ParseOptionalOperandBundles(
1994     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
1995   LocTy BeginLoc = Lex.getLoc();
1996   if (!EatIfPresent(lltok::lsquare))
1997     return false;
1998 
1999   while (Lex.getKind() != lltok::rsquare) {
2000     // If this isn't the first operand bundle, we need a comma.
2001     if (!BundleList.empty() &&
2002         ParseToken(lltok::comma, "expected ',' in input list"))
2003       return true;
2004 
2005     std::string Tag;
2006     if (ParseStringConstant(Tag))
2007       return true;
2008 
2009     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2010       return true;
2011 
2012     std::vector<Value *> Inputs;
2013     while (Lex.getKind() != lltok::rparen) {
2014       // If this isn't the first input, we need a comma.
2015       if (!Inputs.empty() &&
2016           ParseToken(lltok::comma, "expected ',' in input list"))
2017         return true;
2018 
2019       Type *Ty = nullptr;
2020       Value *Input = nullptr;
2021       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2022         return true;
2023       Inputs.push_back(Input);
2024     }
2025 
2026     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2027 
2028     Lex.Lex(); // Lex the ')'.
2029   }
2030 
2031   if (BundleList.empty())
2032     return Error(BeginLoc, "operand bundle set must not be empty");
2033 
2034   Lex.Lex(); // Lex the ']'.
2035   return false;
2036 }
2037 
2038 /// ParseArgumentList - Parse the argument list for a function type or function
2039 /// prototype.
2040 ///   ::= '(' ArgTypeListI ')'
2041 /// ArgTypeListI
2042 ///   ::= /*empty*/
2043 ///   ::= '...'
2044 ///   ::= ArgTypeList ',' '...'
2045 ///   ::= ArgType (',' ArgType)*
2046 ///
2047 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2048                                  bool &isVarArg){
2049   isVarArg = false;
2050   assert(Lex.getKind() == lltok::lparen);
2051   Lex.Lex(); // eat the (.
2052 
2053   if (Lex.getKind() == lltok::rparen) {
2054     // empty
2055   } else if (Lex.getKind() == lltok::dotdotdot) {
2056     isVarArg = true;
2057     Lex.Lex();
2058   } else {
2059     LocTy TypeLoc = Lex.getLoc();
2060     Type *ArgTy = nullptr;
2061     AttrBuilder Attrs;
2062     std::string Name;
2063 
2064     if (ParseType(ArgTy) ||
2065         ParseOptionalParamAttrs(Attrs)) return true;
2066 
2067     if (ArgTy->isVoidTy())
2068       return Error(TypeLoc, "argument can not have void type");
2069 
2070     if (Lex.getKind() == lltok::LocalVar) {
2071       Name = Lex.getStrVal();
2072       Lex.Lex();
2073     }
2074 
2075     if (!FunctionType::isValidArgumentType(ArgTy))
2076       return Error(TypeLoc, "invalid type for function argument");
2077 
2078     unsigned AttrIndex = 1;
2079     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2080                                                            AttrIndex++, Attrs),
2081                          std::move(Name));
2082 
2083     while (EatIfPresent(lltok::comma)) {
2084       // Handle ... at end of arg list.
2085       if (EatIfPresent(lltok::dotdotdot)) {
2086         isVarArg = true;
2087         break;
2088       }
2089 
2090       // Otherwise must be an argument type.
2091       TypeLoc = Lex.getLoc();
2092       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2093 
2094       if (ArgTy->isVoidTy())
2095         return Error(TypeLoc, "argument can not have void type");
2096 
2097       if (Lex.getKind() == lltok::LocalVar) {
2098         Name = Lex.getStrVal();
2099         Lex.Lex();
2100       } else {
2101         Name = "";
2102       }
2103 
2104       if (!ArgTy->isFirstClassType())
2105         return Error(TypeLoc, "invalid type for function argument");
2106 
2107       ArgList.emplace_back(
2108           TypeLoc, ArgTy,
2109           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2110           std::move(Name));
2111     }
2112   }
2113 
2114   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2115 }
2116 
2117 /// ParseFunctionType
2118 ///  ::= Type ArgumentList OptionalAttrs
2119 bool LLParser::ParseFunctionType(Type *&Result) {
2120   assert(Lex.getKind() == lltok::lparen);
2121 
2122   if (!FunctionType::isValidReturnType(Result))
2123     return TokError("invalid function return type");
2124 
2125   SmallVector<ArgInfo, 8> ArgList;
2126   bool isVarArg;
2127   if (ParseArgumentList(ArgList, isVarArg))
2128     return true;
2129 
2130   // Reject names on the arguments lists.
2131   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2132     if (!ArgList[i].Name.empty())
2133       return Error(ArgList[i].Loc, "argument name invalid in function type");
2134     if (ArgList[i].Attrs.hasAttributes(i + 1))
2135       return Error(ArgList[i].Loc,
2136                    "argument attributes invalid in function type");
2137   }
2138 
2139   SmallVector<Type*, 16> ArgListTy;
2140   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2141     ArgListTy.push_back(ArgList[i].Ty);
2142 
2143   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2144   return false;
2145 }
2146 
2147 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2148 /// other structs.
2149 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2150   SmallVector<Type*, 8> Elts;
2151   if (ParseStructBody(Elts)) return true;
2152 
2153   Result = StructType::get(Context, Elts, Packed);
2154   return false;
2155 }
2156 
2157 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2158 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2159                                      std::pair<Type*, LocTy> &Entry,
2160                                      Type *&ResultTy) {
2161   // If the type was already defined, diagnose the redefinition.
2162   if (Entry.first && !Entry.second.isValid())
2163     return Error(TypeLoc, "redefinition of type");
2164 
2165   // If we have opaque, just return without filling in the definition for the
2166   // struct.  This counts as a definition as far as the .ll file goes.
2167   if (EatIfPresent(lltok::kw_opaque)) {
2168     // This type is being defined, so clear the location to indicate this.
2169     Entry.second = SMLoc();
2170 
2171     // If this type number has never been uttered, create it.
2172     if (!Entry.first)
2173       Entry.first = StructType::create(Context, Name);
2174     ResultTy = Entry.first;
2175     return false;
2176   }
2177 
2178   // If the type starts with '<', then it is either a packed struct or a vector.
2179   bool isPacked = EatIfPresent(lltok::less);
2180 
2181   // If we don't have a struct, then we have a random type alias, which we
2182   // accept for compatibility with old files.  These types are not allowed to be
2183   // forward referenced and not allowed to be recursive.
2184   if (Lex.getKind() != lltok::lbrace) {
2185     if (Entry.first)
2186       return Error(TypeLoc, "forward references to non-struct type");
2187 
2188     ResultTy = nullptr;
2189     if (isPacked)
2190       return ParseArrayVectorType(ResultTy, true);
2191     return ParseType(ResultTy);
2192   }
2193 
2194   // This type is being defined, so clear the location to indicate this.
2195   Entry.second = SMLoc();
2196 
2197   // If this type number has never been uttered, create it.
2198   if (!Entry.first)
2199     Entry.first = StructType::create(Context, Name);
2200 
2201   StructType *STy = cast<StructType>(Entry.first);
2202 
2203   SmallVector<Type*, 8> Body;
2204   if (ParseStructBody(Body) ||
2205       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2206     return true;
2207 
2208   STy->setBody(Body, isPacked);
2209   ResultTy = STy;
2210   return false;
2211 }
2212 
2213 
2214 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2215 ///   StructType
2216 ///     ::= '{' '}'
2217 ///     ::= '{' Type (',' Type)* '}'
2218 ///     ::= '<' '{' '}' '>'
2219 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2220 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2221   assert(Lex.getKind() == lltok::lbrace);
2222   Lex.Lex(); // Consume the '{'
2223 
2224   // Handle the empty struct.
2225   if (EatIfPresent(lltok::rbrace))
2226     return false;
2227 
2228   LocTy EltTyLoc = Lex.getLoc();
2229   Type *Ty = nullptr;
2230   if (ParseType(Ty)) return true;
2231   Body.push_back(Ty);
2232 
2233   if (!StructType::isValidElementType(Ty))
2234     return Error(EltTyLoc, "invalid element type for struct");
2235 
2236   while (EatIfPresent(lltok::comma)) {
2237     EltTyLoc = Lex.getLoc();
2238     if (ParseType(Ty)) return true;
2239 
2240     if (!StructType::isValidElementType(Ty))
2241       return Error(EltTyLoc, "invalid element type for struct");
2242 
2243     Body.push_back(Ty);
2244   }
2245 
2246   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2247 }
2248 
2249 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2250 /// token has already been consumed.
2251 ///   Type
2252 ///     ::= '[' APSINTVAL 'x' Types ']'
2253 ///     ::= '<' APSINTVAL 'x' Types '>'
2254 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2255   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2256       Lex.getAPSIntVal().getBitWidth() > 64)
2257     return TokError("expected number in address space");
2258 
2259   LocTy SizeLoc = Lex.getLoc();
2260   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2261   Lex.Lex();
2262 
2263   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2264       return true;
2265 
2266   LocTy TypeLoc = Lex.getLoc();
2267   Type *EltTy = nullptr;
2268   if (ParseType(EltTy)) return true;
2269 
2270   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2271                  "expected end of sequential type"))
2272     return true;
2273 
2274   if (isVector) {
2275     if (Size == 0)
2276       return Error(SizeLoc, "zero element vector is illegal");
2277     if ((unsigned)Size != Size)
2278       return Error(SizeLoc, "size too large for vector");
2279     if (!VectorType::isValidElementType(EltTy))
2280       return Error(TypeLoc, "invalid vector element type");
2281     Result = VectorType::get(EltTy, unsigned(Size));
2282   } else {
2283     if (!ArrayType::isValidElementType(EltTy))
2284       return Error(TypeLoc, "invalid array element type");
2285     Result = ArrayType::get(EltTy, Size);
2286   }
2287   return false;
2288 }
2289 
2290 //===----------------------------------------------------------------------===//
2291 // Function Semantic Analysis.
2292 //===----------------------------------------------------------------------===//
2293 
2294 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2295                                              int functionNumber)
2296   : P(p), F(f), FunctionNumber(functionNumber) {
2297 
2298   // Insert unnamed arguments into the NumberedVals list.
2299   for (Argument &A : F.args())
2300     if (!A.hasName())
2301       NumberedVals.push_back(&A);
2302 }
2303 
2304 LLParser::PerFunctionState::~PerFunctionState() {
2305   // If there were any forward referenced non-basicblock values, delete them.
2306 
2307   for (const auto &P : ForwardRefVals) {
2308     if (isa<BasicBlock>(P.second.first))
2309       continue;
2310     P.second.first->replaceAllUsesWith(
2311         UndefValue::get(P.second.first->getType()));
2312     delete P.second.first;
2313   }
2314 
2315   for (const auto &P : ForwardRefValIDs) {
2316     if (isa<BasicBlock>(P.second.first))
2317       continue;
2318     P.second.first->replaceAllUsesWith(
2319         UndefValue::get(P.second.first->getType()));
2320     delete P.second.first;
2321   }
2322 }
2323 
2324 bool LLParser::PerFunctionState::FinishFunction() {
2325   if (!ForwardRefVals.empty())
2326     return P.Error(ForwardRefVals.begin()->second.second,
2327                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2328                    "'");
2329   if (!ForwardRefValIDs.empty())
2330     return P.Error(ForwardRefValIDs.begin()->second.second,
2331                    "use of undefined value '%" +
2332                    Twine(ForwardRefValIDs.begin()->first) + "'");
2333   return false;
2334 }
2335 
2336 
2337 /// GetVal - Get a value with the specified name or ID, creating a
2338 /// forward reference record if needed.  This can return null if the value
2339 /// exists but does not have the right type.
2340 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2341                                           LocTy Loc) {
2342   // Look this name up in the normal function symbol table.
2343   Value *Val = F.getValueSymbolTable().lookup(Name);
2344 
2345   // If this is a forward reference for the value, see if we already created a
2346   // forward ref record.
2347   if (!Val) {
2348     auto I = ForwardRefVals.find(Name);
2349     if (I != ForwardRefVals.end())
2350       Val = I->second.first;
2351   }
2352 
2353   // If we have the value in the symbol table or fwd-ref table, return it.
2354   if (Val) {
2355     if (Val->getType() == Ty) return Val;
2356     if (Ty->isLabelTy())
2357       P.Error(Loc, "'%" + Name + "' is not a basic block");
2358     else
2359       P.Error(Loc, "'%" + Name + "' defined with type '" +
2360               getTypeString(Val->getType()) + "'");
2361     return nullptr;
2362   }
2363 
2364   // Don't make placeholders with invalid type.
2365   if (!Ty->isFirstClassType()) {
2366     P.Error(Loc, "invalid use of a non-first-class type");
2367     return nullptr;
2368   }
2369 
2370   // Otherwise, create a new forward reference for this value and remember it.
2371   Value *FwdVal;
2372   if (Ty->isLabelTy()) {
2373     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2374   } else {
2375     FwdVal = new Argument(Ty, Name);
2376   }
2377 
2378   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2379   return FwdVal;
2380 }
2381 
2382 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2383   // Look this name up in the normal function symbol table.
2384   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2385 
2386   // If this is a forward reference for the value, see if we already created a
2387   // forward ref record.
2388   if (!Val) {
2389     auto I = ForwardRefValIDs.find(ID);
2390     if (I != ForwardRefValIDs.end())
2391       Val = I->second.first;
2392   }
2393 
2394   // If we have the value in the symbol table or fwd-ref table, return it.
2395   if (Val) {
2396     if (Val->getType() == Ty) return Val;
2397     if (Ty->isLabelTy())
2398       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2399     else
2400       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2401               getTypeString(Val->getType()) + "'");
2402     return nullptr;
2403   }
2404 
2405   if (!Ty->isFirstClassType()) {
2406     P.Error(Loc, "invalid use of a non-first-class type");
2407     return nullptr;
2408   }
2409 
2410   // Otherwise, create a new forward reference for this value and remember it.
2411   Value *FwdVal;
2412   if (Ty->isLabelTy()) {
2413     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2414   } else {
2415     FwdVal = new Argument(Ty);
2416   }
2417 
2418   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2419   return FwdVal;
2420 }
2421 
2422 /// SetInstName - After an instruction is parsed and inserted into its
2423 /// basic block, this installs its name.
2424 bool LLParser::PerFunctionState::SetInstName(int NameID,
2425                                              const std::string &NameStr,
2426                                              LocTy NameLoc, Instruction *Inst) {
2427   // If this instruction has void type, it cannot have a name or ID specified.
2428   if (Inst->getType()->isVoidTy()) {
2429     if (NameID != -1 || !NameStr.empty())
2430       return P.Error(NameLoc, "instructions returning void cannot have a name");
2431     return false;
2432   }
2433 
2434   // If this was a numbered instruction, verify that the instruction is the
2435   // expected value and resolve any forward references.
2436   if (NameStr.empty()) {
2437     // If neither a name nor an ID was specified, just use the next ID.
2438     if (NameID == -1)
2439       NameID = NumberedVals.size();
2440 
2441     if (unsigned(NameID) != NumberedVals.size())
2442       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2443                      Twine(NumberedVals.size()) + "'");
2444 
2445     auto FI = ForwardRefValIDs.find(NameID);
2446     if (FI != ForwardRefValIDs.end()) {
2447       Value *Sentinel = FI->second.first;
2448       if (Sentinel->getType() != Inst->getType())
2449         return P.Error(NameLoc, "instruction forward referenced with type '" +
2450                        getTypeString(FI->second.first->getType()) + "'");
2451 
2452       Sentinel->replaceAllUsesWith(Inst);
2453       delete Sentinel;
2454       ForwardRefValIDs.erase(FI);
2455     }
2456 
2457     NumberedVals.push_back(Inst);
2458     return false;
2459   }
2460 
2461   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2462   auto FI = ForwardRefVals.find(NameStr);
2463   if (FI != ForwardRefVals.end()) {
2464     Value *Sentinel = FI->second.first;
2465     if (Sentinel->getType() != Inst->getType())
2466       return P.Error(NameLoc, "instruction forward referenced with type '" +
2467                      getTypeString(FI->second.first->getType()) + "'");
2468 
2469     Sentinel->replaceAllUsesWith(Inst);
2470     delete Sentinel;
2471     ForwardRefVals.erase(FI);
2472   }
2473 
2474   // Set the name on the instruction.
2475   Inst->setName(NameStr);
2476 
2477   if (Inst->getName() != NameStr)
2478     return P.Error(NameLoc, "multiple definition of local value named '" +
2479                    NameStr + "'");
2480   return false;
2481 }
2482 
2483 /// GetBB - Get a basic block with the specified name or ID, creating a
2484 /// forward reference record if needed.
2485 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2486                                               LocTy Loc) {
2487   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2488                                       Type::getLabelTy(F.getContext()), Loc));
2489 }
2490 
2491 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2492   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2493                                       Type::getLabelTy(F.getContext()), Loc));
2494 }
2495 
2496 /// DefineBB - Define the specified basic block, which is either named or
2497 /// unnamed.  If there is an error, this returns null otherwise it returns
2498 /// the block being defined.
