1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Dwarf.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (std::map<Value*, std::vector<unsigned> >::iterator 125 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 126 I != E; ++I) { 127 Value *V = I->first; 128 std::vector<unsigned> &Vec = I->second; 129 AttrBuilder B; 130 131 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 132 VI != VE; ++VI) 133 B.merge(NumberedAttrBuilders[*VI]); 134 135 if (Function *Fn = dyn_cast<Function>(V)) { 136 AttributeSet AS = Fn->getAttributes(); 137 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 138 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 139 AS.getFnAttributes()); 140 141 FnAttrs.merge(B); 142 143 // If the alignment was parsed as an attribute, move to the alignment 144 // field. 145 if (FnAttrs.hasAlignmentAttr()) { 146 Fn->setAlignment(FnAttrs.getAlignment()); 147 FnAttrs.removeAttribute(Attribute::Alignment); 148 } 149 150 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 151 AttributeSet::get(Context, 152 AttributeSet::FunctionIndex, 153 FnAttrs)); 154 Fn->setAttributes(AS); 155 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 156 AttributeSet AS = CI->getAttributes(); 157 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 158 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 159 AS.getFnAttributes()); 160 FnAttrs.merge(B); 161 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 162 AttributeSet::get(Context, 163 AttributeSet::FunctionIndex, 164 FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeSet AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 169 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 170 AS.getFnAttributes()); 171 FnAttrs.merge(B); 172 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 173 AttributeSet::get(Context, 174 AttributeSet::FunctionIndex, 175 FnAttrs)); 176 II->setAttributes(AS); 177 } else { 178 llvm_unreachable("invalid object with forward attribute group reference"); 179 } 180 } 181 182 // If there are entries in ForwardRefBlockAddresses at this point, the 183 // function was never defined. 184 if (!ForwardRefBlockAddresses.empty()) 185 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 186 "expected function name in blockaddress"); 187 188 for (const auto &NT : NumberedTypes) 189 if (NT.second.second.isValid()) 190 return Error(NT.second.second, 191 "use of undefined type '%" + Twine(NT.first) + "'"); 192 193 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 194 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 195 if (I->second.second.isValid()) 196 return Error(I->second.second, 197 "use of undefined type named '" + I->getKey() + "'"); 198 199 if (!ForwardRefComdats.empty()) 200 return Error(ForwardRefComdats.begin()->second, 201 "use of undefined comdat '$" + 202 ForwardRefComdats.begin()->first + "'"); 203 204 if (!ForwardRefVals.empty()) 205 return Error(ForwardRefVals.begin()->second.second, 206 "use of undefined value '@" + ForwardRefVals.begin()->first + 207 "'"); 208 209 if (!ForwardRefValIDs.empty()) 210 return Error(ForwardRefValIDs.begin()->second.second, 211 "use of undefined value '@" + 212 Twine(ForwardRefValIDs.begin()->first) + "'"); 213 214 if (!ForwardRefMDNodes.empty()) 215 return Error(ForwardRefMDNodes.begin()->second.second, 216 "use of undefined metadata '!" + 217 Twine(ForwardRefMDNodes.begin()->first) + "'"); 218 219 // Resolve metadata cycles. 220 for (auto &N : NumberedMetadata) { 221 if (N.second && !N.second->isResolved()) 222 N.second->resolveCycles(); 223 } 224 225 for (auto *Inst : InstsWithTBAATag) { 226 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 227 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 228 auto *UpgradedMD = UpgradeTBAANode(*MD); 229 if (MD != UpgradedMD) 230 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 231 } 232 233 // Look for intrinsic functions and CallInst that need to be upgraded 234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 235 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 236 237 // Some types could be renamed during loading if several modules are 238 // loaded in the same LLVMContext (LTO scenario). In this case we should 239 // remangle intrinsics names as well. 240 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 241 Function *F = &*FI++; 242 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 243 F->replaceAllUsesWith(Remangled.getValue()); 244 F->eraseFromParent(); 245 } 246 } 247 248 UpgradeDebugInfo(*M); 249 250 UpgradeModuleFlags(*M); 251 252 if (!Slots) 253 return false; 254 // Initialize the slot mapping. 255 // Because by this point we've parsed and validated everything, we can "steal" 256 // the mapping from LLParser as it doesn't need it anymore. 257 Slots->GlobalValues = std::move(NumberedVals); 258 Slots->MetadataNodes = std::move(NumberedMetadata); 259 for (const auto &I : NamedTypes) 260 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 261 for (const auto &I : NumberedTypes) 262 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 263 264 return false; 265 } 266 267 //===----------------------------------------------------------------------===// 268 // Top-Level Entities 269 //===----------------------------------------------------------------------===// 270 271 bool LLParser::ParseTopLevelEntities() { 272 while (true) { 273 switch (Lex.getKind()) { 274 default: return TokError("expected top-level entity"); 275 case lltok::Eof: return false; 276 case lltok::kw_declare: if (ParseDeclare()) return true; break; 277 case lltok::kw_define: if (ParseDefine()) return true; break; 278 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 279 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 280 case lltok::kw_source_filename: 281 if (ParseSourceFileName()) 282 return true; 283 break; 284 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 285 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 286 case lltok::LocalVar: if (ParseNamedType()) return true; break; 287 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 288 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 289 case lltok::ComdatVar: if (parseComdat()) return true; break; 290 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 291 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 292 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 293 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 294 case lltok::kw_uselistorder_bb: 295 if (ParseUseListOrderBB()) 296 return true; 297 break; 298 } 299 } 300 } 301 302 /// toplevelentity 303 /// ::= 'module' 'asm' STRINGCONSTANT 304 bool LLParser::ParseModuleAsm() { 305 assert(Lex.getKind() == lltok::kw_module); 306 Lex.Lex(); 307 308 std::string AsmStr; 309 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 310 ParseStringConstant(AsmStr)) return true; 311 312 M->appendModuleInlineAsm(AsmStr); 313 return false; 314 } 315 316 /// toplevelentity 317 /// ::= 'target' 'triple' '=' STRINGCONSTANT 318 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 319 bool LLParser::ParseTargetDefinition() { 320 assert(Lex.getKind() == lltok::kw_target); 321 std::string Str; 322 switch (Lex.Lex()) { 323 default: return TokError("unknown target property"); 324 case lltok::kw_triple: 325 Lex.Lex(); 326 if (ParseToken(lltok::equal, "expected '=' after target triple") || 327 ParseStringConstant(Str)) 328 return true; 329 M->setTargetTriple(Str); 330 return false; 331 case lltok::kw_datalayout: 332 Lex.Lex(); 333 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 334 ParseStringConstant(Str)) 335 return true; 336 M->setDataLayout(Str); 337 return false; 338 } 339 } 340 341 /// toplevelentity 342 /// ::= 'source_filename' '=' STRINGCONSTANT 343 bool LLParser::ParseSourceFileName() { 344 assert(Lex.getKind() == lltok::kw_source_filename); 345 std::string Str; 346 Lex.Lex(); 347 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 348 ParseStringConstant(Str)) 349 return true; 350 M->setSourceFileName(Str); 351 return false; 352 } 353 354 /// toplevelentity 355 /// ::= 'deplibs' '=' '[' ']' 356 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 357 /// FIXME: Remove in 4.0. Currently parse, but ignore. 358 bool LLParser::ParseDepLibs() { 359 assert(Lex.getKind() == lltok::kw_deplibs); 360 Lex.Lex(); 361 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 362 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 363 return true; 364 365 if (EatIfPresent(lltok::rsquare)) 366 return false; 367 368 do { 369 std::string Str; 370 if (ParseStringConstant(Str)) return true; 371 } while (EatIfPresent(lltok::comma)); 372 373 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 374 } 375 376 /// ParseUnnamedType: 377 /// ::= LocalVarID '=' 'type' type 378 bool LLParser::ParseUnnamedType() { 379 LocTy TypeLoc = Lex.getLoc(); 380 unsigned TypeID = Lex.getUIntVal(); 381 Lex.Lex(); // eat LocalVarID; 382 383 if (ParseToken(lltok::equal, "expected '=' after name") || 384 ParseToken(lltok::kw_type, "expected 'type' after '='")) 385 return true; 386 387 Type *Result = nullptr; 388 if (ParseStructDefinition(TypeLoc, "", 389 NumberedTypes[TypeID], Result)) return true; 390 391 if (!isa<StructType>(Result)) { 392 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 393 if (Entry.first) 394 return Error(TypeLoc, "non-struct types may not be recursive"); 395 Entry.first = Result; 396 Entry.second = SMLoc(); 397 } 398 399 return false; 400 } 401 402 /// toplevelentity 403 /// ::= LocalVar '=' 'type' type 404 bool LLParser::ParseNamedType() { 405 std::string Name = Lex.getStrVal(); 406 LocTy NameLoc = Lex.getLoc(); 407 Lex.Lex(); // eat LocalVar. 408 409 if (ParseToken(lltok::equal, "expected '=' after name") || 410 ParseToken(lltok::kw_type, "expected 'type' after name")) 411 return true; 412 413 Type *Result = nullptr; 414 if (ParseStructDefinition(NameLoc, Name, 415 NamedTypes[Name], Result)) return true; 416 417 if (!isa<StructType>(Result)) { 418 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 419 if (Entry.first) 420 return Error(NameLoc, "non-struct types may not be recursive"); 421 Entry.first = Result; 422 Entry.second = SMLoc(); 423 } 424 425 return false; 426 } 427 428 /// toplevelentity 429 /// ::= 'declare' FunctionHeader 430 bool LLParser::ParseDeclare() { 431 assert(Lex.getKind() == lltok::kw_declare); 432 Lex.Lex(); 433 434 std::vector<std::pair<unsigned, MDNode *>> MDs; 435 while (Lex.getKind() == lltok::MetadataVar) { 436 unsigned MDK; 437 MDNode *N; 438 if (ParseMetadataAttachment(MDK, N)) 439 return true; 440 MDs.push_back({MDK, N}); 441 } 442 443 Function *F; 444 if (ParseFunctionHeader(F, false)) 445 return true; 446 for (auto &MD : MDs) 447 F->addMetadata(MD.first, *MD.second); 448 return false; 449 } 450 451 /// toplevelentity 452 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 453 bool LLParser::ParseDefine() { 454 assert(Lex.getKind() == lltok::kw_define); 455 Lex.Lex(); 456 457 Function *F; 458 return ParseFunctionHeader(F, true) || 459 ParseOptionalFunctionMetadata(*F) || 460 ParseFunctionBody(*F); 461 } 462 463 /// ParseGlobalType 464 /// ::= 'constant' 465 /// ::= 'global' 466 bool LLParser::ParseGlobalType(bool &IsConstant) { 467 if (Lex.getKind() == lltok::kw_constant) 468 IsConstant = true; 469 else if (Lex.getKind() == lltok::kw_global) 470 IsConstant = false; 471 else { 472 IsConstant = false; 473 return TokError("expected 'global' or 'constant'"); 474 } 475 Lex.Lex(); 476 return false; 477 } 478 479 bool LLParser::ParseOptionalUnnamedAddr( 480 GlobalVariable::UnnamedAddr &UnnamedAddr) { 481 if (EatIfPresent(lltok::kw_unnamed_addr)) 482 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 483 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 484 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 485 else 486 UnnamedAddr = GlobalValue::UnnamedAddr::None; 487 return false; 488 } 489 490 /// ParseUnnamedGlobal: 491 /// OptionalVisibility (ALIAS | IFUNC) ... 492 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 493 /// ... -> global variable 494 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 495 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 496 /// ... -> global variable 497 bool LLParser::ParseUnnamedGlobal() { 498 unsigned VarID = NumberedVals.size(); 499 std::string Name; 500 LocTy NameLoc = Lex.getLoc(); 501 502 // Handle the GlobalID form. 503 if (Lex.getKind() == lltok::GlobalID) { 504 if (Lex.getUIntVal() != VarID) 505 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 506 Twine(VarID) + "'"); 507 Lex.Lex(); // eat GlobalID; 508 509 if (ParseToken(lltok::equal, "expected '=' after name")) 510 return true; 511 } 512 513 bool HasLinkage; 514 unsigned Linkage, Visibility, DLLStorageClass; 515 GlobalVariable::ThreadLocalMode TLM; 516 GlobalVariable::UnnamedAddr UnnamedAddr; 517 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 518 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 519 return true; 520 521 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 522 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 523 DLLStorageClass, TLM, UnnamedAddr); 524 525 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 526 DLLStorageClass, TLM, UnnamedAddr); 527 } 528 529 /// ParseNamedGlobal: 530 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 531 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 532 /// ... -> global variable 533 bool LLParser::ParseNamedGlobal() { 534 assert(Lex.getKind() == lltok::GlobalVar); 535 LocTy NameLoc = Lex.getLoc(); 536 std::string Name = Lex.getStrVal(); 537 Lex.Lex(); 538 539 bool HasLinkage; 540 unsigned Linkage, Visibility, DLLStorageClass; 541 GlobalVariable::ThreadLocalMode TLM; 542 GlobalVariable::UnnamedAddr UnnamedAddr; 543 if (ParseToken(lltok::equal, "expected '=' in global variable") || 544 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 545 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 546 return true; 547 548 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 549 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 550 DLLStorageClass, TLM, UnnamedAddr); 551 552 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 553 DLLStorageClass, TLM, UnnamedAddr); 554 } 555 556 bool LLParser::parseComdat() { 557 assert(Lex.getKind() == lltok::ComdatVar); 558 std::string Name = Lex.getStrVal(); 559 LocTy NameLoc = Lex.getLoc(); 560 Lex.Lex(); 561 562 if (ParseToken(lltok::equal, "expected '=' here")) 563 return true; 564 565 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 566 return TokError("expected comdat type"); 567 568 Comdat::SelectionKind SK; 569 switch (Lex.getKind()) { 570 default: 571 return TokError("unknown selection kind"); 572 case lltok::kw_any: 573 SK = Comdat::Any; 574 break; 575 case lltok::kw_exactmatch: 576 SK = Comdat::ExactMatch; 577 break; 578 case lltok::kw_largest: 579 SK = Comdat::Largest; 580 break; 581 case lltok::kw_noduplicates: 582 SK = Comdat::NoDuplicates; 583 break; 584 case lltok::kw_samesize: 585 SK = Comdat::SameSize; 586 break; 587 } 588 Lex.Lex(); 589 590 // See if the comdat was forward referenced, if so, use the comdat. 591 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 592 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 593 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 594 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 595 596 Comdat *C; 597 if (I != ComdatSymTab.end()) 598 C = &I->second; 599 else 600 C = M->getOrInsertComdat(Name); 601 C->setSelectionKind(SK); 602 603 return false; 604 } 605 606 // MDString: 607 // ::= '!' STRINGCONSTANT 608 bool LLParser::ParseMDString(MDString *&Result) { 609 std::string Str; 610 if (ParseStringConstant(Str)) return true; 611 Result = MDString::get(Context, Str); 612 return false; 613 } 614 615 // MDNode: 616 // ::= '!' MDNodeNumber 617 bool LLParser::ParseMDNodeID(MDNode *&Result) { 618 // !{ ..., !42, ... } 619 LocTy IDLoc = Lex.getLoc(); 620 unsigned MID = 0; 621 if (ParseUInt32(MID)) 622 return true; 623 624 // If not a forward reference, just return it now. 625 if (NumberedMetadata.count(MID)) { 626 Result = NumberedMetadata[MID]; 627 return false; 628 } 629 630 // Otherwise, create MDNode forward reference. 631 auto &FwdRef = ForwardRefMDNodes[MID]; 632 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 633 634 Result = FwdRef.first.get(); 635 NumberedMetadata[MID].reset(Result); 636 return false; 637 } 638 639 /// ParseNamedMetadata: 640 /// !foo = !{ !1, !2 } 641 bool LLParser::ParseNamedMetadata() { 642 assert(Lex.getKind() == lltok::MetadataVar); 643 std::string Name = Lex.getStrVal(); 644 Lex.Lex(); 645 646 if (ParseToken(lltok::equal, "expected '=' here") || 647 ParseToken(lltok::exclaim, "Expected '!' here") || 648 ParseToken(lltok::lbrace, "Expected '{' here")) 649 return true; 650 651 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 652 if (Lex.getKind() != lltok::rbrace) 653 do { 654 if (ParseToken(lltok::exclaim, "Expected '!' here")) 655 return true; 656 657 MDNode *N = nullptr; 658 if (ParseMDNodeID(N)) return true; 659 NMD->addOperand(N); 660 } while (EatIfPresent(lltok::comma)); 661 662 return ParseToken(lltok::rbrace, "expected end of metadata node"); 663 } 664 665 /// ParseStandaloneMetadata: 666 /// !42 = !{...} 667 bool LLParser::ParseStandaloneMetadata() { 668 assert(Lex.getKind() == lltok::exclaim); 669 Lex.Lex(); 670 unsigned MetadataID = 0; 671 672 MDNode *Init; 673 if (ParseUInt32(MetadataID) || 674 ParseToken(lltok::equal, "expected '=' here")) 675 return true; 676 677 // Detect common error, from old metadata syntax. 678 if (Lex.getKind() == lltok::Type) 679 return TokError("unexpected type in metadata definition"); 680 681 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 682 if (Lex.getKind() == lltok::MetadataVar) { 683 if (ParseSpecializedMDNode(Init, IsDistinct)) 684 return true; 685 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 686 ParseMDTuple(Init, IsDistinct)) 687 return true; 688 689 // See if this was forward referenced, if so, handle it. 690 auto FI = ForwardRefMDNodes.find(MetadataID); 691 if (FI != ForwardRefMDNodes.end()) { 692 FI->second.first->replaceAllUsesWith(Init); 693 ForwardRefMDNodes.erase(FI); 694 695 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 696 } else { 697 if (NumberedMetadata.count(MetadataID)) 698 return TokError("Metadata id is already used"); 699 NumberedMetadata[MetadataID].reset(Init); 700 } 701 702 return false; 703 } 704 705 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 706 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 707 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 708 } 709 710 /// parseIndirectSymbol: 711 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 712 /// OptionalDLLStorageClass OptionalThreadLocal 713 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 714 /// 715 /// IndirectSymbol 716 /// ::= TypeAndValue 717 /// 718 /// Everything through OptionalUnnamedAddr has already been parsed. 719 /// 720 bool LLParser::parseIndirectSymbol( 721 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 722 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 723 GlobalVariable::UnnamedAddr UnnamedAddr) { 724 bool IsAlias; 725 if (Lex.getKind() == lltok::kw_alias) 726 IsAlias = true; 727 else if (Lex.getKind() == lltok::kw_ifunc) 728 IsAlias = false; 729 else 730 llvm_unreachable("Not an alias or ifunc!"); 731 Lex.Lex(); 732 733 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 734 735 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 736 return Error(NameLoc, "invalid linkage type for alias"); 737 738 if (!isValidVisibilityForLinkage(Visibility, L)) 739 return Error(NameLoc, 740 "symbol with local linkage must have default visibility"); 741 742 Type *Ty; 743 LocTy ExplicitTypeLoc = Lex.getLoc(); 744 if (ParseType(Ty) || 745 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 746 return true; 747 748 Constant *Aliasee; 749 LocTy AliaseeLoc = Lex.getLoc(); 750 if (Lex.getKind() != lltok::kw_bitcast && 751 Lex.getKind() != lltok::kw_getelementptr && 752 Lex.getKind() != lltok::kw_addrspacecast && 753 Lex.getKind() != lltok::kw_inttoptr) { 754 if (ParseGlobalTypeAndValue(Aliasee)) 755 return true; 756 } else { 757 // The bitcast dest type is not present, it is implied by the dest type. 758 ValID ID; 759 if (ParseValID(ID)) 760 return true; 761 if (ID.Kind != ValID::t_Constant) 762 return Error(AliaseeLoc, "invalid aliasee"); 763 Aliasee = ID.ConstantVal; 764 } 765 766 Type *AliaseeType = Aliasee->getType(); 767 auto *PTy = dyn_cast<PointerType>(AliaseeType); 768 if (!PTy) 769 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 770 unsigned AddrSpace = PTy->getAddressSpace(); 771 772 if (IsAlias && Ty != PTy->getElementType()) 773 return Error( 774 ExplicitTypeLoc, 775 "explicit pointee type doesn't match operand's pointee type"); 776 777 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 778 return Error( 779 ExplicitTypeLoc, 780 "explicit pointee type should be a function type"); 781 782 GlobalValue *GVal = nullptr; 783 784 // See if the alias was forward referenced, if so, prepare to replace the 785 // forward reference. 786 if (!Name.empty()) { 787 GVal = M->getNamedValue(Name); 788 if (GVal) { 789 if (!ForwardRefVals.erase(Name)) 790 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 791 } 792 } else { 793 auto I = ForwardRefValIDs.find(NumberedVals.size()); 794 if (I != ForwardRefValIDs.end()) { 795 GVal = I->second.first; 796 ForwardRefValIDs.erase(I); 797 } 798 } 799 800 // Okay, create the alias but do not insert it into the module yet. 801 std::unique_ptr<GlobalIndirectSymbol> GA; 802 if (IsAlias) 803 GA.reset(GlobalAlias::create(Ty, AddrSpace, 804 (GlobalValue::LinkageTypes)Linkage, Name, 805 Aliasee, /*Parent*/ nullptr)); 806 else 807 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 808 (GlobalValue::LinkageTypes)Linkage, Name, 809 Aliasee, /*Parent*/ nullptr)); 810 GA->setThreadLocalMode(TLM); 811 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 812 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 813 GA->setUnnamedAddr(UnnamedAddr); 814 815 if (Name.empty()) 816 NumberedVals.push_back(GA.get()); 817 818 if (GVal) { 819 // Verify that types agree. 820 if (GVal->getType() != GA->getType()) 821 return Error( 822 ExplicitTypeLoc, 823 "forward reference and definition of alias have different types"); 824 825 // If they agree, just RAUW the old value with the alias and remove the 826 // forward ref info. 827 GVal->replaceAllUsesWith(GA.get()); 828 GVal->eraseFromParent(); 829 } 830 831 // Insert into the module, we know its name won't collide now. 832 if (IsAlias) 833 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 834 else 835 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 836 assert(GA->getName() == Name && "Should not be a name conflict!"); 837 838 // The module owns this now 839 GA.release(); 840 841 return false; 842 } 843 844 /// ParseGlobal 845 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 846 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 847 /// OptionalExternallyInitialized GlobalType Type Const 848 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 849 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 850 /// OptionalExternallyInitialized GlobalType Type Const 851 /// 852 /// Everything up to and including OptionalUnnamedAddr has been parsed 853 /// already. 854 /// 855 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 856 unsigned Linkage, bool HasLinkage, 857 unsigned Visibility, unsigned DLLStorageClass, 858 GlobalVariable::ThreadLocalMode TLM, 859 GlobalVariable::UnnamedAddr UnnamedAddr) { 860 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 861 return Error(NameLoc, 862 "symbol with local linkage must have default visibility"); 863 864 unsigned AddrSpace; 865 bool IsConstant, IsExternallyInitialized; 866 LocTy IsExternallyInitializedLoc; 867 LocTy TyLoc; 868 869 Type *Ty = nullptr; 870 if (ParseOptionalAddrSpace(AddrSpace) || 871 ParseOptionalToken(lltok::kw_externally_initialized, 872 IsExternallyInitialized, 873 &IsExternallyInitializedLoc) || 874 ParseGlobalType(IsConstant) || 875 ParseType(Ty, TyLoc)) 876 return true; 877 878 // If the linkage is specified and is external, then no initializer is 879 // present. 880 Constant *Init = nullptr; 881 if (!HasLinkage || 882 !GlobalValue::isValidDeclarationLinkage( 883 (GlobalValue::LinkageTypes)Linkage)) { 884 if (ParseGlobalValue(Ty, Init)) 885 return true; 886 } 887 888 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 889 return Error(TyLoc, "invalid type for global variable"); 890 891 GlobalValue *GVal = nullptr; 892 893 // See if the global was forward referenced, if so, use the global. 894 if (!Name.empty()) { 895 GVal = M->getNamedValue(Name); 896 if (GVal) { 897 if (!ForwardRefVals.erase(Name)) 898 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 899 } 900 } else { 901 auto I = ForwardRefValIDs.find(NumberedVals.size()); 902 if (I != ForwardRefValIDs.end()) { 903 GVal = I->second.first; 904 ForwardRefValIDs.erase(I); 905 } 906 } 907 908 GlobalVariable *GV; 909 if (!GVal) { 910 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 911 Name, nullptr, GlobalVariable::NotThreadLocal, 912 AddrSpace); 913 } else { 914 if (GVal->getValueType() != Ty) 915 return Error(TyLoc, 916 "forward reference and definition of global have different types"); 917 918 GV = cast<GlobalVariable>(GVal); 919 920 // Move the forward-reference to the correct spot in the module. 921 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 922 } 923 924 if (Name.empty()) 925 NumberedVals.push_back(GV); 926 927 // Set the parsed properties on the global. 928 if (Init) 929 GV->setInitializer(Init); 930 GV->setConstant(IsConstant); 931 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 932 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 933 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 934 GV->setExternallyInitialized(IsExternallyInitialized); 935 GV->setThreadLocalMode(TLM); 936 GV->setUnnamedAddr(UnnamedAddr); 937 938 // Parse attributes on the global. 