1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return Error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (ParseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return ParseTopLevelEntities() || ValidateEndOfModule(UpgradeDebugInfo) ||
81          ValidateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (ParseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return Error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (ParseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::ValidateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return Error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return Error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return Error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return Error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                  "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return Error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                  Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return Error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                  Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::ValidateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return Error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return Error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return Error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::ParseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (ParseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (ParseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::ParseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (ParseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (ParseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:         return TokError("expected top-level entity");
345     case lltok::Eof: return false;
346     case lltok::kw_declare: if (ParseDeclare()) return true; break;
347     case lltok::kw_define:  if (ParseDefine()) return true; break;
348     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
349     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
350     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
351     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
352     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
353     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
354     case lltok::ComdatVar:  if (parseComdat()) return true; break;
355     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
356     case lltok::SummaryID:
357       if (ParseSummaryEntry())
358         return true;
359       break;
360     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
361     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
362     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
363     case lltok::kw_uselistorder_bb:
364       if (ParseUseListOrderBB())
365         return true;
366       break;
367     }
368   }
369 }
370 
371 /// toplevelentity
372 ///   ::= 'module' 'asm' STRINGCONSTANT
373 bool LLParser::ParseModuleAsm() {
374   assert(Lex.getKind() == lltok::kw_module);
375   Lex.Lex();
376 
377   std::string AsmStr;
378   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
379       ParseStringConstant(AsmStr)) return true;
380 
381   M->appendModuleInlineAsm(AsmStr);
382   return false;
383 }
384 
385 /// toplevelentity
386 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
387 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
388 bool LLParser::ParseTargetDefinition() {
389   assert(Lex.getKind() == lltok::kw_target);
390   std::string Str;
391   switch (Lex.Lex()) {
392   default: return TokError("unknown target property");
393   case lltok::kw_triple:
394     Lex.Lex();
395     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
396         ParseStringConstant(Str))
397       return true;
398     M->setTargetTriple(Str);
399     return false;
400   case lltok::kw_datalayout:
401     Lex.Lex();
402     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
403         ParseStringConstant(Str))
404       return true;
405     M->setDataLayout(Str);
406     return false;
407   }
408 }
409 
410 /// toplevelentity
411 ///   ::= 'source_filename' '=' STRINGCONSTANT
412 bool LLParser::ParseSourceFileName() {
413   assert(Lex.getKind() == lltok::kw_source_filename);
414   Lex.Lex();
415   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
416       ParseStringConstant(SourceFileName))
417     return true;
418   if (M)
419     M->setSourceFileName(SourceFileName);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'deplibs' '=' '[' ']'
425 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
426 /// FIXME: Remove in 4.0. Currently parse, but ignore.
427 bool LLParser::ParseDepLibs() {
428   assert(Lex.getKind() == lltok::kw_deplibs);
429   Lex.Lex();
430   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
431       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
432     return true;
433 
434   if (EatIfPresent(lltok::rsquare))
435     return false;
436 
437   do {
438     std::string Str;
439     if (ParseStringConstant(Str)) return true;
440   } while (EatIfPresent(lltok::comma));
441 
442   return ParseToken(lltok::rsquare, "expected ']' at end of list");
443 }
444 
445 /// ParseUnnamedType:
446 ///   ::= LocalVarID '=' 'type' type
447 bool LLParser::ParseUnnamedType() {
448   LocTy TypeLoc = Lex.getLoc();
449   unsigned TypeID = Lex.getUIntVal();
450   Lex.Lex(); // eat LocalVarID;
451 
452   if (ParseToken(lltok::equal, "expected '=' after name") ||
453       ParseToken(lltok::kw_type, "expected 'type' after '='"))
454     return true;
455 
456   Type *Result = nullptr;
457   if (ParseStructDefinition(TypeLoc, "",
458                             NumberedTypes[TypeID], Result)) return true;
459 
460   if (!isa<StructType>(Result)) {
461     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
462     if (Entry.first)
463       return Error(TypeLoc, "non-struct types may not be recursive");
464     Entry.first = Result;
465     Entry.second = SMLoc();
466   }
467 
468   return false;
469 }
470 
471 /// toplevelentity
472 ///   ::= LocalVar '=' 'type' type
473 bool LLParser::ParseNamedType() {
474   std::string Name = Lex.getStrVal();
475   LocTy NameLoc = Lex.getLoc();
476   Lex.Lex();  // eat LocalVar.
477 
478   if (ParseToken(lltok::equal, "expected '=' after name") ||
479       ParseToken(lltok::kw_type, "expected 'type' after name"))
480     return true;
481 
482   Type *Result = nullptr;
483   if (ParseStructDefinition(NameLoc, Name,
484                             NamedTypes[Name], Result)) return true;
485 
486   if (!isa<StructType>(Result)) {
487     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
488     if (Entry.first)
489       return Error(NameLoc, "non-struct types may not be recursive");
490     Entry.first = Result;
491     Entry.second = SMLoc();
492   }
493 
494   return false;
495 }
496 
497 /// toplevelentity
498 ///   ::= 'declare' FunctionHeader
499 bool LLParser::ParseDeclare() {
500   assert(Lex.getKind() == lltok::kw_declare);
501   Lex.Lex();
502 
503   std::vector<std::pair<unsigned, MDNode *>> MDs;
504   while (Lex.getKind() == lltok::MetadataVar) {
505     unsigned MDK;
506     MDNode *N;
507     if (ParseMetadataAttachment(MDK, N))
508       return true;
509     MDs.push_back({MDK, N});
510   }
511 
512   Function *F;
513   if (ParseFunctionHeader(F, false))
514     return true;
515   for (auto &MD : MDs)
516     F->addMetadata(MD.first, *MD.second);
517   return false;
518 }
519 
520 /// toplevelentity
521 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
522 bool LLParser::ParseDefine() {
523   assert(Lex.getKind() == lltok::kw_define);
524   Lex.Lex();
525 
526   Function *F;
527   return ParseFunctionHeader(F, true) ||
528          ParseOptionalFunctionMetadata(*F) ||
529          ParseFunctionBody(*F);
530 }
531 
532 /// ParseGlobalType
533 ///   ::= 'constant'
534 ///   ::= 'global'
535 bool LLParser::ParseGlobalType(bool &IsConstant) {
536   if (Lex.getKind() == lltok::kw_constant)
537     IsConstant = true;
538   else if (Lex.getKind() == lltok::kw_global)
539     IsConstant = false;
540   else {
541     IsConstant = false;
542     return TokError("expected 'global' or 'constant'");
543   }
544   Lex.Lex();
545   return false;
546 }
547 
548 bool LLParser::ParseOptionalUnnamedAddr(
549     GlobalVariable::UnnamedAddr &UnnamedAddr) {
550   if (EatIfPresent(lltok::kw_unnamed_addr))
551     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
552   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
553     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
554   else
555     UnnamedAddr = GlobalValue::UnnamedAddr::None;
556   return false;
557 }
558 
559 /// ParseUnnamedGlobal:
560 ///   OptionalVisibility (ALIAS | IFUNC) ...
561 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
562 ///   OptionalDLLStorageClass
563 ///                                                     ...   -> global variable
564 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
565 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
566 ///                OptionalDLLStorageClass
567 ///                                                     ...   -> global variable
568 bool LLParser::ParseUnnamedGlobal() {
569   unsigned VarID = NumberedVals.size();
570   std::string Name;
571   LocTy NameLoc = Lex.getLoc();
572 
573   // Handle the GlobalID form.
574   if (Lex.getKind() == lltok::GlobalID) {
575     if (Lex.getUIntVal() != VarID)
576       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
577                    Twine(VarID) + "'");
578     Lex.Lex(); // eat GlobalID;
579 
580     if (ParseToken(lltok::equal, "expected '=' after name"))
581       return true;
582   }
583 
584   bool HasLinkage;
585   unsigned Linkage, Visibility, DLLStorageClass;
586   bool DSOLocal;
587   GlobalVariable::ThreadLocalMode TLM;
588   GlobalVariable::UnnamedAddr UnnamedAddr;
589   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
590                            DSOLocal) ||
591       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
592     return true;
593 
594   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
595     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
596                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
597 
598   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
599                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
600 }
601 
602 /// ParseNamedGlobal:
603 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///                 OptionalVisibility OptionalDLLStorageClass
606 ///                                                     ...   -> global variable
607 bool LLParser::ParseNamedGlobal() {
608   assert(Lex.getKind() == lltok::GlobalVar);
609   LocTy NameLoc = Lex.getLoc();
610   std::string Name = Lex.getStrVal();
611   Lex.Lex();
612 
613   bool HasLinkage;
614   unsigned Linkage, Visibility, DLLStorageClass;
615   bool DSOLocal;
616   GlobalVariable::ThreadLocalMode TLM;
617   GlobalVariable::UnnamedAddr UnnamedAddr;
618   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
619       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
620                            DSOLocal) ||
621       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
622     return true;
623 
624   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
625     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
626                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
627 
628   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
629                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
630 }
631 
632 bool LLParser::parseComdat() {
633   assert(Lex.getKind() == lltok::ComdatVar);
634   std::string Name = Lex.getStrVal();
635   LocTy NameLoc = Lex.getLoc();
636   Lex.Lex();
637 
638   if (ParseToken(lltok::equal, "expected '=' here"))
639     return true;
640 
641   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
642     return TokError("expected comdat type");
643 
644   Comdat::SelectionKind SK;
645   switch (Lex.getKind()) {
646   default:
647     return TokError("unknown selection kind");
648   case lltok::kw_any:
649     SK = Comdat::Any;
650     break;
651   case lltok::kw_exactmatch:
652     SK = Comdat::ExactMatch;
653     break;
654   case lltok::kw_largest:
655     SK = Comdat::Largest;
656     break;
657   case lltok::kw_noduplicates:
658     SK = Comdat::NoDuplicates;
659     break;
660   case lltok::kw_samesize:
661     SK = Comdat::SameSize;
662     break;
663   }
664   Lex.Lex();
665 
666   // See if the comdat was forward referenced, if so, use the comdat.
667   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
668   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
669   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
670     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
671 
672   Comdat *C;
673   if (I != ComdatSymTab.end())
674     C = &I->second;
675   else
676     C = M->getOrInsertComdat(Name);
677   C->setSelectionKind(SK);
678 
679   return false;
680 }
681 
682 // MDString:
683 //   ::= '!' STRINGCONSTANT
684 bool LLParser::ParseMDString(MDString *&Result) {
685   std::string Str;
686   if (ParseStringConstant(Str)) return true;
687   Result = MDString::get(Context, Str);
688   return false;
689 }
690 
691 // MDNode:
692 //   ::= '!' MDNodeNumber
693 bool LLParser::ParseMDNodeID(MDNode *&Result) {
694   // !{ ..., !42, ... }
695   LocTy IDLoc = Lex.getLoc();
696   unsigned MID = 0;
697   if (ParseUInt32(MID))
698     return true;
699 
700   // If not a forward reference, just return it now.
701   if (NumberedMetadata.count(MID)) {
702     Result = NumberedMetadata[MID];
703     return false;
704   }
705 
706   // Otherwise, create MDNode forward reference.
707   auto &FwdRef = ForwardRefMDNodes[MID];
708   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
709 
710   Result = FwdRef.first.get();
711   NumberedMetadata[MID].reset(Result);
712   return false;
713 }
714 
715 /// ParseNamedMetadata:
716 ///   !foo = !{ !1, !2 }
717 bool LLParser::ParseNamedMetadata() {
718   assert(Lex.getKind() == lltok::MetadataVar);
719   std::string Name = Lex.getStrVal();
720   Lex.Lex();
721 
722   if (ParseToken(lltok::equal, "expected '=' here") ||
723       ParseToken(lltok::exclaim, "Expected '!' here") ||
724       ParseToken(lltok::lbrace, "Expected '{' here"))
725     return true;
726 
727   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
728   if (Lex.getKind() != lltok::rbrace)
729     do {
730       MDNode *N = nullptr;
731       // Parse DIExpressions inline as a special case. They are still MDNodes,
732       // so they can still appear in named metadata. Remove this logic if they
733       // become plain Metadata.
734       if (Lex.getKind() == lltok::MetadataVar &&
735           Lex.getStrVal() == "DIExpression") {
736         if (ParseDIExpression(N, /*IsDistinct=*/false))
737           return true;
738       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
739                  ParseMDNodeID(N)) {
740         return true;
741       }
742       NMD->addOperand(N);
743     } while (EatIfPresent(lltok::comma));
744 
745   return ParseToken(lltok::rbrace, "expected end of metadata node");
746 }
747 
748 /// ParseStandaloneMetadata:
749 ///   !42 = !{...}
750 bool LLParser::ParseStandaloneMetadata() {
751   assert(Lex.getKind() == lltok::exclaim);
752   Lex.Lex();
753   unsigned MetadataID = 0;
754 
755   MDNode *Init;
756   if (ParseUInt32(MetadataID) ||
757       ParseToken(lltok::equal, "expected '=' here"))
758     return true;
759 
760   // Detect common error, from old metadata syntax.
761   if (Lex.getKind() == lltok::Type)
762     return TokError("unexpected type in metadata definition");
763 
764   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
765   if (Lex.getKind() == lltok::MetadataVar) {
766     if (ParseSpecializedMDNode(Init, IsDistinct))
767       return true;
768   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
769              ParseMDTuple(Init, IsDistinct))
770     return true;
771 
772   // See if this was forward referenced, if so, handle it.
773   auto FI = ForwardRefMDNodes.find(MetadataID);
774   if (FI != ForwardRefMDNodes.end()) {
775     FI->second.first->replaceAllUsesWith(Init);
776     ForwardRefMDNodes.erase(FI);
777 
778     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
779   } else {
780     if (NumberedMetadata.count(MetadataID))
781       return TokError("Metadata id is already used");
782     NumberedMetadata[MetadataID].reset(Init);
783   }
784 
785   return false;
786 }
787 
788 // Skips a single module summary entry.
789 bool LLParser::SkipModuleSummaryEntry() {
790   // Each module summary entry consists of a tag for the entry
791   // type, followed by a colon, then the fields surrounded by nested sets of
792   // parentheses. The "tag:" looks like a Label. Once parsing support is
793   // in place we will look for the tokens corresponding to the expected tags.
794   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
795       Lex.getKind() != lltok::kw_typeid)
796     return TokError(
797         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
798   Lex.Lex();
799   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
800       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
801     return true;
802   // Now walk through the parenthesized entry, until the number of open
803   // parentheses goes back down to 0 (the first '(' was parsed above).
804   unsigned NumOpenParen = 1;
805   do {
806     switch (Lex.getKind()) {
807     case lltok::lparen:
808       NumOpenParen++;
809       break;
810     case lltok::rparen:
811       NumOpenParen--;
812       break;
813     case lltok::Eof:
814       return TokError("found end of file while parsing summary entry");
815     default:
816       // Skip everything in between parentheses.
817       break;
818     }
819     Lex.Lex();
820   } while (NumOpenParen > 0);
821   return false;
822 }
823 
824 /// SummaryEntry
825 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
826 bool LLParser::ParseSummaryEntry() {
827   assert(Lex.getKind() == lltok::SummaryID);
828   unsigned SummaryID = Lex.getUIntVal();
829 
830   // For summary entries, colons should be treated as distinct tokens,
831   // not an indication of the end of a label token.
832   Lex.setIgnoreColonInIdentifiers(true);
833 
834   Lex.Lex();
835   if (ParseToken(lltok::equal, "expected '=' here"))
836     return true;
837 
838   // If we don't have an index object, skip the summary entry.
839   if (!Index)
840     return SkipModuleSummaryEntry();
841 
842   bool result = false;
843   switch (Lex.getKind()) {
844   case lltok::kw_gv:
845     result = ParseGVEntry(SummaryID);
846     break;
847   case lltok::kw_module:
848     result = ParseModuleEntry(SummaryID);
849     break;
850   case lltok::kw_typeid:
851     result = ParseTypeIdEntry(SummaryID);
852     break;
853   case lltok::kw_typeidCompatibleVTable:
854     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
855     break;
856   case lltok::kw_flags:
857     result = ParseSummaryIndexFlags();
858     break;
859   case lltok::kw_blockcount:
860     result = ParseBlockCount();
861     break;
862   default:
863     result = Error(Lex.getLoc(), "unexpected summary kind");
864     break;
865   }
866   Lex.setIgnoreColonInIdentifiers(false);
867   return result;
868 }
869 
870 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
871   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
872          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
873 }
874 
875 // If there was an explicit dso_local, update GV. In the absence of an explicit
876 // dso_local we keep the default value.
877 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
878   if (DSOLocal)
879     GV.setDSOLocal(true);
880 }
881 
882 /// parseIndirectSymbol:
883 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
884 ///                     OptionalVisibility OptionalDLLStorageClass
885 ///                     OptionalThreadLocal OptionalUnnamedAddr
886 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
887 ///
888 /// IndirectSymbol
889 ///   ::= TypeAndValue
890 ///
891 /// IndirectSymbolAttr
892 ///   ::= ',' 'partition' StringConstant
893 ///
894 /// Everything through OptionalUnnamedAddr has already been parsed.
895 ///
896 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
897                                    unsigned L, unsigned Visibility,
898                                    unsigned DLLStorageClass, bool DSOLocal,
899                                    GlobalVariable::ThreadLocalMode TLM,
900                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
901   bool IsAlias;
902   if (Lex.getKind() == lltok::kw_alias)
903     IsAlias = true;
904   else if (Lex.getKind() == lltok::kw_ifunc)
905     IsAlias = false;
906   else
907     llvm_unreachable("Not an alias or ifunc!");
908   Lex.Lex();
909 
910   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
911 
912   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
913     return Error(NameLoc, "invalid linkage type for alias");
914 
915   if (!isValidVisibilityForLinkage(Visibility, L))
916     return Error(NameLoc,
917                  "symbol with local linkage must have default visibility");
918 
919   Type *Ty;
920   LocTy ExplicitTypeLoc = Lex.getLoc();
921   if (ParseType(Ty) ||
922       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
923     return true;
924 
925   Constant *Aliasee;
926   LocTy AliaseeLoc = Lex.getLoc();
927   if (Lex.getKind() != lltok::kw_bitcast &&
928       Lex.getKind() != lltok::kw_getelementptr &&
929       Lex.getKind() != lltok::kw_addrspacecast &&
930       Lex.getKind() != lltok::kw_inttoptr) {
931     if (ParseGlobalTypeAndValue(Aliasee))
932       return true;
933   } else {
934     // The bitcast dest type is not present, it is implied by the dest type.
935     ValID ID;
936     if (ParseValID(ID))
937       return true;
938     if (ID.Kind != ValID::t_Constant)
939       return Error(AliaseeLoc, "invalid aliasee");
940     Aliasee = ID.ConstantVal;
941   }
942 
943   Type *AliaseeType = Aliasee->getType();
944   auto *PTy = dyn_cast<PointerType>(AliaseeType);
945   if (!PTy)
946     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
947   unsigned AddrSpace = PTy->getAddressSpace();
948 
949   if (IsAlias && Ty != PTy->getElementType())
950     return Error(
951         ExplicitTypeLoc,
952         "explicit pointee type doesn't match operand's pointee type");
953 
954   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
955     return Error(
956         ExplicitTypeLoc,
957         "explicit pointee type should be a function type");
958 
959   GlobalValue *GVal = nullptr;
960 
961   // See if the alias was forward referenced, if so, prepare to replace the
962   // forward reference.
963   if (!Name.empty()) {
964     GVal = M->getNamedValue(Name);
965     if (GVal) {
966       if (!ForwardRefVals.erase(Name))
967         return Error(NameLoc, "redefinition of global '@" + Name + "'");
968     }
969   } else {
970     auto I = ForwardRefValIDs.find(NumberedVals.size());
971     if (I != ForwardRefValIDs.end()) {
972       GVal = I->second.first;
973       ForwardRefValIDs.erase(I);
974     }
975   }
976 
977   // Okay, create the alias but do not insert it into the module yet.
978   std::unique_ptr<GlobalIndirectSymbol> GA;
979   if (IsAlias)
980     GA.reset(GlobalAlias::create(Ty, AddrSpace,
981                                  (GlobalValue::LinkageTypes)Linkage, Name,
982                                  Aliasee, /*Parent*/ nullptr));
983   else
984     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
985                                  (GlobalValue::LinkageTypes)Linkage, Name,
986                                  Aliasee, /*Parent*/ nullptr));
987   GA->setThreadLocalMode(TLM);
988   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
989   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
990   GA->setUnnamedAddr(UnnamedAddr);
991   maybeSetDSOLocal(DSOLocal, *GA);
992 
993   // At this point we've parsed everything except for the IndirectSymbolAttrs.
994   // Now parse them if there are any.
995   while (Lex.getKind() == lltok::comma) {
996     Lex.Lex();
997 
998     if (Lex.getKind() == lltok::kw_partition) {
999       Lex.Lex();
1000       GA->setPartition(Lex.getStrVal());
1001       if (ParseToken(lltok::StringConstant, "expected partition string"))
1002         return true;
1003     } else {
1004       return TokError("unknown alias or ifunc property!");
1005     }
1006   }
1007 
1008   if (Name.empty())
1009     NumberedVals.push_back(GA.get());
1010 
1011   if (GVal) {
1012     // Verify that types agree.
1013     if (GVal->getType() != GA->getType())
1014       return Error(
1015           ExplicitTypeLoc,
1016           "forward reference and definition of alias have different types");
1017 
1018     // If they agree, just RAUW the old value with the alias and remove the
1019     // forward ref info.
1020     GVal->replaceAllUsesWith(GA.get());
1021     GVal->eraseFromParent();
1022   }
1023 
1024   // Insert into the module, we know its name won't collide now.
1025   if (IsAlias)
1026     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1027   else
1028     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1029   assert(GA->getName() == Name && "Should not be a name conflict!");
1030 
1031   // The module owns this now
1032   GA.release();
1033 
1034   return false;
1035 }
1036 
1037 /// ParseGlobal
1038 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1039 ///       OptionalVisibility OptionalDLLStorageClass
1040 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1041 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1042 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1043 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1044 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1045 ///       Const OptionalAttrs
1046 ///
1047 /// Everything up to and including OptionalUnnamedAddr has been parsed
1048 /// already.
1049 ///
1050 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1051                            unsigned Linkage, bool HasLinkage,
1052                            unsigned Visibility, unsigned DLLStorageClass,
1053                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1054                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1055   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1056     return Error(NameLoc,
1057                  "symbol with local linkage must have default visibility");
1058 
1059   unsigned AddrSpace;
1060   bool IsConstant, IsExternallyInitialized;
1061   LocTy IsExternallyInitializedLoc;
1062   LocTy TyLoc;
1063 
1064   Type *Ty = nullptr;
1065   if (ParseOptionalAddrSpace(AddrSpace) ||
1066       ParseOptionalToken(lltok::kw_externally_initialized,
1067                          IsExternallyInitialized,
1068                          &IsExternallyInitializedLoc) ||
1069       ParseGlobalType(IsConstant) ||
1070       ParseType(Ty, TyLoc))
1071     return true;
1072 
1073   // If the linkage is specified and is external, then no initializer is
1074   // present.
1075   Constant *Init = nullptr;
1076   if (!HasLinkage ||
1077       !GlobalValue::isValidDeclarationLinkage(
1078           (GlobalValue::LinkageTypes)Linkage)) {
1079     if (ParseGlobalValue(Ty, Init))
1080       return true;
1081   }
1082 
1083   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1084     return Error(TyLoc, "invalid type for global variable");
1085 
1086   GlobalValue *GVal = nullptr;
1087 
1088   // See if the global was forward referenced, if so, use the global.
1089   if (!Name.empty()) {
1090     GVal = M->getNamedValue(Name);
1091     if (GVal) {
1092       if (!ForwardRefVals.erase(Name))
1093         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1094     }
1095   } else {
1096     auto I = ForwardRefValIDs.find(NumberedVals.size());
1097     if (I != ForwardRefValIDs.end()) {
1098       GVal = I->second.first;
1099       ForwardRefValIDs.erase(I);
1100     }
1101   }
1102 
1103   GlobalVariable *GV;
1104   if (!GVal) {
1105     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1106                             Name, nullptr, GlobalVariable::NotThreadLocal,
1107                             AddrSpace);
1108   } else {
1109     if (GVal->getValueType() != Ty)
1110       return Error(TyLoc,
1111             "forward reference and definition of global have different types");
1112 
1113     GV = cast<GlobalVariable>(GVal);
1114 
1115     // Move the forward-reference to the correct spot in the module.
1116     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1117   }
1118 
1119   if (Name.empty())
1120     NumberedVals.push_back(GV);
1121 
1122   // Set the parsed properties on the global.
1123   if (Init)
1124     GV->setInitializer(Init);
1125   GV->setConstant(IsConstant);
1126   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1127   maybeSetDSOLocal(DSOLocal, *GV);
1128   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1129   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1130   GV->setExternallyInitialized(IsExternallyInitialized);
1131   GV->setThreadLocalMode(TLM);
1132   GV->setUnnamedAddr(UnnamedAddr);
1133 
1134   // Parse attributes on the global.
1135   while (Lex.getKind() == lltok::comma) {
1136     Lex.Lex();
1137 
1138     if (Lex.getKind() == lltok::kw_section) {
1139       Lex.Lex();
1140       GV->setSection(Lex.getStrVal());
1141       if (ParseToken(lltok::StringConstant, "expected global section string"))
1142         return true;
1143     } else if (Lex.getKind() == lltok::kw_partition) {
1144       Lex.Lex();
1145       GV->setPartition(Lex.getStrVal());
1146       if (ParseToken(lltok::StringConstant, "expected partition string"))
1147         return true;
1148     } else if (Lex.getKind() == lltok::kw_align) {
1149       MaybeAlign Alignment;
1150       if (ParseOptionalAlignment(Alignment)) return true;
1151       GV->setAlignment(Alignment);
1152     } else if (Lex.getKind() == lltok::MetadataVar) {
1153       if (ParseGlobalObjectMetadataAttachment(*GV))
1154         return true;
1155     } else {
1156       Comdat *C;
1157       if (parseOptionalComdat(Name, C))
1158         return true;
1159       if (C)
1160         GV->setComdat(C);
1161       else
1162         return TokError("unknown global variable property!");
1163     }
1164   }
1165 
1166   AttrBuilder Attrs;
1167   LocTy BuiltinLoc;
1168   std::vector<unsigned> FwdRefAttrGrps;
1169   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1170     return true;
1171   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1172     GV->setAttributes(AttributeSet::get(Context, Attrs));
1173     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1174   }
1175 
1176   return false;
1177 }
1178 
1179 /// ParseUnnamedAttrGrp
1180 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1181 bool LLParser::ParseUnnamedAttrGrp() {
1182   assert(Lex.getKind() == lltok::kw_attributes);
1183   LocTy AttrGrpLoc = Lex.getLoc();
1184   Lex.Lex();
1185 
1186   if (Lex.getKind() != lltok::AttrGrpID)
1187     return TokError("expected attribute group id");
1188 
1189   unsigned VarID = Lex.getUIntVal();
1190   std::vector<unsigned> unused;
1191   LocTy BuiltinLoc;
1192   Lex.Lex();
1193 
1194   if (ParseToken(lltok::equal, "expected '=' here") ||
1195       ParseToken(lltok::lbrace, "expected '{' here") ||
1196       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1197                                  BuiltinLoc) ||
1198       ParseToken(lltok::rbrace, "expected end of attribute group"))
1199     return true;
1200 
1201   if (!NumberedAttrBuilders[VarID].hasAttributes())
1202     return Error(AttrGrpLoc, "attribute group has no attributes");
1203 
1204   return false;
1205 }
1206 
1207 /// ParseFnAttributeValuePairs
1208 ///   ::= <attr> | <attr> '=' <value>
1209 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1210                                           std::vector<unsigned> &FwdRefAttrGrps,
1211                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1212   bool HaveError = false;
1213 
1214   B.clear();
1215 
1216   while (true) {
1217     lltok::Kind Token = Lex.getKind();
1218     if (Token == lltok::kw_builtin)
1219       BuiltinLoc = Lex.getLoc();
1220     switch (Token) {
1221     default:
1222       if (!inAttrGrp) return HaveError;
1223       return Error(Lex.getLoc(), "unterminated attribute group");
1224     case lltok::rbrace:
1225       // Finished.
1226       return false;
1227 
1228     case lltok::AttrGrpID: {
1229       // Allow a function to reference an attribute group:
1230       //
1231       //   define void @foo() #1 { ... }
1232       if (inAttrGrp)
1233         HaveError |=
1234           Error(Lex.getLoc(),
1235               "cannot have an attribute group reference in an attribute group");
1236 
1237       unsigned AttrGrpNum = Lex.getUIntVal();
1238       if (inAttrGrp) break;
1239 
1240       // Save the reference to the attribute group. We'll fill it in later.
1241       FwdRefAttrGrps.push_back(AttrGrpNum);
1242       break;
1243     }
1244     // Target-dependent attributes:
1245     case lltok::StringConstant: {
1246       if (ParseStringAttribute(B))
1247         return true;
1248       continue;
1249     }
1250 
1251     // Target-independent attributes:
1252     case lltok::kw_align: {
1253       // As a hack, we allow function alignment to be initially parsed as an
1254       // attribute on a function declaration/definition or added to an attribute
1255       // group and later moved to the alignment field.
1256       MaybeAlign Alignment;
1257       if (inAttrGrp) {
1258         Lex.Lex();
1259         uint32_t Value = 0;
1260         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1261           return true;
1262         Alignment = Align(Value);
1263       } else {
1264         if (ParseOptionalAlignment(Alignment))
1265           return true;
1266       }
1267       B.addAlignmentAttr(Alignment);
1268       continue;
1269     }
1270     case lltok::kw_alignstack: {
1271       unsigned Alignment;
1272       if (inAttrGrp) {
1273         Lex.Lex();
1274         if (ParseToken(lltok::equal, "expected '=' here") ||
1275             ParseUInt32(Alignment))
1276           return true;
1277       } else {
1278         if (ParseOptionalStackAlignment(Alignment))
1279           return true;
1280       }
1281       B.addStackAlignmentAttr(Alignment);
1282       continue;
1283     }
1284     case lltok::kw_allocsize: {
1285       unsigned ElemSizeArg;
1286       Optional<unsigned> NumElemsArg;
1287       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1288       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1289         return true;
1290       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1291       continue;
1292     }
1293     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1294     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1295     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1296     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1297     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1298     case lltok::kw_inaccessiblememonly:
1299       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1300     case lltok::kw_inaccessiblemem_or_argmemonly:
1301       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1302     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1303     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1304     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1305     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1306     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1307     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1308     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1309     case lltok::kw_noimplicitfloat:
1310       B.addAttribute(Attribute::NoImplicitFloat); break;
1311     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1312     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1313     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1314     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1315     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1316     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1317     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1318     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1319     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1320     case lltok::kw_null_pointer_is_valid:
1321       B.addAttribute(Attribute::NullPointerIsValid); break;
1322     case lltok::kw_optforfuzzing:
1323       B.addAttribute(Attribute::OptForFuzzing); break;
1324     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1325     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1326     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1327     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1328     case lltok::kw_returns_twice:
1329       B.addAttribute(Attribute::ReturnsTwice); break;
1330     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1331     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1332     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1333     case lltok::kw_sspstrong:
1334       B.addAttribute(Attribute::StackProtectStrong); break;
1335     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1336     case lltok::kw_shadowcallstack:
1337       B.addAttribute(Attribute::ShadowCallStack); break;
1338     case lltok::kw_sanitize_address:
1339       B.addAttribute(Attribute::SanitizeAddress); break;
1340     case lltok::kw_sanitize_hwaddress:
1341       B.addAttribute(Attribute::SanitizeHWAddress); break;
1342     case lltok::kw_sanitize_memtag:
1343       B.addAttribute(Attribute::SanitizeMemTag); break;
1344     case lltok::kw_sanitize_thread:
1345       B.addAttribute(Attribute::SanitizeThread); break;
1346     case lltok::kw_sanitize_memory:
1347       B.addAttribute(Attribute::SanitizeMemory); break;
1348     case lltok::kw_speculative_load_hardening:
1349       B.addAttribute(Attribute::SpeculativeLoadHardening);
1350       break;
1351     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1352     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1353     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1354     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1355     case lltok::kw_preallocated: {
1356       Type *Ty;
1357       if (ParsePreallocated(Ty))
1358         return true;
1359       B.addPreallocatedAttr(Ty);
1360       break;
1361     }
1362 
1363     // Error handling.
1364     case lltok::kw_inreg:
1365     case lltok::kw_signext:
1366     case lltok::kw_zeroext:
1367       HaveError |=
1368         Error(Lex.getLoc(),
1369               "invalid use of attribute on a function");
1370       break;
1371     case lltok::kw_byval:
1372     case lltok::kw_dereferenceable:
1373     case lltok::kw_dereferenceable_or_null:
1374     case lltok::kw_inalloca:
1375     case lltok::kw_nest:
1376     case lltok::kw_noalias:
1377     case lltok::kw_nocapture:
1378     case lltok::kw_nonnull:
1379     case lltok::kw_returned:
1380     case lltok::kw_sret:
1381     case lltok::kw_swifterror:
1382     case lltok::kw_swiftself:
1383     case lltok::kw_immarg:
1384       HaveError |=
1385         Error(Lex.getLoc(),
1386               "invalid use of parameter-only attribute on a function");
1387       break;
1388     }
1389 
1390     // ParsePreallocated() consumes token
1391     if (Token != lltok::kw_preallocated)
1392       Lex.Lex();
1393   }
1394 }
1395 
1396 //===----------------------------------------------------------------------===//
1397 // GlobalValue Reference/Resolution Routines.
1398 //===----------------------------------------------------------------------===//
1399 
1400 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1401                                               const std::string &Name) {
1402   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1403     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1404                             PTy->getAddressSpace(), Name, M);
1405   else
1406     return new GlobalVariable(*M, PTy->getElementType(), false,
1407                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1408                               nullptr, GlobalVariable::NotThreadLocal,
1409                               PTy->getAddressSpace());
1410 }
1411 
1412 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1413                                         Value *Val, bool IsCall) {
1414   if (Val->getType() == Ty)
1415     return Val;
1416   // For calls we also accept variables in the program address space.
1417   Type *SuggestedTy = Ty;
1418   if (IsCall && isa<PointerType>(Ty)) {
1419     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1420         M->getDataLayout().getProgramAddressSpace());
1421     SuggestedTy = TyInProgAS;
1422     if (Val->getType() == TyInProgAS)
1423       return Val;
1424   }
1425   if (Ty->isLabelTy())
1426     Error(Loc, "'" + Name + "' is not a basic block");
1427   else
1428     Error(Loc, "'" + Name + "' defined with type '" +
1429                    getTypeString(Val->getType()) + "' but expected '" +
1430                    getTypeString(SuggestedTy) + "'");
1431   return nullptr;
1432 }
1433 
1434 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1435 /// forward reference record if needed.  This can return null if the value
1436 /// exists but does not have the right type.