2499 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2500                                                  LocTy Loc) {
2501   BasicBlock *BB;
2502   if (Name.empty())
2503     BB = GetBB(NumberedVals.size(), Loc);
2504   else
2505     BB = GetBB(Name, Loc);
2506   if (!BB) return nullptr; // Already diagnosed error.
2507 
2508   // Move the block to the end of the function.  Forward ref'd blocks are
2509   // inserted wherever they happen to be referenced.
2510   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2511 
2512   // Remove the block from forward ref sets.
2513   if (Name.empty()) {
2514     ForwardRefValIDs.erase(NumberedVals.size());
2515     NumberedVals.push_back(BB);
2516   } else {
2517     // BB forward references are already in the function symbol table.
2518     ForwardRefVals.erase(Name);
2519   }
2520 
2521   return BB;
2522 }
2523 
2524 //===----------------------------------------------------------------------===//
2525 // Constants.
2526 //===----------------------------------------------------------------------===//
2527 
2528 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2529 /// type implied.  For example, if we parse "4" we don't know what integer type
2530 /// it has.  The value will later be combined with its type and checked for
2531 /// sanity.  PFS is used to convert function-local operands of metadata (since
2532 /// metadata operands are not just parsed here but also converted to values).
2533 /// PFS can be null when we are not parsing metadata values inside a function.
2534 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2535   ID.Loc = Lex.getLoc();
2536   switch (Lex.getKind()) {
2537   default: return TokError("expected value token");
2538   case lltok::GlobalID:  // @42
2539     ID.UIntVal = Lex.getUIntVal();
2540     ID.Kind = ValID::t_GlobalID;
2541     break;
2542   case lltok::GlobalVar:  // @foo
2543     ID.StrVal = Lex.getStrVal();
2544     ID.Kind = ValID::t_GlobalName;
2545     break;
2546   case lltok::LocalVarID:  // %42
2547     ID.UIntVal = Lex.getUIntVal();
2548     ID.Kind = ValID::t_LocalID;
2549     break;
2550   case lltok::LocalVar:  // %foo
2551     ID.StrVal = Lex.getStrVal();
2552     ID.Kind = ValID::t_LocalName;
2553     break;
2554   case lltok::APSInt:
2555     ID.APSIntVal = Lex.getAPSIntVal();
2556     ID.Kind = ValID::t_APSInt;
2557     break;
2558   case lltok::APFloat:
2559     ID.APFloatVal = Lex.getAPFloatVal();
2560     ID.Kind = ValID::t_APFloat;
2561     break;
2562   case lltok::kw_true:
2563     ID.ConstantVal = ConstantInt::getTrue(Context);
2564     ID.Kind = ValID::t_Constant;
2565     break;
2566   case lltok::kw_false:
2567     ID.ConstantVal = ConstantInt::getFalse(Context);
2568     ID.Kind = ValID::t_Constant;
2569     break;
2570   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2571   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2572   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2573   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2574 
2575   case lltok::lbrace: {
2576     // ValID ::= '{' ConstVector '}'
2577     Lex.Lex();
2578     SmallVector<Constant*, 16> Elts;
2579     if (ParseGlobalValueVector(Elts) ||
2580         ParseToken(lltok::rbrace, "expected end of struct constant"))
2581       return true;
2582 
2583     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2584     ID.UIntVal = Elts.size();
2585     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2586            Elts.size() * sizeof(Elts[0]));
2587     ID.Kind = ValID::t_ConstantStruct;
2588     return false;
2589   }
2590   case lltok::less: {
2591     // ValID ::= '<' ConstVector '>'         --> Vector.
2592     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2593     Lex.Lex();
2594     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2595 
2596     SmallVector<Constant*, 16> Elts;
2597     LocTy FirstEltLoc = Lex.getLoc();
2598     if (ParseGlobalValueVector(Elts) ||
2599         (isPackedStruct &&
2600          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2601         ParseToken(lltok::greater, "expected end of constant"))
2602       return true;
2603 
2604     if (isPackedStruct) {
2605       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2606       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2607              Elts.size() * sizeof(Elts[0]));
2608       ID.UIntVal = Elts.size();
2609       ID.Kind = ValID::t_PackedConstantStruct;
2610       return false;
2611     }
2612 
2613     if (Elts.empty())
2614       return Error(ID.Loc, "constant vector must not be empty");
2615 
2616     if (!Elts[0]->getType()->isIntegerTy() &&
2617         !Elts[0]->getType()->isFloatingPointTy() &&
2618         !Elts[0]->getType()->isPointerTy())
2619       return Error(FirstEltLoc,
2620             "vector elements must have integer, pointer or floating point type");
2621 
2622     // Verify that all the vector elements have the same type.
2623     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2624       if (Elts[i]->getType() != Elts[0]->getType())
2625         return Error(FirstEltLoc,
2626                      "vector element #" + Twine(i) +
2627                     " is not of type '" + getTypeString(Elts[0]->getType()));
2628 
2629     ID.ConstantVal = ConstantVector::get(Elts);
2630     ID.Kind = ValID::t_Constant;
2631     return false;
2632   }
2633   case lltok::lsquare: {   // Array Constant
2634     Lex.Lex();
2635     SmallVector<Constant*, 16> Elts;
2636     LocTy FirstEltLoc = Lex.getLoc();
2637     if (ParseGlobalValueVector(Elts) ||
2638         ParseToken(lltok::rsquare, "expected end of array constant"))
2639       return true;
2640 
2641     // Handle empty element.
2642     if (Elts.empty()) {
2643       // Use undef instead of an array because it's inconvenient to determine
2644       // the element type at this point, there being no elements to examine.
2645       ID.Kind = ValID::t_EmptyArray;
2646       return false;
2647     }
2648 
2649     if (!Elts[0]->getType()->isFirstClassType())
2650       return Error(FirstEltLoc, "invalid array element type: " +
2651                    getTypeString(Elts[0]->getType()));
2652 
2653     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2654 
2655     // Verify all elements are correct type!
2656     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2657       if (Elts[i]->getType() != Elts[0]->getType())
2658         return Error(FirstEltLoc,
2659                      "array element #" + Twine(i) +
2660                      " is not of type '" + getTypeString(Elts[0]->getType()));
2661     }
2662 
2663     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2664     ID.Kind = ValID::t_Constant;
2665     return false;
2666   }
2667   case lltok::kw_c:  // c "foo"
2668     Lex.Lex();
2669     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2670                                                   false);
2671     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2672     ID.Kind = ValID::t_Constant;
2673     return false;
2674 
2675   case lltok::kw_asm: {
2676     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2677     //             STRINGCONSTANT
2678     bool HasSideEffect, AlignStack, AsmDialect;
2679     Lex.Lex();
2680     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2681         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2682         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2683         ParseStringConstant(ID.StrVal) ||
2684         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2685         ParseToken(lltok::StringConstant, "expected constraint string"))
2686       return true;
2687     ID.StrVal2 = Lex.getStrVal();
2688     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2689       (unsigned(AsmDialect)<<2);
2690     ID.Kind = ValID::t_InlineAsm;
2691     return false;
2692   }
2693 
2694   case lltok::kw_blockaddress: {
2695     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2696     Lex.Lex();
2697 
2698     ValID Fn, Label;
2699 
2700     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2701         ParseValID(Fn) ||
2702         ParseToken(lltok::comma, "expected comma in block address expression")||
2703         ParseValID(Label) ||
2704         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2705       return true;
2706 
2707     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2708       return Error(Fn.Loc, "expected function name in blockaddress");
2709     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2710       return Error(Label.Loc, "expected basic block name in blockaddress");
2711 
2712     // Try to find the function (but skip it if it's forward-referenced).
2713     GlobalValue *GV = nullptr;
2714     if (Fn.Kind == ValID::t_GlobalID) {
2715       if (Fn.UIntVal < NumberedVals.size())
2716         GV = NumberedVals[Fn.UIntVal];
2717     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2718       GV = M->getNamedValue(Fn.StrVal);
2719     }
2720     Function *F = nullptr;
2721     if (GV) {
2722       // Confirm that it's actually a function with a definition.
2723       if (!isa<Function>(GV))
2724         return Error(Fn.Loc, "expected function name in blockaddress");
2725       F = cast<Function>(GV);
2726       if (F->isDeclaration())
2727         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2728     }
2729 
2730     if (!F) {
2731       // Make a global variable as a placeholder for this reference.
2732       GlobalValue *&FwdRef =
2733           ForwardRefBlockAddresses.insert(std::make_pair(
2734                                               std::move(Fn),
2735                                               std::map<ValID, GlobalValue *>()))
2736               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2737               .first->second;
2738       if (!FwdRef)
2739         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2740                                     GlobalValue::InternalLinkage, nullptr, "");
2741       ID.ConstantVal = FwdRef;
2742       ID.Kind = ValID::t_Constant;
2743       return false;
2744     }
2745 
2746     // We found the function; now find the basic block.  Don't use PFS, since we
2747     // might be inside a constant expression.
2748     BasicBlock *BB;
2749     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2750       if (Label.Kind == ValID::t_LocalID)
2751         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2752       else
2753         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2754       if (!BB)
2755         return Error(Label.Loc, "referenced value is not a basic block");
2756     } else {
2757       if (Label.Kind == ValID::t_LocalID)
2758         return Error(Label.Loc, "cannot take address of numeric label after "
2759                                 "the function is defined");
2760       BB = dyn_cast_or_null<BasicBlock>(
2761           F->getValueSymbolTable().lookup(Label.StrVal));
2762       if (!BB)
2763         return Error(Label.Loc, "referenced value is not a basic block");
2764     }
2765 
2766     ID.ConstantVal = BlockAddress::get(F, BB);
2767     ID.Kind = ValID::t_Constant;
2768     return false;
2769   }
2770 
2771   case lltok::kw_trunc:
2772   case lltok::kw_zext:
2773   case lltok::kw_sext:
2774   case lltok::kw_fptrunc:
2775   case lltok::kw_fpext:
2776   case lltok::kw_bitcast:
2777   case lltok::kw_addrspacecast:
2778   case lltok::kw_uitofp:
2779   case lltok::kw_sitofp:
2780   case lltok::kw_fptoui:
2781   case lltok::kw_fptosi:
2782   case lltok::kw_inttoptr:
2783   case lltok::kw_ptrtoint: {
2784     unsigned Opc = Lex.getUIntVal();
2785     Type *DestTy = nullptr;
2786     Constant *SrcVal;
2787     Lex.Lex();
2788     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2789         ParseGlobalTypeAndValue(SrcVal) ||
2790         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2791         ParseType(DestTy) ||
2792         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2793       return true;
2794     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2795       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2796                    getTypeString(SrcVal->getType()) + "' to '" +
2797                    getTypeString(DestTy) + "'");
2798     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2799                                                  SrcVal, DestTy);
2800     ID.Kind = ValID::t_Constant;
2801     return false;
2802   }
2803   case lltok::kw_extractvalue: {
2804     Lex.Lex();
2805     Constant *Val;
2806     SmallVector<unsigned, 4> Indices;
2807     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2808         ParseGlobalTypeAndValue(Val) ||
2809         ParseIndexList(Indices) ||
2810         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2811       return true;
2812 
2813     if (!Val->getType()->isAggregateType())
2814       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2815     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2816       return Error(ID.Loc, "invalid indices for extractvalue");
2817     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2818     ID.Kind = ValID::t_Constant;
2819     return false;
2820   }
2821   case lltok::kw_insertvalue: {
2822     Lex.Lex();
2823     Constant *Val0, *Val1;
2824     SmallVector<unsigned, 4> Indices;
2825     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2826         ParseGlobalTypeAndValue(Val0) ||
2827         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2828         ParseGlobalTypeAndValue(Val1) ||
2829         ParseIndexList(Indices) ||
2830         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2831       return true;
2832     if (!Val0->getType()->isAggregateType())
2833       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2834     Type *IndexedType =
2835         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2836     if (!IndexedType)
2837       return Error(ID.Loc, "invalid indices for insertvalue");
2838     if (IndexedType != Val1->getType())
2839       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2840                                getTypeString(Val1->getType()) +
2841                                "' instead of '" + getTypeString(IndexedType) +
2842                                "'");
2843     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2844     ID.Kind = ValID::t_Constant;
2845     return false;
2846   }
2847   case lltok::kw_icmp:
2848   case lltok::kw_fcmp: {
2849     unsigned PredVal, Opc = Lex.getUIntVal();
2850     Constant *Val0, *Val1;
2851     Lex.Lex();
2852     if (ParseCmpPredicate(PredVal, Opc) ||
2853         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2854         ParseGlobalTypeAndValue(Val0) ||
2855         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2856         ParseGlobalTypeAndValue(Val1) ||
2857         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2858       return true;
2859 
2860     if (Val0->getType() != Val1->getType())
2861       return Error(ID.Loc, "compare operands must have the same type");
2862 
2863     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2864 
2865     if (Opc == Instruction::FCmp) {
2866       if (!Val0->getType()->isFPOrFPVectorTy())
2867         return Error(ID.Loc, "fcmp requires floating point operands");
2868       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2869     } else {
2870       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2871       if (!Val0->getType()->isIntOrIntVectorTy() &&
2872           !Val0->getType()->getScalarType()->isPointerTy())
2873         return Error(ID.Loc, "icmp requires pointer or integer operands");
2874       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2875     }
2876     ID.Kind = ValID::t_Constant;
2877     return false;
2878   }
2879 
2880   // Binary Operators.
2881   case lltok::kw_add:
2882   case lltok::kw_fadd:
2883   case lltok::kw_sub:
2884   case lltok::kw_fsub:
2885   case lltok::kw_mul:
2886   case lltok::kw_fmul:
2887   case lltok::kw_udiv:
2888   case lltok::kw_sdiv:
2889   case lltok::kw_fdiv:
2890   case lltok::kw_urem:
2891   case lltok::kw_srem:
2892   case lltok::kw_frem:
2893   case lltok::kw_shl:
2894   case lltok::kw_lshr:
2895   case lltok::kw_ashr: {
2896     bool NUW = false;
2897     bool NSW = false;
2898     bool Exact = false;
2899     unsigned Opc = Lex.getUIntVal();
2900     Constant *Val0, *Val1;
2901     Lex.Lex();
2902     LocTy ModifierLoc = Lex.getLoc();
2903     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2904         Opc == Instruction::Mul || Opc == Instruction::Shl) {
2905       if (EatIfPresent(lltok::kw_nuw))
2906         NUW = true;
2907       if (EatIfPresent(lltok::kw_nsw)) {
2908         NSW = true;
2909         if (EatIfPresent(lltok::kw_nuw))
2910           NUW = true;
2911       }
2912     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2913                Opc == Instruction::LShr || Opc == Instruction::AShr) {
2914       if (EatIfPresent(lltok::kw_exact))
2915         Exact = true;
2916     }
2917     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2918         ParseGlobalTypeAndValue(Val0) ||
2919         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2920         ParseGlobalTypeAndValue(Val1) ||
2921         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2922       return true;
2923     if (Val0->getType() != Val1->getType())
2924       return Error(ID.Loc, "operands of constexpr must have same type");
2925     if (!Val0->getType()->isIntOrIntVectorTy()) {
2926       if (NUW)
2927         return Error(ModifierLoc, "nuw only applies to integer operations");
2928       if (NSW)
2929         return Error(ModifierLoc, "nsw only applies to integer operations");
2930     }
2931     // Check that the type is valid for the operator.
