1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (parseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
81          validateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (parseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (parseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// validateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                      "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                      Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                      Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::validateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::parseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (parseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (parseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::parseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (parseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (parseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:
345       return tokError("expected top-level entity");
346     case lltok::Eof: return false;
347     case lltok::kw_declare:
348       if (parseDeclare())
349         return true;
350       break;
351     case lltok::kw_define:
352       if (parseDefine())
353         return true;
354       break;
355     case lltok::kw_module:
356       if (parseModuleAsm())
357         return true;
358       break;
359     case lltok::kw_deplibs:
360       if (parseDepLibs())
361         return true;
362       break;
363     case lltok::LocalVarID:
364       if (parseUnnamedType())
365         return true;
366       break;
367     case lltok::LocalVar:
368       if (parseNamedType())
369         return true;
370       break;
371     case lltok::GlobalID:
372       if (parseUnnamedGlobal())
373         return true;
374       break;
375     case lltok::GlobalVar:
376       if (parseNamedGlobal())
377         return true;
378       break;
379     case lltok::ComdatVar:  if (parseComdat()) return true; break;
380     case lltok::exclaim:
381       if (parseStandaloneMetadata())
382         return true;
383       break;
384     case lltok::SummaryID:
385       if (parseSummaryEntry())
386         return true;
387       break;
388     case lltok::MetadataVar:
389       if (parseNamedMetadata())
390         return true;
391       break;
392     case lltok::kw_attributes:
393       if (parseUnnamedAttrGrp())
394         return true;
395       break;
396     case lltok::kw_uselistorder:
397       if (parseUseListOrder())
398         return true;
399       break;
400     case lltok::kw_uselistorder_bb:
401       if (parseUseListOrderBB())
402         return true;
403       break;
404     }
405   }
406 }
407 
408 /// toplevelentity
409 ///   ::= 'module' 'asm' STRINGCONSTANT
410 bool LLParser::parseModuleAsm() {
411   assert(Lex.getKind() == lltok::kw_module);
412   Lex.Lex();
413 
414   std::string AsmStr;
415   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
416       parseStringConstant(AsmStr))
417     return true;
418 
419   M->appendModuleInlineAsm(AsmStr);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
425 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
426 bool LLParser::parseTargetDefinition() {
427   assert(Lex.getKind() == lltok::kw_target);
428   std::string Str;
429   switch (Lex.Lex()) {
430   default:
431     return tokError("unknown target property");
432   case lltok::kw_triple:
433     Lex.Lex();
434     if (parseToken(lltok::equal, "expected '=' after target triple") ||
435         parseStringConstant(Str))
436       return true;
437     M->setTargetTriple(Str);
438     return false;
439   case lltok::kw_datalayout:
440     Lex.Lex();
441     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
442         parseStringConstant(Str))
443       return true;
444     M->setDataLayout(Str);
445     return false;
446   }
447 }
448 
449 /// toplevelentity
450 ///   ::= 'source_filename' '=' STRINGCONSTANT
451 bool LLParser::parseSourceFileName() {
452   assert(Lex.getKind() == lltok::kw_source_filename);
453   Lex.Lex();
454   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
455       parseStringConstant(SourceFileName))
456     return true;
457   if (M)
458     M->setSourceFileName(SourceFileName);
459   return false;
460 }
461 
462 /// toplevelentity
463 ///   ::= 'deplibs' '=' '[' ']'
464 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
465 /// FIXME: Remove in 4.0. Currently parse, but ignore.
466 bool LLParser::parseDepLibs() {
467   assert(Lex.getKind() == lltok::kw_deplibs);
468   Lex.Lex();
469   if (parseToken(lltok::equal, "expected '=' after deplibs") ||
470       parseToken(lltok::lsquare, "expected '=' after deplibs"))
471     return true;
472 
473   if (EatIfPresent(lltok::rsquare))
474     return false;
475 
476   do {
477     std::string Str;
478     if (parseStringConstant(Str))
479       return true;
480   } while (EatIfPresent(lltok::comma));
481 
482   return parseToken(lltok::rsquare, "expected ']' at end of list");
483 }
484 
485 /// parseUnnamedType:
486 ///   ::= LocalVarID '=' 'type' type
487 bool LLParser::parseUnnamedType() {
488   LocTy TypeLoc = Lex.getLoc();
489   unsigned TypeID = Lex.getUIntVal();
490   Lex.Lex(); // eat LocalVarID;
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after '='"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
502     if (Entry.first)
503       return error(TypeLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= LocalVar '=' 'type' type
513 bool LLParser::parseNamedType() {
514   std::string Name = Lex.getStrVal();
515   LocTy NameLoc = Lex.getLoc();
516   Lex.Lex();  // eat LocalVar.
517 
518   if (parseToken(lltok::equal, "expected '=' after name") ||
519       parseToken(lltok::kw_type, "expected 'type' after name"))
520     return true;
521 
522   Type *Result = nullptr;
523   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
524     return true;
525 
526   if (!isa<StructType>(Result)) {
527     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
528     if (Entry.first)
529       return error(NameLoc, "non-struct types may not be recursive");
530     Entry.first = Result;
531     Entry.second = SMLoc();
532   }
533 
534   return false;
535 }
536 
537 /// toplevelentity
538 ///   ::= 'declare' FunctionHeader
539 bool LLParser::parseDeclare() {
540   assert(Lex.getKind() == lltok::kw_declare);
541   Lex.Lex();
542 
543   std::vector<std::pair<unsigned, MDNode *>> MDs;
544   while (Lex.getKind() == lltok::MetadataVar) {
545     unsigned MDK;
546     MDNode *N;
547     if (parseMetadataAttachment(MDK, N))
548       return true;
549     MDs.push_back({MDK, N});
550   }
551 
552   Function *F;
553   if (parseFunctionHeader(F, false))
554     return true;
555   for (auto &MD : MDs)
556     F->addMetadata(MD.first, *MD.second);
557   return false;
558 }
559 
560 /// toplevelentity
561 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
562 bool LLParser::parseDefine() {
563   assert(Lex.getKind() == lltok::kw_define);
564   Lex.Lex();
565 
566   Function *F;
567   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
568          parseFunctionBody(*F);
569 }
570 
571 /// parseGlobalType
572 ///   ::= 'constant'
573 ///   ::= 'global'
574 bool LLParser::parseGlobalType(bool &IsConstant) {
575   if (Lex.getKind() == lltok::kw_constant)
576     IsConstant = true;
577   else if (Lex.getKind() == lltok::kw_global)
578     IsConstant = false;
579   else {
580     IsConstant = false;
581     return tokError("expected 'global' or 'constant'");
582   }
583   Lex.Lex();
584   return false;
585 }
586 
587 bool LLParser::parseOptionalUnnamedAddr(
588     GlobalVariable::UnnamedAddr &UnnamedAddr) {
589   if (EatIfPresent(lltok::kw_unnamed_addr))
590     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
591   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
592     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
593   else
594     UnnamedAddr = GlobalValue::UnnamedAddr::None;
595   return false;
596 }
597 
598 /// parseUnnamedGlobal:
599 ///   OptionalVisibility (ALIAS | IFUNC) ...
600 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
601 ///   OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///   OptionalVisibility
606 ///                OptionalDLLStorageClass
607 ///                                                     ...   -> global variable
608 bool LLParser::parseUnnamedGlobal() {
609   unsigned VarID = NumberedVals.size();
610   std::string Name;
611   LocTy NameLoc = Lex.getLoc();
612 
613   // Handle the GlobalID form.
614   if (Lex.getKind() == lltok::GlobalID) {
615     if (Lex.getUIntVal() != VarID)
616       return error(Lex.getLoc(),
617                    "variable expected to be numbered '%" + Twine(VarID) + "'");
618     Lex.Lex(); // eat GlobalID;
619 
620     if (parseToken(lltok::equal, "expected '=' after name"))
621       return true;
622   }
623 
624   bool HasLinkage;
625   unsigned Linkage, Visibility, DLLStorageClass;
626   bool DSOLocal;
627   GlobalVariable::ThreadLocalMode TLM;
628   GlobalVariable::UnnamedAddr UnnamedAddr;
629   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630                            DSOLocal) ||
631       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632     return true;
633 
634   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
635     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
636                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637 
638   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
639                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
640 }
641 
642 /// parseNamedGlobal:
643 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
644 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
645 ///                 OptionalVisibility OptionalDLLStorageClass
646 ///                                                     ...   -> global variable
647 bool LLParser::parseNamedGlobal() {
648   assert(Lex.getKind() == lltok::GlobalVar);
649   LocTy NameLoc = Lex.getLoc();
650   std::string Name = Lex.getStrVal();
651   Lex.Lex();
652 
653   bool HasLinkage;
654   unsigned Linkage, Visibility, DLLStorageClass;
655   bool DSOLocal;
656   GlobalVariable::ThreadLocalMode TLM;
657   GlobalVariable::UnnamedAddr UnnamedAddr;
658   if (parseToken(lltok::equal, "expected '=' in global variable") ||
659       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
660                            DSOLocal) ||
661       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
662     return true;
663 
664   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
665     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
666                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
667 
668   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
669                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
670 }
671 
672 bool LLParser::parseComdat() {
673   assert(Lex.getKind() == lltok::ComdatVar);
674   std::string Name = Lex.getStrVal();
675   LocTy NameLoc = Lex.getLoc();
676   Lex.Lex();
677 
678   if (parseToken(lltok::equal, "expected '=' here"))
679     return true;
680 
681   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
682     return tokError("expected comdat type");
683 
684   Comdat::SelectionKind SK;
685   switch (Lex.getKind()) {
686   default:
687     return tokError("unknown selection kind");
688   case lltok::kw_any:
689     SK = Comdat::Any;
690     break;
691   case lltok::kw_exactmatch:
692     SK = Comdat::ExactMatch;
693     break;
694   case lltok::kw_largest:
695     SK = Comdat::Largest;
696     break;
697   case lltok::kw_noduplicates:
698     SK = Comdat::NoDuplicates;
699     break;
700   case lltok::kw_samesize:
701     SK = Comdat::SameSize;
702     break;
703   }
704   Lex.Lex();
705 
706   // See if the comdat was forward referenced, if so, use the comdat.
707   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
708   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
709   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
710     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
711 
712   Comdat *C;
713   if (I != ComdatSymTab.end())
714     C = &I->second;
715   else
716     C = M->getOrInsertComdat(Name);
717   C->setSelectionKind(SK);
718 
719   return false;
720 }
721 
722 // MDString:
723 //   ::= '!' STRINGCONSTANT
724 bool LLParser::parseMDString(MDString *&Result) {
725   std::string Str;
726   if (parseStringConstant(Str))
727     return true;
728   Result = MDString::get(Context, Str);
729   return false;
730 }
731 
732 // MDNode:
733 //   ::= '!' MDNodeNumber
734 bool LLParser::parseMDNodeID(MDNode *&Result) {
735   // !{ ..., !42, ... }
736   LocTy IDLoc = Lex.getLoc();
737   unsigned MID = 0;
738   if (parseUInt32(MID))
739     return true;
740 
741   // If not a forward reference, just return it now.
742   if (NumberedMetadata.count(MID)) {
743     Result = NumberedMetadata[MID];
744     return false;
745   }
746 
747   // Otherwise, create MDNode forward reference.
748   auto &FwdRef = ForwardRefMDNodes[MID];
749   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
750 
751   Result = FwdRef.first.get();
752   NumberedMetadata[MID].reset(Result);
753   return false;
754 }
755 
756 /// parseNamedMetadata:
757 ///   !foo = !{ !1, !2 }
758 bool LLParser::parseNamedMetadata() {
759   assert(Lex.getKind() == lltok::MetadataVar);
760   std::string Name = Lex.getStrVal();
761   Lex.Lex();
762 
763   if (parseToken(lltok::equal, "expected '=' here") ||
764       parseToken(lltok::exclaim, "Expected '!' here") ||
765       parseToken(lltok::lbrace, "Expected '{' here"))
766     return true;
767 
768   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
769   if (Lex.getKind() != lltok::rbrace)
770     do {
771       MDNode *N = nullptr;
772       // parse DIExpressions inline as a special case. They are still MDNodes,
773       // so they can still appear in named metadata. Remove this logic if they
774       // become plain Metadata.
775       if (Lex.getKind() == lltok::MetadataVar &&
776           Lex.getStrVal() == "DIExpression") {
777         if (parseDIExpression(N, /*IsDistinct=*/false))
778           return true;
779       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
780                  parseMDNodeID(N)) {
781         return true;
782       }
783       NMD->addOperand(N);
784     } while (EatIfPresent(lltok::comma));
785 
786   return parseToken(lltok::rbrace, "expected end of metadata node");
787 }
788 
789 /// parseStandaloneMetadata:
790 ///   !42 = !{...}
791 bool LLParser::parseStandaloneMetadata() {
792   assert(Lex.getKind() == lltok::exclaim);
793   Lex.Lex();
794   unsigned MetadataID = 0;
795 
796   MDNode *Init;
797   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
798     return true;
799 
800   // Detect common error, from old metadata syntax.
801   if (Lex.getKind() == lltok::Type)
802     return tokError("unexpected type in metadata definition");
803 
804   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
805   if (Lex.getKind() == lltok::MetadataVar) {
806     if (parseSpecializedMDNode(Init, IsDistinct))
807       return true;
808   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
809              parseMDTuple(Init, IsDistinct))
810     return true;
811 
812   // See if this was forward referenced, if so, handle it.
813   auto FI = ForwardRefMDNodes.find(MetadataID);
814   if (FI != ForwardRefMDNodes.end()) {
815     FI->second.first->replaceAllUsesWith(Init);
816     ForwardRefMDNodes.erase(FI);
817 
818     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
819   } else {
820     if (NumberedMetadata.count(MetadataID))
821       return tokError("Metadata id is already used");
822     NumberedMetadata[MetadataID].reset(Init);
823   }
824 
825   return false;
826 }
827 
828 // Skips a single module summary entry.
829 bool LLParser::skipModuleSummaryEntry() {
830   // Each module summary entry consists of a tag for the entry
831   // type, followed by a colon, then the fields which may be surrounded by
832   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
833   // support is in place we will look for the tokens corresponding to the
834   // expected tags.
835   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
836       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
837       Lex.getKind() != lltok::kw_blockcount)
838     return tokError(
839         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
840         "start of summary entry");
841   if (Lex.getKind() == lltok::kw_flags)
842     return parseSummaryIndexFlags();
843   if (Lex.getKind() == lltok::kw_blockcount)
844     return parseBlockCount();
845   Lex.Lex();
846   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
847       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
848     return true;
849   // Now walk through the parenthesized entry, until the number of open
850   // parentheses goes back down to 0 (the first '(' was parsed above).
851   unsigned NumOpenParen = 1;
852   do {
853     switch (Lex.getKind()) {
854     case lltok::lparen:
855       NumOpenParen++;
856       break;
857     case lltok::rparen:
858       NumOpenParen--;
859       break;
860     case lltok::Eof:
861       return tokError("found end of file while parsing summary entry");
862     default:
863       // Skip everything in between parentheses.
864       break;
865     }
866     Lex.Lex();
867   } while (NumOpenParen > 0);
868   return false;
869 }
870 
871 /// SummaryEntry
872 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
873 bool LLParser::parseSummaryEntry() {
874   assert(Lex.getKind() == lltok::SummaryID);
875   unsigned SummaryID = Lex.getUIntVal();
876 
877   // For summary entries, colons should be treated as distinct tokens,
878   // not an indication of the end of a label token.
879   Lex.setIgnoreColonInIdentifiers(true);
880 
881   Lex.Lex();
882   if (parseToken(lltok::equal, "expected '=' here"))
883     return true;
884 
885   // If we don't have an index object, skip the summary entry.
886   if (!Index)
887     return skipModuleSummaryEntry();
888 
889   bool result = false;
890   switch (Lex.getKind()) {
891   case lltok::kw_gv:
892     result = parseGVEntry(SummaryID);
893     break;
894   case lltok::kw_module:
895     result = parseModuleEntry(SummaryID);
896     break;
897   case lltok::kw_typeid:
898     result = parseTypeIdEntry(SummaryID);
899     break;
900   case lltok::kw_typeidCompatibleVTable:
901     result = parseTypeIdCompatibleVtableEntry(SummaryID);
902     break;
903   case lltok::kw_flags:
904     result = parseSummaryIndexFlags();
905     break;
906   case lltok::kw_blockcount:
907     result = parseBlockCount();
908     break;
909   default:
910     result = error(Lex.getLoc(), "unexpected summary kind");
911     break;
912   }
913   Lex.setIgnoreColonInIdentifiers(false);
914   return result;
915 }
916 
917 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
918   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
919          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
920 }
921 
922 // If there was an explicit dso_local, update GV. In the absence of an explicit
923 // dso_local we keep the default value.
924 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
925   if (DSOLocal)
926     GV.setDSOLocal(true);
927 }
928 
929 /// parseIndirectSymbol:
930 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
931 ///                     OptionalVisibility OptionalDLLStorageClass
932 ///                     OptionalThreadLocal OptionalUnnamedAddr
933 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
934 ///
935 /// IndirectSymbol
936 ///   ::= TypeAndValue
937 ///
938 /// IndirectSymbolAttr
939 ///   ::= ',' 'partition' StringConstant
940 ///
941 /// Everything through OptionalUnnamedAddr has already been parsed.
942 ///
943 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
944                                    unsigned L, unsigned Visibility,
945                                    unsigned DLLStorageClass, bool DSOLocal,
946                                    GlobalVariable::ThreadLocalMode TLM,
947                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
948   bool IsAlias;
949   if (Lex.getKind() == lltok::kw_alias)
950     IsAlias = true;
951   else if (Lex.getKind() == lltok::kw_ifunc)
952     IsAlias = false;
953   else
954     llvm_unreachable("Not an alias or ifunc!");
955   Lex.Lex();
956 
957   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
958 
959   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
960     return error(NameLoc, "invalid linkage type for alias");
961 
962   if (!isValidVisibilityForLinkage(Visibility, L))
963     return error(NameLoc,
964                  "symbol with local linkage must have default visibility");
965 
966   Type *Ty;
967   LocTy ExplicitTypeLoc = Lex.getLoc();
968   if (parseType(Ty) ||
969       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
970     return true;
971 
972   Constant *Aliasee;
973   LocTy AliaseeLoc = Lex.getLoc();
974   if (Lex.getKind() != lltok::kw_bitcast &&
975       Lex.getKind() != lltok::kw_getelementptr &&
976       Lex.getKind() != lltok::kw_addrspacecast &&
977       Lex.getKind() != lltok::kw_inttoptr) {
978     if (parseGlobalTypeAndValue(Aliasee))
979       return true;
980   } else {
981     // The bitcast dest type is not present, it is implied by the dest type.
982     ValID ID;
983     if (parseValID(ID))
984       return true;
985     if (ID.Kind != ValID::t_Constant)
986       return error(AliaseeLoc, "invalid aliasee");
987     Aliasee = ID.ConstantVal;
988   }
989 
990   Type *AliaseeType = Aliasee->getType();
991   auto *PTy = dyn_cast<PointerType>(AliaseeType);
992   if (!PTy)
993     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
994   unsigned AddrSpace = PTy->getAddressSpace();
995 
996   if (IsAlias && Ty != PTy->getElementType())
997     return error(ExplicitTypeLoc,
998                  "explicit pointee type doesn't match operand's pointee type");
999 
1000   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
1001     return error(ExplicitTypeLoc,
1002                  "explicit pointee type should be a function type");
1003 
1004   GlobalValue *GVal = nullptr;
1005 
1006   // See if the alias was forward referenced, if so, prepare to replace the
1007   // forward reference.