1437 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1438                                     LocTy Loc, bool IsCall) {
1439   PointerType *PTy = dyn_cast<PointerType>(Ty);
1440   if (!PTy) {
1441     Error(Loc, "global variable reference must have pointer type");
1442     return nullptr;
1443   }
1444 
1445   // Look this name up in the normal function symbol table.
1446   GlobalValue *Val =
1447     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1448 
1449   // If this is a forward reference for the value, see if we already created a
1450   // forward ref record.
1451   if (!Val) {
1452     auto I = ForwardRefVals.find(Name);
1453     if (I != ForwardRefVals.end())
1454       Val = I->second.first;
1455   }
1456 
1457   // If we have the value in the symbol table or fwd-ref table, return it.
1458   if (Val)
1459     return cast_or_null<GlobalValue>(
1460         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1461 
1462   // Otherwise, create a new forward reference for this value and remember it.
1463   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1464   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1465   return FwdVal;
1466 }
1467 
1468 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1469                                     bool IsCall) {
1470   PointerType *PTy = dyn_cast<PointerType>(Ty);
1471   if (!PTy) {
1472     Error(Loc, "global variable reference must have pointer type");
1473     return nullptr;
1474   }
1475 
1476   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1477 
1478   // If this is a forward reference for the value, see if we already created a
1479   // forward ref record.
1480   if (!Val) {
1481     auto I = ForwardRefValIDs.find(ID);
1482     if (I != ForwardRefValIDs.end())
1483       Val = I->second.first;
1484   }
1485 
1486   // If we have the value in the symbol table or fwd-ref table, return it.
1487   if (Val)
1488     return cast_or_null<GlobalValue>(
1489         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1490 
1491   // Otherwise, create a new forward reference for this value and remember it.
1492   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1493   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1494   return FwdVal;
1495 }
1496 
1497 //===----------------------------------------------------------------------===//
1498 // Comdat Reference/Resolution Routines.
1499 //===----------------------------------------------------------------------===//
1500 
1501 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1502   // Look this name up in the comdat symbol table.
1503   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1504   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1505   if (I != ComdatSymTab.end())
1506     return &I->second;
1507 
1508   // Otherwise, create a new forward reference for this value and remember it.
1509   Comdat *C = M->getOrInsertComdat(Name);
1510   ForwardRefComdats[Name] = Loc;
1511   return C;
1512 }
1513 
1514 //===----------------------------------------------------------------------===//
1515 // Helper Routines.
1516 //===----------------------------------------------------------------------===//
1517 
1518 /// ParseToken - If the current token has the specified kind, eat it and return
1519 /// success.  Otherwise, emit the specified error and return failure.
1520 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1521   if (Lex.getKind() != T)
1522     return TokError(ErrMsg);
1523   Lex.Lex();
1524   return false;
1525 }
1526 
1527 /// ParseStringConstant
1528 ///   ::= StringConstant
1529 bool LLParser::ParseStringConstant(std::string &Result) {
1530   if (Lex.getKind() != lltok::StringConstant)
1531     return TokError("expected string constant");
1532   Result = Lex.getStrVal();
1533   Lex.Lex();
1534   return false;
1535 }
1536 
1537 /// ParseUInt32
1538 ///   ::= uint32
1539 bool LLParser::ParseUInt32(uint32_t &Val) {
1540   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1541     return TokError("expected integer");
1542   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1543   if (Val64 != unsigned(Val64))
1544     return TokError("expected 32-bit integer (too large)");
1545   Val = Val64;
1546   Lex.Lex();
1547   return false;
1548 }
1549 
1550 /// ParseUInt64
1551 ///   ::= uint64
1552 bool LLParser::ParseUInt64(uint64_t &Val) {
1553   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1554     return TokError("expected integer");
1555   Val = Lex.getAPSIntVal().getLimitedValue();
1556   Lex.Lex();
1557   return false;
1558 }
1559 
1560 /// ParseTLSModel
1561 ///   := 'localdynamic'
1562 ///   := 'initialexec'
1563 ///   := 'localexec'
1564 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1565   switch (Lex.getKind()) {
1566     default:
1567       return TokError("expected localdynamic, initialexec or localexec");
1568     case lltok::kw_localdynamic:
1569       TLM = GlobalVariable::LocalDynamicTLSModel;
1570       break;
1571     case lltok::kw_initialexec:
1572       TLM = GlobalVariable::InitialExecTLSModel;
1573       break;
1574     case lltok::kw_localexec:
1575       TLM = GlobalVariable::LocalExecTLSModel;
1576       break;
1577   }
1578 
1579   Lex.Lex();
1580   return false;
1581 }
1582 
1583 /// ParseOptionalThreadLocal
1584 ///   := /*empty*/
1585 ///   := 'thread_local'
1586 ///   := 'thread_local' '(' tlsmodel ')'
1587 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1588   TLM = GlobalVariable::NotThreadLocal;
1589   if (!EatIfPresent(lltok::kw_thread_local))
1590     return false;
1591 
1592   TLM = GlobalVariable::GeneralDynamicTLSModel;
1593   if (Lex.getKind() == lltok::lparen) {
1594     Lex.Lex();
1595     return ParseTLSModel(TLM) ||
1596       ParseToken(lltok::rparen, "expected ')' after thread local model");
1597   }
1598   return false;
1599 }
1600 
1601 /// ParseOptionalAddrSpace
1602 ///   := /*empty*/
1603 ///   := 'addrspace' '(' uint32 ')'
1604 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1605   AddrSpace = DefaultAS;
1606   if (!EatIfPresent(lltok::kw_addrspace))
1607     return false;
1608   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1609          ParseUInt32(AddrSpace) ||
1610          ParseToken(lltok::rparen, "expected ')' in address space");
1611 }
1612 
1613 /// ParseStringAttribute
1614 ///   := StringConstant
1615 ///   := StringConstant '=' StringConstant
1616 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1617   std::string Attr = Lex.getStrVal();
1618   Lex.Lex();
1619   std::string Val;
1620   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1621     return true;
1622   B.addAttribute(Attr, Val);
1623   return false;
1624 }
1625 
1626 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1627 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1628   bool HaveError = false;
1629 
1630   B.clear();
1631 
1632   while (true) {
1633     lltok::Kind Token = Lex.getKind();
1634     switch (Token) {
1635     default:  // End of attributes.
1636       return HaveError;
1637     case lltok::StringConstant: {
1638       if (ParseStringAttribute(B))
1639         return true;
1640       continue;
1641     }
1642     case lltok::kw_align: {
1643       MaybeAlign Alignment;
1644       if (ParseOptionalAlignment(Alignment))
1645         return true;
1646       B.addAlignmentAttr(Alignment);
1647       continue;
1648     }
1649     case lltok::kw_byval: {
1650       Type *Ty;
1651       if (ParseByValWithOptionalType(Ty))
1652         return true;
1653       B.addByValAttr(Ty);
1654       continue;
1655     }
1656     case lltok::kw_preallocated: {
1657       Type *Ty;
1658       if (ParsePreallocated(Ty))
1659         return true;
1660       B.addPreallocatedAttr(Ty);
1661       continue;
1662     }
1663     case lltok::kw_dereferenceable: {
1664       uint64_t Bytes;
1665       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1666         return true;
1667       B.addDereferenceableAttr(Bytes);
1668       continue;
1669     }
1670     case lltok::kw_dereferenceable_or_null: {
1671       uint64_t Bytes;
1672       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1673         return true;
1674       B.addDereferenceableOrNullAttr(Bytes);
1675       continue;
1676     }
1677     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1678     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1679     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1680     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1681     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1682     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1683     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1684     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1685     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1686     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1687     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1688     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1689     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1690     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1691     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1692     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1693     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1694 
1695     case lltok::kw_alignstack:
1696     case lltok::kw_alwaysinline:
1697     case lltok::kw_argmemonly:
1698     case lltok::kw_builtin:
1699     case lltok::kw_inlinehint:
1700     case lltok::kw_jumptable:
1701     case lltok::kw_minsize:
1702     case lltok::kw_naked:
1703     case lltok::kw_nobuiltin:
1704     case lltok::kw_noduplicate:
1705     case lltok::kw_noimplicitfloat:
1706     case lltok::kw_noinline:
1707     case lltok::kw_nonlazybind:
1708     case lltok::kw_nomerge:
1709     case lltok::kw_noredzone:
1710     case lltok::kw_noreturn:
1711     case lltok::kw_nocf_check:
1712     case lltok::kw_nounwind:
1713     case lltok::kw_optforfuzzing:
1714     case lltok::kw_optnone:
1715     case lltok::kw_optsize:
1716     case lltok::kw_returns_twice:
1717     case lltok::kw_sanitize_address:
1718     case lltok::kw_sanitize_hwaddress:
1719     case lltok::kw_sanitize_memtag:
1720     case lltok::kw_sanitize_memory:
1721     case lltok::kw_sanitize_thread:
1722     case lltok::kw_speculative_load_hardening:
1723     case lltok::kw_ssp:
1724     case lltok::kw_sspreq:
1725     case lltok::kw_sspstrong:
1726     case lltok::kw_safestack:
1727     case lltok::kw_shadowcallstack:
1728     case lltok::kw_strictfp:
1729     case lltok::kw_uwtable:
1730       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1731       break;
1732     }
1733 
1734     Lex.Lex();
1735   }
1736 }
1737 
1738 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1739 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1740   bool HaveError = false;
1741 
1742   B.clear();
1743 
1744   while (true) {
1745     lltok::Kind Token = Lex.getKind();
1746     switch (Token) {
1747     default:  // End of attributes.
1748       return HaveError;
1749     case lltok::StringConstant: {
1750       if (ParseStringAttribute(B))
1751         return true;
1752       continue;
1753     }
1754     case lltok::kw_dereferenceable: {
1755       uint64_t Bytes;
1756       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1757         return true;
1758       B.addDereferenceableAttr(Bytes);
1759       continue;
1760     }
1761     case lltok::kw_dereferenceable_or_null: {
1762       uint64_t Bytes;
1763       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1764         return true;
1765       B.addDereferenceableOrNullAttr(Bytes);
1766       continue;
1767     }
1768     case lltok::kw_align: {
1769       MaybeAlign Alignment;
1770       if (ParseOptionalAlignment(Alignment))
1771         return true;
1772       B.addAlignmentAttr(Alignment);
1773       continue;
1774     }
1775     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1776     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1777     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1778     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1779     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1780 
1781     // Error handling.
1782     case lltok::kw_byval:
1783     case lltok::kw_inalloca:
1784     case lltok::kw_nest:
1785     case lltok::kw_nocapture:
1786     case lltok::kw_returned:
1787     case lltok::kw_sret:
1788     case lltok::kw_swifterror:
1789     case lltok::kw_swiftself:
1790     case lltok::kw_immarg:
1791       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1792       break;
1793 
1794     case lltok::kw_alignstack:
1795     case lltok::kw_alwaysinline:
1796     case lltok::kw_argmemonly:
1797     case lltok::kw_builtin:
1798     case lltok::kw_cold:
1799     case lltok::kw_inlinehint:
1800     case lltok::kw_jumptable:
1801     case lltok::kw_minsize:
1802     case lltok::kw_naked:
1803     case lltok::kw_nobuiltin:
1804     case lltok::kw_noduplicate:
1805     case lltok::kw_noimplicitfloat:
1806     case lltok::kw_noinline:
1807     case lltok::kw_nonlazybind:
1808     case lltok::kw_nomerge:
1809     case lltok::kw_noredzone:
1810     case lltok::kw_noreturn:
1811     case lltok::kw_nocf_check:
1812     case lltok::kw_nounwind:
1813     case lltok::kw_optforfuzzing:
1814     case lltok::kw_optnone:
1815     case lltok::kw_optsize:
1816     case lltok::kw_returns_twice:
1817     case lltok::kw_sanitize_address:
1818     case lltok::kw_sanitize_hwaddress:
1819     case lltok::kw_sanitize_memtag:
1820     case lltok::kw_sanitize_memory:
1821     case lltok::kw_sanitize_thread:
1822     case lltok::kw_speculative_load_hardening:
1823     case lltok::kw_ssp:
1824     case lltok::kw_sspreq:
1825     case lltok::kw_sspstrong:
1826     case lltok::kw_safestack:
1827     case lltok::kw_shadowcallstack:
1828     case lltok::kw_strictfp:
1829     case lltok::kw_uwtable:
1830       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1831       break;
1832     case lltok::kw_readnone:
1833     case lltok::kw_readonly:
1834       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1835       break;
1836     case lltok::kw_preallocated:
1837       HaveError |=
1838           Error(Lex.getLoc(),
1839                 "invalid use of parameter-only/call site-only attribute");
1840       break;
1841     }
1842 
1843     Lex.Lex();
1844   }
1845 }
1846 
1847 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1848   HasLinkage = true;
1849   switch (Kind) {
1850   default:
1851     HasLinkage = false;
1852     return GlobalValue::ExternalLinkage;
1853   case lltok::kw_private:
1854     return GlobalValue::PrivateLinkage;
1855   case lltok::kw_internal:
1856     return GlobalValue::InternalLinkage;
1857   case lltok::kw_weak:
1858     return GlobalValue::WeakAnyLinkage;
1859   case lltok::kw_weak_odr:
1860     return GlobalValue::WeakODRLinkage;
1861   case lltok::kw_linkonce:
1862     return GlobalValue::LinkOnceAnyLinkage;
1863   case lltok::kw_linkonce_odr:
1864     return GlobalValue::LinkOnceODRLinkage;
1865   case lltok::kw_available_externally:
1866     return GlobalValue::AvailableExternallyLinkage;
1867   case lltok::kw_appending:
1868     return GlobalValue::AppendingLinkage;
1869   case lltok::kw_common:
1870     return GlobalValue::CommonLinkage;
1871   case lltok::kw_extern_weak:
1872     return GlobalValue::ExternalWeakLinkage;
1873   case lltok::kw_external:
1874     return GlobalValue::ExternalLinkage;
1875   }
1876 }
1877 
1878 /// ParseOptionalLinkage
1879 ///   ::= /*empty*/
1880 ///   ::= 'private'
1881 ///   ::= 'internal'
1882 ///   ::= 'weak'
1883 ///   ::= 'weak_odr'
1884 ///   ::= 'linkonce'
1885 ///   ::= 'linkonce_odr'
1886 ///   ::= 'available_externally'
1887 ///   ::= 'appending'
1888 ///   ::= 'common'
1889 ///   ::= 'extern_weak'
1890 ///   ::= 'external'
1891 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1892                                     unsigned &Visibility,
1893                                     unsigned &DLLStorageClass,
1894                                     bool &DSOLocal) {
1895   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1896   if (HasLinkage)
1897     Lex.Lex();
1898   ParseOptionalDSOLocal(DSOLocal);
1899   ParseOptionalVisibility(Visibility);
1900   ParseOptionalDLLStorageClass(DLLStorageClass);
1901 
1902   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1903     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1904   }
1905 
1906   return false;
1907 }
1908 
1909 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1910   switch (Lex.getKind()) {
1911   default:
1912     DSOLocal = false;
1913     break;
1914   case lltok::kw_dso_local:
1915     DSOLocal = true;
1916     Lex.Lex();
1917     break;
1918   case lltok::kw_dso_preemptable:
1919     DSOLocal = false;
1920     Lex.Lex();
1921     break;
1922   }
1923 }
1924 
1925 /// ParseOptionalVisibility
1926 ///   ::= /*empty*/
1927 ///   ::= 'default'
1928 ///   ::= 'hidden'
1929 ///   ::= 'protected'
1930 ///
1931 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1932   switch (Lex.getKind()) {
1933   default:
1934     Res = GlobalValue::DefaultVisibility;
1935     return;
1936   case lltok::kw_default:
1937     Res = GlobalValue::DefaultVisibility;
1938     break;
1939   case lltok::kw_hidden:
1940     Res = GlobalValue::HiddenVisibility;
1941     break;
1942   case lltok::kw_protected:
1943     Res = GlobalValue::ProtectedVisibility;
1944     break;
1945   }
1946   Lex.Lex();
1947 }
1948 
1949 /// ParseOptionalDLLStorageClass
1950 ///   ::= /*empty*/
1951 ///   ::= 'dllimport'
1952 ///   ::= 'dllexport'
1953 ///
1954 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1955   switch (Lex.getKind()) {
1956   default:
1957     Res = GlobalValue::DefaultStorageClass;
1958     return;
1959   case lltok::kw_dllimport:
1960     Res = GlobalValue::DLLImportStorageClass;
1961     break;
1962   case lltok::kw_dllexport:
1963     Res = GlobalValue::DLLExportStorageClass;
1964     break;
1965   }
1966   Lex.Lex();
1967 }
1968 
1969 /// ParseOptionalCallingConv
1970 ///   ::= /*empty*/
1971 ///   ::= 'ccc'
1972 ///   ::= 'fastcc'
1973 ///   ::= 'intel_ocl_bicc'
1974 ///   ::= 'coldcc'
1975 ///   ::= 'cfguard_checkcc'
1976 ///   ::= 'x86_stdcallcc'
1977 ///   ::= 'x86_fastcallcc'
1978 ///   ::= 'x86_thiscallcc'
1979 ///   ::= 'x86_vectorcallcc'
1980 ///   ::= 'arm_apcscc'
1981 ///   ::= 'arm_aapcscc'
1982 ///   ::= 'arm_aapcs_vfpcc'
1983 ///   ::= 'aarch64_vector_pcs'
1984 ///   ::= 'aarch64_sve_vector_pcs'
1985 ///   ::= 'msp430_intrcc'
1986 ///   ::= 'avr_intrcc'
1987 ///   ::= 'avr_signalcc'
1988 ///   ::= 'ptx_kernel'
1989 ///   ::= 'ptx_device'
1990 ///   ::= 'spir_func'
1991 ///   ::= 'spir_kernel'
1992 ///   ::= 'x86_64_sysvcc'
1993 ///   ::= 'win64cc'
1994 ///   ::= 'webkit_jscc'
1995 ///   ::= 'anyregcc'
1996 ///   ::= 'preserve_mostcc'
1997 ///   ::= 'preserve_allcc'
1998 ///   ::= 'ghccc'
1999 ///   ::= 'swiftcc'
2000 ///   ::= 'x86_intrcc'
2001 ///   ::= 'hhvmcc'
2002 ///   ::= 'hhvm_ccc'
2003 ///   ::= 'cxx_fast_tlscc'
2004 ///   ::= 'amdgpu_vs'
2005 ///   ::= 'amdgpu_ls'
2006 ///   ::= 'amdgpu_hs'
2007 ///   ::= 'amdgpu_es'
2008 ///   ::= 'amdgpu_gs'
2009 ///   ::= 'amdgpu_ps'
2010 ///   ::= 'amdgpu_cs'
2011 ///   ::= 'amdgpu_kernel'
2012 ///   ::= 'tailcc'
2013 ///   ::= 'cc' UINT
2014 ///
2015 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
2016   switch (Lex.getKind()) {
2017   default:                       CC = CallingConv::C; return false;
2018   case lltok::kw_ccc:            CC = CallingConv::C; break;
2019   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2020   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2021   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2022   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2023   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2024   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2025   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2026   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2027   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2028   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2029   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2030   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2031   case lltok::kw_aarch64_sve_vector_pcs:
2032     CC = CallingConv::AArch64_SVE_VectorCall;
2033     break;
2034   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2035   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2036   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2037   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2038   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2039   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2040   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2041   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2042   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2043   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2044   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2045   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2046   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2047   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2048   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2049   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2050   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2051   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2052   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2053   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2054   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2055   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2056   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2057   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2058   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2059   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2060   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2061   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2062   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2063   case lltok::kw_cc: {
2064       Lex.Lex();
2065       return ParseUInt32(CC);
2066     }
2067   }
2068 
2069   Lex.Lex();
2070   return false;
2071 }
2072 
2073 /// ParseMetadataAttachment
2074 ///   ::= !dbg !42
2075 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2076   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2077 
2078   std::string Name = Lex.getStrVal();
2079   Kind = M->getMDKindID(Name);
2080   Lex.Lex();
2081 
2082   return ParseMDNode(MD);
2083 }
2084 
2085 /// ParseInstructionMetadata
2086 ///   ::= !dbg !42 (',' !dbg !57)*
2087 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2088   do {
2089     if (Lex.getKind() != lltok::MetadataVar)
2090       return TokError("expected metadata after comma");
2091 
2092     unsigned MDK;
2093     MDNode *N;
2094     if (ParseMetadataAttachment(MDK, N))
2095       return true;
2096 
2097     Inst.setMetadata(MDK, N);
2098     if (MDK == LLVMContext::MD_tbaa)
2099       InstsWithTBAATag.push_back(&Inst);
2100 
2101     // If this is the end of the list, we're done.
2102   } while (EatIfPresent(lltok::comma));
2103   return false;
2104 }
2105 
2106 /// ParseGlobalObjectMetadataAttachment
2107 ///   ::= !dbg !57
2108 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2109   unsigned MDK;
2110   MDNode *N;
2111   if (ParseMetadataAttachment(MDK, N))
2112     return true;
2113 
2114   GO.addMetadata(MDK, *N);
2115   return false;
2116 }
2117 
2118 /// ParseOptionalFunctionMetadata
2119 ///   ::= (!dbg !57)*
2120 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2121   while (Lex.getKind() == lltok::MetadataVar)
2122     if (ParseGlobalObjectMetadataAttachment(F))
2123       return true;
2124   return false;
2125 }
2126 
2127 /// ParseOptionalAlignment
2128 ///   ::= /* empty */
2129 ///   ::= 'align' 4
2130 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2131   Alignment = None;
2132   if (!EatIfPresent(lltok::kw_align))
2133     return false;
2134   LocTy AlignLoc = Lex.getLoc();
2135   uint32_t Value = 0;
2136   if (ParseUInt32(Value))
2137     return true;
2138   if (!isPowerOf2_32(Value))
2139     return Error(AlignLoc, "alignment is not a power of two");
2140   if (Value > Value::MaximumAlignment)
2141     return Error(AlignLoc, "huge alignments are not supported yet");
2142   Alignment = Align(Value);
2143   return false;
2144 }
2145 
2146 /// ParseOptionalDerefAttrBytes
2147 ///   ::= /* empty */
2148 ///   ::= AttrKind '(' 4 ')'
2149 ///
2150 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2151 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2152                                            uint64_t &Bytes) {
2153   assert((AttrKind == lltok::kw_dereferenceable ||
2154           AttrKind == lltok::kw_dereferenceable_or_null) &&
2155          "contract!");
2156 
2157   Bytes = 0;
2158   if (!EatIfPresent(AttrKind))
2159     return false;
2160   LocTy ParenLoc = Lex.getLoc();
2161   if (!EatIfPresent(lltok::lparen))
2162     return Error(ParenLoc, "expected '('");
2163   LocTy DerefLoc = Lex.getLoc();
2164   if (ParseUInt64(Bytes)) return true;
2165   ParenLoc = Lex.getLoc();
2166   if (!EatIfPresent(lltok::rparen))
2167     return Error(ParenLoc, "expected ')'");
2168   if (!Bytes)
2169     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2170   return false;
2171 }
2172 
2173 /// ParseOptionalCommaAlign
2174 ///   ::=
2175 ///   ::= ',' align 4
2176 ///
2177 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2178 /// end.
2179 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2180                                        bool &AteExtraComma) {
2181   AteExtraComma = false;
2182   while (EatIfPresent(lltok::comma)) {
2183     // Metadata at the end is an early exit.
2184     if (Lex.getKind() == lltok::MetadataVar) {
2185       AteExtraComma = true;
2186       return false;
2187     }
2188 
2189     if (Lex.getKind() != lltok::kw_align)
2190       return Error(Lex.getLoc(), "expected metadata or 'align'");
2191 
2192     if (ParseOptionalAlignment(Alignment)) return true;
2193   }
2194 
2195   return false;
2196 }
2197 
2198 /// ParseOptionalCommaAddrSpace
2199 ///   ::=
2200 ///   ::= ',' addrspace(1)
2201 ///
2202 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2203 /// end.
2204 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2205                                            LocTy &Loc,
2206                                            bool &AteExtraComma) {
2207   AteExtraComma = false;
2208   while (EatIfPresent(lltok::comma)) {
2209     // Metadata at the end is an early exit.
2210     if (Lex.getKind() == lltok::MetadataVar) {
2211       AteExtraComma = true;
2212       return false;
2213     }
2214 
2215     Loc = Lex.getLoc();
2216     if (Lex.getKind() != lltok::kw_addrspace)
2217       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2218 
2219     if (ParseOptionalAddrSpace(AddrSpace))
2220       return true;
2221   }
2222 
2223   return false;
2224 }
2225 
2226 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2227                                        Optional<unsigned> &HowManyArg) {
2228   Lex.Lex();
2229 
2230   auto StartParen = Lex.getLoc();
2231   if (!EatIfPresent(lltok::lparen))
2232     return Error(StartParen, "expected '('");
2233 
2234   if (ParseUInt32(BaseSizeArg))
2235     return true;
2236 
2237   if (EatIfPresent(lltok::comma)) {
2238     auto HowManyAt = Lex.getLoc();
2239     unsigned HowMany;
2240     if (ParseUInt32(HowMany))
2241       return true;
2242     if (HowMany == BaseSizeArg)
2243       return Error(HowManyAt,
2244                    "'allocsize' indices can't refer to the same parameter");
2245     HowManyArg = HowMany;
2246   } else
2247     HowManyArg = None;
2248 
2249   auto EndParen = Lex.getLoc();
2250   if (!EatIfPresent(lltok::rparen))
2251     return Error(EndParen, "expected ')'");
2252   return false;
2253 }
2254 
2255 /// ParseScopeAndOrdering
2256 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2257 ///   else: ::=
2258 ///
2259 /// This sets Scope and Ordering to the parsed values.
2260 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2261                                      AtomicOrdering &Ordering) {
2262   if (!isAtomic)
2263     return false;
2264 
2265   return ParseScope(SSID) || ParseOrdering(Ordering);
2266 }
2267 
2268 /// ParseScope
2269 ///   ::= syncscope("singlethread" | "<target scope>")?
2270 ///
2271 /// This sets synchronization scope ID to the ID of the parsed value.
2272 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2273   SSID = SyncScope::System;
2274   if (EatIfPresent(lltok::kw_syncscope)) {
2275     auto StartParenAt = Lex.getLoc();
2276     if (!EatIfPresent(lltok::lparen))
2277       return Error(StartParenAt, "Expected '(' in syncscope");
2278 
2279     std::string SSN;
2280     auto SSNAt = Lex.getLoc();
2281     if (ParseStringConstant(SSN))
2282       return Error(SSNAt, "Expected synchronization scope name");
2283 
2284     auto EndParenAt = Lex.getLoc();
2285     if (!EatIfPresent(lltok::rparen))
2286       return Error(EndParenAt, "Expected ')' in syncscope");
2287 
2288     SSID = Context.getOrInsertSyncScopeID(SSN);
2289   }
2290 
2291   return false;
2292 }
2293 
2294 /// ParseOrdering
2295 ///   ::= AtomicOrdering
2296 ///
2297 /// This sets Ordering to the parsed value.
2298 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2299   switch (Lex.getKind()) {
2300   default: return TokError("Expected ordering on atomic instruction");
2301   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2302   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2303   // Not specified yet:
2304   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2305   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2306   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2307   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2308   case lltok::kw_seq_cst:
2309     Ordering = AtomicOrdering::SequentiallyConsistent;
2310     break;
2311   }
2312   Lex.Lex();
2313   return false;
2314 }
2315 
2316 /// ParseOptionalStackAlignment
2317 ///   ::= /* empty */
2318 ///   ::= 'alignstack' '(' 4 ')'
2319 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2320   Alignment = 0;
2321   if (!EatIfPresent(lltok::kw_alignstack))
2322     return false;
2323   LocTy ParenLoc = Lex.getLoc();
2324   if (!EatIfPresent(lltok::lparen))
2325     return Error(ParenLoc, "expected '('");
2326   LocTy AlignLoc = Lex.getLoc();
2327   if (ParseUInt32(Alignment)) return true;
2328   ParenLoc = Lex.getLoc();
2329   if (!EatIfPresent(lltok::rparen))
2330     return Error(ParenLoc, "expected ')'");
2331   if (!isPowerOf2_32(Alignment))
2332     return Error(AlignLoc, "stack alignment is not a power of two");
2333   return false;
2334 }
2335 
2336 /// ParseIndexList - This parses the index list for an insert/extractvalue
2337 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2338 /// comma at the end of the line and find that it is followed by metadata.
2339 /// Clients that don't allow metadata can call the version of this function that
2340 /// only takes one argument.
2341 ///
2342 /// ParseIndexList
2343 ///    ::=  (',' uint32)+
2344 ///
2345 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2346                               bool &AteExtraComma) {
2347   AteExtraComma = false;
2348 
2349   if (Lex.getKind() != lltok::comma)
2350     return TokError("expected ',' as start of index list");
2351 
2352   while (EatIfPresent(lltok::comma)) {
2353     if (Lex.getKind() == lltok::MetadataVar) {
2354       if (Indices.empty()) return TokError("expected index");
2355       AteExtraComma = true;
2356       return false;
2357     }
2358     unsigned Idx = 0;
2359     if (ParseUInt32(Idx)) return true;
2360     Indices.push_back(Idx);
2361   }
2362 
2363   return false;
2364 }
2365 
2366 //===----------------------------------------------------------------------===//
2367 // Type Parsing.
2368 //===----------------------------------------------------------------------===//
2369 
2370 /// ParseType - Parse a type.
2371 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2372   SMLoc TypeLoc = Lex.getLoc();
2373   switch (Lex.getKind()) {
2374   default:
2375     return TokError(Msg);
2376   case lltok::Type:
2377     // Type ::= 'float' | 'void' (etc)
2378     Result = Lex.getTyVal();
2379     Lex.Lex();
2380     break;
2381   case lltok::lbrace:
2382     // Type ::= StructType
2383     if (ParseAnonStructType(Result, false))
2384       return true;
2385     break;
2386   case lltok::lsquare:
2387     // Type ::= '[' ... ']'
2388     Lex.Lex(); // eat the lsquare.
2389     if (ParseArrayVectorType(Result, false))
2390       return true;
2391     break;
2392   case lltok::less: // Either vector or packed struct.
2393     // Type ::= '<' ... '>'
2394     Lex.Lex();
2395     if (Lex.getKind() == lltok::lbrace) {
2396       if (ParseAnonStructType(Result, true) ||
2397           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2398         return true;
2399     } else if (ParseArrayVectorType(Result, true))
2400       return true;
2401     break;
2402   case lltok::LocalVar: {
2403     // Type ::= %foo
2404     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2405 
2406     // If the type hasn't been defined yet, create a forward definition and
2407     // remember where that forward def'n was seen (in case it never is defined).
2408     if (!Entry.first) {
2409       Entry.first = StructType::create(Context, Lex.getStrVal());
2410       Entry.second = Lex.getLoc();
2411     }
2412     Result = Entry.first;
2413     Lex.Lex();
2414     break;
2415   }
2416 
2417   case lltok::LocalVarID: {
2418     // Type ::= %4
2419     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2420 
2421     // If the type hasn't been defined yet, create a forward definition and
2422     // remember where that forward def'n was seen (in case it never is defined).
2423     if (!Entry.first) {
2424       Entry.first = StructType::create(Context);
2425       Entry.second = Lex.getLoc();
2426     }
2427     Result = Entry.first;
2428     Lex.Lex();
2429     break;
2430   }
2431   }
2432 
2433   // Parse the type suffixes.
2434   while (true) {
2435     switch (Lex.getKind()) {
2436     // End of type.
2437     default:
2438       if (!AllowVoid && Result->isVoidTy())
2439         return Error(TypeLoc, "void type only allowed for function results");
2440       return false;
2441 
2442     // Type ::= Type '*'
2443     case lltok::star:
2444       if (Result->isLabelTy())
2445         return TokError("basic block pointers are invalid");
2446       if (Result->isVoidTy())
2447         return TokError("pointers to void are invalid - use i8* instead");
2448       if (!PointerType::isValidElementType(Result))
2449         return TokError("pointer to this type is invalid");
2450       Result = PointerType::getUnqual(Result);
2451       Lex.Lex();
2452       break;
2453 
2454     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2455     case lltok::kw_addrspace: {
2456       if (Result->isLabelTy())
2457         return TokError("basic block pointers are invalid");
2458       if (Result->isVoidTy())
2459         return TokError("pointers to void are invalid; use i8* instead");
2460       if (!PointerType::isValidElementType(Result))
2461         return TokError("pointer to this type is invalid");
2462       unsigned AddrSpace;
2463       if (ParseOptionalAddrSpace(AddrSpace) ||
2464           ParseToken(lltok::star, "expected '*' in address space"))
2465         return true;
2466 
2467       Result = PointerType::get(Result, AddrSpace);
2468       break;
2469     }
2470 
2471     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2472     case lltok::lparen:
2473       if (ParseFunctionType(Result))
2474         return true;
2475       break;
2476     }
2477   }
2478 }
2479 
2480 /// ParseParameterList
2481 ///    ::= '(' ')'
2482 ///    ::= '(' Arg (',' Arg)* ')'
2483 ///  Arg
2484 ///    ::= Type OptionalAttributes Value OptionalAttributes
2485 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2486                                   PerFunctionState &PFS, bool IsMustTailCall,
2487                                   bool InVarArgsFunc) {
2488   if (ParseToken(lltok::lparen, "expected '(' in call"))
2489     return true;
2490 
2491   while (Lex.getKind() != lltok::rparen) {
2492     // If this isn't the first argument, we need a comma.
2493     if (!ArgList.empty() &&
2494         ParseToken(lltok::comma, "expected ',' in argument list"))
2495       return true;
2496 
2497     // Parse an ellipsis if this is a musttail call in a variadic function.
2498     if (Lex.getKind() == lltok::dotdotdot) {
2499       const char *Msg = "unexpected ellipsis in argument list for ";
2500       if (!IsMustTailCall)
2501         return TokError(Twine(Msg) + "non-musttail call");
2502       if (!InVarArgsFunc)
2503         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2504       Lex.Lex();  // Lex the '...', it is purely for readability.
2505       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2506     }
2507 
2508     // Parse the argument.