939 while (Lex.getKind() == lltok::comma) { 940 Lex.Lex(); 941 942 if (Lex.getKind() == lltok::kw_section) { 943 Lex.Lex(); 944 GV->setSection(Lex.getStrVal()); 945 if (ParseToken(lltok::StringConstant, "expected global section string")) 946 return true; 947 } else if (Lex.getKind() == lltok::kw_align) { 948 unsigned Alignment; 949 if (ParseOptionalAlignment(Alignment)) return true; 950 GV->setAlignment(Alignment); 951 } else if (Lex.getKind() == lltok::MetadataVar) { 952 if (ParseGlobalObjectMetadataAttachment(*GV)) 953 return true; 954 } else { 955 Comdat *C; 956 if (parseOptionalComdat(Name, C)) 957 return true; 958 if (C) 959 GV->setComdat(C); 960 else 961 return TokError("unknown global variable property!"); 962 } 963 } 964 965 return false; 966 } 967 968 /// ParseUnnamedAttrGrp 969 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 970 bool LLParser::ParseUnnamedAttrGrp() { 971 assert(Lex.getKind() == lltok::kw_attributes); 972 LocTy AttrGrpLoc = Lex.getLoc(); 973 Lex.Lex(); 974 975 if (Lex.getKind() != lltok::AttrGrpID) 976 return TokError("expected attribute group id"); 977 978 unsigned VarID = Lex.getUIntVal(); 979 std::vector<unsigned> unused; 980 LocTy BuiltinLoc; 981 Lex.Lex(); 982 983 if (ParseToken(lltok::equal, "expected '=' here") || 984 ParseToken(lltok::lbrace, "expected '{' here") || 985 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 986 BuiltinLoc) || 987 ParseToken(lltok::rbrace, "expected end of attribute group")) 988 return true; 989 990 if (!NumberedAttrBuilders[VarID].hasAttributes()) 991 return Error(AttrGrpLoc, "attribute group has no attributes"); 992 993 return false; 994 } 995 996 /// ParseFnAttributeValuePairs 997 /// ::= <attr> | <attr> '=' <value> 998 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 999 std::vector<unsigned> &FwdRefAttrGrps, 1000 bool inAttrGrp, LocTy &BuiltinLoc) { 1001 bool HaveError = false; 1002 1003 B.clear(); 1004 1005 while (true) { 1006 lltok::Kind Token = Lex.getKind(); 1007 if (Token == lltok::kw_builtin) 1008 BuiltinLoc = Lex.getLoc(); 1009 switch (Token) { 1010 default: 1011 if (!inAttrGrp) return HaveError; 1012 return Error(Lex.getLoc(), "unterminated attribute group"); 1013 case lltok::rbrace: 1014 // Finished. 1015 return false; 1016 1017 case lltok::AttrGrpID: { 1018 // Allow a function to reference an attribute group: 1019 // 1020 // define void @foo() #1 { ... } 1021 if (inAttrGrp) 1022 HaveError |= 1023 Error(Lex.getLoc(), 1024 "cannot have an attribute group reference in an attribute group"); 1025 1026 unsigned AttrGrpNum = Lex.getUIntVal(); 1027 if (inAttrGrp) break; 1028 1029 // Save the reference to the attribute group. We'll fill it in later. 1030 FwdRefAttrGrps.push_back(AttrGrpNum); 1031 break; 1032 } 1033 // Target-dependent attributes: 1034 case lltok::StringConstant: { 1035 if (ParseStringAttribute(B)) 1036 return true; 1037 continue; 1038 } 1039 1040 // Target-independent attributes: 1041 case lltok::kw_align: { 1042 // As a hack, we allow function alignment to be initially parsed as an 1043 // attribute on a function declaration/definition or added to an attribute 1044 // group and later moved to the alignment field. 1045 unsigned Alignment; 1046 if (inAttrGrp) { 1047 Lex.Lex(); 1048 if (ParseToken(lltok::equal, "expected '=' here") || 1049 ParseUInt32(Alignment)) 1050 return true; 1051 } else { 1052 if (ParseOptionalAlignment(Alignment)) 1053 return true; 1054 } 1055 B.addAlignmentAttr(Alignment); 1056 continue; 1057 } 1058 case lltok::kw_alignstack: { 1059 unsigned Alignment; 1060 if (inAttrGrp) { 1061 Lex.Lex(); 1062 if (ParseToken(lltok::equal, "expected '=' here") || 1063 ParseUInt32(Alignment)) 1064 return true; 1065 } else { 1066 if (ParseOptionalStackAlignment(Alignment)) 1067 return true; 1068 } 1069 B.addStackAlignmentAttr(Alignment); 1070 continue; 1071 } 1072 case lltok::kw_allocsize: { 1073 unsigned ElemSizeArg; 1074 Optional<unsigned> NumElemsArg; 1075 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1076 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1077 return true; 1078 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1079 continue; 1080 } 1081 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1082 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1083 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1084 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1085 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1086 case lltok::kw_inaccessiblememonly: 1087 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1088 case lltok::kw_inaccessiblemem_or_argmemonly: 1089 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1090 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1091 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1092 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1093 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1094 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1095 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1096 case lltok::kw_noimplicitfloat: 1097 B.addAttribute(Attribute::NoImplicitFloat); break; 1098 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1099 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1100 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1101 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1102 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1103 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1104 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1105 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1106 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1107 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1108 case lltok::kw_returns_twice: 1109 B.addAttribute(Attribute::ReturnsTwice); break; 1110 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1111 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1112 case lltok::kw_sspstrong: 1113 B.addAttribute(Attribute::StackProtectStrong); break; 1114 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1115 case lltok::kw_sanitize_address: 1116 B.addAttribute(Attribute::SanitizeAddress); break; 1117 case lltok::kw_sanitize_thread: 1118 B.addAttribute(Attribute::SanitizeThread); break; 1119 case lltok::kw_sanitize_memory: 1120 B.addAttribute(Attribute::SanitizeMemory); break; 1121 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1122 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1123 1124 // Error handling. 1125 case lltok::kw_inreg: 1126 case lltok::kw_signext: 1127 case lltok::kw_zeroext: 1128 HaveError |= 1129 Error(Lex.getLoc(), 1130 "invalid use of attribute on a function"); 1131 break; 1132 case lltok::kw_byval: 1133 case lltok::kw_dereferenceable: 1134 case lltok::kw_dereferenceable_or_null: 1135 case lltok::kw_inalloca: 1136 case lltok::kw_nest: 1137 case lltok::kw_noalias: 1138 case lltok::kw_nocapture: 1139 case lltok::kw_nonnull: 1140 case lltok::kw_returned: 1141 case lltok::kw_sret: 1142 case lltok::kw_swifterror: 1143 case lltok::kw_swiftself: 1144 HaveError |= 1145 Error(Lex.getLoc(), 1146 "invalid use of parameter-only attribute on a function"); 1147 break; 1148 } 1149 1150 Lex.Lex(); 1151 } 1152 } 1153 1154 //===----------------------------------------------------------------------===// 1155 // GlobalValue Reference/Resolution Routines. 1156 //===----------------------------------------------------------------------===// 1157 1158 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1159 const std::string &Name) { 1160 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1161 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1162 else 1163 return new GlobalVariable(*M, PTy->getElementType(), false, 1164 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1165 nullptr, GlobalVariable::NotThreadLocal, 1166 PTy->getAddressSpace()); 1167 } 1168 1169 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1170 /// forward reference record if needed. This can return null if the value 1171 /// exists but does not have the right type. 1172 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1173 LocTy Loc) { 1174 PointerType *PTy = dyn_cast<PointerType>(Ty); 1175 if (!PTy) { 1176 Error(Loc, "global variable reference must have pointer type"); 1177 return nullptr; 1178 } 1179 1180 // Look this name up in the normal function symbol table. 1181 GlobalValue *Val = 1182 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1183 1184 // If this is a forward reference for the value, see if we already created a 1185 // forward ref record. 1186 if (!Val) { 1187 auto I = ForwardRefVals.find(Name); 1188 if (I != ForwardRefVals.end()) 1189 Val = I->second.first; 1190 } 1191 1192 // If we have the value in the symbol table or fwd-ref table, return it. 1193 if (Val) { 1194 if (Val->getType() == Ty) return Val; 1195 Error(Loc, "'@" + Name + "' defined with type '" + 1196 getTypeString(Val->getType()) + "'"); 1197 return nullptr; 1198 } 1199 1200 // Otherwise, create a new forward reference for this value and remember it. 1201 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1202 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1203 return FwdVal; 1204 } 1205 1206 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1207 PointerType *PTy = dyn_cast<PointerType>(Ty); 1208 if (!PTy) { 1209 Error(Loc, "global variable reference must have pointer type"); 1210 return nullptr; 1211 } 1212 1213 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1214 1215 // If this is a forward reference for the value, see if we already created a 1216 // forward ref record. 1217 if (!Val) { 1218 auto I = ForwardRefValIDs.find(ID); 1219 if (I != ForwardRefValIDs.end()) 1220 Val = I->second.first; 1221 } 1222 1223 // If we have the value in the symbol table or fwd-ref table, return it. 1224 if (Val) { 1225 if (Val->getType() == Ty) return Val; 1226 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1227 getTypeString(Val->getType()) + "'"); 1228 return nullptr; 1229 } 1230 1231 // Otherwise, create a new forward reference for this value and remember it. 1232 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1233 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1234 return FwdVal; 1235 } 1236 1237 //===----------------------------------------------------------------------===// 1238 // Comdat Reference/Resolution Routines. 1239 //===----------------------------------------------------------------------===// 1240 1241 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1242 // Look this name up in the comdat symbol table. 1243 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1244 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1245 if (I != ComdatSymTab.end()) 1246 return &I->second; 1247 1248 // Otherwise, create a new forward reference for this value and remember it. 1249 Comdat *C = M->getOrInsertComdat(Name); 1250 ForwardRefComdats[Name] = Loc; 1251 return C; 1252 } 1253 1254 //===----------------------------------------------------------------------===// 1255 // Helper Routines. 1256 //===----------------------------------------------------------------------===// 1257 1258 /// ParseToken - If the current token has the specified kind, eat it and return 1259 /// success. Otherwise, emit the specified error and return failure. 1260 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1261 if (Lex.getKind() != T) 1262 return TokError(ErrMsg); 1263 Lex.Lex(); 1264 return false; 1265 } 1266 1267 /// ParseStringConstant 1268 /// ::= StringConstant 1269 bool LLParser::ParseStringConstant(std::string &Result) { 1270 if (Lex.getKind() != lltok::StringConstant) 1271 return TokError("expected string constant"); 1272 Result = Lex.getStrVal(); 1273 Lex.Lex(); 1274 return false; 1275 } 1276 1277 /// ParseUInt32 1278 /// ::= uint32 1279 bool LLParser::ParseUInt32(uint32_t &Val) { 1280 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1281 return TokError("expected integer"); 1282 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1283 if (Val64 != unsigned(Val64)) 1284 return TokError("expected 32-bit integer (too large)"); 1285 Val = Val64; 1286 Lex.Lex(); 1287 return false; 1288 } 1289 1290 /// ParseUInt64 1291 /// ::= uint64 1292 bool LLParser::ParseUInt64(uint64_t &Val) { 1293 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1294 return TokError("expected integer"); 1295 Val = Lex.getAPSIntVal().getLimitedValue(); 1296 Lex.Lex(); 1297 return false; 1298 } 1299 1300 /// ParseTLSModel 1301 /// := 'localdynamic' 1302 /// := 'initialexec' 1303 /// := 'localexec' 1304 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1305 switch (Lex.getKind()) { 1306 default: 1307 return TokError("expected localdynamic, initialexec or localexec"); 1308 case lltok::kw_localdynamic: 1309 TLM = GlobalVariable::LocalDynamicTLSModel; 1310 break; 1311 case lltok::kw_initialexec: 1312 TLM = GlobalVariable::InitialExecTLSModel; 1313 break; 1314 case lltok::kw_localexec: 1315 TLM = GlobalVariable::LocalExecTLSModel; 1316 break; 1317 } 1318 1319 Lex.Lex(); 1320 return false; 1321 } 1322 1323 /// ParseOptionalThreadLocal 1324 /// := /*empty*/ 1325 /// := 'thread_local' 1326 /// := 'thread_local' '(' tlsmodel ')' 1327 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1328 TLM = GlobalVariable::NotThreadLocal; 1329 if (!EatIfPresent(lltok::kw_thread_local)) 1330 return false; 1331 1332 TLM = GlobalVariable::GeneralDynamicTLSModel; 1333 if (Lex.getKind() == lltok::lparen) { 1334 Lex.Lex(); 1335 return ParseTLSModel(TLM) || 1336 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1337 } 1338 return false; 1339 } 1340 1341 /// ParseOptionalAddrSpace 1342 /// := /*empty*/ 1343 /// := 'addrspace' '(' uint32 ')' 1344 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1345 AddrSpace = 0; 1346 if (!EatIfPresent(lltok::kw_addrspace)) 1347 return false; 1348 return ParseToken(lltok::lparen, "expected '(' in address space") || 1349 ParseUInt32(AddrSpace) || 1350 ParseToken(lltok::rparen, "expected ')' in address space"); 1351 } 1352 1353 /// ParseStringAttribute 1354 /// := StringConstant 1355 /// := StringConstant '=' StringConstant 1356 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1357 std::string Attr = Lex.getStrVal(); 1358 Lex.Lex(); 1359 std::string Val; 1360 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1361 return true; 1362 B.addAttribute(Attr, Val); 1363 return false; 1364 } 1365 1366 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1367 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1368 bool HaveError = false; 1369 1370 B.clear(); 1371 1372 while (true) { 1373 lltok::Kind Token = Lex.getKind(); 1374 switch (Token) { 1375 default: // End of attributes. 1376 return HaveError; 1377 case lltok::StringConstant: { 1378 if (ParseStringAttribute(B)) 1379 return true; 1380 continue; 1381 } 1382 case lltok::kw_align: { 1383 unsigned Alignment; 1384 if (ParseOptionalAlignment(Alignment)) 1385 return true; 1386 B.addAlignmentAttr(Alignment); 1387 continue; 1388 } 1389 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1390 case lltok::kw_dereferenceable: { 1391 uint64_t Bytes; 1392 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1393 return true; 1394 B.addDereferenceableAttr(Bytes); 1395 continue; 1396 } 1397 case lltok::kw_dereferenceable_or_null: { 1398 uint64_t Bytes; 1399 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1400 return true; 1401 B.addDereferenceableOrNullAttr(Bytes); 1402 continue; 1403 } 1404 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1405 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1406 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1407 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1408 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1409 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1410 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1411 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1412 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1413 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1414 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1415 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1416 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1417 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1418 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1419 1420 case lltok::kw_alignstack: 1421 case lltok::kw_alwaysinline: 1422 case lltok::kw_argmemonly: 1423 case lltok::kw_builtin: 1424 case lltok::kw_inlinehint: 1425 case lltok::kw_jumptable: 1426 case lltok::kw_minsize: 1427 case lltok::kw_naked: 1428 case lltok::kw_nobuiltin: 1429 case lltok::kw_noduplicate: 1430 case lltok::kw_noimplicitfloat: 1431 case lltok::kw_noinline: 1432 case lltok::kw_nonlazybind: 1433 case lltok::kw_noredzone: 1434 case lltok::kw_noreturn: 1435 case lltok::kw_nounwind: 1436 case lltok::kw_optnone: 1437 case lltok::kw_optsize: 1438 case lltok::kw_returns_twice: 1439 case lltok::kw_sanitize_address: 1440 case lltok::kw_sanitize_memory: 1441 case lltok::kw_sanitize_thread: 1442 case lltok::kw_ssp: 1443 case lltok::kw_sspreq: 1444 case lltok::kw_sspstrong: 1445 case lltok::kw_safestack: 1446 case lltok::kw_uwtable: 1447 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1448 break; 1449 } 1450 1451 Lex.Lex(); 1452 } 1453 } 1454 1455 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1456 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1457 bool HaveError = false; 1458 1459 B.clear(); 1460 1461 while (true) { 1462 lltok::Kind Token = Lex.getKind(); 1463 switch (Token) { 1464 default: // End of attributes. 1465 return HaveError; 1466 case lltok::StringConstant: { 1467 if (ParseStringAttribute(B)) 1468 return true; 1469 continue; 1470 } 1471 case lltok::kw_dereferenceable: { 1472 uint64_t Bytes; 1473 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1474 return true; 1475 B.addDereferenceableAttr(Bytes); 1476 continue; 1477 } 1478 case lltok::kw_dereferenceable_or_null: { 1479 uint64_t Bytes; 1480 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1481 return true; 1482 B.addDereferenceableOrNullAttr(Bytes); 1483 continue; 1484 } 1485 case lltok::kw_align: { 1486 unsigned Alignment; 1487 if (ParseOptionalAlignment(Alignment)) 1488 return true; 1489 B.addAlignmentAttr(Alignment); 1490 continue; 1491 } 1492 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1493 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1494 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1495 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1496 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1497 1498 // Error handling. 1499 case lltok::kw_byval: 1500 case lltok::kw_inalloca: 1501 case lltok::kw_nest: 1502 case lltok::kw_nocapture: 1503 case lltok::kw_returned: 1504 case lltok::kw_sret: 1505 case lltok::kw_swifterror: 1506 case lltok::kw_swiftself: 1507 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1508 break; 1509 1510 case lltok::kw_alignstack: 1511 case lltok::kw_alwaysinline: 1512 case lltok::kw_argmemonly: 1513 case lltok::kw_builtin: 1514 case lltok::kw_cold: 1515 case lltok::kw_inlinehint: 1516 case lltok::kw_jumptable: 1517 case lltok::kw_minsize: 1518 case lltok::kw_naked: 1519 case lltok::kw_nobuiltin: 1520 case lltok::kw_noduplicate: 1521 case lltok::kw_noimplicitfloat: 1522 case lltok::kw_noinline: 1523 case lltok::kw_nonlazybind: 1524 case lltok::kw_noredzone: 1525 case lltok::kw_noreturn: 1526 case lltok::kw_nounwind: 1527 case lltok::kw_optnone: 1528 case lltok::kw_optsize: 1529 case lltok::kw_returns_twice: 1530 case lltok::kw_sanitize_address: 1531 case lltok::kw_sanitize_memory: 1532 case lltok::kw_sanitize_thread: 1533 case lltok::kw_ssp: 1534 case lltok::kw_sspreq: 1535 case lltok::kw_sspstrong: 1536 case lltok::kw_safestack: 1537 case lltok::kw_uwtable: 1538 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1539 break; 1540 1541 case lltok::kw_readnone: 1542 case lltok::kw_readonly: 1543 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1544 } 1545 1546 Lex.Lex(); 1547 } 1548 } 1549 1550 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1551 HasLinkage = true; 1552 switch (Kind) { 1553 default: 1554 HasLinkage = false; 1555 return GlobalValue::ExternalLinkage; 1556 case lltok::kw_private: 1557 return GlobalValue::PrivateLinkage; 1558 case lltok::kw_internal: 1559 return GlobalValue::InternalLinkage; 1560 case lltok::kw_weak: 1561 return GlobalValue::WeakAnyLinkage; 1562 case lltok::kw_weak_odr: 1563 return GlobalValue::WeakODRLinkage; 1564 case lltok::kw_linkonce: 1565 return GlobalValue::LinkOnceAnyLinkage; 1566 case lltok::kw_linkonce_odr: 1567 return GlobalValue::LinkOnceODRLinkage; 1568 case lltok::kw_available_externally: 1569 return GlobalValue::AvailableExternallyLinkage; 1570 case lltok::kw_appending: 1571 return GlobalValue::AppendingLinkage; 1572 case lltok::kw_common: 1573 return GlobalValue::CommonLinkage; 1574 case lltok::kw_extern_weak: 1575 return GlobalValue::ExternalWeakLinkage; 1576 case lltok::kw_external: 1577 return GlobalValue::ExternalLinkage; 1578 } 1579 } 1580 1581 /// ParseOptionalLinkage 1582 /// ::= /*empty*/ 1583 /// ::= 'private' 1584 /// ::= 'internal' 1585 /// ::= 'weak' 1586 /// ::= 'weak_odr' 1587 /// ::= 'linkonce' 1588 /// ::= 'linkonce_odr' 1589 /// ::= 'available_externally' 1590 /// ::= 'appending' 1591 /// ::= 'common' 1592 /// ::= 'extern_weak' 1593 /// ::= 'external' 1594 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1595 unsigned &Visibility, 1596 unsigned &DLLStorageClass) { 1597 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1598 if (HasLinkage) 1599 Lex.Lex(); 1600 ParseOptionalVisibility(Visibility); 1601 ParseOptionalDLLStorageClass(DLLStorageClass); 1602 return false; 1603 } 1604 1605 /// ParseOptionalVisibility 1606 /// ::= /*empty*/ 1607 /// ::= 'default' 1608 /// ::= 'hidden' 1609 /// ::= 'protected' 1610 /// 1611 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1612 switch (Lex.getKind()) { 1613 default: 1614 Res = GlobalValue::DefaultVisibility; 1615 return; 1616 case lltok::kw_default: 1617 Res = GlobalValue::DefaultVisibility; 1618 break; 1619 case lltok::kw_hidden: 1620 Res = GlobalValue::HiddenVisibility; 1621 break; 1622 case lltok::kw_protected: 1623 Res = GlobalValue::ProtectedVisibility; 1624 break; 1625 } 1626 Lex.Lex(); 1627 } 1628 1629 /// ParseOptionalDLLStorageClass 1630 /// ::= /*empty*/ 1631 /// ::= 'dllimport' 1632 /// ::= 'dllexport' 1633 /// 1634 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1635 switch (Lex.getKind()) { 1636 default: 1637 Res = GlobalValue::DefaultStorageClass; 1638 return; 1639 case lltok::kw_dllimport: 1640 Res = GlobalValue::DLLImportStorageClass; 1641 break; 1642 case lltok::kw_dllexport: 1643 Res = GlobalValue::DLLExportStorageClass; 1644 break; 1645 } 1646 Lex.Lex(); 1647 } 1648 1649 /// ParseOptionalCallingConv 1650 /// ::= /*empty*/ 1651 /// ::= 'ccc' 1652 /// ::= 'fastcc' 1653 /// ::= 'intel_ocl_bicc' 1654 /// ::= 'coldcc' 1655 /// ::= 'x86_stdcallcc' 1656 /// ::= 'x86_fastcallcc' 1657 /// ::= 'x86_thiscallcc' 1658 /// ::= 'x86_vectorcallcc' 1659 /// ::= 'arm_apcscc' 1660 /// ::= 'arm_aapcscc' 1661 /// ::= 'arm_aapcs_vfpcc' 1662 /// ::= 'msp430_intrcc' 1663 /// ::= 'avr_intrcc' 1664 /// ::= 'avr_signalcc' 1665 /// ::= 'ptx_kernel' 1666 /// ::= 'ptx_device' 1667 /// ::= 'spir_func' 1668 /// ::= 'spir_kernel' 1669 /// ::= 'x86_64_sysvcc' 1670 /// ::= 'x86_64_win64cc' 1671 /// ::= 'webkit_jscc' 1672 /// ::= 'anyregcc' 1673 /// ::= 'preserve_mostcc' 1674 /// ::= 'preserve_allcc' 1675 /// ::= 'ghccc' 1676 /// ::= 'swiftcc' 1677 /// ::= 'x86_intrcc' 1678 /// ::= 'hhvmcc' 1679 /// ::= 'hhvm_ccc' 1680 /// ::= 'cxx_fast_tlscc' 1681 /// ::= 'amdgpu_vs' 1682 /// ::= 'amdgpu_tcs' 1683 /// ::= 'amdgpu_tes' 1684 /// ::= 'amdgpu_gs' 1685 /// ::= 'amdgpu_ps' 1686 /// ::= 'amdgpu_cs' 1687 /// ::= 'amdgpu_kernel' 1688 /// ::= 'cc' UINT 1689 /// 1690 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1691 switch (Lex.getKind()) { 1692 default: CC = CallingConv::C; return false; 1693 case lltok::kw_ccc: CC = CallingConv::C; break; 1694 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1695 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1696 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1697 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1698 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1699 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1700 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1701 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1702 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1703 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1704 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1705 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1706 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1707 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1708 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1709 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1710 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1711 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1712 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1713 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1714 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1715 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1716 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1717 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1718 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1719 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1720 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1721 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1722 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1723 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1724 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1725 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1726 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1727 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1728 case lltok::kw_cc: { 1729 Lex.Lex(); 1730 return ParseUInt32(CC); 1731 } 1732 } 1733 1734 Lex.Lex(); 1735 return false; 1736 } 1737 1738 /// ParseMetadataAttachment 1739 /// ::= !dbg !42 1740 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1741 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1742 1743 std::string Name = Lex.getStrVal(); 1744 Kind = M->getMDKindID(Name); 1745 Lex.Lex(); 1746 1747 return ParseMDNode(MD); 1748 } 1749 1750 /// ParseInstructionMetadata 1751 /// ::= !dbg !42 (',' !dbg !57)* 1752 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1753 do { 1754 if (Lex.getKind() != lltok::MetadataVar) 1755 return TokError("expected metadata after comma"); 1756 1757 unsigned MDK; 1758 MDNode *N; 1759 if (ParseMetadataAttachment(MDK, N)) 1760 return true; 1761 1762 Inst.setMetadata(MDK, N); 1763 if (MDK == LLVMContext::MD_tbaa) 1764 InstsWithTBAATag.push_back(&Inst); 1765 1766 // If this is the end of the list, we're done. 1767 } while (EatIfPresent(lltok::comma)); 1768 return false; 1769 } 1770 1771 /// ParseGlobalObjectMetadataAttachment 1772 /// ::= !dbg !57 1773 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1774 unsigned MDK; 1775 MDNode *N; 1776 if (ParseMetadataAttachment(MDK, N)) 1777 return true; 1778 1779 GO.addMetadata(MDK, *N); 1780 return false; 1781 } 1782 1783 /// ParseOptionalFunctionMetadata 1784 /// ::= (!dbg !57)* 1785 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1786 while (Lex.getKind() == lltok::MetadataVar) 1787 if (ParseGlobalObjectMetadataAttachment(F)) 1788 return true; 1789 return false; 1790 } 1791 1792 /// ParseOptionalAlignment 1793 /// ::= /* empty */ 1794 /// ::= 'align' 4 1795 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1796 Alignment = 0; 1797 if (!EatIfPresent(lltok::kw_align)) 1798 return false; 1799 LocTy AlignLoc = Lex.getLoc(); 1800 if (ParseUInt32(Alignment)) return true; 1801 if (!isPowerOf2_32(Alignment)) 1802 return Error(AlignLoc, "alignment is not a power of two"); 1803 if (Alignment > Value::MaximumAlignment) 1804 return Error(AlignLoc, "huge alignments are not supported yet"); 1805 return false; 1806 } 1807 1808 /// ParseOptionalDerefAttrBytes 1809 /// ::= /* empty */ 1810 /// ::= AttrKind '(' 4 ')' 1811 /// 1812 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1813 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1814 uint64_t &Bytes) { 1815 assert((AttrKind == lltok::kw_dereferenceable || 1816 AttrKind == lltok::kw_dereferenceable_or_null) && 1817 "contract!"); 1818 1819 Bytes = 0; 1820 if (!EatIfPresent(AttrKind)) 1821 return false; 1822 LocTy ParenLoc = Lex.getLoc(); 1823 if (!EatIfPresent(lltok::lparen)) 1824 return Error(ParenLoc, "expected '('"); 1825 LocTy DerefLoc = Lex.getLoc(); 1826 if (ParseUInt64(Bytes)) return true; 1827 ParenLoc = Lex.getLoc(); 1828 if (!EatIfPresent(lltok::rparen)) 1829 return Error(ParenLoc, "expected ')'"); 1830 if (!Bytes) 1831 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1832 return false; 1833 } 1834 1835 /// ParseOptionalCommaAlign 1836 /// ::= 1837 /// ::= ',' align 4 1838 /// 1839 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1840 /// end. 1841 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1842 bool &AteExtraComma) { 1843 AteExtraComma = false; 1844 while (EatIfPresent(lltok::comma)) { 1845 // Metadata at the end is an early exit. 1846 if (Lex.getKind() == lltok::MetadataVar) { 1847 AteExtraComma = true; 1848 return false; 1849 } 1850 1851 if (Lex.getKind() != lltok::kw_align) 1852 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1853 1854 if (ParseOptionalAlignment(Alignment)) return true; 1855 } 1856 1857 return false; 1858 } 1859 1860 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1861 Optional<unsigned> &HowManyArg) { 1862 Lex.Lex(); 1863 1864 auto StartParen = Lex.getLoc(); 1865 if (!EatIfPresent(lltok::lparen)) 1866 return Error(StartParen, "expected '('"); 1867 1868 if (ParseUInt32(BaseSizeArg)) 1869 return true; 1870 1871 if (EatIfPresent(lltok::comma)) { 1872 auto HowManyAt = Lex.getLoc(); 1873 unsigned HowMany; 1874 if (ParseUInt32(HowMany)) 1875 return true; 1876 if (HowMany == BaseSizeArg) 1877 return Error(HowManyAt, 1878 "'allocsize' indices can't refer to the same parameter"); 1879 HowManyArg = HowMany; 1880 } else 1881 HowManyArg = None; 1882 1883 auto EndParen = Lex.getLoc(); 1884 if (!EatIfPresent(lltok::rparen)) 1885 return Error(EndParen, "expected ')'"); 1886 return false; 1887 } 1888 1889 /// ParseScopeAndOrdering 1890 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1891 /// else: ::= 1892 /// 1893 /// This sets Scope and Ordering to the parsed values. 