1008   if (!Name.empty()) {
1009     GVal = M->getNamedValue(Name);
1010     if (GVal) {
1011       if (!ForwardRefVals.erase(Name))
1012         return error(NameLoc, "redefinition of global '@" + Name + "'");
1013     }
1014   } else {
1015     auto I = ForwardRefValIDs.find(NumberedVals.size());
1016     if (I != ForwardRefValIDs.end()) {
1017       GVal = I->second.first;
1018       ForwardRefValIDs.erase(I);
1019     }
1020   }
1021 
1022   // Okay, create the alias but do not insert it into the module yet.
1023   std::unique_ptr<GlobalIndirectSymbol> GA;
1024   if (IsAlias)
1025     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1026                                  (GlobalValue::LinkageTypes)Linkage, Name,
1027                                  Aliasee, /*Parent*/ nullptr));
1028   else
1029     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1030                                  (GlobalValue::LinkageTypes)Linkage, Name,
1031                                  Aliasee, /*Parent*/ nullptr));
1032   GA->setThreadLocalMode(TLM);
1033   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1034   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1035   GA->setUnnamedAddr(UnnamedAddr);
1036   maybeSetDSOLocal(DSOLocal, *GA);
1037 
1038   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1039   // Now parse them if there are any.
1040   while (Lex.getKind() == lltok::comma) {
1041     Lex.Lex();
1042 
1043     if (Lex.getKind() == lltok::kw_partition) {
1044       Lex.Lex();
1045       GA->setPartition(Lex.getStrVal());
1046       if (parseToken(lltok::StringConstant, "expected partition string"))
1047         return true;
1048     } else {
1049       return tokError("unknown alias or ifunc property!");
1050     }
1051   }
1052 
1053   if (Name.empty())
1054     NumberedVals.push_back(GA.get());
1055 
1056   if (GVal) {
1057     // Verify that types agree.
1058     if (GVal->getType() != GA->getType())
1059       return error(
1060           ExplicitTypeLoc,
1061           "forward reference and definition of alias have different types");
1062 
1063     // If they agree, just RAUW the old value with the alias and remove the
1064     // forward ref info.
1065     GVal->replaceAllUsesWith(GA.get());
1066     GVal->eraseFromParent();
1067   }
1068 
1069   // Insert into the module, we know its name won't collide now.
1070   if (IsAlias)
1071     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1072   else
1073     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1074   assert(GA->getName() == Name && "Should not be a name conflict!");
1075 
1076   // The module owns this now
1077   GA.release();
1078 
1079   return false;
1080 }
1081 
1082 /// parseGlobal
1083 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1084 ///       OptionalVisibility OptionalDLLStorageClass
1085 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1086 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1087 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1088 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1089 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1090 ///       Const OptionalAttrs
1091 ///
1092 /// Everything up to and including OptionalUnnamedAddr has been parsed
1093 /// already.
1094 ///
1095 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1096                            unsigned Linkage, bool HasLinkage,
1097                            unsigned Visibility, unsigned DLLStorageClass,
1098                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1099                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1100   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1101     return error(NameLoc,
1102                  "symbol with local linkage must have default visibility");
1103 
1104   unsigned AddrSpace;
1105   bool IsConstant, IsExternallyInitialized;
1106   LocTy IsExternallyInitializedLoc;
1107   LocTy TyLoc;
1108 
1109   Type *Ty = nullptr;
1110   if (parseOptionalAddrSpace(AddrSpace) ||
1111       parseOptionalToken(lltok::kw_externally_initialized,
1112                          IsExternallyInitialized,
1113                          &IsExternallyInitializedLoc) ||
1114       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1115     return true;
1116 
1117   // If the linkage is specified and is external, then no initializer is
1118   // present.
1119   Constant *Init = nullptr;
1120   if (!HasLinkage ||
1121       !GlobalValue::isValidDeclarationLinkage(
1122           (GlobalValue::LinkageTypes)Linkage)) {
1123     if (parseGlobalValue(Ty, Init))
1124       return true;
1125   }
1126 
1127   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1128     return error(TyLoc, "invalid type for global variable");
1129 
1130   GlobalValue *GVal = nullptr;
1131 
1132   // See if the global was forward referenced, if so, use the global.
1133   if (!Name.empty()) {
1134     GVal = M->getNamedValue(Name);
1135     if (GVal) {
1136       if (!ForwardRefVals.erase(Name))
1137         return error(NameLoc, "redefinition of global '@" + Name + "'");
1138     }
1139   } else {
1140     auto I = ForwardRefValIDs.find(NumberedVals.size());
1141     if (I != ForwardRefValIDs.end()) {
1142       GVal = I->second.first;
1143       ForwardRefValIDs.erase(I);
1144     }
1145   }
1146 
1147   GlobalVariable *GV;
1148   if (!GVal) {
1149     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1150                             Name, nullptr, GlobalVariable::NotThreadLocal,
1151                             AddrSpace);
1152   } else {
1153     if (GVal->getValueType() != Ty)
1154       return error(
1155           TyLoc,
1156           "forward reference and definition of global have different types");
1157 
1158     GV = cast<GlobalVariable>(GVal);
1159 
1160     // Move the forward-reference to the correct spot in the module.
1161     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1162   }
1163 
1164   if (Name.empty())
1165     NumberedVals.push_back(GV);
1166 
1167   // Set the parsed properties on the global.
1168   if (Init)
1169     GV->setInitializer(Init);
1170   GV->setConstant(IsConstant);
1171   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1172   maybeSetDSOLocal(DSOLocal, *GV);
1173   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1174   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1175   GV->setExternallyInitialized(IsExternallyInitialized);
1176   GV->setThreadLocalMode(TLM);
1177   GV->setUnnamedAddr(UnnamedAddr);
1178 
1179   // parse attributes on the global.
1180   while (Lex.getKind() == lltok::comma) {
1181     Lex.Lex();
1182 
1183     if (Lex.getKind() == lltok::kw_section) {
1184       Lex.Lex();
1185       GV->setSection(Lex.getStrVal());
1186       if (parseToken(lltok::StringConstant, "expected global section string"))
1187         return true;
1188     } else if (Lex.getKind() == lltok::kw_partition) {
1189       Lex.Lex();
1190       GV->setPartition(Lex.getStrVal());
1191       if (parseToken(lltok::StringConstant, "expected partition string"))
1192         return true;
1193     } else if (Lex.getKind() == lltok::kw_align) {
1194       MaybeAlign Alignment;
1195       if (parseOptionalAlignment(Alignment))
1196         return true;
1197       GV->setAlignment(Alignment);
1198     } else if (Lex.getKind() == lltok::MetadataVar) {
1199       if (parseGlobalObjectMetadataAttachment(*GV))
1200         return true;
1201     } else {
1202       Comdat *C;
1203       if (parseOptionalComdat(Name, C))
1204         return true;
1205       if (C)
1206         GV->setComdat(C);
1207       else
1208         return tokError("unknown global variable property!");
1209     }
1210   }
1211 
1212   AttrBuilder Attrs;
1213   LocTy BuiltinLoc;
1214   std::vector<unsigned> FwdRefAttrGrps;
1215   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1216     return true;
1217   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1218     GV->setAttributes(AttributeSet::get(Context, Attrs));
1219     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1220   }
1221 
1222   return false;
1223 }
1224 
1225 /// parseUnnamedAttrGrp
1226 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1227 bool LLParser::parseUnnamedAttrGrp() {
1228   assert(Lex.getKind() == lltok::kw_attributes);
1229   LocTy AttrGrpLoc = Lex.getLoc();
1230   Lex.Lex();
1231 
1232   if (Lex.getKind() != lltok::AttrGrpID)
1233     return tokError("expected attribute group id");
1234 
1235   unsigned VarID = Lex.getUIntVal();
1236   std::vector<unsigned> unused;
1237   LocTy BuiltinLoc;
1238   Lex.Lex();
1239 
1240   if (parseToken(lltok::equal, "expected '=' here") ||
1241       parseToken(lltok::lbrace, "expected '{' here") ||
1242       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1243                                  BuiltinLoc) ||
1244       parseToken(lltok::rbrace, "expected end of attribute group"))
1245     return true;
1246 
1247   if (!NumberedAttrBuilders[VarID].hasAttributes())
1248     return error(AttrGrpLoc, "attribute group has no attributes");
1249 
1250   return false;
1251 }
1252 
1253 /// parseFnAttributeValuePairs
1254 ///   ::= <attr> | <attr> '=' <value>
1255 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1256                                           std::vector<unsigned> &FwdRefAttrGrps,
1257                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1258   bool HaveError = false;
1259 
1260   B.clear();
1261 
1262   while (true) {
1263     lltok::Kind Token = Lex.getKind();
1264     if (Token == lltok::kw_builtin)
1265       BuiltinLoc = Lex.getLoc();
1266     switch (Token) {
1267     default:
1268       if (!inAttrGrp) return HaveError;
1269       return error(Lex.getLoc(), "unterminated attribute group");
1270     case lltok::rbrace:
1271       // Finished.
1272       return false;
1273 
1274     case lltok::AttrGrpID: {
1275       // Allow a function to reference an attribute group:
1276       //
1277       //   define void @foo() #1 { ... }
1278       if (inAttrGrp)
1279         HaveError |= error(
1280             Lex.getLoc(),
1281             "cannot have an attribute group reference in an attribute group");
1282 
1283       unsigned AttrGrpNum = Lex.getUIntVal();
1284       if (inAttrGrp) break;
1285 
1286       // Save the reference to the attribute group. We'll fill it in later.
1287       FwdRefAttrGrps.push_back(AttrGrpNum);
1288       break;
1289     }
1290     // Target-dependent attributes:
1291     case lltok::StringConstant: {
1292       if (parseStringAttribute(B))
1293         return true;
1294       continue;
1295     }
1296 
1297     // Target-independent attributes:
1298     case lltok::kw_align: {
1299       // As a hack, we allow function alignment to be initially parsed as an
1300       // attribute on a function declaration/definition or added to an attribute
1301       // group and later moved to the alignment field.
1302       MaybeAlign Alignment;
1303       if (inAttrGrp) {
1304         Lex.Lex();
1305         uint32_t Value = 0;
1306         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1307           return true;
1308         Alignment = Align(Value);
1309       } else {
1310         if (parseOptionalAlignment(Alignment))
1311           return true;
1312       }
1313       B.addAlignmentAttr(Alignment);
1314       continue;
1315     }
1316     case lltok::kw_alignstack: {
1317       unsigned Alignment;
1318       if (inAttrGrp) {
1319         Lex.Lex();
1320         if (parseToken(lltok::equal, "expected '=' here") ||
1321             parseUInt32(Alignment))
1322           return true;
1323       } else {
1324         if (parseOptionalStackAlignment(Alignment))
1325           return true;
1326       }
1327       B.addStackAlignmentAttr(Alignment);
1328       continue;
1329     }
1330     case lltok::kw_allocsize: {
1331       unsigned ElemSizeArg;
1332       Optional<unsigned> NumElemsArg;
1333       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1334       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1335         return true;
1336       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1337       continue;
1338     }
1339     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1340     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1341     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1342     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1343     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1344     case lltok::kw_inaccessiblememonly:
1345       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1346     case lltok::kw_inaccessiblemem_or_argmemonly:
1347       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1348     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1349     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1350     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1351     case lltok::kw_mustprogress:
1352       B.addAttribute(Attribute::MustProgress);
1353       break;
1354     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1355     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1356     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1357     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1358     case lltok::kw_noimplicitfloat:
1359       B.addAttribute(Attribute::NoImplicitFloat); break;
1360     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1361     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1362     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1363     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1364     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1365     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1366     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1367     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1368     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1369     case lltok::kw_null_pointer_is_valid:
1370       B.addAttribute(Attribute::NullPointerIsValid); break;
1371     case lltok::kw_optforfuzzing:
1372       B.addAttribute(Attribute::OptForFuzzing); break;
1373     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1374     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1375     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1376     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1377     case lltok::kw_returns_twice:
1378       B.addAttribute(Attribute::ReturnsTwice); break;
1379     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1380     case lltok::kw_nossp:
1381       B.addAttribute(Attribute::NoStackProtect);
1382       break;
1383     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1384     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1385     case lltok::kw_sspstrong:
1386       B.addAttribute(Attribute::StackProtectStrong); break;
1387     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1388     case lltok::kw_shadowcallstack:
1389       B.addAttribute(Attribute::ShadowCallStack); break;
1390     case lltok::kw_sanitize_address:
1391       B.addAttribute(Attribute::SanitizeAddress); break;
1392     case lltok::kw_sanitize_hwaddress:
1393       B.addAttribute(Attribute::SanitizeHWAddress); break;
1394     case lltok::kw_sanitize_memtag:
1395       B.addAttribute(Attribute::SanitizeMemTag); break;
1396     case lltok::kw_sanitize_thread:
1397       B.addAttribute(Attribute::SanitizeThread); break;
1398     case lltok::kw_sanitize_memory:
1399       B.addAttribute(Attribute::SanitizeMemory); break;
1400     case lltok::kw_speculative_load_hardening:
1401       B.addAttribute(Attribute::SpeculativeLoadHardening);
1402       break;
1403     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1404     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1405     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1406     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1407     case lltok::kw_preallocated: {
1408       Type *Ty;
1409       if (parsePreallocated(Ty))
1410         return true;
1411       B.addPreallocatedAttr(Ty);
1412       break;
1413     }
1414 
1415     // error handling.
1416     case lltok::kw_inreg:
1417     case lltok::kw_signext:
1418     case lltok::kw_zeroext:
1419       HaveError |=
1420           error(Lex.getLoc(), "invalid use of attribute on a function");
1421       break;
1422     case lltok::kw_byval:
1423     case lltok::kw_dereferenceable:
1424     case lltok::kw_dereferenceable_or_null:
1425     case lltok::kw_inalloca:
1426     case lltok::kw_nest:
1427     case lltok::kw_noalias:
1428     case lltok::kw_noundef:
1429     case lltok::kw_nocapture:
1430     case lltok::kw_nonnull:
1431     case lltok::kw_returned:
1432     case lltok::kw_sret:
1433     case lltok::kw_swifterror:
1434     case lltok::kw_swiftself:
1435     case lltok::kw_immarg:
1436     case lltok::kw_byref:
1437       HaveError |=
1438           error(Lex.getLoc(),
1439                 "invalid use of parameter-only attribute on a function");
1440       break;
1441     }
1442 
1443     // parsePreallocated() consumes token
1444     if (Token != lltok::kw_preallocated)
1445       Lex.Lex();
1446   }
1447 }
1448 
1449 //===----------------------------------------------------------------------===//
1450 // GlobalValue Reference/Resolution Routines.
1451 //===----------------------------------------------------------------------===//
1452 
1453 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1454                                               const std::string &Name) {
1455   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1456     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1457                             PTy->getAddressSpace(), Name, M);
1458   else
1459     return new GlobalVariable(*M, PTy->getElementType(), false,
1460                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1461                               nullptr, GlobalVariable::NotThreadLocal,
1462                               PTy->getAddressSpace());
1463 }
1464 
1465 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1466                                         Value *Val, bool IsCall) {
1467   if (Val->getType() == Ty)
1468     return Val;
1469   // For calls we also accept variables in the program address space.
1470   Type *SuggestedTy = Ty;
1471   if (IsCall && isa<PointerType>(Ty)) {
1472     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1473         M->getDataLayout().getProgramAddressSpace());
1474     SuggestedTy = TyInProgAS;
1475     if (Val->getType() == TyInProgAS)
1476       return Val;
1477   }
1478   if (Ty->isLabelTy())
1479     error(Loc, "'" + Name + "' is not a basic block");
1480   else
1481     error(Loc, "'" + Name + "' defined with type '" +
1482                    getTypeString(Val->getType()) + "' but expected '" +
1483                    getTypeString(SuggestedTy) + "'");
1484   return nullptr;
1485 }
1486 
1487 /// getGlobalVal - Get a value with the specified name or ID, creating a
1488 /// forward reference record if needed.  This can return null if the value
1489 /// exists but does not have the right type.
1490 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1491                                     LocTy Loc, bool IsCall) {
1492   PointerType *PTy = dyn_cast<PointerType>(Ty);
1493   if (!PTy) {
1494     error(Loc, "global variable reference must have pointer type");
1495     return nullptr;
1496   }
1497 
1498   // Look this name up in the normal function symbol table.
1499   GlobalValue *Val =
1500     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1501 
1502   // If this is a forward reference for the value, see if we already created a
1503   // forward ref record.
1504   if (!Val) {
1505     auto I = ForwardRefVals.find(Name);
1506     if (I != ForwardRefVals.end())
1507       Val = I->second.first;
1508   }
1509 
1510   // If we have the value in the symbol table or fwd-ref table, return it.
1511   if (Val)
1512     return cast_or_null<GlobalValue>(
1513         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1514 
1515   // Otherwise, create a new forward reference for this value and remember it.
1516   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1517   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1518   return FwdVal;
1519 }
1520 
1521 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1522                                     bool IsCall) {
1523   PointerType *PTy = dyn_cast<PointerType>(Ty);
1524   if (!PTy) {
1525     error(Loc, "global variable reference must have pointer type");
1526     return nullptr;
1527   }
1528 
1529   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1530 
1531   // If this is a forward reference for the value, see if we already created a
1532   // forward ref record.
1533   if (!Val) {
1534     auto I = ForwardRefValIDs.find(ID);
1535     if (I != ForwardRefValIDs.end())
1536       Val = I->second.first;
1537   }
1538 
1539   // If we have the value in the symbol table or fwd-ref table, return it.
1540   if (Val)
1541     return cast_or_null<GlobalValue>(
1542         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1543 
1544   // Otherwise, create a new forward reference for this value and remember it.
1545   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1546   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1547   return FwdVal;
1548 }
1549 
1550 //===----------------------------------------------------------------------===//
1551 // Comdat Reference/Resolution Routines.
1552 //===----------------------------------------------------------------------===//
1553 
1554 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1555   // Look this name up in the comdat symbol table.
1556   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1557   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1558   if (I != ComdatSymTab.end())
1559     return &I->second;
1560 
1561   // Otherwise, create a new forward reference for this value and remember it.
1562   Comdat *C = M->getOrInsertComdat(Name);
1563   ForwardRefComdats[Name] = Loc;
1564   return C;
1565 }
1566 
1567 //===----------------------------------------------------------------------===//
1568 // Helper Routines.
1569 //===----------------------------------------------------------------------===//
1570 
1571 /// parseToken - If the current token has the specified kind, eat it and return
1572 /// success.  Otherwise, emit the specified error and return failure.