2932     switch (Opc) {
2933     case Instruction::Add:
2934     case Instruction::Sub:
2935     case Instruction::Mul:
2936     case Instruction::UDiv:
2937     case Instruction::SDiv:
2938     case Instruction::URem:
2939     case Instruction::SRem:
2940     case Instruction::Shl:
2941     case Instruction::AShr:
2942     case Instruction::LShr:
2943       if (!Val0->getType()->isIntOrIntVectorTy())
2944         return Error(ID.Loc, "constexpr requires integer operands");
2945       break;
2946     case Instruction::FAdd:
2947     case Instruction::FSub:
2948     case Instruction::FMul:
2949     case Instruction::FDiv:
2950     case Instruction::FRem:
2951       if (!Val0->getType()->isFPOrFPVectorTy())
2952         return Error(ID.Loc, "constexpr requires fp operands");
2953       break;
2954     default: llvm_unreachable("Unknown binary operator!");
2955     }
2956     unsigned Flags = 0;
2957     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2958     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2959     if (Exact) Flags |= PossiblyExactOperator::IsExact;
2960     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2961     ID.ConstantVal = C;
2962     ID.Kind = ValID::t_Constant;
2963     return false;
2964   }
2965 
2966   // Logical Operations
2967   case lltok::kw_and:
2968   case lltok::kw_or:
2969   case lltok::kw_xor: {
2970     unsigned Opc = Lex.getUIntVal();
2971     Constant *Val0, *Val1;
2972     Lex.Lex();
2973     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2974         ParseGlobalTypeAndValue(Val0) ||
2975         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2976         ParseGlobalTypeAndValue(Val1) ||
2977         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2978       return true;
2979     if (Val0->getType() != Val1->getType())
2980       return Error(ID.Loc, "operands of constexpr must have same type");
2981     if (!Val0->getType()->isIntOrIntVectorTy())
2982       return Error(ID.Loc,
2983                    "constexpr requires integer or integer vector operands");
2984     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2985     ID.Kind = ValID::t_Constant;
2986     return false;
2987   }
2988 
2989   case lltok::kw_getelementptr:
2990   case lltok::kw_shufflevector:
2991   case lltok::kw_insertelement:
2992   case lltok::kw_extractelement:
2993   case lltok::kw_select: {
2994     unsigned Opc = Lex.getUIntVal();
2995     SmallVector<Constant*, 16> Elts;
2996     bool InBounds = false;
2997     Type *Ty;
2998     Lex.Lex();
2999 
3000     if (Opc == Instruction::GetElementPtr)
3001       InBounds = EatIfPresent(lltok::kw_inbounds);
3002 
3003     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3004       return true;
3005 
3006     LocTy ExplicitTypeLoc = Lex.getLoc();
3007     if (Opc == Instruction::GetElementPtr) {
3008       if (ParseType(Ty) ||
3009           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3010         return true;
3011     }
3012 
3013     if (ParseGlobalValueVector(Elts) ||
3014         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3015       return true;
3016 
3017     if (Opc == Instruction::GetElementPtr) {
3018       if (Elts.size() == 0 ||
3019           !Elts[0]->getType()->getScalarType()->isPointerTy())
3020         return Error(ID.Loc, "base of getelementptr must be a pointer");
3021 
3022       Type *BaseType = Elts[0]->getType();
3023       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3024       if (Ty != BasePointerType->getElementType())
3025         return Error(
3026             ExplicitTypeLoc,
3027             "explicit pointee type doesn't match operand's pointee type");
3028 
3029       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3030       for (Constant *Val : Indices) {
3031         Type *ValTy = Val->getType();
3032         if (!ValTy->getScalarType()->isIntegerTy())
3033           return Error(ID.Loc, "getelementptr index must be an integer");
3034         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3035           return Error(ID.Loc, "getelementptr index type missmatch");
3036         if (ValTy->isVectorTy()) {
3037           unsigned ValNumEl = ValTy->getVectorNumElements();
3038           unsigned PtrNumEl = BaseType->getVectorNumElements();
3039           if (ValNumEl != PtrNumEl)
3040             return Error(
3041                 ID.Loc,
3042                 "getelementptr vector index has a wrong number of elements");
3043         }
3044       }
3045 
3046       SmallPtrSet<Type*, 4> Visited;
3047       if (!Indices.empty() && !Ty->isSized(&Visited))
3048         return Error(ID.Loc, "base element of getelementptr must be sized");
3049 
3050       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3051         return Error(ID.Loc, "invalid getelementptr indices");
3052       ID.ConstantVal =
3053           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3054     } else if (Opc == Instruction::Select) {
3055       if (Elts.size() != 3)
3056         return Error(ID.Loc, "expected three operands to select");
3057       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3058                                                               Elts[2]))
3059         return Error(ID.Loc, Reason);
3060       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3061     } else if (Opc == Instruction::ShuffleVector) {
3062       if (Elts.size() != 3)
3063         return Error(ID.Loc, "expected three operands to shufflevector");
3064       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3065         return Error(ID.Loc, "invalid operands to shufflevector");
3066       ID.ConstantVal =
3067                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3068     } else if (Opc == Instruction::ExtractElement) {
3069       if (Elts.size() != 2)
3070         return Error(ID.Loc, "expected two operands to extractelement");
3071       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3072         return Error(ID.Loc, "invalid extractelement operands");
3073       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3074     } else {
3075       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3076       if (Elts.size() != 3)
3077       return Error(ID.Loc, "expected three operands to insertelement");
3078       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3079         return Error(ID.Loc, "invalid insertelement operands");
3080       ID.ConstantVal =
3081                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3082     }
3083 
3084     ID.Kind = ValID::t_Constant;
3085     return false;
3086   }
3087   }
3088 
3089   Lex.Lex();
3090   return false;
3091 }
3092 
3093 /// ParseGlobalValue - Parse a global value with the specified type.
3094 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3095   C = nullptr;
3096   ValID ID;
3097   Value *V = nullptr;
3098   bool Parsed = ParseValID(ID) ||
3099                 ConvertValIDToValue(Ty, ID, V, nullptr);
3100   if (V && !(C = dyn_cast<Constant>(V)))
3101     return Error(ID.Loc, "global values must be constants");
3102   return Parsed;
3103 }
3104 
3105 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3106   Type *Ty = nullptr;
3107   return ParseType(Ty) ||
3108          ParseGlobalValue(Ty, V);
3109 }
3110 
3111 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3112   C = nullptr;
3113 
3114   LocTy KwLoc = Lex.getLoc();
3115   if (!EatIfPresent(lltok::kw_comdat))
3116     return false;
3117 
3118   if (EatIfPresent(lltok::lparen)) {
3119     if (Lex.getKind() != lltok::ComdatVar)
3120       return TokError("expected comdat variable");
3121     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3122     Lex.Lex();
3123     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3124       return true;
3125   } else {
3126     if (GlobalName.empty())
3127       return TokError("comdat cannot be unnamed");
3128     C = getComdat(GlobalName, KwLoc);
3129   }
3130 
3131   return false;
3132 }
3133 
3134 /// ParseGlobalValueVector
3135 ///   ::= /*empty*/
3136 ///   ::= TypeAndValue (',' TypeAndValue)*
3137 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3138   // Empty list.
3139   if (Lex.getKind() == lltok::rbrace ||
3140       Lex.getKind() == lltok::rsquare ||
3141       Lex.getKind() == lltok::greater ||
3142       Lex.getKind() == lltok::rparen)
3143     return false;
3144 
3145   Constant *C;
3146   if (ParseGlobalTypeAndValue(C)) return true;
3147   Elts.push_back(C);
3148 
3149   while (EatIfPresent(lltok::comma)) {
3150     if (ParseGlobalTypeAndValue(C)) return true;
3151     Elts.push_back(C);
3152   }
3153 
3154   return false;
3155 }
3156 
3157 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3158   SmallVector<Metadata *, 16> Elts;
3159   if (ParseMDNodeVector(Elts))
3160     return true;
3161 
3162   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3163   return false;
3164 }
3165 
3166 /// MDNode:
3167 ///  ::= !{ ... }
3168 ///  ::= !7
3169 ///  ::= !DILocation(...)
3170 bool LLParser::ParseMDNode(MDNode *&N) {
3171   if (Lex.getKind() == lltok::MetadataVar)
3172     return ParseSpecializedMDNode(N);
3173 
3174   return ParseToken(lltok::exclaim, "expected '!' here") ||
3175          ParseMDNodeTail(N);
3176 }
3177 
3178 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3179   // !{ ... }
3180   if (Lex.getKind() == lltok::lbrace)
3181     return ParseMDTuple(N);
3182 
3183   // !42
3184   return ParseMDNodeID(N);
3185 }
3186 
3187 namespace {
3188 
3189 /// Structure to represent an optional metadata field.
3190 template <class FieldTy> struct MDFieldImpl {
3191   typedef MDFieldImpl ImplTy;
3192   FieldTy Val;
3193   bool Seen;
3194 
3195   void assign(FieldTy Val) {
3196     Seen = true;
3197     this->Val = std::move(Val);
3198   }
3199 
3200   explicit MDFieldImpl(FieldTy Default)
3201       : Val(std::move(Default)), Seen(false) {}
3202 };
3203 
3204 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3205   uint64_t Max;
3206 
3207   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3208       : ImplTy(Default), Max(Max) {}
3209 };
3210 struct LineField : public MDUnsignedField {
3211   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3212 };
3213 struct ColumnField : public MDUnsignedField {
3214   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3215 };
3216 struct DwarfTagField : public MDUnsignedField {
3217   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3218   DwarfTagField(dwarf::Tag DefaultTag)
3219       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3220 };
3221 struct DwarfMacinfoTypeField : public MDUnsignedField {
3222   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3223   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3224     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3225 };
3226 struct DwarfAttEncodingField : public MDUnsignedField {
3227   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3228 };
3229 struct DwarfVirtualityField : public MDUnsignedField {
3230   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3231 };
3232 struct DwarfLangField : public MDUnsignedField {
3233   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3234 };
3235 
3236 struct DIFlagField : public MDUnsignedField {
3237   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3238 };
3239 
3240 struct MDSignedField : public MDFieldImpl<int64_t> {
3241   int64_t Min;
3242   int64_t Max;
3243 
3244   MDSignedField(int64_t Default = 0)
3245       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3246   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3247       : ImplTy(Default), Min(Min), Max(Max) {}
3248 };
3249 
3250 struct MDBoolField : public MDFieldImpl<bool> {
3251   MDBoolField(bool Default = false) : ImplTy(Default) {}
3252 };
3253 struct MDField : public MDFieldImpl<Metadata *> {
3254   bool AllowNull;
3255 
3256   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3257 };
3258 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3259   MDConstant() : ImplTy(nullptr) {}
3260 };
3261 struct MDStringField : public MDFieldImpl<MDString *> {
3262   bool AllowEmpty;
3263   MDStringField(bool AllowEmpty = true)
3264       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3265 };
3266 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3267   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3268 };
3269 
3270 } // end namespace
3271 
3272 namespace llvm {
3273 
3274 template <>
3275 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3276                             MDUnsignedField &Result) {
3277   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3278     return TokError("expected unsigned integer");
3279 
3280   auto &U = Lex.getAPSIntVal();
3281   if (U.ugt(Result.Max))
3282     return TokError("value for '" + Name + "' too large, limit is " +
3283                     Twine(Result.Max));
3284   Result.assign(U.getZExtValue());
3285   assert(Result.Val <= Result.Max && "Expected value in range");
3286   Lex.Lex();
3287   return false;
3288 }
3289 
3290 template <>
3291 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3292   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3293 }
3294 template <>
3295 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3296   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3297 }
3298 
3299 template <>
3300 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3301   if (Lex.getKind() == lltok::APSInt)
3302     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3303 
3304   if (Lex.getKind() != lltok::DwarfTag)
3305     return TokError("expected DWARF tag");
3306 
3307   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3308   if (Tag == dwarf::DW_TAG_invalid)
3309     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3310   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3311 
3312   Result.assign(Tag);
3313   Lex.Lex();
3314   return false;
3315 }
3316 
3317 template <>
3318 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3319                             DwarfMacinfoTypeField &Result) {
3320   if (Lex.getKind() == lltok::APSInt)
3321     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3322 
3323   if (Lex.getKind() != lltok::DwarfMacinfo)
3324     return TokError("expected DWARF macinfo type");
3325 
3326   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3327   if (Macinfo == dwarf::DW_MACINFO_invalid)
3328     return TokError(
3329         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3330   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3331 
3332   Result.assign(Macinfo);
3333   Lex.Lex();
3334   return false;
3335 }
3336 
3337 template <>
3338 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3339                             DwarfVirtualityField &Result) {
3340   if (Lex.getKind() == lltok::APSInt)
3341     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3342 
3343   if (Lex.getKind() != lltok::DwarfVirtuality)
3344     return TokError("expected DWARF virtuality code");
3345 
3346   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3347   if (!Virtuality)
3348     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3349                     Lex.getStrVal() + "'");
3350   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3351   Result.assign(Virtuality);
3352   Lex.Lex();
3353   return false;
3354 }
3355 
3356 template <>
3357 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3358   if (Lex.getKind() == lltok::APSInt)
3359     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3360 
3361   if (Lex.getKind() != lltok::DwarfLang)
3362     return TokError("expected DWARF language");
3363 
3364   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3365   if (!Lang)
3366     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3367                     "'");
3368   assert(Lang <= Result.Max && "Expected valid DWARF language");
3369   Result.assign(Lang);
3370   Lex.Lex();
3371   return false;
3372 }
3373 
3374 template <>
3375 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3376                             DwarfAttEncodingField &Result) {
3377   if (Lex.getKind() == lltok::APSInt)
3378     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3379 
3380   if (Lex.getKind() != lltok::DwarfAttEncoding)
3381     return TokError("expected DWARF type attribute encoding");
3382 
3383   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3384   if (!Encoding)
3385     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3386                     Lex.getStrVal() + "'");
3387   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3388   Result.assign(Encoding);
3389   Lex.Lex();
3390   return false;
3391 }
3392 
3393 /// DIFlagField
3394 ///  ::= uint32
3395 ///  ::= DIFlagVector
3396 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3397 template <>
3398 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3399   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3400 
3401   // Parser for a single flag.
3402   auto parseFlag = [&](unsigned &Val) {
3403     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3404       return ParseUInt32(Val);
3405 
3406     if (Lex.getKind() != lltok::DIFlag)
3407       return TokError("expected debug info flag");
3408 
3409     Val = DINode::getFlag(Lex.getStrVal());
3410     if (!Val)
3411       return TokError(Twine("invalid debug info flag flag '") +
3412                       Lex.getStrVal() + "'");
3413     Lex.Lex();
3414     return false;
3415   };
3416 
3417   // Parse the flags and combine them together.