2509     LocTy ArgLoc;
2510     Type *ArgTy = nullptr;
2511     AttrBuilder ArgAttrs;
2512     Value *V;
2513     if (ParseType(ArgTy, ArgLoc))
2514       return true;
2515 
2516     if (ArgTy->isMetadataTy()) {
2517       if (ParseMetadataAsValue(V, PFS))
2518         return true;
2519     } else {
2520       // Otherwise, handle normal operands.
2521       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2522         return true;
2523     }
2524     ArgList.push_back(ParamInfo(
2525         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2526   }
2527 
2528   if (IsMustTailCall && InVarArgsFunc)
2529     return TokError("expected '...' at end of argument list for musttail call "
2530                     "in varargs function");
2531 
2532   Lex.Lex();  // Lex the ')'.
2533   return false;
2534 }
2535 
2536 /// ParseByValWithOptionalType
2537 ///   ::= byval
2538 ///   ::= byval(<ty>)
2539 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2540   Result = nullptr;
2541   if (!EatIfPresent(lltok::kw_byval))
2542     return true;
2543   if (!EatIfPresent(lltok::lparen))
2544     return false;
2545   if (ParseType(Result))
2546     return true;
2547   if (!EatIfPresent(lltok::rparen))
2548     return Error(Lex.getLoc(), "expected ')'");
2549   return false;
2550 }
2551 
2552 /// ParsePreallocated
2553 ///   ::= preallocated(<ty>)
2554 bool LLParser::ParsePreallocated(Type *&Result) {
2555   Result = nullptr;
2556   if (!EatIfPresent(lltok::kw_preallocated))
2557     return true;
2558   if (!EatIfPresent(lltok::lparen))
2559     return Error(Lex.getLoc(), "expected '('");
2560   if (ParseType(Result))
2561     return true;
2562   if (!EatIfPresent(lltok::rparen))
2563     return Error(Lex.getLoc(), "expected ')'");
2564   return false;
2565 }
2566 
2567 /// ParseOptionalOperandBundles
2568 ///    ::= /*empty*/
2569 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2570 ///
2571 /// OperandBundle
2572 ///    ::= bundle-tag '(' ')'
2573 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2574 ///
2575 /// bundle-tag ::= String Constant
2576 bool LLParser::ParseOptionalOperandBundles(
2577     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2578   LocTy BeginLoc = Lex.getLoc();
2579   if (!EatIfPresent(lltok::lsquare))
2580     return false;
2581 
2582   while (Lex.getKind() != lltok::rsquare) {
2583     // If this isn't the first operand bundle, we need a comma.
2584     if (!BundleList.empty() &&
2585         ParseToken(lltok::comma, "expected ',' in input list"))
2586       return true;
2587 
2588     std::string Tag;
2589     if (ParseStringConstant(Tag))
2590       return true;
2591 
2592     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2593       return true;
2594 
2595     std::vector<Value *> Inputs;
2596     while (Lex.getKind() != lltok::rparen) {
2597       // If this isn't the first input, we need a comma.
2598       if (!Inputs.empty() &&
2599           ParseToken(lltok::comma, "expected ',' in input list"))
2600         return true;
2601 
2602       Type *Ty = nullptr;
2603       Value *Input = nullptr;
2604       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2605         return true;
2606       Inputs.push_back(Input);
2607     }
2608 
2609     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2610 
2611     Lex.Lex(); // Lex the ')'.
2612   }
2613 
2614   if (BundleList.empty())
2615     return Error(BeginLoc, "operand bundle set must not be empty");
2616 
2617   Lex.Lex(); // Lex the ']'.
2618   return false;
2619 }
2620 
2621 /// ParseArgumentList - Parse the argument list for a function type or function
2622 /// prototype.
2623 ///   ::= '(' ArgTypeListI ')'
2624 /// ArgTypeListI
2625 ///   ::= /*empty*/
2626 ///   ::= '...'
2627 ///   ::= ArgTypeList ',' '...'
2628 ///   ::= ArgType (',' ArgType)*
2629 ///
2630 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2631                                  bool &isVarArg){
2632   unsigned CurValID = 0;
2633   isVarArg = false;
2634   assert(Lex.getKind() == lltok::lparen);
2635   Lex.Lex(); // eat the (.
2636 
2637   if (Lex.getKind() == lltok::rparen) {
2638     // empty
2639   } else if (Lex.getKind() == lltok::dotdotdot) {
2640     isVarArg = true;
2641     Lex.Lex();
2642   } else {
2643     LocTy TypeLoc = Lex.getLoc();
2644     Type *ArgTy = nullptr;
2645     AttrBuilder Attrs;
2646     std::string Name;
2647 
2648     if (ParseType(ArgTy) ||
2649         ParseOptionalParamAttrs(Attrs)) return true;
2650 
2651     if (ArgTy->isVoidTy())
2652       return Error(TypeLoc, "argument can not have void type");
2653 
2654     if (Lex.getKind() == lltok::LocalVar) {
2655       Name = Lex.getStrVal();
2656       Lex.Lex();
2657     } else if (Lex.getKind() == lltok::LocalVarID) {
2658       if (Lex.getUIntVal() != CurValID)
2659         return Error(TypeLoc, "argument expected to be numbered '%" +
2660                                   Twine(CurValID) + "'");
2661       ++CurValID;
2662       Lex.Lex();
2663     }
2664 
2665     if (!FunctionType::isValidArgumentType(ArgTy))
2666       return Error(TypeLoc, "invalid type for function argument");
2667 
2668     ArgList.emplace_back(TypeLoc, ArgTy,
2669                          AttributeSet::get(ArgTy->getContext(), Attrs),
2670                          std::move(Name));
2671 
2672     while (EatIfPresent(lltok::comma)) {
2673       // Handle ... at end of arg list.
2674       if (EatIfPresent(lltok::dotdotdot)) {
2675         isVarArg = true;
2676         break;
2677       }
2678 
2679       // Otherwise must be an argument type.
2680       TypeLoc = Lex.getLoc();
2681       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2682 
2683       if (ArgTy->isVoidTy())
2684         return Error(TypeLoc, "argument can not have void type");
2685 
2686       if (Lex.getKind() == lltok::LocalVar) {
2687         Name = Lex.getStrVal();
2688         Lex.Lex();
2689       } else {
2690         if (Lex.getKind() == lltok::LocalVarID) {
2691           if (Lex.getUIntVal() != CurValID)
2692             return Error(TypeLoc, "argument expected to be numbered '%" +
2693                                       Twine(CurValID) + "'");
2694           Lex.Lex();
2695         }
2696         ++CurValID;
2697         Name = "";
2698       }
2699 
2700       if (!ArgTy->isFirstClassType())
2701         return Error(TypeLoc, "invalid type for function argument");
2702 
2703       ArgList.emplace_back(TypeLoc, ArgTy,
2704                            AttributeSet::get(ArgTy->getContext(), Attrs),
2705                            std::move(Name));
2706     }
2707   }
2708 
2709   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2710 }
2711 
2712 /// ParseFunctionType
2713 ///  ::= Type ArgumentList OptionalAttrs
2714 bool LLParser::ParseFunctionType(Type *&Result) {
2715   assert(Lex.getKind() == lltok::lparen);
2716 
2717   if (!FunctionType::isValidReturnType(Result))
2718     return TokError("invalid function return type");
2719 
2720   SmallVector<ArgInfo, 8> ArgList;
2721   bool isVarArg;
2722   if (ParseArgumentList(ArgList, isVarArg))
2723     return true;
2724 
2725   // Reject names on the arguments lists.
2726   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2727     if (!ArgList[i].Name.empty())
2728       return Error(ArgList[i].Loc, "argument name invalid in function type");
2729     if (ArgList[i].Attrs.hasAttributes())
2730       return Error(ArgList[i].Loc,
2731                    "argument attributes invalid in function type");
2732   }
2733 
2734   SmallVector<Type*, 16> ArgListTy;
2735   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2736     ArgListTy.push_back(ArgList[i].Ty);
2737 
2738   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2739   return false;
2740 }
2741 
2742 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2743 /// other structs.
2744 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2745   SmallVector<Type*, 8> Elts;
2746   if (ParseStructBody(Elts)) return true;
2747 
2748   Result = StructType::get(Context, Elts, Packed);
2749   return false;
2750 }
2751 
2752 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2753 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2754                                      std::pair<Type*, LocTy> &Entry,
2755                                      Type *&ResultTy) {
2756   // If the type was already defined, diagnose the redefinition.
2757   if (Entry.first && !Entry.second.isValid())
2758     return Error(TypeLoc, "redefinition of type");
2759 
2760   // If we have opaque, just return without filling in the definition for the
2761   // struct.  This counts as a definition as far as the .ll file goes.
2762   if (EatIfPresent(lltok::kw_opaque)) {
2763     // This type is being defined, so clear the location to indicate this.
2764     Entry.second = SMLoc();
2765 
2766     // If this type number has never been uttered, create it.
2767     if (!Entry.first)
2768       Entry.first = StructType::create(Context, Name);
2769     ResultTy = Entry.first;
2770     return false;
2771   }
2772 
2773   // If the type starts with '<', then it is either a packed struct or a vector.
2774   bool isPacked = EatIfPresent(lltok::less);
2775 
2776   // If we don't have a struct, then we have a random type alias, which we
2777   // accept for compatibility with old files.  These types are not allowed to be
2778   // forward referenced and not allowed to be recursive.
2779   if (Lex.getKind() != lltok::lbrace) {
2780     if (Entry.first)
2781       return Error(TypeLoc, "forward references to non-struct type");
2782 
2783     ResultTy = nullptr;
2784     if (isPacked)
2785       return ParseArrayVectorType(ResultTy, true);
2786     return ParseType(ResultTy);
2787   }
2788 
2789   // This type is being defined, so clear the location to indicate this.
2790   Entry.second = SMLoc();
2791 
2792   // If this type number has never been uttered, create it.
2793   if (!Entry.first)
2794     Entry.first = StructType::create(Context, Name);
2795 
2796   StructType *STy = cast<StructType>(Entry.first);
2797 
2798   SmallVector<Type*, 8> Body;
2799   if (ParseStructBody(Body) ||
2800       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2801     return true;
2802 
2803   STy->setBody(Body, isPacked);
2804   ResultTy = STy;
2805   return false;
2806 }
2807 
2808 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2809 ///   StructType
2810 ///     ::= '{' '}'
2811 ///     ::= '{' Type (',' Type)* '}'
2812 ///     ::= '<' '{' '}' '>'
2813 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2814 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2815   assert(Lex.getKind() == lltok::lbrace);
2816   Lex.Lex(); // Consume the '{'
2817 
2818   // Handle the empty struct.
2819   if (EatIfPresent(lltok::rbrace))
2820     return false;
2821 
2822   LocTy EltTyLoc = Lex.getLoc();
2823   Type *Ty = nullptr;
2824   if (ParseType(Ty)) return true;
2825   Body.push_back(Ty);
2826 
2827   if (!StructType::isValidElementType(Ty))
2828     return Error(EltTyLoc, "invalid element type for struct");
2829 
2830   while (EatIfPresent(lltok::comma)) {
2831     EltTyLoc = Lex.getLoc();
2832     if (ParseType(Ty)) return true;
2833 
2834     if (!StructType::isValidElementType(Ty))
2835       return Error(EltTyLoc, "invalid element type for struct");
2836 
2837     Body.push_back(Ty);
2838   }
2839 
2840   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2841 }
2842 
2843 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2844 /// token has already been consumed.
2845 ///   Type
2846 ///     ::= '[' APSINTVAL 'x' Types ']'
2847 ///     ::= '<' APSINTVAL 'x' Types '>'
2848 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2849 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2850   bool Scalable = false;
2851 
2852   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2853     Lex.Lex(); // consume the 'vscale'
2854     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2855       return true;
2856 
2857     Scalable = true;
2858   }
2859 
2860   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2861       Lex.getAPSIntVal().getBitWidth() > 64)
2862     return TokError("expected number in address space");
2863 
2864   LocTy SizeLoc = Lex.getLoc();
2865   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2866   Lex.Lex();
2867 
2868   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2869       return true;
2870 
2871   LocTy TypeLoc = Lex.getLoc();
2872   Type *EltTy = nullptr;
2873   if (ParseType(EltTy)) return true;
2874 
2875   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2876                  "expected end of sequential type"))
2877     return true;
2878 
2879   if (isVector) {
2880     if (Size == 0)
2881       return Error(SizeLoc, "zero element vector is illegal");
2882     if ((unsigned)Size != Size)
2883       return Error(SizeLoc, "size too large for vector");
2884     if (!VectorType::isValidElementType(EltTy))
2885       return Error(TypeLoc, "invalid vector element type");
2886     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2887   } else {
2888     if (!ArrayType::isValidElementType(EltTy))
2889       return Error(TypeLoc, "invalid array element type");
2890     Result = ArrayType::get(EltTy, Size);
2891   }
2892   return false;
2893 }
2894 
2895 //===----------------------------------------------------------------------===//
2896 // Function Semantic Analysis.
2897 //===----------------------------------------------------------------------===//
2898 
2899 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2900                                              int functionNumber)
2901   : P(p), F(f), FunctionNumber(functionNumber) {
2902 
2903   // Insert unnamed arguments into the NumberedVals list.
2904   for (Argument &A : F.args())
2905     if (!A.hasName())
2906       NumberedVals.push_back(&A);
2907 }
2908 
2909 LLParser::PerFunctionState::~PerFunctionState() {
2910   // If there were any forward referenced non-basicblock values, delete them.
2911 
2912   for (const auto &P : ForwardRefVals) {
2913     if (isa<BasicBlock>(P.second.first))
2914       continue;
2915     P.second.first->replaceAllUsesWith(
2916         UndefValue::get(P.second.first->getType()));
2917     P.second.first->deleteValue();
2918   }
2919 
2920   for (const auto &P : ForwardRefValIDs) {
2921     if (isa<BasicBlock>(P.second.first))
2922       continue;
2923     P.second.first->replaceAllUsesWith(
2924         UndefValue::get(P.second.first->getType()));
2925     P.second.first->deleteValue();
2926   }
2927 }
2928 
2929 bool LLParser::PerFunctionState::FinishFunction() {
2930   if (!ForwardRefVals.empty())
2931     return P.Error(ForwardRefVals.begin()->second.second,
2932                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2933                    "'");
2934   if (!ForwardRefValIDs.empty())
2935     return P.Error(ForwardRefValIDs.begin()->second.second,
2936                    "use of undefined value '%" +
2937                    Twine(ForwardRefValIDs.begin()->first) + "'");
2938   return false;
2939 }
2940 
2941 /// GetVal - Get a value with the specified name or ID, creating a
2942 /// forward reference record if needed.  This can return null if the value
2943 /// exists but does not have the right type.
2944 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2945                                           LocTy Loc, bool IsCall) {
2946   // Look this name up in the normal function symbol table.
2947   Value *Val = F.getValueSymbolTable()->lookup(Name);
2948 
2949   // If this is a forward reference for the value, see if we already created a
2950   // forward ref record.
2951   if (!Val) {
2952     auto I = ForwardRefVals.find(Name);
2953     if (I != ForwardRefVals.end())
2954       Val = I->second.first;
2955   }
2956 
2957   // If we have the value in the symbol table or fwd-ref table, return it.
2958   if (Val)
2959     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2960 
2961   // Don't make placeholders with invalid type.
2962   if (!Ty->isFirstClassType()) {
2963     P.Error(Loc, "invalid use of a non-first-class type");
2964     return nullptr;
2965   }
2966 
2967   // Otherwise, create a new forward reference for this value and remember it.
2968   Value *FwdVal;
2969   if (Ty->isLabelTy()) {
2970     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2971   } else {
2972     FwdVal = new Argument(Ty, Name);
2973   }
2974 
2975   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2976   return FwdVal;
2977 }
2978 
2979 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2980                                           bool IsCall) {
2981   // Look this name up in the normal function symbol table.
2982   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2983 
2984   // If this is a forward reference for the value, see if we already created a
2985   // forward ref record.
2986   if (!Val) {
2987     auto I = ForwardRefValIDs.find(ID);
2988     if (I != ForwardRefValIDs.end())
2989       Val = I->second.first;
2990   }
2991 
2992   // If we have the value in the symbol table or fwd-ref table, return it.
2993   if (Val)
2994     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2995 
2996   if (!Ty->isFirstClassType()) {
2997     P.Error(Loc, "invalid use of a non-first-class type");
2998     return nullptr;
2999   }
3000 
3001   // Otherwise, create a new forward reference for this value and remember it.
3002   Value *FwdVal;
3003   if (Ty->isLabelTy()) {
3004     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3005   } else {
3006     FwdVal = new Argument(Ty);
3007   }
3008 
3009   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3010   return FwdVal;
3011 }
3012 
3013 /// SetInstName - After an instruction is parsed and inserted into its
3014 /// basic block, this installs its name.
3015 bool LLParser::PerFunctionState::SetInstName(int NameID,
3016                                              const std::string &NameStr,
3017                                              LocTy NameLoc, Instruction *Inst) {
3018   // If this instruction has void type, it cannot have a name or ID specified.
3019   if (Inst->getType()->isVoidTy()) {
3020     if (NameID != -1 || !NameStr.empty())
3021       return P.Error(NameLoc, "instructions returning void cannot have a name");
3022     return false;
3023   }
3024 
3025   // If this was a numbered instruction, verify that the instruction is the
3026   // expected value and resolve any forward references.
3027   if (NameStr.empty()) {
3028     // If neither a name nor an ID was specified, just use the next ID.
3029     if (NameID == -1)
3030       NameID = NumberedVals.size();
3031 
3032     if (unsigned(NameID) != NumberedVals.size())
3033       return P.Error(NameLoc, "instruction expected to be numbered '%" +
3034                      Twine(NumberedVals.size()) + "'");
3035 
3036     auto FI = ForwardRefValIDs.find(NameID);
3037     if (FI != ForwardRefValIDs.end()) {
3038       Value *Sentinel = FI->second.first;
3039       if (Sentinel->getType() != Inst->getType())
3040         return P.Error(NameLoc, "instruction forward referenced with type '" +
3041                        getTypeString(FI->second.first->getType()) + "'");
3042 
3043       Sentinel->replaceAllUsesWith(Inst);
3044       Sentinel->deleteValue();
3045       ForwardRefValIDs.erase(FI);
3046     }
3047 
3048     NumberedVals.push_back(Inst);
3049     return false;
3050   }
3051 
3052   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3053   auto FI = ForwardRefVals.find(NameStr);
3054   if (FI != ForwardRefVals.end()) {
3055     Value *Sentinel = FI->second.first;
3056     if (Sentinel->getType() != Inst->getType())
3057       return P.Error(NameLoc, "instruction forward referenced with type '" +
3058                      getTypeString(FI->second.first->getType()) + "'");
3059 
3060     Sentinel->replaceAllUsesWith(Inst);
3061     Sentinel->deleteValue();
3062     ForwardRefVals.erase(FI);
3063   }
3064 
3065   // Set the name on the instruction.
3066   Inst->setName(NameStr);
3067 
3068   if (Inst->getName() != NameStr)
3069     return P.Error(NameLoc, "multiple definition of local value named '" +
3070                    NameStr + "'");
3071   return false;
3072 }
3073 
3074 /// GetBB - Get a basic block with the specified name or ID, creating a
3075 /// forward reference record if needed.
3076 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3077                                               LocTy Loc) {
3078   return dyn_cast_or_null<BasicBlock>(
3079       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3080 }
3081 
3082 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3083   return dyn_cast_or_null<BasicBlock>(
3084       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3085 }
3086 
3087 /// DefineBB - Define the specified basic block, which is either named or
3088 /// unnamed.  If there is an error, this returns null otherwise it returns
3089 /// the block being defined.
3090 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3091                                                  int NameID, LocTy Loc) {
3092   BasicBlock *BB;
3093   if (Name.empty()) {
3094     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3095       P.Error(Loc, "label expected to be numbered '" +
3096                        Twine(NumberedVals.size()) + "'");
3097       return nullptr;
3098     }
3099     BB = GetBB(NumberedVals.size(), Loc);
3100     if (!BB) {
3101       P.Error(Loc, "unable to create block numbered '" +
3102                        Twine(NumberedVals.size()) + "'");
3103       return nullptr;
3104     }
3105   } else {
3106     BB = GetBB(Name, Loc);
3107     if (!BB) {
3108       P.Error(Loc, "unable to create block named '" + Name + "'");
3109       return nullptr;
3110     }
3111   }
3112 
3113   // Move the block to the end of the function.  Forward ref'd blocks are
3114   // inserted wherever they happen to be referenced.
3115   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3116 
3117   // Remove the block from forward ref sets.
3118   if (Name.empty()) {
3119     ForwardRefValIDs.erase(NumberedVals.size());
3120     NumberedVals.push_back(BB);
3121   } else {
3122     // BB forward references are already in the function symbol table.
3123     ForwardRefVals.erase(Name);
3124   }
3125 
3126   return BB;
3127 }
3128 
3129 //===----------------------------------------------------------------------===//
3130 // Constants.
3131 //===----------------------------------------------------------------------===//
3132 
3133 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3134 /// type implied.  For example, if we parse "4" we don't know what integer type
3135 /// it has.  The value will later be combined with its type and checked for
3136 /// sanity.  PFS is used to convert function-local operands of metadata (since
3137 /// metadata operands are not just parsed here but also converted to values).
3138 /// PFS can be null when we are not parsing metadata values inside a function.
3139 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3140   ID.Loc = Lex.getLoc();
3141   switch (Lex.getKind()) {
3142   default: return TokError("expected value token");
3143   case lltok::GlobalID:  // @42
3144     ID.UIntVal = Lex.getUIntVal();
3145     ID.Kind = ValID::t_GlobalID;
3146     break;
3147   case lltok::GlobalVar:  // @foo
3148     ID.StrVal = Lex.getStrVal();
3149     ID.Kind = ValID::t_GlobalName;
3150     break;
3151   case lltok::LocalVarID:  // %42
3152     ID.UIntVal = Lex.getUIntVal();
3153     ID.Kind = ValID::t_LocalID;
3154     break;
3155   case lltok::LocalVar:  // %foo
3156     ID.StrVal = Lex.getStrVal();
3157     ID.Kind = ValID::t_LocalName;
3158     break;
3159   case lltok::APSInt:
3160     ID.APSIntVal = Lex.getAPSIntVal();
3161     ID.Kind = ValID::t_APSInt;
3162     break;
3163   case lltok::APFloat:
3164     ID.APFloatVal = Lex.getAPFloatVal();
3165     ID.Kind = ValID::t_APFloat;
3166     break;
3167   case lltok::kw_true:
3168     ID.ConstantVal = ConstantInt::getTrue(Context);
3169     ID.Kind = ValID::t_Constant;
3170     break;
3171   case lltok::kw_false:
3172     ID.ConstantVal = ConstantInt::getFalse(Context);
3173     ID.Kind = ValID::t_Constant;
3174     break;
3175   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3176   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3177   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3178   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3179 
3180   case lltok::lbrace: {
3181     // ValID ::= '{' ConstVector '}'
3182     Lex.Lex();
3183     SmallVector<Constant*, 16> Elts;
3184     if (ParseGlobalValueVector(Elts) ||
3185         ParseToken(lltok::rbrace, "expected end of struct constant"))
3186       return true;
3187 
3188     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3189     ID.UIntVal = Elts.size();
3190     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3191            Elts.size() * sizeof(Elts[0]));
3192     ID.Kind = ValID::t_ConstantStruct;
3193     return false;
3194   }
3195   case lltok::less: {
3196     // ValID ::= '<' ConstVector '>'         --> Vector.
3197     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3198     Lex.Lex();
3199     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3200 
3201     SmallVector<Constant*, 16> Elts;
3202     LocTy FirstEltLoc = Lex.getLoc();
3203     if (ParseGlobalValueVector(Elts) ||
3204         (isPackedStruct &&
3205          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3206         ParseToken(lltok::greater, "expected end of constant"))
3207       return true;
3208 
3209     if (isPackedStruct) {
3210       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3211       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3212              Elts.size() * sizeof(Elts[0]));
3213       ID.UIntVal = Elts.size();
3214       ID.Kind = ValID::t_PackedConstantStruct;
3215       return false;
3216     }
3217 
3218     if (Elts.empty())
3219       return Error(ID.Loc, "constant vector must not be empty");
3220 
3221     if (!Elts[0]->getType()->isIntegerTy() &&
3222         !Elts[0]->getType()->isFloatingPointTy() &&
3223         !Elts[0]->getType()->isPointerTy())
3224       return Error(FirstEltLoc,
3225             "vector elements must have integer, pointer or floating point type");
3226 
3227     // Verify that all the vector elements have the same type.
3228     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3229       if (Elts[i]->getType() != Elts[0]->getType())
3230         return Error(FirstEltLoc,
3231                      "vector element #" + Twine(i) +
3232                     " is not of type '" + getTypeString(Elts[0]->getType()));
3233 
3234     ID.ConstantVal = ConstantVector::get(Elts);
3235     ID.Kind = ValID::t_Constant;
3236     return false;
3237   }
3238   case lltok::lsquare: {   // Array Constant
3239     Lex.Lex();
3240     SmallVector<Constant*, 16> Elts;
3241     LocTy FirstEltLoc = Lex.getLoc();
3242     if (ParseGlobalValueVector(Elts) ||
3243         ParseToken(lltok::rsquare, "expected end of array constant"))
3244       return true;
3245 
3246     // Handle empty element.
3247     if (Elts.empty()) {
3248       // Use undef instead of an array because it's inconvenient to determine
3249       // the element type at this point, there being no elements to examine.
3250       ID.Kind = ValID::t_EmptyArray;
3251       return false;
3252     }
3253 
3254     if (!Elts[0]->getType()->isFirstClassType())
3255       return Error(FirstEltLoc, "invalid array element type: " +
3256                    getTypeString(Elts[0]->getType()));
3257 
3258     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3259 
3260     // Verify all elements are correct type!
3261     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3262       if (Elts[i]->getType() != Elts[0]->getType())
3263         return Error(FirstEltLoc,
3264                      "array element #" + Twine(i) +
3265                      " is not of type '" + getTypeString(Elts[0]->getType()));
3266     }
3267 
3268     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3269     ID.Kind = ValID::t_Constant;
3270     return false;
3271   }
3272   case lltok::kw_c:  // c "foo"
3273     Lex.Lex();
3274     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3275                                                   false);
3276     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3277     ID.Kind = ValID::t_Constant;
3278     return false;
3279 
3280   case lltok::kw_asm: {
3281     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3282     //             STRINGCONSTANT
3283     bool HasSideEffect, AlignStack, AsmDialect;
3284     Lex.Lex();
3285     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3286         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3287         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3288         ParseStringConstant(ID.StrVal) ||
3289         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3290         ParseToken(lltok::StringConstant, "expected constraint string"))
3291       return true;
3292     ID.StrVal2 = Lex.getStrVal();
3293     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3294       (unsigned(AsmDialect)<<2);
3295     ID.Kind = ValID::t_InlineAsm;
3296     return false;
3297   }
3298 
3299   case lltok::kw_blockaddress: {
3300     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3301     Lex.Lex();
3302 
3303     ValID Fn, Label;
3304 
3305     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3306         ParseValID(Fn) ||
3307         ParseToken(lltok::comma, "expected comma in block address expression")||
3308         ParseValID(Label) ||
3309         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3310       return true;
3311 
3312     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3313       return Error(Fn.Loc, "expected function name in blockaddress");
3314     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3315       return Error(Label.Loc, "expected basic block name in blockaddress");
3316 
3317     // Try to find the function (but skip it if it's forward-referenced).
3318     GlobalValue *GV = nullptr;
3319     if (Fn.Kind == ValID::t_GlobalID) {
3320       if (Fn.UIntVal < NumberedVals.size())
3321         GV = NumberedVals[Fn.UIntVal];
3322     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3323       GV = M->getNamedValue(Fn.StrVal);
3324     }
3325     Function *F = nullptr;
3326     if (GV) {
3327       // Confirm that it's actually a function with a definition.
3328       if (!isa<Function>(GV))
3329         return Error(Fn.Loc, "expected function name in blockaddress");
3330       F = cast<Function>(GV);
3331       if (F->isDeclaration())
3332         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3333     }
3334 
3335     if (!F) {
3336       // Make a global variable as a placeholder for this reference.
3337       GlobalValue *&FwdRef =
3338           ForwardRefBlockAddresses.insert(std::make_pair(
3339                                               std::move(Fn),
3340                                               std::map<ValID, GlobalValue *>()))
3341               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3342               .first->second;
3343       if (!FwdRef)
3344         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3345                                     GlobalValue::InternalLinkage, nullptr, "");
3346       ID.ConstantVal = FwdRef;
3347       ID.Kind = ValID::t_Constant;
3348       return false;
3349     }
3350 
3351     // We found the function; now find the basic block.  Don't use PFS, since we
3352     // might be inside a constant expression.
3353     BasicBlock *BB;
3354     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3355       if (Label.Kind == ValID::t_LocalID)
3356         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3357       else
3358         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3359       if (!BB)
3360         return Error(Label.Loc, "referenced value is not a basic block");
3361     } else {
3362       if (Label.Kind == ValID::t_LocalID)
3363         return Error(Label.Loc, "cannot take address of numeric label after "
3364                                 "the function is defined");
3365       BB = dyn_cast_or_null<BasicBlock>(
3366           F->getValueSymbolTable()->lookup(Label.StrVal));
3367       if (!BB)
3368         return Error(Label.Loc, "referenced value is not a basic block");
3369     }
3370 
3371     ID.ConstantVal = BlockAddress::get(F, BB);
3372     ID.Kind = ValID::t_Constant;
3373     return false;
3374   }
3375 
3376   case lltok::kw_trunc:
3377   case lltok::kw_zext:
3378   case lltok::kw_sext:
3379   case lltok::kw_fptrunc:
3380   case lltok::kw_fpext:
3381   case lltok::kw_bitcast:
3382   case lltok::kw_addrspacecast:
3383   case lltok::kw_uitofp:
3384   case lltok::kw_sitofp:
3385   case lltok::kw_fptoui:
3386   case lltok::kw_fptosi:
3387   case lltok::kw_inttoptr:
3388   case lltok::kw_ptrtoint: {
3389     unsigned Opc = Lex.getUIntVal();
3390     Type *DestTy = nullptr;
3391     Constant *SrcVal;
3392     Lex.Lex();
3393     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3394         ParseGlobalTypeAndValue(SrcVal) ||
3395         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3396         ParseType(DestTy) ||
3397         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3398       return true;
3399     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3400       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3401                    getTypeString(SrcVal->getType()) + "' to '" +
3402                    getTypeString(DestTy) + "'");
3403     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3404                                                  SrcVal, DestTy);
3405     ID.Kind = ValID::t_Constant;
3406     return false;
3407   }
3408   case lltok::kw_extractvalue: {
3409     Lex.Lex();
3410     Constant *Val;
3411     SmallVector<unsigned, 4> Indices;
3412     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3413         ParseGlobalTypeAndValue(Val) ||
3414         ParseIndexList(Indices) ||
3415         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3416       return true;
3417 
3418     if (!Val->getType()->isAggregateType())
3419       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3420     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3421       return Error(ID.Loc, "invalid indices for extractvalue");
3422     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3423     ID.Kind = ValID::t_Constant;
3424     return false;
3425   }
3426   case lltok::kw_insertvalue: {
3427     Lex.Lex();
3428     Constant *Val0, *Val1;
3429     SmallVector<unsigned, 4> Indices;
3430     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3431         ParseGlobalTypeAndValue(Val0) ||
3432         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3433         ParseGlobalTypeAndValue(Val1) ||
3434         ParseIndexList(Indices) ||
3435         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3436       return true;
3437     if (!Val0->getType()->isAggregateType())
3438       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3439     Type *IndexedType =
3440         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3441     if (!IndexedType)
3442       return Error(ID.Loc, "invalid indices for insertvalue");
3443     if (IndexedType != Val1->getType())
3444       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3445                                getTypeString(Val1->getType()) +
3446                                "' instead of '" + getTypeString(IndexedType) +
3447                                "'");
3448     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3449     ID.Kind = ValID::t_Constant;
3450     return false;
3451   }
3452   case lltok::kw_icmp:
3453   case lltok::kw_fcmp: {
3454     unsigned PredVal, Opc = Lex.getUIntVal();
3455     Constant *Val0, *Val1;
3456     Lex.Lex();
3457     if (ParseCmpPredicate(PredVal, Opc) ||
3458         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3459         ParseGlobalTypeAndValue(Val0) ||
3460         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3461         ParseGlobalTypeAndValue(Val1) ||
3462         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3463       return true;
3464 
3465     if (Val0->getType() != Val1->getType())
3466       return Error(ID.Loc, "compare operands must have the same type");
3467 
3468     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3469 
3470     if (Opc == Instruction::FCmp) {
3471       if (!Val0->getType()->isFPOrFPVectorTy())
3472         return Error(ID.Loc, "fcmp requires floating point operands");
3473       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3474     } else {
3475       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3476       if (!Val0->getType()->isIntOrIntVectorTy() &&
3477           !Val0->getType()->isPtrOrPtrVectorTy())
3478         return Error(ID.Loc, "icmp requires pointer or integer operands");
3479       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3480     }
3481     ID.Kind = ValID::t_Constant;
3482     return false;
3483   }
3484 
3485   // Unary Operators.
3486   case lltok::kw_fneg: {
3487     unsigned Opc = Lex.getUIntVal();
3488     Constant *Val;
3489     Lex.Lex();
3490     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3491         ParseGlobalTypeAndValue(Val) ||
3492         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3493       return true;
3494 
3495     // Check that the type is valid for the operator.
3496     switch (Opc) {
3497     case Instruction::FNeg:
3498       if (!Val->getType()->isFPOrFPVectorTy())
3499         return Error(ID.Loc, "constexpr requires fp operands");
3500       break;
3501     default: llvm_unreachable("Unknown unary operator!");
3502     }
3503     unsigned Flags = 0;
3504     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3505     ID.ConstantVal = C;
3506     ID.Kind = ValID::t_Constant;
3507     return false;
3508   }
3509   // Binary Operators.