1573 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1574   if (Lex.getKind() != T)
1575     return tokError(ErrMsg);
1576   Lex.Lex();
1577   return false;
1578 }
1579 
1580 /// parseStringConstant
1581 ///   ::= StringConstant
1582 bool LLParser::parseStringConstant(std::string &Result) {
1583   if (Lex.getKind() != lltok::StringConstant)
1584     return tokError("expected string constant");
1585   Result = Lex.getStrVal();
1586   Lex.Lex();
1587   return false;
1588 }
1589 
1590 /// parseUInt32
1591 ///   ::= uint32
1592 bool LLParser::parseUInt32(uint32_t &Val) {
1593   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1594     return tokError("expected integer");
1595   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1596   if (Val64 != unsigned(Val64))
1597     return tokError("expected 32-bit integer (too large)");
1598   Val = Val64;
1599   Lex.Lex();
1600   return false;
1601 }
1602 
1603 /// parseUInt64
1604 ///   ::= uint64
1605 bool LLParser::parseUInt64(uint64_t &Val) {
1606   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1607     return tokError("expected integer");
1608   Val = Lex.getAPSIntVal().getLimitedValue();
1609   Lex.Lex();
1610   return false;
1611 }
1612 
1613 /// parseTLSModel
1614 ///   := 'localdynamic'
1615 ///   := 'initialexec'
1616 ///   := 'localexec'
1617 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1618   switch (Lex.getKind()) {
1619     default:
1620       return tokError("expected localdynamic, initialexec or localexec");
1621     case lltok::kw_localdynamic:
1622       TLM = GlobalVariable::LocalDynamicTLSModel;
1623       break;
1624     case lltok::kw_initialexec:
1625       TLM = GlobalVariable::InitialExecTLSModel;
1626       break;
1627     case lltok::kw_localexec:
1628       TLM = GlobalVariable::LocalExecTLSModel;
1629       break;
1630   }
1631 
1632   Lex.Lex();
1633   return false;
1634 }
1635 
1636 /// parseOptionalThreadLocal
1637 ///   := /*empty*/
1638 ///   := 'thread_local'
1639 ///   := 'thread_local' '(' tlsmodel ')'
1640 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1641   TLM = GlobalVariable::NotThreadLocal;
1642   if (!EatIfPresent(lltok::kw_thread_local))
1643     return false;
1644 
1645   TLM = GlobalVariable::GeneralDynamicTLSModel;
1646   if (Lex.getKind() == lltok::lparen) {
1647     Lex.Lex();
1648     return parseTLSModel(TLM) ||
1649            parseToken(lltok::rparen, "expected ')' after thread local model");
1650   }
1651   return false;
1652 }
1653 
1654 /// parseOptionalAddrSpace
1655 ///   := /*empty*/
1656 ///   := 'addrspace' '(' uint32 ')'
1657 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1658   AddrSpace = DefaultAS;
1659   if (!EatIfPresent(lltok::kw_addrspace))
1660     return false;
1661   return parseToken(lltok::lparen, "expected '(' in address space") ||
1662          parseUInt32(AddrSpace) ||
1663          parseToken(lltok::rparen, "expected ')' in address space");
1664 }
1665 
1666 /// parseStringAttribute
1667 ///   := StringConstant
1668 ///   := StringConstant '=' StringConstant
1669 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1670   std::string Attr = Lex.getStrVal();
1671   Lex.Lex();
1672   std::string Val;
1673   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1674     return true;
1675   B.addAttribute(Attr, Val);
1676   return false;
1677 }
1678 
1679 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1680 /// attributes.
1681 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1682   bool HaveError = false;
1683 
1684   B.clear();
1685 
1686   while (true) {
1687     lltok::Kind Token = Lex.getKind();
1688     switch (Token) {
1689     default:  // End of attributes.
1690       return HaveError;
1691     case lltok::StringConstant: {
1692       if (parseStringAttribute(B))
1693         return true;
1694       continue;
1695     }
1696     case lltok::kw_align: {
1697       MaybeAlign Alignment;
1698       if (parseOptionalAlignment(Alignment, true))
1699         return true;
1700       B.addAlignmentAttr(Alignment);
1701       continue;
1702     }
1703     case lltok::kw_byval: {
1704       Type *Ty;
1705       if (parseOptionalTypeAttr(Ty, lltok::kw_byval))
1706         return true;
1707       B.addByValAttr(Ty);
1708       continue;
1709     }
1710     case lltok::kw_sret: {
1711       Type *Ty;
1712       if (parseOptionalTypeAttr(Ty, lltok::kw_sret))
1713         return true;
1714       B.addStructRetAttr(Ty);
1715       continue;
1716     }
1717     case lltok::kw_preallocated: {
1718       Type *Ty;
1719       if (parsePreallocated(Ty))
1720         return true;
1721       B.addPreallocatedAttr(Ty);
1722       continue;
1723     }
1724     case lltok::kw_dereferenceable: {
1725       uint64_t Bytes;
1726       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1727         return true;
1728       B.addDereferenceableAttr(Bytes);
1729       continue;
1730     }
1731     case lltok::kw_dereferenceable_or_null: {
1732       uint64_t Bytes;
1733       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1734         return true;
1735       B.addDereferenceableOrNullAttr(Bytes);
1736       continue;
1737     }
1738     case lltok::kw_byref: {
1739       Type *Ty;
1740       if (parseByRef(Ty))
1741         return true;
1742       B.addByRefAttr(Ty);
1743       continue;
1744     }
1745     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1746     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1747     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1748     case lltok::kw_noundef:
1749       B.addAttribute(Attribute::NoUndef);
1750       break;
1751     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1752     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1753     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1754     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1755     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1756     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1757     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1758     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1759     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1760     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1761     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1762     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1763     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1764 
1765     case lltok::kw_alignstack:
1766     case lltok::kw_alwaysinline:
1767     case lltok::kw_argmemonly:
1768     case lltok::kw_builtin:
1769     case lltok::kw_inlinehint:
1770     case lltok::kw_jumptable:
1771     case lltok::kw_minsize:
1772     case lltok::kw_mustprogress:
1773     case lltok::kw_naked:
1774     case lltok::kw_nobuiltin:
1775     case lltok::kw_noduplicate:
1776     case lltok::kw_noimplicitfloat:
1777     case lltok::kw_noinline:
1778     case lltok::kw_nonlazybind:
1779     case lltok::kw_nomerge:
1780     case lltok::kw_noredzone:
1781     case lltok::kw_noreturn:
1782     case lltok::kw_nocf_check:
1783     case lltok::kw_nounwind:
1784     case lltok::kw_optforfuzzing:
1785     case lltok::kw_optnone:
1786     case lltok::kw_optsize:
1787     case lltok::kw_returns_twice:
1788     case lltok::kw_sanitize_address:
1789     case lltok::kw_sanitize_hwaddress:
1790     case lltok::kw_sanitize_memtag:
1791     case lltok::kw_sanitize_memory:
1792     case lltok::kw_sanitize_thread:
1793     case lltok::kw_speculative_load_hardening:
1794     case lltok::kw_nossp:
1795     case lltok::kw_ssp:
1796     case lltok::kw_sspreq:
1797     case lltok::kw_sspstrong:
1798     case lltok::kw_safestack:
1799     case lltok::kw_shadowcallstack:
1800     case lltok::kw_strictfp:
1801     case lltok::kw_uwtable:
1802       HaveError |=
1803           error(Lex.getLoc(), "invalid use of function-only attribute");
1804       break;
1805     }
1806 
1807     Lex.Lex();
1808   }
1809 }
1810 
1811 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1812 /// attributes.
1813 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1814   bool HaveError = false;
1815 
1816   B.clear();
1817 
1818   while (true) {
1819     lltok::Kind Token = Lex.getKind();
1820     switch (Token) {
1821     default:  // End of attributes.
1822       return HaveError;
1823     case lltok::StringConstant: {
1824       if (parseStringAttribute(B))
1825         return true;
1826       continue;
1827     }
1828     case lltok::kw_dereferenceable: {
1829       uint64_t Bytes;
1830       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1831         return true;
1832       B.addDereferenceableAttr(Bytes);
1833       continue;
1834     }
1835     case lltok::kw_dereferenceable_or_null: {
1836       uint64_t Bytes;
1837       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1838         return true;
1839       B.addDereferenceableOrNullAttr(Bytes);
1840       continue;
1841     }
1842     case lltok::kw_align: {
1843       MaybeAlign Alignment;
1844       if (parseOptionalAlignment(Alignment))
1845         return true;
1846       B.addAlignmentAttr(Alignment);
1847       continue;
1848     }
1849     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1850     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1851     case lltok::kw_noundef:
1852       B.addAttribute(Attribute::NoUndef);
1853       break;
1854     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1855     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1856     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1857 
1858     // error handling.
1859     case lltok::kw_byval:
1860     case lltok::kw_inalloca:
1861     case lltok::kw_nest:
1862     case lltok::kw_nocapture:
1863     case lltok::kw_returned:
1864     case lltok::kw_sret:
1865     case lltok::kw_swifterror:
1866     case lltok::kw_swiftself:
1867     case lltok::kw_immarg:
1868     case lltok::kw_byref:
1869       HaveError |=
1870           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1871       break;
1872 
1873     case lltok::kw_alignstack:
1874     case lltok::kw_alwaysinline:
1875     case lltok::kw_argmemonly:
1876     case lltok::kw_builtin:
1877     case lltok::kw_cold:
1878     case lltok::kw_inlinehint:
1879     case lltok::kw_jumptable:
1880     case lltok::kw_minsize:
1881     case lltok::kw_mustprogress:
1882     case lltok::kw_naked:
1883     case lltok::kw_nobuiltin:
1884     case lltok::kw_noduplicate:
1885     case lltok::kw_noimplicitfloat:
1886     case lltok::kw_noinline:
1887     case lltok::kw_nonlazybind:
1888     case lltok::kw_nomerge:
1889     case lltok::kw_noredzone:
1890     case lltok::kw_noreturn:
1891     case lltok::kw_nocf_check:
1892     case lltok::kw_nounwind:
1893     case lltok::kw_optforfuzzing:
1894     case lltok::kw_optnone:
1895     case lltok::kw_optsize:
1896     case lltok::kw_returns_twice:
1897     case lltok::kw_sanitize_address:
1898     case lltok::kw_sanitize_hwaddress:
1899     case lltok::kw_sanitize_memtag:
1900     case lltok::kw_sanitize_memory:
1901     case lltok::kw_sanitize_thread:
1902     case lltok::kw_speculative_load_hardening:
1903     case lltok::kw_nossp:
1904     case lltok::kw_ssp:
1905     case lltok::kw_sspreq:
1906     case lltok::kw_sspstrong:
1907     case lltok::kw_safestack:
1908     case lltok::kw_shadowcallstack:
1909     case lltok::kw_strictfp:
1910     case lltok::kw_uwtable:
1911       HaveError |=
1912           error(Lex.getLoc(), "invalid use of function-only attribute");
1913       break;
1914     case lltok::kw_readnone:
1915     case lltok::kw_readonly:
1916       HaveError |=
1917           error(Lex.getLoc(), "invalid use of attribute on return type");
1918       break;
1919     case lltok::kw_preallocated:
1920       HaveError |=
1921           error(Lex.getLoc(),
1922                 "invalid use of parameter-only/call site-only attribute");
1923       break;
1924     }
1925 
1926     Lex.Lex();
1927   }
1928 }
1929 
1930 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1931   HasLinkage = true;
1932   switch (Kind) {
1933   default:
1934     HasLinkage = false;
1935     return GlobalValue::ExternalLinkage;
1936   case lltok::kw_private:
1937     return GlobalValue::PrivateLinkage;
1938   case lltok::kw_internal:
1939     return GlobalValue::InternalLinkage;
1940   case lltok::kw_weak:
1941     return GlobalValue::WeakAnyLinkage;
1942   case lltok::kw_weak_odr:
1943     return GlobalValue::WeakODRLinkage;
1944   case lltok::kw_linkonce:
1945     return GlobalValue::LinkOnceAnyLinkage;
1946   case lltok::kw_linkonce_odr:
1947     return GlobalValue::LinkOnceODRLinkage;
1948   case lltok::kw_available_externally:
1949     return GlobalValue::AvailableExternallyLinkage;
1950   case lltok::kw_appending:
1951     return GlobalValue::AppendingLinkage;
1952   case lltok::kw_common:
1953     return GlobalValue::CommonLinkage;
1954   case lltok::kw_extern_weak:
1955     return GlobalValue::ExternalWeakLinkage;
1956   case lltok::kw_external:
1957     return GlobalValue::ExternalLinkage;
1958   }
1959 }
1960 
1961 /// parseOptionalLinkage
1962 ///   ::= /*empty*/
1963 ///   ::= 'private'
1964 ///   ::= 'internal'
1965 ///   ::= 'weak'
1966 ///   ::= 'weak_odr'
1967 ///   ::= 'linkonce'
1968 ///   ::= 'linkonce_odr'
1969 ///   ::= 'available_externally'
1970 ///   ::= 'appending'
1971 ///   ::= 'common'
1972 ///   ::= 'extern_weak'
1973 ///   ::= 'external'
1974 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1975                                     unsigned &Visibility,
1976                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1977   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1978   if (HasLinkage)
1979     Lex.Lex();
1980   parseOptionalDSOLocal(DSOLocal);
1981   parseOptionalVisibility(Visibility);
1982   parseOptionalDLLStorageClass(DLLStorageClass);
1983 
1984   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1985     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1986   }
1987 
1988   return false;
1989 }
1990 
1991 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1992   switch (Lex.getKind()) {
1993   default:
1994     DSOLocal = false;
1995     break;
1996   case lltok::kw_dso_local:
1997     DSOLocal = true;
1998     Lex.Lex();
1999     break;
2000   case lltok::kw_dso_preemptable:
2001     DSOLocal = false;
2002     Lex.Lex();
2003     break;
2004   }
2005 }
2006 
2007 /// parseOptionalVisibility
2008 ///   ::= /*empty*/
2009 ///   ::= 'default'
2010 ///   ::= 'hidden'
2011 ///   ::= 'protected'
2012 ///
2013 void LLParser::parseOptionalVisibility(unsigned &Res) {
2014   switch (Lex.getKind()) {
2015   default:
2016     Res = GlobalValue::DefaultVisibility;
2017     return;
2018   case lltok::kw_default:
2019     Res = GlobalValue::DefaultVisibility;
2020     break;
2021   case lltok::kw_hidden:
2022     Res = GlobalValue::HiddenVisibility;
2023     break;
2024   case lltok::kw_protected:
2025     Res = GlobalValue::ProtectedVisibility;
2026     break;
2027   }
2028   Lex.Lex();
2029 }
2030 
2031 /// parseOptionalDLLStorageClass
2032 ///   ::= /*empty*/
2033 ///   ::= 'dllimport'
2034 ///   ::= 'dllexport'
2035 ///
2036 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2037   switch (Lex.getKind()) {
2038   default:
2039     Res = GlobalValue::DefaultStorageClass;
2040     return;
2041   case lltok::kw_dllimport:
2042     Res = GlobalValue::DLLImportStorageClass;
2043     break;
2044   case lltok::kw_dllexport:
2045     Res = GlobalValue::DLLExportStorageClass;
2046     break;
2047   }
2048   Lex.Lex();
2049 }
2050 
2051 /// parseOptionalCallingConv
2052 ///   ::= /*empty*/
2053 ///   ::= 'ccc'
2054 ///   ::= 'fastcc'
2055 ///   ::= 'intel_ocl_bicc'
2056 ///   ::= 'coldcc'
2057 ///   ::= 'cfguard_checkcc'
2058 ///   ::= 'x86_stdcallcc'
2059 ///   ::= 'x86_fastcallcc'
2060 ///   ::= 'x86_thiscallcc'
2061 ///   ::= 'x86_vectorcallcc'
2062 ///   ::= 'arm_apcscc'
2063 ///   ::= 'arm_aapcscc'
2064 ///   ::= 'arm_aapcs_vfpcc'
2065 ///   ::= 'aarch64_vector_pcs'
2066 ///   ::= 'aarch64_sve_vector_pcs'
2067 ///   ::= 'msp430_intrcc'
2068 ///   ::= 'avr_intrcc'
2069 ///   ::= 'avr_signalcc'
2070 ///   ::= 'ptx_kernel'
2071 ///   ::= 'ptx_device'
2072 ///   ::= 'spir_func'
2073 ///   ::= 'spir_kernel'
2074 ///   ::= 'x86_64_sysvcc'
2075 ///   ::= 'win64cc'
2076 ///   ::= 'webkit_jscc'
2077 ///   ::= 'anyregcc'
2078 ///   ::= 'preserve_mostcc'
2079 ///   ::= 'preserve_allcc'
2080 ///   ::= 'ghccc'
2081 ///   ::= 'swiftcc'
2082 ///   ::= 'x86_intrcc'
2083 ///   ::= 'hhvmcc'
2084 ///   ::= 'hhvm_ccc'
2085 ///   ::= 'cxx_fast_tlscc'
2086 ///   ::= 'amdgpu_vs'
2087 ///   ::= 'amdgpu_ls'
2088 ///   ::= 'amdgpu_hs'
2089 ///   ::= 'amdgpu_es'
2090 ///   ::= 'amdgpu_gs'
2091 ///   ::= 'amdgpu_ps'
2092 ///   ::= 'amdgpu_cs'
2093 ///   ::= 'amdgpu_kernel'
2094 ///   ::= 'tailcc'
2095 ///   ::= 'cc' UINT
2096 ///
2097 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2098   switch (Lex.getKind()) {
2099   default:                       CC = CallingConv::C; return false;
2100   case lltok::kw_ccc:            CC = CallingConv::C; break;
2101   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2102   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2103   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2104   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2105   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2106   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2107   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2108   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2109   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2110   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2111   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2112   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2113   case lltok::kw_aarch64_sve_vector_pcs:
2114     CC = CallingConv::AArch64_SVE_VectorCall;
2115     break;
2116   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2117   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2118   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2119   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2120   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2121   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2122   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2123   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2124   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2125   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2126   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2127   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2128   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2129   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2130   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2131   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2132   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2133   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2134   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2135   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2136   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2137   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2138   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2139   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2140   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2141   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2142   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2143   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2144   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2145   case lltok::kw_cc: {
2146       Lex.Lex();
2147       return parseUInt32(CC);
2148     }
2149   }
2150 
2151   Lex.Lex();
2152   return false;
2153 }
2154 
2155 /// parseMetadataAttachment
2156 ///   ::= !dbg !42
2157 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2158   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2159 
2160   std::string Name = Lex.getStrVal();
2161   Kind = M->getMDKindID(Name);
2162   Lex.Lex();
2163 
2164   return parseMDNode(MD);
2165 }
2166 
2167 /// parseInstructionMetadata
2168 ///   ::= !dbg !42 (',' !dbg !57)*
2169 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2170   do {
2171     if (Lex.getKind() != lltok::MetadataVar)
2172       return tokError("expected metadata after comma");
2173 
2174     unsigned MDK;
2175     MDNode *N;
2176     if (parseMetadataAttachment(MDK, N))
2177       return true;
2178 
2179     Inst.setMetadata(MDK, N);
2180     if (MDK == LLVMContext::MD_tbaa)
2181       InstsWithTBAATag.push_back(&Inst);
2182 
2183     // If this is the end of the list, we're done.