1894 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1895 AtomicOrdering &Ordering) { 1896 if (!isAtomic) 1897 return false; 1898 1899 Scope = CrossThread; 1900 if (EatIfPresent(lltok::kw_singlethread)) 1901 Scope = SingleThread; 1902 1903 return ParseOrdering(Ordering); 1904 } 1905 1906 /// ParseOrdering 1907 /// ::= AtomicOrdering 1908 /// 1909 /// This sets Ordering to the parsed value. 1910 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1911 switch (Lex.getKind()) { 1912 default: return TokError("Expected ordering on atomic instruction"); 1913 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1914 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1915 // Not specified yet: 1916 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1917 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1918 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1919 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1920 case lltok::kw_seq_cst: 1921 Ordering = AtomicOrdering::SequentiallyConsistent; 1922 break; 1923 } 1924 Lex.Lex(); 1925 return false; 1926 } 1927 1928 /// ParseOptionalStackAlignment 1929 /// ::= /* empty */ 1930 /// ::= 'alignstack' '(' 4 ')' 1931 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1932 Alignment = 0; 1933 if (!EatIfPresent(lltok::kw_alignstack)) 1934 return false; 1935 LocTy ParenLoc = Lex.getLoc(); 1936 if (!EatIfPresent(lltok::lparen)) 1937 return Error(ParenLoc, "expected '('"); 1938 LocTy AlignLoc = Lex.getLoc(); 1939 if (ParseUInt32(Alignment)) return true; 1940 ParenLoc = Lex.getLoc(); 1941 if (!EatIfPresent(lltok::rparen)) 1942 return Error(ParenLoc, "expected ')'"); 1943 if (!isPowerOf2_32(Alignment)) 1944 return Error(AlignLoc, "stack alignment is not a power of two"); 1945 return false; 1946 } 1947 1948 /// ParseIndexList - This parses the index list for an insert/extractvalue 1949 /// instruction. This sets AteExtraComma in the case where we eat an extra 1950 /// comma at the end of the line and find that it is followed by metadata. 1951 /// Clients that don't allow metadata can call the version of this function that 1952 /// only takes one argument. 1953 /// 1954 /// ParseIndexList 1955 /// ::= (',' uint32)+ 1956 /// 1957 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1958 bool &AteExtraComma) { 1959 AteExtraComma = false; 1960 1961 if (Lex.getKind() != lltok::comma) 1962 return TokError("expected ',' as start of index list"); 1963 1964 while (EatIfPresent(lltok::comma)) { 1965 if (Lex.getKind() == lltok::MetadataVar) { 1966 if (Indices.empty()) return TokError("expected index"); 1967 AteExtraComma = true; 1968 return false; 1969 } 1970 unsigned Idx = 0; 1971 if (ParseUInt32(Idx)) return true; 1972 Indices.push_back(Idx); 1973 } 1974 1975 return false; 1976 } 1977 1978 //===----------------------------------------------------------------------===// 1979 // Type Parsing. 1980 //===----------------------------------------------------------------------===// 1981 1982 /// ParseType - Parse a type. 1983 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1984 SMLoc TypeLoc = Lex.getLoc(); 1985 switch (Lex.getKind()) { 1986 default: 1987 return TokError(Msg); 1988 case lltok::Type: 1989 // Type ::= 'float' | 'void' (etc) 1990 Result = Lex.getTyVal(); 1991 Lex.Lex(); 1992 break; 1993 case lltok::lbrace: 1994 // Type ::= StructType 1995 if (ParseAnonStructType(Result, false)) 1996 return true; 1997 break; 1998 case lltok::lsquare: 1999 // Type ::= '[' ... ']' 2000 Lex.Lex(); // eat the lsquare. 2001 if (ParseArrayVectorType(Result, false)) 2002 return true; 2003 break; 2004 case lltok::less: // Either vector or packed struct. 2005 // Type ::= '<' ... '>' 2006 Lex.Lex(); 2007 if (Lex.getKind() == lltok::lbrace) { 2008 if (ParseAnonStructType(Result, true) || 2009 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2010 return true; 2011 } else if (ParseArrayVectorType(Result, true)) 2012 return true; 2013 break; 2014 case lltok::LocalVar: { 2015 // Type ::= %foo 2016 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2017 2018 // If the type hasn't been defined yet, create a forward definition and 2019 // remember where that forward def'n was seen (in case it never is defined). 2020 if (!Entry.first) { 2021 Entry.first = StructType::create(Context, Lex.getStrVal()); 2022 Entry.second = Lex.getLoc(); 2023 } 2024 Result = Entry.first; 2025 Lex.Lex(); 2026 break; 2027 } 2028 2029 case lltok::LocalVarID: { 2030 // Type ::= %4 2031 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2032 2033 // If the type hasn't been defined yet, create a forward definition and 2034 // remember where that forward def'n was seen (in case it never is defined). 2035 if (!Entry.first) { 2036 Entry.first = StructType::create(Context); 2037 Entry.second = Lex.getLoc(); 2038 } 2039 Result = Entry.first; 2040 Lex.Lex(); 2041 break; 2042 } 2043 } 2044 2045 // Parse the type suffixes. 2046 while (true) { 2047 switch (Lex.getKind()) { 2048 // End of type. 2049 default: 2050 if (!AllowVoid && Result->isVoidTy()) 2051 return Error(TypeLoc, "void type only allowed for function results"); 2052 return false; 2053 2054 // Type ::= Type '*' 2055 case lltok::star: 2056 if (Result->isLabelTy()) 2057 return TokError("basic block pointers are invalid"); 2058 if (Result->isVoidTy()) 2059 return TokError("pointers to void are invalid - use i8* instead"); 2060 if (!PointerType::isValidElementType(Result)) 2061 return TokError("pointer to this type is invalid"); 2062 Result = PointerType::getUnqual(Result); 2063 Lex.Lex(); 2064 break; 2065 2066 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2067 case lltok::kw_addrspace: { 2068 if (Result->isLabelTy()) 2069 return TokError("basic block pointers are invalid"); 2070 if (Result->isVoidTy()) 2071 return TokError("pointers to void are invalid; use i8* instead"); 2072 if (!PointerType::isValidElementType(Result)) 2073 return TokError("pointer to this type is invalid"); 2074 unsigned AddrSpace; 2075 if (ParseOptionalAddrSpace(AddrSpace) || 2076 ParseToken(lltok::star, "expected '*' in address space")) 2077 return true; 2078 2079 Result = PointerType::get(Result, AddrSpace); 2080 break; 2081 } 2082 2083 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2084 case lltok::lparen: 2085 if (ParseFunctionType(Result)) 2086 return true; 2087 break; 2088 } 2089 } 2090 } 2091 2092 /// ParseParameterList 2093 /// ::= '(' ')' 2094 /// ::= '(' Arg (',' Arg)* ')' 2095 /// Arg 2096 /// ::= Type OptionalAttributes Value OptionalAttributes 2097 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2098 PerFunctionState &PFS, bool IsMustTailCall, 2099 bool InVarArgsFunc) { 2100 if (ParseToken(lltok::lparen, "expected '(' in call")) 2101 return true; 2102 2103 unsigned AttrIndex = 1; 2104 while (Lex.getKind() != lltok::rparen) { 2105 // If this isn't the first argument, we need a comma. 2106 if (!ArgList.empty() && 2107 ParseToken(lltok::comma, "expected ',' in argument list")) 2108 return true; 2109 2110 // Parse an ellipsis if this is a musttail call in a variadic function. 2111 if (Lex.getKind() == lltok::dotdotdot) { 2112 const char *Msg = "unexpected ellipsis in argument list for "; 2113 if (!IsMustTailCall) 2114 return TokError(Twine(Msg) + "non-musttail call"); 2115 if (!InVarArgsFunc) 2116 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2117 Lex.Lex(); // Lex the '...', it is purely for readability. 2118 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2119 } 2120 2121 // Parse the argument. 2122 LocTy ArgLoc; 2123 Type *ArgTy = nullptr; 2124 AttrBuilder ArgAttrs; 2125 Value *V; 2126 if (ParseType(ArgTy, ArgLoc)) 2127 return true; 2128 2129 if (ArgTy->isMetadataTy()) { 2130 if (ParseMetadataAsValue(V, PFS)) 2131 return true; 2132 } else { 2133 // Otherwise, handle normal operands. 2134 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2135 return true; 2136 } 2137 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 2138 AttrIndex++, 2139 ArgAttrs))); 2140 } 2141 2142 if (IsMustTailCall && InVarArgsFunc) 2143 return TokError("expected '...' at end of argument list for musttail call " 2144 "in varargs function"); 2145 2146 Lex.Lex(); // Lex the ')'. 2147 return false; 2148 } 2149 2150 /// ParseOptionalOperandBundles 2151 /// ::= /*empty*/ 2152 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2153 /// 2154 /// OperandBundle 2155 /// ::= bundle-tag '(' ')' 2156 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2157 /// 2158 /// bundle-tag ::= String Constant 2159 bool LLParser::ParseOptionalOperandBundles( 2160 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2161 LocTy BeginLoc = Lex.getLoc(); 2162 if (!EatIfPresent(lltok::lsquare)) 2163 return false; 2164 2165 while (Lex.getKind() != lltok::rsquare) { 2166 // If this isn't the first operand bundle, we need a comma. 2167 if (!BundleList.empty() && 2168 ParseToken(lltok::comma, "expected ',' in input list")) 2169 return true; 2170 2171 std::string Tag; 2172 if (ParseStringConstant(Tag)) 2173 return true; 2174 2175 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2176 return true; 2177 2178 std::vector<Value *> Inputs; 2179 while (Lex.getKind() != lltok::rparen) { 2180 // If this isn't the first input, we need a comma. 2181 if (!Inputs.empty() && 2182 ParseToken(lltok::comma, "expected ',' in input list")) 2183 return true; 2184 2185 Type *Ty = nullptr; 2186 Value *Input = nullptr; 2187 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2188 return true; 2189 Inputs.push_back(Input); 2190 } 2191 2192 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2193 2194 Lex.Lex(); // Lex the ')'. 2195 } 2196 2197 if (BundleList.empty()) 2198 return Error(BeginLoc, "operand bundle set must not be empty"); 2199 2200 Lex.Lex(); // Lex the ']'. 2201 return false; 2202 } 2203 2204 /// ParseArgumentList - Parse the argument list for a function type or function 2205 /// prototype. 2206 /// ::= '(' ArgTypeListI ')' 2207 /// ArgTypeListI 2208 /// ::= /*empty*/ 2209 /// ::= '...' 2210 /// ::= ArgTypeList ',' '...' 2211 /// ::= ArgType (',' ArgType)* 2212 /// 2213 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2214 bool &isVarArg){ 2215 isVarArg = false; 2216 assert(Lex.getKind() == lltok::lparen); 2217 Lex.Lex(); // eat the (. 2218 2219 if (Lex.getKind() == lltok::rparen) { 2220 // empty 2221 } else if (Lex.getKind() == lltok::dotdotdot) { 2222 isVarArg = true; 2223 Lex.Lex(); 2224 } else { 2225 LocTy TypeLoc = Lex.getLoc(); 2226 Type *ArgTy = nullptr; 2227 AttrBuilder Attrs; 2228 std::string Name; 2229 2230 if (ParseType(ArgTy) || 2231 ParseOptionalParamAttrs(Attrs)) return true; 2232 2233 if (ArgTy->isVoidTy()) 2234 return Error(TypeLoc, "argument can not have void type"); 2235 2236 if (Lex.getKind() == lltok::LocalVar) { 2237 Name = Lex.getStrVal(); 2238 Lex.Lex(); 2239 } 2240 2241 if (!FunctionType::isValidArgumentType(ArgTy)) 2242 return Error(TypeLoc, "invalid type for function argument"); 2243 2244 unsigned AttrIndex = 1; 2245 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2246 AttrIndex++, Attrs), 2247 std::move(Name)); 2248 2249 while (EatIfPresent(lltok::comma)) { 2250 // Handle ... at end of arg list. 2251 if (EatIfPresent(lltok::dotdotdot)) { 2252 isVarArg = true; 2253 break; 2254 } 2255 2256 // Otherwise must be an argument type. 2257 TypeLoc = Lex.getLoc(); 2258 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2259 2260 if (ArgTy->isVoidTy()) 2261 return Error(TypeLoc, "argument can not have void type"); 2262 2263 if (Lex.getKind() == lltok::LocalVar) { 2264 Name = Lex.getStrVal(); 2265 Lex.Lex(); 2266 } else { 2267 Name = ""; 2268 } 2269 2270 if (!ArgTy->isFirstClassType()) 2271 return Error(TypeLoc, "invalid type for function argument"); 2272 2273 ArgList.emplace_back( 2274 TypeLoc, ArgTy, 2275 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2276 std::move(Name)); 2277 } 2278 } 2279 2280 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2281 } 2282 2283 /// ParseFunctionType 2284 /// ::= Type ArgumentList OptionalAttrs 2285 bool LLParser::ParseFunctionType(Type *&Result) { 2286 assert(Lex.getKind() == lltok::lparen); 2287 2288 if (!FunctionType::isValidReturnType(Result)) 2289 return TokError("invalid function return type"); 2290 2291 SmallVector<ArgInfo, 8> ArgList; 2292 bool isVarArg; 2293 if (ParseArgumentList(ArgList, isVarArg)) 2294 return true; 2295 2296 // Reject names on the arguments lists. 2297 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2298 if (!ArgList[i].Name.empty()) 2299 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2300 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2301 return Error(ArgList[i].Loc, 2302 "argument attributes invalid in function type"); 2303 } 2304 2305 SmallVector<Type*, 16> ArgListTy; 2306 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2307 ArgListTy.push_back(ArgList[i].Ty); 2308 2309 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2310 return false; 2311 } 2312 2313 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2314 /// other structs. 2315 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2316 SmallVector<Type*, 8> Elts; 2317 if (ParseStructBody(Elts)) return true; 2318 2319 Result = StructType::get(Context, Elts, Packed); 2320 return false; 2321 } 2322 2323 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2324 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2325 std::pair<Type*, LocTy> &Entry, 2326 Type *&ResultTy) { 2327 // If the type was already defined, diagnose the redefinition. 2328 if (Entry.first && !Entry.second.isValid()) 2329 return Error(TypeLoc, "redefinition of type"); 2330 2331 // If we have opaque, just return without filling in the definition for the 2332 // struct. This counts as a definition as far as the .ll file goes. 2333 if (EatIfPresent(lltok::kw_opaque)) { 2334 // This type is being defined, so clear the location to indicate this. 2335 Entry.second = SMLoc(); 2336 2337 // If this type number has never been uttered, create it. 2338 if (!Entry.first) 2339 Entry.first = StructType::create(Context, Name); 2340 ResultTy = Entry.first; 2341 return false; 2342 } 2343 2344 // If the type starts with '<', then it is either a packed struct or a vector. 2345 bool isPacked = EatIfPresent(lltok::less); 2346 2347 // If we don't have a struct, then we have a random type alias, which we 2348 // accept for compatibility with old files. These types are not allowed to be 2349 // forward referenced and not allowed to be recursive. 2350 if (Lex.getKind() != lltok::lbrace) { 2351 if (Entry.first) 2352 return Error(TypeLoc, "forward references to non-struct type"); 2353 2354 ResultTy = nullptr; 2355 if (isPacked) 2356 return ParseArrayVectorType(ResultTy, true); 2357 return ParseType(ResultTy); 2358 } 2359 2360 // This type is being defined, so clear the location to indicate this. 2361 Entry.second = SMLoc(); 2362 2363 // If this type number has never been uttered, create it. 2364 if (!Entry.first) 2365 Entry.first = StructType::create(Context, Name); 2366 2367 StructType *STy = cast<StructType>(Entry.first); 2368 2369 SmallVector<Type*, 8> Body; 2370 if (ParseStructBody(Body) || 2371 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2372 return true; 2373 2374 STy->setBody(Body, isPacked); 2375 ResultTy = STy; 2376 return false; 2377 } 2378 2379 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2380 /// StructType 2381 /// ::= '{' '}' 2382 /// ::= '{' Type (',' Type)* '}' 2383 /// ::= '<' '{' '}' '>' 2384 /// ::= '<' '{' Type (',' Type)* '}' '>' 2385 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2386 assert(Lex.getKind() == lltok::lbrace); 2387 Lex.Lex(); // Consume the '{' 2388 2389 // Handle the empty struct. 2390 if (EatIfPresent(lltok::rbrace)) 2391 return false; 2392 2393 LocTy EltTyLoc = Lex.getLoc(); 2394 Type *Ty = nullptr; 2395 if (ParseType(Ty)) return true; 2396 Body.push_back(Ty); 2397 2398 if (!StructType::isValidElementType(Ty)) 2399 return Error(EltTyLoc, "invalid element type for struct"); 2400 2401 while (EatIfPresent(lltok::comma)) { 2402 EltTyLoc = Lex.getLoc(); 2403 if (ParseType(Ty)) return true; 2404 2405 if (!StructType::isValidElementType(Ty)) 2406 return Error(EltTyLoc, "invalid element type for struct"); 2407 2408 Body.push_back(Ty); 2409 } 2410 2411 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2412 } 2413 2414 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2415 /// token has already been consumed. 2416 /// Type 2417 /// ::= '[' APSINTVAL 'x' Types ']' 2418 /// ::= '<' APSINTVAL 'x' Types '>' 2419 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2420 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2421 Lex.getAPSIntVal().getBitWidth() > 64) 2422 return TokError("expected number in address space"); 2423 2424 LocTy SizeLoc = Lex.getLoc(); 2425 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2426 Lex.Lex(); 2427 2428 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2429 return true; 2430 2431 LocTy TypeLoc = Lex.getLoc(); 2432 Type *EltTy = nullptr; 2433 if (ParseType(EltTy)) return true; 2434 2435 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2436 "expected end of sequential type")) 2437 return true; 2438 2439 if (isVector) { 2440 if (Size == 0) 2441 return Error(SizeLoc, "zero element vector is illegal"); 2442 if ((unsigned)Size != Size) 2443 return Error(SizeLoc, "size too large for vector"); 2444 if (!VectorType::isValidElementType(EltTy)) 2445 return Error(TypeLoc, "invalid vector element type"); 2446 Result = VectorType::get(EltTy, unsigned(Size)); 2447 } else { 2448 if (!ArrayType::isValidElementType(EltTy)) 2449 return Error(TypeLoc, "invalid array element type"); 2450 Result = ArrayType::get(EltTy, Size); 2451 } 2452 return false; 2453 } 2454 2455 //===----------------------------------------------------------------------===// 2456 // Function Semantic Analysis. 2457 //===----------------------------------------------------------------------===// 2458 2459 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2460 int functionNumber) 2461 : P(p), F(f), FunctionNumber(functionNumber) { 2462 2463 // Insert unnamed arguments into the NumberedVals list. 2464 for (Argument &A : F.args()) 2465 if (!A.hasName()) 2466 NumberedVals.push_back(&A); 2467 } 2468 2469 LLParser::PerFunctionState::~PerFunctionState() { 2470 // If there were any forward referenced non-basicblock values, delete them. 2471 2472 for (const auto &P : ForwardRefVals) { 2473 if (isa<BasicBlock>(P.second.first)) 2474 continue; 2475 P.second.first->replaceAllUsesWith( 2476 UndefValue::get(P.second.first->getType())); 2477 delete P.second.first; 2478 } 2479 2480 for (const auto &P : ForwardRefValIDs) { 2481 if (isa<BasicBlock>(P.second.first)) 2482 continue; 2483 P.second.first->replaceAllUsesWith( 2484 UndefValue::get(P.second.first->getType())); 2485 delete P.second.first; 2486 } 2487 } 2488 2489 bool LLParser::PerFunctionState::FinishFunction() { 2490 if (!ForwardRefVals.empty()) 2491 return P.Error(ForwardRefVals.begin()->second.second, 2492 "use of undefined value '%" + ForwardRefVals.begin()->first + 2493 "'"); 2494 if (!ForwardRefValIDs.empty()) 2495 return P.Error(ForwardRefValIDs.begin()->second.second, 2496 "use of undefined value '%" + 2497 Twine(ForwardRefValIDs.begin()->first) + "'"); 2498 return false; 2499 } 2500 2501 /// GetVal - Get a value with the specified name or ID, creating a 2502 /// forward reference record if needed. This can return null if the value 2503 /// exists but does not have the right type. 2504 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2505 LocTy Loc) { 2506 // Look this name up in the normal function symbol table. 2507 Value *Val = F.getValueSymbolTable()->lookup(Name); 2508 2509 // If this is a forward reference for the value, see if we already created a 2510 // forward ref record. 2511 if (!Val) { 2512 auto I = ForwardRefVals.find(Name); 2513 if (I != ForwardRefVals.end()) 2514 Val = I->second.first; 2515 } 2516 2517 // If we have the value in the symbol table or fwd-ref table, return it. 2518 if (Val) { 2519 if (Val->getType() == Ty) return Val; 2520 if (Ty->isLabelTy()) 2521 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2522 else 2523 P.Error(Loc, "'%" + Name + "' defined with type '" + 2524 getTypeString(Val->getType()) + "'"); 2525 return nullptr; 2526 } 2527 2528 // Don't make placeholders with invalid type. 2529 if (!Ty->isFirstClassType()) { 2530 P.Error(Loc, "invalid use of a non-first-class type"); 2531 return nullptr; 2532 } 2533 2534 // Otherwise, create a new forward reference for this value and remember it. 2535 Value *FwdVal; 2536 if (Ty->isLabelTy()) { 2537 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2538 } else { 2539 FwdVal = new Argument(Ty, Name); 2540 } 2541 2542 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2543 return FwdVal; 2544 } 2545 2546 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2547 // Look this name up in the normal function symbol table. 2548 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2549 2550 // If this is a forward reference for the value, see if we already created a 2551 // forward ref record. 2552 if (!Val) { 2553 auto I = ForwardRefValIDs.find(ID); 2554 if (I != ForwardRefValIDs.end()) 2555 Val = I->second.first; 2556 } 2557 2558 // If we have the value in the symbol table or fwd-ref table, return it. 2559 if (Val) { 2560 if (Val->getType() == Ty) return Val; 2561 if (Ty->isLabelTy()) 2562 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2563 else 2564 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2565 getTypeString(Val->getType()) + "'"); 2566 return nullptr; 2567 } 2568 2569 if (!Ty->isFirstClassType()) { 2570 P.Error(Loc, "invalid use of a non-first-class type"); 2571 return nullptr; 2572 } 2573 2574 // Otherwise, create a new forward reference for this value and remember it. 2575 Value *FwdVal; 2576 if (Ty->isLabelTy()) { 2577 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2578 } else { 2579 FwdVal = new Argument(Ty); 2580 } 2581 2582 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2583 return FwdVal; 2584 } 2585 2586 /// SetInstName - After an instruction is parsed and inserted into its 2587 /// basic block, this installs its name. 2588 bool LLParser::PerFunctionState::SetInstName(int NameID, 2589 const std::string &NameStr, 2590 LocTy NameLoc, Instruction *Inst) { 2591 // If this instruction has void type, it cannot have a name or ID specified. 2592 if (Inst->getType()->isVoidTy()) { 2593 if (NameID != -1 || !NameStr.empty()) 2594 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2595 return false; 2596 } 2597 2598 // If this was a numbered instruction, verify that the instruction is the 2599 // expected value and resolve any forward references. 