3510   case lltok::kw_add:
3511   case lltok::kw_fadd:
3512   case lltok::kw_sub:
3513   case lltok::kw_fsub:
3514   case lltok::kw_mul:
3515   case lltok::kw_fmul:
3516   case lltok::kw_udiv:
3517   case lltok::kw_sdiv:
3518   case lltok::kw_fdiv:
3519   case lltok::kw_urem:
3520   case lltok::kw_srem:
3521   case lltok::kw_frem:
3522   case lltok::kw_shl:
3523   case lltok::kw_lshr:
3524   case lltok::kw_ashr: {
3525     bool NUW = false;
3526     bool NSW = false;
3527     bool Exact = false;
3528     unsigned Opc = Lex.getUIntVal();
3529     Constant *Val0, *Val1;
3530     Lex.Lex();
3531     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3532         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3533       if (EatIfPresent(lltok::kw_nuw))
3534         NUW = true;
3535       if (EatIfPresent(lltok::kw_nsw)) {
3536         NSW = true;
3537         if (EatIfPresent(lltok::kw_nuw))
3538           NUW = true;
3539       }
3540     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3541                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3542       if (EatIfPresent(lltok::kw_exact))
3543         Exact = true;
3544     }
3545     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3546         ParseGlobalTypeAndValue(Val0) ||
3547         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3548         ParseGlobalTypeAndValue(Val1) ||
3549         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3550       return true;
3551     if (Val0->getType() != Val1->getType())
3552       return Error(ID.Loc, "operands of constexpr must have same type");
3553     // Check that the type is valid for the operator.
3554     switch (Opc) {
3555     case Instruction::Add:
3556     case Instruction::Sub:
3557     case Instruction::Mul:
3558     case Instruction::UDiv:
3559     case Instruction::SDiv:
3560     case Instruction::URem:
3561     case Instruction::SRem:
3562     case Instruction::Shl:
3563     case Instruction::AShr:
3564     case Instruction::LShr:
3565       if (!Val0->getType()->isIntOrIntVectorTy())
3566         return Error(ID.Loc, "constexpr requires integer operands");
3567       break;
3568     case Instruction::FAdd:
3569     case Instruction::FSub:
3570     case Instruction::FMul:
3571     case Instruction::FDiv:
3572     case Instruction::FRem:
3573       if (!Val0->getType()->isFPOrFPVectorTy())
3574         return Error(ID.Loc, "constexpr requires fp operands");
3575       break;
3576     default: llvm_unreachable("Unknown binary operator!");
3577     }
3578     unsigned Flags = 0;
3579     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3580     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3581     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3582     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3583     ID.ConstantVal = C;
3584     ID.Kind = ValID::t_Constant;
3585     return false;
3586   }
3587 
3588   // Logical Operations
3589   case lltok::kw_and:
3590   case lltok::kw_or:
3591   case lltok::kw_xor: {
3592     unsigned Opc = Lex.getUIntVal();
3593     Constant *Val0, *Val1;
3594     Lex.Lex();
3595     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3596         ParseGlobalTypeAndValue(Val0) ||
3597         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3598         ParseGlobalTypeAndValue(Val1) ||
3599         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3600       return true;
3601     if (Val0->getType() != Val1->getType())
3602       return Error(ID.Loc, "operands of constexpr must have same type");
3603     if (!Val0->getType()->isIntOrIntVectorTy())
3604       return Error(ID.Loc,
3605                    "constexpr requires integer or integer vector operands");
3606     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3607     ID.Kind = ValID::t_Constant;
3608     return false;
3609   }
3610 
3611   case lltok::kw_getelementptr:
3612   case lltok::kw_shufflevector:
3613   case lltok::kw_insertelement:
3614   case lltok::kw_extractelement:
3615   case lltok::kw_select: {
3616     unsigned Opc = Lex.getUIntVal();
3617     SmallVector<Constant*, 16> Elts;
3618     bool InBounds = false;
3619     Type *Ty;
3620     Lex.Lex();
3621 
3622     if (Opc == Instruction::GetElementPtr)
3623       InBounds = EatIfPresent(lltok::kw_inbounds);
3624 
3625     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3626       return true;
3627 
3628     LocTy ExplicitTypeLoc = Lex.getLoc();
3629     if (Opc == Instruction::GetElementPtr) {
3630       if (ParseType(Ty) ||
3631           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3632         return true;
3633     }
3634 
3635     Optional<unsigned> InRangeOp;
3636     if (ParseGlobalValueVector(
3637             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3638         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3639       return true;
3640 
3641     if (Opc == Instruction::GetElementPtr) {
3642       if (Elts.size() == 0 ||
3643           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3644         return Error(ID.Loc, "base of getelementptr must be a pointer");
3645 
3646       Type *BaseType = Elts[0]->getType();
3647       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3648       if (Ty != BasePointerType->getElementType())
3649         return Error(
3650             ExplicitTypeLoc,
3651             "explicit pointee type doesn't match operand's pointee type");
3652 
3653       unsigned GEPWidth =
3654           BaseType->isVectorTy()
3655               ? cast<FixedVectorType>(BaseType)->getNumElements()
3656               : 0;
3657 
3658       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3659       for (Constant *Val : Indices) {
3660         Type *ValTy = Val->getType();
3661         if (!ValTy->isIntOrIntVectorTy())
3662           return Error(ID.Loc, "getelementptr index must be an integer");
3663         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3664           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3665           if (GEPWidth && (ValNumEl != GEPWidth))
3666             return Error(
3667                 ID.Loc,
3668                 "getelementptr vector index has a wrong number of elements");
3669           // GEPWidth may have been unknown because the base is a scalar,
3670           // but it is known now.
3671           GEPWidth = ValNumEl;
3672         }
3673       }
3674 
3675       SmallPtrSet<Type*, 4> Visited;
3676       if (!Indices.empty() && !Ty->isSized(&Visited))
3677         return Error(ID.Loc, "base element of getelementptr must be sized");
3678 
3679       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3680         return Error(ID.Loc, "invalid getelementptr indices");
3681 
3682       if (InRangeOp) {
3683         if (*InRangeOp == 0)
3684           return Error(ID.Loc,
3685                        "inrange keyword may not appear on pointer operand");
3686         --*InRangeOp;
3687       }
3688 
3689       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3690                                                       InBounds, InRangeOp);
3691     } else if (Opc == Instruction::Select) {
3692       if (Elts.size() != 3)
3693         return Error(ID.Loc, "expected three operands to select");
3694       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3695                                                               Elts[2]))
3696         return Error(ID.Loc, Reason);
3697       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3698     } else if (Opc == Instruction::ShuffleVector) {
3699       if (Elts.size() != 3)
3700         return Error(ID.Loc, "expected three operands to shufflevector");
3701       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3702         return Error(ID.Loc, "invalid operands to shufflevector");
3703       SmallVector<int, 16> Mask;
3704       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3705       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3706     } else if (Opc == Instruction::ExtractElement) {
3707       if (Elts.size() != 2)
3708         return Error(ID.Loc, "expected two operands to extractelement");
3709       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3710         return Error(ID.Loc, "invalid extractelement operands");
3711       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3712     } else {
3713       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3714       if (Elts.size() != 3)
3715       return Error(ID.Loc, "expected three operands to insertelement");
3716       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3717         return Error(ID.Loc, "invalid insertelement operands");
3718       ID.ConstantVal =
3719                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3720     }
3721 
3722     ID.Kind = ValID::t_Constant;
3723     return false;
3724   }
3725   }
3726 
3727   Lex.Lex();
3728   return false;
3729 }
3730 
3731 /// ParseGlobalValue - Parse a global value with the specified type.
3732 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3733   C = nullptr;
3734   ValID ID;
3735   Value *V = nullptr;
3736   bool Parsed = ParseValID(ID) ||
3737                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3738   if (V && !(C = dyn_cast<Constant>(V)))
3739     return Error(ID.Loc, "global values must be constants");
3740   return Parsed;
3741 }
3742 
3743 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3744   Type *Ty = nullptr;
3745   return ParseType(Ty) ||
3746          ParseGlobalValue(Ty, V);
3747 }
3748 
3749 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3750   C = nullptr;
3751 
3752   LocTy KwLoc = Lex.getLoc();
3753   if (!EatIfPresent(lltok::kw_comdat))
3754     return false;
3755 
3756   if (EatIfPresent(lltok::lparen)) {
3757     if (Lex.getKind() != lltok::ComdatVar)
3758       return TokError("expected comdat variable");
3759     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3760     Lex.Lex();
3761     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3762       return true;
3763   } else {
3764     if (GlobalName.empty())
3765       return TokError("comdat cannot be unnamed");
3766     C = getComdat(std::string(GlobalName), KwLoc);
3767   }
3768 
3769   return false;
3770 }
3771 
3772 /// ParseGlobalValueVector
3773 ///   ::= /*empty*/
3774 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3775 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3776                                       Optional<unsigned> *InRangeOp) {
3777   // Empty list.
3778   if (Lex.getKind() == lltok::rbrace ||
3779       Lex.getKind() == lltok::rsquare ||
3780       Lex.getKind() == lltok::greater ||
3781       Lex.getKind() == lltok::rparen)
3782     return false;
3783 
3784   do {
3785     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3786       *InRangeOp = Elts.size();
3787 
3788     Constant *C;
3789     if (ParseGlobalTypeAndValue(C)) return true;
3790     Elts.push_back(C);
3791   } while (EatIfPresent(lltok::comma));
3792 
3793   return false;
3794 }
3795 
3796 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3797   SmallVector<Metadata *, 16> Elts;
3798   if (ParseMDNodeVector(Elts))
3799     return true;
3800 
3801   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3802   return false;
3803 }
3804 
3805 /// MDNode:
3806 ///  ::= !{ ... }
3807 ///  ::= !7
3808 ///  ::= !DILocation(...)
3809 bool LLParser::ParseMDNode(MDNode *&N) {
3810   if (Lex.getKind() == lltok::MetadataVar)
3811     return ParseSpecializedMDNode(N);
3812 
3813   return ParseToken(lltok::exclaim, "expected '!' here") ||
3814          ParseMDNodeTail(N);
3815 }
3816 
3817 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3818   // !{ ... }
3819   if (Lex.getKind() == lltok::lbrace)
3820     return ParseMDTuple(N);
3821 
3822   // !42
3823   return ParseMDNodeID(N);
3824 }
3825 
3826 namespace {
3827 
3828 /// Structure to represent an optional metadata field.
3829 template <class FieldTy> struct MDFieldImpl {
3830   typedef MDFieldImpl ImplTy;
3831   FieldTy Val;
3832   bool Seen;
3833 
3834   void assign(FieldTy Val) {
3835     Seen = true;
3836     this->Val = std::move(Val);
3837   }
3838 
3839   explicit MDFieldImpl(FieldTy Default)
3840       : Val(std::move(Default)), Seen(false) {}
3841 };
3842 
3843 /// Structure to represent an optional metadata field that
3844 /// can be of either type (A or B) and encapsulates the
3845 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3846 /// to reimplement the specifics for representing each Field.
3847 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3848   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3849   FieldTypeA A;
3850   FieldTypeB B;
3851   bool Seen;
3852 
3853   enum {
3854     IsInvalid = 0,
3855     IsTypeA = 1,
3856     IsTypeB = 2
3857   } WhatIs;
3858 
3859   void assign(FieldTypeA A) {
3860     Seen = true;
3861     this->A = std::move(A);
3862     WhatIs = IsTypeA;
3863   }
3864 
3865   void assign(FieldTypeB B) {
3866     Seen = true;
3867     this->B = std::move(B);
3868     WhatIs = IsTypeB;
3869   }
3870 
3871   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3872       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3873         WhatIs(IsInvalid) {}
3874 };
3875 
3876 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3877   uint64_t Max;
3878 
3879   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3880       : ImplTy(Default), Max(Max) {}
3881 };
3882 
3883 struct LineField : public MDUnsignedField {
3884   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3885 };
3886 
3887 struct ColumnField : public MDUnsignedField {
3888   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3889 };
3890 
3891 struct DwarfTagField : public MDUnsignedField {
3892   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3893   DwarfTagField(dwarf::Tag DefaultTag)
3894       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3895 };
3896 
3897 struct DwarfMacinfoTypeField : public MDUnsignedField {
3898   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3899   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3900     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3901 };
3902 
3903 struct DwarfAttEncodingField : public MDUnsignedField {
3904   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3905 };
3906 
3907 struct DwarfVirtualityField : public MDUnsignedField {
3908   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3909 };
3910 
3911 struct DwarfLangField : public MDUnsignedField {
3912   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3913 };
3914 
3915 struct DwarfCCField : public MDUnsignedField {
3916   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3917 };
3918 
3919 struct EmissionKindField : public MDUnsignedField {
3920   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3921 };
3922 
3923 struct NameTableKindField : public MDUnsignedField {
3924   NameTableKindField()
3925       : MDUnsignedField(
3926             0, (unsigned)
3927                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3928 };
3929 
3930 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3931   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3932 };
3933 
3934 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3935   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3936 };
3937 
3938 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3939   MDAPSIntField() : ImplTy(APSInt()) {}
3940 };
3941 
3942 struct MDSignedField : public MDFieldImpl<int64_t> {
3943   int64_t Min;
3944   int64_t Max;
3945 
3946   MDSignedField(int64_t Default = 0)
3947       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3948   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3949       : ImplTy(Default), Min(Min), Max(Max) {}
3950 };
3951 
3952 struct MDBoolField : public MDFieldImpl<bool> {
3953   MDBoolField(bool Default = false) : ImplTy(Default) {}
3954 };
3955 
3956 struct MDField : public MDFieldImpl<Metadata *> {
3957   bool AllowNull;
3958 
3959   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3960 };
3961 
3962 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3963   MDConstant() : ImplTy(nullptr) {}
3964 };
3965 
3966 struct MDStringField : public MDFieldImpl<MDString *> {
3967   bool AllowEmpty;
3968   MDStringField(bool AllowEmpty = true)
3969       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3970 };
3971 
3972 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3973   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3974 };
3975 
3976 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3977   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3978 };
3979 
3980 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3981   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3982       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3983 
3984   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3985                     bool AllowNull = true)
3986       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3987 
3988   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3989   bool isMDField() const { return WhatIs == IsTypeB; }
3990   int64_t getMDSignedValue() const {
3991     assert(isMDSignedField() && "Wrong field type");
3992     return A.Val;
3993   }
3994   Metadata *getMDFieldValue() const {
3995     assert(isMDField() && "Wrong field type");
3996     return B.Val;
3997   }
3998 };
3999 
4000 struct MDSignedOrUnsignedField
4001     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4002   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4003 
4004   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4005   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4006   int64_t getMDSignedValue() const {
4007     assert(isMDSignedField() && "Wrong field type");
4008     return A.Val;
4009   }
4010   uint64_t getMDUnsignedValue() const {
4011     assert(isMDUnsignedField() && "Wrong field type");
4012     return B.Val;
4013   }
4014 };
4015 
4016 } // end anonymous namespace
4017 
4018 namespace llvm {
4019 
4020 template <>
4021 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4022   if (Lex.getKind() != lltok::APSInt)
4023     return TokError("expected integer");
4024 
4025   Result.assign(Lex.getAPSIntVal());
4026   Lex.Lex();
4027   return false;
4028 }
4029 
4030 template <>
4031 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4032                             MDUnsignedField &Result) {
4033   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4034     return TokError("expected unsigned integer");
4035 
4036   auto &U = Lex.getAPSIntVal();
4037   if (U.ugt(Result.Max))
4038     return TokError("value for '" + Name + "' too large, limit is " +
4039                     Twine(Result.Max));
4040   Result.assign(U.getZExtValue());
4041   assert(Result.Val <= Result.Max && "Expected value in range");
4042   Lex.Lex();
4043   return false;
4044 }
4045 
4046 template <>
4047 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4048   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4049 }
4050 template <>
4051 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4052   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4053 }
4054 
4055 template <>
4056 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4057   if (Lex.getKind() == lltok::APSInt)
4058     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4059 
4060   if (Lex.getKind() != lltok::DwarfTag)
4061     return TokError("expected DWARF tag");
4062 
4063   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4064   if (Tag == dwarf::DW_TAG_invalid)
4065     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4066   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4067 
4068   Result.assign(Tag);
4069   Lex.Lex();
4070   return false;
4071 }
4072 
4073 template <>
4074 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4075                             DwarfMacinfoTypeField &Result) {
4076   if (Lex.getKind() == lltok::APSInt)
4077     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4078 
4079   if (Lex.getKind() != lltok::DwarfMacinfo)
4080     return TokError("expected DWARF macinfo type");
4081 
4082   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4083   if (Macinfo == dwarf::DW_MACINFO_invalid)
4084     return TokError(
4085         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4086   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4087 
4088   Result.assign(Macinfo);
4089   Lex.Lex();
4090   return false;
4091 }
4092 
4093 template <>
4094 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4095                             DwarfVirtualityField &Result) {
4096   if (Lex.getKind() == lltok::APSInt)
4097     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4098 
4099   if (Lex.getKind() != lltok::DwarfVirtuality)
4100     return TokError("expected DWARF virtuality code");
4101 
4102   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4103   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4104     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4105                     Lex.getStrVal() + "'");
4106   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4107   Result.assign(Virtuality);
4108   Lex.Lex();
4109   return false;
4110 }
4111 
4112 template <>
4113 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4114   if (Lex.getKind() == lltok::APSInt)
4115     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4116 
4117   if (Lex.getKind() != lltok::DwarfLang)
4118     return TokError("expected DWARF language");
4119 
4120   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4121   if (!Lang)
4122     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4123                     "'");
4124   assert(Lang <= Result.Max && "Expected valid DWARF language");
4125   Result.assign(Lang);
4126   Lex.Lex();
4127   return false;
4128 }
4129 
4130 template <>
4131 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4132   if (Lex.getKind() == lltok::APSInt)
4133     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4134 
4135   if (Lex.getKind() != lltok::DwarfCC)
4136     return TokError("expected DWARF calling convention");
4137 
4138   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4139   if (!CC)
4140     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4141                     "'");
4142   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4143   Result.assign(CC);
4144   Lex.Lex();
4145   return false;
4146 }
4147 
4148 template <>
4149 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4150   if (Lex.getKind() == lltok::APSInt)
4151     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4152 
4153   if (Lex.getKind() != lltok::EmissionKind)
4154     return TokError("expected emission kind");
4155 
4156   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4157   if (!Kind)
4158     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4159                     "'");
4160   assert(*Kind <= Result.Max && "Expected valid emission kind");
4161   Result.assign(*Kind);
4162   Lex.Lex();
4163   return false;
4164 }
4165 
4166 template <>
4167 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4168                             NameTableKindField &Result) {
4169   if (Lex.getKind() == lltok::APSInt)
4170     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4171 
4172   if (Lex.getKind() != lltok::NameTableKind)
4173     return TokError("expected nameTable kind");
4174 
4175   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4176   if (!Kind)
4177     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4178                     "'");
4179   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4180   Result.assign((unsigned)*Kind);
4181   Lex.Lex();
4182   return false;
4183 }
4184 
4185 template <>
4186 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4187                             DwarfAttEncodingField &Result) {
4188   if (Lex.getKind() == lltok::APSInt)
4189     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4190 
4191   if (Lex.getKind() != lltok::DwarfAttEncoding)
4192     return TokError("expected DWARF type attribute encoding");
4193 
4194   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4195   if (!Encoding)
4196     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4197                     Lex.getStrVal() + "'");
4198   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4199   Result.assign(Encoding);
4200   Lex.Lex();
4201   return false;
4202 }
4203 
4204 /// DIFlagField
4205 ///  ::= uint32
4206 ///  ::= DIFlagVector
4207 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4208 template <>
4209 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4210 
4211   // Parser for a single flag.
4212   auto parseFlag = [&](DINode::DIFlags &Val) {
4213     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4214       uint32_t TempVal = static_cast<uint32_t>(Val);
4215       bool Res = ParseUInt32(TempVal);
4216       Val = static_cast<DINode::DIFlags>(TempVal);
4217       return Res;
4218     }
4219 
4220     if (Lex.getKind() != lltok::DIFlag)
4221       return TokError("expected debug info flag");
4222 
4223     Val = DINode::getFlag(Lex.getStrVal());
4224     if (!Val)
4225       return TokError(Twine("invalid debug info flag flag '") +
4226                       Lex.getStrVal() + "'");
4227     Lex.Lex();
4228     return false;
4229   };
4230 
4231   // Parse the flags and combine them together.
4232   DINode::DIFlags Combined = DINode::FlagZero;
4233   do {
4234     DINode::DIFlags Val;
4235     if (parseFlag(Val))
4236       return true;
4237     Combined |= Val;
4238   } while (EatIfPresent(lltok::bar));
4239 
4240   Result.assign(Combined);
4241   return false;
4242 }
4243 
4244 /// DISPFlagField
4245 ///  ::= uint32
4246 ///  ::= DISPFlagVector
4247 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4248 template <>
4249 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4250 
4251   // Parser for a single flag.
4252   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4253     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4254       uint32_t TempVal = static_cast<uint32_t>(Val);
4255       bool Res = ParseUInt32(TempVal);
4256       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4257       return Res;
4258     }
4259 
4260     if (Lex.getKind() != lltok::DISPFlag)
4261       return TokError("expected debug info flag");
4262 
4263     Val = DISubprogram::getFlag(Lex.getStrVal());
4264     if (!Val)
4265       return TokError(Twine("invalid subprogram debug info flag '") +
4266                       Lex.getStrVal() + "'");
4267     Lex.Lex();
4268     return false;
4269   };
4270 
4271   // Parse the flags and combine them together.
4272   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4273   do {
4274     DISubprogram::DISPFlags Val;
4275     if (parseFlag(Val))
4276       return true;
4277     Combined |= Val;
4278   } while (EatIfPresent(lltok::bar));
4279 
4280   Result.assign(Combined);
4281   return false;
4282 }
4283 
4284 template <>
4285 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4286                             MDSignedField &Result) {
4287   if (Lex.getKind() != lltok::APSInt)
4288     return TokError("expected signed integer");
4289 
4290   auto &S = Lex.getAPSIntVal();
4291   if (S < Result.Min)
4292     return TokError("value for '" + Name + "' too small, limit is " +
4293                     Twine(Result.Min));
4294   if (S > Result.Max)
4295     return TokError("value for '" + Name + "' too large, limit is " +
4296                     Twine(Result.Max));
4297   Result.assign(S.getExtValue());
4298   assert(Result.Val >= Result.Min && "Expected value in range");
4299   assert(Result.Val <= Result.Max && "Expected value in range");
4300   Lex.Lex();
4301   return false;
4302 }
4303 
4304 template <>
4305 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4306   switch (Lex.getKind()) {
4307   default:
4308     return TokError("expected 'true' or 'false'");
4309   case lltok::kw_true:
4310     Result.assign(true);
4311     break;
4312   case lltok::kw_false:
4313     Result.assign(false);
4314     break;
4315   }
4316   Lex.Lex();
4317   return false;
4318 }
4319 
4320 template <>
4321 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4322   if (Lex.getKind() == lltok::kw_null) {
4323     if (!Result.AllowNull)
4324       return TokError("'" + Name + "' cannot be null");
4325     Lex.Lex();
4326     Result.assign(nullptr);
4327     return false;
4328   }
4329 
4330   Metadata *MD;
4331   if (ParseMetadata(MD, nullptr))
4332     return true;
4333 
4334   Result.assign(MD);
4335   return false;
4336 }
4337 
4338 template <>
4339 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4340                             MDSignedOrMDField &Result) {
4341   // Try to parse a signed int.
4342   if (Lex.getKind() == lltok::APSInt) {
4343     MDSignedField Res = Result.A;
4344     if (!ParseMDField(Loc, Name, Res)) {
4345       Result.assign(Res);
4346       return false;
4347     }
4348     return true;
4349   }
4350 
4351   // Otherwise, try to parse as an MDField.
4352   MDField Res = Result.B;
4353   if (!ParseMDField(Loc, Name, Res)) {
4354     Result.assign(Res);
4355     return false;
4356   }
4357 
4358   return true;
4359 }
4360 
4361 template <>
4362 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4363   LocTy ValueLoc = Lex.getLoc();
4364   std::string S;
4365   if (ParseStringConstant(S))
4366     return true;
4367 
4368   if (!Result.AllowEmpty && S.empty())
4369     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4370 
4371   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4372   return false;
4373 }
4374 
4375 template <>
4376 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4377   SmallVector<Metadata *, 4> MDs;
4378   if (ParseMDNodeVector(MDs))
4379     return true;
4380 
4381   Result.assign(std::move(MDs));
4382   return false;
4383 }
4384 
4385 template <>
4386 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4387                             ChecksumKindField &Result) {
4388   Optional<DIFile::ChecksumKind> CSKind =
4389       DIFile::getChecksumKind(Lex.getStrVal());
4390 
4391   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4392     return TokError(
4393         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4394 
4395   Result.assign(*CSKind);
4396   Lex.Lex();
4397   return false;
4398 }
4399 
4400 } // end namespace llvm
4401 
4402 template <class ParserTy>
4403 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4404   do {
4405     if (Lex.getKind() != lltok::LabelStr)
4406       return TokError("expected field label here");
4407 
4408     if (parseField())
4409       return true;
4410   } while (EatIfPresent(lltok::comma));
4411 
4412   return false;
4413 }
4414 
4415 template <class ParserTy>
4416 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4417   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4418   Lex.Lex();
4419 
4420   if (ParseToken(lltok::lparen, "expected '(' here"))
4421     return true;
4422   if (Lex.getKind() != lltok::rparen)
4423     if (ParseMDFieldsImplBody(parseField))
4424       return true;
4425 
4426   ClosingLoc = Lex.getLoc();
4427   return ParseToken(lltok::rparen, "expected ')' here");
4428 }
4429 
4430 template <class FieldTy>
4431 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4432   if (Result.Seen)
4433     return TokError("field '" + Name + "' cannot be specified more than once");
4434 
4435   LocTy Loc = Lex.getLoc();
4436   Lex.Lex();
4437   return ParseMDField(Loc, Name, Result);
4438 }
4439 
4440 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4441   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4442 
4443 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4444   if (Lex.getStrVal() == #CLASS)                                               \
4445     return Parse##CLASS(N, IsDistinct);
4446 #include "llvm/IR/Metadata.def"
4447 
4448   return TokError("expected metadata type");
4449 }
4450 
4451 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4452 #define NOP_FIELD(NAME, TYPE, INIT)
4453 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4454   if (!NAME.Seen)                                                              \
4455     return Error(ClosingLoc, "missing required field '" #NAME "'");
4456 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4457   if (Lex.getStrVal() == #NAME)                                                \
4458     return ParseMDField(#NAME, NAME);
4459 #define PARSE_MD_FIELDS()                                                      \
4460   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4461   do {                                                                         \
4462     LocTy ClosingLoc;                                                          \
4463     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4464       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4465       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4466     }, ClosingLoc))                                                            \
4467       return true;                                                             \
4468     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4469   } while (false)
4470 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4471   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4472 
4473 /// ParseDILocationFields:
4474 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4475 ///   isImplicitCode: true)
4476 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4477 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4478   OPTIONAL(line, LineField, );                                                 \
4479   OPTIONAL(column, ColumnField, );                                             \
4480   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4481   OPTIONAL(inlinedAt, MDField, );                                              \
4482   OPTIONAL(isImplicitCode, MDBoolField, (false));
4483   PARSE_MD_FIELDS();
4484 #undef VISIT_MD_FIELDS
4485 
4486   Result =
4487       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4488                                    inlinedAt.Val, isImplicitCode.Val));
4489   return false;
4490 }
4491 
4492 /// ParseGenericDINode:
4493 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4494 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4495 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4496   REQUIRED(tag, DwarfTagField, );                                              \
4497   OPTIONAL(header, MDStringField, );                                           \
4498   OPTIONAL(operands, MDFieldList, );
4499   PARSE_MD_FIELDS();
4500 #undef VISIT_MD_FIELDS
4501 
4502   Result = GET_OR_DISTINCT(GenericDINode,
4503                            (Context, tag.Val, header.Val, operands.Val));
4504   return false;
4505 }
4506 
4507 /// ParseDISubrange:
4508 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4509 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4510 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4511 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4512 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4513   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4514   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4515   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4516   OPTIONAL(stride, MDSignedOrMDField, );
4517   PARSE_MD_FIELDS();
4518 #undef VISIT_MD_FIELDS
4519 
4520   Metadata *Count = nullptr;
4521   Metadata *LowerBound = nullptr;
4522   Metadata *UpperBound = nullptr;
4523   Metadata *Stride = nullptr;
4524   if (count.isMDSignedField())
4525     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4526         Type::getInt64Ty(Context), count.getMDSignedValue()));
4527   else if (count.isMDField())
4528     Count = count.getMDFieldValue();
4529 
4530   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4531     if (Bound.isMDSignedField())
4532       return ConstantAsMetadata::get(ConstantInt::getSigned(
4533           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4534     if (Bound.isMDField())
4535       return Bound.getMDFieldValue();
4536     return nullptr;
4537   };
4538 
4539   LowerBound = convToMetadata(lowerBound);
4540   UpperBound = convToMetadata(upperBound);
4541   Stride = convToMetadata(stride);
4542 
4543   Result = GET_OR_DISTINCT(DISubrange,
4544                            (Context, Count, LowerBound, UpperBound, Stride));
4545 
4546   return false;
4547 }
4548 
4549 /// ParseDIEnumerator:
4550 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4551 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4552 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4553   REQUIRED(name, MDStringField, );                                             \
4554   REQUIRED(value, MDAPSIntField, );                                            \
4555   OPTIONAL(isUnsigned, MDBoolField, (false));
4556   PARSE_MD_FIELDS();
4557 #undef VISIT_MD_FIELDS
4558 
4559   if (isUnsigned.Val && value.Val.isNegative())
4560     return TokError("unsigned enumerator with negative value");
4561 
4562   APSInt Value(value.Val);
4563   // Add a leading zero so that unsigned values with the msb set are not
4564   // mistaken for negative values when used for signed enumerators.
4565   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4566     Value = Value.zext(Value.getBitWidth() + 1);
4567 
4568   Result =
4569       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4570 
4571   return false;
4572 }
4573 
4574 /// ParseDIBasicType:
4575 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4576 ///                    encoding: DW_ATE_encoding, flags: 0)
4577 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4578 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4579   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4580   OPTIONAL(name, MDStringField, );                                             \
4581   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4582   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4583   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4584   OPTIONAL(flags, DIFlagField, );
4585   PARSE_MD_FIELDS();
4586 #undef VISIT_MD_FIELDS
4587 
4588   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4589                                          align.Val, encoding.Val, flags.Val));
4590   return false;
4591 }
4592 
4593 /// ParseDIDerivedType:
4594 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4595 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4596 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4597 ///                      dwarfAddressSpace: 3)
4598 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4599 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4600   REQUIRED(tag, DwarfTagField, );                                              \
4601   OPTIONAL(name, MDStringField, );                                             \
4602   OPTIONAL(file, MDField, );                                                   \
4603   OPTIONAL(line, LineField, );                                                 \
4604   OPTIONAL(scope, MDField, );                                                  \
4605   REQUIRED(baseType, MDField, );                                               \
4606   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4607   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4608   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4609   OPTIONAL(flags, DIFlagField, );                                              \
4610   OPTIONAL(extraData, MDField, );                                              \
4611   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4612   PARSE_MD_FIELDS();
4613 #undef VISIT_MD_FIELDS
4614 
4615   Optional<unsigned> DWARFAddressSpace;
4616   if (dwarfAddressSpace.Val != UINT32_MAX)
4617     DWARFAddressSpace = dwarfAddressSpace.Val;
4618 
4619   Result = GET_OR_DISTINCT(DIDerivedType,
4620                            (Context, tag.Val, name.Val, file.Val, line.Val,
4621                             scope.Val, baseType.Val, size.Val, align.Val,
4622                             offset.Val, DWARFAddressSpace, flags.Val,
4623                             extraData.Val));
4624   return false;
4625 }
4626 
4627 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4628 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4629   REQUIRED(tag, DwarfTagField, );                                              \
4630   OPTIONAL(name, MDStringField, );                                             \
4631   OPTIONAL(file, MDField, );                                                   \
4632   OPTIONAL(line, LineField, );                                                 \
4633   OPTIONAL(scope, MDField, );                                                  \
4634   OPTIONAL(baseType, MDField, );                                               \
4635   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4636   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4637   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4638   OPTIONAL(flags, DIFlagField, );                                              \
4639   OPTIONAL(elements, MDField, );                                               \
4640   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4641   OPTIONAL(vtableHolder, MDField, );                                           \
4642   OPTIONAL(templateParams, MDField, );                                         \
4643   OPTIONAL(identifier, MDStringField, );                                       \
4644   OPTIONAL(discriminator, MDField, );                                          \
4645   OPTIONAL(dataLocation, MDField, );
4646   PARSE_MD_FIELDS();
4647 #undef VISIT_MD_FIELDS
4648 
4649   // If this has an identifier try to build an ODR type.
4650   if (identifier.Val)
4651     if (auto *CT = DICompositeType::buildODRType(
4652             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4653             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4654             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4655             discriminator.Val, dataLocation.Val)) {
4656       Result = CT;
4657       return false;
4658     }
4659 
4660   // Create a new node, and save it in the context if it belongs in the type
4661   // map.
4662   Result = GET_OR_DISTINCT(
4663       DICompositeType,
4664       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4665        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4666        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4667        discriminator.Val, dataLocation.Val));
4668   return false;
4669 }
4670 
4671 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4672 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4673   OPTIONAL(flags, DIFlagField, );                                              \
4674   OPTIONAL(cc, DwarfCCField, );                                                \
4675   REQUIRED(types, MDField, );
4676   PARSE_MD_FIELDS();
4677 #undef VISIT_MD_FIELDS
4678 
4679   Result = GET_OR_DISTINCT(DISubroutineType,
4680                            (Context, flags.Val, cc.Val, types.Val));
4681   return false;
4682 }
4683 
4684 /// ParseDIFileType:
4685 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4686 ///                   checksumkind: CSK_MD5,
4687 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4688 ///                   source: "source file contents")
4689 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4690   // The default constructed value for checksumkind is required, but will never
4691   // be used, as the parser checks if the field was actually Seen before using
4692   // the Val.