2184   } while (EatIfPresent(lltok::comma));
2185   return false;
2186 }
2187 
2188 /// parseGlobalObjectMetadataAttachment
2189 ///   ::= !dbg !57
2190 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2191   unsigned MDK;
2192   MDNode *N;
2193   if (parseMetadataAttachment(MDK, N))
2194     return true;
2195 
2196   GO.addMetadata(MDK, *N);
2197   return false;
2198 }
2199 
2200 /// parseOptionalFunctionMetadata
2201 ///   ::= (!dbg !57)*
2202 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2203   while (Lex.getKind() == lltok::MetadataVar)
2204     if (parseGlobalObjectMetadataAttachment(F))
2205       return true;
2206   return false;
2207 }
2208 
2209 /// parseOptionalAlignment
2210 ///   ::= /* empty */
2211 ///   ::= 'align' 4
2212 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2213   Alignment = None;
2214   if (!EatIfPresent(lltok::kw_align))
2215     return false;
2216   LocTy AlignLoc = Lex.getLoc();
2217   uint32_t Value = 0;
2218 
2219   LocTy ParenLoc = Lex.getLoc();
2220   bool HaveParens = false;
2221   if (AllowParens) {
2222     if (EatIfPresent(lltok::lparen))
2223       HaveParens = true;
2224   }
2225 
2226   if (parseUInt32(Value))
2227     return true;
2228 
2229   if (HaveParens && !EatIfPresent(lltok::rparen))
2230     return error(ParenLoc, "expected ')'");
2231 
2232   if (!isPowerOf2_32(Value))
2233     return error(AlignLoc, "alignment is not a power of two");
2234   if (Value > Value::MaximumAlignment)
2235     return error(AlignLoc, "huge alignments are not supported yet");
2236   Alignment = Align(Value);
2237   return false;
2238 }
2239 
2240 /// parseOptionalDerefAttrBytes
2241 ///   ::= /* empty */
2242 ///   ::= AttrKind '(' 4 ')'
2243 ///
2244 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2245 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2246                                            uint64_t &Bytes) {
2247   assert((AttrKind == lltok::kw_dereferenceable ||
2248           AttrKind == lltok::kw_dereferenceable_or_null) &&
2249          "contract!");
2250 
2251   Bytes = 0;
2252   if (!EatIfPresent(AttrKind))
2253     return false;
2254   LocTy ParenLoc = Lex.getLoc();
2255   if (!EatIfPresent(lltok::lparen))
2256     return error(ParenLoc, "expected '('");
2257   LocTy DerefLoc = Lex.getLoc();
2258   if (parseUInt64(Bytes))
2259     return true;
2260   ParenLoc = Lex.getLoc();
2261   if (!EatIfPresent(lltok::rparen))
2262     return error(ParenLoc, "expected ')'");
2263   if (!Bytes)
2264     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2265   return false;
2266 }
2267 
2268 /// parseOptionalCommaAlign
2269 ///   ::=
2270 ///   ::= ',' align 4
2271 ///
2272 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2273 /// end.
2274 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2275                                        bool &AteExtraComma) {
2276   AteExtraComma = false;
2277   while (EatIfPresent(lltok::comma)) {
2278     // Metadata at the end is an early exit.
2279     if (Lex.getKind() == lltok::MetadataVar) {
2280       AteExtraComma = true;
2281       return false;
2282     }
2283 
2284     if (Lex.getKind() != lltok::kw_align)
2285       return error(Lex.getLoc(), "expected metadata or 'align'");
2286 
2287     if (parseOptionalAlignment(Alignment))
2288       return true;
2289   }
2290 
2291   return false;
2292 }
2293 
2294 /// parseOptionalCommaAddrSpace
2295 ///   ::=
2296 ///   ::= ',' addrspace(1)
2297 ///
2298 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2299 /// end.
2300 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2301                                            bool &AteExtraComma) {
2302   AteExtraComma = false;
2303   while (EatIfPresent(lltok::comma)) {
2304     // Metadata at the end is an early exit.
2305     if (Lex.getKind() == lltok::MetadataVar) {
2306       AteExtraComma = true;
2307       return false;
2308     }
2309 
2310     Loc = Lex.getLoc();
2311     if (Lex.getKind() != lltok::kw_addrspace)
2312       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2313 
2314     if (parseOptionalAddrSpace(AddrSpace))
2315       return true;
2316   }
2317 
2318   return false;
2319 }
2320 
2321 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2322                                        Optional<unsigned> &HowManyArg) {
2323   Lex.Lex();
2324 
2325   auto StartParen = Lex.getLoc();
2326   if (!EatIfPresent(lltok::lparen))
2327     return error(StartParen, "expected '('");
2328 
2329   if (parseUInt32(BaseSizeArg))
2330     return true;
2331 
2332   if (EatIfPresent(lltok::comma)) {
2333     auto HowManyAt = Lex.getLoc();
2334     unsigned HowMany;
2335     if (parseUInt32(HowMany))
2336       return true;
2337     if (HowMany == BaseSizeArg)
2338       return error(HowManyAt,
2339                    "'allocsize' indices can't refer to the same parameter");
2340     HowManyArg = HowMany;
2341   } else
2342     HowManyArg = None;
2343 
2344   auto EndParen = Lex.getLoc();
2345   if (!EatIfPresent(lltok::rparen))
2346     return error(EndParen, "expected ')'");
2347   return false;
2348 }
2349 
2350 /// parseScopeAndOrdering
2351 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2352 ///   else: ::=
2353 ///
2354 /// This sets Scope and Ordering to the parsed values.
2355 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2356                                      AtomicOrdering &Ordering) {
2357   if (!IsAtomic)
2358     return false;
2359 
2360   return parseScope(SSID) || parseOrdering(Ordering);
2361 }
2362 
2363 /// parseScope
2364 ///   ::= syncscope("singlethread" | "<target scope>")?
2365 ///
2366 /// This sets synchronization scope ID to the ID of the parsed value.
2367 bool LLParser::parseScope(SyncScope::ID &SSID) {
2368   SSID = SyncScope::System;
2369   if (EatIfPresent(lltok::kw_syncscope)) {
2370     auto StartParenAt = Lex.getLoc();
2371     if (!EatIfPresent(lltok::lparen))
2372       return error(StartParenAt, "Expected '(' in syncscope");
2373 
2374     std::string SSN;
2375     auto SSNAt = Lex.getLoc();
2376     if (parseStringConstant(SSN))
2377       return error(SSNAt, "Expected synchronization scope name");
2378 
2379     auto EndParenAt = Lex.getLoc();
2380     if (!EatIfPresent(lltok::rparen))
2381       return error(EndParenAt, "Expected ')' in syncscope");
2382 
2383     SSID = Context.getOrInsertSyncScopeID(SSN);
2384   }
2385 
2386   return false;
2387 }
2388 
2389 /// parseOrdering
2390 ///   ::= AtomicOrdering
2391 ///
2392 /// This sets Ordering to the parsed value.
2393 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2394   switch (Lex.getKind()) {
2395   default:
2396     return tokError("Expected ordering on atomic instruction");
2397   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2398   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2399   // Not specified yet:
2400   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2401   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2402   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2403   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2404   case lltok::kw_seq_cst:
2405     Ordering = AtomicOrdering::SequentiallyConsistent;
2406     break;
2407   }
2408   Lex.Lex();
2409   return false;
2410 }
2411 
2412 /// parseOptionalStackAlignment
2413 ///   ::= /* empty */
2414 ///   ::= 'alignstack' '(' 4 ')'
2415 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2416   Alignment = 0;
2417   if (!EatIfPresent(lltok::kw_alignstack))
2418     return false;
2419   LocTy ParenLoc = Lex.getLoc();
2420   if (!EatIfPresent(lltok::lparen))
2421     return error(ParenLoc, "expected '('");
2422   LocTy AlignLoc = Lex.getLoc();
2423   if (parseUInt32(Alignment))
2424     return true;
2425   ParenLoc = Lex.getLoc();
2426   if (!EatIfPresent(lltok::rparen))
2427     return error(ParenLoc, "expected ')'");
2428   if (!isPowerOf2_32(Alignment))
2429     return error(AlignLoc, "stack alignment is not a power of two");
2430   return false;
2431 }
2432 
2433 /// parseIndexList - This parses the index list for an insert/extractvalue
2434 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2435 /// comma at the end of the line and find that it is followed by metadata.
2436 /// Clients that don't allow metadata can call the version of this function that
2437 /// only takes one argument.
2438 ///
2439 /// parseIndexList
2440 ///    ::=  (',' uint32)+
2441 ///
2442 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2443                               bool &AteExtraComma) {
2444   AteExtraComma = false;
2445 
2446   if (Lex.getKind() != lltok::comma)
2447     return tokError("expected ',' as start of index list");
2448 
2449   while (EatIfPresent(lltok::comma)) {
2450     if (Lex.getKind() == lltok::MetadataVar) {
2451       if (Indices.empty())
2452         return tokError("expected index");
2453       AteExtraComma = true;
2454       return false;
2455     }
2456     unsigned Idx = 0;
2457     if (parseUInt32(Idx))
2458       return true;
2459     Indices.push_back(Idx);
2460   }
2461 
2462   return false;
2463 }
2464 
2465 //===----------------------------------------------------------------------===//
2466 // Type Parsing.
2467 //===----------------------------------------------------------------------===//
2468 
2469 /// parseType - parse a type.
2470 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2471   SMLoc TypeLoc = Lex.getLoc();
2472   switch (Lex.getKind()) {
2473   default:
2474     return tokError(Msg);
2475   case lltok::Type:
2476     // Type ::= 'float' | 'void' (etc)
2477     Result = Lex.getTyVal();
2478     Lex.Lex();
2479     break;
2480   case lltok::lbrace:
2481     // Type ::= StructType
2482     if (parseAnonStructType(Result, false))
2483       return true;
2484     break;
2485   case lltok::lsquare:
2486     // Type ::= '[' ... ']'
2487     Lex.Lex(); // eat the lsquare.
2488     if (parseArrayVectorType(Result, false))
2489       return true;
2490     break;
2491   case lltok::less: // Either vector or packed struct.
2492     // Type ::= '<' ... '>'
2493     Lex.Lex();
2494     if (Lex.getKind() == lltok::lbrace) {
2495       if (parseAnonStructType(Result, true) ||
2496           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2497         return true;
2498     } else if (parseArrayVectorType(Result, true))
2499       return true;
2500     break;
2501   case lltok::LocalVar: {
2502     // Type ::= %foo
2503     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2504 
2505     // If the type hasn't been defined yet, create a forward definition and
2506     // remember where that forward def'n was seen (in case it never is defined).
2507     if (!Entry.first) {
2508       Entry.first = StructType::create(Context, Lex.getStrVal());
2509       Entry.second = Lex.getLoc();
2510     }
2511     Result = Entry.first;
2512     Lex.Lex();
2513     break;
2514   }
2515 
2516   case lltok::LocalVarID: {
2517     // Type ::= %4
2518     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2519 
2520     // If the type hasn't been defined yet, create a forward definition and
2521     // remember where that forward def'n was seen (in case it never is defined).
2522     if (!Entry.first) {
2523       Entry.first = StructType::create(Context);
2524       Entry.second = Lex.getLoc();
2525     }
2526     Result = Entry.first;
2527     Lex.Lex();
2528     break;
2529   }
2530   }
2531 
2532   // parse the type suffixes.
2533   while (true) {
2534     switch (Lex.getKind()) {
2535     // End of type.
2536     default:
2537       if (!AllowVoid && Result->isVoidTy())
2538         return error(TypeLoc, "void type only allowed for function results");
2539       return false;
2540 
2541     // Type ::= Type '*'
2542     case lltok::star:
2543       if (Result->isLabelTy())
2544         return tokError("basic block pointers are invalid");
2545       if (Result->isVoidTy())
2546         return tokError("pointers to void are invalid - use i8* instead");
2547       if (!PointerType::isValidElementType(Result))
2548         return tokError("pointer to this type is invalid");
2549       Result = PointerType::getUnqual(Result);
2550       Lex.Lex();
2551       break;
2552 
2553     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2554     case lltok::kw_addrspace: {
2555       if (Result->isLabelTy())
2556         return tokError("basic block pointers are invalid");
2557       if (Result->isVoidTy())
2558         return tokError("pointers to void are invalid; use i8* instead");
2559       if (!PointerType::isValidElementType(Result))
2560         return tokError("pointer to this type is invalid");
2561       unsigned AddrSpace;
2562       if (parseOptionalAddrSpace(AddrSpace) ||
2563           parseToken(lltok::star, "expected '*' in address space"))
2564         return true;
2565 
2566       Result = PointerType::get(Result, AddrSpace);
2567       break;
2568     }
2569 
2570     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2571     case lltok::lparen:
2572       if (parseFunctionType(Result))
2573         return true;
2574       break;
2575     }
2576   }
2577 }
2578 
2579 /// parseParameterList
2580 ///    ::= '(' ')'
2581 ///    ::= '(' Arg (',' Arg)* ')'
2582 ///  Arg
2583 ///    ::= Type OptionalAttributes Value OptionalAttributes
2584 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2585                                   PerFunctionState &PFS, bool IsMustTailCall,
2586                                   bool InVarArgsFunc) {
2587   if (parseToken(lltok::lparen, "expected '(' in call"))
2588     return true;
2589 
2590   while (Lex.getKind() != lltok::rparen) {
2591     // If this isn't the first argument, we need a comma.
2592     if (!ArgList.empty() &&
2593         parseToken(lltok::comma, "expected ',' in argument list"))
2594       return true;
2595 
2596     // parse an ellipsis if this is a musttail call in a variadic function.
2597     if (Lex.getKind() == lltok::dotdotdot) {
2598       const char *Msg = "unexpected ellipsis in argument list for ";
2599       if (!IsMustTailCall)
2600         return tokError(Twine(Msg) + "non-musttail call");
2601       if (!InVarArgsFunc)
2602         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2603       Lex.Lex();  // Lex the '...', it is purely for readability.
2604       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2605     }
2606 
2607     // parse the argument.
2608     LocTy ArgLoc;
2609     Type *ArgTy = nullptr;
2610     AttrBuilder ArgAttrs;
2611     Value *V;
2612     if (parseType(ArgTy, ArgLoc))
2613       return true;
2614 
2615     if (ArgTy->isMetadataTy()) {
2616       if (parseMetadataAsValue(V, PFS))
2617         return true;
2618     } else {
2619       // Otherwise, handle normal operands.
2620       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2621         return true;
2622     }
2623     ArgList.push_back(ParamInfo(
2624         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2625   }
2626 
2627   if (IsMustTailCall && InVarArgsFunc)
2628     return tokError("expected '...' at end of argument list for musttail call "
2629                     "in varargs function");
2630 
2631   Lex.Lex();  // Lex the ')'.
2632   return false;
2633 }
2634 
2635 /// parseByValWithOptionalType
2636 ///   ::= byval
2637 ///   ::= byval(<ty>)
2638 bool LLParser::parseOptionalTypeAttr(Type *&Result, lltok::Kind AttrName) {
2639   Result = nullptr;
2640   if (!EatIfPresent(AttrName))
2641     return true;
2642   if (!EatIfPresent(lltok::lparen))
2643     return false;
2644   if (parseType(Result))
2645     return true;
2646   if (!EatIfPresent(lltok::rparen))
2647     return error(Lex.getLoc(), "expected ')'");
2648   return false;
2649 }
2650 
2651 /// parseRequiredTypeAttr
2652 ///   ::= attrname(<ty>)
2653 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2654   Result = nullptr;
2655   if (!EatIfPresent(AttrName))
2656     return true;
2657   if (!EatIfPresent(lltok::lparen))
2658     return error(Lex.getLoc(), "expected '('");
2659   if (parseType(Result))
2660     return true;
2661   if (!EatIfPresent(lltok::rparen))
2662     return error(Lex.getLoc(), "expected ')'");
2663   return false;
2664 }
2665 
2666 /// parsePreallocated
2667 ///   ::= preallocated(<ty>)
2668 bool LLParser::parsePreallocated(Type *&Result) {
2669   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2670 }
2671 
2672 /// parseByRef
2673 ///   ::= byref(<type>)
2674 bool LLParser::parseByRef(Type *&Result) {
2675   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2676 }
2677 
2678 /// parseOptionalOperandBundles
2679 ///    ::= /*empty*/
2680 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2681 ///
2682 /// OperandBundle
2683 ///    ::= bundle-tag '(' ')'
2684 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2685 ///
2686 /// bundle-tag ::= String Constant
2687 bool LLParser::parseOptionalOperandBundles(
2688     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2689   LocTy BeginLoc = Lex.getLoc();
2690   if (!EatIfPresent(lltok::lsquare))
2691     return false;
2692 
2693   while (Lex.getKind() != lltok::rsquare) {
2694     // If this isn't the first operand bundle, we need a comma.
2695     if (!BundleList.empty() &&
2696         parseToken(lltok::comma, "expected ',' in input list"))
2697       return true;
2698 
2699     std::string Tag;
2700     if (parseStringConstant(Tag))
2701       return true;
2702 
2703     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2704       return true;
2705 
2706     std::vector<Value *> Inputs;
2707     while (Lex.getKind() != lltok::rparen) {
2708       // If this isn't the first input, we need a comma.
2709       if (!Inputs.empty() &&
2710           parseToken(lltok::comma, "expected ',' in input list"))
2711         return true;
2712 
2713       Type *Ty = nullptr;
2714       Value *Input = nullptr;
2715       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2716         return true;
2717       Inputs.push_back(Input);
2718     }
2719 
2720     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2721 
2722     Lex.Lex(); // Lex the ')'.
2723   }
2724 
2725   if (BundleList.empty())
2726     return error(BeginLoc, "operand bundle set must not be empty");
2727 
2728   Lex.Lex(); // Lex the ']'.
2729   return false;
2730 }
2731 
2732 /// parseArgumentList - parse the argument list for a function type or function
2733 /// prototype.
2734 ///   ::= '(' ArgTypeListI ')'
2735 /// ArgTypeListI
2736 ///   ::= /*empty*/
2737 ///   ::= '...'
2738 ///   ::= ArgTypeList ',' '...'
2739 ///   ::= ArgType (',' ArgType)*
2740 ///
2741 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2742                                  bool &IsVarArg) {
2743   unsigned CurValID = 0;
2744   IsVarArg = false;
2745   assert(Lex.getKind() == lltok::lparen);
2746   Lex.Lex(); // eat the (.
2747 
2748   if (Lex.getKind() == lltok::rparen) {
2749     // empty
2750   } else if (Lex.getKind() == lltok::dotdotdot) {
2751     IsVarArg = true;
2752     Lex.Lex();
2753   } else {
2754     LocTy TypeLoc = Lex.getLoc();
2755     Type *ArgTy = nullptr;
2756     AttrBuilder Attrs;
2757     std::string Name;
2758 
2759     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2760       return true;
2761 
2762     if (ArgTy->isVoidTy())
2763       return error(TypeLoc, "argument can not have void type");
2764 
2765     if (Lex.getKind() == lltok::LocalVar) {
2766       Name = Lex.getStrVal();
2767       Lex.Lex();
2768     } else if (Lex.getKind() == lltok::LocalVarID) {
2769       if (Lex.getUIntVal() != CurValID)
2770         return error(TypeLoc, "argument expected to be numbered '%" +
2771                                   Twine(CurValID) + "'");
2772       ++CurValID;
2773       Lex.Lex();
2774     }
2775 
2776     if (!FunctionType::isValidArgumentType(ArgTy))
2777       return error(TypeLoc, "invalid type for function argument");
2778 
2779     ArgList.emplace_back(TypeLoc, ArgTy,
2780                          AttributeSet::get(ArgTy->getContext(), Attrs),
2781                          std::move(Name));
2782 
2783     while (EatIfPresent(lltok::comma)) {
2784       // Handle ... at end of arg list.