2600 if (NameStr.empty()) { 2601 // If neither a name nor an ID was specified, just use the next ID. 2602 if (NameID == -1) 2603 NameID = NumberedVals.size(); 2604 2605 if (unsigned(NameID) != NumberedVals.size()) 2606 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2607 Twine(NumberedVals.size()) + "'"); 2608 2609 auto FI = ForwardRefValIDs.find(NameID); 2610 if (FI != ForwardRefValIDs.end()) { 2611 Value *Sentinel = FI->second.first; 2612 if (Sentinel->getType() != Inst->getType()) 2613 return P.Error(NameLoc, "instruction forward referenced with type '" + 2614 getTypeString(FI->second.first->getType()) + "'"); 2615 2616 Sentinel->replaceAllUsesWith(Inst); 2617 delete Sentinel; 2618 ForwardRefValIDs.erase(FI); 2619 } 2620 2621 NumberedVals.push_back(Inst); 2622 return false; 2623 } 2624 2625 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2626 auto FI = ForwardRefVals.find(NameStr); 2627 if (FI != ForwardRefVals.end()) { 2628 Value *Sentinel = FI->second.first; 2629 if (Sentinel->getType() != Inst->getType()) 2630 return P.Error(NameLoc, "instruction forward referenced with type '" + 2631 getTypeString(FI->second.first->getType()) + "'"); 2632 2633 Sentinel->replaceAllUsesWith(Inst); 2634 delete Sentinel; 2635 ForwardRefVals.erase(FI); 2636 } 2637 2638 // Set the name on the instruction. 2639 Inst->setName(NameStr); 2640 2641 if (Inst->getName() != NameStr) 2642 return P.Error(NameLoc, "multiple definition of local value named '" + 2643 NameStr + "'"); 2644 return false; 2645 } 2646 2647 /// GetBB - Get a basic block with the specified name or ID, creating a 2648 /// forward reference record if needed. 2649 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2650 LocTy Loc) { 2651 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2652 Type::getLabelTy(F.getContext()), Loc)); 2653 } 2654 2655 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2656 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2657 Type::getLabelTy(F.getContext()), Loc)); 2658 } 2659 2660 /// DefineBB - Define the specified basic block, which is either named or 2661 /// unnamed. If there is an error, this returns null otherwise it returns 2662 /// the block being defined. 2663 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2664 LocTy Loc) { 2665 BasicBlock *BB; 2666 if (Name.empty()) 2667 BB = GetBB(NumberedVals.size(), Loc); 2668 else 2669 BB = GetBB(Name, Loc); 2670 if (!BB) return nullptr; // Already diagnosed error. 2671 2672 // Move the block to the end of the function. Forward ref'd blocks are 2673 // inserted wherever they happen to be referenced. 2674 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2675 2676 // Remove the block from forward ref sets. 2677 if (Name.empty()) { 2678 ForwardRefValIDs.erase(NumberedVals.size()); 2679 NumberedVals.push_back(BB); 2680 } else { 2681 // BB forward references are already in the function symbol table. 2682 ForwardRefVals.erase(Name); 2683 } 2684 2685 return BB; 2686 } 2687 2688 //===----------------------------------------------------------------------===// 2689 // Constants. 2690 //===----------------------------------------------------------------------===// 2691 2692 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2693 /// type implied. For example, if we parse "4" we don't know what integer type 2694 /// it has. The value will later be combined with its type and checked for 2695 /// sanity. PFS is used to convert function-local operands of metadata (since 2696 /// metadata operands are not just parsed here but also converted to values). 2697 /// PFS can be null when we are not parsing metadata values inside a function. 2698 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2699 ID.Loc = Lex.getLoc(); 2700 switch (Lex.getKind()) { 2701 default: return TokError("expected value token"); 2702 case lltok::GlobalID: // @42 2703 ID.UIntVal = Lex.getUIntVal(); 2704 ID.Kind = ValID::t_GlobalID; 2705 break; 2706 case lltok::GlobalVar: // @foo 2707 ID.StrVal = Lex.getStrVal(); 2708 ID.Kind = ValID::t_GlobalName; 2709 break; 2710 case lltok::LocalVarID: // %42 2711 ID.UIntVal = Lex.getUIntVal(); 2712 ID.Kind = ValID::t_LocalID; 2713 break; 2714 case lltok::LocalVar: // %foo 2715 ID.StrVal = Lex.getStrVal(); 2716 ID.Kind = ValID::t_LocalName; 2717 break; 2718 case lltok::APSInt: 2719 ID.APSIntVal = Lex.getAPSIntVal(); 2720 ID.Kind = ValID::t_APSInt; 2721 break; 2722 case lltok::APFloat: 2723 ID.APFloatVal = Lex.getAPFloatVal(); 2724 ID.Kind = ValID::t_APFloat; 2725 break; 2726 case lltok::kw_true: 2727 ID.ConstantVal = ConstantInt::getTrue(Context); 2728 ID.Kind = ValID::t_Constant; 2729 break; 2730 case lltok::kw_false: 2731 ID.ConstantVal = ConstantInt::getFalse(Context); 2732 ID.Kind = ValID::t_Constant; 2733 break; 2734 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2735 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2736 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2737 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2738 2739 case lltok::lbrace: { 2740 // ValID ::= '{' ConstVector '}' 2741 Lex.Lex(); 2742 SmallVector<Constant*, 16> Elts; 2743 if (ParseGlobalValueVector(Elts) || 2744 ParseToken(lltok::rbrace, "expected end of struct constant")) 2745 return true; 2746 2747 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2748 ID.UIntVal = Elts.size(); 2749 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2750 Elts.size() * sizeof(Elts[0])); 2751 ID.Kind = ValID::t_ConstantStruct; 2752 return false; 2753 } 2754 case lltok::less: { 2755 // ValID ::= '<' ConstVector '>' --> Vector. 2756 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2757 Lex.Lex(); 2758 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2759 2760 SmallVector<Constant*, 16> Elts; 2761 LocTy FirstEltLoc = Lex.getLoc(); 2762 if (ParseGlobalValueVector(Elts) || 2763 (isPackedStruct && 2764 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2765 ParseToken(lltok::greater, "expected end of constant")) 2766 return true; 2767 2768 if (isPackedStruct) { 2769 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2770 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2771 Elts.size() * sizeof(Elts[0])); 2772 ID.UIntVal = Elts.size(); 2773 ID.Kind = ValID::t_PackedConstantStruct; 2774 return false; 2775 } 2776 2777 if (Elts.empty()) 2778 return Error(ID.Loc, "constant vector must not be empty"); 2779 2780 if (!Elts[0]->getType()->isIntegerTy() && 2781 !Elts[0]->getType()->isFloatingPointTy() && 2782 !Elts[0]->getType()->isPointerTy()) 2783 return Error(FirstEltLoc, 2784 "vector elements must have integer, pointer or floating point type"); 2785 2786 // Verify that all the vector elements have the same type. 2787 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2788 if (Elts[i]->getType() != Elts[0]->getType()) 2789 return Error(FirstEltLoc, 2790 "vector element #" + Twine(i) + 2791 " is not of type '" + getTypeString(Elts[0]->getType())); 2792 2793 ID.ConstantVal = ConstantVector::get(Elts); 2794 ID.Kind = ValID::t_Constant; 2795 return false; 2796 } 2797 case lltok::lsquare: { // Array Constant 2798 Lex.Lex(); 2799 SmallVector<Constant*, 16> Elts; 2800 LocTy FirstEltLoc = Lex.getLoc(); 2801 if (ParseGlobalValueVector(Elts) || 2802 ParseToken(lltok::rsquare, "expected end of array constant")) 2803 return true; 2804 2805 // Handle empty element. 2806 if (Elts.empty()) { 2807 // Use undef instead of an array because it's inconvenient to determine 2808 // the element type at this point, there being no elements to examine. 2809 ID.Kind = ValID::t_EmptyArray; 2810 return false; 2811 } 2812 2813 if (!Elts[0]->getType()->isFirstClassType()) 2814 return Error(FirstEltLoc, "invalid array element type: " + 2815 getTypeString(Elts[0]->getType())); 2816 2817 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2818 2819 // Verify all elements are correct type! 2820 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2821 if (Elts[i]->getType() != Elts[0]->getType()) 2822 return Error(FirstEltLoc, 2823 "array element #" + Twine(i) + 2824 " is not of type '" + getTypeString(Elts[0]->getType())); 2825 } 2826 2827 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2828 ID.Kind = ValID::t_Constant; 2829 return false; 2830 } 2831 case lltok::kw_c: // c "foo" 2832 Lex.Lex(); 2833 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2834 false); 2835 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2836 ID.Kind = ValID::t_Constant; 2837 return false; 2838 2839 case lltok::kw_asm: { 2840 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2841 // STRINGCONSTANT 2842 bool HasSideEffect, AlignStack, AsmDialect; 2843 Lex.Lex(); 2844 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2845 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2846 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2847 ParseStringConstant(ID.StrVal) || 2848 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2849 ParseToken(lltok::StringConstant, "expected constraint string")) 2850 return true; 2851 ID.StrVal2 = Lex.getStrVal(); 2852 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2853 (unsigned(AsmDialect)<<2); 2854 ID.Kind = ValID::t_InlineAsm; 2855 return false; 2856 } 2857 2858 case lltok::kw_blockaddress: { 2859 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2860 Lex.Lex(); 2861 2862 ValID Fn, Label; 2863 2864 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2865 ParseValID(Fn) || 2866 ParseToken(lltok::comma, "expected comma in block address expression")|| 2867 ParseValID(Label) || 2868 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2869 return true; 2870 2871 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2872 return Error(Fn.Loc, "expected function name in blockaddress"); 2873 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2874 return Error(Label.Loc, "expected basic block name in blockaddress"); 2875 2876 // Try to find the function (but skip it if it's forward-referenced). 2877 GlobalValue *GV = nullptr; 2878 if (Fn.Kind == ValID::t_GlobalID) { 2879 if (Fn.UIntVal < NumberedVals.size()) 2880 GV = NumberedVals[Fn.UIntVal]; 2881 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2882 GV = M->getNamedValue(Fn.StrVal); 2883 } 2884 Function *F = nullptr; 2885 if (GV) { 2886 // Confirm that it's actually a function with a definition. 2887 if (!isa<Function>(GV)) 2888 return Error(Fn.Loc, "expected function name in blockaddress"); 2889 F = cast<Function>(GV); 2890 if (F->isDeclaration()) 2891 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2892 } 2893 2894 if (!F) { 2895 // Make a global variable as a placeholder for this reference. 2896 GlobalValue *&FwdRef = 2897 ForwardRefBlockAddresses.insert(std::make_pair( 2898 std::move(Fn), 2899 std::map<ValID, GlobalValue *>())) 2900 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2901 .first->second; 2902 if (!FwdRef) 2903 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2904 GlobalValue::InternalLinkage, nullptr, ""); 2905 ID.ConstantVal = FwdRef; 2906 ID.Kind = ValID::t_Constant; 2907 return false; 2908 } 2909 2910 // We found the function; now find the basic block. Don't use PFS, since we 2911 // might be inside a constant expression. 2912 BasicBlock *BB; 2913 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2914 if (Label.Kind == ValID::t_LocalID) 2915 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2916 else 2917 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2918 if (!BB) 2919 return Error(Label.Loc, "referenced value is not a basic block"); 2920 } else { 2921 if (Label.Kind == ValID::t_LocalID) 2922 return Error(Label.Loc, "cannot take address of numeric label after " 2923 "the function is defined"); 2924 BB = dyn_cast_or_null<BasicBlock>( 2925 F->getValueSymbolTable()->lookup(Label.StrVal)); 2926 if (!BB) 2927 return Error(Label.Loc, "referenced value is not a basic block"); 2928 } 2929 2930 ID.ConstantVal = BlockAddress::get(F, BB); 2931 ID.Kind = ValID::t_Constant; 2932 return false; 2933 } 2934 2935 case lltok::kw_trunc: 2936 case lltok::kw_zext: 2937 case lltok::kw_sext: 2938 case lltok::kw_fptrunc: 2939 case lltok::kw_fpext: 2940 case lltok::kw_bitcast: 2941 case lltok::kw_addrspacecast: 2942 case lltok::kw_uitofp: 2943 case lltok::kw_sitofp: 2944 case lltok::kw_fptoui: 2945 case lltok::kw_fptosi: 2946 case lltok::kw_inttoptr: 2947 case lltok::kw_ptrtoint: { 2948 unsigned Opc = Lex.getUIntVal(); 2949 Type *DestTy = nullptr; 2950 Constant *SrcVal; 2951 Lex.Lex(); 2952 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2953 ParseGlobalTypeAndValue(SrcVal) || 2954 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2955 ParseType(DestTy) || 2956 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2957 return true; 2958 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2959 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2960 getTypeString(SrcVal->getType()) + "' to '" + 2961 getTypeString(DestTy) + "'"); 2962 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2963 SrcVal, DestTy); 2964 ID.Kind = ValID::t_Constant; 2965 return false; 2966 } 2967 case lltok::kw_extractvalue: { 2968 Lex.Lex(); 2969 Constant *Val; 2970 SmallVector<unsigned, 4> Indices; 2971 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2972 ParseGlobalTypeAndValue(Val) || 2973 ParseIndexList(Indices) || 2974 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2975 return true; 2976 2977 if (!Val->getType()->isAggregateType()) 2978 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2979 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2980 return Error(ID.Loc, "invalid indices for extractvalue"); 2981 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2982 ID.Kind = ValID::t_Constant; 2983 return false; 2984 } 2985 case lltok::kw_insertvalue: { 2986 Lex.Lex(); 2987 Constant *Val0, *Val1; 2988 SmallVector<unsigned, 4> Indices; 2989 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2990 ParseGlobalTypeAndValue(Val0) || 2991 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2992 ParseGlobalTypeAndValue(Val1) || 2993 ParseIndexList(Indices) || 2994 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2995 return true; 2996 if (!Val0->getType()->isAggregateType()) 2997 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2998 Type *IndexedType = 2999 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3000 if (!IndexedType) 3001 return Error(ID.Loc, "invalid indices for insertvalue"); 3002 if (IndexedType != Val1->getType()) 3003 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3004 getTypeString(Val1->getType()) + 3005 "' instead of '" + getTypeString(IndexedType) + 3006 "'"); 3007 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3008 ID.Kind = ValID::t_Constant; 3009 return false; 3010 } 3011 case lltok::kw_icmp: 3012 case lltok::kw_fcmp: { 3013 unsigned PredVal, Opc = Lex.getUIntVal(); 3014 Constant *Val0, *Val1; 3015 Lex.Lex(); 3016 if (ParseCmpPredicate(PredVal, Opc) || 3017 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3018 ParseGlobalTypeAndValue(Val0) || 3019 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3020 ParseGlobalTypeAndValue(Val1) || 3021 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3022 return true; 3023 3024 if (Val0->getType() != Val1->getType()) 3025 return Error(ID.Loc, "compare operands must have the same type"); 3026 3027 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3028 3029 if (Opc == Instruction::FCmp) { 3030 if (!Val0->getType()->isFPOrFPVectorTy()) 3031 return Error(ID.Loc, "fcmp requires floating point operands"); 3032 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3033 } else { 3034 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3035 if (!Val0->getType()->isIntOrIntVectorTy() && 3036 !Val0->getType()->getScalarType()->isPointerTy()) 3037 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3038 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3039 } 3040 ID.Kind = ValID::t_Constant; 3041 return false; 3042 } 3043 3044 // Binary Operators. 3045 case lltok::kw_add: 3046 case lltok::kw_fadd: 3047 case lltok::kw_sub: 3048 case lltok::kw_fsub: 3049 case lltok::kw_mul: 3050 case lltok::kw_fmul: 3051 case lltok::kw_udiv: 3052 case lltok::kw_sdiv: 3053 case lltok::kw_fdiv: 3054 case lltok::kw_urem: 3055 case lltok::kw_srem: 3056 case lltok::kw_frem: 3057 case lltok::kw_shl: 3058 case lltok::kw_lshr: 3059 case lltok::kw_ashr: { 3060 bool NUW = false; 3061 bool NSW = false; 3062 bool Exact = false; 3063 unsigned Opc = Lex.getUIntVal(); 3064 Constant *Val0, *Val1; 3065 Lex.Lex(); 3066 LocTy ModifierLoc = Lex.getLoc(); 3067 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3068 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3069 if (EatIfPresent(lltok::kw_nuw)) 3070 NUW = true; 3071 if (EatIfPresent(lltok::kw_nsw)) { 3072 NSW = true; 3073 if (EatIfPresent(lltok::kw_nuw)) 3074 NUW = true; 3075 } 3076 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3077 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3078 if (EatIfPresent(lltok::kw_exact)) 3079 Exact = true; 3080 } 3081 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3082 ParseGlobalTypeAndValue(Val0) || 3083 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3084 ParseGlobalTypeAndValue(Val1) || 3085 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3086 return true; 3087 if (Val0->getType() != Val1->getType()) 3088 return Error(ID.Loc, "operands of constexpr must have same type"); 3089 if (!Val0->getType()->isIntOrIntVectorTy()) { 3090 if (NUW) 3091 return Error(ModifierLoc, "nuw only applies to integer operations"); 3092 if (NSW) 3093 return Error(ModifierLoc, "nsw only applies to integer operations"); 3094 } 3095 // Check that the type is valid for the operator. 3096 switch (Opc) { 3097 case Instruction::Add: 3098 case Instruction::Sub: 3099 case Instruction::Mul: 3100 case Instruction::UDiv: 3101 case Instruction::SDiv: 3102 case Instruction::URem: 3103 case Instruction::SRem: 3104 case Instruction::Shl: 3105 case Instruction::AShr: 3106 case Instruction::LShr: 3107 if (!Val0->getType()->isIntOrIntVectorTy()) 3108 return Error(ID.Loc, "constexpr requires integer operands"); 3109 break; 3110 case Instruction::FAdd: 3111 case Instruction::FSub: 3112 case Instruction::FMul: 3113 case Instruction::FDiv: 3114 case Instruction::FRem: 3115 if (!Val0->getType()->isFPOrFPVectorTy()) 3116 return Error(ID.Loc, "constexpr requires fp operands"); 3117 break; 3118 default: llvm_unreachable("Unknown binary operator!"); 3119 } 3120 unsigned Flags = 0; 3121 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3122 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3123 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3124 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3125 ID.ConstantVal = C; 3126 ID.Kind = ValID::t_Constant; 3127 return false; 3128 } 3129 3130 // Logical Operations 3131 case lltok::kw_and: 3132 case lltok::kw_or: 3133 case lltok::kw_xor: { 3134 unsigned Opc = Lex.getUIntVal(); 3135 Constant *Val0, *Val1; 3136 Lex.Lex(); 3137 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3138 ParseGlobalTypeAndValue(Val0) || 3139 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3140 ParseGlobalTypeAndValue(Val1) || 3141 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3142 return true; 3143 if (Val0->getType() != Val1->getType()) 3144 return Error(ID.Loc, "operands of constexpr must have same type"); 3145 if (!Val0->getType()->isIntOrIntVectorTy()) 3146 return Error(ID.Loc, 3147 "constexpr requires integer or integer vector operands"); 3148 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3149 ID.Kind = ValID::t_Constant; 3150 return false; 3151 } 3152 3153 case lltok::kw_getelementptr: 3154 case lltok::kw_shufflevector: 3155 case lltok::kw_insertelement: 3156 case lltok::kw_extractelement: 3157 case lltok::kw_select: { 3158 unsigned Opc = Lex.getUIntVal(); 3159 SmallVector<Constant*, 16> Elts; 3160 bool InBounds = false; 3161 Type *Ty; 3162 Lex.Lex(); 3163 3164 if (Opc == Instruction::GetElementPtr) 3165 InBounds = EatIfPresent(lltok::kw_inbounds); 3166 3167 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3168 return true; 3169 3170 LocTy ExplicitTypeLoc = Lex.getLoc(); 3171 if (Opc == Instruction::GetElementPtr) { 3172 if (ParseType(Ty) || 3173 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3174 return true; 3175 } 3176 3177 if (ParseGlobalValueVector(Elts) || 3178 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3179 return true; 3180 3181 if (Opc == Instruction::GetElementPtr) { 3182 if (Elts.size() == 0 || 3183 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3184 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3185 3186 Type *BaseType = Elts[0]->getType(); 3187 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3188 if (Ty != BasePointerType->getElementType()) 3189 return Error( 3190 ExplicitTypeLoc, 3191 "explicit pointee type doesn't match operand's pointee type"); 3192 3193 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3194 for (Constant *Val : Indices) { 3195 Type *ValTy = Val->getType(); 3196 if (!ValTy->getScalarType()->isIntegerTy()) 3197 return Error(ID.Loc, "getelementptr index must be an integer"); 3198 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3199 return Error(ID.Loc, "getelementptr index type missmatch"); 3200 if (ValTy->isVectorTy()) { 3201 unsigned ValNumEl = ValTy->getVectorNumElements(); 3202 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3203 if (ValNumEl != PtrNumEl) 3204 return Error( 3205 ID.Loc, 3206 "getelementptr vector index has a wrong number of elements"); 3207 } 3208 } 3209 3210 SmallPtrSet<Type*, 4> Visited; 3211 if (!Indices.empty() && !Ty->isSized(&Visited)) 3212 return Error(ID.Loc, "base element of getelementptr must be sized"); 3213 3214 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3215 return Error(ID.Loc, "invalid getelementptr indices"); 3216 ID.ConstantVal = 3217 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3218 } else if (Opc == Instruction::Select) { 3219 if (Elts.size() != 3) 3220 return Error(ID.Loc, "expected three operands to select"); 3221 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3222 Elts[2])) 3223 return Error(ID.Loc, Reason); 3224 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3225 } else if (Opc == Instruction::ShuffleVector) { 3226 if (Elts.size() != 3) 3227 return Error(ID.Loc, "expected three operands to shufflevector"); 3228 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3229 return Error(ID.Loc, "invalid operands to shufflevector"); 3230 ID.ConstantVal = 3231 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3232 } else if (Opc == Instruction::ExtractElement) { 3233 if (Elts.size() != 2) 3234 return Error(ID.Loc, "expected two operands to extractelement"); 3235 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3236 return Error(ID.Loc, "invalid extractelement operands"); 3237 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3238 } else { 3239 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3240 if (Elts.size() != 3) 3241 return Error(ID.Loc, "expected three operands to insertelement"); 3242 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3243 return Error(ID.Loc, "invalid insertelement operands"); 3244 ID.ConstantVal = 3245 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3246 } 3247 3248 ID.Kind = ValID::t_Constant; 3249 return false; 3250 } 3251 } 3252 3253 Lex.Lex(); 3254 return false; 3255 } 3256 3257 /// ParseGlobalValue - Parse a global value with the specified type. 3258 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3259 C = nullptr; 3260 ValID ID; 3261 Value *V = nullptr; 3262 bool Parsed = ParseValID(ID) || 3263 ConvertValIDToValue(Ty, ID, V, nullptr); 3264 if (V && !(C = dyn_cast<Constant>(V))) 3265 return Error(ID.Loc, "global values must be constants"); 3266 return Parsed; 3267 } 3268 3269 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3270 Type *Ty = nullptr; 3271 return ParseType(Ty) || 3272 ParseGlobalValue(Ty, V); 3273 } 3274 3275 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3276 C = nullptr; 3277 3278 LocTy KwLoc = Lex.getLoc(); 3279 if (!EatIfPresent(lltok::kw_comdat)) 3280 return false; 3281 3282 if (EatIfPresent(lltok::lparen)) { 3283 if (Lex.getKind() != lltok::ComdatVar) 3284 return TokError("expected comdat variable"); 3285 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3286 Lex.Lex(); 3287 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3288 return true; 3289 } else { 3290 if (GlobalName.empty()) 3291 return TokError("comdat cannot be unnamed"); 3292 C = getComdat(GlobalName, KwLoc); 3293 } 3294 3295 return false; 3296 } 3297 3298 /// ParseGlobalValueVector 3299 /// ::= /*empty*/ 3300 /// ::= TypeAndValue (',' TypeAndValue)* 3301 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3302 // Empty list. 3303 if (Lex.getKind() == lltok::rbrace || 3304 Lex.getKind() == lltok::rsquare || 3305 Lex.getKind() == lltok::greater || 3306 Lex.getKind() == lltok::rparen) 3307 return false; 3308 3309 Constant *C; 3310 if (ParseGlobalTypeAndValue(C)) return true; 3311 Elts.push_back(C); 3312 3313 while (EatIfPresent(lltok::comma)) { 3314 if (ParseGlobalTypeAndValue(C)) return true; 3315 Elts.push_back(C); 3316 } 3317 3318 return false; 3319 } 3320 3321 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3322 SmallVector<Metadata *, 16> Elts; 3323 if (ParseMDNodeVector(Elts)) 3324 return true; 3325 3326 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3327 return false; 3328 } 3329 3330 /// MDNode: 3331 /// ::= !{ ... } 3332 /// ::= !7 3333 /// ::= !DILocation(...) 3334 bool LLParser::ParseMDNode(MDNode *&N) { 3335 if (Lex.getKind() == lltok::MetadataVar) 3336 return ParseSpecializedMDNode(N); 3337 3338 return ParseToken(lltok::exclaim, "expected '!' here") || 3339 ParseMDNodeTail(N); 3340 } 3341 3342 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3343 // !{ ... } 3344 if (Lex.getKind() == lltok::lbrace) 3345 return ParseMDTuple(N); 3346 3347 // !42 3348 return ParseMDNodeID(N); 3349 } 3350 3351 namespace { 3352 3353 /// Structure to represent an optional metadata field. 