4693 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4694   REQUIRED(filename, MDStringField, );                                         \
4695   REQUIRED(directory, MDStringField, );                                        \
4696   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4697   OPTIONAL(checksum, MDStringField, );                                         \
4698   OPTIONAL(source, MDStringField, );
4699   PARSE_MD_FIELDS();
4700 #undef VISIT_MD_FIELDS
4701 
4702   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4703   if (checksumkind.Seen && checksum.Seen)
4704     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4705   else if (checksumkind.Seen || checksum.Seen)
4706     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4707 
4708   Optional<MDString *> OptSource;
4709   if (source.Seen)
4710     OptSource = source.Val;
4711   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4712                                     OptChecksum, OptSource));
4713   return false;
4714 }
4715 
4716 /// ParseDICompileUnit:
4717 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4718 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4719 ///                      splitDebugFilename: "abc.debug",
4720 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4721 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4722 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4723 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4724   if (!IsDistinct)
4725     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4726 
4727 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4728   REQUIRED(language, DwarfLangField, );                                        \
4729   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4730   OPTIONAL(producer, MDStringField, );                                         \
4731   OPTIONAL(isOptimized, MDBoolField, );                                        \
4732   OPTIONAL(flags, MDStringField, );                                            \
4733   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4734   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4735   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4736   OPTIONAL(enums, MDField, );                                                  \
4737   OPTIONAL(retainedTypes, MDField, );                                          \
4738   OPTIONAL(globals, MDField, );                                                \
4739   OPTIONAL(imports, MDField, );                                                \
4740   OPTIONAL(macros, MDField, );                                                 \
4741   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4742   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4743   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4744   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4745   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4746   OPTIONAL(sysroot, MDStringField, );                                          \
4747   OPTIONAL(sdk, MDStringField, );
4748   PARSE_MD_FIELDS();
4749 #undef VISIT_MD_FIELDS
4750 
4751   Result = DICompileUnit::getDistinct(
4752       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4753       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4754       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4755       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4756       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4757   return false;
4758 }
4759 
4760 /// ParseDISubprogram:
4761 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4762 ///                     file: !1, line: 7, type: !2, isLocal: false,
4763 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4764 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4765 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4766 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4767 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4768 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4769   auto Loc = Lex.getLoc();
4770 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4771   OPTIONAL(scope, MDField, );                                                  \
4772   OPTIONAL(name, MDStringField, );                                             \
4773   OPTIONAL(linkageName, MDStringField, );                                      \
4774   OPTIONAL(file, MDField, );                                                   \
4775   OPTIONAL(line, LineField, );                                                 \
4776   OPTIONAL(type, MDField, );                                                   \
4777   OPTIONAL(isLocal, MDBoolField, );                                            \
4778   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4779   OPTIONAL(scopeLine, LineField, );                                            \
4780   OPTIONAL(containingType, MDField, );                                         \
4781   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4782   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4783   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4784   OPTIONAL(flags, DIFlagField, );                                              \
4785   OPTIONAL(spFlags, DISPFlagField, );                                          \
4786   OPTIONAL(isOptimized, MDBoolField, );                                        \
4787   OPTIONAL(unit, MDField, );                                                   \
4788   OPTIONAL(templateParams, MDField, );                                         \
4789   OPTIONAL(declaration, MDField, );                                            \
4790   OPTIONAL(retainedNodes, MDField, );                                          \
4791   OPTIONAL(thrownTypes, MDField, );
4792   PARSE_MD_FIELDS();
4793 #undef VISIT_MD_FIELDS
4794 
4795   // An explicit spFlags field takes precedence over individual fields in
4796   // older IR versions.
4797   DISubprogram::DISPFlags SPFlags =
4798       spFlags.Seen ? spFlags.Val
4799                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4800                                              isOptimized.Val, virtuality.Val);
4801   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4802     return Lex.Error(
4803         Loc,
4804         "missing 'distinct', required for !DISubprogram that is a Definition");
4805   Result = GET_OR_DISTINCT(
4806       DISubprogram,
4807       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4808        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4809        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4810        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4811   return false;
4812 }
4813 
4814 /// ParseDILexicalBlock:
4815 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4816 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4817 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4818   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4819   OPTIONAL(file, MDField, );                                                   \
4820   OPTIONAL(line, LineField, );                                                 \
4821   OPTIONAL(column, ColumnField, );
4822   PARSE_MD_FIELDS();
4823 #undef VISIT_MD_FIELDS
4824 
4825   Result = GET_OR_DISTINCT(
4826       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4827   return false;
4828 }
4829 
4830 /// ParseDILexicalBlockFile:
4831 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4832 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4833 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4834   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4835   OPTIONAL(file, MDField, );                                                   \
4836   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4837   PARSE_MD_FIELDS();
4838 #undef VISIT_MD_FIELDS
4839 
4840   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4841                            (Context, scope.Val, file.Val, discriminator.Val));
4842   return false;
4843 }
4844 
4845 /// ParseDICommonBlock:
4846 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4847 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4848 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4849   REQUIRED(scope, MDField, );                                                  \
4850   OPTIONAL(declaration, MDField, );                                            \
4851   OPTIONAL(name, MDStringField, );                                             \
4852   OPTIONAL(file, MDField, );                                                   \
4853   OPTIONAL(line, LineField, );
4854   PARSE_MD_FIELDS();
4855 #undef VISIT_MD_FIELDS
4856 
4857   Result = GET_OR_DISTINCT(DICommonBlock,
4858                            (Context, scope.Val, declaration.Val, name.Val,
4859                             file.Val, line.Val));
4860   return false;
4861 }
4862 
4863 /// ParseDINamespace:
4864 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4865 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4866 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4867   REQUIRED(scope, MDField, );                                                  \
4868   OPTIONAL(name, MDStringField, );                                             \
4869   OPTIONAL(exportSymbols, MDBoolField, );
4870   PARSE_MD_FIELDS();
4871 #undef VISIT_MD_FIELDS
4872 
4873   Result = GET_OR_DISTINCT(DINamespace,
4874                            (Context, scope.Val, name.Val, exportSymbols.Val));
4875   return false;
4876 }
4877 
4878 /// ParseDIMacro:
4879 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4880 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4881 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4882   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4883   OPTIONAL(line, LineField, );                                                 \
4884   REQUIRED(name, MDStringField, );                                             \
4885   OPTIONAL(value, MDStringField, );
4886   PARSE_MD_FIELDS();
4887 #undef VISIT_MD_FIELDS
4888 
4889   Result = GET_OR_DISTINCT(DIMacro,
4890                            (Context, type.Val, line.Val, name.Val, value.Val));
4891   return false;
4892 }
4893 
4894 /// ParseDIMacroFile:
4895 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4896 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4898   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4899   OPTIONAL(line, LineField, );                                                 \
4900   REQUIRED(file, MDField, );                                                   \
4901   OPTIONAL(nodes, MDField, );
4902   PARSE_MD_FIELDS();
4903 #undef VISIT_MD_FIELDS
4904 
4905   Result = GET_OR_DISTINCT(DIMacroFile,
4906                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4907   return false;
4908 }
4909 
4910 /// ParseDIModule:
4911 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4912 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4913 ///   file: !1, line: 4)
4914 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4915 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4916   REQUIRED(scope, MDField, );                                                  \
4917   REQUIRED(name, MDStringField, );                                             \
4918   OPTIONAL(configMacros, MDStringField, );                                     \
4919   OPTIONAL(includePath, MDStringField, );                                      \
4920   OPTIONAL(apinotes, MDStringField, );                                         \
4921   OPTIONAL(file, MDField, );                                                   \
4922   OPTIONAL(line, LineField, );
4923   PARSE_MD_FIELDS();
4924 #undef VISIT_MD_FIELDS
4925 
4926   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4927                                       configMacros.Val, includePath.Val,
4928                                       apinotes.Val, line.Val));
4929   return false;
4930 }
4931 
4932 /// ParseDITemplateTypeParameter:
4933 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4934 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4935 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4936   OPTIONAL(name, MDStringField, );                                             \
4937   REQUIRED(type, MDField, );                                                   \
4938   OPTIONAL(defaulted, MDBoolField, );
4939   PARSE_MD_FIELDS();
4940 #undef VISIT_MD_FIELDS
4941 
4942   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4943                            (Context, name.Val, type.Val, defaulted.Val));
4944   return false;
4945 }
4946 
4947 /// ParseDITemplateValueParameter:
4948 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4949 ///                                 name: "V", type: !1, defaulted: false,
4950 ///                                 value: i32 7)
4951 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4952 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4953   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4954   OPTIONAL(name, MDStringField, );                                             \
4955   OPTIONAL(type, MDField, );                                                   \
4956   OPTIONAL(defaulted, MDBoolField, );                                          \
4957   REQUIRED(value, MDField, );
4958 
4959   PARSE_MD_FIELDS();
4960 #undef VISIT_MD_FIELDS
4961 
4962   Result = GET_OR_DISTINCT(
4963       DITemplateValueParameter,
4964       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4965   return false;
4966 }
4967 
4968 /// ParseDIGlobalVariable:
4969 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4970 ///                         file: !1, line: 7, type: !2, isLocal: false,
4971 ///                         isDefinition: true, templateParams: !3,
4972 ///                         declaration: !4, align: 8)
4973 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4974 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4975   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4976   OPTIONAL(scope, MDField, );                                                  \
4977   OPTIONAL(linkageName, MDStringField, );                                      \
4978   OPTIONAL(file, MDField, );                                                   \
4979   OPTIONAL(line, LineField, );                                                 \
4980   OPTIONAL(type, MDField, );                                                   \
4981   OPTIONAL(isLocal, MDBoolField, );                                            \
4982   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4983   OPTIONAL(templateParams, MDField, );                                         \
4984   OPTIONAL(declaration, MDField, );                                            \
4985   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4986   PARSE_MD_FIELDS();
4987 #undef VISIT_MD_FIELDS
4988 
4989   Result =
4990       GET_OR_DISTINCT(DIGlobalVariable,
4991                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4992                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4993                        declaration.Val, templateParams.Val, align.Val));
4994   return false;
4995 }
4996 
4997 /// ParseDILocalVariable:
4998 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4999 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5000 ///                        align: 8)
5001 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5002 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5003 ///                        align: 8)
5004 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5005 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5006   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5007   OPTIONAL(name, MDStringField, );                                             \
5008   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5009   OPTIONAL(file, MDField, );                                                   \
5010   OPTIONAL(line, LineField, );                                                 \
5011   OPTIONAL(type, MDField, );                                                   \
5012   OPTIONAL(flags, DIFlagField, );                                              \
5013   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5014   PARSE_MD_FIELDS();
5015 #undef VISIT_MD_FIELDS
5016 
5017   Result = GET_OR_DISTINCT(DILocalVariable,
5018                            (Context, scope.Val, name.Val, file.Val, line.Val,
5019                             type.Val, arg.Val, flags.Val, align.Val));
5020   return false;
5021 }
5022 
5023 /// ParseDILabel:
5024 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5025 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
5026 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5027   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5028   REQUIRED(name, MDStringField, );                                             \
5029   REQUIRED(file, MDField, );                                                   \
5030   REQUIRED(line, LineField, );
5031   PARSE_MD_FIELDS();
5032 #undef VISIT_MD_FIELDS
5033 
5034   Result = GET_OR_DISTINCT(DILabel,
5035                            (Context, scope.Val, name.Val, file.Val, line.Val));
5036   return false;
5037 }
5038 
5039 /// ParseDIExpression:
5040 ///   ::= !DIExpression(0, 7, -1)
5041 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
5042   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5043   Lex.Lex();
5044 
5045   if (ParseToken(lltok::lparen, "expected '(' here"))
5046     return true;
5047 
5048   SmallVector<uint64_t, 8> Elements;
5049   if (Lex.getKind() != lltok::rparen)
5050     do {
5051       if (Lex.getKind() == lltok::DwarfOp) {
5052         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5053           Lex.Lex();
5054           Elements.push_back(Op);
5055           continue;
5056         }
5057         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5058       }
5059 
5060       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5061         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5062           Lex.Lex();
5063           Elements.push_back(Op);
5064           continue;
5065         }
5066         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
5067       }
5068 
5069       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5070         return TokError("expected unsigned integer");
5071 
5072       auto &U = Lex.getAPSIntVal();
5073       if (U.ugt(UINT64_MAX))
5074         return TokError("element too large, limit is " + Twine(UINT64_MAX));
5075       Elements.push_back(U.getZExtValue());
5076       Lex.Lex();
5077     } while (EatIfPresent(lltok::comma));
5078 
5079   if (ParseToken(lltok::rparen, "expected ')' here"))
5080     return true;
5081 
5082   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5083   return false;
5084 }
5085 
5086 /// ParseDIGlobalVariableExpression:
5087 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5088 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5089                                                bool IsDistinct) {
5090 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5091   REQUIRED(var, MDField, );                                                    \
5092   REQUIRED(expr, MDField, );
5093   PARSE_MD_FIELDS();
5094 #undef VISIT_MD_FIELDS
5095 
5096   Result =
5097       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5098   return false;
5099 }
5100 
5101 /// ParseDIObjCProperty:
5102 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5103 ///                       getter: "getFoo", attributes: 7, type: !2)
5104 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5105 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5106   OPTIONAL(name, MDStringField, );                                             \
5107   OPTIONAL(file, MDField, );                                                   \
5108   OPTIONAL(line, LineField, );                                                 \
5109   OPTIONAL(setter, MDStringField, );                                           \
5110   OPTIONAL(getter, MDStringField, );                                           \
5111   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5112   OPTIONAL(type, MDField, );
5113   PARSE_MD_FIELDS();
5114 #undef VISIT_MD_FIELDS
5115 
5116   Result = GET_OR_DISTINCT(DIObjCProperty,
5117                            (Context, name.Val, file.Val, line.Val, setter.Val,
5118                             getter.Val, attributes.Val, type.Val));
5119   return false;
5120 }
5121 
5122 /// ParseDIImportedEntity:
5123 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5124 ///                         line: 7, name: "foo")
5125 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5126 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5127   REQUIRED(tag, DwarfTagField, );                                              \
5128   REQUIRED(scope, MDField, );                                                  \
5129   OPTIONAL(entity, MDField, );                                                 \
5130   OPTIONAL(file, MDField, );                                                   \
5131   OPTIONAL(line, LineField, );                                                 \
5132   OPTIONAL(name, MDStringField, );
5133   PARSE_MD_FIELDS();
5134 #undef VISIT_MD_FIELDS
5135 
5136   Result = GET_OR_DISTINCT(
5137       DIImportedEntity,
5138       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5139   return false;
5140 }
5141 
5142 #undef PARSE_MD_FIELD
5143 #undef NOP_FIELD
5144 #undef REQUIRE_FIELD
5145 #undef DECLARE_FIELD
5146 
5147 /// ParseMetadataAsValue
5148 ///  ::= metadata i32 %local
5149 ///  ::= metadata i32 @global
5150 ///  ::= metadata i32 7
5151 ///  ::= metadata !0
5152 ///  ::= metadata !{...}
5153 ///  ::= metadata !"string"
5154 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5155   // Note: the type 'metadata' has already been parsed.
5156   Metadata *MD;
5157   if (ParseMetadata(MD, &PFS))
5158     return true;
5159 
5160   V = MetadataAsValue::get(Context, MD);
5161   return false;
5162 }
5163 
5164 /// ParseValueAsMetadata
5165 ///  ::= i32 %local
5166 ///  ::= i32 @global
5167 ///  ::= i32 7
5168 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5169                                     PerFunctionState *PFS) {
5170   Type *Ty;
5171   LocTy Loc;
5172   if (ParseType(Ty, TypeMsg, Loc))
5173     return true;
5174   if (Ty->isMetadataTy())
5175     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5176 
5177   Value *V;
5178   if (ParseValue(Ty, V, PFS))
5179     return true;
5180 
5181   MD = ValueAsMetadata::get(V);
5182   return false;
5183 }
5184 
5185 /// ParseMetadata
5186 ///  ::= i32 %local
5187 ///  ::= i32 @global
5188 ///  ::= i32 7
5189 ///  ::= !42
5190 ///  ::= !{...}
5191 ///  ::= !"string"
5192 ///  ::= !DILocation(...)
5193 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5194   if (Lex.getKind() == lltok::MetadataVar) {
5195     MDNode *N;
5196     if (ParseSpecializedMDNode(N))
5197       return true;
5198     MD = N;
5199     return false;
5200   }
5201 
5202   // ValueAsMetadata:
5203   // <type> <value>
5204   if (Lex.getKind() != lltok::exclaim)
5205     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5206 
5207   // '!'.
5208   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5209   Lex.Lex();
5210 
5211   // MDString:
5212   //   ::= '!' STRINGCONSTANT
5213   if (Lex.getKind() == lltok::StringConstant) {
5214     MDString *S;
5215     if (ParseMDString(S))
5216       return true;
5217     MD = S;
5218     return false;
5219   }
5220 
5221   // MDNode:
5222   // !{ ... }
5223   // !7
5224   MDNode *N;
5225   if (ParseMDNodeTail(N))
5226     return true;
5227   MD = N;
5228   return false;
5229 }
5230 
5231 //===----------------------------------------------------------------------===//
5232 // Function Parsing.
5233 //===----------------------------------------------------------------------===//
5234 
5235 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5236                                    PerFunctionState *PFS, bool IsCall) {
5237   if (Ty->isFunctionTy())
5238     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5239 
5240   switch (ID.Kind) {
5241   case ValID::t_LocalID:
5242     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5243     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5244     return V == nullptr;
5245   case ValID::t_LocalName:
5246     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5247     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5248     return V == nullptr;
5249   case ValID::t_InlineAsm: {
5250     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5251       return Error(ID.Loc, "invalid type for inline asm constraint string");
5252     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5253                        (ID.UIntVal >> 1) & 1,
5254                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5255     return false;
5256   }
5257   case ValID::t_GlobalName:
5258     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5259     return V == nullptr;
5260   case ValID::t_GlobalID:
5261     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5262     return V == nullptr;
5263   case ValID::t_APSInt:
5264     if (!Ty->isIntegerTy())
5265       return Error(ID.Loc, "integer constant must have integer type");
5266     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5267     V = ConstantInt::get(Context, ID.APSIntVal);
5268     return false;
5269   case ValID::t_APFloat:
5270     if (!Ty->isFloatingPointTy() ||
5271         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5272       return Error(ID.Loc, "floating point constant invalid for type");
5273 
5274     // The lexer has no type info, so builds all half, bfloat, float, and double
5275     // FP constants as double.  Fix this here.  Long double does not need this.
5276     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5277       bool Ignored;
5278       if (Ty->isHalfTy())
5279         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5280                               &Ignored);
5281       else if (Ty->isBFloatTy())
5282         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5283                               &Ignored);
5284       else if (Ty->isFloatTy())
5285         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5286                               &Ignored);
5287     }
5288     V = ConstantFP::get(Context, ID.APFloatVal);
5289 
5290     if (V->getType() != Ty)
5291       return Error(ID.Loc, "floating point constant does not have type '" +
5292                    getTypeString(Ty) + "'");
5293 
5294     return false;
5295   case ValID::t_Null:
5296     if (!Ty->isPointerTy())
5297       return Error(ID.Loc, "null must be a pointer type");
5298     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5299     return false;
5300   case ValID::t_Undef:
5301     // FIXME: LabelTy should not be a first-class type.
5302     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5303       return Error(ID.Loc, "invalid type for undef constant");
5304     V = UndefValue::get(Ty);
5305     return false;
5306   case ValID::t_EmptyArray:
5307     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5308       return Error(ID.Loc, "invalid empty array initializer");
5309     V = UndefValue::get(Ty);
5310     return false;
5311   case ValID::t_Zero:
5312     // FIXME: LabelTy should not be a first-class type.
5313     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5314       return Error(ID.Loc, "invalid type for null constant");
5315     V = Constant::getNullValue(Ty);
5316     return false;
5317   case ValID::t_None:
5318     if (!Ty->isTokenTy())
5319       return Error(ID.Loc, "invalid type for none constant");
5320     V = Constant::getNullValue(Ty);
5321     return false;
5322   case ValID::t_Constant:
5323     if (ID.ConstantVal->getType() != Ty)
5324       return Error(ID.Loc, "constant expression type mismatch");
5325 
5326     V = ID.ConstantVal;
5327     return false;
5328   case ValID::t_ConstantStruct:
5329   case ValID::t_PackedConstantStruct:
5330     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5331       if (ST->getNumElements() != ID.UIntVal)
5332         return Error(ID.Loc,
5333                      "initializer with struct type has wrong # elements");
5334       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5335         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5336 
5337       // Verify that the elements are compatible with the structtype.
5338       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5339         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5340           return Error(ID.Loc, "element " + Twine(i) +
5341                     " of struct initializer doesn't match struct element type");
5342 
5343       V = ConstantStruct::get(
5344           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5345     } else
5346       return Error(ID.Loc, "constant expression type mismatch");
5347     return false;
5348   }
5349   llvm_unreachable("Invalid ValID");
5350 }
5351 
5352 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5353   C = nullptr;
5354   ValID ID;
5355   auto Loc = Lex.getLoc();
5356   if (ParseValID(ID, /*PFS=*/nullptr))
5357     return true;
5358   switch (ID.Kind) {
5359   case ValID::t_APSInt:
5360   case ValID::t_APFloat:
5361   case ValID::t_Undef:
5362   case ValID::t_Constant:
5363   case ValID::t_ConstantStruct:
5364   case ValID::t_PackedConstantStruct: {
5365     Value *V;
5366     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5367       return true;
5368     assert(isa<Constant>(V) && "Expected a constant value");
5369     C = cast<Constant>(V);
5370     return false;
5371   }
5372   case ValID::t_Null:
5373     C = Constant::getNullValue(Ty);
5374     return false;
5375   default:
5376     return Error(Loc, "expected a constant value");
5377   }
5378 }
5379 
5380 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5381   V = nullptr;
5382   ValID ID;
5383   return ParseValID(ID, PFS) ||
5384          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5385 }
5386 
5387 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5388   Type *Ty = nullptr;
5389   return ParseType(Ty) ||
5390          ParseValue(Ty, V, PFS);
5391 }
5392 
5393 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5394                                       PerFunctionState &PFS) {
5395   Value *V;
5396   Loc = Lex.getLoc();
5397   if (ParseTypeAndValue(V, PFS)) return true;
5398   if (!isa<BasicBlock>(V))
5399     return Error(Loc, "expected a basic block");
5400   BB = cast<BasicBlock>(V);
5401   return false;
5402 }
5403 
5404 /// FunctionHeader
5405 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5406 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5407 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5408 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5409 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5410   // Parse the linkage.
5411   LocTy LinkageLoc = Lex.getLoc();
5412   unsigned Linkage;
5413   unsigned Visibility;
5414   unsigned DLLStorageClass;
5415   bool DSOLocal;
5416   AttrBuilder RetAttrs;
5417   unsigned CC;
5418   bool HasLinkage;
5419   Type *RetType = nullptr;
5420   LocTy RetTypeLoc = Lex.getLoc();
5421   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5422                            DSOLocal) ||
5423       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5424       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5425     return true;
5426 
5427   // Verify that the linkage is ok.
5428   switch ((GlobalValue::LinkageTypes)Linkage) {
5429   case GlobalValue::ExternalLinkage:
5430     break; // always ok.
5431   case GlobalValue::ExternalWeakLinkage:
5432     if (isDefine)
5433       return Error(LinkageLoc, "invalid linkage for function definition");
5434     break;
5435   case GlobalValue::PrivateLinkage:
5436   case GlobalValue::InternalLinkage:
5437   case GlobalValue::AvailableExternallyLinkage:
5438   case GlobalValue::LinkOnceAnyLinkage:
5439   case GlobalValue::LinkOnceODRLinkage:
5440   case GlobalValue::WeakAnyLinkage:
5441   case GlobalValue::WeakODRLinkage:
5442     if (!isDefine)
5443       return Error(LinkageLoc, "invalid linkage for function declaration");
5444     break;
5445   case GlobalValue::AppendingLinkage:
5446   case GlobalValue::CommonLinkage:
5447     return Error(LinkageLoc, "invalid function linkage type");
5448   }
5449 
5450   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5451     return Error(LinkageLoc,
5452                  "symbol with local linkage must have default visibility");
5453 
5454   if (!FunctionType::isValidReturnType(RetType))
5455     return Error(RetTypeLoc, "invalid function return type");
5456 
5457   LocTy NameLoc = Lex.getLoc();
5458 
5459   std::string FunctionName;
5460   if (Lex.getKind() == lltok::GlobalVar) {
5461     FunctionName = Lex.getStrVal();
5462   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5463     unsigned NameID = Lex.getUIntVal();
5464 
5465     if (NameID != NumberedVals.size())
5466       return TokError("function expected to be numbered '%" +
5467                       Twine(NumberedVals.size()) + "'");
5468   } else {
5469     return TokError("expected function name");
5470   }
5471 
5472   Lex.Lex();
5473 
5474   if (Lex.getKind() != lltok::lparen)
5475     return TokError("expected '(' in function argument list");
5476 
5477   SmallVector<ArgInfo, 8> ArgList;
5478   bool isVarArg;
5479   AttrBuilder FuncAttrs;
5480   std::vector<unsigned> FwdRefAttrGrps;
5481   LocTy BuiltinLoc;
5482   std::string Section;
5483   std::string Partition;
5484   MaybeAlign Alignment;
5485   std::string GC;
5486   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5487   unsigned AddrSpace = 0;
5488   Constant *Prefix = nullptr;
5489   Constant *Prologue = nullptr;
5490   Constant *PersonalityFn = nullptr;
5491   Comdat *C;
5492 
5493   if (ParseArgumentList(ArgList, isVarArg) ||
5494       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5495       ParseOptionalProgramAddrSpace(AddrSpace) ||
5496       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5497                                  BuiltinLoc) ||
5498       (EatIfPresent(lltok::kw_section) &&
5499        ParseStringConstant(Section)) ||
5500       (EatIfPresent(lltok::kw_partition) &&
5501        ParseStringConstant(Partition)) ||
5502       parseOptionalComdat(FunctionName, C) ||
5503       ParseOptionalAlignment(Alignment) ||
5504       (EatIfPresent(lltok::kw_gc) &&
5505        ParseStringConstant(GC)) ||
5506       (EatIfPresent(lltok::kw_prefix) &&
5507        ParseGlobalTypeAndValue(Prefix)) ||
5508       (EatIfPresent(lltok::kw_prologue) &&
5509        ParseGlobalTypeAndValue(Prologue)) ||
5510       (EatIfPresent(lltok::kw_personality) &&
5511        ParseGlobalTypeAndValue(PersonalityFn)))
5512     return true;
5513 
5514   if (FuncAttrs.contains(Attribute::Builtin))
5515     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5516 
5517   // If the alignment was parsed as an attribute, move to the alignment field.
5518   if (FuncAttrs.hasAlignmentAttr()) {
5519     Alignment = FuncAttrs.getAlignment();
5520     FuncAttrs.removeAttribute(Attribute::Alignment);
5521   }
5522 
5523   // Okay, if we got here, the function is syntactically valid.  Convert types
5524   // and do semantic checks.
5525   std::vector<Type*> ParamTypeList;
5526   SmallVector<AttributeSet, 8> Attrs;
5527 
5528   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5529     ParamTypeList.push_back(ArgList[i].Ty);
5530     Attrs.push_back(ArgList[i].Attrs);
5531   }
5532 
5533   AttributeList PAL =
5534       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5535                          AttributeSet::get(Context, RetAttrs), Attrs);
5536 
5537   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5538     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5539 
5540   FunctionType *FT =
5541     FunctionType::get(RetType, ParamTypeList, isVarArg);
5542   PointerType *PFT = PointerType::get(FT, AddrSpace);
5543 
5544   Fn = nullptr;
5545   if (!FunctionName.empty()) {
5546     // If this was a definition of a forward reference, remove the definition
5547     // from the forward reference table and fill in the forward ref.
5548     auto FRVI = ForwardRefVals.find(FunctionName);
5549     if (FRVI != ForwardRefVals.end()) {
5550       Fn = M->getFunction(FunctionName);
5551       if (!Fn)
5552         return Error(FRVI->second.second, "invalid forward reference to "
5553                      "function as global value!");
5554       if (Fn->getType() != PFT)
5555         return Error(FRVI->second.second, "invalid forward reference to "
5556                      "function '" + FunctionName + "' with wrong type: "
5557                      "expected '" + getTypeString(PFT) + "' but was '" +
5558                      getTypeString(Fn->getType()) + "'");
5559       ForwardRefVals.erase(FRVI);
5560     } else if ((Fn = M->getFunction(FunctionName))) {
5561       // Reject redefinitions.
5562       return Error(NameLoc, "invalid redefinition of function '" +
5563                    FunctionName + "'");
5564     } else if (M->getNamedValue(FunctionName)) {
5565       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5566     }
5567 
5568   } else {
5569     // If this is a definition of a forward referenced function, make sure the
5570     // types agree.
5571     auto I = ForwardRefValIDs.find(NumberedVals.size());
5572     if (I != ForwardRefValIDs.end()) {
5573       Fn = cast<Function>(I->second.first);
5574       if (Fn->getType() != PFT)
5575         return Error(NameLoc, "type of definition and forward reference of '@" +
5576                      Twine(NumberedVals.size()) + "' disagree: "
5577                      "expected '" + getTypeString(PFT) + "' but was '" +
5578                      getTypeString(Fn->getType()) + "'");
5579       ForwardRefValIDs.erase(I);
5580     }
5581   }
5582 
5583   if (!Fn)
5584     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5585                           FunctionName, M);
5586   else // Move the forward-reference to the correct spot in the module.
5587     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5588 
5589   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5590 
5591   if (FunctionName.empty())
5592     NumberedVals.push_back(Fn);
5593 
5594   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5595   maybeSetDSOLocal(DSOLocal, *Fn);
5596   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5597   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5598   Fn->setCallingConv(CC);
5599   Fn->setAttributes(PAL);
5600   Fn->setUnnamedAddr(UnnamedAddr);
5601   Fn->setAlignment(MaybeAlign(Alignment));
5602   Fn->setSection(Section);
5603   Fn->setPartition(Partition);
5604   Fn->setComdat(C);
5605   Fn->setPersonalityFn(PersonalityFn);
5606   if (!GC.empty()) Fn->setGC(GC);
5607   Fn->setPrefixData(Prefix);
5608   Fn->setPrologueData(Prologue);
5609   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5610 
5611   // Add all of the arguments we parsed to the function.
5612   Function::arg_iterator ArgIt = Fn->arg_begin();
5613   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5614     // If the argument has a name, insert it into the argument symbol table.
5615     if (ArgList[i].Name.empty()) continue;
5616 
5617     // Set the name, if it conflicted, it will be auto-renamed.
5618     ArgIt->setName(ArgList[i].Name);
5619 
5620     if (ArgIt->getName() != ArgList[i].Name)
5621       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5622                    ArgList[i].Name + "'");
5623   }
5624 
5625   if (isDefine)
5626     return false;
5627 
5628   // Check the declaration has no block address forward references.
5629   ValID ID;
5630   if (FunctionName.empty()) {
5631     ID.Kind = ValID::t_GlobalID;
5632     ID.UIntVal = NumberedVals.size() - 1;
5633   } else {
5634     ID.Kind = ValID::t_GlobalName;
5635     ID.StrVal = FunctionName;
5636   }
5637   auto Blocks = ForwardRefBlockAddresses.find(ID);
5638   if (Blocks != ForwardRefBlockAddresses.end())
5639     return Error(Blocks->first.Loc,
5640                  "cannot take blockaddress inside a declaration");
5641   return false;
5642 }
5643 
5644 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5645   ValID ID;
5646   if (FunctionNumber == -1) {
5647     ID.Kind = ValID::t_GlobalName;
5648     ID.StrVal = std::string(F.getName());
5649   } else {
5650     ID.Kind = ValID::t_GlobalID;
5651     ID.UIntVal = FunctionNumber;
5652   }
5653 
5654   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5655   if (Blocks == P.ForwardRefBlockAddresses.end())
5656     return false;
5657 
5658   for (const auto &I : Blocks->second) {
5659     const ValID &BBID = I.first;
5660     GlobalValue *GV = I.second;
5661 
5662     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5663            "Expected local id or name");
5664     BasicBlock *BB;
5665     if (BBID.Kind == ValID::t_LocalName)
5666       BB = GetBB(BBID.StrVal, BBID.Loc);
5667     else
5668       BB = GetBB(BBID.UIntVal, BBID.Loc);
5669     if (!BB)
5670       return P.Error(BBID.Loc, "referenced value is not a basic block");
5671 
5672     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5673     GV->eraseFromParent();
5674   }
5675 
5676   P.ForwardRefBlockAddresses.erase(Blocks);
5677   return false;
5678 }
5679 
5680 /// ParseFunctionBody
5681 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5682 bool LLParser::ParseFunctionBody(Function &Fn) {
5683   if (Lex.getKind() != lltok::lbrace)
5684     return TokError("expected '{' in function body");
5685   Lex.Lex();  // eat the {.
5686 
5687   int FunctionNumber = -1;
5688   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5689 
5690   PerFunctionState PFS(*this, Fn, FunctionNumber);
5691 
5692   // Resolve block addresses and allow basic blocks to be forward-declared
5693   // within this function.
5694   if (PFS.resolveForwardRefBlockAddresses())
5695     return true;
5696   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5697 
5698   // We need at least one basic block.
5699   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5700     return TokError("function body requires at least one basic block");
5701 
5702   while (Lex.getKind() != lltok::rbrace &&
5703          Lex.getKind() != lltok::kw_uselistorder)
5704     if (ParseBasicBlock(PFS)) return true;
5705 
5706   while (Lex.getKind() != lltok::rbrace)
5707     if (ParseUseListOrder(&PFS))
5708       return true;
5709 
5710   // Eat the }.
5711   Lex.Lex();
5712 
5713   // Verify function is ok.
5714   return PFS.FinishFunction();
5715 }
5716 
5717 /// ParseBasicBlock
5718 ///   ::= (LabelStr|LabelID)? Instruction*
5719 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5720   // If this basic block starts out with a name, remember it.
5721   std::string Name;
5722   int NameID = -1;
5723   LocTy NameLoc = Lex.getLoc();
5724   if (Lex.getKind() == lltok::LabelStr) {
5725     Name = Lex.getStrVal();
5726     Lex.Lex();
5727   } else if (Lex.getKind() == lltok::LabelID) {
5728     NameID = Lex.getUIntVal();
5729     Lex.Lex();
5730   }
5731 
5732   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5733   if (!BB)
5734     return true;
5735 
5736   std::string NameStr;
5737 
5738   // Parse the instructions in this block until we get a terminator.
5739   Instruction *Inst;
5740   do {
5741     // This instruction may have three possibilities for a name: a) none
5742     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5743     LocTy NameLoc = Lex.getLoc();
5744     int NameID = -1;
5745     NameStr = "";
5746 
5747     if (Lex.getKind() == lltok::LocalVarID) {
5748       NameID = Lex.getUIntVal();
5749       Lex.Lex();
5750       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5751         return true;
5752     } else if (Lex.getKind() == lltok::LocalVar) {
5753       NameStr = Lex.getStrVal();
5754       Lex.Lex();
5755       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5756         return true;
5757     }
5758 
5759     switch (ParseInstruction(Inst, BB, PFS)) {
5760     default: llvm_unreachable("Unknown ParseInstruction result!");
5761     case InstError: return true;
5762     case InstNormal:
5763       BB->getInstList().push_back(Inst);
5764 
5765       // With a normal result, we check to see if the instruction is followed by
5766       // a comma and metadata.