3418   unsigned Combined = 0;
3419   do {
3420     unsigned Val;
3421     if (parseFlag(Val))
3422       return true;
3423     Combined |= Val;
3424   } while (EatIfPresent(lltok::bar));
3425 
3426   Result.assign(Combined);
3427   return false;
3428 }
3429 
3430 template <>
3431 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3432                             MDSignedField &Result) {
3433   if (Lex.getKind() != lltok::APSInt)
3434     return TokError("expected signed integer");
3435 
3436   auto &S = Lex.getAPSIntVal();
3437   if (S < Result.Min)
3438     return TokError("value for '" + Name + "' too small, limit is " +
3439                     Twine(Result.Min));
3440   if (S > Result.Max)
3441     return TokError("value for '" + Name + "' too large, limit is " +
3442                     Twine(Result.Max));
3443   Result.assign(S.getExtValue());
3444   assert(Result.Val >= Result.Min && "Expected value in range");
3445   assert(Result.Val <= Result.Max && "Expected value in range");
3446   Lex.Lex();
3447   return false;
3448 }
3449 
3450 template <>
3451 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3452   switch (Lex.getKind()) {
3453   default:
3454     return TokError("expected 'true' or 'false'");
3455   case lltok::kw_true:
3456     Result.assign(true);
3457     break;
3458   case lltok::kw_false:
3459     Result.assign(false);
3460     break;
3461   }
3462   Lex.Lex();
3463   return false;
3464 }
3465 
3466 template <>
3467 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3468   if (Lex.getKind() == lltok::kw_null) {
3469     if (!Result.AllowNull)
3470       return TokError("'" + Name + "' cannot be null");
3471     Lex.Lex();
3472     Result.assign(nullptr);
3473     return false;
3474   }
3475 
3476   Metadata *MD;
3477   if (ParseMetadata(MD, nullptr))
3478     return true;
3479 
3480   Result.assign(MD);
3481   return false;
3482 }
3483 
3484 template <>
3485 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3486   Metadata *MD;
3487   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3488     return true;
3489 
3490   Result.assign(cast<ConstantAsMetadata>(MD));
3491   return false;
3492 }
3493 
3494 template <>
3495 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3496   LocTy ValueLoc = Lex.getLoc();
3497   std::string S;
3498   if (ParseStringConstant(S))
3499     return true;
3500 
3501   if (!Result.AllowEmpty && S.empty())
3502     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3503 
3504   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3505   return false;
3506 }
3507 
3508 template <>
3509 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3510   SmallVector<Metadata *, 4> MDs;
3511   if (ParseMDNodeVector(MDs))
3512     return true;
3513 
3514   Result.assign(std::move(MDs));
3515   return false;
3516 }
3517 
3518 } // end namespace llvm
3519 
3520 template <class ParserTy>
3521 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3522   do {
3523     if (Lex.getKind() != lltok::LabelStr)
3524       return TokError("expected field label here");
3525 
3526     if (parseField())
3527       return true;
3528   } while (EatIfPresent(lltok::comma));
3529 
3530   return false;
3531 }
3532 
3533 template <class ParserTy>
3534 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3535   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3536   Lex.Lex();
3537 
3538   if (ParseToken(lltok::lparen, "expected '(' here"))
3539     return true;
3540   if (Lex.getKind() != lltok::rparen)
3541     if (ParseMDFieldsImplBody(parseField))
3542       return true;
3543 
3544   ClosingLoc = Lex.getLoc();
3545   return ParseToken(lltok::rparen, "expected ')' here");
3546 }
3547 
3548 template <class FieldTy>
3549 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3550   if (Result.Seen)
3551     return TokError("field '" + Name + "' cannot be specified more than once");
3552 
3553   LocTy Loc = Lex.getLoc();
3554   Lex.Lex();
3555   return ParseMDField(Loc, Name, Result);
3556 }
3557 
3558 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3559   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3560 
3561 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3562   if (Lex.getStrVal() == #CLASS)                                               \
3563     return Parse##CLASS(N, IsDistinct);
3564 #include "llvm/IR/Metadata.def"
3565 
3566   return TokError("expected metadata type");
3567 }
3568 
3569 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3570 #define NOP_FIELD(NAME, TYPE, INIT)
3571 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3572   if (!NAME.Seen)                                                              \
3573     return Error(ClosingLoc, "missing required field '" #NAME "'");
3574 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3575   if (Lex.getStrVal() == #NAME)                                                \
3576     return ParseMDField(#NAME, NAME);
3577 #define PARSE_MD_FIELDS()                                                      \
3578   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3579   do {                                                                         \
3580     LocTy ClosingLoc;                                                          \
3581     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3582       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3583       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3584     }, ClosingLoc))                                                            \
3585       return true;                                                             \
3586     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3587   } while (false)
3588 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3589   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3590 
3591 /// ParseDILocationFields:
3592 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3593 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3594 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3595   OPTIONAL(line, LineField, );                                                 \
3596   OPTIONAL(column, ColumnField, );                                             \
3597   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3598   OPTIONAL(inlinedAt, MDField, );
3599   PARSE_MD_FIELDS();
3600 #undef VISIT_MD_FIELDS
3601 
3602   Result = GET_OR_DISTINCT(
3603       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3604   return false;
3605 }
3606 
3607 /// ParseGenericDINode:
3608 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3609 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3610 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3611   REQUIRED(tag, DwarfTagField, );                                              \
3612   OPTIONAL(header, MDStringField, );                                           \
3613   OPTIONAL(operands, MDFieldList, );
3614   PARSE_MD_FIELDS();
3615 #undef VISIT_MD_FIELDS
3616 
3617   Result = GET_OR_DISTINCT(GenericDINode,
3618                            (Context, tag.Val, header.Val, operands.Val));
3619   return false;
3620 }
3621 
3622 /// ParseDISubrange:
3623 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3624 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3625 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3626   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3627   OPTIONAL(lowerBound, MDSignedField, );
3628   PARSE_MD_FIELDS();
3629 #undef VISIT_MD_FIELDS
3630 
3631   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3632   return false;
3633 }
3634 
3635 /// ParseDIEnumerator:
3636 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3637 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3638 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3639   REQUIRED(name, MDStringField, );                                             \
3640   REQUIRED(value, MDSignedField, );
3641   PARSE_MD_FIELDS();
3642 #undef VISIT_MD_FIELDS
3643 
3644   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3645   return false;
3646 }
3647 
3648 /// ParseDIBasicType:
3649 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3650 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3651 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3652   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3653   OPTIONAL(name, MDStringField, );                                             \
3654   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3655   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3656   OPTIONAL(encoding, DwarfAttEncodingField, );
3657   PARSE_MD_FIELDS();
3658 #undef VISIT_MD_FIELDS
3659 
3660   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3661                                          align.Val, encoding.Val));
3662   return false;
3663 }
3664 
3665 /// ParseDIDerivedType:
3666 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3667 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3668 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3669 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3671   REQUIRED(tag, DwarfTagField, );                                              \
3672   OPTIONAL(name, MDStringField, );                                             \
3673   OPTIONAL(file, MDField, );                                                   \
3674   OPTIONAL(line, LineField, );                                                 \
3675   OPTIONAL(scope, MDField, );                                                  \
3676   REQUIRED(baseType, MDField, );                                               \
3677   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3678   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3679   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3680   OPTIONAL(flags, DIFlagField, );                                              \
3681   OPTIONAL(extraData, MDField, );
3682   PARSE_MD_FIELDS();
3683 #undef VISIT_MD_FIELDS
3684 
3685   Result = GET_OR_DISTINCT(DIDerivedType,
3686                            (Context, tag.Val, name.Val, file.Val, line.Val,
3687                             scope.Val, baseType.Val, size.Val, align.Val,
3688                             offset.Val, flags.Val, extraData.Val));
3689   return false;
3690 }
3691 
3692 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3693 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3694   REQUIRED(tag, DwarfTagField, );                                              \
3695   OPTIONAL(name, MDStringField, );                                             \
3696   OPTIONAL(file, MDField, );                                                   \
3697   OPTIONAL(line, LineField, );                                                 \
3698   OPTIONAL(scope, MDField, );                                                  \
3699   OPTIONAL(baseType, MDField, );                                               \
3700   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3701   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3702   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3703   OPTIONAL(flags, DIFlagField, );                                              \
3704   OPTIONAL(elements, MDField, );                                               \
3705   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3706   OPTIONAL(vtableHolder, MDField, );                                           \
3707   OPTIONAL(templateParams, MDField, );                                         \
3708   OPTIONAL(identifier, MDStringField, );
3709   PARSE_MD_FIELDS();
3710 #undef VISIT_MD_FIELDS
3711 
3712   Result = GET_OR_DISTINCT(
3713       DICompositeType,
3714       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3715        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3716        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3717   return false;
3718 }
3719 
3720 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3721 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3722   OPTIONAL(flags, DIFlagField, );                                              \
3723   REQUIRED(types, MDField, );
3724   PARSE_MD_FIELDS();
3725 #undef VISIT_MD_FIELDS
3726 
3727   Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val));
3728   return false;
3729 }
3730 
3731 /// ParseDIFileType:
3732 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
3733 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3734 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3735   REQUIRED(filename, MDStringField, );                                         \
3736   REQUIRED(directory, MDStringField, );
3737   PARSE_MD_FIELDS();
3738 #undef VISIT_MD_FIELDS
3739 
3740   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3741   return false;
3742 }
3743 
3744 /// ParseDICompileUnit:
3745 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3746 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3747 ///                      splitDebugFilename: "abc.debug", emissionKind: 1,
3748 ///                      enums: !1, retainedTypes: !2, subprograms: !3,
3749 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
3750 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3751   if (!IsDistinct)
3752     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3753 
3754 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3755   REQUIRED(language, DwarfLangField, );                                        \
3756   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3757   OPTIONAL(producer, MDStringField, );                                         \
3758   OPTIONAL(isOptimized, MDBoolField, );                                        \
3759   OPTIONAL(flags, MDStringField, );                                            \
3760   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3761   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3762   OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX));                    \
3763   OPTIONAL(enums, MDField, );                                                  \
3764   OPTIONAL(retainedTypes, MDField, );                                          \
3765   OPTIONAL(subprograms, MDField, );                                            \
3766   OPTIONAL(globals, MDField, );                                                \
3767   OPTIONAL(imports, MDField, );                                                \
3768   OPTIONAL(macros, MDField, );                                                 \
3769   OPTIONAL(dwoId, MDUnsignedField, );
3770   PARSE_MD_FIELDS();
3771 #undef VISIT_MD_FIELDS
3772 
3773   Result = DICompileUnit::getDistinct(
3774       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
3775       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
3776       retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, macros.Val,
3777       dwoId.Val);
3778   return false;
3779 }
3780 
3781 /// ParseDISubprogram:
3782 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3783 ///                     file: !1, line: 7, type: !2, isLocal: false,
3784 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
3785 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
3786 ///                     virtualIndex: 10, flags: 11,
3787 ///                     isOptimized: false, templateParams: !4, declaration: !5,
3788 ///                     variables: !6)
3789 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
3790   auto Loc = Lex.getLoc();
3791 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3792   OPTIONAL(scope, MDField, );                                                  \
3793   OPTIONAL(name, MDStringField, );                                             \
3794   OPTIONAL(linkageName, MDStringField, );                                      \
3795   OPTIONAL(file, MDField, );                                                   \
3796   OPTIONAL(line, LineField, );                                                 \
3797   OPTIONAL(type, MDField, );                                                   \
3798   OPTIONAL(isLocal, MDBoolField, );                                            \
3799   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3800   OPTIONAL(scopeLine, LineField, );                                            \
3801   OPTIONAL(containingType, MDField, );                                         \
3802   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
3803   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
3804   OPTIONAL(flags, DIFlagField, );                                              \
3805   OPTIONAL(isOptimized, MDBoolField, );                                        \
3806   OPTIONAL(templateParams, MDField, );                                         \
3807   OPTIONAL(declaration, MDField, );                                            \
3808   OPTIONAL(variables, MDField, );
3809   PARSE_MD_FIELDS();
3810 #undef VISIT_MD_FIELDS
3811 
3812   if (isDefinition.Val && !IsDistinct)
3813     return Lex.Error(
3814         Loc,
3815         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
3816 
3817   Result = GET_OR_DISTINCT(
3818       DISubprogram,
3819       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
3820        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
3821        containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val,
3822        isOptimized.Val, templateParams.Val, declaration.Val, variables.Val));
3823   return false;
3824 }
3825 
3826 /// ParseDILexicalBlock:
3827 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
3828 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
3829 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3830   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3831   OPTIONAL(file, MDField, );                                                   \
3832   OPTIONAL(line, LineField, );                                                 \
3833   OPTIONAL(column, ColumnField, );
3834   PARSE_MD_FIELDS();
3835 #undef VISIT_MD_FIELDS
3836 
3837   Result = GET_OR_DISTINCT(
3838       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3839   return false;
3840 }
3841 
3842 /// ParseDILexicalBlockFile:
3843 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
3844 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3845 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3846   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3847   OPTIONAL(file, MDField, );                                                   \
3848   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3849   PARSE_MD_FIELDS();
3850 #undef VISIT_MD_FIELDS
3851 
3852   Result = GET_OR_DISTINCT(DILexicalBlockFile,
3853                            (Context, scope.Val, file.Val, discriminator.Val));
3854   return false;
3855 }
3856 
3857 /// ParseDINamespace:
3858 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
3859 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
3860 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3861   REQUIRED(scope, MDField, );                                                  \
3862   OPTIONAL(file, MDField, );                                                   \
3863   OPTIONAL(name, MDStringField, );                                             \
3864   OPTIONAL(line, LineField, );
3865   PARSE_MD_FIELDS();
3866 #undef VISIT_MD_FIELDS
3867 
3868   Result = GET_OR_DISTINCT(DINamespace,
3869                            (Context, scope.Val, file.Val, name.Val, line.Val));
3870   return false;
3871 }
3872 
3873 /// ParseDIMacro:
3874 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
3875 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
3876 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3877   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
3878   REQUIRED(line, LineField, );                                                 \
3879   REQUIRED(name, MDStringField, );                                             \
3880   OPTIONAL(value, MDStringField, );
3881   PARSE_MD_FIELDS();
3882 #undef VISIT_MD_FIELDS
3883 
3884   Result = GET_OR_DISTINCT(DIMacro,
3885                            (Context, type.Val, line.Val, name.Val, value.Val));
3886   return false;
3887 }
3888 
3889 /// ParseDIMacroFile:
3890 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
3891 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
3892 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3893   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
3894   REQUIRED(line, LineField, );                                                 \
3895   REQUIRED(file, MDField, );                                                   \
3896   OPTIONAL(nodes, MDField, );
3897   PARSE_MD_FIELDS();
3898 #undef VISIT_MD_FIELDS
3899 
3900   Result = GET_OR_DISTINCT(DIMacroFile,
3901                            (Context, type.Val, line.Val, file.Val, nodes.Val));
3902   return false;
3903 }
3904 
3905 
3906 /// ParseDIModule:
3907 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
3908 ///                 includePath: "/usr/include", isysroot: "/")
3909 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
3910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3911   REQUIRED(scope, MDField, );                                                  \
3912   REQUIRED(name, MDStringField, );                                             \
3913   OPTIONAL(configMacros, MDStringField, );                                     \
3914   OPTIONAL(includePath, MDStringField, );                                      \
3915   OPTIONAL(isysroot, MDStringField, );
3916   PARSE_MD_FIELDS();
3917 #undef VISIT_MD_FIELDS
3918 
3919   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
3920                            configMacros.Val, includePath.Val, isysroot.Val));
3921   return false;
3922 }
3923 
3924 /// ParseDITemplateTypeParameter:
3925 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
3926 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
3927 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3928   OPTIONAL(name, MDStringField, );                                             \
3929   REQUIRED(type, MDField, );
3930   PARSE_MD_FIELDS();
3931 #undef VISIT_MD_FIELDS
3932 
3933   Result =
3934       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
3935   return false;
3936 }
3937 
3938 /// ParseDITemplateValueParameter:
3939 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
3940 ///                                 name: "V", type: !1, value: i32 7)
3941 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
3942 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3943   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
3944   OPTIONAL(name, MDStringField, );                                             \
3945   OPTIONAL(type, MDField, );                                                   \
3946   REQUIRED(value, MDField, );
3947   PARSE_MD_FIELDS();
3948 #undef VISIT_MD_FIELDS
3949 
3950   Result = GET_OR_DISTINCT(DITemplateValueParameter,
3951                            (Context, tag.Val, name.Val, type.Val, value.Val));
3952   return false;
3953 }
3954 
3955 /// ParseDIGlobalVariable:
3956 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
3957 ///                         file: !1, line: 7, type: !2, isLocal: false,
3958 ///                         isDefinition: true, variable: i32* @foo,
3959 ///                         declaration: !3)
3960 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
3961 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3962   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
3963   OPTIONAL(scope, MDField, );                                                  \
3964   OPTIONAL(linkageName, MDStringField, );                                      \
3965   OPTIONAL(file, MDField, );                                                   \
3966   OPTIONAL(line, LineField, );                                                 \
3967   OPTIONAL(type, MDField, );                                                   \
3968   OPTIONAL(isLocal, MDBoolField, );                                            \
3969   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3970   OPTIONAL(variable, MDConstant, );                                            \
3971   OPTIONAL(declaration, MDField, );
3972   PARSE_MD_FIELDS();
3973 #undef VISIT_MD_FIELDS
3974 
3975   Result = GET_OR_DISTINCT(DIGlobalVariable,
3976                            (Context, scope.Val, name.Val, linkageName.Val,
3977                             file.Val, line.Val, type.Val, isLocal.Val,
3978                             isDefinition.Val, variable.Val, declaration.Val));
3979   return false;
3980 }
3981 
3982 /// ParseDILocalVariable:
3983 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
3984 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
3985 ///   ::= !DILocalVariable(scope: !0, name: "foo",
3986 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
3987 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
3988 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3989   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3990   OPTIONAL(name, MDStringField, );                                             \
3991   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
3992   OPTIONAL(file, MDField, );                                                   \
3993   OPTIONAL(line, LineField, );                                                 \
3994   OPTIONAL(type, MDField, );                                                   \
3995   OPTIONAL(flags, DIFlagField, );
3996   PARSE_MD_FIELDS();
3997 #undef VISIT_MD_FIELDS
3998 
3999   Result = GET_OR_DISTINCT(DILocalVariable,
4000                            (Context, scope.Val, name.Val, file.Val, line.Val,
4001                             type.Val, arg.Val, flags.Val));
4002   return false;
4003 }
4004 
4005 /// ParseDIExpression:
4006 ///   ::= !DIExpression(0, 7, -1)
4007 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4008   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4009   Lex.Lex();
4010 
4011   if (ParseToken(lltok::lparen, "expected '(' here"))
4012     return true;
4013 
4014   SmallVector<uint64_t, 8> Elements;
4015   if (Lex.getKind() != lltok::rparen)
4016     do {
4017       if (Lex.getKind() == lltok::DwarfOp) {
4018         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4019           Lex.Lex();
4020           Elements.push_back(Op);
4021           continue;
4022         }
4023         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4024       }
4025 
4026       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4027         return TokError("expected unsigned integer");
4028 
4029       auto &U = Lex.getAPSIntVal();
4030       if (U.ugt(UINT64_MAX))
4031         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4032       Elements.push_back(U.getZExtValue());
4033       Lex.Lex();
4034     } while (EatIfPresent(lltok::comma));
4035 
4036   if (ParseToken(lltok::rparen, "expected ')' here"))
4037     return true;
4038 
4039   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4040   return false;
4041 }
4042 
4043 /// ParseDIObjCProperty:
4044 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4045 ///                       getter: "getFoo", attributes: 7, type: !2)
4046 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4047 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4048   OPTIONAL(name, MDStringField, );                                             \
4049   OPTIONAL(file, MDField, );                                                   \
4050   OPTIONAL(line, LineField, );                                                 \
4051   OPTIONAL(setter, MDStringField, );                                           \
4052   OPTIONAL(getter, MDStringField, );                                           \
4053   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4054   OPTIONAL(type, MDField, );
4055   PARSE_MD_FIELDS();
4056 #undef VISIT_MD_FIELDS
4057 
4058   Result = GET_OR_DISTINCT(DIObjCProperty,
4059                            (Context, name.Val, file.Val, line.Val, setter.Val,
4060                             getter.Val, attributes.Val, type.Val));
4061   return false;
4062 }
4063 
4064 /// ParseDIImportedEntity:
4065 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4066 ///                         line: 7, name: "foo")
4067 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4068 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4069   REQUIRED(tag, DwarfTagField, );                                              \
4070   REQUIRED(scope, MDField, );                                                  \
4071   OPTIONAL(entity, MDField, );                                                 \
4072   OPTIONAL(line, LineField, );                                                 \
4073   OPTIONAL(name, MDStringField, );
4074   PARSE_MD_FIELDS();
4075 #undef VISIT_MD_FIELDS
4076 
4077   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4078                                               entity.Val, line.Val, name.Val));
4079   return false;
4080 }
4081 
4082 #undef PARSE_MD_FIELD
4083 #undef NOP_FIELD
4084 #undef REQUIRE_FIELD
4085 #undef DECLARE_FIELD
4086 
4087 /// ParseMetadataAsValue
4088 ///  ::= metadata i32 %local
4089 ///  ::= metadata i32 @global
4090 ///  ::= metadata i32 7
4091 ///  ::= metadata !0
4092 ///  ::= metadata !{...}
4093 ///  ::= metadata !"string"
4094 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4095   // Note: the type 'metadata' has already been parsed.