3354 template <class FieldTy> struct MDFieldImpl { 3355 typedef MDFieldImpl ImplTy; 3356 FieldTy Val; 3357 bool Seen; 3358 3359 void assign(FieldTy Val) { 3360 Seen = true; 3361 this->Val = std::move(Val); 3362 } 3363 3364 explicit MDFieldImpl(FieldTy Default) 3365 : Val(std::move(Default)), Seen(false) {} 3366 }; 3367 3368 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3369 uint64_t Max; 3370 3371 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3372 : ImplTy(Default), Max(Max) {} 3373 }; 3374 3375 struct LineField : public MDUnsignedField { 3376 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3377 }; 3378 3379 struct ColumnField : public MDUnsignedField { 3380 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3381 }; 3382 3383 struct DwarfTagField : public MDUnsignedField { 3384 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3385 DwarfTagField(dwarf::Tag DefaultTag) 3386 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3387 }; 3388 3389 struct DwarfMacinfoTypeField : public MDUnsignedField { 3390 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3391 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3392 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3393 }; 3394 3395 struct DwarfAttEncodingField : public MDUnsignedField { 3396 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3397 }; 3398 3399 struct DwarfVirtualityField : public MDUnsignedField { 3400 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3401 }; 3402 3403 struct DwarfLangField : public MDUnsignedField { 3404 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3405 }; 3406 3407 struct DwarfCCField : public MDUnsignedField { 3408 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3409 }; 3410 3411 struct EmissionKindField : public MDUnsignedField { 3412 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3413 }; 3414 3415 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3416 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3417 }; 3418 3419 struct MDSignedField : public MDFieldImpl<int64_t> { 3420 int64_t Min; 3421 int64_t Max; 3422 3423 MDSignedField(int64_t Default = 0) 3424 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3425 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3426 : ImplTy(Default), Min(Min), Max(Max) {} 3427 }; 3428 3429 struct MDBoolField : public MDFieldImpl<bool> { 3430 MDBoolField(bool Default = false) : ImplTy(Default) {} 3431 }; 3432 3433 struct MDField : public MDFieldImpl<Metadata *> { 3434 bool AllowNull; 3435 3436 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3437 }; 3438 3439 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3440 MDConstant() : ImplTy(nullptr) {} 3441 }; 3442 3443 struct MDStringField : public MDFieldImpl<MDString *> { 3444 bool AllowEmpty; 3445 MDStringField(bool AllowEmpty = true) 3446 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3447 }; 3448 3449 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3450 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3451 }; 3452 3453 } // end anonymous namespace 3454 3455 namespace llvm { 3456 3457 template <> 3458 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3459 MDUnsignedField &Result) { 3460 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3461 return TokError("expected unsigned integer"); 3462 3463 auto &U = Lex.getAPSIntVal(); 3464 if (U.ugt(Result.Max)) 3465 return TokError("value for '" + Name + "' too large, limit is " + 3466 Twine(Result.Max)); 3467 Result.assign(U.getZExtValue()); 3468 assert(Result.Val <= Result.Max && "Expected value in range"); 3469 Lex.Lex(); 3470 return false; 3471 } 3472 3473 template <> 3474 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3475 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3476 } 3477 template <> 3478 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3479 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3480 } 3481 3482 template <> 3483 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3484 if (Lex.getKind() == lltok::APSInt) 3485 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3486 3487 if (Lex.getKind() != lltok::DwarfTag) 3488 return TokError("expected DWARF tag"); 3489 3490 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3491 if (Tag == dwarf::DW_TAG_invalid) 3492 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3493 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3494 3495 Result.assign(Tag); 3496 Lex.Lex(); 3497 return false; 3498 } 3499 3500 template <> 3501 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3502 DwarfMacinfoTypeField &Result) { 3503 if (Lex.getKind() == lltok::APSInt) 3504 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3505 3506 if (Lex.getKind() != lltok::DwarfMacinfo) 3507 return TokError("expected DWARF macinfo type"); 3508 3509 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3510 if (Macinfo == dwarf::DW_MACINFO_invalid) 3511 return TokError( 3512 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3513 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3514 3515 Result.assign(Macinfo); 3516 Lex.Lex(); 3517 return false; 3518 } 3519 3520 template <> 3521 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3522 DwarfVirtualityField &Result) { 3523 if (Lex.getKind() == lltok::APSInt) 3524 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3525 3526 if (Lex.getKind() != lltok::DwarfVirtuality) 3527 return TokError("expected DWARF virtuality code"); 3528 3529 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3530 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3531 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3532 Lex.getStrVal() + "'"); 3533 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3534 Result.assign(Virtuality); 3535 Lex.Lex(); 3536 return false; 3537 } 3538 3539 template <> 3540 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3541 if (Lex.getKind() == lltok::APSInt) 3542 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3543 3544 if (Lex.getKind() != lltok::DwarfLang) 3545 return TokError("expected DWARF language"); 3546 3547 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3548 if (!Lang) 3549 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3550 "'"); 3551 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3552 Result.assign(Lang); 3553 Lex.Lex(); 3554 return false; 3555 } 3556 3557 template <> 3558 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3559 if (Lex.getKind() == lltok::APSInt) 3560 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3561 3562 if (Lex.getKind() != lltok::DwarfCC) 3563 return TokError("expected DWARF calling convention"); 3564 3565 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3566 if (!CC) 3567 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3568 "'"); 3569 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3570 Result.assign(CC); 3571 Lex.Lex(); 3572 return false; 3573 } 3574 3575 template <> 3576 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3577 if (Lex.getKind() == lltok::APSInt) 3578 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3579 3580 if (Lex.getKind() != lltok::EmissionKind) 3581 return TokError("expected emission kind"); 3582 3583 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3584 if (!Kind) 3585 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3586 "'"); 3587 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3588 Result.assign(*Kind); 3589 Lex.Lex(); 3590 return false; 3591 } 3592 3593 template <> 3594 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3595 DwarfAttEncodingField &Result) { 3596 if (Lex.getKind() == lltok::APSInt) 3597 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3598 3599 if (Lex.getKind() != lltok::DwarfAttEncoding) 3600 return TokError("expected DWARF type attribute encoding"); 3601 3602 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3603 if (!Encoding) 3604 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3605 Lex.getStrVal() + "'"); 3606 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3607 Result.assign(Encoding); 3608 Lex.Lex(); 3609 return false; 3610 } 3611 3612 /// DIFlagField 3613 /// ::= uint32 3614 /// ::= DIFlagVector 3615 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3616 template <> 3617 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3618 3619 // Parser for a single flag. 3620 auto parseFlag = [&](DINode::DIFlags &Val) { 3621 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3622 uint32_t TempVal = static_cast<uint32_t>(Val); 3623 bool Res = ParseUInt32(TempVal); 3624 Val = static_cast<DINode::DIFlags>(TempVal); 3625 return Res; 3626 } 3627 3628 if (Lex.getKind() != lltok::DIFlag) 3629 return TokError("expected debug info flag"); 3630 3631 Val = DINode::getFlag(Lex.getStrVal()); 3632 if (!Val) 3633 return TokError(Twine("invalid debug info flag flag '") + 3634 Lex.getStrVal() + "'"); 3635 Lex.Lex(); 3636 return false; 3637 }; 3638 3639 // Parse the flags and combine them together. 3640 DINode::DIFlags Combined = DINode::FlagZero; 3641 do { 3642 DINode::DIFlags Val; 3643 if (parseFlag(Val)) 3644 return true; 3645 Combined |= Val; 3646 } while (EatIfPresent(lltok::bar)); 3647 3648 Result.assign(Combined); 3649 return false; 3650 } 3651 3652 template <> 3653 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3654 MDSignedField &Result) { 3655 if (Lex.getKind() != lltok::APSInt) 3656 return TokError("expected signed integer"); 3657 3658 auto &S = Lex.getAPSIntVal(); 3659 if (S < Result.Min) 3660 return TokError("value for '" + Name + "' too small, limit is " + 3661 Twine(Result.Min)); 3662 if (S > Result.Max) 3663 return TokError("value for '" + Name + "' too large, limit is " + 3664 Twine(Result.Max)); 3665 Result.assign(S.getExtValue()); 3666 assert(Result.Val >= Result.Min && "Expected value in range"); 3667 assert(Result.Val <= Result.Max && "Expected value in range"); 3668 Lex.Lex(); 3669 return false; 3670 } 3671 3672 template <> 3673 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3674 switch (Lex.getKind()) { 3675 default: 3676 return TokError("expected 'true' or 'false'"); 3677 case lltok::kw_true: 3678 Result.assign(true); 3679 break; 3680 case lltok::kw_false: 3681 Result.assign(false); 3682 break; 3683 } 3684 Lex.Lex(); 3685 return false; 3686 } 3687 3688 template <> 3689 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3690 if (Lex.getKind() == lltok::kw_null) { 3691 if (!Result.AllowNull) 3692 return TokError("'" + Name + "' cannot be null"); 3693 Lex.Lex(); 3694 Result.assign(nullptr); 3695 return false; 3696 } 3697 3698 Metadata *MD; 3699 if (ParseMetadata(MD, nullptr)) 3700 return true; 3701 3702 Result.assign(MD); 3703 return false; 3704 } 3705 3706 template <> 3707 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3708 Metadata *MD; 3709 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3710 return true; 3711 3712 Result.assign(cast<ConstantAsMetadata>(MD)); 3713 return false; 3714 } 3715 3716 template <> 3717 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3718 LocTy ValueLoc = Lex.getLoc(); 3719 std::string S; 3720 if (ParseStringConstant(S)) 3721 return true; 3722 3723 if (!Result.AllowEmpty && S.empty()) 3724 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3725 3726 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3727 return false; 3728 } 3729 3730 template <> 3731 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3732 SmallVector<Metadata *, 4> MDs; 3733 if (ParseMDNodeVector(MDs)) 3734 return true; 3735 3736 Result.assign(std::move(MDs)); 3737 return false; 3738 } 3739 3740 } // end namespace llvm 3741 3742 template <class ParserTy> 3743 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3744 do { 3745 if (Lex.getKind() != lltok::LabelStr) 3746 return TokError("expected field label here"); 3747 3748 if (parseField()) 3749 return true; 3750 } while (EatIfPresent(lltok::comma)); 3751 3752 return false; 3753 } 3754 3755 template <class ParserTy> 3756 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3757 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3758 Lex.Lex(); 3759 3760 if (ParseToken(lltok::lparen, "expected '(' here")) 3761 return true; 3762 if (Lex.getKind() != lltok::rparen) 3763 if (ParseMDFieldsImplBody(parseField)) 3764 return true; 3765 3766 ClosingLoc = Lex.getLoc(); 3767 return ParseToken(lltok::rparen, "expected ')' here"); 3768 } 3769 3770 template <class FieldTy> 3771 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3772 if (Result.Seen) 3773 return TokError("field '" + Name + "' cannot be specified more than once"); 3774 3775 LocTy Loc = Lex.getLoc(); 3776 Lex.Lex(); 3777 return ParseMDField(Loc, Name, Result); 3778 } 3779 3780 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3781 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3782 3783 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3784 if (Lex.getStrVal() == #CLASS) \ 3785 return Parse##CLASS(N, IsDistinct); 3786 #include "llvm/IR/Metadata.def" 3787 3788 return TokError("expected metadata type"); 3789 } 3790 3791 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3792 #define NOP_FIELD(NAME, TYPE, INIT) 3793 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3794 if (!NAME.Seen) \ 3795 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3796 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3797 if (Lex.getStrVal() == #NAME) \ 3798 return ParseMDField(#NAME, NAME); 3799 #define PARSE_MD_FIELDS() \ 3800 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3801 do { \ 3802 LocTy ClosingLoc; \ 3803 if (ParseMDFieldsImpl([&]() -> bool { \ 3804 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3805 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3806 }, ClosingLoc)) \ 3807 return true; \ 3808 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3809 } while (false) 3810 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3811 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3812 3813 /// ParseDILocationFields: 3814 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3815 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3816 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3817 OPTIONAL(line, LineField, ); \ 3818 OPTIONAL(column, ColumnField, ); \ 3819 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3820 OPTIONAL(inlinedAt, MDField, ); 3821 PARSE_MD_FIELDS(); 3822 #undef VISIT_MD_FIELDS 3823 3824 Result = GET_OR_DISTINCT( 3825 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3826 return false; 3827 } 3828 3829 /// ParseGenericDINode: 3830 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3831 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3833 REQUIRED(tag, DwarfTagField, ); \ 3834 OPTIONAL(header, MDStringField, ); \ 3835 OPTIONAL(operands, MDFieldList, ); 3836 PARSE_MD_FIELDS(); 3837 #undef VISIT_MD_FIELDS 3838 3839 Result = GET_OR_DISTINCT(GenericDINode, 3840 (Context, tag.Val, header.Val, operands.Val)); 3841 return false; 3842 } 3843 3844 /// ParseDISubrange: 3845 /// ::= !DISubrange(count: 30, lowerBound: 2) 3846 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3848 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3849 OPTIONAL(lowerBound, MDSignedField, ); 3850 PARSE_MD_FIELDS(); 3851 #undef VISIT_MD_FIELDS 3852 3853 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3854 return false; 3855 } 3856 3857 /// ParseDIEnumerator: 3858 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3859 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3860 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3861 REQUIRED(name, MDStringField, ); \ 3862 REQUIRED(value, MDSignedField, ); 3863 PARSE_MD_FIELDS(); 3864 #undef VISIT_MD_FIELDS 3865 3866 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3867 return false; 3868 } 3869 3870 /// ParseDIBasicType: 3871 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3872 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3873 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3874 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3875 OPTIONAL(name, MDStringField, ); \ 3876 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3877 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3878 OPTIONAL(encoding, DwarfAttEncodingField, ); 3879 PARSE_MD_FIELDS(); 3880 #undef VISIT_MD_FIELDS 3881 3882 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3883 align.Val, encoding.Val)); 3884 return false; 3885 } 3886 3887 /// ParseDIDerivedType: 3888 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3889 /// line: 7, scope: !1, baseType: !2, size: 32, 3890 /// align: 32, offset: 0, flags: 0, extraData: !3) 3891 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3892 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3893 REQUIRED(tag, DwarfTagField, ); \ 3894 OPTIONAL(name, MDStringField, ); \ 3895 OPTIONAL(file, MDField, ); \ 3896 OPTIONAL(line, LineField, ); \ 3897 OPTIONAL(scope, MDField, ); \ 3898 REQUIRED(baseType, MDField, ); \ 3899 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3900 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3901 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3902 OPTIONAL(flags, DIFlagField, ); \ 3903 OPTIONAL(extraData, MDField, ); 3904 PARSE_MD_FIELDS(); 3905 #undef VISIT_MD_FIELDS 3906 3907 Result = GET_OR_DISTINCT(DIDerivedType, 3908 (Context, tag.Val, name.Val, file.Val, line.Val, 3909 scope.Val, baseType.Val, size.Val, align.Val, 3910 offset.Val, flags.Val, extraData.Val)); 3911 return false; 3912 } 3913 3914 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3915 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3916 REQUIRED(tag, DwarfTagField, ); \ 3917 OPTIONAL(name, MDStringField, ); \ 3918 OPTIONAL(file, MDField, ); \ 3919 OPTIONAL(line, LineField, ); \ 3920 OPTIONAL(scope, MDField, ); \ 3921 OPTIONAL(baseType, MDField, ); \ 3922 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3923 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3924 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3925 OPTIONAL(flags, DIFlagField, ); \ 3926 OPTIONAL(elements, MDField, ); \ 3927 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3928 OPTIONAL(vtableHolder, MDField, ); \ 3929 OPTIONAL(templateParams, MDField, ); \ 3930 OPTIONAL(identifier, MDStringField, ); 3931 PARSE_MD_FIELDS(); 3932 #undef VISIT_MD_FIELDS 3933 3934 // If this has an identifier try to build an ODR type. 3935 if (identifier.Val) 3936 if (auto *CT = DICompositeType::buildODRType( 3937 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3938 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3939 elements.Val, runtimeLang.Val, vtableHolder.Val, 3940 templateParams.Val)) { 3941 Result = CT; 3942 return false; 3943 } 3944 3945 // Create a new node, and save it in the context if it belongs in the type 3946 // map. 3947 Result = GET_OR_DISTINCT( 3948 DICompositeType, 3949 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3950 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3951 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3952 return false; 3953 } 3954 3955 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3956 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3957 OPTIONAL(flags, DIFlagField, ); \ 3958 OPTIONAL(cc, DwarfCCField, ); \ 3959 REQUIRED(types, MDField, ); 3960 PARSE_MD_FIELDS(); 3961 #undef VISIT_MD_FIELDS 3962 3963 Result = GET_OR_DISTINCT(DISubroutineType, 3964 (Context, flags.Val, cc.Val, types.Val)); 3965 return false; 3966 } 3967 3968 /// ParseDIFileType: 3969 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3970 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3972 REQUIRED(filename, MDStringField, ); \ 3973 REQUIRED(directory, MDStringField, ); 3974 PARSE_MD_FIELDS(); 3975 #undef VISIT_MD_FIELDS 3976 3977 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3978 return false; 3979 } 3980 3981 /// ParseDICompileUnit: 3982 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3983 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3984 /// splitDebugFilename: "abc.debug", 3985 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 3986 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3987 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3988 if (!IsDistinct) 3989 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3990 3991 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3992 REQUIRED(language, DwarfLangField, ); \ 3993 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3994 OPTIONAL(producer, MDStringField, ); \ 3995 OPTIONAL(isOptimized, MDBoolField, ); \ 3996 OPTIONAL(flags, MDStringField, ); \ 3997 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3998 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3999 OPTIONAL(emissionKind, EmissionKindField, ); \ 4000 OPTIONAL(enums, MDField, ); \ 4001 OPTIONAL(retainedTypes, MDField, ); \ 4002 OPTIONAL(globals, MDField, ); \ 4003 OPTIONAL(imports, MDField, ); \ 4004 OPTIONAL(macros, MDField, ); \ 4005 OPTIONAL(dwoId, MDUnsignedField, ); \ 4006 OPTIONAL(splitDebugInlining, MDBoolField, = true); 4007 PARSE_MD_FIELDS(); 4008 #undef VISIT_MD_FIELDS 4009 4010 Result = DICompileUnit::getDistinct( 4011 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4012 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4013 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4014 splitDebugInlining.Val); 4015 return false; 4016 } 4017 4018 /// ParseDISubprogram: 4019 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4020 /// file: !1, line: 7, type: !2, isLocal: false, 4021 /// isDefinition: true, scopeLine: 8, containingType: !3, 4022 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4023 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4024 /// isOptimized: false, templateParams: !4, declaration: !5, 4025 /// variables: !6) 4026 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4027 auto Loc = Lex.getLoc(); 4028 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4029 OPTIONAL(scope, MDField, ); \ 4030 OPTIONAL(name, MDStringField, ); \ 4031 OPTIONAL(linkageName, MDStringField, ); \ 4032 OPTIONAL(file, MDField, ); \ 4033 OPTIONAL(line, LineField, ); \ 4034 OPTIONAL(type, MDField, ); \ 4035 OPTIONAL(isLocal, MDBoolField, ); \ 4036 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4037 OPTIONAL(scopeLine, LineField, ); \ 4038 OPTIONAL(containingType, MDField, ); \ 4039 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4040 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4041 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4042 OPTIONAL(flags, DIFlagField, ); \ 4043 OPTIONAL(isOptimized, MDBoolField, ); \ 4044 OPTIONAL(unit, MDField, ); \ 4045 OPTIONAL(templateParams, MDField, ); \ 4046 OPTIONAL(declaration, MDField, ); \ 4047 OPTIONAL(variables, MDField, ); 4048 PARSE_MD_FIELDS(); 4049 #undef VISIT_MD_FIELDS 4050 4051 if (isDefinition.Val && !IsDistinct) 4052 return Lex.Error( 4053 Loc, 4054 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4055 4056 Result = GET_OR_DISTINCT( 4057 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4058 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4059 scopeLine.Val, containingType.Val, virtuality.Val, 4060 virtualIndex.Val, thisAdjustment.Val, flags.Val, 4061 isOptimized.Val, unit.Val, templateParams.Val, 4062 declaration.Val, variables.Val)); 4063 return false; 4064 } 4065 4066 /// ParseDILexicalBlock: 4067 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4068 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4069 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4070 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4071 OPTIONAL(file, MDField, ); \ 4072 OPTIONAL(line, LineField, ); \ 4073 OPTIONAL(column, ColumnField, ); 4074 PARSE_MD_FIELDS(); 4075 #undef VISIT_MD_FIELDS 4076 4077 Result = GET_OR_DISTINCT( 4078 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4079 return false; 4080 } 4081 4082 /// ParseDILexicalBlockFile: 4083 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4084 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4085 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4086 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4087 OPTIONAL(file, MDField, ); \ 4088 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4089 PARSE_MD_FIELDS(); 4090 #undef VISIT_MD_FIELDS 4091 4092 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4093 (Context, scope.Val, file.Val, discriminator.Val)); 4094 return false; 4095 } 4096 4097 /// ParseDINamespace: 4098 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4099 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4100 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4101 REQUIRED(scope, MDField, ); \ 4102 OPTIONAL(file, MDField, ); \ 4103 OPTIONAL(name, MDStringField, ); \ 4104 OPTIONAL(line, LineField, ); 4105 PARSE_MD_FIELDS(); 4106 #undef VISIT_MD_FIELDS 4107 4108 Result = GET_OR_DISTINCT(DINamespace, 4109 (Context, scope.Val, file.Val, name.Val, line.Val)); 4110 return false; 4111 } 4112 4113 /// ParseDIMacro: 4114 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4115 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4116 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4117 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4118 REQUIRED(line, LineField, ); \ 4119 REQUIRED(name, MDStringField, ); \ 4120 OPTIONAL(value, MDStringField, ); 4121 PARSE_MD_FIELDS(); 4122 #undef VISIT_MD_FIELDS 4123 4124 Result = GET_OR_DISTINCT(DIMacro, 4125 (Context, type.Val, line.Val, name.Val, value.Val)); 4126 return false; 4127 } 4128 4129 /// ParseDIMacroFile: 4130 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4131 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4132 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4133 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4134 REQUIRED(line, LineField, ); \ 4135 REQUIRED(file, MDField, ); \ 4136 OPTIONAL(nodes, MDField, ); 4137 PARSE_MD_FIELDS(); 4138 #undef VISIT_MD_FIELDS 4139 4140 Result = GET_OR_DISTINCT(DIMacroFile, 4141 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4142 return false; 4143 } 4144 4145 /// ParseDIModule: 4146 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4147 /// includePath: "/usr/include", isysroot: "/") 4148 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4149 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4150 REQUIRED(scope, MDField, ); \ 4151 REQUIRED(name, MDStringField, ); \ 4152 OPTIONAL(configMacros, MDStringField, ); \ 4153 OPTIONAL(includePath, MDStringField, ); \ 4154 OPTIONAL(isysroot, MDStringField, ); 4155 PARSE_MD_FIELDS(); 4156 #undef VISIT_MD_FIELDS 4157 4158 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4159 configMacros.Val, includePath.Val, isysroot.Val)); 4160 return false; 4161 } 4162 4163 /// ParseDITemplateTypeParameter: 4164 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4165 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4166 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4167 OPTIONAL(name, MDStringField, ); \ 4168 REQUIRED(type, MDField, ); 4169 PARSE_MD_FIELDS(); 4170 #undef VISIT_MD_FIELDS 4171 4172 Result = 4173 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4174 return false; 4175 } 4176 4177 /// ParseDITemplateValueParameter: 4178 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4179 /// name: "V", type: !1, value: i32 7) 4180 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4181 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4182 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4183 OPTIONAL(name, MDStringField, ); \ 4184 OPTIONAL(type, MDField, ); \ 4185 REQUIRED(value, MDField, ); 4186 PARSE_MD_FIELDS(); 4187 #undef VISIT_MD_FIELDS 4188 4189 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4190 (Context, tag.Val, name.Val, type.Val, value.Val)); 4191 return false; 4192 } 4193 4194 /// ParseDIGlobalVariable: 4195 