5767       if (EatIfPresent(lltok::comma))
5768         if (ParseInstructionMetadata(*Inst))
5769           return true;
5770       break;
5771     case InstExtraComma:
5772       BB->getInstList().push_back(Inst);
5773 
5774       // If the instruction parser ate an extra comma at the end of it, it
5775       // *must* be followed by metadata.
5776       if (ParseInstructionMetadata(*Inst))
5777         return true;
5778       break;
5779     }
5780 
5781     // Set the name on the instruction.
5782     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5783   } while (!Inst->isTerminator());
5784 
5785   return false;
5786 }
5787 
5788 //===----------------------------------------------------------------------===//
5789 // Instruction Parsing.
5790 //===----------------------------------------------------------------------===//
5791 
5792 /// ParseInstruction - Parse one of the many different instructions.
5793 ///
5794 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5795                                PerFunctionState &PFS) {
5796   lltok::Kind Token = Lex.getKind();
5797   if (Token == lltok::Eof)
5798     return TokError("found end of file when expecting more instructions");
5799   LocTy Loc = Lex.getLoc();
5800   unsigned KeywordVal = Lex.getUIntVal();
5801   Lex.Lex();  // Eat the keyword.
5802 
5803   switch (Token) {
5804   default:                    return Error(Loc, "expected instruction opcode");
5805   // Terminator Instructions.
5806   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5807   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5808   case lltok::kw_br:          return ParseBr(Inst, PFS);
5809   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5810   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5811   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5812   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5813   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5814   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5815   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5816   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5817   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5818   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5819   // Unary Operators.
5820   case lltok::kw_fneg: {
5821     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5822     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5823     if (Res != 0)
5824       return Res;
5825     if (FMF.any())
5826       Inst->setFastMathFlags(FMF);
5827     return false;
5828   }
5829   // Binary Operators.
5830   case lltok::kw_add:
5831   case lltok::kw_sub:
5832   case lltok::kw_mul:
5833   case lltok::kw_shl: {
5834     bool NUW = EatIfPresent(lltok::kw_nuw);
5835     bool NSW = EatIfPresent(lltok::kw_nsw);
5836     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5837 
5838     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5839 
5840     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5841     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5842     return false;
5843   }
5844   case lltok::kw_fadd:
5845   case lltok::kw_fsub:
5846   case lltok::kw_fmul:
5847   case lltok::kw_fdiv:
5848   case lltok::kw_frem: {
5849     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5850     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5851     if (Res != 0)
5852       return Res;
5853     if (FMF.any())
5854       Inst->setFastMathFlags(FMF);
5855     return 0;
5856   }
5857 
5858   case lltok::kw_sdiv:
5859   case lltok::kw_udiv:
5860   case lltok::kw_lshr:
5861   case lltok::kw_ashr: {
5862     bool Exact = EatIfPresent(lltok::kw_exact);
5863 
5864     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5865     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5866     return false;
5867   }
5868 
5869   case lltok::kw_urem:
5870   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5871                                                 /*IsFP*/false);
5872   case lltok::kw_and:
5873   case lltok::kw_or:
5874   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5875   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5876   case lltok::kw_fcmp: {
5877     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5878     int Res = ParseCompare(Inst, PFS, KeywordVal);
5879     if (Res != 0)
5880       return Res;
5881     if (FMF.any())
5882       Inst->setFastMathFlags(FMF);
5883     return 0;
5884   }
5885 
5886   // Casts.
5887   case lltok::kw_trunc:
5888   case lltok::kw_zext:
5889   case lltok::kw_sext:
5890   case lltok::kw_fptrunc:
5891   case lltok::kw_fpext:
5892   case lltok::kw_bitcast:
5893   case lltok::kw_addrspacecast:
5894   case lltok::kw_uitofp:
5895   case lltok::kw_sitofp:
5896   case lltok::kw_fptoui:
5897   case lltok::kw_fptosi:
5898   case lltok::kw_inttoptr:
5899   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5900   // Other.
5901   case lltok::kw_select: {
5902     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5903     int Res = ParseSelect(Inst, PFS);
5904     if (Res != 0)
5905       return Res;
5906     if (FMF.any()) {
5907       if (!isa<FPMathOperator>(Inst))
5908         return Error(Loc, "fast-math-flags specified for select without "
5909                           "floating-point scalar or vector return type");
5910       Inst->setFastMathFlags(FMF);
5911     }
5912     return 0;
5913   }
5914   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5915   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5916   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5917   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5918   case lltok::kw_phi: {
5919     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5920     int Res = ParsePHI(Inst, PFS);
5921     if (Res != 0)
5922       return Res;
5923     if (FMF.any()) {
5924       if (!isa<FPMathOperator>(Inst))
5925         return Error(Loc, "fast-math-flags specified for phi without "
5926                           "floating-point scalar or vector return type");
5927       Inst->setFastMathFlags(FMF);
5928     }
5929     return 0;
5930   }
5931   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5932   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5933   // Call.
5934   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5935   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5936   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5937   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5938   // Memory.
5939   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5940   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5941   case lltok::kw_store:          return ParseStore(Inst, PFS);
5942   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5943   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5944   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5945   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5946   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5947   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5948   }
5949 }
5950 
5951 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5952 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5953   if (Opc == Instruction::FCmp) {
5954     switch (Lex.getKind()) {
5955     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5956     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5957     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5958     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5959     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5960     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5961     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5962     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5963     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5964     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5965     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5966     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5967     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5968     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5969     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5970     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5971     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5972     }
5973   } else {
5974     switch (Lex.getKind()) {
5975     default: return TokError("expected icmp predicate (e.g. 'eq')");
5976     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5977     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5978     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5979     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5980     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5981     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5982     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5983     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5984     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5985     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5986     }
5987   }
5988   Lex.Lex();
5989   return false;
5990 }
5991 
5992 //===----------------------------------------------------------------------===//
5993 // Terminator Instructions.
5994 //===----------------------------------------------------------------------===//
5995 
5996 /// ParseRet - Parse a return instruction.
5997 ///   ::= 'ret' void (',' !dbg, !1)*
5998 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5999 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
6000                         PerFunctionState &PFS) {
6001   SMLoc TypeLoc = Lex.getLoc();
6002   Type *Ty = nullptr;
6003   if (ParseType(Ty, true /*void allowed*/)) return true;
6004 
6005   Type *ResType = PFS.getFunction().getReturnType();
6006 
6007   if (Ty->isVoidTy()) {
6008     if (!ResType->isVoidTy())
6009       return Error(TypeLoc, "value doesn't match function result type '" +
6010                    getTypeString(ResType) + "'");
6011 
6012     Inst = ReturnInst::Create(Context);
6013     return false;
6014   }
6015 
6016   Value *RV;
6017   if (ParseValue(Ty, RV, PFS)) return true;
6018 
6019   if (ResType != RV->getType())
6020     return Error(TypeLoc, "value doesn't match function result type '" +
6021                  getTypeString(ResType) + "'");
6022 
6023   Inst = ReturnInst::Create(Context, RV);
6024   return false;
6025 }
6026 
6027 /// ParseBr
6028 ///   ::= 'br' TypeAndValue
6029 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6030 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
6031   LocTy Loc, Loc2;
6032   Value *Op0;
6033   BasicBlock *Op1, *Op2;
6034   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
6035 
6036   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6037     Inst = BranchInst::Create(BB);
6038     return false;
6039   }
6040 
6041   if (Op0->getType() != Type::getInt1Ty(Context))
6042     return Error(Loc, "branch condition must have 'i1' type");
6043 
6044   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
6045       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
6046       ParseToken(lltok::comma, "expected ',' after true destination") ||
6047       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
6048     return true;
6049 
6050   Inst = BranchInst::Create(Op1, Op2, Op0);
6051   return false;
6052 }
6053 
6054 /// ParseSwitch
6055 ///  Instruction
6056 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6057 ///  JumpTable
6058 ///    ::= (TypeAndValue ',' TypeAndValue)*
6059 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6060   LocTy CondLoc, BBLoc;
6061   Value *Cond;
6062   BasicBlock *DefaultBB;
6063   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
6064       ParseToken(lltok::comma, "expected ',' after switch condition") ||
6065       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6066       ParseToken(lltok::lsquare, "expected '[' with switch table"))
6067     return true;
6068 
6069   if (!Cond->getType()->isIntegerTy())
6070     return Error(CondLoc, "switch condition must have integer type");
6071 
6072   // Parse the jump table pairs.
6073   SmallPtrSet<Value*, 32> SeenCases;
6074   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6075   while (Lex.getKind() != lltok::rsquare) {
6076     Value *Constant;
6077     BasicBlock *DestBB;
6078 
6079     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
6080         ParseToken(lltok::comma, "expected ',' after case value") ||
6081         ParseTypeAndBasicBlock(DestBB, PFS))
6082       return true;
6083 
6084     if (!SeenCases.insert(Constant).second)
6085       return Error(CondLoc, "duplicate case value in switch");
6086     if (!isa<ConstantInt>(Constant))
6087       return Error(CondLoc, "case value is not a constant integer");
6088 
6089     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6090   }
6091 
6092   Lex.Lex();  // Eat the ']'.
6093 
6094   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6095   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6096     SI->addCase(Table[i].first, Table[i].second);
6097   Inst = SI;
6098   return false;
6099 }
6100 
6101 /// ParseIndirectBr
6102 ///  Instruction
6103 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6104 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6105   LocTy AddrLoc;
6106   Value *Address;
6107   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6108       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6109       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6110     return true;
6111 
6112   if (!Address->getType()->isPointerTy())
6113     return Error(AddrLoc, "indirectbr address must have pointer type");
6114 
6115   // Parse the destination list.
6116   SmallVector<BasicBlock*, 16> DestList;
6117 
6118   if (Lex.getKind() != lltok::rsquare) {
6119     BasicBlock *DestBB;
6120     if (ParseTypeAndBasicBlock(DestBB, PFS))
6121       return true;
6122     DestList.push_back(DestBB);
6123 
6124     while (EatIfPresent(lltok::comma)) {
6125       if (ParseTypeAndBasicBlock(DestBB, PFS))
6126         return true;
6127       DestList.push_back(DestBB);
6128     }
6129   }
6130 
6131   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6132     return true;
6133 
6134   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6135   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6136     IBI->addDestination(DestList[i]);
6137   Inst = IBI;
6138   return false;
6139 }
6140 
6141 /// ParseInvoke
6142 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6143 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6144 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6145   LocTy CallLoc = Lex.getLoc();
6146   AttrBuilder RetAttrs, FnAttrs;
6147   std::vector<unsigned> FwdRefAttrGrps;
6148   LocTy NoBuiltinLoc;
6149   unsigned CC;
6150   unsigned InvokeAddrSpace;
6151   Type *RetType = nullptr;
6152   LocTy RetTypeLoc;
6153   ValID CalleeID;
6154   SmallVector<ParamInfo, 16> ArgList;
6155   SmallVector<OperandBundleDef, 2> BundleList;
6156 
6157   BasicBlock *NormalBB, *UnwindBB;
6158   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6159       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6160       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6161       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6162       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6163                                  NoBuiltinLoc) ||
6164       ParseOptionalOperandBundles(BundleList, PFS) ||
6165       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6166       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6167       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6168       ParseTypeAndBasicBlock(UnwindBB, PFS))
6169     return true;
6170 
6171   // If RetType is a non-function pointer type, then this is the short syntax
6172   // for the call, which means that RetType is just the return type.  Infer the
6173   // rest of the function argument types from the arguments that are present.
6174   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6175   if (!Ty) {
6176     // Pull out the types of all of the arguments...
6177     std::vector<Type*> ParamTypes;
6178     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6179       ParamTypes.push_back(ArgList[i].V->getType());
6180 
6181     if (!FunctionType::isValidReturnType(RetType))
6182       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6183 
6184     Ty = FunctionType::get(RetType, ParamTypes, false);
6185   }
6186 
6187   CalleeID.FTy = Ty;
6188 
6189   // Look up the callee.
6190   Value *Callee;
6191   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6192                           Callee, &PFS, /*IsCall=*/true))
6193     return true;
6194 
6195   // Set up the Attribute for the function.
6196   SmallVector<Value *, 8> Args;
6197   SmallVector<AttributeSet, 8> ArgAttrs;
6198 
6199   // Loop through FunctionType's arguments and ensure they are specified
6200   // correctly.  Also, gather any parameter attributes.
6201   FunctionType::param_iterator I = Ty->param_begin();
6202   FunctionType::param_iterator E = Ty->param_end();
6203   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6204     Type *ExpectedTy = nullptr;
6205     if (I != E) {
6206       ExpectedTy = *I++;
6207     } else if (!Ty->isVarArg()) {
6208       return Error(ArgList[i].Loc, "too many arguments specified");
6209     }
6210 
6211     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6212       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6213                    getTypeString(ExpectedTy) + "'");
6214     Args.push_back(ArgList[i].V);
6215     ArgAttrs.push_back(ArgList[i].Attrs);
6216   }
6217 
6218   if (I != E)
6219     return Error(CallLoc, "not enough parameters specified for call");
6220 
6221   if (FnAttrs.hasAlignmentAttr())
6222     return Error(CallLoc, "invoke instructions may not have an alignment");
6223 
6224   // Finish off the Attribute and check them
6225   AttributeList PAL =
6226       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6227                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6228 
6229   InvokeInst *II =
6230       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6231   II->setCallingConv(CC);
6232   II->setAttributes(PAL);
6233   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6234   Inst = II;
6235   return false;
6236 }
6237 
6238 /// ParseResume
6239 ///   ::= 'resume' TypeAndValue
6240 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6241   Value *Exn; LocTy ExnLoc;
6242   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6243     return true;
6244 
6245   ResumeInst *RI = ResumeInst::Create(Exn);
6246   Inst = RI;
6247   return false;
6248 }
6249 
6250 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6251                                   PerFunctionState &PFS) {
6252   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6253     return true;
6254 
6255   while (Lex.getKind() != lltok::rsquare) {
6256     // If this isn't the first argument, we need a comma.
6257     if (!Args.empty() &&
6258         ParseToken(lltok::comma, "expected ',' in argument list"))
6259       return true;
6260 
6261     // Parse the argument.
6262     LocTy ArgLoc;
6263     Type *ArgTy = nullptr;
6264     if (ParseType(ArgTy, ArgLoc))
6265       return true;
6266 
6267     Value *V;
6268     if (ArgTy->isMetadataTy()) {
6269       if (ParseMetadataAsValue(V, PFS))
6270         return true;
6271     } else {
6272       if (ParseValue(ArgTy, V, PFS))
6273         return true;
6274     }
6275     Args.push_back(V);
6276   }
6277 
6278   Lex.Lex();  // Lex the ']'.
6279   return false;
6280 }
6281 
6282 /// ParseCleanupRet
6283 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6284 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6285   Value *CleanupPad = nullptr;
6286 
6287   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6288     return true;
6289 
6290   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6291     return true;
6292 
6293   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6294     return true;
6295 
6296   BasicBlock *UnwindBB = nullptr;
6297   if (Lex.getKind() == lltok::kw_to) {
6298     Lex.Lex();
6299     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6300       return true;
6301   } else {
6302     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6303       return true;
6304     }
6305   }
6306 
6307   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6308   return false;
6309 }
6310 
6311 /// ParseCatchRet
6312 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6313 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6314   Value *CatchPad = nullptr;
6315 
6316   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6317     return true;
6318 
6319   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6320     return true;
6321 
6322   BasicBlock *BB;
6323   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6324       ParseTypeAndBasicBlock(BB, PFS))
6325       return true;
6326 
6327   Inst = CatchReturnInst::Create(CatchPad, BB);
6328   return false;
6329 }
6330 
6331 /// ParseCatchSwitch
6332 ///   ::= 'catchswitch' within Parent
6333 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6334   Value *ParentPad;
6335 
6336   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6337     return true;
6338 
6339   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6340       Lex.getKind() != lltok::LocalVarID)
6341     return TokError("expected scope value for catchswitch");
6342 
6343   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6344     return true;
6345 
6346   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6347     return true;
6348 
6349   SmallVector<BasicBlock *, 32> Table;
6350   do {
6351     BasicBlock *DestBB;
6352     if (ParseTypeAndBasicBlock(DestBB, PFS))
6353       return true;
6354     Table.push_back(DestBB);
6355   } while (EatIfPresent(lltok::comma));
6356 
6357   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6358     return true;
6359 
6360   if (ParseToken(lltok::kw_unwind,
6361                  "expected 'unwind' after catchswitch scope"))
6362     return true;
6363 
6364   BasicBlock *UnwindBB = nullptr;
6365   if (EatIfPresent(lltok::kw_to)) {
6366     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6367       return true;
6368   } else {
6369     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6370       return true;
6371   }
6372 
6373   auto *CatchSwitch =
6374       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6375   for (BasicBlock *DestBB : Table)
6376     CatchSwitch->addHandler(DestBB);
6377   Inst = CatchSwitch;
6378   return false;
6379 }
6380 
6381 /// ParseCatchPad
6382 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6383 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6384   Value *CatchSwitch = nullptr;
6385 
6386   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6387     return true;
6388 
6389   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6390     return TokError("expected scope value for catchpad");
6391 
6392   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6393     return true;
6394 
6395   SmallVector<Value *, 8> Args;
6396   if (ParseExceptionArgs(Args, PFS))
6397     return true;
6398 
6399   Inst = CatchPadInst::Create(CatchSwitch, Args);
6400   return false;
6401 }
6402 
6403 /// ParseCleanupPad
6404 ///   ::= 'cleanuppad' within Parent ParamList
6405 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6406   Value *ParentPad = nullptr;
6407 
6408   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6409     return true;
6410 
6411   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6412       Lex.getKind() != lltok::LocalVarID)
6413     return TokError("expected scope value for cleanuppad");
6414 
6415   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6416     return true;
6417 
6418   SmallVector<Value *, 8> Args;
6419   if (ParseExceptionArgs(Args, PFS))
6420     return true;
6421 
6422   Inst = CleanupPadInst::Create(ParentPad, Args);
6423   return false;
6424 }
6425 
6426 //===----------------------------------------------------------------------===//
6427 // Unary Operators.
6428 //===----------------------------------------------------------------------===//
6429 
6430 /// ParseUnaryOp
6431 ///  ::= UnaryOp TypeAndValue ',' Value
6432 ///
6433 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6434 /// operand is allowed.
6435 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6436                             unsigned Opc, bool IsFP) {
6437   LocTy Loc; Value *LHS;
6438   if (ParseTypeAndValue(LHS, Loc, PFS))
6439     return true;
6440 
6441   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6442                     : LHS->getType()->isIntOrIntVectorTy();
6443 
6444   if (!Valid)
6445     return Error(Loc, "invalid operand type for instruction");
6446 
6447   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6448   return false;
6449 }
6450 
6451 /// ParseCallBr
6452 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6453 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6454 ///       '[' LabelList ']'
6455 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6456   LocTy CallLoc = Lex.getLoc();
6457   AttrBuilder RetAttrs, FnAttrs;
6458   std::vector<unsigned> FwdRefAttrGrps;
6459   LocTy NoBuiltinLoc;
6460   unsigned CC;
6461   Type *RetType = nullptr;
6462   LocTy RetTypeLoc;
6463   ValID CalleeID;
6464   SmallVector<ParamInfo, 16> ArgList;
6465   SmallVector<OperandBundleDef, 2> BundleList;
6466 
6467   BasicBlock *DefaultDest;
6468   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6469       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6470       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6471       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6472                                  NoBuiltinLoc) ||
6473       ParseOptionalOperandBundles(BundleList, PFS) ||
6474       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6475       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6476       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6477     return true;
6478 
6479   // Parse the destination list.
6480   SmallVector<BasicBlock *, 16> IndirectDests;
6481 
6482   if (Lex.getKind() != lltok::rsquare) {
6483     BasicBlock *DestBB;
6484     if (ParseTypeAndBasicBlock(DestBB, PFS))
6485       return true;
6486     IndirectDests.push_back(DestBB);
6487 
6488     while (EatIfPresent(lltok::comma)) {
6489       if (ParseTypeAndBasicBlock(DestBB, PFS))
6490         return true;
6491       IndirectDests.push_back(DestBB);
6492     }
6493   }
6494 
6495   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6496     return true;
6497 
6498   // If RetType is a non-function pointer type, then this is the short syntax
6499   // for the call, which means that RetType is just the return type.  Infer the
6500   // rest of the function argument types from the arguments that are present.
6501   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6502   if (!Ty) {
6503     // Pull out the types of all of the arguments...
6504     std::vector<Type *> ParamTypes;
6505     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6506       ParamTypes.push_back(ArgList[i].V->getType());
6507 
6508     if (!FunctionType::isValidReturnType(RetType))
6509       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6510 
6511     Ty = FunctionType::get(RetType, ParamTypes, false);
6512   }
6513 
6514   CalleeID.FTy = Ty;
6515 
6516   // Look up the callee.
6517   Value *Callee;
6518   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6519                           /*IsCall=*/true))
6520     return true;
6521 
6522   // Set up the Attribute for the function.
6523   SmallVector<Value *, 8> Args;
6524   SmallVector<AttributeSet, 8> ArgAttrs;
6525 
6526   // Loop through FunctionType's arguments and ensure they are specified
6527   // correctly.  Also, gather any parameter attributes.
6528   FunctionType::param_iterator I = Ty->param_begin();
6529   FunctionType::param_iterator E = Ty->param_end();
6530   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6531     Type *ExpectedTy = nullptr;
6532     if (I != E) {
6533       ExpectedTy = *I++;
6534     } else if (!Ty->isVarArg()) {
6535       return Error(ArgList[i].Loc, "too many arguments specified");
6536     }
6537 
6538     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6539       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6540                                        getTypeString(ExpectedTy) + "'");
6541     Args.push_back(ArgList[i].V);
6542     ArgAttrs.push_back(ArgList[i].Attrs);
6543   }
6544 
6545   if (I != E)
6546     return Error(CallLoc, "not enough parameters specified for call");
6547 
6548   if (FnAttrs.hasAlignmentAttr())
6549     return Error(CallLoc, "callbr instructions may not have an alignment");
6550 
6551   // Finish off the Attribute and check them
6552   AttributeList PAL =
6553       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6554                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6555 
6556   CallBrInst *CBI =
6557       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6558                          BundleList);
6559   CBI->setCallingConv(CC);
6560   CBI->setAttributes(PAL);
6561   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6562   Inst = CBI;
6563   return false;
6564 }
6565 
6566 //===----------------------------------------------------------------------===//
6567 // Binary Operators.
6568 //===----------------------------------------------------------------------===//
6569 
6570 /// ParseArithmetic
6571 ///  ::= ArithmeticOps TypeAndValue ',' Value
6572 ///
6573 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6574 /// operand is allowed.
6575 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6576                                unsigned Opc, bool IsFP) {
6577   LocTy Loc; Value *LHS, *RHS;
6578   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6579       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6580       ParseValue(LHS->getType(), RHS, PFS))
6581     return true;
6582 
6583   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6584                     : LHS->getType()->isIntOrIntVectorTy();
6585 
6586   if (!Valid)
6587     return Error(Loc, "invalid operand type for instruction");
6588 
6589   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6590   return false;
6591 }
6592 
6593 /// ParseLogical
6594 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6595 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6596                             unsigned Opc) {
6597   LocTy Loc; Value *LHS, *RHS;
6598   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6599       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6600       ParseValue(LHS->getType(), RHS, PFS))
6601     return true;
6602 
6603   if (!LHS->getType()->isIntOrIntVectorTy())
6604     return Error(Loc,"instruction requires integer or integer vector operands");
6605 
6606   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6607   return false;
6608 }
6609 
6610 /// ParseCompare
6611 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6612 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6613 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6614                             unsigned Opc) {
6615   // Parse the integer/fp comparison predicate.
6616   LocTy Loc;
6617   unsigned Pred;
6618   Value *LHS, *RHS;
6619   if (ParseCmpPredicate(Pred, Opc) ||
6620       ParseTypeAndValue(LHS, Loc, PFS) ||
6621       ParseToken(lltok::comma, "expected ',' after compare value") ||
6622       ParseValue(LHS->getType(), RHS, PFS))
6623     return true;
6624 
6625   if (Opc == Instruction::FCmp) {
6626     if (!LHS->getType()->isFPOrFPVectorTy())
6627       return Error(Loc, "fcmp requires floating point operands");
6628     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6629   } else {
6630     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6631     if (!LHS->getType()->isIntOrIntVectorTy() &&
6632         !LHS->getType()->isPtrOrPtrVectorTy())
6633       return Error(Loc, "icmp requires integer operands");
6634     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6635   }
6636   return false;
6637 }
6638 
6639 //===----------------------------------------------------------------------===//
6640 // Other Instructions.
6641 //===----------------------------------------------------------------------===//
6642 
6643 
6644 /// ParseCast
6645 ///   ::= CastOpc TypeAndValue 'to' Type
6646 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6647                          unsigned Opc) {
6648   LocTy Loc;
6649   Value *Op;
6650   Type *DestTy = nullptr;
6651   if (ParseTypeAndValue(Op, Loc, PFS) ||
6652       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6653       ParseType(DestTy))
6654     return true;
6655 
6656   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6657     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6658     return Error(Loc, "invalid cast opcode for cast from '" +
6659                  getTypeString(Op->getType()) + "' to '" +
6660                  getTypeString(DestTy) + "'");
6661   }
6662   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6663   return false;
6664 }
6665 
6666 /// ParseSelect
6667 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6668 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6669   LocTy Loc;
6670   Value *Op0, *Op1, *Op2;
6671   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6672       ParseToken(lltok::comma, "expected ',' after select condition") ||
6673       ParseTypeAndValue(Op1, PFS) ||
6674       ParseToken(lltok::comma, "expected ',' after select value") ||
6675       ParseTypeAndValue(Op2, PFS))
6676     return true;
6677 
6678   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6679     return Error(Loc, Reason);
6680 
6681   Inst = SelectInst::Create(Op0, Op1, Op2);
6682   return false;
6683 }
6684 
6685 /// ParseVA_Arg
6686 ///   ::= 'va_arg' TypeAndValue ',' Type
6687 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6688   Value *Op;
6689   Type *EltTy = nullptr;
6690   LocTy TypeLoc;
6691   if (ParseTypeAndValue(Op, PFS) ||
6692       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6693       ParseType(EltTy, TypeLoc))
6694     return true;
6695 
6696   if (!EltTy->isFirstClassType())
6697     return Error(TypeLoc, "va_arg requires operand with first class type");
6698 
6699   Inst = new VAArgInst(Op, EltTy);
6700   return false;
6701 }
6702 
6703 /// ParseExtractElement
6704 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6705 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6706   LocTy Loc;
6707   Value *Op0, *Op1;
6708   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6709       ParseToken(lltok::comma, "expected ',' after extract value") ||
6710       ParseTypeAndValue(Op1, PFS))
6711     return true;
6712 
6713   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6714     return Error(Loc, "invalid extractelement operands");
6715 
6716   Inst = ExtractElementInst::Create(Op0, Op1);
6717   return false;
6718 }
6719 
6720 /// ParseInsertElement
6721 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6722 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6723   LocTy Loc;
6724   Value *Op0, *Op1, *Op2;
6725   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6726       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6727       ParseTypeAndValue(Op1, PFS) ||
6728       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6729       ParseTypeAndValue(Op2, PFS))
6730     return true;
6731 
6732   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6733     return Error(Loc, "invalid insertelement operands");
6734 
6735   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6736   return false;
6737 }
6738 
6739 /// ParseShuffleVector
6740 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6741 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6742   LocTy Loc;
6743   Value *Op0, *Op1, *Op2;
6744   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6745       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6746       ParseTypeAndValue(Op1, PFS) ||
6747       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6748       ParseTypeAndValue(Op2, PFS))
6749     return true;
6750 
6751   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6752     return Error(Loc, "invalid shufflevector operands");
6753 
6754   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6755   return false;
6756 }
6757 
6758 /// ParsePHI
6759 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6760 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6761   Type *Ty = nullptr;  LocTy TypeLoc;
6762   Value *Op0, *Op1;
6763 
6764   if (ParseType(Ty, TypeLoc) ||
6765       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6766       ParseValue(Ty, Op0, PFS) ||
6767       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6768       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6769       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6770     return true;
6771 
6772   bool AteExtraComma = false;
6773   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6774 
6775   while (true) {
6776     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6777 
6778     if (!EatIfPresent(lltok::comma))
6779       break;
6780 
6781     if (Lex.getKind() == lltok::MetadataVar) {
6782       AteExtraComma = true;
6783       break;
6784     }
6785 
6786     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6787         ParseValue(Ty, Op0, PFS) ||
6788         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6789         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6790         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6791       return true;
6792   }
6793 
6794   if (!Ty->isFirstClassType())
6795     return Error(TypeLoc, "phi node must have first class type");
6796 
6797   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6798   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6799     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6800   Inst = PN;
6801   return AteExtraComma ? InstExtraComma : InstNormal;
6802 }
6803 
6804 /// ParseLandingPad
6805 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6806 /// Clause
6807 ///   ::= 'catch' TypeAndValue
6808 ///   ::= 'filter'
6809 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6810 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6811   Type *Ty = nullptr; LocTy TyLoc;
6812 
6813   if (ParseType(Ty, TyLoc))
6814     return true;
6815 
6816   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6817   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6818 
6819   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6820     LandingPadInst::ClauseType CT;
6821     if (EatIfPresent(lltok::kw_catch))
6822       CT = LandingPadInst::Catch;
6823     else if (EatIfPresent(lltok::kw_filter))
6824       CT = LandingPadInst::Filter;
6825     else
6826       return TokError("expected 'catch' or 'filter' clause type");
6827 
6828     Value *V;
6829     LocTy VLoc;
6830     if (ParseTypeAndValue(V, VLoc, PFS))
6831       return true;
6832 
6833     // A 'catch' type expects a non-array constant. A filter clause expects an
6834     // array constant.
6835     if (CT == LandingPadInst::Catch) {
6836       if (isa<ArrayType>(V->getType()))
6837         Error(VLoc, "'catch' clause has an invalid type");
6838     } else {
6839       if (!isa<ArrayType>(V->getType()))
6840         Error(VLoc, "'filter' clause has an invalid type");
6841     }
6842 
6843     Constant *CV = dyn_cast<Constant>(V);
6844     if (!CV)
6845       return Error(VLoc, "clause argument must be a constant");
6846     LP->addClause(CV);
6847   }
6848 
6849   Inst = LP.release();
6850   return false;
6851 }
6852 
6853 /// ParseFreeze
6854 ///   ::= 'freeze' Type Value
6855 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6856   LocTy Loc;
6857   Value *Op;
6858   if (ParseTypeAndValue(Op, Loc, PFS))
6859     return true;
6860 
6861   Inst = new FreezeInst(Op);
6862   return false;
6863 }
6864 
6865 /// ParseCall
6866 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6867 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6868 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6869 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6870 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6871 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6872 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6873 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6874 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6875                          CallInst::TailCallKind TCK) {
6876   AttrBuilder RetAttrs, FnAttrs;
6877   std::vector<unsigned> FwdRefAttrGrps;
6878   LocTy BuiltinLoc;
6879   unsigned CallAddrSpace;
6880   unsigned CC;
6881   Type *RetType = nullptr;
6882   LocTy RetTypeLoc;
6883   ValID CalleeID;
6884   SmallVector<ParamInfo, 16> ArgList;
6885   SmallVector<OperandBundleDef, 2> BundleList;
6886   LocTy CallLoc = Lex.getLoc();
6887 
6888   if (TCK != CallInst::TCK_None &&
6889       ParseToken(lltok::kw_call,
6890                  "expected 'tail call', 'musttail call', or 'notail call'"))
6891     return true;
6892 
6893   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6894 
6895   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6896       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6897       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6898       ParseValID(CalleeID) ||
6899       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6900                          PFS.getFunction().isVarArg()) ||
6901       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6902       ParseOptionalOperandBundles(BundleList, PFS))
6903     return true;
6904 
6905   // If RetType is a non-function pointer type, then this is the short syntax
6906   // for the call, which means that RetType is just the return type.  Infer the
6907   // rest of the function argument types from the arguments that are present.
6908   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6909   if (!Ty) {
6910     // Pull out the types of all of the arguments...
6911     std::vector<Type*> ParamTypes;
6912     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6913       ParamTypes.push_back(ArgList[i].V->getType());
6914 
6915     if (!FunctionType::isValidReturnType(RetType))
6916       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6917 
6918     Ty = FunctionType::get(RetType, ParamTypes, false);
6919   }
6920 
6921   CalleeID.FTy = Ty;
6922 
6923   // Look up the callee.
6924   Value *Callee;
6925   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6926                           &PFS, /*IsCall=*/true))
6927     return true;
6928 
6929   // Set up the Attribute for the function.
6930   SmallVector<AttributeSet, 8> Attrs;
6931 
6932   SmallVector<Value*, 8> Args;
6933 
6934   // Loop through FunctionType's arguments and ensure they are specified
6935   // correctly.  Also, gather any parameter attributes.
6936   FunctionType::param_iterator I = Ty->param_begin();
6937   FunctionType::param_iterator E = Ty->param_end();
6938   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6939     Type *ExpectedTy = nullptr;
6940     if (I != E) {
6941       ExpectedTy = *I++;
6942     } else if (!Ty->isVarArg()) {
6943       return Error(ArgList[i].Loc, "too many arguments specified");
6944     }
6945 
6946     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6947       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6948                    getTypeString(ExpectedTy) + "'");
6949     Args.push_back(ArgList[i].V);
6950     Attrs.push_back(ArgList[i].Attrs);
6951   }
6952 
6953   if (I != E)
6954     return Error(CallLoc, "not enough parameters specified for call");
6955 
6956   if (FnAttrs.hasAlignmentAttr())
6957     return Error(CallLoc, "call instructions may not have an alignment");
6958 
6959   // Finish off the Attribute and check them
6960   AttributeList PAL =
6961       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6962                          AttributeSet::get(Context, RetAttrs), Attrs);
6963 
6964   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6965   CI->setTailCallKind(TCK);
6966   CI->setCallingConv(CC);
6967   if (FMF.any()) {
6968     if (!isa<FPMathOperator>(CI)) {
6969       CI->deleteValue();
6970       return Error(CallLoc, "fast-math-flags specified for call without "
6971                    "floating-point scalar or vector return type");
6972     }
6973     CI->setFastMathFlags(FMF);
6974   }
6975   CI->setAttributes(PAL);
6976   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6977   Inst = CI;
6978   return false;
6979 }
6980 
6981 //===----------------------------------------------------------------------===//
6982 // Memory Instructions.