2785       if (EatIfPresent(lltok::dotdotdot)) {
2786         IsVarArg = true;
2787         break;
2788       }
2789 
2790       // Otherwise must be an argument type.
2791       TypeLoc = Lex.getLoc();
2792       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2793         return true;
2794 
2795       if (ArgTy->isVoidTy())
2796         return error(TypeLoc, "argument can not have void type");
2797 
2798       if (Lex.getKind() == lltok::LocalVar) {
2799         Name = Lex.getStrVal();
2800         Lex.Lex();
2801       } else {
2802         if (Lex.getKind() == lltok::LocalVarID) {
2803           if (Lex.getUIntVal() != CurValID)
2804             return error(TypeLoc, "argument expected to be numbered '%" +
2805                                       Twine(CurValID) + "'");
2806           Lex.Lex();
2807         }
2808         ++CurValID;
2809         Name = "";
2810       }
2811 
2812       if (!ArgTy->isFirstClassType())
2813         return error(TypeLoc, "invalid type for function argument");
2814 
2815       ArgList.emplace_back(TypeLoc, ArgTy,
2816                            AttributeSet::get(ArgTy->getContext(), Attrs),
2817                            std::move(Name));
2818     }
2819   }
2820 
2821   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2822 }
2823 
2824 /// parseFunctionType
2825 ///  ::= Type ArgumentList OptionalAttrs
2826 bool LLParser::parseFunctionType(Type *&Result) {
2827   assert(Lex.getKind() == lltok::lparen);
2828 
2829   if (!FunctionType::isValidReturnType(Result))
2830     return tokError("invalid function return type");
2831 
2832   SmallVector<ArgInfo, 8> ArgList;
2833   bool IsVarArg;
2834   if (parseArgumentList(ArgList, IsVarArg))
2835     return true;
2836 
2837   // Reject names on the arguments lists.
2838   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2839     if (!ArgList[i].Name.empty())
2840       return error(ArgList[i].Loc, "argument name invalid in function type");
2841     if (ArgList[i].Attrs.hasAttributes())
2842       return error(ArgList[i].Loc,
2843                    "argument attributes invalid in function type");
2844   }
2845 
2846   SmallVector<Type*, 16> ArgListTy;
2847   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2848     ArgListTy.push_back(ArgList[i].Ty);
2849 
2850   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2851   return false;
2852 }
2853 
2854 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2855 /// other structs.
2856 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2857   SmallVector<Type*, 8> Elts;
2858   if (parseStructBody(Elts))
2859     return true;
2860 
2861   Result = StructType::get(Context, Elts, Packed);
2862   return false;
2863 }
2864 
2865 /// parseStructDefinition - parse a struct in a 'type' definition.
2866 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2867                                      std::pair<Type *, LocTy> &Entry,
2868                                      Type *&ResultTy) {
2869   // If the type was already defined, diagnose the redefinition.
2870   if (Entry.first && !Entry.second.isValid())
2871     return error(TypeLoc, "redefinition of type");
2872 
2873   // If we have opaque, just return without filling in the definition for the
2874   // struct.  This counts as a definition as far as the .ll file goes.
2875   if (EatIfPresent(lltok::kw_opaque)) {
2876     // This type is being defined, so clear the location to indicate this.
2877     Entry.second = SMLoc();
2878 
2879     // If this type number has never been uttered, create it.
2880     if (!Entry.first)
2881       Entry.first = StructType::create(Context, Name);
2882     ResultTy = Entry.first;
2883     return false;
2884   }
2885 
2886   // If the type starts with '<', then it is either a packed struct or a vector.
2887   bool isPacked = EatIfPresent(lltok::less);
2888 
2889   // If we don't have a struct, then we have a random type alias, which we
2890   // accept for compatibility with old files.  These types are not allowed to be
2891   // forward referenced and not allowed to be recursive.
2892   if (Lex.getKind() != lltok::lbrace) {
2893     if (Entry.first)
2894       return error(TypeLoc, "forward references to non-struct type");
2895 
2896     ResultTy = nullptr;
2897     if (isPacked)
2898       return parseArrayVectorType(ResultTy, true);
2899     return parseType(ResultTy);
2900   }
2901 
2902   // This type is being defined, so clear the location to indicate this.
2903   Entry.second = SMLoc();
2904 
2905   // If this type number has never been uttered, create it.
2906   if (!Entry.first)
2907     Entry.first = StructType::create(Context, Name);
2908 
2909   StructType *STy = cast<StructType>(Entry.first);
2910 
2911   SmallVector<Type*, 8> Body;
2912   if (parseStructBody(Body) ||
2913       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2914     return true;
2915 
2916   STy->setBody(Body, isPacked);
2917   ResultTy = STy;
2918   return false;
2919 }
2920 
2921 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2922 ///   StructType
2923 ///     ::= '{' '}'
2924 ///     ::= '{' Type (',' Type)* '}'
2925 ///     ::= '<' '{' '}' '>'
2926 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2927 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2928   assert(Lex.getKind() == lltok::lbrace);
2929   Lex.Lex(); // Consume the '{'
2930 
2931   // Handle the empty struct.
2932   if (EatIfPresent(lltok::rbrace))
2933     return false;
2934 
2935   LocTy EltTyLoc = Lex.getLoc();
2936   Type *Ty = nullptr;
2937   if (parseType(Ty))
2938     return true;
2939   Body.push_back(Ty);
2940 
2941   if (!StructType::isValidElementType(Ty))
2942     return error(EltTyLoc, "invalid element type for struct");
2943 
2944   while (EatIfPresent(lltok::comma)) {
2945     EltTyLoc = Lex.getLoc();
2946     if (parseType(Ty))
2947       return true;
2948 
2949     if (!StructType::isValidElementType(Ty))
2950       return error(EltTyLoc, "invalid element type for struct");
2951 
2952     Body.push_back(Ty);
2953   }
2954 
2955   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2956 }
2957 
2958 /// parseArrayVectorType - parse an array or vector type, assuming the first
2959 /// token has already been consumed.
2960 ///   Type
2961 ///     ::= '[' APSINTVAL 'x' Types ']'
2962 ///     ::= '<' APSINTVAL 'x' Types '>'
2963 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2964 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2965   bool Scalable = false;
2966 
2967   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2968     Lex.Lex(); // consume the 'vscale'
2969     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2970       return true;
2971 
2972     Scalable = true;
2973   }
2974 
2975   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2976       Lex.getAPSIntVal().getBitWidth() > 64)
2977     return tokError("expected number in address space");
2978 
2979   LocTy SizeLoc = Lex.getLoc();
2980   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2981   Lex.Lex();
2982 
2983   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2984     return true;
2985 
2986   LocTy TypeLoc = Lex.getLoc();
2987   Type *EltTy = nullptr;
2988   if (parseType(EltTy))
2989     return true;
2990 
2991   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2992                  "expected end of sequential type"))
2993     return true;
2994 
2995   if (IsVector) {
2996     if (Size == 0)
2997       return error(SizeLoc, "zero element vector is illegal");
2998     if ((unsigned)Size != Size)
2999       return error(SizeLoc, "size too large for vector");
3000     if (!VectorType::isValidElementType(EltTy))
3001       return error(TypeLoc, "invalid vector element type");
3002     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3003   } else {
3004     if (!ArrayType::isValidElementType(EltTy))
3005       return error(TypeLoc, "invalid array element type");
3006     Result = ArrayType::get(EltTy, Size);
3007   }
3008   return false;
3009 }
3010 
3011 //===----------------------------------------------------------------------===//
3012 // Function Semantic Analysis.
3013 //===----------------------------------------------------------------------===//
3014 
3015 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3016                                              int functionNumber)
3017   : P(p), F(f), FunctionNumber(functionNumber) {
3018 
3019   // Insert unnamed arguments into the NumberedVals list.
3020   for (Argument &A : F.args())
3021     if (!A.hasName())
3022       NumberedVals.push_back(&A);
3023 }
3024 
3025 LLParser::PerFunctionState::~PerFunctionState() {
3026   // If there were any forward referenced non-basicblock values, delete them.
3027 
3028   for (const auto &P : ForwardRefVals) {
3029     if (isa<BasicBlock>(P.second.first))
3030       continue;
3031     P.second.first->replaceAllUsesWith(
3032         UndefValue::get(P.second.first->getType()));
3033     P.second.first->deleteValue();
3034   }
3035 
3036   for (const auto &P : ForwardRefValIDs) {
3037     if (isa<BasicBlock>(P.second.first))
3038       continue;
3039     P.second.first->replaceAllUsesWith(
3040         UndefValue::get(P.second.first->getType()));
3041     P.second.first->deleteValue();
3042   }
3043 }
3044 
3045 bool LLParser::PerFunctionState::finishFunction() {
3046   if (!ForwardRefVals.empty())
3047     return P.error(ForwardRefVals.begin()->second.second,
3048                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3049                        "'");
3050   if (!ForwardRefValIDs.empty())
3051     return P.error(ForwardRefValIDs.begin()->second.second,
3052                    "use of undefined value '%" +
3053                        Twine(ForwardRefValIDs.begin()->first) + "'");
3054   return false;
3055 }
3056 
3057 /// getVal - Get a value with the specified name or ID, creating a
3058 /// forward reference record if needed.  This can return null if the value
3059 /// exists but does not have the right type.
3060 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3061                                           LocTy Loc, bool IsCall) {
3062   // Look this name up in the normal function symbol table.
3063   Value *Val = F.getValueSymbolTable()->lookup(Name);
3064 
3065   // If this is a forward reference for the value, see if we already created a
3066   // forward ref record.
3067   if (!Val) {
3068     auto I = ForwardRefVals.find(Name);
3069     if (I != ForwardRefVals.end())
3070       Val = I->second.first;
3071   }
3072 
3073   // If we have the value in the symbol table or fwd-ref table, return it.
3074   if (Val)
3075     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3076 
3077   // Don't make placeholders with invalid type.
3078   if (!Ty->isFirstClassType()) {
3079     P.error(Loc, "invalid use of a non-first-class type");
3080     return nullptr;
3081   }
3082 
3083   // Otherwise, create a new forward reference for this value and remember it.
3084   Value *FwdVal;
3085   if (Ty->isLabelTy()) {
3086     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3087   } else {
3088     FwdVal = new Argument(Ty, Name);
3089   }
3090 
3091   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3092   return FwdVal;
3093 }
3094 
3095 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3096                                           bool IsCall) {
3097   // Look this name up in the normal function symbol table.
3098   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3099 
3100   // If this is a forward reference for the value, see if we already created a
3101   // forward ref record.
3102   if (!Val) {
3103     auto I = ForwardRefValIDs.find(ID);
3104     if (I != ForwardRefValIDs.end())
3105       Val = I->second.first;
3106   }
3107 
3108   // If we have the value in the symbol table or fwd-ref table, return it.
3109   if (Val)
3110     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3111 
3112   if (!Ty->isFirstClassType()) {
3113     P.error(Loc, "invalid use of a non-first-class type");
3114     return nullptr;
3115   }
3116 
3117   // Otherwise, create a new forward reference for this value and remember it.
3118   Value *FwdVal;
3119   if (Ty->isLabelTy()) {
3120     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3121   } else {
3122     FwdVal = new Argument(Ty);
3123   }
3124 
3125   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3126   return FwdVal;
3127 }
3128 
3129 /// setInstName - After an instruction is parsed and inserted into its
3130 /// basic block, this installs its name.
3131 bool LLParser::PerFunctionState::setInstName(int NameID,
3132                                              const std::string &NameStr,
3133                                              LocTy NameLoc, Instruction *Inst) {
3134   // If this instruction has void type, it cannot have a name or ID specified.
3135   if (Inst->getType()->isVoidTy()) {
3136     if (NameID != -1 || !NameStr.empty())
3137       return P.error(NameLoc, "instructions returning void cannot have a name");
3138     return false;
3139   }
3140 
3141   // If this was a numbered instruction, verify that the instruction is the
3142   // expected value and resolve any forward references.
3143   if (NameStr.empty()) {
3144     // If neither a name nor an ID was specified, just use the next ID.
3145     if (NameID == -1)
3146       NameID = NumberedVals.size();
3147 
3148     if (unsigned(NameID) != NumberedVals.size())
3149       return P.error(NameLoc, "instruction expected to be numbered '%" +
3150                                   Twine(NumberedVals.size()) + "'");
3151 
3152     auto FI = ForwardRefValIDs.find(NameID);
3153     if (FI != ForwardRefValIDs.end()) {
3154       Value *Sentinel = FI->second.first;
3155       if (Sentinel->getType() != Inst->getType())
3156         return P.error(NameLoc, "instruction forward referenced with type '" +
3157                                     getTypeString(FI->second.first->getType()) +
3158                                     "'");
3159 
3160       Sentinel->replaceAllUsesWith(Inst);
3161       Sentinel->deleteValue();
3162       ForwardRefValIDs.erase(FI);
3163     }
3164 
3165     NumberedVals.push_back(Inst);
3166     return false;
3167   }
3168 
3169   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3170   auto FI = ForwardRefVals.find(NameStr);
3171   if (FI != ForwardRefVals.end()) {
3172     Value *Sentinel = FI->second.first;
3173     if (Sentinel->getType() != Inst->getType())
3174       return P.error(NameLoc, "instruction forward referenced with type '" +
3175                                   getTypeString(FI->second.first->getType()) +
3176                                   "'");
3177 
3178     Sentinel->replaceAllUsesWith(Inst);
3179     Sentinel->deleteValue();
3180     ForwardRefVals.erase(FI);
3181   }
3182 
3183   // Set the name on the instruction.
3184   Inst->setName(NameStr);
3185 
3186   if (Inst->getName() != NameStr)
3187     return P.error(NameLoc, "multiple definition of local value named '" +
3188                                 NameStr + "'");
3189   return false;
3190 }
3191 
3192 /// getBB - Get a basic block with the specified name or ID, creating a
3193 /// forward reference record if needed.
3194 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3195                                               LocTy Loc) {
3196   return dyn_cast_or_null<BasicBlock>(
3197       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3198 }
3199 
3200 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3201   return dyn_cast_or_null<BasicBlock>(
3202       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3203 }
3204 
3205 /// defineBB - Define the specified basic block, which is either named or
3206 /// unnamed.  If there is an error, this returns null otherwise it returns
3207 /// the block being defined.
3208 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3209                                                  int NameID, LocTy Loc) {
3210   BasicBlock *BB;
3211   if (Name.empty()) {
3212     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3213       P.error(Loc, "label expected to be numbered '" +
3214                        Twine(NumberedVals.size()) + "'");
3215       return nullptr;
3216     }
3217     BB = getBB(NumberedVals.size(), Loc);
3218     if (!BB) {
3219       P.error(Loc, "unable to create block numbered '" +
3220                        Twine(NumberedVals.size()) + "'");
3221       return nullptr;
3222     }
3223   } else {
3224     BB = getBB(Name, Loc);
3225     if (!BB) {
3226       P.error(Loc, "unable to create block named '" + Name + "'");
3227       return nullptr;
3228     }
3229   }
3230 
3231   // Move the block to the end of the function.  Forward ref'd blocks are
3232   // inserted wherever they happen to be referenced.
3233   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3234 
3235   // Remove the block from forward ref sets.
3236   if (Name.empty()) {
3237     ForwardRefValIDs.erase(NumberedVals.size());
3238     NumberedVals.push_back(BB);
3239   } else {
3240     // BB forward references are already in the function symbol table.
3241     ForwardRefVals.erase(Name);
3242   }
3243 
3244   return BB;
3245 }
3246 
3247 //===----------------------------------------------------------------------===//
3248 // Constants.
3249 //===----------------------------------------------------------------------===//
3250 
3251 /// parseValID - parse an abstract value that doesn't necessarily have a
3252 /// type implied.  For example, if we parse "4" we don't know what integer type
3253 /// it has.  The value will later be combined with its type and checked for
3254 /// sanity.  PFS is used to convert function-local operands of metadata (since
3255 /// metadata operands are not just parsed here but also converted to values).
3256 /// PFS can be null when we are not parsing metadata values inside a function.
3257 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3258   ID.Loc = Lex.getLoc();
3259   switch (Lex.getKind()) {
3260   default:
3261     return tokError("expected value token");
3262   case lltok::GlobalID:  // @42
3263     ID.UIntVal = Lex.getUIntVal();
3264     ID.Kind = ValID::t_GlobalID;
3265     break;
3266   case lltok::GlobalVar:  // @foo
3267     ID.StrVal = Lex.getStrVal();
3268     ID.Kind = ValID::t_GlobalName;
3269     break;
3270   case lltok::LocalVarID:  // %42
3271     ID.UIntVal = Lex.getUIntVal();
3272     ID.Kind = ValID::t_LocalID;
3273     break;
3274   case lltok::LocalVar:  // %foo
3275     ID.StrVal = Lex.getStrVal();
3276     ID.Kind = ValID::t_LocalName;
3277     break;
3278   case lltok::APSInt:
3279     ID.APSIntVal = Lex.getAPSIntVal();
3280     ID.Kind = ValID::t_APSInt;
3281     break;
3282   case lltok::APFloat:
3283     ID.APFloatVal = Lex.getAPFloatVal();
3284     ID.Kind = ValID::t_APFloat;
3285     break;
3286   case lltok::kw_true:
3287     ID.ConstantVal = ConstantInt::getTrue(Context);
3288     ID.Kind = ValID::t_Constant;
3289     break;
3290   case lltok::kw_false:
3291     ID.ConstantVal = ConstantInt::getFalse(Context);
3292     ID.Kind = ValID::t_Constant;
3293     break;
3294   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3295   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3296   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3297   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3298 
3299   case lltok::lbrace: {
3300     // ValID ::= '{' ConstVector '}'
3301     Lex.Lex();
3302     SmallVector<Constant*, 16> Elts;
3303     if (parseGlobalValueVector(Elts) ||
3304         parseToken(lltok::rbrace, "expected end of struct constant"))
3305       return true;
3306 
3307     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3308     ID.UIntVal = Elts.size();
3309     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3310            Elts.size() * sizeof(Elts[0]));
3311     ID.Kind = ValID::t_ConstantStruct;
3312     return false;
3313   }
3314   case lltok::less: {
3315     // ValID ::= '<' ConstVector '>'         --> Vector.
3316     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3317     Lex.Lex();
3318     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3319 
3320     SmallVector<Constant*, 16> Elts;
3321     LocTy FirstEltLoc = Lex.getLoc();
3322     if (parseGlobalValueVector(Elts) ||
3323         (isPackedStruct &&
3324          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3325         parseToken(lltok::greater, "expected end of constant"))
3326       return true;
3327 
3328     if (isPackedStruct) {
3329       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3330       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3331              Elts.size() * sizeof(Elts[0]));
3332       ID.UIntVal = Elts.size();
3333       ID.Kind = ValID::t_PackedConstantStruct;
3334       return false;
3335     }
3336 
3337     if (Elts.empty())
3338       return error(ID.Loc, "constant vector must not be empty");
3339 
3340     if (!Elts[0]->getType()->isIntegerTy() &&
3341         !Elts[0]->getType()->isFloatingPointTy() &&
3342         !Elts[0]->getType()->isPointerTy())
3343       return error(
3344           FirstEltLoc,
3345           "vector elements must have integer, pointer or floating point type");
3346 
3347     // Verify that all the vector elements have the same type.