4096   Metadata *MD;
4097   if (ParseMetadata(MD, &PFS))
4098     return true;
4099 
4100   V = MetadataAsValue::get(Context, MD);
4101   return false;
4102 }
4103 
4104 /// ParseValueAsMetadata
4105 ///  ::= i32 %local
4106 ///  ::= i32 @global
4107 ///  ::= i32 7
4108 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4109                                     PerFunctionState *PFS) {
4110   Type *Ty;
4111   LocTy Loc;
4112   if (ParseType(Ty, TypeMsg, Loc))
4113     return true;
4114   if (Ty->isMetadataTy())
4115     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4116 
4117   Value *V;
4118   if (ParseValue(Ty, V, PFS))
4119     return true;
4120 
4121   MD = ValueAsMetadata::get(V);
4122   return false;
4123 }
4124 
4125 /// ParseMetadata
4126 ///  ::= i32 %local
4127 ///  ::= i32 @global
4128 ///  ::= i32 7
4129 ///  ::= !42
4130 ///  ::= !{...}
4131 ///  ::= !"string"
4132 ///  ::= !DILocation(...)
4133 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4134   if (Lex.getKind() == lltok::MetadataVar) {
4135     MDNode *N;
4136     if (ParseSpecializedMDNode(N))
4137       return true;
4138     MD = N;
4139     return false;
4140   }
4141 
4142   // ValueAsMetadata:
4143   // <type> <value>
4144   if (Lex.getKind() != lltok::exclaim)
4145     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4146 
4147   // '!'.
4148   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4149   Lex.Lex();
4150 
4151   // MDString:
4152   //   ::= '!' STRINGCONSTANT
4153   if (Lex.getKind() == lltok::StringConstant) {
4154     MDString *S;
4155     if (ParseMDString(S))
4156       return true;
4157     MD = S;
4158     return false;
4159   }
4160 
4161   // MDNode:
4162   // !{ ... }
4163   // !7
4164   MDNode *N;
4165   if (ParseMDNodeTail(N))
4166     return true;
4167   MD = N;
4168   return false;
4169 }
4170 
4171 
4172 //===----------------------------------------------------------------------===//
4173 // Function Parsing.
4174 //===----------------------------------------------------------------------===//
4175 
4176 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4177                                    PerFunctionState *PFS) {
4178   if (Ty->isFunctionTy())
4179     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4180 
4181   switch (ID.Kind) {
4182   case ValID::t_LocalID:
4183     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4184     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4185     return V == nullptr;
4186   case ValID::t_LocalName:
4187     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4188     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4189     return V == nullptr;
4190   case ValID::t_InlineAsm: {
4191     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4192       return Error(ID.Loc, "invalid type for inline asm constraint string");
4193     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4194                        (ID.UIntVal >> 1) & 1,
4195                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4196     return false;
4197   }
4198   case ValID::t_GlobalName:
4199     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4200     return V == nullptr;
4201   case ValID::t_GlobalID:
4202     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4203     return V == nullptr;
4204   case ValID::t_APSInt:
4205     if (!Ty->isIntegerTy())
4206       return Error(ID.Loc, "integer constant must have integer type");
4207     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4208     V = ConstantInt::get(Context, ID.APSIntVal);
4209     return false;
4210   case ValID::t_APFloat:
4211     if (!Ty->isFloatingPointTy() ||
4212         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4213       return Error(ID.Loc, "floating point constant invalid for type");
4214 
4215     // The lexer has no type info, so builds all half, float, and double FP
4216     // constants as double.  Fix this here.  Long double does not need this.
4217     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4218       bool Ignored;
4219       if (Ty->isHalfTy())
4220         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4221                               &Ignored);
4222       else if (Ty->isFloatTy())
4223         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4224                               &Ignored);
4225     }
4226     V = ConstantFP::get(Context, ID.APFloatVal);
4227 
4228     if (V->getType() != Ty)
4229       return Error(ID.Loc, "floating point constant does not have type '" +
4230                    getTypeString(Ty) + "'");
4231 
4232     return false;
4233   case ValID::t_Null:
4234     if (!Ty->isPointerTy())
4235       return Error(ID.Loc, "null must be a pointer type");
4236     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4237     return false;
4238   case ValID::t_Undef:
4239     // FIXME: LabelTy should not be a first-class type.
4240     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4241       return Error(ID.Loc, "invalid type for undef constant");
4242     V = UndefValue::get(Ty);
4243     return false;
4244   case ValID::t_EmptyArray:
4245     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4246       return Error(ID.Loc, "invalid empty array initializer");
4247     V = UndefValue::get(Ty);
4248     return false;
4249   case ValID::t_Zero:
4250     // FIXME: LabelTy should not be a first-class type.
4251     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4252       return Error(ID.Loc, "invalid type for null constant");
4253     V = Constant::getNullValue(Ty);
4254     return false;
4255   case ValID::t_None:
4256     if (!Ty->isTokenTy())
4257       return Error(ID.Loc, "invalid type for none constant");
4258     V = Constant::getNullValue(Ty);
4259     return false;
4260   case ValID::t_Constant:
4261     if (ID.ConstantVal->getType() != Ty)
4262       return Error(ID.Loc, "constant expression type mismatch");
4263 
4264     V = ID.ConstantVal;
4265     return false;
4266   case ValID::t_ConstantStruct:
4267   case ValID::t_PackedConstantStruct:
4268     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4269       if (ST->getNumElements() != ID.UIntVal)
4270         return Error(ID.Loc,
4271                      "initializer with struct type has wrong # elements");
4272       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4273         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4274 
4275       // Verify that the elements are compatible with the structtype.
4276       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4277         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4278           return Error(ID.Loc, "element " + Twine(i) +
4279                     " of struct initializer doesn't match struct element type");
4280 
4281       V = ConstantStruct::get(
4282           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4283     } else
4284       return Error(ID.Loc, "constant expression type mismatch");
4285     return false;
4286   }
4287   llvm_unreachable("Invalid ValID");
4288 }
4289 
4290 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4291   C = nullptr;
4292   ValID ID;
4293   auto Loc = Lex.getLoc();
4294   if (ParseValID(ID, /*PFS=*/nullptr))
4295     return true;
4296   switch (ID.Kind) {
4297   case ValID::t_APSInt:
4298   case ValID::t_APFloat:
4299   case ValID::t_Undef:
4300   case ValID::t_Constant:
4301   case ValID::t_ConstantStruct:
4302   case ValID::t_PackedConstantStruct: {
4303     Value *V;
4304     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4305       return true;
4306     assert(isa<Constant>(V) && "Expected a constant value");
4307     C = cast<Constant>(V);
4308     return false;
4309   }
4310   default:
4311     return Error(Loc, "expected a constant value");
4312   }
4313 }
4314 
4315 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4316   V = nullptr;
4317   ValID ID;
4318   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4319 }
4320 
4321 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4322   Type *Ty = nullptr;
4323   return ParseType(Ty) ||
4324          ParseValue(Ty, V, PFS);
4325 }
4326 
4327 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4328                                       PerFunctionState &PFS) {
4329   Value *V;
4330   Loc = Lex.getLoc();
4331   if (ParseTypeAndValue(V, PFS)) return true;
4332   if (!isa<BasicBlock>(V))
4333     return Error(Loc, "expected a basic block");
4334   BB = cast<BasicBlock>(V);
4335   return false;
4336 }
4337 
4338 
4339 /// FunctionHeader
4340 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4341 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4342 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4343 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4344   // Parse the linkage.
4345   LocTy LinkageLoc = Lex.getLoc();
4346   unsigned Linkage;
4347 
4348   unsigned Visibility;
4349   unsigned DLLStorageClass;
4350   AttrBuilder RetAttrs;
4351   unsigned CC;
4352   Type *RetType = nullptr;
4353   LocTy RetTypeLoc = Lex.getLoc();
4354   if (ParseOptionalLinkage(Linkage) ||
4355       ParseOptionalVisibility(Visibility) ||
4356       ParseOptionalDLLStorageClass(DLLStorageClass) ||
4357       ParseOptionalCallingConv(CC) ||
4358       ParseOptionalReturnAttrs(RetAttrs) ||
4359       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4360     return true;
4361 
4362   // Verify that the linkage is ok.
4363   switch ((GlobalValue::LinkageTypes)Linkage) {
4364   case GlobalValue::ExternalLinkage:
4365     break; // always ok.
4366   case GlobalValue::ExternalWeakLinkage:
4367     if (isDefine)
4368       return Error(LinkageLoc, "invalid linkage for function definition");
4369     break;
4370   case GlobalValue::PrivateLinkage:
4371   case GlobalValue::InternalLinkage:
4372   case GlobalValue::AvailableExternallyLinkage:
4373   case GlobalValue::LinkOnceAnyLinkage:
4374   case GlobalValue::LinkOnceODRLinkage:
4375   case GlobalValue::WeakAnyLinkage:
4376   case GlobalValue::WeakODRLinkage:
4377     if (!isDefine)
4378       return Error(LinkageLoc, "invalid linkage for function declaration");
4379     break;
4380   case GlobalValue::AppendingLinkage:
4381   case GlobalValue::CommonLinkage:
4382     return Error(LinkageLoc, "invalid function linkage type");
4383   }
4384 
4385   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4386     return Error(LinkageLoc,
4387                  "symbol with local linkage must have default visibility");
4388 
4389   if (!FunctionType::isValidReturnType(RetType))
4390     return Error(RetTypeLoc, "invalid function return type");
4391 
4392   LocTy NameLoc = Lex.getLoc();
4393 
4394   std::string FunctionName;
4395   if (Lex.getKind() == lltok::GlobalVar) {
4396     FunctionName = Lex.getStrVal();
4397   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4398     unsigned NameID = Lex.getUIntVal();
4399 
4400     if (NameID != NumberedVals.size())
4401       return TokError("function expected to be numbered '%" +
4402                       Twine(NumberedVals.size()) + "'");
4403   } else {
4404     return TokError("expected function name");
4405   }
4406 
4407   Lex.Lex();
4408 
4409   if (Lex.getKind() != lltok::lparen)
4410     return TokError("expected '(' in function argument list");
4411 
4412   SmallVector<ArgInfo, 8> ArgList;
4413   bool isVarArg;
4414   AttrBuilder FuncAttrs;
4415   std::vector<unsigned> FwdRefAttrGrps;
4416   LocTy BuiltinLoc;
4417   std::string Section;
4418   unsigned Alignment;
4419   std::string GC;
4420   bool UnnamedAddr;
4421   LocTy UnnamedAddrLoc;
4422   Constant *Prefix = nullptr;
4423   Constant *Prologue = nullptr;
4424   Constant *PersonalityFn = nullptr;
4425   Comdat *C;
4426 
4427   if (ParseArgumentList(ArgList, isVarArg) ||
4428       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
4429                          &UnnamedAddrLoc) ||
4430       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4431                                  BuiltinLoc) ||
4432       (EatIfPresent(lltok::kw_section) &&
4433        ParseStringConstant(Section)) ||
4434       parseOptionalComdat(FunctionName, C) ||
4435       ParseOptionalAlignment(Alignment) ||
4436       (EatIfPresent(lltok::kw_gc) &&
4437        ParseStringConstant(GC)) ||
4438       (EatIfPresent(lltok::kw_prefix) &&
4439        ParseGlobalTypeAndValue(Prefix)) ||
4440       (EatIfPresent(lltok::kw_prologue) &&
4441        ParseGlobalTypeAndValue(Prologue)) ||
4442       (EatIfPresent(lltok::kw_personality) &&
4443        ParseGlobalTypeAndValue(PersonalityFn)))
4444     return true;
4445 
4446   if (FuncAttrs.contains(Attribute::Builtin))
4447     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4448 
4449   // If the alignment was parsed as an attribute, move to the alignment field.
4450   if (FuncAttrs.hasAlignmentAttr()) {
4451     Alignment = FuncAttrs.getAlignment();
4452     FuncAttrs.removeAttribute(Attribute::Alignment);
4453   }
4454 
4455   // Okay, if we got here, the function is syntactically valid.  Convert types
4456   // and do semantic checks.
4457   std::vector<Type*> ParamTypeList;
4458   SmallVector<AttributeSet, 8> Attrs;
4459 
4460   if (RetAttrs.hasAttributes())
4461     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4462                                       AttributeSet::ReturnIndex,
4463                                       RetAttrs));
4464 
4465   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4466     ParamTypeList.push_back(ArgList[i].Ty);
4467     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4468       AttrBuilder B(ArgList[i].Attrs, i + 1);
4469       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4470     }
4471   }
4472 
4473   if (FuncAttrs.hasAttributes())
4474     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4475                                       AttributeSet::FunctionIndex,
4476                                       FuncAttrs));
4477 
4478   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4479 
4480   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4481     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4482 
4483   FunctionType *FT =
4484     FunctionType::get(RetType, ParamTypeList, isVarArg);
4485   PointerType *PFT = PointerType::getUnqual(FT);
4486 
4487   Fn = nullptr;
4488   if (!FunctionName.empty()) {
4489     // If this was a definition of a forward reference, remove the definition
4490     // from the forward reference table and fill in the forward ref.
4491     auto FRVI = ForwardRefVals.find(FunctionName);
4492     if (FRVI != ForwardRefVals.end()) {
4493       Fn = M->getFunction(FunctionName);
4494       if (!Fn)
4495         return Error(FRVI->second.second, "invalid forward reference to "
4496                      "function as global value!");
4497       if (Fn->getType() != PFT)
4498         return Error(FRVI->second.second, "invalid forward reference to "
4499                      "function '" + FunctionName + "' with wrong type!");
4500 
4501       ForwardRefVals.erase(FRVI);
4502     } else if ((Fn = M->getFunction(FunctionName))) {
4503       // Reject redefinitions.
4504       return Error(NameLoc, "invalid redefinition of function '" +
4505                    FunctionName + "'");
4506     } else if (M->getNamedValue(FunctionName)) {
4507       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4508     }
4509 
4510   } else {
4511     // If this is a definition of a forward referenced function, make sure the
4512     // types agree.
4513     auto I = ForwardRefValIDs.find(NumberedVals.size());
4514     if (I != ForwardRefValIDs.end()) {
4515       Fn = cast<Function>(I->second.first);
4516       if (Fn->getType() != PFT)
4517         return Error(NameLoc, "type of definition and forward reference of '@" +
4518                      Twine(NumberedVals.size()) + "' disagree");
4519       ForwardRefValIDs.erase(I);
4520     }
4521   }
4522 
4523   if (!Fn)
4524     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4525   else // Move the forward-reference to the correct spot in the module.
4526     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4527 
4528   if (FunctionName.empty())
4529     NumberedVals.push_back(Fn);
4530 
4531   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4532   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4533   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4534   Fn->setCallingConv(CC);
4535   Fn->setAttributes(PAL);
4536   Fn->setUnnamedAddr(UnnamedAddr);
4537   Fn->setAlignment(Alignment);
4538   Fn->setSection(Section);
4539   Fn->setComdat(C);
4540   Fn->setPersonalityFn(PersonalityFn);
4541   if (!GC.empty()) Fn->setGC(GC.c_str());
4542   Fn->setPrefixData(Prefix);
4543   Fn->setPrologueData(Prologue);
4544   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4545 
4546   // Add all of the arguments we parsed to the function.
4547   Function::arg_iterator ArgIt = Fn->arg_begin();
4548   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4549     // If the argument has a name, insert it into the argument symbol table.
4550     if (ArgList[i].Name.empty()) continue;
4551 
4552     // Set the name, if it conflicted, it will be auto-renamed.
4553     ArgIt->setName(ArgList[i].Name);
4554 
4555     if (ArgIt->getName() != ArgList[i].Name)
4556       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4557                    ArgList[i].Name + "'");
4558   }
4559 
4560   if (isDefine)
4561     return false;
4562 
4563   // Check the declaration has no block address forward references.