6983 //===----------------------------------------------------------------------===//
6984 
6985 /// ParseAlloc
6986 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6987 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6988 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6989   Value *Size = nullptr;
6990   LocTy SizeLoc, TyLoc, ASLoc;
6991   MaybeAlign Alignment;
6992   unsigned AddrSpace = 0;
6993   Type *Ty = nullptr;
6994 
6995   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6996   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6997 
6998   if (ParseType(Ty, TyLoc)) return true;
6999 
7000   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7001     return Error(TyLoc, "invalid type for alloca");
7002 
7003   bool AteExtraComma = false;
7004   if (EatIfPresent(lltok::comma)) {
7005     if (Lex.getKind() == lltok::kw_align) {
7006       if (ParseOptionalAlignment(Alignment))
7007         return true;
7008       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7009         return true;
7010     } else if (Lex.getKind() == lltok::kw_addrspace) {
7011       ASLoc = Lex.getLoc();
7012       if (ParseOptionalAddrSpace(AddrSpace))
7013         return true;
7014     } else if (Lex.getKind() == lltok::MetadataVar) {
7015       AteExtraComma = true;
7016     } else {
7017       if (ParseTypeAndValue(Size, SizeLoc, PFS))
7018         return true;
7019       if (EatIfPresent(lltok::comma)) {
7020         if (Lex.getKind() == lltok::kw_align) {
7021           if (ParseOptionalAlignment(Alignment))
7022             return true;
7023           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7024             return true;
7025         } else if (Lex.getKind() == lltok::kw_addrspace) {
7026           ASLoc = Lex.getLoc();
7027           if (ParseOptionalAddrSpace(AddrSpace))
7028             return true;
7029         } else if (Lex.getKind() == lltok::MetadataVar) {
7030           AteExtraComma = true;
7031         }
7032       }
7033     }
7034   }
7035 
7036   if (Size && !Size->getType()->isIntegerTy())
7037     return Error(SizeLoc, "element count must have integer type");
7038 
7039   SmallPtrSet<Type *, 4> Visited;
7040   if (!Alignment && !Ty->isSized(&Visited))
7041     return Error(TyLoc, "Cannot allocate unsized type");
7042   if (!Alignment)
7043     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7044   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7045   AI->setUsedWithInAlloca(IsInAlloca);
7046   AI->setSwiftError(IsSwiftError);
7047   Inst = AI;
7048   return AteExtraComma ? InstExtraComma : InstNormal;
7049 }
7050 
7051 /// ParseLoad
7052 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7053 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7054 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7055 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7056   Value *Val; LocTy Loc;
7057   MaybeAlign Alignment;
7058   bool AteExtraComma = false;
7059   bool isAtomic = false;
7060   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7061   SyncScope::ID SSID = SyncScope::System;
7062 
7063   if (Lex.getKind() == lltok::kw_atomic) {
7064     isAtomic = true;
7065     Lex.Lex();
7066   }
7067 
7068   bool isVolatile = false;
7069   if (Lex.getKind() == lltok::kw_volatile) {
7070     isVolatile = true;
7071     Lex.Lex();
7072   }
7073 
7074   Type *Ty;
7075   LocTy ExplicitTypeLoc = Lex.getLoc();
7076   if (ParseType(Ty) ||
7077       ParseToken(lltok::comma, "expected comma after load's type") ||
7078       ParseTypeAndValue(Val, Loc, PFS) ||
7079       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7080       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7081     return true;
7082 
7083   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7084     return Error(Loc, "load operand must be a pointer to a first class type");
7085   if (isAtomic && !Alignment)
7086     return Error(Loc, "atomic load must have explicit non-zero alignment");
7087   if (Ordering == AtomicOrdering::Release ||
7088       Ordering == AtomicOrdering::AcquireRelease)
7089     return Error(Loc, "atomic load cannot use Release ordering");
7090 
7091   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7092     return Error(ExplicitTypeLoc,
7093                  "explicit pointee type doesn't match operand's pointee type");
7094   SmallPtrSet<Type *, 4> Visited;
7095   if (!Alignment && !Ty->isSized(&Visited))
7096     return Error(ExplicitTypeLoc, "loading unsized types is not allowed");
7097   if (!Alignment)
7098     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7099   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7100   return AteExtraComma ? InstExtraComma : InstNormal;
7101 }
7102 
7103 /// ParseStore
7104 
7105 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7106 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7107 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7108 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7109   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7110   MaybeAlign Alignment;
7111   bool AteExtraComma = false;
7112   bool isAtomic = false;
7113   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7114   SyncScope::ID SSID = SyncScope::System;
7115 
7116   if (Lex.getKind() == lltok::kw_atomic) {
7117     isAtomic = true;
7118     Lex.Lex();
7119   }
7120 
7121   bool isVolatile = false;
7122   if (Lex.getKind() == lltok::kw_volatile) {
7123     isVolatile = true;
7124     Lex.Lex();
7125   }
7126 
7127   if (ParseTypeAndValue(Val, Loc, PFS) ||
7128       ParseToken(lltok::comma, "expected ',' after store operand") ||
7129       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7130       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7131       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7132     return true;
7133 
7134   if (!Ptr->getType()->isPointerTy())
7135     return Error(PtrLoc, "store operand must be a pointer");
7136   if (!Val->getType()->isFirstClassType())
7137     return Error(Loc, "store operand must be a first class value");
7138   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7139     return Error(Loc, "stored value and pointer type do not match");
7140   if (isAtomic && !Alignment)
7141     return Error(Loc, "atomic store must have explicit non-zero alignment");
7142   if (Ordering == AtomicOrdering::Acquire ||
7143       Ordering == AtomicOrdering::AcquireRelease)
7144     return Error(Loc, "atomic store cannot use Acquire ordering");
7145   SmallPtrSet<Type *, 4> Visited;
7146   if (!Alignment && !Val->getType()->isSized(&Visited))
7147     return Error(Loc, "storing unsized types is not allowed");
7148   if (!Alignment)
7149     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7150 
7151   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7152   return AteExtraComma ? InstExtraComma : InstNormal;
7153 }
7154 
7155 /// ParseCmpXchg
7156 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7157 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7158 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7159   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7160   bool AteExtraComma = false;
7161   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7162   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7163   SyncScope::ID SSID = SyncScope::System;
7164   bool isVolatile = false;
7165   bool isWeak = false;
7166 
7167   if (EatIfPresent(lltok::kw_weak))
7168     isWeak = true;
7169 
7170   if (EatIfPresent(lltok::kw_volatile))
7171     isVolatile = true;
7172 
7173   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7174       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7175       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7176       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7177       ParseTypeAndValue(New, NewLoc, PFS) ||
7178       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7179       ParseOrdering(FailureOrdering))
7180     return true;
7181 
7182   if (SuccessOrdering == AtomicOrdering::Unordered ||
7183       FailureOrdering == AtomicOrdering::Unordered)
7184     return TokError("cmpxchg cannot be unordered");
7185   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7186     return TokError("cmpxchg failure argument shall be no stronger than the "
7187                     "success argument");
7188   if (FailureOrdering == AtomicOrdering::Release ||
7189       FailureOrdering == AtomicOrdering::AcquireRelease)
7190     return TokError(
7191         "cmpxchg failure ordering cannot include release semantics");
7192   if (!Ptr->getType()->isPointerTy())
7193     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7194   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7195     return Error(CmpLoc, "compare value and pointer type do not match");
7196   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7197     return Error(NewLoc, "new value and pointer type do not match");
7198   if (!New->getType()->isFirstClassType())
7199     return Error(NewLoc, "cmpxchg operand must be a first class value");
7200   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7201       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7202   CXI->setVolatile(isVolatile);
7203   CXI->setWeak(isWeak);
7204   Inst = CXI;
7205   return AteExtraComma ? InstExtraComma : InstNormal;
7206 }
7207 
7208 /// ParseAtomicRMW
7209 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7210 ///       'singlethread'? AtomicOrdering
7211 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7212   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7213   bool AteExtraComma = false;
7214   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7215   SyncScope::ID SSID = SyncScope::System;
7216   bool isVolatile = false;
7217   bool IsFP = false;
7218   AtomicRMWInst::BinOp Operation;
7219 
7220   if (EatIfPresent(lltok::kw_volatile))
7221     isVolatile = true;
7222 
7223   switch (Lex.getKind()) {
7224   default: return TokError("expected binary operation in atomicrmw");
7225   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7226   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7227   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7228   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7229   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7230   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7231   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7232   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7233   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7234   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7235   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7236   case lltok::kw_fadd:
7237     Operation = AtomicRMWInst::FAdd;
7238     IsFP = true;
7239     break;
7240   case lltok::kw_fsub:
7241     Operation = AtomicRMWInst::FSub;
7242     IsFP = true;
7243     break;
7244   }
7245   Lex.Lex();  // Eat the operation.
7246 
7247   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7248       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7249       ParseTypeAndValue(Val, ValLoc, PFS) ||
7250       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7251     return true;
7252 
7253   if (Ordering == AtomicOrdering::Unordered)
7254     return TokError("atomicrmw cannot be unordered");
7255   if (!Ptr->getType()->isPointerTy())
7256     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7257   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7258     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7259 
7260   if (Operation == AtomicRMWInst::Xchg) {
7261     if (!Val->getType()->isIntegerTy() &&
7262         !Val->getType()->isFloatingPointTy()) {
7263       return Error(ValLoc, "atomicrmw " +
7264                    AtomicRMWInst::getOperationName(Operation) +
7265                    " operand must be an integer or floating point type");
7266     }
7267   } else if (IsFP) {
7268     if (!Val->getType()->isFloatingPointTy()) {
7269       return Error(ValLoc, "atomicrmw " +
7270                    AtomicRMWInst::getOperationName(Operation) +
7271                    " operand must be a floating point type");
7272     }
7273   } else {
7274     if (!Val->getType()->isIntegerTy()) {
7275       return Error(ValLoc, "atomicrmw " +
7276                    AtomicRMWInst::getOperationName(Operation) +
7277                    " operand must be an integer");
7278     }
7279   }
7280 
7281   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7282   if (Size < 8 || (Size & (Size - 1)))
7283     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7284                          " integer");
7285 
7286   AtomicRMWInst *RMWI =
7287     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7288   RMWI->setVolatile(isVolatile);
7289   Inst = RMWI;
7290   return AteExtraComma ? InstExtraComma : InstNormal;
7291 }
7292 
7293 /// ParseFence
7294 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7295 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7296   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7297   SyncScope::ID SSID = SyncScope::System;
7298   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7299     return true;
7300 
7301   if (Ordering == AtomicOrdering::Unordered)
7302     return TokError("fence cannot be unordered");
7303   if (Ordering == AtomicOrdering::Monotonic)
7304     return TokError("fence cannot be monotonic");
7305 
7306   Inst = new FenceInst(Context, Ordering, SSID);
7307   return InstNormal;
7308 }
7309 
7310 /// ParseGetElementPtr
7311 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7312 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7313   Value *Ptr = nullptr;
7314   Value *Val = nullptr;
7315   LocTy Loc, EltLoc;
7316 
7317   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7318 
7319   Type *Ty = nullptr;
7320   LocTy ExplicitTypeLoc = Lex.getLoc();
7321   if (ParseType(Ty) ||
7322       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7323       ParseTypeAndValue(Ptr, Loc, PFS))
7324     return true;
7325 
7326   Type *BaseType = Ptr->getType();
7327   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7328   if (!BasePointerType)
7329     return Error(Loc, "base of getelementptr must be a pointer");
7330 
7331   if (Ty != BasePointerType->getElementType())
7332     return Error(ExplicitTypeLoc,
7333                  "explicit pointee type doesn't match operand's pointee type");
7334 
7335   SmallVector<Value*, 16> Indices;
7336   bool AteExtraComma = false;
7337   // GEP returns a vector of pointers if at least one of parameters is a vector.
7338   // All vector parameters should have the same vector width.
7339   ElementCount GEPWidth = BaseType->isVectorTy()
7340                               ? cast<VectorType>(BaseType)->getElementCount()
7341                               : ElementCount(0, false);
7342 
7343   while (EatIfPresent(lltok::comma)) {
7344     if (Lex.getKind() == lltok::MetadataVar) {
7345       AteExtraComma = true;
7346       break;
7347     }
7348     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7349     if (!Val->getType()->isIntOrIntVectorTy())
7350       return Error(EltLoc, "getelementptr index must be an integer");
7351 
7352     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7353       ElementCount ValNumEl = ValVTy->getElementCount();
7354       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7355         return Error(EltLoc,
7356           "getelementptr vector index has a wrong number of elements");
7357       GEPWidth = ValNumEl;
7358     }
7359     Indices.push_back(Val);
7360   }
7361 
7362   SmallPtrSet<Type*, 4> Visited;
7363   if (!Indices.empty() && !Ty->isSized(&Visited))
7364     return Error(Loc, "base element of getelementptr must be sized");
7365 
7366   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7367     return Error(Loc, "invalid getelementptr indices");
7368   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7369   if (InBounds)
7370     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7371   return AteExtraComma ? InstExtraComma : InstNormal;
7372 }
7373 
7374 /// ParseExtractValue
7375 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7376 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7377   Value *Val; LocTy Loc;
7378   SmallVector<unsigned, 4> Indices;
7379   bool AteExtraComma;
7380   if (ParseTypeAndValue(Val, Loc, PFS) ||
7381       ParseIndexList(Indices, AteExtraComma))
7382     return true;
7383 
7384   if (!Val->getType()->isAggregateType())
7385     return Error(Loc, "extractvalue operand must be aggregate type");
7386 
7387   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7388     return Error(Loc, "invalid indices for extractvalue");
7389   Inst = ExtractValueInst::Create(Val, Indices);
7390   return AteExtraComma ? InstExtraComma : InstNormal;
7391 }
7392 
7393 /// ParseInsertValue
7394 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7395 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7396   Value *Val0, *Val1; LocTy Loc0, Loc1;
7397   SmallVector<unsigned, 4> Indices;
7398   bool AteExtraComma;
7399   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7400       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7401       ParseTypeAndValue(Val1, Loc1, PFS) ||
7402       ParseIndexList(Indices, AteExtraComma))
7403     return true;
7404 
7405   if (!Val0->getType()->isAggregateType())
7406     return Error(Loc0, "insertvalue operand must be aggregate type");
7407 
7408   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7409   if (!IndexedType)
7410     return Error(Loc0, "invalid indices for insertvalue");
7411   if (IndexedType != Val1->getType())
7412     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7413                            getTypeString(Val1->getType()) + "' instead of '" +
7414                            getTypeString(IndexedType) + "'");
7415   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7416   return AteExtraComma ? InstExtraComma : InstNormal;
7417 }
7418 
7419 //===----------------------------------------------------------------------===//
7420 // Embedded metadata.
7421 //===----------------------------------------------------------------------===//
7422 
7423 /// ParseMDNodeVector
7424 ///   ::= { Element (',' Element)* }
7425 /// Element
7426 ///   ::= 'null' | TypeAndValue
7427 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7428   if (ParseToken(lltok::lbrace, "expected '{' here"))
7429     return true;
7430 
7431   // Check for an empty list.
7432   if (EatIfPresent(lltok::rbrace))
7433     return false;
7434 
7435   do {
7436     // Null is a special case since it is typeless.
7437     if (EatIfPresent(lltok::kw_null)) {
7438       Elts.push_back(nullptr);
7439       continue;
7440     }
7441 
7442     Metadata *MD;
7443     if (ParseMetadata(MD, nullptr))
7444       return true;
7445     Elts.push_back(MD);
7446   } while (EatIfPresent(lltok::comma));
7447 
7448   return ParseToken(lltok::rbrace, "expected end of metadata node");
7449 }
7450 
7451 //===----------------------------------------------------------------------===//
7452 // Use-list order directives.
7453 //===----------------------------------------------------------------------===//
7454 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7455                                 SMLoc Loc) {
7456   if (V->use_empty())
7457     return Error(Loc, "value has no uses");
7458 
7459   unsigned NumUses = 0;
7460   SmallDenseMap<const Use *, unsigned, 16> Order;
7461   for (const Use &U : V->uses()) {
7462     if (++NumUses > Indexes.size())
7463       break;
7464     Order[&U] = Indexes[NumUses - 1];
7465   }
7466   if (NumUses < 2)
7467     return Error(Loc, "value only has one use");
7468   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7469     return Error(Loc,
7470                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7471 
7472   V->sortUseList([&](const Use &L, const Use &R) {
7473     return Order.lookup(&L) < Order.lookup(&R);
7474   });
7475   return false;
7476 }
7477 
7478 /// ParseUseListOrderIndexes
7479 ///   ::= '{' uint32 (',' uint32)+ '}'
7480 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7481   SMLoc Loc = Lex.getLoc();
7482   if (ParseToken(lltok::lbrace, "expected '{' here"))
7483     return true;
7484   if (Lex.getKind() == lltok::rbrace)
7485     return Lex.Error("expected non-empty list of uselistorder indexes");
7486 
7487   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7488   // indexes should be distinct numbers in the range [0, size-1], and should
7489   // not be in order.
7490   unsigned Offset = 0;
7491   unsigned Max = 0;
7492   bool IsOrdered = true;
7493   assert(Indexes.empty() && "Expected empty order vector");
7494   do {
7495     unsigned Index;
7496     if (ParseUInt32(Index))
7497       return true;
7498 
7499     // Update consistency checks.
7500     Offset += Index - Indexes.size();
7501     Max = std::max(Max, Index);
7502     IsOrdered &= Index == Indexes.size();
7503 
7504     Indexes.push_back(Index);
7505   } while (EatIfPresent(lltok::comma));
7506 
7507   if (ParseToken(lltok::rbrace, "expected '}' here"))
7508     return true;
7509 
7510   if (Indexes.size() < 2)
7511     return Error(Loc, "expected >= 2 uselistorder indexes");
7512   if (Offset != 0 || Max >= Indexes.size())
7513     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7514   if (IsOrdered)
7515     return Error(Loc, "expected uselistorder indexes to change the order");
7516 
7517   return false;
7518 }
7519 
7520 /// ParseUseListOrder
7521 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7522 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7523   SMLoc Loc = Lex.getLoc();
7524   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7525     return true;
7526 
7527   Value *V;
7528   SmallVector<unsigned, 16> Indexes;
7529   if (ParseTypeAndValue(V, PFS) ||
7530       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7531       ParseUseListOrderIndexes(Indexes))
7532     return true;
7533 
7534   return sortUseListOrder(V, Indexes, Loc);
7535 }
7536 
7537 /// ParseUseListOrderBB
7538 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7539 bool LLParser::ParseUseListOrderBB() {
7540   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7541   SMLoc Loc = Lex.getLoc();
7542   Lex.Lex();
7543 
7544   ValID Fn, Label;
7545   SmallVector<unsigned, 16> Indexes;
7546   if (ParseValID(Fn) ||
7547       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7548       ParseValID(Label) ||
7549       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7550       ParseUseListOrderIndexes(Indexes))
7551     return true;
7552 
7553   // Check the function.
7554   GlobalValue *GV;
7555   if (Fn.Kind == ValID::t_GlobalName)
7556     GV = M->getNamedValue(Fn.StrVal);
7557   else if (Fn.Kind == ValID::t_GlobalID)
7558     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7559   else
7560     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7561   if (!GV)
7562     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7563   auto *F = dyn_cast<Function>(GV);
7564   if (!F)
7565     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7566   if (F->isDeclaration())
7567     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7568 
7569   // Check the basic block.
7570   if (Label.Kind == ValID::t_LocalID)
7571     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7572   if (Label.Kind != ValID::t_LocalName)
7573     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7574   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7575   if (!V)
7576     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7577   if (!isa<BasicBlock>(V))
7578     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7579 
7580   return sortUseListOrder(V, Indexes, Loc);
7581 }
7582 
7583 /// ModuleEntry
7584 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7585 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7586 bool LLParser::ParseModuleEntry(unsigned ID) {
7587   assert(Lex.getKind() == lltok::kw_module);
7588   Lex.Lex();
7589 
7590   std::string Path;
7591   if (ParseToken(lltok::colon, "expected ':' here") ||
7592       ParseToken(lltok::lparen, "expected '(' here") ||
7593       ParseToken(lltok::kw_path, "expected 'path' here") ||
7594       ParseToken(lltok::colon, "expected ':' here") ||
7595       ParseStringConstant(Path) ||
7596       ParseToken(lltok::comma, "expected ',' here") ||
7597       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7598       ParseToken(lltok::colon, "expected ':' here") ||
7599       ParseToken(lltok::lparen, "expected '(' here"))
7600     return true;
7601 
7602   ModuleHash Hash;
7603   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7604       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7605       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7606       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7607       ParseUInt32(Hash[4]))
7608     return true;
7609 
7610   if (ParseToken(lltok::rparen, "expected ')' here") ||
7611       ParseToken(lltok::rparen, "expected ')' here"))
7612     return true;
7613 
7614   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7615   ModuleIdMap[ID] = ModuleEntry->first();
7616 
7617   return false;
7618 }
7619 
7620 /// TypeIdEntry
7621 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7622 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7623   assert(Lex.getKind() == lltok::kw_typeid);
7624   Lex.Lex();
7625 
7626   std::string Name;
7627   if (ParseToken(lltok::colon, "expected ':' here") ||
7628       ParseToken(lltok::lparen, "expected '(' here") ||
7629       ParseToken(lltok::kw_name, "expected 'name' here") ||
7630       ParseToken(lltok::colon, "expected ':' here") ||
7631       ParseStringConstant(Name))
7632     return true;
7633 
7634   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7635   if (ParseToken(lltok::comma, "expected ',' here") ||
7636       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7637     return true;
7638 
7639   // Check if this ID was forward referenced, and if so, update the
7640   // corresponding GUIDs.
7641   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7642   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7643     for (auto TIDRef : FwdRefTIDs->second) {
7644       assert(!*TIDRef.first &&
7645              "Forward referenced type id GUID expected to be 0");
7646       *TIDRef.first = GlobalValue::getGUID(Name);
7647     }
7648     ForwardRefTypeIds.erase(FwdRefTIDs);
7649   }
7650 
7651   return false;
7652 }
7653 
7654 /// TypeIdSummary
7655 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7656 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7657   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7658       ParseToken(lltok::colon, "expected ':' here") ||
7659       ParseToken(lltok::lparen, "expected '(' here") ||
7660       ParseTypeTestResolution(TIS.TTRes))
7661     return true;
7662 
7663   if (EatIfPresent(lltok::comma)) {
7664     // Expect optional wpdResolutions field
7665     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7666       return true;
7667   }
7668 
7669   if (ParseToken(lltok::rparen, "expected ')' here"))
7670     return true;
7671 
7672   return false;
7673 }
7674 
7675 static ValueInfo EmptyVI =
7676     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7677 
7678 /// TypeIdCompatibleVtableEntry
7679 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7680 ///   TypeIdCompatibleVtableInfo
7681 ///   ')'
7682 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7683   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7684   Lex.Lex();
7685 
7686   std::string Name;
7687   if (ParseToken(lltok::colon, "expected ':' here") ||
7688       ParseToken(lltok::lparen, "expected '(' here") ||
7689       ParseToken(lltok::kw_name, "expected 'name' here") ||
7690       ParseToken(lltok::colon, "expected ':' here") ||
7691       ParseStringConstant(Name))
7692     return true;
7693 
7694   TypeIdCompatibleVtableInfo &TI =
7695       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7696   if (ParseToken(lltok::comma, "expected ',' here") ||
7697       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7698       ParseToken(lltok::colon, "expected ':' here") ||
7699       ParseToken(lltok::lparen, "expected '(' here"))
7700     return true;
7701 
7702   IdToIndexMapType IdToIndexMap;
7703   // Parse each call edge
7704   do {
7705     uint64_t Offset;
7706     if (ParseToken(lltok::lparen, "expected '(' here") ||
7707         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7708         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7709         ParseToken(lltok::comma, "expected ',' here"))
7710       return true;
7711 
7712     LocTy Loc = Lex.getLoc();
7713     unsigned GVId;
7714     ValueInfo VI;
7715     if (ParseGVReference(VI, GVId))
7716       return true;
7717 
7718     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7719     // forward reference. We will save the location of the ValueInfo needing an
7720     // update, but can only do so once the std::vector is finalized.
7721     if (VI == EmptyVI)
7722       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7723     TI.push_back({Offset, VI});
7724 
7725     if (ParseToken(lltok::rparen, "expected ')' in call"))
7726       return true;
7727   } while (EatIfPresent(lltok::comma));
7728 
7729   // Now that the TI vector is finalized, it is safe to save the locations
7730   // of any forward GV references that need updating later.
7731   for (auto I : IdToIndexMap) {
7732     for (auto P : I.second) {
7733       assert(TI[P.first].VTableVI == EmptyVI &&
7734              "Forward referenced ValueInfo expected to be empty");
7735       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7736           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7737       FwdRef.first->second.push_back(
7738           std::make_pair(&TI[P.first].VTableVI, P.second));
7739     }
7740   }
7741 
7742   if (ParseToken(lltok::rparen, "expected ')' here") ||
7743       ParseToken(lltok::rparen, "expected ')' here"))
7744     return true;
7745 
7746   // Check if this ID was forward referenced, and if so, update the
7747   // corresponding GUIDs.
7748   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7749   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7750     for (auto TIDRef : FwdRefTIDs->second) {
7751       assert(!*TIDRef.first &&
7752              "Forward referenced type id GUID expected to be 0");
7753       *TIDRef.first = GlobalValue::getGUID(Name);
7754     }
7755     ForwardRefTypeIds.erase(FwdRefTIDs);
7756   }
7757 
7758   return false;
7759 }
7760 
7761 /// TypeTestResolution
7762 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7763 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7764 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7765 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7766 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7767 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7768   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7769       ParseToken(lltok::colon, "expected ':' here") ||
7770       ParseToken(lltok::lparen, "expected '(' here") ||
7771       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7772       ParseToken(lltok::colon, "expected ':' here"))
7773     return true;
7774 
7775   switch (Lex.getKind()) {
7776   case lltok::kw_unsat:
7777     TTRes.TheKind = TypeTestResolution::Unsat;
7778     break;
7779   case lltok::kw_byteArray:
7780     TTRes.TheKind = TypeTestResolution::ByteArray;
7781     break;
7782   case lltok::kw_inline:
7783     TTRes.TheKind = TypeTestResolution::Inline;
7784     break;
7785   case lltok::kw_single:
7786     TTRes.TheKind = TypeTestResolution::Single;
7787     break;
7788   case lltok::kw_allOnes:
7789     TTRes.TheKind = TypeTestResolution::AllOnes;
7790     break;
7791   default:
7792     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7793   }
7794   Lex.Lex();
7795 
7796   if (ParseToken(lltok::comma, "expected ',' here") ||
7797       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7798       ParseToken(lltok::colon, "expected ':' here") ||
7799       ParseUInt32(TTRes.SizeM1BitWidth))
7800     return true;
7801 
7802   // Parse optional fields
7803   while (EatIfPresent(lltok::comma)) {
7804     switch (Lex.getKind()) {
7805     case lltok::kw_alignLog2:
7806       Lex.Lex();
7807       if (ParseToken(lltok::colon, "expected ':'") ||
7808           ParseUInt64(TTRes.AlignLog2))
7809         return true;
7810       break;
7811     case lltok::kw_sizeM1:
7812       Lex.Lex();
7813       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7814         return true;
7815       break;
7816     case lltok::kw_bitMask: {
7817       unsigned Val;
7818       Lex.Lex();
7819       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7820         return true;
7821       assert(Val <= 0xff);
7822       TTRes.BitMask = (uint8_t)Val;
7823       break;
7824     }
7825     case lltok::kw_inlineBits:
7826       Lex.Lex();
7827       if (ParseToken(lltok::colon, "expected ':'") ||
7828           ParseUInt64(TTRes.InlineBits))
7829         return true;
7830       break;
7831     default:
7832       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7833     }
7834   }
7835 
7836   if (ParseToken(lltok::rparen, "expected ')' here"))
7837     return true;
7838 
7839   return false;
7840 }
7841 
7842 /// OptionalWpdResolutions
7843 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7844 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7845 bool LLParser::ParseOptionalWpdResolutions(
7846     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7847   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7848       ParseToken(lltok::colon, "expected ':' here") ||
7849       ParseToken(lltok::lparen, "expected '(' here"))
7850     return true;
7851 
7852   do {
7853     uint64_t Offset;
7854     WholeProgramDevirtResolution WPDRes;
7855     if (ParseToken(lltok::lparen, "expected '(' here") ||
7856         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7857         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7858         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7859         ParseToken(lltok::rparen, "expected ')' here"))
7860       return true;
7861     WPDResMap[Offset] = WPDRes;
7862   } while (EatIfPresent(lltok::comma));
7863 
7864   if (ParseToken(lltok::rparen, "expected ')' here"))
7865     return true;
7866 
7867   return false;
7868 }
7869 
7870 /// WpdRes
7871 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7872 ///         [',' OptionalResByArg]? ')'
7873 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7874 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7875 ///         [',' OptionalResByArg]? ')'
7876 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7877 ///         [',' OptionalResByArg]? ')'
7878 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7879   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7880       ParseToken(lltok::colon, "expected ':' here") ||
7881       ParseToken(lltok::lparen, "expected '(' here") ||
7882       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7883       ParseToken(lltok::colon, "expected ':' here"))
7884     return true;
7885 
7886   switch (Lex.getKind()) {
7887   case lltok::kw_indir:
7888     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7889     break;
7890   case lltok::kw_singleImpl:
7891     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7892     break;
7893   case lltok::kw_branchFunnel:
7894     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7895     break;
7896   default:
7897     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7898   }
7899   Lex.Lex();
7900 
7901   // Parse optional fields
7902   while (EatIfPresent(lltok::comma)) {
7903     switch (Lex.getKind()) {
7904     case lltok::kw_singleImplName:
7905       Lex.Lex();
7906       if (ParseToken(lltok::colon, "expected ':' here") ||
7907           ParseStringConstant(WPDRes.SingleImplName))
7908         return true;
7909       break;
7910     case lltok::kw_resByArg:
7911       if (ParseOptionalResByArg(WPDRes.ResByArg))
7912         return true;
7913       break;
7914     default:
7915       return Error(Lex.getLoc(),
7916                    "expected optional WholeProgramDevirtResolution field");
7917     }
7918   }
7919 
7920   if (ParseToken(lltok::rparen, "expected ')' here"))
7921     return true;
7922 
7923   return false;
7924 }
7925 
7926 /// OptionalResByArg
7927 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7928 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7929 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7930 ///                  'virtualConstProp' )
7931 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7932 ///                [',' 'bit' ':' UInt32]? ')'
7933 bool LLParser::ParseOptionalResByArg(
7934     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7935         &ResByArg) {
7936   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7937       ParseToken(lltok::colon, "expected ':' here") ||
7938       ParseToken(lltok::lparen, "expected '(' here"))
7939     return true;
7940 
7941   do {
7942     std::vector<uint64_t> Args;
7943     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7944         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7945         ParseToken(lltok::colon, "expected ':' here") ||
7946         ParseToken(lltok::lparen, "expected '(' here") ||
7947         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7948         ParseToken(lltok::colon, "expected ':' here"))
7949       return true;
7950 
7951     WholeProgramDevirtResolution::ByArg ByArg;
7952     switch (Lex.getKind()) {
7953     case lltok::kw_indir:
7954       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7955       break;
7956     case lltok::kw_uniformRetVal:
7957       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7958       break;
7959     case lltok::kw_uniqueRetVal:
7960       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7961       break;
7962     case lltok::kw_virtualConstProp:
7963       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7964       break;
7965     default:
7966       return Error(Lex.getLoc(),
7967                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7968     }
7969     Lex.Lex();
7970 
7971     // Parse optional fields
7972     while (EatIfPresent(lltok::comma)) {
7973       switch (Lex.getKind()) {
7974       case lltok::kw_info:
7975         Lex.Lex();
7976         if (ParseToken(lltok::colon, "expected ':' here") ||
7977             ParseUInt64(ByArg.Info))
7978           return true;
7979         break;
7980       case lltok::kw_byte:
7981         Lex.Lex();
7982         if (ParseToken(lltok::colon, "expected ':' here") ||
7983             ParseUInt32(ByArg.Byte))
7984           return true;
7985         break;
7986       case lltok::kw_bit:
7987         Lex.Lex();
7988         if (ParseToken(lltok::colon, "expected ':' here") ||
7989             ParseUInt32(ByArg.Bit))
7990           return true;
7991         break;
7992       default:
7993         return Error(Lex.getLoc(),
7994                      "expected optional whole program devirt field");
7995       }
7996     }
7997 
7998     if (ParseToken(lltok::rparen, "expected ')' here"))
7999       return true;
8000 
8001     ResByArg[Args] = ByArg;
8002   } while (EatIfPresent(lltok::comma));
8003 
8004   if (ParseToken(lltok::rparen, "expected ')' here"))
8005     return true;
8006 
8007   return false;
8008 }
8009 
8010 /// OptionalResByArg
8011 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8012 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
8013   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
8014       ParseToken(lltok::colon, "expected ':' here") ||
8015       ParseToken(lltok::lparen, "expected '(' here"))
8016     return true;
8017 
8018   do {
8019     uint64_t Val;
8020     if (ParseUInt64(Val))
8021       return true;
8022     Args.push_back(Val);
8023   } while (EatIfPresent(lltok::comma));
8024 
8025   if (ParseToken(lltok::rparen, "expected ')' here"))
8026     return true;
8027 
8028   return false;
8029 }
8030 
8031 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8032 
8033 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8034   bool ReadOnly = Fwd->isReadOnly();
8035   bool WriteOnly = Fwd->isWriteOnly();
8036   assert(!(ReadOnly && WriteOnly));
8037   *Fwd = Resolved;
8038   if (ReadOnly)
8039     Fwd->setReadOnly();
8040   if (WriteOnly)
8041     Fwd->setWriteOnly();
8042 }
8043 
8044 /// Stores the given Name/GUID and associated summary into the Index.
8045 /// Also updates any forward references to the associated entry ID.
8046 void LLParser::AddGlobalValueToIndex(
8047     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8048     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8049   // First create the ValueInfo utilizing the Name or GUID.