3348     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3349       if (Elts[i]->getType() != Elts[0]->getType())
3350         return error(FirstEltLoc, "vector element #" + Twine(i) +
3351                                       " is not of type '" +
3352                                       getTypeString(Elts[0]->getType()));
3353 
3354     ID.ConstantVal = ConstantVector::get(Elts);
3355     ID.Kind = ValID::t_Constant;
3356     return false;
3357   }
3358   case lltok::lsquare: {   // Array Constant
3359     Lex.Lex();
3360     SmallVector<Constant*, 16> Elts;
3361     LocTy FirstEltLoc = Lex.getLoc();
3362     if (parseGlobalValueVector(Elts) ||
3363         parseToken(lltok::rsquare, "expected end of array constant"))
3364       return true;
3365 
3366     // Handle empty element.
3367     if (Elts.empty()) {
3368       // Use undef instead of an array because it's inconvenient to determine
3369       // the element type at this point, there being no elements to examine.
3370       ID.Kind = ValID::t_EmptyArray;
3371       return false;
3372     }
3373 
3374     if (!Elts[0]->getType()->isFirstClassType())
3375       return error(FirstEltLoc, "invalid array element type: " +
3376                                     getTypeString(Elts[0]->getType()));
3377 
3378     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3379 
3380     // Verify all elements are correct type!
3381     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3382       if (Elts[i]->getType() != Elts[0]->getType())
3383         return error(FirstEltLoc, "array element #" + Twine(i) +
3384                                       " is not of type '" +
3385                                       getTypeString(Elts[0]->getType()));
3386     }
3387 
3388     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3389     ID.Kind = ValID::t_Constant;
3390     return false;
3391   }
3392   case lltok::kw_c:  // c "foo"
3393     Lex.Lex();
3394     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3395                                                   false);
3396     if (parseToken(lltok::StringConstant, "expected string"))
3397       return true;
3398     ID.Kind = ValID::t_Constant;
3399     return false;
3400 
3401   case lltok::kw_asm: {
3402     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3403     //             STRINGCONSTANT
3404     bool HasSideEffect, AlignStack, AsmDialect;
3405     Lex.Lex();
3406     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3407         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3408         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3409         parseStringConstant(ID.StrVal) ||
3410         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3411         parseToken(lltok::StringConstant, "expected constraint string"))
3412       return true;
3413     ID.StrVal2 = Lex.getStrVal();
3414     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3415       (unsigned(AsmDialect)<<2);
3416     ID.Kind = ValID::t_InlineAsm;
3417     return false;
3418   }
3419 
3420   case lltok::kw_blockaddress: {
3421     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3422     Lex.Lex();
3423 
3424     ValID Fn, Label;
3425 
3426     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3427         parseValID(Fn) ||
3428         parseToken(lltok::comma,
3429                    "expected comma in block address expression") ||
3430         parseValID(Label) ||
3431         parseToken(lltok::rparen, "expected ')' in block address expression"))
3432       return true;
3433 
3434     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3435       return error(Fn.Loc, "expected function name in blockaddress");
3436     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3437       return error(Label.Loc, "expected basic block name in blockaddress");
3438 
3439     // Try to find the function (but skip it if it's forward-referenced).
3440     GlobalValue *GV = nullptr;
3441     if (Fn.Kind == ValID::t_GlobalID) {
3442       if (Fn.UIntVal < NumberedVals.size())
3443         GV = NumberedVals[Fn.UIntVal];
3444     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3445       GV = M->getNamedValue(Fn.StrVal);
3446     }
3447     Function *F = nullptr;
3448     if (GV) {
3449       // Confirm that it's actually a function with a definition.
3450       if (!isa<Function>(GV))
3451         return error(Fn.Loc, "expected function name in blockaddress");
3452       F = cast<Function>(GV);
3453       if (F->isDeclaration())
3454         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3455     }
3456 
3457     if (!F) {
3458       // Make a global variable as a placeholder for this reference.
3459       GlobalValue *&FwdRef =
3460           ForwardRefBlockAddresses.insert(std::make_pair(
3461                                               std::move(Fn),
3462                                               std::map<ValID, GlobalValue *>()))
3463               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3464               .first->second;
3465       if (!FwdRef)
3466         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3467                                     GlobalValue::InternalLinkage, nullptr, "");
3468       ID.ConstantVal = FwdRef;
3469       ID.Kind = ValID::t_Constant;
3470       return false;
3471     }
3472 
3473     // We found the function; now find the basic block.  Don't use PFS, since we
3474     // might be inside a constant expression.
3475     BasicBlock *BB;
3476     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3477       if (Label.Kind == ValID::t_LocalID)
3478         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3479       else
3480         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3481       if (!BB)
3482         return error(Label.Loc, "referenced value is not a basic block");
3483     } else {
3484       if (Label.Kind == ValID::t_LocalID)
3485         return error(Label.Loc, "cannot take address of numeric label after "
3486                                 "the function is defined");
3487       BB = dyn_cast_or_null<BasicBlock>(
3488           F->getValueSymbolTable()->lookup(Label.StrVal));
3489       if (!BB)
3490         return error(Label.Loc, "referenced value is not a basic block");
3491     }
3492 
3493     ID.ConstantVal = BlockAddress::get(F, BB);
3494     ID.Kind = ValID::t_Constant;
3495     return false;
3496   }
3497 
3498   case lltok::kw_trunc:
3499   case lltok::kw_zext:
3500   case lltok::kw_sext:
3501   case lltok::kw_fptrunc:
3502   case lltok::kw_fpext:
3503   case lltok::kw_bitcast:
3504   case lltok::kw_addrspacecast:
3505   case lltok::kw_uitofp:
3506   case lltok::kw_sitofp:
3507   case lltok::kw_fptoui:
3508   case lltok::kw_fptosi:
3509   case lltok::kw_inttoptr:
3510   case lltok::kw_ptrtoint: {
3511     unsigned Opc = Lex.getUIntVal();
3512     Type *DestTy = nullptr;
3513     Constant *SrcVal;
3514     Lex.Lex();
3515     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3516         parseGlobalTypeAndValue(SrcVal) ||
3517         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3518         parseType(DestTy) ||
3519         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3520       return true;
3521     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3522       return error(ID.Loc, "invalid cast opcode for cast from '" +
3523                                getTypeString(SrcVal->getType()) + "' to '" +
3524                                getTypeString(DestTy) + "'");
3525     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3526                                                  SrcVal, DestTy);
3527     ID.Kind = ValID::t_Constant;
3528     return false;
3529   }
3530   case lltok::kw_extractvalue: {
3531     Lex.Lex();
3532     Constant *Val;
3533     SmallVector<unsigned, 4> Indices;
3534     if (parseToken(lltok::lparen,
3535                    "expected '(' in extractvalue constantexpr") ||
3536         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3537         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3538       return true;
3539 
3540     if (!Val->getType()->isAggregateType())
3541       return error(ID.Loc, "extractvalue operand must be aggregate type");
3542     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3543       return error(ID.Loc, "invalid indices for extractvalue");
3544     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3545     ID.Kind = ValID::t_Constant;
3546     return false;
3547   }
3548   case lltok::kw_insertvalue: {
3549     Lex.Lex();
3550     Constant *Val0, *Val1;
3551     SmallVector<unsigned, 4> Indices;
3552     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3553         parseGlobalTypeAndValue(Val0) ||
3554         parseToken(lltok::comma,
3555                    "expected comma in insertvalue constantexpr") ||
3556         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3557         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3558       return true;
3559     if (!Val0->getType()->isAggregateType())
3560       return error(ID.Loc, "insertvalue operand must be aggregate type");
3561     Type *IndexedType =
3562         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3563     if (!IndexedType)
3564       return error(ID.Loc, "invalid indices for insertvalue");
3565     if (IndexedType != Val1->getType())
3566       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3567                                getTypeString(Val1->getType()) +
3568                                "' instead of '" + getTypeString(IndexedType) +
3569                                "'");
3570     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3571     ID.Kind = ValID::t_Constant;
3572     return false;
3573   }
3574   case lltok::kw_icmp:
3575   case lltok::kw_fcmp: {
3576     unsigned PredVal, Opc = Lex.getUIntVal();
3577     Constant *Val0, *Val1;
3578     Lex.Lex();
3579     if (parseCmpPredicate(PredVal, Opc) ||
3580         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3581         parseGlobalTypeAndValue(Val0) ||
3582         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3583         parseGlobalTypeAndValue(Val1) ||
3584         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3585       return true;
3586 
3587     if (Val0->getType() != Val1->getType())
3588       return error(ID.Loc, "compare operands must have the same type");
3589 
3590     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3591 
3592     if (Opc == Instruction::FCmp) {
3593       if (!Val0->getType()->isFPOrFPVectorTy())
3594         return error(ID.Loc, "fcmp requires floating point operands");
3595       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3596     } else {
3597       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3598       if (!Val0->getType()->isIntOrIntVectorTy() &&
3599           !Val0->getType()->isPtrOrPtrVectorTy())
3600         return error(ID.Loc, "icmp requires pointer or integer operands");
3601       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3602     }
3603     ID.Kind = ValID::t_Constant;
3604     return false;
3605   }
3606 
3607   // Unary Operators.
3608   case lltok::kw_fneg: {
3609     unsigned Opc = Lex.getUIntVal();
3610     Constant *Val;
3611     Lex.Lex();
3612     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3613         parseGlobalTypeAndValue(Val) ||
3614         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3615       return true;
3616 
3617     // Check that the type is valid for the operator.
3618     switch (Opc) {
3619     case Instruction::FNeg:
3620       if (!Val->getType()->isFPOrFPVectorTy())
3621         return error(ID.Loc, "constexpr requires fp operands");
3622       break;
3623     default: llvm_unreachable("Unknown unary operator!");
3624     }
3625     unsigned Flags = 0;
3626     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3627     ID.ConstantVal = C;
3628     ID.Kind = ValID::t_Constant;
3629     return false;
3630   }
3631   // Binary Operators.
3632   case lltok::kw_add:
3633   case lltok::kw_fadd:
3634   case lltok::kw_sub:
3635   case lltok::kw_fsub:
3636   case lltok::kw_mul:
3637   case lltok::kw_fmul:
3638   case lltok::kw_udiv:
3639   case lltok::kw_sdiv:
3640   case lltok::kw_fdiv:
3641   case lltok::kw_urem:
3642   case lltok::kw_srem:
3643   case lltok::kw_frem:
3644   case lltok::kw_shl:
3645   case lltok::kw_lshr:
3646   case lltok::kw_ashr: {
3647     bool NUW = false;
3648     bool NSW = false;
3649     bool Exact = false;
3650     unsigned Opc = Lex.getUIntVal();
3651     Constant *Val0, *Val1;
3652     Lex.Lex();
3653     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3654         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3655       if (EatIfPresent(lltok::kw_nuw))
3656         NUW = true;
3657       if (EatIfPresent(lltok::kw_nsw)) {
3658         NSW = true;
3659         if (EatIfPresent(lltok::kw_nuw))
3660           NUW = true;
3661       }
3662     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3663                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3664       if (EatIfPresent(lltok::kw_exact))
3665         Exact = true;
3666     }
3667     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3668         parseGlobalTypeAndValue(Val0) ||
3669         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3670         parseGlobalTypeAndValue(Val1) ||
3671         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3672       return true;
3673     if (Val0->getType() != Val1->getType())
3674       return error(ID.Loc, "operands of constexpr must have same type");
3675     // Check that the type is valid for the operator.
3676     switch (Opc) {
3677     case Instruction::Add:
3678     case Instruction::Sub:
3679     case Instruction::Mul:
3680     case Instruction::UDiv:
3681     case Instruction::SDiv:
3682     case Instruction::URem:
3683     case Instruction::SRem:
3684     case Instruction::Shl:
3685     case Instruction::AShr:
3686     case Instruction::LShr:
3687       if (!Val0->getType()->isIntOrIntVectorTy())
3688         return error(ID.Loc, "constexpr requires integer operands");
3689       break;
3690     case Instruction::FAdd:
3691     case Instruction::FSub:
3692     case Instruction::FMul:
3693     case Instruction::FDiv:
3694     case Instruction::FRem:
3695       if (!Val0->getType()->isFPOrFPVectorTy())
3696         return error(ID.Loc, "constexpr requires fp operands");
3697       break;
3698     default: llvm_unreachable("Unknown binary operator!");
3699     }
3700     unsigned Flags = 0;
3701     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3702     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3703     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3704     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3705     ID.ConstantVal = C;
3706     ID.Kind = ValID::t_Constant;
3707     return false;
3708   }
3709 
3710   // Logical Operations
3711   case lltok::kw_and:
3712   case lltok::kw_or:
3713   case lltok::kw_xor: {
3714     unsigned Opc = Lex.getUIntVal();
3715     Constant *Val0, *Val1;
3716     Lex.Lex();
3717     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3718         parseGlobalTypeAndValue(Val0) ||
3719         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3720         parseGlobalTypeAndValue(Val1) ||
3721         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3722       return true;
3723     if (Val0->getType() != Val1->getType())
3724       return error(ID.Loc, "operands of constexpr must have same type");
3725     if (!Val0->getType()->isIntOrIntVectorTy())
3726       return error(ID.Loc,
3727                    "constexpr requires integer or integer vector operands");
3728     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3729     ID.Kind = ValID::t_Constant;
3730     return false;
3731   }
3732 
3733   case lltok::kw_getelementptr:
3734   case lltok::kw_shufflevector:
3735   case lltok::kw_insertelement:
3736   case lltok::kw_extractelement:
3737   case lltok::kw_select: {
3738     unsigned Opc = Lex.getUIntVal();
3739     SmallVector<Constant*, 16> Elts;
3740     bool InBounds = false;
3741     Type *Ty;
3742     Lex.Lex();
3743 
3744     if (Opc == Instruction::GetElementPtr)
3745       InBounds = EatIfPresent(lltok::kw_inbounds);
3746 
3747     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3748       return true;
3749 
3750     LocTy ExplicitTypeLoc = Lex.getLoc();
3751     if (Opc == Instruction::GetElementPtr) {
3752       if (parseType(Ty) ||
3753           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3754         return true;
3755     }
3756 
3757     Optional<unsigned> InRangeOp;
3758     if (parseGlobalValueVector(
3759             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3760         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3761       return true;
3762 
3763     if (Opc == Instruction::GetElementPtr) {
3764       if (Elts.size() == 0 ||
3765           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3766         return error(ID.Loc, "base of getelementptr must be a pointer");
3767 
3768       Type *BaseType = Elts[0]->getType();
3769       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3770       if (Ty != BasePointerType->getElementType())
3771         return error(
3772             ExplicitTypeLoc,
3773             "explicit pointee type doesn't match operand's pointee type");
3774 
3775       unsigned GEPWidth =
3776           BaseType->isVectorTy()
3777               ? cast<FixedVectorType>(BaseType)->getNumElements()
3778               : 0;
3779 
3780       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3781       for (Constant *Val : Indices) {
3782         Type *ValTy = Val->getType();
3783         if (!ValTy->isIntOrIntVectorTy())
3784           return error(ID.Loc, "getelementptr index must be an integer");
3785         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3786           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3787           if (GEPWidth && (ValNumEl != GEPWidth))
3788             return error(
3789                 ID.Loc,
3790                 "getelementptr vector index has a wrong number of elements");
3791           // GEPWidth may have been unknown because the base is a scalar,
3792           // but it is known now.
3793           GEPWidth = ValNumEl;
3794         }
3795       }
3796 
3797       SmallPtrSet<Type*, 4> Visited;
3798       if (!Indices.empty() && !Ty->isSized(&Visited))
3799         return error(ID.Loc, "base element of getelementptr must be sized");
3800 
3801       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3802         return error(ID.Loc, "invalid getelementptr indices");
3803 
3804       if (InRangeOp) {
3805         if (*InRangeOp == 0)
3806           return error(ID.Loc,
3807                        "inrange keyword may not appear on pointer operand");
3808         --*InRangeOp;
3809       }
3810 
3811       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3812                                                       InBounds, InRangeOp);
3813     } else if (Opc == Instruction::Select) {
3814       if (Elts.size() != 3)
3815         return error(ID.Loc, "expected three operands to select");
3816       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3817                                                               Elts[2]))
3818         return error(ID.Loc, Reason);
3819       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3820     } else if (Opc == Instruction::ShuffleVector) {
3821       if (Elts.size() != 3)
3822         return error(ID.Loc, "expected three operands to shufflevector");
3823       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3824         return error(ID.Loc, "invalid operands to shufflevector");
3825       SmallVector<int, 16> Mask;
3826       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3827       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3828     } else if (Opc == Instruction::ExtractElement) {
3829       if (Elts.size() != 2)
3830         return error(ID.Loc, "expected two operands to extractelement");
3831       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3832         return error(ID.Loc, "invalid extractelement operands");
3833       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3834     } else {
3835       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3836       if (Elts.size() != 3)
3837         return error(ID.Loc, "expected three operands to insertelement");
3838       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3839         return error(ID.Loc, "invalid insertelement operands");
3840       ID.ConstantVal =
3841                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3842     }
3843 
3844     ID.Kind = ValID::t_Constant;
3845     return false;
3846   }
3847   }
3848 
3849   Lex.Lex();
3850   return false;
3851 }
3852 
3853 /// parseGlobalValue - parse a global value with the specified type.
3854 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3855   C = nullptr;
3856   ValID ID;
3857   Value *V = nullptr;
3858   bool Parsed = parseValID(ID) ||
3859                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3860   if (V && !(C = dyn_cast<Constant>(V)))
3861     return error(ID.Loc, "global values must be constants");
3862   return Parsed;
3863 }
3864 
3865 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3866   Type *Ty = nullptr;
3867   return parseType(Ty) || parseGlobalValue(Ty, V);
3868 }
3869 
3870 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3871   C = nullptr;
3872 
3873   LocTy KwLoc = Lex.getLoc();
3874   if (!EatIfPresent(lltok::kw_comdat))
3875     return false;
3876 
3877   if (EatIfPresent(lltok::lparen)) {
3878     if (Lex.getKind() != lltok::ComdatVar)
3879       return tokError("expected comdat variable");
3880     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3881     Lex.Lex();
3882     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3883       return true;
3884   } else {
3885     if (GlobalName.empty())
3886       return tokError("comdat cannot be unnamed");
3887     C = getComdat(std::string(GlobalName), KwLoc);
3888   }
3889 
3890   return false;
3891 }
3892 
3893 /// parseGlobalValueVector
3894 ///   ::= /*empty*/
3895 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3896 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3897                                       Optional<unsigned> *InRangeOp) {
3898   // Empty list.
3899   if (Lex.getKind() == lltok::rbrace ||
3900       Lex.getKind() == lltok::rsquare ||
3901       Lex.getKind() == lltok::greater ||
3902       Lex.getKind() == lltok::rparen)
3903     return false;
3904 
3905   do {
3906     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3907       *InRangeOp = Elts.size();
3908 
3909     Constant *C;
3910     if (parseGlobalTypeAndValue(C))
3911       return true;
3912     Elts.push_back(C);
3913   } while (EatIfPresent(lltok::comma));
3914 
3915   return false;
3916 }
3917 
3918 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3919   SmallVector<Metadata *, 16> Elts;
3920   if (parseMDNodeVector(Elts))
3921     return true;
3922 
3923   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3924   return false;
3925 }
3926 
3927 /// MDNode:
3928 ///  ::= !{ ... }
3929 ///  ::= !7
3930 ///  ::= !DILocation(...)