4564   ValID ID;
4565   if (FunctionName.empty()) {
4566     ID.Kind = ValID::t_GlobalID;
4567     ID.UIntVal = NumberedVals.size() - 1;
4568   } else {
4569     ID.Kind = ValID::t_GlobalName;
4570     ID.StrVal = FunctionName;
4571   }
4572   auto Blocks = ForwardRefBlockAddresses.find(ID);
4573   if (Blocks != ForwardRefBlockAddresses.end())
4574     return Error(Blocks->first.Loc,
4575                  "cannot take blockaddress inside a declaration");
4576   return false;
4577 }
4578 
4579 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4580   ValID ID;
4581   if (FunctionNumber == -1) {
4582     ID.Kind = ValID::t_GlobalName;
4583     ID.StrVal = F.getName();
4584   } else {
4585     ID.Kind = ValID::t_GlobalID;
4586     ID.UIntVal = FunctionNumber;
4587   }
4588 
4589   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4590   if (Blocks == P.ForwardRefBlockAddresses.end())
4591     return false;
4592 
4593   for (const auto &I : Blocks->second) {
4594     const ValID &BBID = I.first;
4595     GlobalValue *GV = I.second;
4596 
4597     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4598            "Expected local id or name");
4599     BasicBlock *BB;
4600     if (BBID.Kind == ValID::t_LocalName)
4601       BB = GetBB(BBID.StrVal, BBID.Loc);
4602     else
4603       BB = GetBB(BBID.UIntVal, BBID.Loc);
4604     if (!BB)
4605       return P.Error(BBID.Loc, "referenced value is not a basic block");
4606 
4607     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4608     GV->eraseFromParent();
4609   }
4610 
4611   P.ForwardRefBlockAddresses.erase(Blocks);
4612   return false;
4613 }
4614 
4615 /// ParseFunctionBody
4616 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4617 bool LLParser::ParseFunctionBody(Function &Fn) {
4618   if (Lex.getKind() != lltok::lbrace)
4619     return TokError("expected '{' in function body");
4620   Lex.Lex();  // eat the {.
4621 
4622   int FunctionNumber = -1;
4623   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4624 
4625   PerFunctionState PFS(*this, Fn, FunctionNumber);
4626 
4627   // Resolve block addresses and allow basic blocks to be forward-declared
4628   // within this function.
4629   if (PFS.resolveForwardRefBlockAddresses())
4630     return true;
4631   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4632 
4633   // We need at least one basic block.
4634   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4635     return TokError("function body requires at least one basic block");
4636 
4637   while (Lex.getKind() != lltok::rbrace &&
4638          Lex.getKind() != lltok::kw_uselistorder)
4639     if (ParseBasicBlock(PFS)) return true;
4640 
4641   while (Lex.getKind() != lltok::rbrace)
4642     if (ParseUseListOrder(&PFS))
4643       return true;
4644 
4645   // Eat the }.
4646   Lex.Lex();
4647 
4648   // Verify function is ok.
4649   return PFS.FinishFunction();
4650 }
4651 
4652 /// ParseBasicBlock
4653 ///   ::= LabelStr? Instruction*
4654 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4655   // If this basic block starts out with a name, remember it.
4656   std::string Name;
4657   LocTy NameLoc = Lex.getLoc();
4658   if (Lex.getKind() == lltok::LabelStr) {
4659     Name = Lex.getStrVal();
4660     Lex.Lex();
4661   }
4662 
4663   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4664   if (!BB)
4665     return Error(NameLoc,
4666                  "unable to create block named '" + Name + "'");
4667 
4668   std::string NameStr;
4669 
4670   // Parse the instructions in this block until we get a terminator.
4671   Instruction *Inst;
4672   do {
4673     // This instruction may have three possibilities for a name: a) none
4674     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4675     LocTy NameLoc = Lex.getLoc();
4676     int NameID = -1;
4677     NameStr = "";
4678 
4679     if (Lex.getKind() == lltok::LocalVarID) {
4680       NameID = Lex.getUIntVal();
4681       Lex.Lex();
4682       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4683         return true;
4684     } else if (Lex.getKind() == lltok::LocalVar) {
4685       NameStr = Lex.getStrVal();
4686       Lex.Lex();
4687       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4688         return true;
4689     }
4690 
4691     switch (ParseInstruction(Inst, BB, PFS)) {
4692     default: llvm_unreachable("Unknown ParseInstruction result!");
4693     case InstError: return true;
4694     case InstNormal:
4695       BB->getInstList().push_back(Inst);
4696 
4697       // With a normal result, we check to see if the instruction is followed by
4698       // a comma and metadata.
4699       if (EatIfPresent(lltok::comma))
4700         if (ParseInstructionMetadata(*Inst))
4701           return true;
4702       break;
4703     case InstExtraComma:
4704       BB->getInstList().push_back(Inst);
4705 
4706       // If the instruction parser ate an extra comma at the end of it, it
4707       // *must* be followed by metadata.
4708       if (ParseInstructionMetadata(*Inst))
4709         return true;
4710       break;
4711     }
4712 
4713     // Set the name on the instruction.
4714     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4715   } while (!isa<TerminatorInst>(Inst));
4716 
4717   return false;
4718 }
4719 
4720 //===----------------------------------------------------------------------===//
4721 // Instruction Parsing.
4722 //===----------------------------------------------------------------------===//
4723 
4724 /// ParseInstruction - Parse one of the many different instructions.
4725 ///
4726 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4727                                PerFunctionState &PFS) {
4728   lltok::Kind Token = Lex.getKind();
4729   if (Token == lltok::Eof)
4730     return TokError("found end of file when expecting more instructions");
4731   LocTy Loc = Lex.getLoc();
4732   unsigned KeywordVal = Lex.getUIntVal();
4733   Lex.Lex();  // Eat the keyword.
4734 
4735   switch (Token) {
4736   default:                    return Error(Loc, "expected instruction opcode");
4737   // Terminator Instructions.
4738   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4739   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4740   case lltok::kw_br:          return ParseBr(Inst, PFS);
4741   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4742   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4743   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4744   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4745   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4746   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4747   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4748   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4749   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4750   // Binary Operators.
4751   case lltok::kw_add:
4752   case lltok::kw_sub:
4753   case lltok::kw_mul:
4754   case lltok::kw_shl: {
4755     bool NUW = EatIfPresent(lltok::kw_nuw);
4756     bool NSW = EatIfPresent(lltok::kw_nsw);
4757     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4758 
4759     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4760 
4761     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4762     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4763     return false;
4764   }
4765   case lltok::kw_fadd:
4766   case lltok::kw_fsub:
4767   case lltok::kw_fmul:
4768   case lltok::kw_fdiv:
4769   case lltok::kw_frem: {
4770     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4771     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4772     if (Res != 0)
4773       return Res;
4774     if (FMF.any())
4775       Inst->setFastMathFlags(FMF);
4776     return 0;
4777   }
4778 
4779   case lltok::kw_sdiv:
4780   case lltok::kw_udiv:
4781   case lltok::kw_lshr:
4782   case lltok::kw_ashr: {
4783     bool Exact = EatIfPresent(lltok::kw_exact);
4784 
4785     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4786     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4787     return false;
4788   }
4789 
4790   case lltok::kw_urem:
4791   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4792   case lltok::kw_and:
4793   case lltok::kw_or:
4794   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
4795   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
4796   case lltok::kw_fcmp: {
4797     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4798     int Res = ParseCompare(Inst, PFS, KeywordVal);
4799     if (Res != 0)
4800       return Res;
4801     if (FMF.any())
4802       Inst->setFastMathFlags(FMF);
4803     return 0;
4804   }
4805 
4806   // Casts.
4807   case lltok::kw_trunc:
4808   case lltok::kw_zext:
4809   case lltok::kw_sext:
4810   case lltok::kw_fptrunc:
4811   case lltok::kw_fpext:
4812   case lltok::kw_bitcast:
4813   case lltok::kw_addrspacecast:
4814   case lltok::kw_uitofp:
4815   case lltok::kw_sitofp:
4816   case lltok::kw_fptoui:
4817   case lltok::kw_fptosi:
4818   case lltok::kw_inttoptr:
4819   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
4820   // Other.
4821   case lltok::kw_select:         return ParseSelect(Inst, PFS);
4822   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
4823   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4824   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
4825   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
4826   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
4827   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
4828   // Call.
4829   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
4830   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4831   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4832   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
4833   // Memory.
4834   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
4835   case lltok::kw_load:           return ParseLoad(Inst, PFS);
4836   case lltok::kw_store:          return ParseStore(Inst, PFS);
4837   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
4838   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
4839   case lltok::kw_fence:          return ParseFence(Inst, PFS);
4840   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4841   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
4842   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
4843   }
4844 }
4845 
4846 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
4847 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4848   if (Opc == Instruction::FCmp) {
4849     switch (Lex.getKind()) {
4850     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4851     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4852     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4853     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4854     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4855     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4856     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4857     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4858     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4859     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
4860     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
4861     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
4862     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
4863     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
4864     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
4865     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
4866     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
4867     }
4868   } else {
4869     switch (Lex.getKind()) {
4870     default: return TokError("expected icmp predicate (e.g. 'eq')");
4871     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
4872     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
4873     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
4874     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
4875     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
4876     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
4877     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
4878     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
4879     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
4880     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
4881     }
4882   }
4883   Lex.Lex();
4884   return false;
4885 }
4886 
4887 //===----------------------------------------------------------------------===//
4888 // Terminator Instructions.
4889 //===----------------------------------------------------------------------===//
4890 
4891 /// ParseRet - Parse a return instruction.
4892 ///   ::= 'ret' void (',' !dbg, !1)*
4893 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
4894 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
4895                         PerFunctionState &PFS) {
4896   SMLoc TypeLoc = Lex.getLoc();
4897   Type *Ty = nullptr;
4898   if (ParseType(Ty, true /*void allowed*/)) return true;
4899 
4900   Type *ResType = PFS.getFunction().getReturnType();
4901 
4902   if (Ty->isVoidTy()) {
4903     if (!ResType->isVoidTy())
4904       return Error(TypeLoc, "value doesn't match function result type '" +
4905                    getTypeString(ResType) + "'");
4906 
4907     Inst = ReturnInst::Create(Context);
4908     return false;
4909   }
4910 
4911   Value *RV;
4912   if (ParseValue(Ty, RV, PFS)) return true;
4913 
4914   if (ResType != RV->getType())
4915     return Error(TypeLoc, "value doesn't match function result type '" +
4916                  getTypeString(ResType) + "'");
4917 
4918   Inst = ReturnInst::Create(Context, RV);
4919   return false;
4920 }
4921 
4922 
4923 /// ParseBr
4924 ///   ::= 'br' TypeAndValue
4925 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
4926 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
4927   LocTy Loc, Loc2;
4928   Value *Op0;
4929   BasicBlock *Op1, *Op2;
4930   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
4931 
4932   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
4933     Inst = BranchInst::Create(BB);
4934     return false;
4935   }
4936 
4937   if (Op0->getType() != Type::getInt1Ty(Context))
4938     return Error(Loc, "branch condition must have 'i1' type");
4939 
4940   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
4941       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
4942       ParseToken(lltok::comma, "expected ',' after true destination") ||
4943       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
4944     return true;
4945 
4946   Inst = BranchInst::Create(Op1, Op2, Op0);
4947   return false;
4948 }
4949 
4950 /// ParseSwitch
4951 ///  Instruction
4952 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
4953 ///  JumpTable
4954 ///    ::= (TypeAndValue ',' TypeAndValue)*
4955 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
4956   LocTy CondLoc, BBLoc;
4957   Value *Cond;
4958   BasicBlock *DefaultBB;
4959   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
4960       ParseToken(lltok::comma, "expected ',' after switch condition") ||
4961       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
4962       ParseToken(lltok::lsquare, "expected '[' with switch table"))
4963     return true;
4964 
4965   if (!Cond->getType()->isIntegerTy())
4966     return Error(CondLoc, "switch condition must have integer type");
4967 
4968   // Parse the jump table pairs.
4969   SmallPtrSet<Value*, 32> SeenCases;
4970   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
4971   while (Lex.getKind() != lltok::rsquare) {
4972     Value *Constant;
4973     BasicBlock *DestBB;
4974 
4975     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
4976         ParseToken(lltok::comma, "expected ',' after case value") ||
4977         ParseTypeAndBasicBlock(DestBB, PFS))
4978       return true;
4979 
4980     if (!SeenCases.insert(Constant).second)
4981       return Error(CondLoc, "duplicate case value in switch");
4982     if (!isa<ConstantInt>(Constant))
4983       return Error(CondLoc, "case value is not a constant integer");
4984 
4985     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
4986   }
4987 
4988   Lex.Lex();  // Eat the ']'.
4989 
4990   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
4991   for (unsigned i = 0, e = Table.size(); i != e; ++i)
4992     SI->addCase(Table[i].first, Table[i].second);
4993   Inst = SI;
4994   return false;
4995 }
4996 
4997 /// ParseIndirectBr
4998 ///  Instruction
4999 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5000 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5001   LocTy AddrLoc;
5002   Value *Address;
5003   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5004       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5005       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5006     return true;
5007 
5008   if (!Address->getType()->isPointerTy())
5009     return Error(AddrLoc, "indirectbr address must have pointer type");
5010 
5011   // Parse the destination list.
5012   SmallVector<BasicBlock*, 16> DestList;
5013 
5014   if (Lex.getKind() != lltok::rsquare) {
5015     BasicBlock *DestBB;
5016     if (ParseTypeAndBasicBlock(DestBB, PFS))
5017       return true;
5018     DestList.push_back(DestBB);
5019 
5020     while (EatIfPresent(lltok::comma)) {
5021       if (ParseTypeAndBasicBlock(DestBB, PFS))
5022         return true;
5023       DestList.push_back(DestBB);
5024     }
5025   }
5026 
5027   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5028     return true;
5029 
5030   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5031   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5032     IBI->addDestination(DestList[i]);
5033   Inst = IBI;
5034   return false;
5035 }
5036 
5037 
5038 /// ParseInvoke
5039 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5040 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5041 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5042   LocTy CallLoc = Lex.getLoc();
5043   AttrBuilder RetAttrs, FnAttrs;
5044   std::vector<unsigned> FwdRefAttrGrps;
5045   LocTy NoBuiltinLoc;
5046   unsigned CC;
5047   Type *RetType = nullptr;
5048   LocTy RetTypeLoc;
5049   ValID CalleeID;
5050   SmallVector<ParamInfo, 16> ArgList;
5051   SmallVector<OperandBundleDef, 2> BundleList;
5052 
5053   BasicBlock *NormalBB, *UnwindBB;
5054   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5055       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5056       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5057       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5058                                  NoBuiltinLoc) ||
5059       ParseOptionalOperandBundles(BundleList, PFS) ||
5060       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5061       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5062       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5063       ParseTypeAndBasicBlock(UnwindBB, PFS))
5064     return true;
5065 
5066   // If RetType is a non-function pointer type, then this is the short syntax
5067   // for the call, which means that RetType is just the return type.  Infer the
5068   // rest of the function argument types from the arguments that are present.
5069   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5070   if (!Ty) {
5071     // Pull out the types of all of the arguments...
5072     std::vector<Type*> ParamTypes;
5073     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5074       ParamTypes.push_back(ArgList[i].V->getType());
5075 
5076     if (!FunctionType::isValidReturnType(RetType))
5077       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5078 
5079     Ty = FunctionType::get(RetType, ParamTypes, false);
5080   }
5081 
5082   CalleeID.FTy = Ty;
5083 
5084   // Look up the callee.
5085   Value *Callee;
5086   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5087     return true;
5088 
5089   // Set up the Attribute for the function.
5090   SmallVector<AttributeSet, 8> Attrs;
5091   if (RetAttrs.hasAttributes())
5092     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5093                                       AttributeSet::ReturnIndex,
5094                                       RetAttrs));
5095 
5096   SmallVector<Value*, 8> Args;
5097 
5098   // Loop through FunctionType's arguments and ensure they are specified
5099   // correctly.  Also, gather any parameter attributes.
5100   FunctionType::param_iterator I = Ty->param_begin();
5101   FunctionType::param_iterator E = Ty->param_end();
5102   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5103     Type *ExpectedTy = nullptr;
5104     if (I != E) {
5105       ExpectedTy = *I++;
5106     } else if (!Ty->isVarArg()) {
5107       return Error(ArgList[i].Loc, "too many arguments specified");
5108     }
5109 
5110     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5111       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5112                    getTypeString(ExpectedTy) + "'");
5113     Args.push_back(ArgList[i].V);
5114     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5115       AttrBuilder B(ArgList[i].Attrs, i + 1);
5116       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5117     }
5118   }
5119 
5120   if (I != E)
5121     return Error(CallLoc, "not enough parameters specified for call");
5122 
5123   if (FnAttrs.hasAttributes()) {
5124     if (FnAttrs.hasAlignmentAttr())
5125       return Error(CallLoc, "invoke instructions may not have an alignment");
5126 
5127     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5128                                       AttributeSet::FunctionIndex,
5129                                       FnAttrs));
5130   }
5131 
5132   // Finish off the Attribute and check them
5133   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5134 
5135   InvokeInst *II =
5136       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5137   II->setCallingConv(CC);
5138   II->setAttributes(PAL);
5139   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5140   Inst = II;
5141   return false;
5142 }
5143 
5144 /// ParseResume
5145 ///   ::= 'resume' TypeAndValue
5146 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5147   Value *Exn; LocTy ExnLoc;
5148   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5149     return true;
5150 
5151   ResumeInst *RI = ResumeInst::Create(Exn);
5152   Inst = RI;
5153   return false;
5154 }
5155 
5156 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5157                                   PerFunctionState &PFS) {
5158   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5159     return true;
5160 
5161   while (Lex.getKind() != lltok::rsquare) {
5162     // If this isn't the first argument, we need a comma.