8050   ValueInfo VI;
8051   if (GUID != 0) {
8052     assert(Name.empty());
8053     VI = Index->getOrInsertValueInfo(GUID);
8054   } else {
8055     assert(!Name.empty());
8056     if (M) {
8057       auto *GV = M->getNamedValue(Name);
8058       assert(GV);
8059       VI = Index->getOrInsertValueInfo(GV);
8060     } else {
8061       assert(
8062           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8063           "Need a source_filename to compute GUID for local");
8064       GUID = GlobalValue::getGUID(
8065           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8066       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8067     }
8068   }
8069 
8070   // Resolve forward references from calls/refs
8071   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8072   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8073     for (auto VIRef : FwdRefVIs->second) {
8074       assert(VIRef.first->getRef() == FwdVIRef &&
8075              "Forward referenced ValueInfo expected to be empty");
8076       resolveFwdRef(VIRef.first, VI);
8077     }
8078     ForwardRefValueInfos.erase(FwdRefVIs);
8079   }
8080 
8081   // Resolve forward references from aliases
8082   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8083   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8084     for (auto AliaseeRef : FwdRefAliasees->second) {
8085       assert(!AliaseeRef.first->hasAliasee() &&
8086              "Forward referencing alias already has aliasee");
8087       assert(Summary && "Aliasee must be a definition");
8088       AliaseeRef.first->setAliasee(VI, Summary.get());
8089     }
8090     ForwardRefAliasees.erase(FwdRefAliasees);
8091   }
8092 
8093   // Add the summary if one was provided.
8094   if (Summary)
8095     Index->addGlobalValueSummary(VI, std::move(Summary));
8096 
8097   // Save the associated ValueInfo for use in later references by ID.
8098   if (ID == NumberedValueInfos.size())
8099     NumberedValueInfos.push_back(VI);
8100   else {
8101     // Handle non-continuous numbers (to make test simplification easier).
8102     if (ID > NumberedValueInfos.size())
8103       NumberedValueInfos.resize(ID + 1);
8104     NumberedValueInfos[ID] = VI;
8105   }
8106 }
8107 
8108 /// ParseSummaryIndexFlags
8109 ///   ::= 'flags' ':' UInt64
8110 bool LLParser::ParseSummaryIndexFlags() {
8111   assert(Lex.getKind() == lltok::kw_flags);
8112   Lex.Lex();
8113 
8114   if (ParseToken(lltok::colon, "expected ':' here"))
8115     return true;
8116   uint64_t Flags;
8117   if (ParseUInt64(Flags))
8118     return true;
8119   Index->setFlags(Flags);
8120   return false;
8121 }
8122 
8123 /// ParseBlockCount
8124 ///   ::= 'blockcount' ':' UInt64
8125 bool LLParser::ParseBlockCount() {
8126   assert(Lex.getKind() == lltok::kw_blockcount);
8127   Lex.Lex();
8128 
8129   if (ParseToken(lltok::colon, "expected ':' here"))
8130     return true;
8131   uint64_t BlockCount;
8132   if (ParseUInt64(BlockCount))
8133     return true;
8134   Index->setBlockCount(BlockCount);
8135   return false;
8136 }
8137 
8138 /// ParseGVEntry
8139 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8140 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8141 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8142 bool LLParser::ParseGVEntry(unsigned ID) {
8143   assert(Lex.getKind() == lltok::kw_gv);
8144   Lex.Lex();
8145 
8146   if (ParseToken(lltok::colon, "expected ':' here") ||
8147       ParseToken(lltok::lparen, "expected '(' here"))
8148     return true;
8149 
8150   std::string Name;
8151   GlobalValue::GUID GUID = 0;
8152   switch (Lex.getKind()) {
8153   case lltok::kw_name:
8154     Lex.Lex();
8155     if (ParseToken(lltok::colon, "expected ':' here") ||
8156         ParseStringConstant(Name))
8157       return true;
8158     // Can't create GUID/ValueInfo until we have the linkage.
8159     break;
8160   case lltok::kw_guid:
8161     Lex.Lex();
8162     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8163       return true;
8164     break;
8165   default:
8166     return Error(Lex.getLoc(), "expected name or guid tag");
8167   }
8168 
8169   if (!EatIfPresent(lltok::comma)) {
8170     // No summaries. Wrap up.
8171     if (ParseToken(lltok::rparen, "expected ')' here"))
8172       return true;
8173     // This was created for a call to an external or indirect target.
8174     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8175     // created for indirect calls with VP. A Name with no GUID came from
8176     // an external definition. We pass ExternalLinkage since that is only
8177     // used when the GUID must be computed from Name, and in that case
8178     // the symbol must have external linkage.
8179     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8180                           nullptr);
8181     return false;
8182   }
8183 
8184   // Have a list of summaries
8185   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8186       ParseToken(lltok::colon, "expected ':' here") ||
8187       ParseToken(lltok::lparen, "expected '(' here"))
8188     return true;
8189   do {
8190     switch (Lex.getKind()) {
8191     case lltok::kw_function:
8192       if (ParseFunctionSummary(Name, GUID, ID))
8193         return true;
8194       break;
8195     case lltok::kw_variable:
8196       if (ParseVariableSummary(Name, GUID, ID))
8197         return true;
8198       break;
8199     case lltok::kw_alias:
8200       if (ParseAliasSummary(Name, GUID, ID))
8201         return true;
8202       break;
8203     default:
8204       return Error(Lex.getLoc(), "expected summary type");
8205     }
8206   } while (EatIfPresent(lltok::comma));
8207 
8208   if (ParseToken(lltok::rparen, "expected ')' here") ||
8209       ParseToken(lltok::rparen, "expected ')' here"))
8210     return true;
8211 
8212   return false;
8213 }
8214 
8215 /// FunctionSummary
8216 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8217 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8218 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8219 ///         [',' OptionalRefs]? ')'
8220 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8221                                     unsigned ID) {
8222   assert(Lex.getKind() == lltok::kw_function);
8223   Lex.Lex();
8224 
8225   StringRef ModulePath;
8226   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8227       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8228       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8229   unsigned InstCount;
8230   std::vector<FunctionSummary::EdgeTy> Calls;
8231   FunctionSummary::TypeIdInfo TypeIdInfo;
8232   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8233   std::vector<ValueInfo> Refs;
8234   // Default is all-zeros (conservative values).
8235   FunctionSummary::FFlags FFlags = {};
8236   if (ParseToken(lltok::colon, "expected ':' here") ||
8237       ParseToken(lltok::lparen, "expected '(' here") ||
8238       ParseModuleReference(ModulePath) ||
8239       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8240       ParseToken(lltok::comma, "expected ',' here") ||
8241       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8242       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8243     return true;
8244 
8245   // Parse optional fields
8246   while (EatIfPresent(lltok::comma)) {
8247     switch (Lex.getKind()) {
8248     case lltok::kw_funcFlags:
8249       if (ParseOptionalFFlags(FFlags))
8250         return true;
8251       break;
8252     case lltok::kw_calls:
8253       if (ParseOptionalCalls(Calls))
8254         return true;
8255       break;
8256     case lltok::kw_typeIdInfo:
8257       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8258         return true;
8259       break;
8260     case lltok::kw_refs:
8261       if (ParseOptionalRefs(Refs))
8262         return true;
8263       break;
8264     case lltok::kw_params:
8265       if (ParseOptionalParamAccesses(ParamAccesses))
8266         return true;
8267       break;
8268     default:
8269       return Error(Lex.getLoc(), "expected optional function summary field");
8270     }
8271   }
8272 
8273   if (ParseToken(lltok::rparen, "expected ')' here"))
8274     return true;
8275 
8276   auto FS = std::make_unique<FunctionSummary>(
8277       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8278       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8279       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8280       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8281       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8282       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8283       std::move(ParamAccesses));
8284 
8285   FS->setModulePath(ModulePath);
8286 
8287   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8288                         ID, std::move(FS));
8289 
8290   return false;
8291 }
8292 
8293 /// VariableSummary
8294 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8295 ///         [',' OptionalRefs]? ')'
8296 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8297                                     unsigned ID) {
8298   assert(Lex.getKind() == lltok::kw_variable);
8299   Lex.Lex();
8300 
8301   StringRef ModulePath;
8302   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8303       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8304       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8305   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8306                                         /* WriteOnly */ false,
8307                                         /* Constant */ false,
8308                                         GlobalObject::VCallVisibilityPublic);
8309   std::vector<ValueInfo> Refs;
8310   VTableFuncList VTableFuncs;
8311   if (ParseToken(lltok::colon, "expected ':' here") ||
8312       ParseToken(lltok::lparen, "expected '(' here") ||
8313       ParseModuleReference(ModulePath) ||
8314       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8315       ParseToken(lltok::comma, "expected ',' here") ||
8316       ParseGVarFlags(GVarFlags))
8317     return true;
8318 
8319   // Parse optional fields
8320   while (EatIfPresent(lltok::comma)) {
8321     switch (Lex.getKind()) {
8322     case lltok::kw_vTableFuncs:
8323       if (ParseOptionalVTableFuncs(VTableFuncs))
8324         return true;
8325       break;
8326     case lltok::kw_refs:
8327       if (ParseOptionalRefs(Refs))
8328         return true;
8329       break;
8330     default:
8331       return Error(Lex.getLoc(), "expected optional variable summary field");
8332     }
8333   }
8334 
8335   if (ParseToken(lltok::rparen, "expected ')' here"))
8336     return true;
8337 
8338   auto GS =
8339       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8340 
8341   GS->setModulePath(ModulePath);
8342   GS->setVTableFuncs(std::move(VTableFuncs));
8343 
8344   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8345                         ID, std::move(GS));
8346 
8347   return false;
8348 }
8349 
8350 /// AliasSummary
8351 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8352 ///         'aliasee' ':' GVReference ')'
8353 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8354                                  unsigned ID) {
8355   assert(Lex.getKind() == lltok::kw_alias);
8356   LocTy Loc = Lex.getLoc();
8357   Lex.Lex();
8358 
8359   StringRef ModulePath;
8360   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8361       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8362       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8363   if (ParseToken(lltok::colon, "expected ':' here") ||
8364       ParseToken(lltok::lparen, "expected '(' here") ||
8365       ParseModuleReference(ModulePath) ||
8366       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8367       ParseToken(lltok::comma, "expected ',' here") ||
8368       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8369       ParseToken(lltok::colon, "expected ':' here"))
8370     return true;
8371 
8372   ValueInfo AliaseeVI;
8373   unsigned GVId;
8374   if (ParseGVReference(AliaseeVI, GVId))
8375     return true;
8376 
8377   if (ParseToken(lltok::rparen, "expected ')' here"))
8378     return true;
8379 
8380   auto AS = std::make_unique<AliasSummary>(GVFlags);
8381 
8382   AS->setModulePath(ModulePath);
8383 
8384   // Record forward reference if the aliasee is not parsed yet.
8385   if (AliaseeVI.getRef() == FwdVIRef) {
8386     auto FwdRef = ForwardRefAliasees.insert(
8387         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8388     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8389   } else {
8390     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8391     assert(Summary && "Aliasee must be a definition");
8392     AS->setAliasee(AliaseeVI, Summary);
8393   }
8394 
8395   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8396                         ID, std::move(AS));
8397 
8398   return false;
8399 }
8400 
8401 /// Flag
8402 ///   ::= [0|1]
8403 bool LLParser::ParseFlag(unsigned &Val) {
8404   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8405     return TokError("expected integer");
8406   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8407   Lex.Lex();
8408   return false;
8409 }
8410 
8411 /// OptionalFFlags
8412 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8413 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8414 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8415 ///        [',' 'noInline' ':' Flag]? ')'
8416 ///        [',' 'alwaysInline' ':' Flag]? ')'
8417 
8418 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8419   assert(Lex.getKind() == lltok::kw_funcFlags);
8420   Lex.Lex();
8421 
8422   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8423       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8424     return true;
8425 
8426   do {
8427     unsigned Val = 0;
8428     switch (Lex.getKind()) {
8429     case lltok::kw_readNone:
8430       Lex.Lex();
8431       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8432         return true;
8433       FFlags.ReadNone = Val;
8434       break;
8435     case lltok::kw_readOnly:
8436       Lex.Lex();
8437       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8438         return true;
8439       FFlags.ReadOnly = Val;
8440       break;
8441     case lltok::kw_noRecurse:
8442       Lex.Lex();
8443       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8444         return true;
8445       FFlags.NoRecurse = Val;
8446       break;
8447     case lltok::kw_returnDoesNotAlias:
8448       Lex.Lex();
8449       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8450         return true;
8451       FFlags.ReturnDoesNotAlias = Val;
8452       break;
8453     case lltok::kw_noInline:
8454       Lex.Lex();
8455       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8456         return true;
8457       FFlags.NoInline = Val;
8458       break;
8459     case lltok::kw_alwaysInline:
8460       Lex.Lex();
8461       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8462         return true;
8463       FFlags.AlwaysInline = Val;
8464       break;
8465     default:
8466       return Error(Lex.getLoc(), "expected function flag type");
8467     }
8468   } while (EatIfPresent(lltok::comma));
8469 
8470   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8471     return true;
8472 
8473   return false;
8474 }
8475 
8476 /// OptionalCalls
8477 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8478 /// Call ::= '(' 'callee' ':' GVReference
8479 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8480 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8481   assert(Lex.getKind() == lltok::kw_calls);
8482   Lex.Lex();
8483 
8484   if (ParseToken(lltok::colon, "expected ':' in calls") |
8485       ParseToken(lltok::lparen, "expected '(' in calls"))
8486     return true;
8487 
8488   IdToIndexMapType IdToIndexMap;
8489   // Parse each call edge
8490   do {
8491     ValueInfo VI;
8492     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8493         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8494         ParseToken(lltok::colon, "expected ':'"))
8495       return true;
8496 
8497     LocTy Loc = Lex.getLoc();
8498     unsigned GVId;
8499     if (ParseGVReference(VI, GVId))
8500       return true;
8501 
8502     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8503     unsigned RelBF = 0;
8504     if (EatIfPresent(lltok::comma)) {
8505       // Expect either hotness or relbf
8506       if (EatIfPresent(lltok::kw_hotness)) {
8507         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8508           return true;
8509       } else {
8510         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8511             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8512           return true;
8513       }
8514     }
8515     // Keep track of the Call array index needing a forward reference.
8516     // We will save the location of the ValueInfo needing an update, but
8517     // can only do so once the std::vector is finalized.
8518     if (VI.getRef() == FwdVIRef)
8519       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8520     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8521 
8522     if (ParseToken(lltok::rparen, "expected ')' in call"))
8523       return true;
8524   } while (EatIfPresent(lltok::comma));
8525 
8526   // Now that the Calls vector is finalized, it is safe to save the locations
8527   // of any forward GV references that need updating later.
8528   for (auto I : IdToIndexMap) {
8529     for (auto P : I.second) {
8530       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8531              "Forward referenced ValueInfo expected to be empty");
8532       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8533           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8534       FwdRef.first->second.push_back(
8535           std::make_pair(&Calls[P.first].first, P.second));
8536     }
8537   }
8538 
8539   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8540     return true;
8541 
8542   return false;
8543 }
8544 
8545 /// Hotness
8546 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8547 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8548   switch (Lex.getKind()) {
8549   case lltok::kw_unknown:
8550     Hotness = CalleeInfo::HotnessType::Unknown;
8551     break;
8552   case lltok::kw_cold:
8553     Hotness = CalleeInfo::HotnessType::Cold;
8554     break;
8555   case lltok::kw_none:
8556     Hotness = CalleeInfo::HotnessType::None;
8557     break;
8558   case lltok::kw_hot:
8559     Hotness = CalleeInfo::HotnessType::Hot;
8560     break;
8561   case lltok::kw_critical:
8562     Hotness = CalleeInfo::HotnessType::Critical;
8563     break;
8564   default:
8565     return Error(Lex.getLoc(), "invalid call edge hotness");
8566   }
8567   Lex.Lex();
8568   return false;
8569 }
8570 
8571 /// OptionalVTableFuncs
8572 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8573 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8574 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8575   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8576   Lex.Lex();
8577 
8578   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8579       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8580     return true;
8581 
8582   IdToIndexMapType IdToIndexMap;
8583   // Parse each virtual function pair
8584   do {
8585     ValueInfo VI;
8586     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8587         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8588         ParseToken(lltok::colon, "expected ':'"))
8589       return true;
8590 
8591     LocTy Loc = Lex.getLoc();
8592     unsigned GVId;
8593     if (ParseGVReference(VI, GVId))
8594       return true;
8595 
8596     uint64_t Offset;
8597     if (ParseToken(lltok::comma, "expected comma") ||
8598         ParseToken(lltok::kw_offset, "expected offset") ||
8599         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8600       return true;
8601 
8602     // Keep track of the VTableFuncs array index needing a forward reference.
8603     // We will save the location of the ValueInfo needing an update, but
8604     // can only do so once the std::vector is finalized.
8605     if (VI == EmptyVI)
8606       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8607     VTableFuncs.push_back({VI, Offset});
8608 
8609     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8610       return true;
8611   } while (EatIfPresent(lltok::comma));
8612 
8613   // Now that the VTableFuncs vector is finalized, it is safe to save the
8614   // locations of any forward GV references that need updating later.
8615   for (auto I : IdToIndexMap) {
8616     for (auto P : I.second) {
8617       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8618              "Forward referenced ValueInfo expected to be empty");
8619       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8620           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8621       FwdRef.first->second.push_back(
8622           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8623     }
8624   }
8625 
8626   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8627     return true;
8628 
8629   return false;
8630 }
8631 
8632 /// ParamNo := 'param' ':' UInt64
8633 bool LLParser::ParseParamNo(uint64_t &ParamNo) {
8634   if (ParseToken(lltok::kw_param, "expected 'param' here") ||
8635       ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(ParamNo))
8636     return true;
8637   return false;
8638 }
8639 
8640 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8641 bool LLParser::ParseParamAccessOffset(ConstantRange &Range) {
8642   APSInt Lower;
8643   APSInt Upper;
8644   auto ParseAPSInt = [&](APSInt &Val) {
8645     if (Lex.getKind() != lltok::APSInt)
8646       return TokError("expected integer");
8647     Val = Lex.getAPSIntVal();
8648     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8649     Val.setIsSigned(true);
8650     Lex.Lex();
8651     return false;
8652   };
8653   if (ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8654       ParseToken(lltok::colon, "expected ':' here") ||
8655       ParseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8656       ParseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8657       ParseToken(lltok::rsquare, "expected ']' here"))
8658     return true;
8659 
8660   ++Upper;
8661   Range =
8662       (Lower == Upper && !Lower.isMaxValue())
8663           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8664           : ConstantRange(Lower, Upper);
8665 
8666   return false;
8667 }
8668 
8669 /// ParamAccessCall
8670 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8671 bool LLParser::ParseParamAccessCall(FunctionSummary::ParamAccess::Call &Call) {
8672   if (ParseToken(lltok::lparen, "expected '(' here") ||
8673       ParseToken(lltok::kw_callee, "expected 'callee' here") ||
8674       ParseToken(lltok::colon, "expected ':' here"))
8675     return true;
8676 
8677   unsigned GVId;
8678   ValueInfo VI;
8679   if (ParseGVReference(VI, GVId))
8680     return true;
8681 
8682   Call.Callee = VI.getGUID();
8683 
8684   if (ParseToken(lltok::comma, "expected ',' here") ||
8685       ParseParamNo(Call.ParamNo) ||
8686       ParseToken(lltok::comma, "expected ',' here") ||
8687       ParseParamAccessOffset(Call.Offsets))
8688     return true;
8689 
8690   if (ParseToken(lltok::rparen, "expected ')' here"))
8691     return true;
8692 
8693   return false;
8694 }
8695 
8696 /// ParamAccess
8697 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8698 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8699 bool LLParser::ParseParamAccess(FunctionSummary::ParamAccess &Param) {
8700   if (ParseToken(lltok::lparen, "expected '(' here") ||
8701       ParseParamNo(Param.ParamNo) ||
8702       ParseToken(lltok::comma, "expected ',' here") ||
8703       ParseParamAccessOffset(Param.Use))
8704     return true;
8705 
8706   if (EatIfPresent(lltok::comma)) {
8707     if (ParseToken(lltok::kw_calls, "expected 'calls' here") ||
8708         ParseToken(lltok::colon, "expected ':' here") ||
8709         ParseToken(lltok::lparen, "expected '(' here"))
8710       return true;
8711     do {
8712       FunctionSummary::ParamAccess::Call Call;
8713       if (ParseParamAccessCall(Call))
8714         return true;
8715       Param.Calls.push_back(Call);
8716     } while (EatIfPresent(lltok::comma));
8717 
8718     if (ParseToken(lltok::rparen, "expected ')' here"))
8719       return true;
8720   }
8721 
8722   if (ParseToken(lltok::rparen, "expected ')' here"))
8723     return true;
8724 
8725   return false;
8726 }
8727 
8728 /// OptionalParamAccesses
8729 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8730 bool LLParser::ParseOptionalParamAccesses(
8731     std::vector<FunctionSummary::ParamAccess> &Params) {
8732   assert(Lex.getKind() == lltok::kw_params);
8733   Lex.Lex();
8734 
8735   if (ParseToken(lltok::colon, "expected ':' here") ||
8736       ParseToken(lltok::lparen, "expected '(' here"))
8737     return true;
8738 
8739   do {
8740     FunctionSummary::ParamAccess ParamAccess;
8741     if (ParseParamAccess(ParamAccess))
8742       return true;
8743     Params.push_back(ParamAccess);
8744   } while (EatIfPresent(lltok::comma));
8745 
8746   if (ParseToken(lltok::rparen, "expected ')' here"))
8747     return true;
8748 
8749   return false;
8750 }
8751 
8752 /// OptionalRefs
8753 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8754 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8755   assert(Lex.getKind() == lltok::kw_refs);
8756   Lex.Lex();
8757 
8758   if (ParseToken(lltok::colon, "expected ':' in refs") ||
8759       ParseToken(lltok::lparen, "expected '(' in refs"))
8760     return true;
8761 
8762   struct ValueContext {
8763     ValueInfo VI;
8764     unsigned GVId;
8765     LocTy Loc;
8766   };
8767   std::vector<ValueContext> VContexts;
8768   // Parse each ref edge
8769   do {
8770     ValueContext VC;
8771     VC.Loc = Lex.getLoc();
8772     if (ParseGVReference(VC.VI, VC.GVId))
8773       return true;
8774     VContexts.push_back(VC);
8775   } while (EatIfPresent(lltok::comma));
8776 
8777   // Sort value contexts so that ones with writeonly
8778   // and readonly ValueInfo  are at the end of VContexts vector.
8779   // See FunctionSummary::specialRefCounts()
8780   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8781     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8782   });
8783 
8784   IdToIndexMapType IdToIndexMap;
8785   for (auto &VC : VContexts) {
8786     // Keep track of the Refs array index needing a forward reference.
8787     // We will save the location of the ValueInfo needing an update, but
8788     // can only do so once the std::vector is finalized.
8789     if (VC.VI.getRef() == FwdVIRef)
8790       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8791     Refs.push_back(VC.VI);
8792   }
8793 
8794   // Now that the Refs vector is finalized, it is safe to save the locations
8795   // of any forward GV references that need updating later.
8796   for (auto I : IdToIndexMap) {
8797     for (auto P : I.second) {
8798       assert(Refs[P.first].getRef() == FwdVIRef &&
8799              "Forward referenced ValueInfo expected to be empty");
8800       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8801           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8802       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8803     }
8804   }
8805 
8806   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8807     return true;
8808 
8809   return false;
8810 }
8811 
8812 /// OptionalTypeIdInfo
8813 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8814 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8815 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8816 bool LLParser::ParseOptionalTypeIdInfo(
8817     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8818   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8819   Lex.Lex();
8820 
8821   if (ParseToken(lltok::colon, "expected ':' here") ||
8822       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8823     return true;
8824 
8825   do {
8826     switch (Lex.getKind()) {
8827     case lltok::kw_typeTests:
8828       if (ParseTypeTests(TypeIdInfo.TypeTests))
8829         return true;
8830       break;
8831     case lltok::kw_typeTestAssumeVCalls:
8832       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8833                            TypeIdInfo.TypeTestAssumeVCalls))
8834         return true;
8835       break;
8836     case lltok::kw_typeCheckedLoadVCalls:
8837       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8838                            TypeIdInfo.TypeCheckedLoadVCalls))
8839         return true;
8840       break;
8841     case lltok::kw_typeTestAssumeConstVCalls:
8842       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8843                               TypeIdInfo.TypeTestAssumeConstVCalls))
8844         return true;
8845       break;
8846     case lltok::kw_typeCheckedLoadConstVCalls:
8847       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8848                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8849         return true;
8850       break;
8851     default:
8852       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8853     }
8854   } while (EatIfPresent(lltok::comma));
8855 
8856   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8857     return true;
8858 
8859   return false;
8860 }
8861 
8862 /// TypeTests
8863 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8864 ///         [',' (SummaryID | UInt64)]* ')'
8865 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8866   assert(Lex.getKind() == lltok::kw_typeTests);
8867   Lex.Lex();
8868 
8869   if (ParseToken(lltok::colon, "expected ':' here") ||
8870       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8871     return true;
8872 
8873   IdToIndexMapType IdToIndexMap;
8874   do {
8875     GlobalValue::GUID GUID = 0;
8876     if (Lex.getKind() == lltok::SummaryID) {
8877       unsigned ID = Lex.getUIntVal();
8878       LocTy Loc = Lex.getLoc();
8879       // Keep track of the TypeTests array index needing a forward reference.
8880       // We will save the location of the GUID needing an update, but
8881       // can only do so once the std::vector is finalized.
8882       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8883       Lex.Lex();
8884     } else if (ParseUInt64(GUID))
8885       return true;
8886     TypeTests.push_back(GUID);
8887   } while (EatIfPresent(lltok::comma));
8888 
8889   // Now that the TypeTests vector is finalized, it is safe to save the
8890   // locations of any forward GV references that need updating later.
8891   for (auto I : IdToIndexMap) {
8892     for (auto P : I.second) {
8893       assert(TypeTests[P.first] == 0 &&
8894              "Forward referenced type id GUID expected to be 0");
8895       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8896           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8897       FwdRef.first->second.push_back(
8898           std::make_pair(&TypeTests[P.first], P.second));
8899     }
8900   }
8901 
8902   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8903     return true;
8904 
8905   return false;
8906 }
8907 
8908 /// VFuncIdList
8909 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8910 bool LLParser::ParseVFuncIdList(
8911     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8912   assert(Lex.getKind() == Kind);
8913   Lex.Lex();
8914 
8915   if (ParseToken(lltok::colon, "expected ':' here") ||
8916       ParseToken(lltok::lparen, "expected '(' here"))
8917     return true;
8918 
8919   IdToIndexMapType IdToIndexMap;
8920   do {
8921     FunctionSummary::VFuncId VFuncId;
8922     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8923       return true;
8924     VFuncIdList.push_back(VFuncId);
8925   } while (EatIfPresent(lltok::comma));
8926 
8927   if (ParseToken(lltok::rparen, "expected ')' here"))
8928     return true;
8929 
8930   // Now that the VFuncIdList vector is finalized, it is safe to save the
8931   // locations of any forward GV references that need updating later.
8932   for (auto I : IdToIndexMap) {
8933     for (auto P : I.second) {
8934       assert(VFuncIdList[P.first].GUID == 0 &&
8935              "Forward referenced type id GUID expected to be 0");
8936       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8937           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8938       FwdRef.first->second.push_back(
8939           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8940     }
8941   }
8942 
8943   return false;
8944 }
8945 
8946 /// ConstVCallList
8947 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8948 bool LLParser::ParseConstVCallList(
8949     lltok::Kind Kind,
8950     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8951   assert(Lex.getKind() == Kind);
8952   Lex.Lex();
8953 
8954   if (ParseToken(lltok::colon, "expected ':' here") ||
8955       ParseToken(lltok::lparen, "expected '(' here"))
8956     return true;
8957 
8958   IdToIndexMapType IdToIndexMap;
8959   do {
8960     FunctionSummary::ConstVCall ConstVCall;
8961     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8962       return true;
8963     ConstVCallList.push_back(ConstVCall);
8964   } while (EatIfPresent(lltok::comma));
8965 
8966   if (ParseToken(lltok::rparen, "expected ')' here"))
8967     return true;
8968 
8969   // Now that the ConstVCallList vector is finalized, it is safe to save the
8970   // locations of any forward GV references that need updating later.
8971   for (auto I : IdToIndexMap) {
8972     for (auto P : I.second) {
8973       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8974              "Forward referenced type id GUID expected to be 0");
8975       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8976           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8977       FwdRef.first->second.push_back(
8978           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8979     }
8980   }
8981 
8982   return false;
8983 }
8984 
8985 /// ConstVCall
8986 ///   ::= '(' VFuncId ',' Args ')'
8987 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8988                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8989   if (ParseToken(lltok::lparen, "expected '(' here") ||
8990       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8991     return true;
8992 
8993   if (EatIfPresent(lltok::comma))
8994     if (ParseArgs(ConstVCall.Args))
8995       return true;
8996 
8997   if (ParseToken(lltok::rparen, "expected ')' here"))
8998     return true;
8999 
9000   return false;
9001 }
9002 
9003 /// VFuncId
9004 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9005 ///         'offset' ':' UInt64 ')'
9006 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
9007                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9008   assert(Lex.getKind() == lltok::kw_vFuncId);
9009   Lex.Lex();
9010 
9011   if (ParseToken(lltok::colon, "expected ':' here") ||
9012       ParseToken(lltok::lparen, "expected '(' here"))
9013     return true;
9014 
9015   if (Lex.getKind() == lltok::SummaryID) {
9016     VFuncId.GUID = 0;
9017     unsigned ID = Lex.getUIntVal();
9018     LocTy Loc = Lex.getLoc();
9019     // Keep track of the array index needing a forward reference.
9020     // We will save the location of the GUID needing an update, but
9021     // can only do so once the caller's std::vector is finalized.
9022     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9023     Lex.Lex();
9024   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
9025              ParseToken(lltok::colon, "expected ':' here") ||
9026              ParseUInt64(VFuncId.GUID))
9027     return true;
9028 
9029   if (ParseToken(lltok::comma, "expected ',' here") ||
9030       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
9031       ParseToken(lltok::colon, "expected ':' here") ||
9032       ParseUInt64(VFuncId.Offset) ||
9033       ParseToken(lltok::rparen, "expected ')' here"))
9034     return true;
9035 
9036   return false;
9037 }
9038 
9039 /// GVFlags
9040 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9041 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
9042 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
9043 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9044   assert(Lex.getKind() == lltok::kw_flags);
9045   Lex.Lex();
9046 
9047   if (ParseToken(lltok::colon, "expected ':' here") ||
9048       ParseToken(lltok::lparen, "expected '(' here"))
9049     return true;
9050 
9051   do {
9052     unsigned Flag = 0;
9053     switch (Lex.getKind()) {
9054     case lltok::kw_linkage:
9055       Lex.Lex();
9056       if (ParseToken(lltok::colon, "expected ':'"))
9057         return true;
9058       bool HasLinkage;
9059       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9060       assert(HasLinkage && "Linkage not optional in summary entry");
9061       Lex.Lex();
9062       break;
9063     case lltok::kw_notEligibleToImport:
9064       Lex.Lex();
9065       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9066         return true;
9067       GVFlags.NotEligibleToImport = Flag;
9068       break;
9069     case lltok::kw_live:
9070       Lex.Lex();
9071       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9072         return true;
9073       GVFlags.Live = Flag;
9074       break;
9075     case lltok::kw_dsoLocal:
9076       Lex.Lex();
9077       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9078         return true;
9079       GVFlags.DSOLocal = Flag;
9080       break;
9081     case lltok::kw_canAutoHide:
9082       Lex.Lex();
9083       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9084         return true;
9085       GVFlags.CanAutoHide = Flag;
9086       break;
9087     default:
9088       return Error(Lex.getLoc(), "expected gv flag type");
9089     }
9090   } while (EatIfPresent(lltok::comma));
9091 
9092   if (ParseToken(lltok::rparen, "expected ')' here"))
9093     return true;
9094 
9095   return false;
9096 }
9097 
9098 /// GVarFlags
9099 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9100 ///                      ',' 'writeonly' ':' Flag
9101 ///                      ',' 'constant' ':' Flag ')'
9102 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9103   assert(Lex.getKind() == lltok::kw_varFlags);
9104   Lex.Lex();
9105 
9106   if (ParseToken(lltok::colon, "expected ':' here") ||
9107       ParseToken(lltok::lparen, "expected '(' here"))
9108     return true;
9109 
9110   auto ParseRest = [this](unsigned int &Val) {
9111     Lex.Lex();
9112     if (ParseToken(lltok::colon, "expected ':'"))
9113       return true;
9114     return ParseFlag(Val);
9115   };
9116 
9117   do {
9118     unsigned Flag = 0;
9119     switch (Lex.getKind()) {
9120     case lltok::kw_readonly:
9121       if (ParseRest(Flag))
9122         return true;
9123       GVarFlags.MaybeReadOnly = Flag;
9124       break;
9125     case lltok::kw_writeonly:
9126       if (ParseRest(Flag))
9127         return true;
9128       GVarFlags.MaybeWriteOnly = Flag;
9129       break;
9130     case lltok::kw_constant:
9131       if (ParseRest(Flag))
9132         return true;
9133       GVarFlags.Constant = Flag;
9134       break;
9135     case lltok::kw_vcall_visibility:
9136       if (ParseRest(Flag))
9137         return true;
9138       GVarFlags.VCallVisibility = Flag;
9139       break;
9140     default:
9141       return Error(Lex.getLoc(), "expected gvar flag type");
9142     }
9143   } while (EatIfPresent(lltok::comma));
9144   return ParseToken(lltok::rparen, "expected ')' here");
9145 }
9146 
9147 /// ModuleReference
9148 ///   ::= 'module' ':' UInt
9149 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
9150   // Parse module id.
9151   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
9152       ParseToken(lltok::colon, "expected ':' here") ||
9153       ParseToken(lltok::SummaryID, "expected module ID"))
9154     return true;
9155 
9156   unsigned ModuleID = Lex.getUIntVal();
9157   auto I = ModuleIdMap.find(ModuleID);
9158   // We should have already parsed all module IDs
9159   assert(I != ModuleIdMap.end());
9160   ModulePath = I->second;
9161   return false;
9162 }
9163 
9164 /// GVReference
9165 ///   ::= SummaryID
9166 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
9167   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9168   if (!ReadOnly)
9169     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9170   if (ParseToken(lltok::SummaryID, "expected GV ID"))
9171     return true;
9172 
9173   GVId = Lex.getUIntVal();
9174   // Check if we already have a VI for this GV
9175   if (GVId < NumberedValueInfos.size()) {
9176     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9177     VI = NumberedValueInfos[GVId];
9178   } else
9179     // We will create a forward reference to the stored location.
9180     VI = ValueInfo(false, FwdVIRef);
9181 
9182   if (ReadOnly)
9183     VI.setReadOnly();
9184   if (WriteOnly)
9185     VI.setWriteOnly();
9186   return false;
9187 }
9188