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4196 /// file: !1, line: 7, type: !2, isLocal: false, 4197 /// isDefinition: true, variable: i32* @foo, 4198 /// declaration: !3) 4199 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4200 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4201 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4202 OPTIONAL(scope, MDField, ); \ 4203 OPTIONAL(linkageName, MDStringField, ); \ 4204 OPTIONAL(file, MDField, ); \ 4205 OPTIONAL(line, LineField, ); \ 4206 OPTIONAL(type, MDField, ); \ 4207 OPTIONAL(isLocal, MDBoolField, ); \ 4208 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4209 OPTIONAL(expr, MDField, ); \ 4210 OPTIONAL(declaration, MDField, ); 4211 PARSE_MD_FIELDS(); 4212 #undef VISIT_MD_FIELDS 4213 4214 Result = GET_OR_DISTINCT(DIGlobalVariable, 4215 (Context, scope.Val, name.Val, linkageName.Val, 4216 file.Val, line.Val, type.Val, isLocal.Val, 4217 isDefinition.Val, expr.Val, declaration.Val)); 4218 return false; 4219 } 4220 4221 /// ParseDILocalVariable: 4222 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4223 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4224 /// ::= !DILocalVariable(scope: !0, name: "foo", 4225 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4226 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4227 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4228 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4229 OPTIONAL(name, MDStringField, ); \ 4230 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4231 OPTIONAL(file, MDField, ); \ 4232 OPTIONAL(line, LineField, ); \ 4233 OPTIONAL(type, MDField, ); \ 4234 OPTIONAL(flags, DIFlagField, ); 4235 PARSE_MD_FIELDS(); 4236 #undef VISIT_MD_FIELDS 4237 4238 Result = GET_OR_DISTINCT(DILocalVariable, 4239 (Context, scope.Val, name.Val, file.Val, line.Val, 4240 type.Val, arg.Val, flags.Val)); 4241 return false; 4242 } 4243 4244 /// ParseDIExpression: 4245 /// ::= !DIExpression(0, 7, -1) 4246 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4247 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4248 Lex.Lex(); 4249 4250 if (ParseToken(lltok::lparen, "expected '(' here")) 4251 return true; 4252 4253 SmallVector<uint64_t, 8> Elements; 4254 if (Lex.getKind() != lltok::rparen) 4255 do { 4256 if (Lex.getKind() == lltok::DwarfOp) { 4257 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4258 Lex.Lex(); 4259 Elements.push_back(Op); 4260 continue; 4261 } 4262 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4263 } 4264 4265 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4266 return TokError("expected unsigned integer"); 4267 4268 auto &U = Lex.getAPSIntVal(); 4269 if (U.ugt(UINT64_MAX)) 4270 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4271 Elements.push_back(U.getZExtValue()); 4272 Lex.Lex(); 4273 } while (EatIfPresent(lltok::comma)); 4274 4275 if (ParseToken(lltok::rparen, "expected ')' here")) 4276 return true; 4277 4278 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4279 return false; 4280 } 4281 4282 /// ParseDIObjCProperty: 4283 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4284 /// getter: "getFoo", attributes: 7, type: !2) 4285 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4286 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4287 OPTIONAL(name, MDStringField, ); \ 4288 OPTIONAL(file, MDField, ); \ 4289 OPTIONAL(line, LineField, ); \ 4290 OPTIONAL(setter, MDStringField, ); \ 4291 OPTIONAL(getter, MDStringField, ); \ 4292 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4293 OPTIONAL(type, MDField, ); 4294 PARSE_MD_FIELDS(); 4295 #undef VISIT_MD_FIELDS 4296 4297 Result = GET_OR_DISTINCT(DIObjCProperty, 4298 (Context, name.Val, file.Val, line.Val, setter.Val, 4299 getter.Val, attributes.Val, type.Val)); 4300 return false; 4301 } 4302 4303 /// ParseDIImportedEntity: 4304 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4305 /// line: 7, name: "foo") 4306 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4307 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4308 REQUIRED(tag, DwarfTagField, ); \ 4309 REQUIRED(scope, MDField, ); \ 4310 OPTIONAL(entity, MDField, ); \ 4311 OPTIONAL(line, LineField, ); \ 4312 OPTIONAL(name, MDStringField, ); 4313 PARSE_MD_FIELDS(); 4314 #undef VISIT_MD_FIELDS 4315 4316 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4317 entity.Val, line.Val, name.Val)); 4318 return false; 4319 } 4320 4321 #undef PARSE_MD_FIELD 4322 #undef NOP_FIELD 4323 #undef REQUIRE_FIELD 4324 #undef DECLARE_FIELD 4325 4326 /// ParseMetadataAsValue 4327 /// ::= metadata i32 %local 4328 /// ::= metadata i32 @global 4329 /// ::= metadata i32 7 4330 /// ::= metadata !0 4331 /// ::= metadata !{...} 4332 /// ::= metadata !"string" 4333 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4334 // Note: the type 'metadata' has already been parsed. 4335 Metadata *MD; 4336 if (ParseMetadata(MD, &PFS)) 4337 return true; 4338 4339 V = MetadataAsValue::get(Context, MD); 4340 return false; 4341 } 4342 4343 /// ParseValueAsMetadata 4344 /// ::= i32 %local 4345 /// ::= i32 @global 4346 /// ::= i32 7 4347 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4348 PerFunctionState *PFS) { 4349 Type *Ty; 4350 LocTy Loc; 4351 if (ParseType(Ty, TypeMsg, Loc)) 4352 return true; 4353 if (Ty->isMetadataTy()) 4354 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4355 4356 Value *V; 4357 if (ParseValue(Ty, V, PFS)) 4358 return true; 4359 4360 MD = ValueAsMetadata::get(V); 4361 return false; 4362 } 4363 4364 /// ParseMetadata 4365 /// ::= i32 %local 4366 /// ::= i32 @global 4367 /// ::= i32 7 4368 /// ::= !42 4369 /// ::= !{...} 4370 /// ::= !"string" 4371 /// ::= !DILocation(...) 4372 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4373 if (Lex.getKind() == lltok::MetadataVar) { 4374 MDNode *N; 4375 if (ParseSpecializedMDNode(N)) 4376 return true; 4377 MD = N; 4378 return false; 4379 } 4380 4381 // ValueAsMetadata: 4382 // <type> <value> 4383 if (Lex.getKind() != lltok::exclaim) 4384 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4385 4386 // '!'. 4387 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4388 Lex.Lex(); 4389 4390 // MDString: 4391 // ::= '!' STRINGCONSTANT 4392 if (Lex.getKind() == lltok::StringConstant) { 4393 MDString *S; 4394 if (ParseMDString(S)) 4395 return true; 4396 MD = S; 4397 return false; 4398 } 4399 4400 // MDNode: 4401 // !{ ... } 4402 // !7 4403 MDNode *N; 4404 if (ParseMDNodeTail(N)) 4405 return true; 4406 MD = N; 4407 return false; 4408 } 4409 4410 //===----------------------------------------------------------------------===// 4411 // Function Parsing. 4412 //===----------------------------------------------------------------------===// 4413 4414 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4415 PerFunctionState *PFS) { 4416 if (Ty->isFunctionTy()) 4417 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4418 4419 switch (ID.Kind) { 4420 case ValID::t_LocalID: 4421 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4422 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4423 return V == nullptr; 4424 case ValID::t_LocalName: 4425 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4426 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4427 return V == nullptr; 4428 case ValID::t_InlineAsm: { 4429 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4430 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4431 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4432 (ID.UIntVal >> 1) & 1, 4433 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4434 return false; 4435 } 4436 case ValID::t_GlobalName: 4437 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4438 return V == nullptr; 4439 case ValID::t_GlobalID: 4440 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4441 return V == nullptr; 4442 case ValID::t_APSInt: 4443 if (!Ty->isIntegerTy()) 4444 return Error(ID.Loc, "integer constant must have integer type"); 4445 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4446 V = ConstantInt::get(Context, ID.APSIntVal); 4447 return false; 4448 case ValID::t_APFloat: 4449 if (!Ty->isFloatingPointTy() || 4450 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4451 return Error(ID.Loc, "floating point constant invalid for type"); 4452 4453 // The lexer has no type info, so builds all half, float, and double FP 4454 // constants as double. Fix this here. Long double does not need this. 4455 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4456 bool Ignored; 4457 if (Ty->isHalfTy()) 4458 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4459 &Ignored); 4460 else if (Ty->isFloatTy()) 4461 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4462 &Ignored); 4463 } 4464 V = ConstantFP::get(Context, ID.APFloatVal); 4465 4466 if (V->getType() != Ty) 4467 return Error(ID.Loc, "floating point constant does not have type '" + 4468 getTypeString(Ty) + "'"); 4469 4470 return false; 4471 case ValID::t_Null: 4472 if (!Ty->isPointerTy()) 4473 return Error(ID.Loc, "null must be a pointer type"); 4474 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4475 return false; 4476 case ValID::t_Undef: 4477 // FIXME: LabelTy should not be a first-class type. 4478 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4479 return Error(ID.Loc, "invalid type for undef constant"); 4480 V = UndefValue::get(Ty); 4481 return false; 4482 case ValID::t_EmptyArray: 4483 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4484 return Error(ID.Loc, "invalid empty array initializer"); 4485 V = UndefValue::get(Ty); 4486 return false; 4487 case ValID::t_Zero: 4488 // FIXME: LabelTy should not be a first-class type. 4489 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4490 return Error(ID.Loc, "invalid type for null constant"); 4491 V = Constant::getNullValue(Ty); 4492 return false; 4493 case ValID::t_None: 4494 if (!Ty->isTokenTy()) 4495 return Error(ID.Loc, "invalid type for none constant"); 4496 V = Constant::getNullValue(Ty); 4497 return false; 4498 case ValID::t_Constant: 4499 if (ID.ConstantVal->getType() != Ty) 4500 return Error(ID.Loc, "constant expression type mismatch"); 4501 4502 V = ID.ConstantVal; 4503 return false; 4504 case ValID::t_ConstantStruct: 4505 case ValID::t_PackedConstantStruct: 4506 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4507 if (ST->getNumElements() != ID.UIntVal) 4508 return Error(ID.Loc, 4509 "initializer with struct type has wrong # elements"); 4510 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4511 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4512 4513 // Verify that the elements are compatible with the structtype. 4514 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4515 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4516 return Error(ID.Loc, "element " + Twine(i) + 4517 " of struct initializer doesn't match struct element type"); 4518 4519 V = ConstantStruct::get( 4520 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4521 } else 4522 return Error(ID.Loc, "constant expression type mismatch"); 4523 return false; 4524 } 4525 llvm_unreachable("Invalid ValID"); 4526 } 4527 4528 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4529 C = nullptr; 4530 ValID ID; 4531 auto Loc = Lex.getLoc(); 4532 if (ParseValID(ID, /*PFS=*/nullptr)) 4533 return true; 4534 switch (ID.Kind) { 4535 case ValID::t_APSInt: 4536 case ValID::t_APFloat: 4537 case ValID::t_Undef: 4538 case ValID::t_Constant: 4539 case ValID::t_ConstantStruct: 4540 case ValID::t_PackedConstantStruct: { 4541 Value *V; 4542 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4543 return true; 4544 assert(isa<Constant>(V) && "Expected a constant value"); 4545 C = cast<Constant>(V); 4546 return false; 4547 } 4548 default: 4549 return Error(Loc, "expected a constant value"); 4550 } 4551 } 4552 4553 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4554 V = nullptr; 4555 ValID ID; 4556 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4557 } 4558 4559 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4560 Type *Ty = nullptr; 4561 return ParseType(Ty) || 4562 ParseValue(Ty, V, PFS); 4563 } 4564 4565 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4566 PerFunctionState &PFS) { 4567 Value *V; 4568 Loc = Lex.getLoc(); 4569 if (ParseTypeAndValue(V, PFS)) return true; 4570 if (!isa<BasicBlock>(V)) 4571 return Error(Loc, "expected a basic block"); 4572 BB = cast<BasicBlock>(V); 4573 return false; 4574 } 4575 4576 /// FunctionHeader 4577 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4578 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4579 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4580 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4581 // Parse the linkage. 4582 LocTy LinkageLoc = Lex.getLoc(); 4583 unsigned Linkage; 4584 4585 unsigned Visibility; 4586 unsigned DLLStorageClass; 4587 AttrBuilder RetAttrs; 4588 unsigned CC; 4589 bool HasLinkage; 4590 Type *RetType = nullptr; 4591 LocTy RetTypeLoc = Lex.getLoc(); 4592 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4593 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4594 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4595 return true; 4596 4597 // Verify that the linkage is ok. 4598 switch ((GlobalValue::LinkageTypes)Linkage) { 4599 case GlobalValue::ExternalLinkage: 4600 break; // always ok. 4601 case GlobalValue::ExternalWeakLinkage: 4602 if (isDefine) 4603 return Error(LinkageLoc, "invalid linkage for function definition"); 4604 break; 4605 case GlobalValue::PrivateLinkage: 4606 case GlobalValue::InternalLinkage: 4607 case GlobalValue::AvailableExternallyLinkage: 4608 case GlobalValue::LinkOnceAnyLinkage: 4609 case GlobalValue::LinkOnceODRLinkage: 4610 case GlobalValue::WeakAnyLinkage: 4611 case GlobalValue::WeakODRLinkage: 4612 if (!isDefine) 4613 return Error(LinkageLoc, "invalid linkage for function declaration"); 4614 break; 4615 case GlobalValue::AppendingLinkage: 4616 case GlobalValue::CommonLinkage: 4617 return Error(LinkageLoc, "invalid function linkage type"); 4618 } 4619 4620 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4621 return Error(LinkageLoc, 4622 "symbol with local linkage must have default visibility"); 4623 4624 if (!FunctionType::isValidReturnType(RetType)) 4625 return Error(RetTypeLoc, "invalid function return type"); 4626 4627 LocTy NameLoc = Lex.getLoc(); 4628 4629 std::string FunctionName; 4630 if (Lex.getKind() == lltok::GlobalVar) { 4631 FunctionName = Lex.getStrVal(); 4632 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4633 unsigned NameID = Lex.getUIntVal(); 4634 4635 if (NameID != NumberedVals.size()) 4636 return TokError("function expected to be numbered '%" + 4637 Twine(NumberedVals.size()) + "'"); 4638 } else { 4639 return TokError("expected function name"); 4640 } 4641 4642 Lex.Lex(); 4643 4644 if (Lex.getKind() != lltok::lparen) 4645 return TokError("expected '(' in function argument list"); 4646 4647 SmallVector<ArgInfo, 8> ArgList; 4648 bool isVarArg; 4649 AttrBuilder FuncAttrs; 4650 std::vector<unsigned> FwdRefAttrGrps; 4651 LocTy BuiltinLoc; 4652 std::string Section; 4653 unsigned Alignment; 4654 std::string GC; 4655 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4656 LocTy UnnamedAddrLoc; 4657 Constant *Prefix = nullptr; 4658 Constant *Prologue = nullptr; 4659 Constant *PersonalityFn = nullptr; 4660 Comdat *C; 4661 4662 if (ParseArgumentList(ArgList, isVarArg) || 4663 ParseOptionalUnnamedAddr(UnnamedAddr) || 4664 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4665 BuiltinLoc) || 4666 (EatIfPresent(lltok::kw_section) && 4667 ParseStringConstant(Section)) || 4668 parseOptionalComdat(FunctionName, C) || 4669 ParseOptionalAlignment(Alignment) || 4670 (EatIfPresent(lltok::kw_gc) && 4671 ParseStringConstant(GC)) || 4672 (EatIfPresent(lltok::kw_prefix) && 4673 ParseGlobalTypeAndValue(Prefix)) || 4674 (EatIfPresent(lltok::kw_prologue) && 4675 ParseGlobalTypeAndValue(Prologue)) || 4676 (EatIfPresent(lltok::kw_personality) && 4677 ParseGlobalTypeAndValue(PersonalityFn))) 4678 return true; 4679 4680 if (FuncAttrs.contains(Attribute::Builtin)) 4681 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4682 4683 // If the alignment was parsed as an attribute, move to the alignment field. 4684 if (FuncAttrs.hasAlignmentAttr()) { 4685 Alignment = FuncAttrs.getAlignment(); 4686 FuncAttrs.removeAttribute(Attribute::Alignment); 4687 } 4688 4689 // Okay, if we got here, the function is syntactically valid. Convert types 4690 // and do semantic checks. 4691 std::vector<Type*> ParamTypeList; 4692 SmallVector<AttributeSet, 8> Attrs; 4693 4694 if (RetAttrs.hasAttributes()) 4695 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4696 AttributeSet::ReturnIndex, 4697 RetAttrs)); 4698 4699 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4700 ParamTypeList.push_back(ArgList[i].Ty); 4701 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4702 AttrBuilder B(ArgList[i].Attrs, i + 1); 4703 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4704 } 4705 } 4706 4707 if (FuncAttrs.hasAttributes()) 4708 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4709 AttributeSet::FunctionIndex, 4710 FuncAttrs)); 4711 4712 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4713 4714 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4715 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4716 4717 FunctionType *FT = 4718 FunctionType::get(RetType, ParamTypeList, isVarArg); 4719 PointerType *PFT = PointerType::getUnqual(FT); 4720 4721 Fn = nullptr; 4722 if (!FunctionName.empty()) { 4723 // If this was a definition of a forward reference, remove the definition 4724 // from the forward reference table and fill in the forward ref. 4725 auto FRVI = ForwardRefVals.find(FunctionName); 4726 if (FRVI != ForwardRefVals.end()) { 4727 Fn = M->getFunction(FunctionName); 4728 if (!Fn) 4729 return Error(FRVI->second.second, "invalid forward reference to " 4730 "function as global value!"); 4731 if (Fn->getType() != PFT) 4732 return Error(FRVI->second.second, "invalid forward reference to " 4733 "function '" + FunctionName + "' with wrong type!"); 4734 4735 ForwardRefVals.erase(FRVI); 4736 } else if ((Fn = M->getFunction(FunctionName))) { 4737 // Reject redefinitions. 4738 return Error(NameLoc, "invalid redefinition of function '" + 4739 FunctionName + "'"); 4740 } else if (M->getNamedValue(FunctionName)) { 4741 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4742 } 4743 4744 } else { 4745 // If this is a definition of a forward referenced function, make sure the 4746 // types agree. 4747 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4748 if (I != ForwardRefValIDs.end()) { 4749 Fn = cast<Function>(I->second.first); 4750 if (Fn->getType() != PFT) 4751 return Error(NameLoc, "type of definition and forward reference of '@" + 4752 Twine(NumberedVals.size()) + "' disagree"); 4753 ForwardRefValIDs.erase(I); 4754 } 4755 } 4756 4757 if (!Fn) 4758 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4759 else // Move the forward-reference to the correct spot in the module. 4760 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4761 4762 if (FunctionName.empty()) 4763 NumberedVals.push_back(Fn); 4764 4765 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4766 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4767 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4768 Fn->setCallingConv(CC); 4769 Fn->setAttributes(PAL); 4770 Fn->setUnnamedAddr(UnnamedAddr); 4771 Fn->setAlignment(Alignment); 4772 Fn->setSection(Section); 4773 Fn->setComdat(C); 4774 Fn->setPersonalityFn(PersonalityFn); 4775 if (!GC.empty()) Fn->setGC(GC); 4776 Fn->setPrefixData(Prefix); 4777 Fn->setPrologueData(Prologue); 4778 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4779 4780 // Add all of the arguments we parsed to the function. 4781 Function::arg_iterator ArgIt = Fn->arg_begin(); 4782 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4783 // If the argument has a name, insert it into the argument symbol table. 4784 if (ArgList[i].Name.empty()) continue; 4785 4786 // Set the name, if it conflicted, it will be auto-renamed. 4787 ArgIt->setName(ArgList[i].Name); 4788 4789 if (ArgIt->getName() != ArgList[i].Name) 4790 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4791 ArgList[i].Name + "'"); 4792 } 4793 4794 if (isDefine) 4795 return false; 4796 4797 // Check the declaration has no block address forward references. 4798 ValID ID; 4799 if (FunctionName.empty()) { 4800 ID.Kind = ValID::t_GlobalID; 4801 ID.UIntVal = NumberedVals.size() - 1; 4802 } else { 4803 ID.Kind = ValID::t_GlobalName; 4804 ID.StrVal = FunctionName; 4805 } 4806 auto Blocks = ForwardRefBlockAddresses.find(ID); 4807 if (Blocks != ForwardRefBlockAddresses.end()) 4808 return Error(Blocks->first.Loc, 4809 "cannot take blockaddress inside a declaration"); 4810 return false; 4811 } 4812 4813 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4814 ValID ID; 4815 if (FunctionNumber == -1) { 4816 ID.Kind = ValID::t_GlobalName; 4817 ID.StrVal = F.getName(); 4818 } else { 4819 ID.Kind = ValID::t_GlobalID; 4820 ID.UIntVal = FunctionNumber; 4821 } 4822 4823 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4824 if (Blocks == P.ForwardRefBlockAddresses.end()) 4825 return false; 4826 4827 for (const auto &I : Blocks->second) { 4828 const ValID &BBID = I.first; 4829 GlobalValue *GV = I.second; 4830 4831 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4832 "Expected local id or name"); 4833 BasicBlock *BB; 4834 if (BBID.Kind == ValID::t_LocalName) 4835 BB = GetBB(BBID.StrVal, BBID.Loc); 4836 else 4837 BB = GetBB(BBID.UIntVal, BBID.Loc); 4838 if (!BB) 4839 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4840 4841 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4842 GV->eraseFromParent(); 4843 } 4844 4845 P.ForwardRefBlockAddresses.erase(Blocks); 4846 return false; 4847 } 4848 4849 /// ParseFunctionBody 4850 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4851 bool LLParser::ParseFunctionBody(Function &Fn) { 4852 if (Lex.getKind() != lltok::lbrace) 4853 return TokError("expected '{' in function body"); 4854 Lex.Lex(); // eat the {. 4855 4856 int FunctionNumber = -1; 4857 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4858 4859 PerFunctionState PFS(*this, Fn, FunctionNumber); 4860 4861 // Resolve block addresses and allow basic blocks to be forward-declared 4862 // within this function. 4863 if (PFS.resolveForwardRefBlockAddresses()) 4864 return true; 4865 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4866 4867 // We need at least one basic block. 4868 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4869 return TokError("function body requires at least one basic block"); 4870 4871 while (Lex.getKind() != lltok::rbrace && 4872 Lex.getKind() != lltok::kw_uselistorder) 4873 if (ParseBasicBlock(PFS)) return true; 4874 4875 while (Lex.getKind() != lltok::rbrace) 4876 if (ParseUseListOrder(&PFS)) 4877 return true; 4878 4879 // Eat the }. 4880 Lex.Lex(); 4881 4882 // Verify function is ok. 4883 return PFS.FinishFunction(); 4884 } 4885 4886 /// ParseBasicBlock 4887 /// ::= LabelStr? Instruction* 4888 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4889 // If this basic block starts out with a name, remember it. 4890 std::string Name; 4891 LocTy NameLoc = Lex.getLoc(); 4892 if (Lex.getKind() == lltok::LabelStr) { 4893 Name = Lex.getStrVal(); 4894 Lex.Lex(); 4895 } 4896 4897 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4898 if (!BB) 4899 return Error(NameLoc, 4900 "unable to create block named '" + Name + "'"); 4901 4902 std::string NameStr; 4903 4904 // Parse the instructions in this block until we get a terminator. 4905 Instruction *Inst; 4906 do { 4907 // This instruction may have three possibilities for a name: a) none 4908 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4909 LocTy NameLoc = Lex.getLoc(); 4910 int NameID = -1; 4911 NameStr = ""; 4912 4913 if (Lex.getKind() == lltok::LocalVarID) { 4914 NameID = Lex.getUIntVal(); 4915 Lex.Lex(); 4916 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4917 return true; 4918 } else if (Lex.getKind() == lltok::LocalVar) { 4919 NameStr = Lex.getStrVal(); 4920 Lex.Lex(); 4921 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4922 return true; 4923 } 4924 4925 switch (ParseInstruction(Inst, BB, PFS)) { 4926 default: llvm_unreachable("Unknown ParseInstruction result!"); 4927 case InstError: return true; 4928 case InstNormal: 4929 BB->getInstList().push_back(Inst); 4930 4931 // With a normal result, we check to see if the instruction is followed by 4932 // a comma and metadata. 4933 if (EatIfPresent(lltok::comma)) 4934 if (ParseInstructionMetadata(*Inst)) 4935 return true; 4936 break; 4937 case InstExtraComma: 4938 BB->getInstList().push_back(Inst); 4939 4940 // If the instruction parser ate an extra comma at the end of it, it 4941 // *must* be followed by metadata. 4942 if (ParseInstructionMetadata(*Inst)) 4943 return true; 4944 break; 4945 } 4946 4947 // Set the name on the instruction. 4948 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4949 } while (!isa<TerminatorInst>(Inst)); 4950 4951 return false; 4952 } 4953 4954 //===----------------------------------------------------------------------===// 4955 // Instruction Parsing. 4956 //===----------------------------------------------------------------------===// 4957 4958 /// ParseInstruction - Parse one of the many different instructions. 4959 /// 4960 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4961 PerFunctionState &PFS) { 4962 lltok::Kind Token = Lex.getKind(); 4963 if (Token == lltok::Eof) 4964 return TokError("found end of file when expecting more instructions"); 4965 LocTy Loc = Lex.getLoc(); 4966 unsigned KeywordVal = Lex.getUIntVal(); 4967 Lex.Lex(); // Eat the keyword. 4968 4969 switch (Token) { 4970 default: return Error(Loc, "expected instruction opcode"); 4971 // Terminator Instructions. 4972 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4973 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4974 case lltok::kw_br: return ParseBr(Inst, PFS); 4975 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4976 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4977 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4978 case lltok::kw_resume: return ParseResume(Inst, PFS); 4979 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4980 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4981 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4982 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4983 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4984 // Binary Operators. 