5163     if (!Args.empty() &&
5164         ParseToken(lltok::comma, "expected ',' in argument list"))
5165       return true;
5166 
5167     // Parse the argument.
5168     LocTy ArgLoc;
5169     Type *ArgTy = nullptr;
5170     if (ParseType(ArgTy, ArgLoc))
5171       return true;
5172 
5173     Value *V;
5174     if (ArgTy->isMetadataTy()) {
5175       if (ParseMetadataAsValue(V, PFS))
5176         return true;
5177     } else {
5178       if (ParseValue(ArgTy, V, PFS))
5179         return true;
5180     }
5181     Args.push_back(V);
5182   }
5183 
5184   Lex.Lex();  // Lex the ']'.
5185   return false;
5186 }
5187 
5188 /// ParseCleanupRet
5189 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5190 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5191   Value *CleanupPad = nullptr;
5192 
5193   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5194     return true;
5195 
5196   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5197     return true;
5198 
5199   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5200     return true;
5201 
5202   BasicBlock *UnwindBB = nullptr;
5203   if (Lex.getKind() == lltok::kw_to) {
5204     Lex.Lex();
5205     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5206       return true;
5207   } else {
5208     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5209       return true;
5210     }
5211   }
5212 
5213   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5214   return false;
5215 }
5216 
5217 /// ParseCatchRet
5218 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5219 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5220   Value *CatchPad = nullptr;
5221 
5222   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5223     return true;
5224 
5225   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5226     return true;
5227 
5228   BasicBlock *BB;
5229   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5230       ParseTypeAndBasicBlock(BB, PFS))
5231       return true;
5232 
5233   Inst = CatchReturnInst::Create(CatchPad, BB);
5234   return false;
5235 }
5236 
5237 /// ParseCatchSwitch
5238 ///   ::= 'catchswitch' within Parent
5239 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5240   Value *ParentPad;
5241   LocTy BBLoc;
5242 
5243   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5244     return true;
5245 
5246   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5247       Lex.getKind() != lltok::LocalVarID)
5248     return TokError("expected scope value for catchswitch");
5249 
5250   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5251     return true;
5252 
5253   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5254     return true;
5255 
5256   SmallVector<BasicBlock *, 32> Table;
5257   do {
5258     BasicBlock *DestBB;
5259     if (ParseTypeAndBasicBlock(DestBB, PFS))
5260       return true;
5261     Table.push_back(DestBB);
5262   } while (EatIfPresent(lltok::comma));
5263 
5264   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5265     return true;
5266 
5267   if (ParseToken(lltok::kw_unwind,
5268                  "expected 'unwind' after catchswitch scope"))
5269     return true;
5270 
5271   BasicBlock *UnwindBB = nullptr;
5272   if (EatIfPresent(lltok::kw_to)) {
5273     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5274       return true;
5275   } else {
5276     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5277       return true;
5278   }
5279 
5280   auto *CatchSwitch =
5281       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5282   for (BasicBlock *DestBB : Table)
5283     CatchSwitch->addHandler(DestBB);
5284   Inst = CatchSwitch;
5285   return false;
5286 }
5287 
5288 /// ParseCatchPad
5289 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5290 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5291   Value *CatchSwitch = nullptr;
5292 
5293   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5294     return true;
5295 
5296   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5297     return TokError("expected scope value for catchpad");
5298 
5299   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5300     return true;
5301 
5302   SmallVector<Value *, 8> Args;
5303   if (ParseExceptionArgs(Args, PFS))
5304     return true;
5305 
5306   Inst = CatchPadInst::Create(CatchSwitch, Args);
5307   return false;
5308 }
5309 
5310 /// ParseCleanupPad
5311 ///   ::= 'cleanuppad' within Parent ParamList
5312 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5313   Value *ParentPad = nullptr;
5314 
5315   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5316     return true;
5317 
5318   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5319       Lex.getKind() != lltok::LocalVarID)
5320     return TokError("expected scope value for cleanuppad");
5321 
5322   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5323     return true;
5324 
5325   SmallVector<Value *, 8> Args;
5326   if (ParseExceptionArgs(Args, PFS))
5327     return true;
5328 
5329   Inst = CleanupPadInst::Create(ParentPad, Args);
5330   return false;
5331 }
5332 
5333 //===----------------------------------------------------------------------===//
5334 // Binary Operators.
5335 //===----------------------------------------------------------------------===//
5336 
5337 /// ParseArithmetic
5338 ///  ::= ArithmeticOps TypeAndValue ',' Value
5339 ///
5340 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5341 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5342 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5343                                unsigned Opc, unsigned OperandType) {
5344   LocTy Loc; Value *LHS, *RHS;
5345   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5346       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5347       ParseValue(LHS->getType(), RHS, PFS))
5348     return true;
5349 
5350   bool Valid;
5351   switch (OperandType) {
5352   default: llvm_unreachable("Unknown operand type!");
5353   case 0: // int or FP.
5354     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5355             LHS->getType()->isFPOrFPVectorTy();
5356     break;
5357   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5358   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5359   }
5360 
5361   if (!Valid)
5362     return Error(Loc, "invalid operand type for instruction");
5363 
5364   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5365   return false;
5366 }
5367 
5368 /// ParseLogical
5369 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5370 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5371                             unsigned Opc) {
5372   LocTy Loc; Value *LHS, *RHS;
5373   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5374       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5375       ParseValue(LHS->getType(), RHS, PFS))
5376     return true;
5377 
5378   if (!LHS->getType()->isIntOrIntVectorTy())
5379     return Error(Loc,"instruction requires integer or integer vector operands");
5380 
5381   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5382   return false;
5383 }
5384 
5385 
5386 /// ParseCompare
5387 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5388 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5389 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5390                             unsigned Opc) {
5391   // Parse the integer/fp comparison predicate.
5392   LocTy Loc;
5393   unsigned Pred;
5394   Value *LHS, *RHS;
5395   if (ParseCmpPredicate(Pred, Opc) ||
5396       ParseTypeAndValue(LHS, Loc, PFS) ||
5397       ParseToken(lltok::comma, "expected ',' after compare value") ||
5398       ParseValue(LHS->getType(), RHS, PFS))
5399     return true;
5400 
5401   if (Opc == Instruction::FCmp) {
5402     if (!LHS->getType()->isFPOrFPVectorTy())
5403       return Error(Loc, "fcmp requires floating point operands");
5404     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5405   } else {
5406     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5407     if (!LHS->getType()->isIntOrIntVectorTy() &&
5408         !LHS->getType()->getScalarType()->isPointerTy())
5409       return Error(Loc, "icmp requires integer operands");
5410     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5411   }
5412   return false;
5413 }
5414 
5415 //===----------------------------------------------------------------------===//
5416 // Other Instructions.
5417 //===----------------------------------------------------------------------===//
5418 
5419 
5420 /// ParseCast
5421 ///   ::= CastOpc TypeAndValue 'to' Type
5422 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5423                          unsigned Opc) {
5424   LocTy Loc;
5425   Value *Op;
5426   Type *DestTy = nullptr;
5427   if (ParseTypeAndValue(Op, Loc, PFS) ||
5428       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5429       ParseType(DestTy))
5430     return true;
5431 
5432   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5433     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5434     return Error(Loc, "invalid cast opcode for cast from '" +
5435                  getTypeString(Op->getType()) + "' to '" +
5436                  getTypeString(DestTy) + "'");
5437   }
5438   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5439   return false;
5440 }
5441 
5442 /// ParseSelect
5443 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5444 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5445   LocTy Loc;
5446   Value *Op0, *Op1, *Op2;
5447   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5448       ParseToken(lltok::comma, "expected ',' after select condition") ||
5449       ParseTypeAndValue(Op1, PFS) ||
5450       ParseToken(lltok::comma, "expected ',' after select value") ||
5451       ParseTypeAndValue(Op2, PFS))
5452     return true;
5453 
5454   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5455     return Error(Loc, Reason);
5456 
5457   Inst = SelectInst::Create(Op0, Op1, Op2);
5458   return false;
5459 }
5460 
5461 /// ParseVA_Arg
5462 ///   ::= 'va_arg' TypeAndValue ',' Type
5463 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5464   Value *Op;
5465   Type *EltTy = nullptr;
5466   LocTy TypeLoc;
5467   if (ParseTypeAndValue(Op, PFS) ||
5468       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5469       ParseType(EltTy, TypeLoc))
5470     return true;
5471 
5472   if (!EltTy->isFirstClassType())
5473     return Error(TypeLoc, "va_arg requires operand with first class type");
5474 
5475   Inst = new VAArgInst(Op, EltTy);
5476   return false;
5477 }
5478 
5479 /// ParseExtractElement
5480 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5481 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5482   LocTy Loc;
5483   Value *Op0, *Op1;
5484   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5485       ParseToken(lltok::comma, "expected ',' after extract value") ||
5486       ParseTypeAndValue(Op1, PFS))
5487     return true;
5488 
5489   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5490     return Error(Loc, "invalid extractelement operands");
5491 
5492   Inst = ExtractElementInst::Create(Op0, Op1);
5493   return false;
5494 }
5495 
5496 /// ParseInsertElement
5497 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5498 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5499   LocTy Loc;
5500   Value *Op0, *Op1, *Op2;
5501   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5502       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5503       ParseTypeAndValue(Op1, PFS) ||
5504       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5505       ParseTypeAndValue(Op2, PFS))
5506     return true;
5507 
5508   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5509     return Error(Loc, "invalid insertelement operands");
5510 
5511   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5512   return false;
5513 }
5514 
5515 /// ParseShuffleVector
5516 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5517 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5518   LocTy Loc;
5519   Value *Op0, *Op1, *Op2;
5520   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5521       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5522       ParseTypeAndValue(Op1, PFS) ||
5523       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5524       ParseTypeAndValue(Op2, PFS))
5525     return true;
5526 
5527   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5528     return Error(Loc, "invalid shufflevector operands");
5529 
5530   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5531   return false;
5532 }
5533 
5534 /// ParsePHI
5535 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5536 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5537   Type *Ty = nullptr;  LocTy TypeLoc;
5538   Value *Op0, *Op1;
5539 
5540   if (ParseType(Ty, TypeLoc) ||
5541       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5542       ParseValue(Ty, Op0, PFS) ||
5543       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5544       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5545       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5546     return true;
5547 
5548   bool AteExtraComma = false;
5549   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5550   while (1) {
5551     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5552 
5553     if (!EatIfPresent(lltok::comma))
5554       break;
5555 
5556     if (Lex.getKind() == lltok::MetadataVar) {
5557       AteExtraComma = true;
5558       break;
5559     }
5560 
5561     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5562         ParseValue(Ty, Op0, PFS) ||
5563         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5564         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5565         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5566       return true;
5567   }
5568 
5569   if (!Ty->isFirstClassType())
5570     return Error(TypeLoc, "phi node must have first class type");
5571 
5572   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5573   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5574     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5575   Inst = PN;
5576   return AteExtraComma ? InstExtraComma : InstNormal;
5577 }
5578 
5579 /// ParseLandingPad
5580 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5581 /// Clause
5582 ///   ::= 'catch' TypeAndValue
5583 ///   ::= 'filter'
5584 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5585 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5586   Type *Ty = nullptr; LocTy TyLoc;
5587 
5588   if (ParseType(Ty, TyLoc))
5589     return true;
5590 
5591   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5592   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5593 
5594   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5595     LandingPadInst::ClauseType CT;
5596     if (EatIfPresent(lltok::kw_catch))
5597       CT = LandingPadInst::Catch;
5598     else if (EatIfPresent(lltok::kw_filter))
5599       CT = LandingPadInst::Filter;
5600     else
5601       return TokError("expected 'catch' or 'filter' clause type");
5602 
5603     Value *V;
5604     LocTy VLoc;
5605     if (ParseTypeAndValue(V, VLoc, PFS))
5606       return true;
5607 
5608     // A 'catch' type expects a non-array constant. A filter clause expects an
5609     // array constant.
5610     if (CT == LandingPadInst::Catch) {
5611       if (isa<ArrayType>(V->getType()))
5612         Error(VLoc, "'catch' clause has an invalid type");
5613     } else {
5614       if (!isa<ArrayType>(V->getType()))
5615         Error(VLoc, "'filter' clause has an invalid type");
5616     }
5617 
5618     Constant *CV = dyn_cast<Constant>(V);
5619     if (!CV)
5620       return Error(VLoc, "clause argument must be a constant");
5621     LP->addClause(CV);
5622   }
5623 
5624   Inst = LP.release();
5625   return false;
5626 }
5627 
5628 /// ParseCall
5629 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5630 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5631 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5632 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5633 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5634 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5635 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5636 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5637 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5638                          CallInst::TailCallKind TCK) {
5639   AttrBuilder RetAttrs, FnAttrs;
5640   std::vector<unsigned> FwdRefAttrGrps;
5641   LocTy BuiltinLoc;
5642   unsigned CC;
5643   Type *RetType = nullptr;
5644   LocTy RetTypeLoc;
5645   ValID CalleeID;
5646   SmallVector<ParamInfo, 16> ArgList;
5647   SmallVector<OperandBundleDef, 2> BundleList;
5648   LocTy CallLoc = Lex.getLoc();
5649 
5650   if (TCK != CallInst::TCK_None &&
5651       ParseToken(lltok::kw_call,
5652                  "expected 'tail call', 'musttail call', or 'notail call'"))
5653     return true;
5654 
5655   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5656 
5657   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5658       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5659       ParseValID(CalleeID) ||
5660       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5661                          PFS.getFunction().isVarArg()) ||
5662       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5663       ParseOptionalOperandBundles(BundleList, PFS))
5664     return true;
5665 
5666   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5667     return Error(CallLoc, "fast-math-flags specified for call without "
5668                           "floating-point scalar or vector return type");
5669 
5670   // If RetType is a non-function pointer type, then this is the short syntax
5671   // for the call, which means that RetType is just the return type.  Infer the
5672   // rest of the function argument types from the arguments that are present.
5673   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5674   if (!Ty) {
5675     // Pull out the types of all of the arguments...
5676     std::vector<Type*> ParamTypes;
5677     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5678       ParamTypes.push_back(ArgList[i].V->getType());
5679 
5680     if (!FunctionType::isValidReturnType(RetType))
5681       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5682 
5683     Ty = FunctionType::get(RetType, ParamTypes, false);
5684   }
5685 
5686   CalleeID.FTy = Ty;
5687 
5688   // Look up the callee.
5689   Value *Callee;
5690   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5691     return true;
5692 
5693   // Set up the Attribute for the function.
5694   SmallVector<AttributeSet, 8> Attrs;
5695   if (RetAttrs.hasAttributes())
5696     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5697                                       AttributeSet::ReturnIndex,
5698                                       RetAttrs));
5699 
5700   SmallVector<Value*, 8> Args;
5701 
5702   // Loop through FunctionType's arguments and ensure they are specified
5703   // correctly.  Also, gather any parameter attributes.
5704   FunctionType::param_iterator I = Ty->param_begin();
5705   FunctionType::param_iterator E = Ty->param_end();
5706   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5707     Type *ExpectedTy = nullptr;
5708     if (I != E) {
5709       ExpectedTy = *I++;
5710     } else if (!Ty->isVarArg()) {
5711       return Error(ArgList[i].Loc, "too many arguments specified");
5712     }
5713 
5714     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5715       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5716                    getTypeString(ExpectedTy) + "'");
5717     Args.push_back(ArgList[i].V);
5718     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5719       AttrBuilder B(ArgList[i].Attrs, i + 1);
5720       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5721     }
5722   }
5723 
5724   if (I != E)
5725     return Error(CallLoc, "not enough parameters specified for call");
5726 
5727   if (FnAttrs.hasAttributes()) {
5728     if (FnAttrs.hasAlignmentAttr())
5729       return Error(CallLoc, "call instructions may not have an alignment");
5730 
5731     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5732                                       AttributeSet::FunctionIndex,
5733                                       FnAttrs));
5734   }
5735 
5736   // Finish off the Attribute and check them
5737   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5738 
5739   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5740   CI->setTailCallKind(TCK);
5741   CI->setCallingConv(CC);
5742   if (FMF.any())
5743     CI->setFastMathFlags(FMF);
5744   CI->setAttributes(PAL);
5745   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5746   Inst = CI;
5747   return false;
5748 }
5749 
5750 //===----------------------------------------------------------------------===//
5751 // Memory Instructions.
5752 //===----------------------------------------------------------------------===//
5753 
5754 /// ParseAlloc
5755 ///   ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)?