3931 bool LLParser::parseMDNode(MDNode *&N) {
3932   if (Lex.getKind() == lltok::MetadataVar)
3933     return parseSpecializedMDNode(N);
3934 
3935   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3936 }
3937 
3938 bool LLParser::parseMDNodeTail(MDNode *&N) {
3939   // !{ ... }
3940   if (Lex.getKind() == lltok::lbrace)
3941     return parseMDTuple(N);
3942 
3943   // !42
3944   return parseMDNodeID(N);
3945 }
3946 
3947 namespace {
3948 
3949 /// Structure to represent an optional metadata field.
3950 template <class FieldTy> struct MDFieldImpl {
3951   typedef MDFieldImpl ImplTy;
3952   FieldTy Val;
3953   bool Seen;
3954 
3955   void assign(FieldTy Val) {
3956     Seen = true;
3957     this->Val = std::move(Val);
3958   }
3959 
3960   explicit MDFieldImpl(FieldTy Default)
3961       : Val(std::move(Default)), Seen(false) {}
3962 };
3963 
3964 /// Structure to represent an optional metadata field that
3965 /// can be of either type (A or B) and encapsulates the
3966 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3967 /// to reimplement the specifics for representing each Field.
3968 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3969   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3970   FieldTypeA A;
3971   FieldTypeB B;
3972   bool Seen;
3973 
3974   enum {
3975     IsInvalid = 0,
3976     IsTypeA = 1,
3977     IsTypeB = 2
3978   } WhatIs;
3979 
3980   void assign(FieldTypeA A) {
3981     Seen = true;
3982     this->A = std::move(A);
3983     WhatIs = IsTypeA;
3984   }
3985 
3986   void assign(FieldTypeB B) {
3987     Seen = true;
3988     this->B = std::move(B);
3989     WhatIs = IsTypeB;
3990   }
3991 
3992   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3993       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3994         WhatIs(IsInvalid) {}
3995 };
3996 
3997 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3998   uint64_t Max;
3999 
4000   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4001       : ImplTy(Default), Max(Max) {}
4002 };
4003 
4004 struct LineField : public MDUnsignedField {
4005   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4006 };
4007 
4008 struct ColumnField : public MDUnsignedField {
4009   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4010 };
4011 
4012 struct DwarfTagField : public MDUnsignedField {
4013   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4014   DwarfTagField(dwarf::Tag DefaultTag)
4015       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4016 };
4017 
4018 struct DwarfMacinfoTypeField : public MDUnsignedField {
4019   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4020   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4021     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4022 };
4023 
4024 struct DwarfAttEncodingField : public MDUnsignedField {
4025   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4026 };
4027 
4028 struct DwarfVirtualityField : public MDUnsignedField {
4029   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4030 };
4031 
4032 struct DwarfLangField : public MDUnsignedField {
4033   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4034 };
4035 
4036 struct DwarfCCField : public MDUnsignedField {
4037   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4038 };
4039 
4040 struct EmissionKindField : public MDUnsignedField {
4041   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4042 };
4043 
4044 struct NameTableKindField : public MDUnsignedField {
4045   NameTableKindField()
4046       : MDUnsignedField(
4047             0, (unsigned)
4048                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4049 };
4050 
4051 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4052   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4053 };
4054 
4055 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4056   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4057 };
4058 
4059 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4060   MDAPSIntField() : ImplTy(APSInt()) {}
4061 };
4062 
4063 struct MDSignedField : public MDFieldImpl<int64_t> {
4064   int64_t Min;
4065   int64_t Max;
4066 
4067   MDSignedField(int64_t Default = 0)
4068       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4069   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4070       : ImplTy(Default), Min(Min), Max(Max) {}
4071 };
4072 
4073 struct MDBoolField : public MDFieldImpl<bool> {
4074   MDBoolField(bool Default = false) : ImplTy(Default) {}
4075 };
4076 
4077 struct MDField : public MDFieldImpl<Metadata *> {
4078   bool AllowNull;
4079 
4080   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4081 };
4082 
4083 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4084   MDConstant() : ImplTy(nullptr) {}
4085 };
4086 
4087 struct MDStringField : public MDFieldImpl<MDString *> {
4088   bool AllowEmpty;
4089   MDStringField(bool AllowEmpty = true)
4090       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4091 };
4092 
4093 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4094   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4095 };
4096 
4097 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4098   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4099 };
4100 
4101 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4102   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4103       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4104 
4105   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4106                     bool AllowNull = true)
4107       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4108 
4109   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4110   bool isMDField() const { return WhatIs == IsTypeB; }
4111   int64_t getMDSignedValue() const {
4112     assert(isMDSignedField() && "Wrong field type");
4113     return A.Val;
4114   }
4115   Metadata *getMDFieldValue() const {
4116     assert(isMDField() && "Wrong field type");
4117     return B.Val;
4118   }
4119 };
4120 
4121 struct MDSignedOrUnsignedField
4122     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4123   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4124 
4125   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4126   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4127   int64_t getMDSignedValue() const {
4128     assert(isMDSignedField() && "Wrong field type");
4129     return A.Val;
4130   }
4131   uint64_t getMDUnsignedValue() const {
4132     assert(isMDUnsignedField() && "Wrong field type");
4133     return B.Val;
4134   }
4135 };
4136 
4137 } // end anonymous namespace
4138 
4139 namespace llvm {
4140 
4141 template <>
4142 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4143   if (Lex.getKind() != lltok::APSInt)
4144     return tokError("expected integer");
4145 
4146   Result.assign(Lex.getAPSIntVal());
4147   Lex.Lex();
4148   return false;
4149 }
4150 
4151 template <>
4152 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4153                             MDUnsignedField &Result) {
4154   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4155     return tokError("expected unsigned integer");
4156 
4157   auto &U = Lex.getAPSIntVal();
4158   if (U.ugt(Result.Max))
4159     return tokError("value for '" + Name + "' too large, limit is " +
4160                     Twine(Result.Max));
4161   Result.assign(U.getZExtValue());
4162   assert(Result.Val <= Result.Max && "Expected value in range");
4163   Lex.Lex();
4164   return false;
4165 }
4166 
4167 template <>
4168 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4169   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4170 }
4171 template <>
4172 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4173   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4174 }
4175 
4176 template <>
4177 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4178   if (Lex.getKind() == lltok::APSInt)
4179     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4180 
4181   if (Lex.getKind() != lltok::DwarfTag)
4182     return tokError("expected DWARF tag");
4183 
4184   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4185   if (Tag == dwarf::DW_TAG_invalid)
4186     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4187   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4188 
4189   Result.assign(Tag);
4190   Lex.Lex();
4191   return false;
4192 }
4193 
4194 template <>
4195 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4196                             DwarfMacinfoTypeField &Result) {
4197   if (Lex.getKind() == lltok::APSInt)
4198     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4199 
4200   if (Lex.getKind() != lltok::DwarfMacinfo)
4201     return tokError("expected DWARF macinfo type");
4202 
4203   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4204   if (Macinfo == dwarf::DW_MACINFO_invalid)
4205     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4206                     Lex.getStrVal() + "'");
4207   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4208 
4209   Result.assign(Macinfo);
4210   Lex.Lex();
4211   return false;
4212 }
4213 
4214 template <>
4215 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4216                             DwarfVirtualityField &Result) {
4217   if (Lex.getKind() == lltok::APSInt)
4218     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4219 
4220   if (Lex.getKind() != lltok::DwarfVirtuality)
4221     return tokError("expected DWARF virtuality code");
4222 
4223   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4224   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4225     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4226                     Lex.getStrVal() + "'");
4227   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4228   Result.assign(Virtuality);
4229   Lex.Lex();
4230   return false;
4231 }
4232 
4233 template <>
4234 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4235   if (Lex.getKind() == lltok::APSInt)
4236     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4237 
4238   if (Lex.getKind() != lltok::DwarfLang)
4239     return tokError("expected DWARF language");
4240 
4241   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4242   if (!Lang)
4243     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4244                     "'");
4245   assert(Lang <= Result.Max && "Expected valid DWARF language");
4246   Result.assign(Lang);
4247   Lex.Lex();
4248   return false;
4249 }
4250 
4251 template <>
4252 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4253   if (Lex.getKind() == lltok::APSInt)
4254     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4255 
4256   if (Lex.getKind() != lltok::DwarfCC)
4257     return tokError("expected DWARF calling convention");
4258 
4259   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4260   if (!CC)
4261     return tokError("invalid DWARF calling convention" + Twine(" '") +
4262                     Lex.getStrVal() + "'");
4263   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4264   Result.assign(CC);
4265   Lex.Lex();
4266   return false;
4267 }
4268 
4269 template <>
4270 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4271                             EmissionKindField &Result) {
4272   if (Lex.getKind() == lltok::APSInt)
4273     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4274 
4275   if (Lex.getKind() != lltok::EmissionKind)
4276     return tokError("expected emission kind");
4277 
4278   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4279   if (!Kind)
4280     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4281                     "'");
4282   assert(*Kind <= Result.Max && "Expected valid emission kind");
4283   Result.assign(*Kind);
4284   Lex.Lex();
4285   return false;
4286 }
4287 
4288 template <>
4289 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4290                             NameTableKindField &Result) {
4291   if (Lex.getKind() == lltok::APSInt)
4292     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4293 
4294   if (Lex.getKind() != lltok::NameTableKind)
4295     return tokError("expected nameTable kind");
4296 
4297   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4298   if (!Kind)
4299     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4300                     "'");
4301   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4302   Result.assign((unsigned)*Kind);
4303   Lex.Lex();
4304   return false;
4305 }
4306 
4307 template <>
4308 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4309                             DwarfAttEncodingField &Result) {
4310   if (Lex.getKind() == lltok::APSInt)
4311     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4312 
4313   if (Lex.getKind() != lltok::DwarfAttEncoding)
4314     return tokError("expected DWARF type attribute encoding");
4315 
4316   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4317   if (!Encoding)
4318     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4319                     Lex.getStrVal() + "'");
4320   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4321   Result.assign(Encoding);
4322   Lex.Lex();
4323   return false;
4324 }
4325 
4326 /// DIFlagField
4327 ///  ::= uint32
4328 ///  ::= DIFlagVector
4329 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4330 template <>
4331 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4332 
4333   // parser for a single flag.
4334   auto parseFlag = [&](DINode::DIFlags &Val) {
4335     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4336       uint32_t TempVal = static_cast<uint32_t>(Val);
4337       bool Res = parseUInt32(TempVal);
4338       Val = static_cast<DINode::DIFlags>(TempVal);
4339       return Res;
4340     }
4341 
4342     if (Lex.getKind() != lltok::DIFlag)
4343       return tokError("expected debug info flag");
4344 
4345     Val = DINode::getFlag(Lex.getStrVal());
4346     if (!Val)
4347       return tokError(Twine("invalid debug info flag flag '") +
4348                       Lex.getStrVal() + "'");
4349     Lex.Lex();
4350     return false;
4351   };
4352 
4353   // parse the flags and combine them together.
4354   DINode::DIFlags Combined = DINode::FlagZero;
4355   do {
4356     DINode::DIFlags Val;
4357     if (parseFlag(Val))
4358       return true;
4359     Combined |= Val;
4360   } while (EatIfPresent(lltok::bar));
4361 
4362   Result.assign(Combined);
4363   return false;
4364 }
4365 
4366 /// DISPFlagField
4367 ///  ::= uint32
4368 ///  ::= DISPFlagVector
4369 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4370 template <>
4371 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4372 
4373   // parser for a single flag.
4374   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4375     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4376       uint32_t TempVal = static_cast<uint32_t>(Val);
4377       bool Res = parseUInt32(TempVal);
4378       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4379       return Res;
4380     }
4381 
4382     if (Lex.getKind() != lltok::DISPFlag)
4383       return tokError("expected debug info flag");
4384 
4385     Val = DISubprogram::getFlag(Lex.getStrVal());
4386     if (!Val)
4387       return tokError(Twine("invalid subprogram debug info flag '") +
4388                       Lex.getStrVal() + "'");
4389     Lex.Lex();
4390     return false;
4391   };
4392 
4393   // parse the flags and combine them together.
4394   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4395   do {
4396     DISubprogram::DISPFlags Val;
4397     if (parseFlag(Val))
4398       return true;
4399     Combined |= Val;
4400   } while (EatIfPresent(lltok::bar));
4401 
4402   Result.assign(Combined);
4403   return false;
4404 }
4405 
4406 template <>
4407 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4408   if (Lex.getKind() != lltok::APSInt)
4409     return tokError("expected signed integer");
4410 
4411   auto &S = Lex.getAPSIntVal();
4412   if (S < Result.Min)
4413     return tokError("value for '" + Name + "' too small, limit is " +
4414                     Twine(Result.Min));
4415   if (S > Result.Max)
4416     return tokError("value for '" + Name + "' too large, limit is " +
4417                     Twine(Result.Max));
4418   Result.assign(S.getExtValue());
4419   assert(Result.Val >= Result.Min && "Expected value in range");
4420   assert(Result.Val <= Result.Max && "Expected value in range");
4421   Lex.Lex();
4422   return false;
4423 }
4424 
4425 template <>
4426 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4427   switch (Lex.getKind()) {
4428   default:
4429     return tokError("expected 'true' or 'false'");
4430   case lltok::kw_true:
4431     Result.assign(true);
4432     break;
4433   case lltok::kw_false:
4434     Result.assign(false);
4435     break;
4436   }
4437   Lex.Lex();
4438   return false;
4439 }
4440 
4441 template <>
4442 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4443   if (Lex.getKind() == lltok::kw_null) {
4444     if (!Result.AllowNull)
4445       return tokError("'" + Name + "' cannot be null");
4446     Lex.Lex();
4447     Result.assign(nullptr);
4448     return false;
4449   }
4450 
4451   Metadata *MD;
4452   if (parseMetadata(MD, nullptr))
4453     return true;
4454 
4455   Result.assign(MD);
4456   return false;
4457 }
4458 
4459 template <>
4460 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4461                             MDSignedOrMDField &Result) {
4462   // Try to parse a signed int.
4463   if (Lex.getKind() == lltok::APSInt) {
4464     MDSignedField Res = Result.A;
4465     if (!parseMDField(Loc, Name, Res)) {
4466       Result.assign(Res);
4467       return false;
4468     }
4469     return true;
4470   }
4471 
4472   // Otherwise, try to parse as an MDField.
4473   MDField Res = Result.B;
4474   if (!parseMDField(Loc, Name, Res)) {
4475     Result.assign(Res);
4476     return false;
4477   }
4478 
4479   return true;
4480 }
4481 
4482 template <>
4483 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4484   LocTy ValueLoc = Lex.getLoc();
4485   std::string S;
4486   if (parseStringConstant(S))
4487     return true;
4488 
4489   if (!Result.AllowEmpty && S.empty())
4490     return error(ValueLoc, "'" + Name + "' cannot be empty");
4491 
4492   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4493   return false;
4494 }
4495 
4496 template <>
4497 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4498   SmallVector<Metadata *, 4> MDs;
4499   if (parseMDNodeVector(MDs))
4500     return true;
4501 
4502   Result.assign(std::move(MDs));
4503   return false;
4504 }
4505 
4506 template <>
4507 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4508                             ChecksumKindField &Result) {
4509   Optional<DIFile::ChecksumKind> CSKind =
4510       DIFile::getChecksumKind(Lex.getStrVal());
4511 
4512   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4513     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4514                     "'");
4515 
4516   Result.assign(*CSKind);
4517   Lex.Lex();
4518   return false;
4519 }
4520 
4521 } // end namespace llvm
4522 
4523 template <class ParserTy>
4524 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4525   do {
4526     if (Lex.getKind() != lltok::LabelStr)
4527       return tokError("expected field label here");
4528 
4529     if (ParseField())
4530       return true;
4531   } while (EatIfPresent(lltok::comma));
4532 
4533   return false;
4534 }
4535 
4536 template <class ParserTy>
4537 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4538   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4539   Lex.Lex();
4540 
4541   if (parseToken(lltok::lparen, "expected '(' here"))
4542     return true;
4543   if (Lex.getKind() != lltok::rparen)
4544     if (parseMDFieldsImplBody(ParseField))
4545       return true;
4546 
4547   ClosingLoc = Lex.getLoc();
4548   return parseToken(lltok::rparen, "expected ')' here");
4549 }
4550 
4551 template <class FieldTy>
4552 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4553   if (Result.Seen)
4554     return tokError("field '" + Name + "' cannot be specified more than once");
4555 
4556   LocTy Loc = Lex.getLoc();
4557   Lex.Lex();
4558   return parseMDField(Loc, Name, Result);
4559 }
4560 
4561 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4562   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4563 
4564 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4565   if (Lex.getStrVal() == #CLASS)                                               \
4566     return parse##CLASS(N, IsDistinct);
4567 #include "llvm/IR/Metadata.def"
4568 
4569   return tokError("expected metadata type");
4570 }
4571 
4572 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4573 #define NOP_FIELD(NAME, TYPE, INIT)
4574 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4575   if (!NAME.Seen)                                                              \
4576     return error(ClosingLoc, "missing required field '" #NAME "'");
4577 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4578   if (Lex.getStrVal() == #NAME)                                                \
4579     return parseMDField(#NAME, NAME);
4580 #define PARSE_MD_FIELDS()                                                      \
4581   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4582   do {                                                                         \
4583     LocTy ClosingLoc;                                                          \
4584     if (parseMDFieldsImpl(                                                     \
4585             [&]() -> bool {                                                    \
4586               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4587               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4588                               "'");                                            \
4589             },                                                                 \
4590             ClosingLoc))                                                       \
4591       return true;                                                             \
4592     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4593   } while (false)
4594 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4595   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4596 
4597 /// parseDILocationFields:
4598 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4599 ///   isImplicitCode: true)
4600 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4601 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4602   OPTIONAL(line, LineField, );                                                 \
4603   OPTIONAL(column, ColumnField, );                                             \
4604   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4605   OPTIONAL(inlinedAt, MDField, );                                              \
4606   OPTIONAL(isImplicitCode, MDBoolField, (false));
4607   PARSE_MD_FIELDS();
4608 #undef VISIT_MD_FIELDS
4609 
4610   Result =
4611       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4612                                    inlinedAt.Val, isImplicitCode.Val));
4613   return false;
4614 }
4615 
4616 /// parseGenericDINode:
4617 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4618 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4619 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4620   REQUIRED(tag, DwarfTagField, );                                              \
4621   OPTIONAL(header, MDStringField, );                                           \
4622   OPTIONAL(operands, MDFieldList, );
4623   PARSE_MD_FIELDS();
4624 #undef VISIT_MD_FIELDS
4625 
4626   Result = GET_OR_DISTINCT(GenericDINode,
4627                            (Context, tag.Val, header.Val, operands.Val));
4628   return false;
4629 }
4630 
4631 /// parseDISubrange:
4632 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4633 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4634 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4635 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4637   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4638   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4639   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4640   OPTIONAL(stride, MDSignedOrMDField, );
4641   PARSE_MD_FIELDS();
4642 #undef VISIT_MD_FIELDS
4643 
4644   Metadata *Count = nullptr;
4645   Metadata *LowerBound = nullptr;
4646   Metadata *UpperBound = nullptr;
4647   Metadata *Stride = nullptr;
4648   if (count.isMDSignedField())
4649     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4650         Type::getInt64Ty(Context), count.getMDSignedValue()));
4651   else if (count.isMDField())
4652     Count = count.getMDFieldValue();
4653 
4654   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4655     if (Bound.isMDSignedField())
4656       return ConstantAsMetadata::get(ConstantInt::getSigned(
4657           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4658     if (Bound.isMDField())
4659       return Bound.getMDFieldValue();
4660     return nullptr;
4661   };
4662 
4663   LowerBound = convToMetadata(lowerBound);
4664   UpperBound = convToMetadata(upperBound);
4665   Stride = convToMetadata(stride);
4666 
4667   Result = GET_OR_DISTINCT(DISubrange,
4668                            (Context, Count, LowerBound, UpperBound, Stride));
4669 
4670   return false;
4671 }
4672 
4673 /// parseDIGenericSubrange:
4674 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4675 ///   !node3)
4676 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4677 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4678   OPTIONAL(count, MDSignedOrMDField, );                                        \
4679   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4680   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4681   OPTIONAL(stride, MDSignedOrMDField, );
4682   PARSE_MD_FIELDS();
4683 #undef VISIT_MD_FIELDS
4684 
4685   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4686     if (Bound.isMDSignedField())
4687       return DIExpression::get(
4688           Context, {dwarf::DW_OP_consts,
4689                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4690     if (Bound.isMDField())
4691       return Bound.getMDFieldValue();
4692     return nullptr;
4693   };
4694 
4695   Metadata *Count = ConvToMetadata(count);
4696   Metadata *LowerBound = ConvToMetadata(lowerBound);
4697   Metadata *UpperBound = ConvToMetadata(upperBound);
4698   Metadata *Stride = ConvToMetadata(stride);
4699 
4700   Result = GET_OR_DISTINCT(DIGenericSubrange,
4701                            (Context, Count, LowerBound, UpperBound, Stride));
4702 
4703   return false;
4704 }
4705 
4706 /// parseDIEnumerator:
4707 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4708 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4709 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4710   REQUIRED(name, MDStringField, );                                             \
4711   REQUIRED(value, MDAPSIntField, );                                            \
4712   OPTIONAL(isUnsigned, MDBoolField, (false));
4713   PARSE_MD_FIELDS();
4714 #undef VISIT_MD_FIELDS
4715 
4716   if (isUnsigned.Val && value.Val.isNegative())
4717     return tokError("unsigned enumerator with negative value");
4718 
4719   APSInt Value(value.Val);
4720   // Add a leading zero so that unsigned values with the msb set are not
4721   // mistaken for negative values when used for signed enumerators.