4985 case lltok::kw_add: 4986 case lltok::kw_sub: 4987 case lltok::kw_mul: 4988 case lltok::kw_shl: { 4989 bool NUW = EatIfPresent(lltok::kw_nuw); 4990 bool NSW = EatIfPresent(lltok::kw_nsw); 4991 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4992 4993 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4994 4995 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4996 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4997 return false; 4998 } 4999 case lltok::kw_fadd: 5000 case lltok::kw_fsub: 5001 case lltok::kw_fmul: 5002 case lltok::kw_fdiv: 5003 case lltok::kw_frem: { 5004 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5005 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5006 if (Res != 0) 5007 return Res; 5008 if (FMF.any()) 5009 Inst->setFastMathFlags(FMF); 5010 return 0; 5011 } 5012 5013 case lltok::kw_sdiv: 5014 case lltok::kw_udiv: 5015 case lltok::kw_lshr: 5016 case lltok::kw_ashr: { 5017 bool Exact = EatIfPresent(lltok::kw_exact); 5018 5019 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5020 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5021 return false; 5022 } 5023 5024 case lltok::kw_urem: 5025 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5026 case lltok::kw_and: 5027 case lltok::kw_or: 5028 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5029 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5030 case lltok::kw_fcmp: { 5031 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5032 int Res = ParseCompare(Inst, PFS, KeywordVal); 5033 if (Res != 0) 5034 return Res; 5035 if (FMF.any()) 5036 Inst->setFastMathFlags(FMF); 5037 return 0; 5038 } 5039 5040 // Casts. 5041 case lltok::kw_trunc: 5042 case lltok::kw_zext: 5043 case lltok::kw_sext: 5044 case lltok::kw_fptrunc: 5045 case lltok::kw_fpext: 5046 case lltok::kw_bitcast: 5047 case lltok::kw_addrspacecast: 5048 case lltok::kw_uitofp: 5049 case lltok::kw_sitofp: 5050 case lltok::kw_fptoui: 5051 case lltok::kw_fptosi: 5052 case lltok::kw_inttoptr: 5053 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5054 // Other. 5055 case lltok::kw_select: return ParseSelect(Inst, PFS); 5056 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5057 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5058 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5059 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5060 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5061 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5062 // Call. 5063 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5064 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5065 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5066 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5067 // Memory. 5068 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5069 case lltok::kw_load: return ParseLoad(Inst, PFS); 5070 case lltok::kw_store: return ParseStore(Inst, PFS); 5071 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5072 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5073 case lltok::kw_fence: return ParseFence(Inst, PFS); 5074 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5075 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5076 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5077 } 5078 } 5079 5080 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5081 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5082 if (Opc == Instruction::FCmp) { 5083 switch (Lex.getKind()) { 5084 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5085 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5086 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5087 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5088 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5089 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5090 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5091 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5092 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5093 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5094 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5095 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5096 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5097 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5098 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5099 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5100 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5101 } 5102 } else { 5103 switch (Lex.getKind()) { 5104 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5105 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5106 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5107 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5108 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5109 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5110 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5111 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5112 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5113 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5114 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5115 } 5116 } 5117 Lex.Lex(); 5118 return false; 5119 } 5120 5121 //===----------------------------------------------------------------------===// 5122 // Terminator Instructions. 5123 //===----------------------------------------------------------------------===// 5124 5125 /// ParseRet - Parse a return instruction. 5126 /// ::= 'ret' void (',' !dbg, !1)* 5127 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5128 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5129 PerFunctionState &PFS) { 5130 SMLoc TypeLoc = Lex.getLoc(); 5131 Type *Ty = nullptr; 5132 if (ParseType(Ty, true /*void allowed*/)) return true; 5133 5134 Type *ResType = PFS.getFunction().getReturnType(); 5135 5136 if (Ty->isVoidTy()) { 5137 if (!ResType->isVoidTy()) 5138 return Error(TypeLoc, "value doesn't match function result type '" + 5139 getTypeString(ResType) + "'"); 5140 5141 Inst = ReturnInst::Create(Context); 5142 return false; 5143 } 5144 5145 Value *RV; 5146 if (ParseValue(Ty, RV, PFS)) return true; 5147 5148 if (ResType != RV->getType()) 5149 return Error(TypeLoc, "value doesn't match function result type '" + 5150 getTypeString(ResType) + "'"); 5151 5152 Inst = ReturnInst::Create(Context, RV); 5153 return false; 5154 } 5155 5156 /// ParseBr 5157 /// ::= 'br' TypeAndValue 5158 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5159 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5160 LocTy Loc, Loc2; 5161 Value *Op0; 5162 BasicBlock *Op1, *Op2; 5163 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5164 5165 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5166 Inst = BranchInst::Create(BB); 5167 return false; 5168 } 5169 5170 if (Op0->getType() != Type::getInt1Ty(Context)) 5171 return Error(Loc, "branch condition must have 'i1' type"); 5172 5173 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5174 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5175 ParseToken(lltok::comma, "expected ',' after true destination") || 5176 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5177 return true; 5178 5179 Inst = BranchInst::Create(Op1, Op2, Op0); 5180 return false; 5181 } 5182 5183 /// ParseSwitch 5184 /// Instruction 5185 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5186 /// JumpTable 5187 /// ::= (TypeAndValue ',' TypeAndValue)* 5188 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5189 LocTy CondLoc, BBLoc; 5190 Value *Cond; 5191 BasicBlock *DefaultBB; 5192 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5193 ParseToken(lltok::comma, "expected ',' after switch condition") || 5194 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5195 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5196 return true; 5197 5198 if (!Cond->getType()->isIntegerTy()) 5199 return Error(CondLoc, "switch condition must have integer type"); 5200 5201 // Parse the jump table pairs. 5202 SmallPtrSet<Value*, 32> SeenCases; 5203 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5204 while (Lex.getKind() != lltok::rsquare) { 5205 Value *Constant; 5206 BasicBlock *DestBB; 5207 5208 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5209 ParseToken(lltok::comma, "expected ',' after case value") || 5210 ParseTypeAndBasicBlock(DestBB, PFS)) 5211 return true; 5212 5213 if (!SeenCases.insert(Constant).second) 5214 return Error(CondLoc, "duplicate case value in switch"); 5215 if (!isa<ConstantInt>(Constant)) 5216 return Error(CondLoc, "case value is not a constant integer"); 5217 5218 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5219 } 5220 5221 Lex.Lex(); // Eat the ']'. 5222 5223 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5224 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5225 SI->addCase(Table[i].first, Table[i].second); 5226 Inst = SI; 5227 return false; 5228 } 5229 5230 /// ParseIndirectBr 5231 /// Instruction 5232 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5233 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5234 LocTy AddrLoc; 5235 Value *Address; 5236 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5237 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5238 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5239 return true; 5240 5241 if (!Address->getType()->isPointerTy()) 5242 return Error(AddrLoc, "indirectbr address must have pointer type"); 5243 5244 // Parse the destination list. 5245 SmallVector<BasicBlock*, 16> DestList; 5246 5247 if (Lex.getKind() != lltok::rsquare) { 5248 BasicBlock *DestBB; 5249 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5250 return true; 5251 DestList.push_back(DestBB); 5252 5253 while (EatIfPresent(lltok::comma)) { 5254 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5255 return true; 5256 DestList.push_back(DestBB); 5257 } 5258 } 5259 5260 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5261 return true; 5262 5263 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5264 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5265 IBI->addDestination(DestList[i]); 5266 Inst = IBI; 5267 return false; 5268 } 5269 5270 /// ParseInvoke 5271 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5272 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5273 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5274 LocTy CallLoc = Lex.getLoc(); 5275 AttrBuilder RetAttrs, FnAttrs; 5276 std::vector<unsigned> FwdRefAttrGrps; 5277 LocTy NoBuiltinLoc; 5278 unsigned CC; 5279 Type *RetType = nullptr; 5280 LocTy RetTypeLoc; 5281 ValID CalleeID; 5282 SmallVector<ParamInfo, 16> ArgList; 5283 SmallVector<OperandBundleDef, 2> BundleList; 5284 5285 BasicBlock *NormalBB, *UnwindBB; 5286 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5287 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5288 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5289 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5290 NoBuiltinLoc) || 5291 ParseOptionalOperandBundles(BundleList, PFS) || 5292 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5293 ParseTypeAndBasicBlock(NormalBB, PFS) || 5294 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5295 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5296 return true; 5297 5298 // If RetType is a non-function pointer type, then this is the short syntax 5299 // for the call, which means that RetType is just the return type. Infer the 5300 // rest of the function argument types from the arguments that are present. 5301 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5302 if (!Ty) { 5303 // Pull out the types of all of the arguments... 5304 std::vector<Type*> ParamTypes; 5305 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5306 ParamTypes.push_back(ArgList[i].V->getType()); 5307 5308 if (!FunctionType::isValidReturnType(RetType)) 5309 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5310 5311 Ty = FunctionType::get(RetType, ParamTypes, false); 5312 } 5313 5314 CalleeID.FTy = Ty; 5315 5316 // Look up the callee. 5317 Value *Callee; 5318 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5319 return true; 5320 5321 // Set up the Attribute for the function. 5322 SmallVector<AttributeSet, 8> Attrs; 5323 if (RetAttrs.hasAttributes()) 5324 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5325 AttributeSet::ReturnIndex, 5326 RetAttrs)); 5327 5328 SmallVector<Value*, 8> Args; 5329 5330 // Loop through FunctionType's arguments and ensure they are specified 5331 // correctly. Also, gather any parameter attributes. 5332 FunctionType::param_iterator I = Ty->param_begin(); 5333 FunctionType::param_iterator E = Ty->param_end(); 5334 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5335 Type *ExpectedTy = nullptr; 5336 if (I != E) { 5337 ExpectedTy = *I++; 5338 } else if (!Ty->isVarArg()) { 5339 return Error(ArgList[i].Loc, "too many arguments specified"); 5340 } 5341 5342 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5343 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5344 getTypeString(ExpectedTy) + "'"); 5345 Args.push_back(ArgList[i].V); 5346 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5347 AttrBuilder B(ArgList[i].Attrs, i + 1); 5348 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5349 } 5350 } 5351 5352 if (I != E) 5353 return Error(CallLoc, "not enough parameters specified for call"); 5354 5355 if (FnAttrs.hasAttributes()) { 5356 if (FnAttrs.hasAlignmentAttr()) 5357 return Error(CallLoc, "invoke instructions may not have an alignment"); 5358 5359 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5360 AttributeSet::FunctionIndex, 5361 FnAttrs)); 5362 } 5363 5364 // Finish off the Attribute and check them 5365 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5366 5367 InvokeInst *II = 5368 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5369 II->setCallingConv(CC); 5370 II->setAttributes(PAL); 5371 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5372 Inst = II; 5373 return false; 5374 } 5375 5376 /// ParseResume 5377 /// ::= 'resume' TypeAndValue 5378 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5379 Value *Exn; LocTy ExnLoc; 5380 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5381 return true; 5382 5383 ResumeInst *RI = ResumeInst::Create(Exn); 5384 Inst = RI; 5385 return false; 5386 } 5387 5388 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5389 PerFunctionState &PFS) { 5390 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5391 return true; 5392 5393 while (Lex.getKind() != lltok::rsquare) { 5394 // If this isn't the first argument, we need a comma. 5395 if (!Args.empty() && 5396 ParseToken(lltok::comma, "expected ',' in argument list")) 5397 return true; 5398 5399 // Parse the argument. 5400 LocTy ArgLoc; 5401 Type *ArgTy = nullptr; 5402 if (ParseType(ArgTy, ArgLoc)) 5403 return true; 5404 5405 Value *V; 5406 if (ArgTy->isMetadataTy()) { 5407 if (ParseMetadataAsValue(V, PFS)) 5408 return true; 5409 } else { 5410 if (ParseValue(ArgTy, V, PFS)) 5411 return true; 5412 } 5413 Args.push_back(V); 5414 } 5415 5416 Lex.Lex(); // Lex the ']'. 5417 return false; 5418 } 5419 5420 /// ParseCleanupRet 5421 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5422 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5423 Value *CleanupPad = nullptr; 5424 5425 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5426 return true; 5427 5428 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5429 return true; 5430 5431 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5432 return true; 5433 5434 BasicBlock *UnwindBB = nullptr; 5435 if (Lex.getKind() == lltok::kw_to) { 5436 Lex.Lex(); 5437 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5438 return true; 5439 } else { 5440 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5441 return true; 5442 } 5443 } 5444 5445 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5446 return false; 5447 } 5448 5449 /// ParseCatchRet 5450 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5451 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5452 Value *CatchPad = nullptr; 5453 5454 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5455 return true; 5456 5457 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5458 return true; 5459 5460 BasicBlock *BB; 5461 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5462 ParseTypeAndBasicBlock(BB, PFS)) 5463 return true; 5464 5465 Inst = CatchReturnInst::Create(CatchPad, BB); 5466 return false; 5467 } 5468 5469 /// ParseCatchSwitch 5470 /// ::= 'catchswitch' within Parent 5471 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5472 Value *ParentPad; 5473 LocTy BBLoc; 5474 5475 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5476 return true; 5477 5478 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5479 Lex.getKind() != lltok::LocalVarID) 5480 return TokError("expected scope value for catchswitch"); 5481 5482 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5483 return true; 5484 5485 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5486 return true; 5487 5488 SmallVector<BasicBlock *, 32> Table; 5489 do { 5490 BasicBlock *DestBB; 5491 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5492 return true; 5493 Table.push_back(DestBB); 5494 } while (EatIfPresent(lltok::comma)); 5495 5496 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5497 return true; 5498 5499 if (ParseToken(lltok::kw_unwind, 5500 "expected 'unwind' after catchswitch scope")) 5501 return true; 5502 5503 BasicBlock *UnwindBB = nullptr; 5504 if (EatIfPresent(lltok::kw_to)) { 5505 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5506 return true; 5507 } else { 5508 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5509 return true; 5510 } 5511 5512 auto *CatchSwitch = 5513 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5514 for (BasicBlock *DestBB : Table) 5515 CatchSwitch->addHandler(DestBB); 5516 Inst = CatchSwitch; 5517 return false; 5518 } 5519 5520 /// ParseCatchPad 5521 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5522 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5523 Value *CatchSwitch = nullptr; 5524 5525 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5526 return true; 5527 5528 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5529 return TokError("expected scope value for catchpad"); 5530 5531 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5532 return true; 5533 5534 SmallVector<Value *, 8> Args; 5535 if (ParseExceptionArgs(Args, PFS)) 5536 return true; 5537 5538 Inst = CatchPadInst::Create(CatchSwitch, Args); 5539 return false; 5540 } 5541 5542 /// ParseCleanupPad 5543 /// ::= 'cleanuppad' within Parent ParamList 5544 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5545 Value *ParentPad = nullptr; 5546 5547 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5548 return true; 5549 5550 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5551 Lex.getKind() != lltok::LocalVarID) 5552 return TokError("expected scope value for cleanuppad"); 5553 5554 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5555 return true; 5556 5557 SmallVector<Value *, 8> Args; 5558 if (ParseExceptionArgs(Args, PFS)) 5559 return true; 5560 5561 Inst = CleanupPadInst::Create(ParentPad, Args); 5562 return false; 5563 } 5564 5565 //===----------------------------------------------------------------------===// 5566 // Binary Operators. 5567 //===----------------------------------------------------------------------===// 5568 5569 /// ParseArithmetic 5570 /// ::= ArithmeticOps TypeAndValue ',' Value 5571 /// 5572 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5573 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5574 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5575 unsigned Opc, unsigned OperandType) { 5576 LocTy Loc; Value *LHS, *RHS; 5577 if (ParseTypeAndValue(LHS, Loc, PFS) || 5578 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5579 ParseValue(LHS->getType(), RHS, PFS)) 5580 return true; 5581 5582 bool Valid; 5583 switch (OperandType) { 5584 default: llvm_unreachable("Unknown operand type!"); 5585 case 0: // int or FP. 5586 Valid = LHS->getType()->isIntOrIntVectorTy() || 5587 LHS->getType()->isFPOrFPVectorTy(); 5588 break; 5589 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5590 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5591 } 5592 5593 if (!Valid) 5594 return Error(Loc, "invalid operand type for instruction"); 5595 5596 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5597 return false; 5598 } 5599 5600 /// ParseLogical 5601 /// ::= ArithmeticOps TypeAndValue ',' Value { 5602 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5603 unsigned Opc) { 5604 LocTy Loc; Value *LHS, *RHS; 5605 if (ParseTypeAndValue(LHS, Loc, PFS) || 5606 ParseToken(lltok::comma, "expected ',' in logical operation") || 5607 ParseValue(LHS->getType(), RHS, PFS)) 5608 return true; 5609 5610 if (!LHS->getType()->isIntOrIntVectorTy()) 5611 return Error(Loc,"instruction requires integer or integer vector operands"); 5612 5613 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5614 return false; 5615 } 5616 5617 /// ParseCompare 5618 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5619 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5620 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5621 unsigned Opc) { 5622 // Parse the integer/fp comparison predicate. 5623 LocTy Loc; 5624 unsigned Pred; 5625 Value *LHS, *RHS; 5626 if (ParseCmpPredicate(Pred, Opc) || 5627 ParseTypeAndValue(LHS, Loc, PFS) || 5628 ParseToken(lltok::comma, "expected ',' after compare value") || 5629 ParseValue(LHS->getType(), RHS, PFS)) 5630 return true; 5631 5632 if (Opc == Instruction::FCmp) { 5633 if (!LHS->getType()->isFPOrFPVectorTy()) 5634 return Error(Loc, "fcmp requires floating point operands"); 5635 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5636 } else { 5637 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5638 if (!LHS->getType()->isIntOrIntVectorTy() && 5639 !LHS->getType()->getScalarType()->isPointerTy()) 5640 return Error(Loc, "icmp requires integer operands"); 5641 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5642 } 5643 return false; 5644 } 5645 5646 //===----------------------------------------------------------------------===// 5647 // Other Instructions. 5648 //===----------------------------------------------------------------------===// 5649 5650 5651 /// ParseCast 5652 /// ::= CastOpc TypeAndValue 'to' Type 5653 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5654 unsigned Opc) { 5655 LocTy Loc; 5656 Value *Op; 5657 Type *DestTy = nullptr; 5658 if (ParseTypeAndValue(Op, Loc, PFS) || 5659 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5660 ParseType(DestTy)) 5661 return true; 5662 5663 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5664 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5665 return Error(Loc, "invalid cast opcode for cast from '" + 5666 getTypeString(Op->getType()) + "' to '" + 5667 getTypeString(DestTy) + "'"); 5668 } 5669 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5670 return false; 5671 } 5672 5673 /// ParseSelect 5674 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5675 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5676 LocTy Loc; 5677 Value *Op0, *Op1, *Op2; 5678 if (ParseTypeAndValue(Op0, Loc, PFS) || 5679 ParseToken(lltok::comma, "expected ',' after select condition") || 5680 ParseTypeAndValue(Op1, PFS) || 5681 ParseToken(lltok::comma, "expected ',' after select value") || 5682 ParseTypeAndValue(Op2, PFS)) 5683 return true; 5684 5685 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5686 return Error(Loc, Reason); 5687 5688 Inst = SelectInst::Create(Op0, Op1, Op2); 5689 return false; 5690 } 5691 5692 /// ParseVA_Arg 5693 /// ::= 'va_arg' TypeAndValue ',' Type 5694 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5695 Value *Op; 5696 Type *EltTy = nullptr; 5697 LocTy TypeLoc; 5698 if (ParseTypeAndValue(Op, PFS) || 5699 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5700 ParseType(EltTy, TypeLoc)) 5701 return true; 5702 5703 if (!EltTy->isFirstClassType()) 5704 return Error(TypeLoc, "va_arg requires operand with first class type"); 5705 5706 Inst = new VAArgInst(Op, EltTy); 5707 return false; 5708 } 5709 5710 /// ParseExtractElement 5711 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5712 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5713 LocTy Loc; 5714 Value *Op0, *Op1; 5715 if (ParseTypeAndValue(Op0, Loc, PFS) || 5716 ParseToken(lltok::comma, "expected ',' after extract value") || 5717 ParseTypeAndValue(Op1, PFS)) 5718 return true; 5719 5720 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5721 return Error(Loc, "invalid extractelement operands"); 5722 5723 Inst = ExtractElementInst::Create(Op0, Op1); 5724 return false; 5725 } 5726 5727 /// ParseInsertElement 5728 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5729 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5730 LocTy Loc; 5731 Value *Op0, *Op1, *Op2; 5732 if (ParseTypeAndValue(Op0, Loc, PFS) || 5733 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5734 ParseTypeAndValue(Op1, PFS) || 5735 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5736 ParseTypeAndValue(Op2, PFS)) 5737 return true; 5738 5739 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5740 return Error(Loc, "invalid insertelement operands"); 5741 5742 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5743 return false; 5744 } 5745 5746 /// ParseShuffleVector 5747 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5748 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5749 LocTy Loc; 5750 Value *Op0, *Op1, *Op2; 5751 if (ParseTypeAndValue(Op0, Loc, PFS) || 5752 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5753 ParseTypeAndValue(Op1, PFS) || 5754 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5755 ParseTypeAndValue(Op2, PFS)) 5756 return true; 5757 5758 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5759 return Error(Loc, "invalid shufflevector operands"); 5760 5761 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5762 return false; 5763 } 5764 5765 /// ParsePHI 5766 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5767 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5768 Type *Ty = nullptr; LocTy TypeLoc; 5769 Value *Op0, *Op1; 5770 5771 if (ParseType(Ty, TypeLoc) || 5772 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5773 ParseValue(Ty, Op0, PFS) || 5774 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5775 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5776 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5777 return true; 5778 5779 bool AteExtraComma = false; 5780 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5781 5782 while (true) { 5783 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5784 5785 if (!EatIfPresent(lltok::comma)) 5786 break; 5787 5788 if (Lex.getKind() == lltok::MetadataVar) { 5789 AteExtraComma = true; 5790 break; 5791 } 5792 5793 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5794 ParseValue(Ty, Op0, PFS) || 5795 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5796 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5797 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5798 return true; 5799 } 5800 5801 if (!Ty->isFirstClassType()) 5802 return Error(TypeLoc, "phi node must have first class type"); 5803 5804 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5805 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5806 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5807 Inst = PN; 5808 return AteExtraComma ? InstExtraComma : InstNormal; 5809 } 5810 5811 /// ParseLandingPad 5812 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5813 /// Clause 5814 /// ::= 'catch' TypeAndValue 5815 /// ::= 'filter' 5816 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5817 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5818 Type *Ty = nullptr; LocTy TyLoc; 5819 5820 if (ParseType(Ty, TyLoc)) 5821 return true; 5822 5823 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5824 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5825 5826 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5827 LandingPadInst::ClauseType CT; 5828 if (EatIfPresent(lltok::kw_catch)) 5829 CT = LandingPadInst::Catch; 5830 else if (EatIfPresent(lltok::kw_filter)) 5831 CT = LandingPadInst::Filter; 5832 else 5833 return TokError("expected 'catch' or 'filter' clause type"); 5834 5835 Value *V; 5836 LocTy VLoc; 5837 if (ParseTypeAndValue(V, VLoc, PFS)) 5838 return true; 5839 5840 // A 'catch' type expects a non-array constant. A filter clause expects an 5841 // array constant. 