5756 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5757   Value *Size = nullptr;
5758   LocTy SizeLoc, TyLoc;
5759   unsigned Alignment = 0;
5760   Type *Ty = nullptr;
5761 
5762   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5763 
5764   if (ParseType(Ty, TyLoc)) return true;
5765 
5766   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5767     return Error(TyLoc, "invalid type for alloca");
5768 
5769   bool AteExtraComma = false;
5770   if (EatIfPresent(lltok::comma)) {
5771     if (Lex.getKind() == lltok::kw_align) {
5772       if (ParseOptionalAlignment(Alignment)) return true;
5773     } else if (Lex.getKind() == lltok::MetadataVar) {
5774       AteExtraComma = true;
5775     } else {
5776       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5777           ParseOptionalCommaAlign(Alignment, AteExtraComma))
5778         return true;
5779     }
5780   }
5781 
5782   if (Size && !Size->getType()->isIntegerTy())
5783     return Error(SizeLoc, "element count must have integer type");
5784 
5785   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5786   AI->setUsedWithInAlloca(IsInAlloca);
5787   Inst = AI;
5788   return AteExtraComma ? InstExtraComma : InstNormal;
5789 }
5790 
5791 /// ParseLoad
5792 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5793 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
5794 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5795 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5796   Value *Val; LocTy Loc;
5797   unsigned Alignment = 0;
5798   bool AteExtraComma = false;
5799   bool isAtomic = false;
5800   AtomicOrdering Ordering = NotAtomic;
5801   SynchronizationScope Scope = CrossThread;
5802 
5803   if (Lex.getKind() == lltok::kw_atomic) {
5804     isAtomic = true;
5805     Lex.Lex();
5806   }
5807 
5808   bool isVolatile = false;
5809   if (Lex.getKind() == lltok::kw_volatile) {
5810     isVolatile = true;
5811     Lex.Lex();
5812   }
5813 
5814   Type *Ty;
5815   LocTy ExplicitTypeLoc = Lex.getLoc();
5816   if (ParseType(Ty) ||
5817       ParseToken(lltok::comma, "expected comma after load's type") ||
5818       ParseTypeAndValue(Val, Loc, PFS) ||
5819       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5820       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5821     return true;
5822 
5823   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
5824     return Error(Loc, "load operand must be a pointer to a first class type");
5825   if (isAtomic && !Alignment)
5826     return Error(Loc, "atomic load must have explicit non-zero alignment");
5827   if (Ordering == Release || Ordering == AcquireRelease)
5828     return Error(Loc, "atomic load cannot use Release ordering");
5829 
5830   if (Ty != cast<PointerType>(Val->getType())->getElementType())
5831     return Error(ExplicitTypeLoc,
5832                  "explicit pointee type doesn't match operand's pointee type");
5833 
5834   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
5835   return AteExtraComma ? InstExtraComma : InstNormal;
5836 }
5837 
5838 /// ParseStore
5839 
5840 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5841 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5842 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5843 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5844   Value *Val, *Ptr; LocTy Loc, PtrLoc;
5845   unsigned Alignment = 0;
5846   bool AteExtraComma = false;
5847   bool isAtomic = false;
5848   AtomicOrdering Ordering = NotAtomic;
5849   SynchronizationScope Scope = CrossThread;
5850 
5851   if (Lex.getKind() == lltok::kw_atomic) {
5852     isAtomic = true;
5853     Lex.Lex();
5854   }
5855 
5856   bool isVolatile = false;
5857   if (Lex.getKind() == lltok::kw_volatile) {
5858     isVolatile = true;
5859     Lex.Lex();
5860   }
5861 
5862   if (ParseTypeAndValue(Val, Loc, PFS) ||
5863       ParseToken(lltok::comma, "expected ',' after store operand") ||
5864       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5865       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5866       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5867     return true;
5868 
5869   if (!Ptr->getType()->isPointerTy())
5870     return Error(PtrLoc, "store operand must be a pointer");
5871   if (!Val->getType()->isFirstClassType())
5872     return Error(Loc, "store operand must be a first class value");
5873   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5874     return Error(Loc, "stored value and pointer type do not match");
5875   if (isAtomic && !Alignment)
5876     return Error(Loc, "atomic store must have explicit non-zero alignment");
5877   if (Ordering == Acquire || Ordering == AcquireRelease)
5878     return Error(Loc, "atomic store cannot use Acquire ordering");
5879 
5880   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
5881   return AteExtraComma ? InstExtraComma : InstNormal;
5882 }
5883 
5884 /// ParseCmpXchg
5885 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
5886 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
5887 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
5888   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
5889   bool AteExtraComma = false;
5890   AtomicOrdering SuccessOrdering = NotAtomic;
5891   AtomicOrdering FailureOrdering = NotAtomic;
5892   SynchronizationScope Scope = CrossThread;
5893   bool isVolatile = false;
5894   bool isWeak = false;
5895 
5896   if (EatIfPresent(lltok::kw_weak))
5897     isWeak = true;
5898 
5899   if (EatIfPresent(lltok::kw_volatile))
5900     isVolatile = true;
5901 
5902   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5903       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
5904       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
5905       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
5906       ParseTypeAndValue(New, NewLoc, PFS) ||
5907       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
5908       ParseOrdering(FailureOrdering))
5909     return true;
5910 
5911   if (SuccessOrdering == Unordered || FailureOrdering == Unordered)
5912     return TokError("cmpxchg cannot be unordered");
5913   if (SuccessOrdering < FailureOrdering)
5914     return TokError("cmpxchg must be at least as ordered on success as failure");
5915   if (FailureOrdering == Release || FailureOrdering == AcquireRelease)
5916     return TokError("cmpxchg failure ordering cannot include release semantics");
5917   if (!Ptr->getType()->isPointerTy())
5918     return Error(PtrLoc, "cmpxchg operand must be a pointer");
5919   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
5920     return Error(CmpLoc, "compare value and pointer type do not match");
5921   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
5922     return Error(NewLoc, "new value and pointer type do not match");
5923   if (!New->getType()->isFirstClassType())
5924     return Error(NewLoc, "cmpxchg operand must be a first class value");
5925   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
5926       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
5927   CXI->setVolatile(isVolatile);
5928   CXI->setWeak(isWeak);
5929   Inst = CXI;
5930   return AteExtraComma ? InstExtraComma : InstNormal;
5931 }
5932 
5933 /// ParseAtomicRMW
5934 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
5935 ///       'singlethread'? AtomicOrdering
5936 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
5937   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
5938   bool AteExtraComma = false;
5939   AtomicOrdering Ordering = NotAtomic;
5940   SynchronizationScope Scope = CrossThread;
5941   bool isVolatile = false;
5942   AtomicRMWInst::BinOp Operation;
5943 
5944   if (EatIfPresent(lltok::kw_volatile))
5945     isVolatile = true;
5946 
5947   switch (Lex.getKind()) {
5948   default: return TokError("expected binary operation in atomicrmw");
5949   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
5950   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
5951   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
5952   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
5953   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
5954   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
5955   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
5956   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
5957   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
5958   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
5959   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
5960   }
5961   Lex.Lex();  // Eat the operation.
5962 
5963   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5964       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
5965       ParseTypeAndValue(Val, ValLoc, PFS) ||
5966       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5967     return true;
5968 
5969   if (Ordering == Unordered)
5970     return TokError("atomicrmw cannot be unordered");
5971   if (!Ptr->getType()->isPointerTy())
5972     return Error(PtrLoc, "atomicrmw operand must be a pointer");
5973   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5974     return Error(ValLoc, "atomicrmw value and pointer type do not match");
5975   if (!Val->getType()->isIntegerTy())
5976     return Error(ValLoc, "atomicrmw operand must be an integer");
5977   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
5978   if (Size < 8 || (Size & (Size - 1)))
5979     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
5980                          " integer");
5981 
5982   AtomicRMWInst *RMWI =
5983     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
5984   RMWI->setVolatile(isVolatile);
5985   Inst = RMWI;
5986   return AteExtraComma ? InstExtraComma : InstNormal;
5987 }
5988 
5989 /// ParseFence
5990 ///   ::= 'fence' 'singlethread'? AtomicOrdering
5991 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
5992   AtomicOrdering Ordering = NotAtomic;
5993   SynchronizationScope Scope = CrossThread;
5994   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5995     return true;
5996 
5997   if (Ordering == Unordered)
5998     return TokError("fence cannot be unordered");
5999   if (Ordering == Monotonic)
6000     return TokError("fence cannot be monotonic");
6001 
6002   Inst = new FenceInst(Context, Ordering, Scope);
6003   return InstNormal;
6004 }
6005 
6006 /// ParseGetElementPtr
6007 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6008 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6009   Value *Ptr = nullptr;
6010   Value *Val = nullptr;
6011   LocTy Loc, EltLoc;
6012 
6013   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6014 
6015   Type *Ty = nullptr;
6016   LocTy ExplicitTypeLoc = Lex.getLoc();
6017   if (ParseType(Ty) ||
6018       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6019       ParseTypeAndValue(Ptr, Loc, PFS))
6020     return true;
6021 
6022   Type *BaseType = Ptr->getType();
6023   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6024   if (!BasePointerType)
6025     return Error(Loc, "base of getelementptr must be a pointer");
6026 
6027   if (Ty != BasePointerType->getElementType())
6028     return Error(ExplicitTypeLoc,
6029                  "explicit pointee type doesn't match operand's pointee type");
6030 
6031   SmallVector<Value*, 16> Indices;
6032   bool AteExtraComma = false;
6033   // GEP returns a vector of pointers if at least one of parameters is a vector.
6034   // All vector parameters should have the same vector width.
6035   unsigned GEPWidth = BaseType->isVectorTy() ?
6036     BaseType->getVectorNumElements() : 0;
6037 
6038   while (EatIfPresent(lltok::comma)) {
6039     if (Lex.getKind() == lltok::MetadataVar) {
6040       AteExtraComma = true;
6041       break;
6042     }
6043     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6044     if (!Val->getType()->getScalarType()->isIntegerTy())
6045       return Error(EltLoc, "getelementptr index must be an integer");
6046 
6047     if (Val->getType()->isVectorTy()) {
6048       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6049       if (GEPWidth && GEPWidth != ValNumEl)
6050         return Error(EltLoc,
6051           "getelementptr vector index has a wrong number of elements");
6052       GEPWidth = ValNumEl;
6053     }
6054     Indices.push_back(Val);
6055   }
6056 
6057   SmallPtrSet<Type*, 4> Visited;
6058   if (!Indices.empty() && !Ty->isSized(&Visited))
6059     return Error(Loc, "base element of getelementptr must be sized");
6060 
6061   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6062     return Error(Loc, "invalid getelementptr indices");
6063   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6064   if (InBounds)
6065     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6066   return AteExtraComma ? InstExtraComma : InstNormal;
6067 }
6068 
6069 /// ParseExtractValue
6070 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6071 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6072   Value *Val; LocTy Loc;
6073   SmallVector<unsigned, 4> Indices;
6074   bool AteExtraComma;
6075   if (ParseTypeAndValue(Val, Loc, PFS) ||
6076       ParseIndexList(Indices, AteExtraComma))
6077     return true;
6078 
6079   if (!Val->getType()->isAggregateType())
6080     return Error(Loc, "extractvalue operand must be aggregate type");
6081 
6082   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6083     return Error(Loc, "invalid indices for extractvalue");
6084   Inst = ExtractValueInst::Create(Val, Indices);
6085   return AteExtraComma ? InstExtraComma : InstNormal;
6086 }
6087 
6088 /// ParseInsertValue
6089 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6090 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6091   Value *Val0, *Val1; LocTy Loc0, Loc1;
6092   SmallVector<unsigned, 4> Indices;
6093   bool AteExtraComma;
6094   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6095       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6096       ParseTypeAndValue(Val1, Loc1, PFS) ||
6097       ParseIndexList(Indices, AteExtraComma))
6098     return true;
6099 
6100   if (!Val0->getType()->isAggregateType())
6101     return Error(Loc0, "insertvalue operand must be aggregate type");
6102 
6103   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6104   if (!IndexedType)
6105     return Error(Loc0, "invalid indices for insertvalue");
6106   if (IndexedType != Val1->getType())
6107     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6108                            getTypeString(Val1->getType()) + "' instead of '" +
6109                            getTypeString(IndexedType) + "'");
6110   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6111   return AteExtraComma ? InstExtraComma : InstNormal;
6112 }
6113 
6114 //===----------------------------------------------------------------------===//
6115 // Embedded metadata.
6116 //===----------------------------------------------------------------------===//
6117 
6118 /// ParseMDNodeVector
6119 ///   ::= { Element (',' Element)* }
6120 /// Element
6121 ///   ::= 'null' | TypeAndValue
6122 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6123   if (ParseToken(lltok::lbrace, "expected '{' here"))
6124     return true;
6125 
6126   // Check for an empty list.
6127   if (EatIfPresent(lltok::rbrace))
6128     return false;
6129 
6130   do {
6131     // Null is a special case since it is typeless.
6132     if (EatIfPresent(lltok::kw_null)) {
6133       Elts.push_back(nullptr);
6134       continue;
6135     }
6136 
6137     Metadata *MD;
6138     if (ParseMetadata(MD, nullptr))
6139       return true;
6140     Elts.push_back(MD);
6141   } while (EatIfPresent(lltok::comma));
6142 
6143   return ParseToken(lltok::rbrace, "expected end of metadata node");
6144 }
6145 
6146 //===----------------------------------------------------------------------===//
6147 // Use-list order directives.
6148 //===----------------------------------------------------------------------===//
6149 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6150                                 SMLoc Loc) {
6151   if (V->use_empty())
6152     return Error(Loc, "value has no uses");
6153 
6154   unsigned NumUses = 0;
6155   SmallDenseMap<const Use *, unsigned, 16> Order;
6156   for (const Use &U : V->uses()) {
6157     if (++NumUses > Indexes.size())
6158       break;
6159     Order[&U] = Indexes[NumUses - 1];
6160   }
6161   if (NumUses < 2)
6162     return Error(Loc, "value only has one use");
6163   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6164     return Error(Loc, "wrong number of indexes, expected " +
6165                           Twine(std::distance(V->use_begin(), V->use_end())));
6166 
6167   V->sortUseList([&](const Use &L, const Use &R) {
6168     return Order.lookup(&L) < Order.lookup(&R);
6169   });
6170   return false;
6171 }
6172 
6173 /// ParseUseListOrderIndexes
6174 ///   ::= '{' uint32 (',' uint32)+ '}'
6175 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6176   SMLoc Loc = Lex.getLoc();
6177   if (ParseToken(lltok::lbrace, "expected '{' here"))
6178     return true;
6179   if (Lex.getKind() == lltok::rbrace)
6180     return Lex.Error("expected non-empty list of uselistorder indexes");
6181 
6182   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6183   // indexes should be distinct numbers in the range [0, size-1], and should
6184   // not be in order.
6185   unsigned Offset = 0;
6186   unsigned Max = 0;
6187   bool IsOrdered = true;
6188   assert(Indexes.empty() && "Expected empty order vector");
6189   do {
6190     unsigned Index;
6191     if (ParseUInt32(Index))
6192       return true;
6193 
6194     // Update consistency checks.
6195     Offset += Index - Indexes.size();
6196     Max = std::max(Max, Index);
6197     IsOrdered &= Index == Indexes.size();
6198 
6199     Indexes.push_back(Index);
6200   } while (EatIfPresent(lltok::comma));
6201 
6202   if (ParseToken(lltok::rbrace, "expected '}' here"))
6203     return true;
6204 
6205   if (Indexes.size() < 2)
6206     return Error(Loc, "expected >= 2 uselistorder indexes");
6207   if (Offset != 0 || Max >= Indexes.size())
6208     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6209   if (IsOrdered)
6210     return Error(Loc, "expected uselistorder indexes to change the order");
6211 
6212   return false;
6213 }
6214 
6215 /// ParseUseListOrder
6216 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6217 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6218   SMLoc Loc = Lex.getLoc();
6219   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6220     return true;
6221 
6222   Value *V;
6223   SmallVector<unsigned, 16> Indexes;
6224   if (ParseTypeAndValue(V, PFS) ||
6225       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6226       ParseUseListOrderIndexes(Indexes))
6227     return true;
6228 
6229   return sortUseListOrder(V, Indexes, Loc);
6230 }
6231 
6232 /// ParseUseListOrderBB
6233 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6234 bool LLParser::ParseUseListOrderBB() {
6235   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6236   SMLoc Loc = Lex.getLoc();
6237   Lex.Lex();
6238 
6239   ValID Fn, Label;
6240   SmallVector<unsigned, 16> Indexes;
6241   if (ParseValID(Fn) ||
6242       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6243       ParseValID(Label) ||
6244       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6245       ParseUseListOrderIndexes(Indexes))
6246     return true;
6247 
6248   // Check the function.
6249   GlobalValue *GV;
6250   if (Fn.Kind == ValID::t_GlobalName)
6251     GV = M->getNamedValue(Fn.StrVal);
6252   else if (Fn.Kind == ValID::t_GlobalID)
6253     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6254   else
6255     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6256   if (!GV)
6257     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6258   auto *F = dyn_cast<Function>(GV);
6259   if (!F)
6260     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6261   if (F->isDeclaration())
6262     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6263 
6264   // Check the basic block.
6265   if (Label.Kind == ValID::t_LocalID)
6266     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6267   if (Label.Kind != ValID::t_LocalName)
6268     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6269   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
6270   if (!V)
6271     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6272   if (!isa<BasicBlock>(V))
6273     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6274 
6275   return sortUseListOrder(V, Indexes, Loc);
6276 }
6277