5842 if (CT == LandingPadInst::Catch) { 5843 if (isa<ArrayType>(V->getType())) 5844 Error(VLoc, "'catch' clause has an invalid type"); 5845 } else { 5846 if (!isa<ArrayType>(V->getType())) 5847 Error(VLoc, "'filter' clause has an invalid type"); 5848 } 5849 5850 Constant *CV = dyn_cast<Constant>(V); 5851 if (!CV) 5852 return Error(VLoc, "clause argument must be a constant"); 5853 LP->addClause(CV); 5854 } 5855 5856 Inst = LP.release(); 5857 return false; 5858 } 5859 5860 /// ParseCall 5861 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5862 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5863 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5864 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5865 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5866 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5867 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5868 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5869 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5870 CallInst::TailCallKind TCK) { 5871 AttrBuilder RetAttrs, FnAttrs; 5872 std::vector<unsigned> FwdRefAttrGrps; 5873 LocTy BuiltinLoc; 5874 unsigned CC; 5875 Type *RetType = nullptr; 5876 LocTy RetTypeLoc; 5877 ValID CalleeID; 5878 SmallVector<ParamInfo, 16> ArgList; 5879 SmallVector<OperandBundleDef, 2> BundleList; 5880 LocTy CallLoc = Lex.getLoc(); 5881 5882 if (TCK != CallInst::TCK_None && 5883 ParseToken(lltok::kw_call, 5884 "expected 'tail call', 'musttail call', or 'notail call'")) 5885 return true; 5886 5887 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5888 5889 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5890 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5891 ParseValID(CalleeID) || 5892 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5893 PFS.getFunction().isVarArg()) || 5894 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5895 ParseOptionalOperandBundles(BundleList, PFS)) 5896 return true; 5897 5898 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5899 return Error(CallLoc, "fast-math-flags specified for call without " 5900 "floating-point scalar or vector return type"); 5901 5902 // If RetType is a non-function pointer type, then this is the short syntax 5903 // for the call, which means that RetType is just the return type. Infer the 5904 // rest of the function argument types from the arguments that are present. 5905 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5906 if (!Ty) { 5907 // Pull out the types of all of the arguments... 5908 std::vector<Type*> ParamTypes; 5909 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5910 ParamTypes.push_back(ArgList[i].V->getType()); 5911 5912 if (!FunctionType::isValidReturnType(RetType)) 5913 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5914 5915 Ty = FunctionType::get(RetType, ParamTypes, false); 5916 } 5917 5918 CalleeID.FTy = Ty; 5919 5920 // Look up the callee. 5921 Value *Callee; 5922 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5923 return true; 5924 5925 // Set up the Attribute for the function. 5926 SmallVector<AttributeSet, 8> Attrs; 5927 if (RetAttrs.hasAttributes()) 5928 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5929 AttributeSet::ReturnIndex, 5930 RetAttrs)); 5931 5932 SmallVector<Value*, 8> Args; 5933 5934 // Loop through FunctionType's arguments and ensure they are specified 5935 // correctly. Also, gather any parameter attributes. 5936 FunctionType::param_iterator I = Ty->param_begin(); 5937 FunctionType::param_iterator E = Ty->param_end(); 5938 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5939 Type *ExpectedTy = nullptr; 5940 if (I != E) { 5941 ExpectedTy = *I++; 5942 } else if (!Ty->isVarArg()) { 5943 return Error(ArgList[i].Loc, "too many arguments specified"); 5944 } 5945 5946 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5947 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5948 getTypeString(ExpectedTy) + "'"); 5949 Args.push_back(ArgList[i].V); 5950 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5951 AttrBuilder B(ArgList[i].Attrs, i + 1); 5952 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5953 } 5954 } 5955 5956 if (I != E) 5957 return Error(CallLoc, "not enough parameters specified for call"); 5958 5959 if (FnAttrs.hasAttributes()) { 5960 if (FnAttrs.hasAlignmentAttr()) 5961 return Error(CallLoc, "call instructions may not have an alignment"); 5962 5963 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5964 AttributeSet::FunctionIndex, 5965 FnAttrs)); 5966 } 5967 5968 // Finish off the Attribute and check them 5969 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5970 5971 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5972 CI->setTailCallKind(TCK); 5973 CI->setCallingConv(CC); 5974 if (FMF.any()) 5975 CI->setFastMathFlags(FMF); 5976 CI->setAttributes(PAL); 5977 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5978 Inst = CI; 5979 return false; 5980 } 5981 5982 //===----------------------------------------------------------------------===// 5983 // Memory Instructions. 5984 //===----------------------------------------------------------------------===// 5985 5986 /// ParseAlloc 5987 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 5988 /// (',' 'align' i32)? 5989 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5990 Value *Size = nullptr; 5991 LocTy SizeLoc, TyLoc; 5992 unsigned Alignment = 0; 5993 Type *Ty = nullptr; 5994 5995 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5996 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 5997 5998 if (ParseType(Ty, TyLoc)) return true; 5999 6000 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6001 return Error(TyLoc, "invalid type for alloca"); 6002 6003 bool AteExtraComma = false; 6004 if (EatIfPresent(lltok::comma)) { 6005 if (Lex.getKind() == lltok::kw_align) { 6006 if (ParseOptionalAlignment(Alignment)) return true; 6007 } else if (Lex.getKind() == lltok::MetadataVar) { 6008 AteExtraComma = true; 6009 } else { 6010 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 6011 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6012 return true; 6013 } 6014 } 6015 6016 if (Size && !Size->getType()->isIntegerTy()) 6017 return Error(SizeLoc, "element count must have integer type"); 6018 6019 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 6020 AI->setUsedWithInAlloca(IsInAlloca); 6021 AI->setSwiftError(IsSwiftError); 6022 Inst = AI; 6023 return AteExtraComma ? InstExtraComma : InstNormal; 6024 } 6025 6026 /// ParseLoad 6027 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6028 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6029 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6030 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6031 Value *Val; LocTy Loc; 6032 unsigned Alignment = 0; 6033 bool AteExtraComma = false; 6034 bool isAtomic = false; 6035 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6036 SynchronizationScope Scope = CrossThread; 6037 6038 if (Lex.getKind() == lltok::kw_atomic) { 6039 isAtomic = true; 6040 Lex.Lex(); 6041 } 6042 6043 bool isVolatile = false; 6044 if (Lex.getKind() == lltok::kw_volatile) { 6045 isVolatile = true; 6046 Lex.Lex(); 6047 } 6048 6049 Type *Ty; 6050 LocTy ExplicitTypeLoc = Lex.getLoc(); 6051 if (ParseType(Ty) || 6052 ParseToken(lltok::comma, "expected comma after load's type") || 6053 ParseTypeAndValue(Val, Loc, PFS) || 6054 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6055 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6056 return true; 6057 6058 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6059 return Error(Loc, "load operand must be a pointer to a first class type"); 6060 if (isAtomic && !Alignment) 6061 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6062 if (Ordering == AtomicOrdering::Release || 6063 Ordering == AtomicOrdering::AcquireRelease) 6064 return Error(Loc, "atomic load cannot use Release ordering"); 6065 6066 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6067 return Error(ExplicitTypeLoc, 6068 "explicit pointee type doesn't match operand's pointee type"); 6069 6070 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 6071 return AteExtraComma ? InstExtraComma : InstNormal; 6072 } 6073 6074 /// ParseStore 6075 6076 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6077 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6078 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6079 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6080 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6081 unsigned Alignment = 0; 6082 bool AteExtraComma = false; 6083 bool isAtomic = false; 6084 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6085 SynchronizationScope Scope = CrossThread; 6086 6087 if (Lex.getKind() == lltok::kw_atomic) { 6088 isAtomic = true; 6089 Lex.Lex(); 6090 } 6091 6092 bool isVolatile = false; 6093 if (Lex.getKind() == lltok::kw_volatile) { 6094 isVolatile = true; 6095 Lex.Lex(); 6096 } 6097 6098 if (ParseTypeAndValue(Val, Loc, PFS) || 6099 ParseToken(lltok::comma, "expected ',' after store operand") || 6100 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6101 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6102 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6103 return true; 6104 6105 if (!Ptr->getType()->isPointerTy()) 6106 return Error(PtrLoc, "store operand must be a pointer"); 6107 if (!Val->getType()->isFirstClassType()) 6108 return Error(Loc, "store operand must be a first class value"); 6109 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6110 return Error(Loc, "stored value and pointer type do not match"); 6111 if (isAtomic && !Alignment) 6112 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6113 if (Ordering == AtomicOrdering::Acquire || 6114 Ordering == AtomicOrdering::AcquireRelease) 6115 return Error(Loc, "atomic store cannot use Acquire ordering"); 6116 6117 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6118 return AteExtraComma ? InstExtraComma : InstNormal; 6119 } 6120 6121 /// ParseCmpXchg 6122 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6123 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6124 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6125 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6126 bool AteExtraComma = false; 6127 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6128 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6129 SynchronizationScope Scope = CrossThread; 6130 bool isVolatile = false; 6131 bool isWeak = false; 6132 6133 if (EatIfPresent(lltok::kw_weak)) 6134 isWeak = true; 6135 6136 if (EatIfPresent(lltok::kw_volatile)) 6137 isVolatile = true; 6138 6139 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6140 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6141 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6142 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6143 ParseTypeAndValue(New, NewLoc, PFS) || 6144 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6145 ParseOrdering(FailureOrdering)) 6146 return true; 6147 6148 if (SuccessOrdering == AtomicOrdering::Unordered || 6149 FailureOrdering == AtomicOrdering::Unordered) 6150 return TokError("cmpxchg cannot be unordered"); 6151 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6152 return TokError("cmpxchg failure argument shall be no stronger than the " 6153 "success argument"); 6154 if (FailureOrdering == AtomicOrdering::Release || 6155 FailureOrdering == AtomicOrdering::AcquireRelease) 6156 return TokError( 6157 "cmpxchg failure ordering cannot include release semantics"); 6158 if (!Ptr->getType()->isPointerTy()) 6159 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6160 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6161 return Error(CmpLoc, "compare value and pointer type do not match"); 6162 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6163 return Error(NewLoc, "new value and pointer type do not match"); 6164 if (!New->getType()->isFirstClassType()) 6165 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6166 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6167 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6168 CXI->setVolatile(isVolatile); 6169 CXI->setWeak(isWeak); 6170 Inst = CXI; 6171 return AteExtraComma ? InstExtraComma : InstNormal; 6172 } 6173 6174 /// ParseAtomicRMW 6175 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6176 /// 'singlethread'? AtomicOrdering 6177 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6178 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6179 bool AteExtraComma = false; 6180 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6181 SynchronizationScope Scope = CrossThread; 6182 bool isVolatile = false; 6183 AtomicRMWInst::BinOp Operation; 6184 6185 if (EatIfPresent(lltok::kw_volatile)) 6186 isVolatile = true; 6187 6188 switch (Lex.getKind()) { 6189 default: return TokError("expected binary operation in atomicrmw"); 6190 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6191 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6192 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6193 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6194 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6195 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6196 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6197 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6198 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6199 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6200 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6201 } 6202 Lex.Lex(); // Eat the operation. 6203 6204 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6205 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6206 ParseTypeAndValue(Val, ValLoc, PFS) || 6207 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6208 return true; 6209 6210 if (Ordering == AtomicOrdering::Unordered) 6211 return TokError("atomicrmw cannot be unordered"); 6212 if (!Ptr->getType()->isPointerTy()) 6213 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6214 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6215 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6216 if (!Val->getType()->isIntegerTy()) 6217 return Error(ValLoc, "atomicrmw operand must be an integer"); 6218 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6219 if (Size < 8 || (Size & (Size - 1))) 6220 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6221 " integer"); 6222 6223 AtomicRMWInst *RMWI = 6224 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6225 RMWI->setVolatile(isVolatile); 6226 Inst = RMWI; 6227 return AteExtraComma ? InstExtraComma : InstNormal; 6228 } 6229 6230 /// ParseFence 6231 /// ::= 'fence' 'singlethread'? AtomicOrdering 6232 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6233 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6234 SynchronizationScope Scope = CrossThread; 6235 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6236 return true; 6237 6238 if (Ordering == AtomicOrdering::Unordered) 6239 return TokError("fence cannot be unordered"); 6240 if (Ordering == AtomicOrdering::Monotonic) 6241 return TokError("fence cannot be monotonic"); 6242 6243 Inst = new FenceInst(Context, Ordering, Scope); 6244 return InstNormal; 6245 } 6246 6247 /// ParseGetElementPtr 6248 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6249 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6250 Value *Ptr = nullptr; 6251 Value *Val = nullptr; 6252 LocTy Loc, EltLoc; 6253 6254 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6255 6256 Type *Ty = nullptr; 6257 LocTy ExplicitTypeLoc = Lex.getLoc(); 6258 if (ParseType(Ty) || 6259 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6260 ParseTypeAndValue(Ptr, Loc, PFS)) 6261 return true; 6262 6263 Type *BaseType = Ptr->getType(); 6264 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6265 if (!BasePointerType) 6266 return Error(Loc, "base of getelementptr must be a pointer"); 6267 6268 if (Ty != BasePointerType->getElementType()) 6269 return Error(ExplicitTypeLoc, 6270 "explicit pointee type doesn't match operand's pointee type"); 6271 6272 SmallVector<Value*, 16> Indices; 6273 bool AteExtraComma = false; 6274 // GEP returns a vector of pointers if at least one of parameters is a vector. 6275 // All vector parameters should have the same vector width. 6276 unsigned GEPWidth = BaseType->isVectorTy() ? 6277 BaseType->getVectorNumElements() : 0; 6278 6279 while (EatIfPresent(lltok::comma)) { 6280 if (Lex.getKind() == lltok::MetadataVar) { 6281 AteExtraComma = true; 6282 break; 6283 } 6284 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6285 if (!Val->getType()->getScalarType()->isIntegerTy()) 6286 return Error(EltLoc, "getelementptr index must be an integer"); 6287 6288 if (Val->getType()->isVectorTy()) { 6289 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6290 if (GEPWidth && GEPWidth != ValNumEl) 6291 return Error(EltLoc, 6292 "getelementptr vector index has a wrong number of elements"); 6293 GEPWidth = ValNumEl; 6294 } 6295 Indices.push_back(Val); 6296 } 6297 6298 SmallPtrSet<Type*, 4> Visited; 6299 if (!Indices.empty() && !Ty->isSized(&Visited)) 6300 return Error(Loc, "base element of getelementptr must be sized"); 6301 6302 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6303 return Error(Loc, "invalid getelementptr indices"); 6304 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6305 if (InBounds) 6306 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6307 return AteExtraComma ? InstExtraComma : InstNormal; 6308 } 6309 6310 /// ParseExtractValue 6311 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6312 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6313 Value *Val; LocTy Loc; 6314 SmallVector<unsigned, 4> Indices; 6315 bool AteExtraComma; 6316 if (ParseTypeAndValue(Val, Loc, PFS) || 6317 ParseIndexList(Indices, AteExtraComma)) 6318 return true; 6319 6320 if (!Val->getType()->isAggregateType()) 6321 return Error(Loc, "extractvalue operand must be aggregate type"); 6322 6323 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6324 return Error(Loc, "invalid indices for extractvalue"); 6325 Inst = ExtractValueInst::Create(Val, Indices); 6326 return AteExtraComma ? InstExtraComma : InstNormal; 6327 } 6328 6329 /// ParseInsertValue 6330 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6331 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6332 Value *Val0, *Val1; LocTy Loc0, Loc1; 6333 SmallVector<unsigned, 4> Indices; 6334 bool AteExtraComma; 6335 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6336 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6337 ParseTypeAndValue(Val1, Loc1, PFS) || 6338 ParseIndexList(Indices, AteExtraComma)) 6339 return true; 6340 6341 if (!Val0->getType()->isAggregateType()) 6342 return Error(Loc0, "insertvalue operand must be aggregate type"); 6343 6344 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6345 if (!IndexedType) 6346 return Error(Loc0, "invalid indices for insertvalue"); 6347 if (IndexedType != Val1->getType()) 6348 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6349 getTypeString(Val1->getType()) + "' instead of '" + 6350 getTypeString(IndexedType) + "'"); 6351 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6352 return AteExtraComma ? InstExtraComma : InstNormal; 6353 } 6354 6355 //===----------------------------------------------------------------------===// 6356 // Embedded metadata. 6357 //===----------------------------------------------------------------------===// 6358 6359 /// ParseMDNodeVector 6360 /// ::= { Element (',' Element)* } 6361 /// Element 6362 /// ::= 'null' | TypeAndValue 6363 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6364 if (ParseToken(lltok::lbrace, "expected '{' here")) 6365 return true; 6366 6367 // Check for an empty list. 6368 if (EatIfPresent(lltok::rbrace)) 6369 return false; 6370 6371 do { 6372 // Null is a special case since it is typeless. 6373 if (EatIfPresent(lltok::kw_null)) { 6374 Elts.push_back(nullptr); 6375 continue; 6376 } 6377 6378 Metadata *MD; 6379 if (ParseMetadata(MD, nullptr)) 6380 return true; 6381 Elts.push_back(MD); 6382 } while (EatIfPresent(lltok::comma)); 6383 6384 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6385 } 6386 6387 //===----------------------------------------------------------------------===// 6388 // Use-list order directives. 6389 //===----------------------------------------------------------------------===// 6390 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6391 SMLoc Loc) { 6392 if (V->use_empty()) 6393 return Error(Loc, "value has no uses"); 6394 6395 unsigned NumUses = 0; 6396 SmallDenseMap<const Use *, unsigned, 16> Order; 6397 for (const Use &U : V->uses()) { 6398 if (++NumUses > Indexes.size()) 6399 break; 6400 Order[&U] = Indexes[NumUses - 1]; 6401 } 6402 if (NumUses < 2) 6403 return Error(Loc, "value only has one use"); 6404 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6405 return Error(Loc, "wrong number of indexes, expected " + 6406 Twine(std::distance(V->use_begin(), V->use_end()))); 6407 6408 V->sortUseList([&](const Use &L, const Use &R) { 6409 return Order.lookup(&L) < Order.lookup(&R); 6410 }); 6411 return false; 6412 } 6413 6414 /// ParseUseListOrderIndexes 6415 /// ::= '{' uint32 (',' uint32)+ '}' 6416 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6417 SMLoc Loc = Lex.getLoc(); 6418 if (ParseToken(lltok::lbrace, "expected '{' here")) 6419 return true; 6420 if (Lex.getKind() == lltok::rbrace) 6421 return Lex.Error("expected non-empty list of uselistorder indexes"); 6422 6423 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6424 // indexes should be distinct numbers in the range [0, size-1], and should 6425 // not be in order. 6426 unsigned Offset = 0; 6427 unsigned Max = 0; 6428 bool IsOrdered = true; 6429 assert(Indexes.empty() && "Expected empty order vector"); 6430 do { 6431 unsigned Index; 6432 if (ParseUInt32(Index)) 6433 return true; 6434 6435 // Update consistency checks. 6436 Offset += Index - Indexes.size(); 6437 Max = std::max(Max, Index); 6438 IsOrdered &= Index == Indexes.size(); 6439 6440 Indexes.push_back(Index); 6441 } while (EatIfPresent(lltok::comma)); 6442 6443 if (ParseToken(lltok::rbrace, "expected '}' here")) 6444 return true; 6445 6446 if (Indexes.size() < 2) 6447 return Error(Loc, "expected >= 2 uselistorder indexes"); 6448 if (Offset != 0 || Max >= Indexes.size()) 6449 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6450 if (IsOrdered) 6451 return Error(Loc, "expected uselistorder indexes to change the order"); 6452 6453 return false; 6454 } 6455 6456 /// ParseUseListOrder 6457 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6458 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6459 SMLoc Loc = Lex.getLoc(); 6460 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6461 return true; 6462 6463 Value *V; 6464 SmallVector<unsigned, 16> Indexes; 6465 if (ParseTypeAndValue(V, PFS) || 6466 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6467 ParseUseListOrderIndexes(Indexes)) 6468 return true; 6469 6470 return sortUseListOrder(V, Indexes, Loc); 6471 } 6472 6473 /// ParseUseListOrderBB 6474 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6475 bool LLParser::ParseUseListOrderBB() { 6476 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6477 SMLoc Loc = Lex.getLoc(); 6478 Lex.Lex(); 6479 6480 ValID Fn, Label; 6481 SmallVector<unsigned, 16> Indexes; 6482 if (ParseValID(Fn) || 6483 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6484 ParseValID(Label) || 6485 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6486 ParseUseListOrderIndexes(Indexes)) 6487 return true; 6488 6489 // Check the function. 6490 GlobalValue *GV; 6491 if (Fn.Kind == ValID::t_GlobalName) 6492 GV = M->getNamedValue(Fn.StrVal); 6493 else if (Fn.Kind == ValID::t_GlobalID) 6494 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6495 else 6496 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6497 if (!GV) 6498 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6499 auto *F = dyn_cast<Function>(GV); 6500 if (!F) 6501 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6502 if (F->isDeclaration()) 6503 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6504 6505 // Check the basic block. 6506 if (Label.Kind == ValID::t_LocalID) 6507 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6508 if (Label.Kind != ValID::t_LocalName) 6509 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6510 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6511 if (!V) 6512 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6513 if (!isa<BasicBlock>(V)) 6514 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6515 6516 return sortUseListOrder(V, Indexes, Loc); 6517 } 6518