4722   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4723     Value = Value.zext(Value.getBitWidth() + 1);
4724 
4725   Result =
4726       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4727 
4728   return false;
4729 }
4730 
4731 /// parseDIBasicType:
4732 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4733 ///                    encoding: DW_ATE_encoding, flags: 0)
4734 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4735 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4736   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4737   OPTIONAL(name, MDStringField, );                                             \
4738   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4739   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4740   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4741   OPTIONAL(flags, DIFlagField, );
4742   PARSE_MD_FIELDS();
4743 #undef VISIT_MD_FIELDS
4744 
4745   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4746                                          align.Val, encoding.Val, flags.Val));
4747   return false;
4748 }
4749 
4750 /// parseDIStringType:
4751 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4752 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4753 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4754   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4755   OPTIONAL(name, MDStringField, );                                             \
4756   OPTIONAL(stringLength, MDField, );                                           \
4757   OPTIONAL(stringLengthExpression, MDField, );                                 \
4758   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4759   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4760   OPTIONAL(encoding, DwarfAttEncodingField, );
4761   PARSE_MD_FIELDS();
4762 #undef VISIT_MD_FIELDS
4763 
4764   Result = GET_OR_DISTINCT(DIStringType,
4765                            (Context, tag.Val, name.Val, stringLength.Val,
4766                             stringLengthExpression.Val, size.Val, align.Val,
4767                             encoding.Val));
4768   return false;
4769 }
4770 
4771 /// parseDIDerivedType:
4772 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4773 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4774 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4775 ///                      dwarfAddressSpace: 3)
4776 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4777 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4778   REQUIRED(tag, DwarfTagField, );                                              \
4779   OPTIONAL(name, MDStringField, );                                             \
4780   OPTIONAL(file, MDField, );                                                   \
4781   OPTIONAL(line, LineField, );                                                 \
4782   OPTIONAL(scope, MDField, );                                                  \
4783   REQUIRED(baseType, MDField, );                                               \
4784   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4785   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4786   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4787   OPTIONAL(flags, DIFlagField, );                                              \
4788   OPTIONAL(extraData, MDField, );                                              \
4789   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4790   PARSE_MD_FIELDS();
4791 #undef VISIT_MD_FIELDS
4792 
4793   Optional<unsigned> DWARFAddressSpace;
4794   if (dwarfAddressSpace.Val != UINT32_MAX)
4795     DWARFAddressSpace = dwarfAddressSpace.Val;
4796 
4797   Result = GET_OR_DISTINCT(DIDerivedType,
4798                            (Context, tag.Val, name.Val, file.Val, line.Val,
4799                             scope.Val, baseType.Val, size.Val, align.Val,
4800                             offset.Val, DWARFAddressSpace, flags.Val,
4801                             extraData.Val));
4802   return false;
4803 }
4804 
4805 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4806 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4807   REQUIRED(tag, DwarfTagField, );                                              \
4808   OPTIONAL(name, MDStringField, );                                             \
4809   OPTIONAL(file, MDField, );                                                   \
4810   OPTIONAL(line, LineField, );                                                 \
4811   OPTIONAL(scope, MDField, );                                                  \
4812   OPTIONAL(baseType, MDField, );                                               \
4813   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4814   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4815   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4816   OPTIONAL(flags, DIFlagField, );                                              \
4817   OPTIONAL(elements, MDField, );                                               \
4818   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4819   OPTIONAL(vtableHolder, MDField, );                                           \
4820   OPTIONAL(templateParams, MDField, );                                         \
4821   OPTIONAL(identifier, MDStringField, );                                       \
4822   OPTIONAL(discriminator, MDField, );                                          \
4823   OPTIONAL(dataLocation, MDField, );                                           \
4824   OPTIONAL(associated, MDField, );                                             \
4825   OPTIONAL(allocated, MDField, );                                              \
4826   OPTIONAL(rank, MDSignedOrMDField, );
4827   PARSE_MD_FIELDS();
4828 #undef VISIT_MD_FIELDS
4829 
4830   Metadata *Rank = nullptr;
4831   if (rank.isMDSignedField())
4832     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4833         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4834   else if (rank.isMDField())
4835     Rank = rank.getMDFieldValue();
4836 
4837   // If this has an identifier try to build an ODR type.
4838   if (identifier.Val)
4839     if (auto *CT = DICompositeType::buildODRType(
4840             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4841             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4842             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4843             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4844             Rank)) {
4845       Result = CT;
4846       return false;
4847     }
4848 
4849   // Create a new node, and save it in the context if it belongs in the type
4850   // map.
4851   Result = GET_OR_DISTINCT(
4852       DICompositeType,
4853       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4854        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4855        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4856        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4857        Rank));
4858   return false;
4859 }
4860 
4861 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4863   OPTIONAL(flags, DIFlagField, );                                              \
4864   OPTIONAL(cc, DwarfCCField, );                                                \
4865   REQUIRED(types, MDField, );
4866   PARSE_MD_FIELDS();
4867 #undef VISIT_MD_FIELDS
4868 
4869   Result = GET_OR_DISTINCT(DISubroutineType,
4870                            (Context, flags.Val, cc.Val, types.Val));
4871   return false;
4872 }
4873 
4874 /// parseDIFileType:
4875 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4876 ///                   checksumkind: CSK_MD5,
4877 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4878 ///                   source: "source file contents")
4879 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4880   // The default constructed value for checksumkind is required, but will never
4881   // be used, as the parser checks if the field was actually Seen before using
4882   // the Val.
4883 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4884   REQUIRED(filename, MDStringField, );                                         \
4885   REQUIRED(directory, MDStringField, );                                        \
4886   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4887   OPTIONAL(checksum, MDStringField, );                                         \
4888   OPTIONAL(source, MDStringField, );
4889   PARSE_MD_FIELDS();
4890 #undef VISIT_MD_FIELDS
4891 
4892   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4893   if (checksumkind.Seen && checksum.Seen)
4894     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4895   else if (checksumkind.Seen || checksum.Seen)
4896     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4897 
4898   Optional<MDString *> OptSource;
4899   if (source.Seen)
4900     OptSource = source.Val;
4901   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4902                                     OptChecksum, OptSource));
4903   return false;
4904 }
4905 
4906 /// parseDICompileUnit:
4907 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4908 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4909 ///                      splitDebugFilename: "abc.debug",
4910 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4911 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4912 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4913 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4914   if (!IsDistinct)
4915     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4916 
4917 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4918   REQUIRED(language, DwarfLangField, );                                        \
4919   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4920   OPTIONAL(producer, MDStringField, );                                         \
4921   OPTIONAL(isOptimized, MDBoolField, );                                        \
4922   OPTIONAL(flags, MDStringField, );                                            \
4923   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4924   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4925   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4926   OPTIONAL(enums, MDField, );                                                  \
4927   OPTIONAL(retainedTypes, MDField, );                                          \
4928   OPTIONAL(globals, MDField, );                                                \
4929   OPTIONAL(imports, MDField, );                                                \
4930   OPTIONAL(macros, MDField, );                                                 \
4931   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4932   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4933   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4934   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4935   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4936   OPTIONAL(sysroot, MDStringField, );                                          \
4937   OPTIONAL(sdk, MDStringField, );
4938   PARSE_MD_FIELDS();
4939 #undef VISIT_MD_FIELDS
4940 
4941   Result = DICompileUnit::getDistinct(
4942       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4943       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4944       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4945       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4946       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4947   return false;
4948 }
4949 
4950 /// parseDISubprogram:
4951 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4952 ///                     file: !1, line: 7, type: !2, isLocal: false,
4953 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4954 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4955 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4956 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4957 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4958 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4959   auto Loc = Lex.getLoc();
4960 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4961   OPTIONAL(scope, MDField, );                                                  \
4962   OPTIONAL(name, MDStringField, );                                             \
4963   OPTIONAL(linkageName, MDStringField, );                                      \
4964   OPTIONAL(file, MDField, );                                                   \
4965   OPTIONAL(line, LineField, );                                                 \
4966   OPTIONAL(type, MDField, );                                                   \
4967   OPTIONAL(isLocal, MDBoolField, );                                            \
4968   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4969   OPTIONAL(scopeLine, LineField, );                                            \
4970   OPTIONAL(containingType, MDField, );                                         \
4971   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4972   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4973   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4974   OPTIONAL(flags, DIFlagField, );                                              \
4975   OPTIONAL(spFlags, DISPFlagField, );                                          \
4976   OPTIONAL(isOptimized, MDBoolField, );                                        \
4977   OPTIONAL(unit, MDField, );                                                   \
4978   OPTIONAL(templateParams, MDField, );                                         \
4979   OPTIONAL(declaration, MDField, );                                            \
4980   OPTIONAL(retainedNodes, MDField, );                                          \
4981   OPTIONAL(thrownTypes, MDField, );
4982   PARSE_MD_FIELDS();
4983 #undef VISIT_MD_FIELDS
4984 
4985   // An explicit spFlags field takes precedence over individual fields in
4986   // older IR versions.
4987   DISubprogram::DISPFlags SPFlags =
4988       spFlags.Seen ? spFlags.Val
4989                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4990                                              isOptimized.Val, virtuality.Val);
4991   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4992     return Lex.Error(
4993         Loc,
4994         "missing 'distinct', required for !DISubprogram that is a Definition");
4995   Result = GET_OR_DISTINCT(
4996       DISubprogram,
4997       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4998        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4999        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5000        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5001   return false;
5002 }
5003 
5004 /// parseDILexicalBlock:
5005 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5006 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5007 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5008   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5009   OPTIONAL(file, MDField, );                                                   \
5010   OPTIONAL(line, LineField, );                                                 \
5011   OPTIONAL(column, ColumnField, );
5012   PARSE_MD_FIELDS();
5013 #undef VISIT_MD_FIELDS
5014 
5015   Result = GET_OR_DISTINCT(
5016       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5017   return false;
5018 }
5019 
5020 /// parseDILexicalBlockFile:
5021 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5022 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5023 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5024   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5025   OPTIONAL(file, MDField, );                                                   \
5026   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5027   PARSE_MD_FIELDS();
5028 #undef VISIT_MD_FIELDS
5029 
5030   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5031                            (Context, scope.Val, file.Val, discriminator.Val));
5032   return false;
5033 }
5034 
5035 /// parseDICommonBlock:
5036 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5037 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5038 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5039   REQUIRED(scope, MDField, );                                                  \
5040   OPTIONAL(declaration, MDField, );                                            \
5041   OPTIONAL(name, MDStringField, );                                             \
5042   OPTIONAL(file, MDField, );                                                   \
5043   OPTIONAL(line, LineField, );
5044   PARSE_MD_FIELDS();
5045 #undef VISIT_MD_FIELDS
5046 
5047   Result = GET_OR_DISTINCT(DICommonBlock,
5048                            (Context, scope.Val, declaration.Val, name.Val,
5049                             file.Val, line.Val));
5050   return false;
5051 }
5052 
5053 /// parseDINamespace:
5054 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5055 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5056 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5057   REQUIRED(scope, MDField, );                                                  \
5058   OPTIONAL(name, MDStringField, );                                             \
5059   OPTIONAL(exportSymbols, MDBoolField, );
5060   PARSE_MD_FIELDS();
5061 #undef VISIT_MD_FIELDS
5062 
5063   Result = GET_OR_DISTINCT(DINamespace,
5064                            (Context, scope.Val, name.Val, exportSymbols.Val));
5065   return false;
5066 }
5067 
5068 /// parseDIMacro:
5069 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5070 ///   "SomeValue")
5071 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5072 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5073   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5074   OPTIONAL(line, LineField, );                                                 \
5075   REQUIRED(name, MDStringField, );                                             \
5076   OPTIONAL(value, MDStringField, );
5077   PARSE_MD_FIELDS();
5078 #undef VISIT_MD_FIELDS
5079 
5080   Result = GET_OR_DISTINCT(DIMacro,
5081                            (Context, type.Val, line.Val, name.Val, value.Val));
5082   return false;
5083 }
5084 
5085 /// parseDIMacroFile:
5086 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5087 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5088 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5089   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5090   OPTIONAL(line, LineField, );                                                 \
5091   REQUIRED(file, MDField, );                                                   \
5092   OPTIONAL(nodes, MDField, );
5093   PARSE_MD_FIELDS();
5094 #undef VISIT_MD_FIELDS
5095 
5096   Result = GET_OR_DISTINCT(DIMacroFile,
5097                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5098   return false;
5099 }
5100 
5101 /// parseDIModule:
5102 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5103 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5104 ///   file: !1, line: 4)
5105 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5106 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5107   REQUIRED(scope, MDField, );                                                  \
5108   REQUIRED(name, MDStringField, );                                             \
5109   OPTIONAL(configMacros, MDStringField, );                                     \
5110   OPTIONAL(includePath, MDStringField, );                                      \
5111   OPTIONAL(apinotes, MDStringField, );                                         \
5112   OPTIONAL(file, MDField, );                                                   \
5113   OPTIONAL(line, LineField, );
5114   PARSE_MD_FIELDS();
5115 #undef VISIT_MD_FIELDS
5116 
5117   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5118                                       configMacros.Val, includePath.Val,
5119                                       apinotes.Val, line.Val));
5120   return false;
5121 }
5122 
5123 /// parseDITemplateTypeParameter:
5124 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5125 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5126 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5127   OPTIONAL(name, MDStringField, );                                             \
5128   REQUIRED(type, MDField, );                                                   \
5129   OPTIONAL(defaulted, MDBoolField, );
5130   PARSE_MD_FIELDS();
5131 #undef VISIT_MD_FIELDS
5132 
5133   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5134                            (Context, name.Val, type.Val, defaulted.Val));
5135   return false;
5136 }
5137 
5138 /// parseDITemplateValueParameter:
5139 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5140 ///                                 name: "V", type: !1, defaulted: false,
5141 ///                                 value: i32 7)
5142 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5143 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5144   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5145   OPTIONAL(name, MDStringField, );                                             \
5146   OPTIONAL(type, MDField, );                                                   \
5147   OPTIONAL(defaulted, MDBoolField, );                                          \
5148   REQUIRED(value, MDField, );
5149 
5150   PARSE_MD_FIELDS();
5151 #undef VISIT_MD_FIELDS
5152 
5153   Result = GET_OR_DISTINCT(
5154       DITemplateValueParameter,
5155       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5156   return false;
5157 }
5158 
5159 /// parseDIGlobalVariable:
5160 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5161 ///                         file: !1, line: 7, type: !2, isLocal: false,
5162 ///                         isDefinition: true, templateParams: !3,
5163 ///                         declaration: !4, align: 8)
5164 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5165 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5166   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5167   OPTIONAL(scope, MDField, );                                                  \
5168   OPTIONAL(linkageName, MDStringField, );                                      \
5169   OPTIONAL(file, MDField, );                                                   \
5170   OPTIONAL(line, LineField, );                                                 \
5171   OPTIONAL(type, MDField, );                                                   \
5172   OPTIONAL(isLocal, MDBoolField, );                                            \
5173   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5174   OPTIONAL(templateParams, MDField, );                                         \
5175   OPTIONAL(declaration, MDField, );                                            \
5176   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5177   PARSE_MD_FIELDS();
5178 #undef VISIT_MD_FIELDS
5179 
5180   Result =
5181       GET_OR_DISTINCT(DIGlobalVariable,
5182                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5183                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5184                        declaration.Val, templateParams.Val, align.Val));
5185   return false;
5186 }
5187 
5188 /// parseDILocalVariable:
5189 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5190 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5191 ///                        align: 8)
5192 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5193 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5194 ///                        align: 8)
5195 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5196 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5197   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5198   OPTIONAL(name, MDStringField, );                                             \
5199   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5200   OPTIONAL(file, MDField, );                                                   \
5201   OPTIONAL(line, LineField, );                                                 \
5202   OPTIONAL(type, MDField, );                                                   \
5203   OPTIONAL(flags, DIFlagField, );                                              \
5204   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5205   PARSE_MD_FIELDS();
5206 #undef VISIT_MD_FIELDS
5207 
5208   Result = GET_OR_DISTINCT(DILocalVariable,
5209                            (Context, scope.Val, name.Val, file.Val, line.Val,
5210                             type.Val, arg.Val, flags.Val, align.Val));
5211   return false;
5212 }
5213 
5214 /// parseDILabel:
5215 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5216 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5218   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5219   REQUIRED(name, MDStringField, );                                             \
5220   REQUIRED(file, MDField, );                                                   \
5221   REQUIRED(line, LineField, );
5222   PARSE_MD_FIELDS();
5223 #undef VISIT_MD_FIELDS
5224 
5225   Result = GET_OR_DISTINCT(DILabel,
5226                            (Context, scope.Val, name.Val, file.Val, line.Val));
5227   return false;
5228 }
5229 
5230 /// parseDIExpression:
5231 ///   ::= !DIExpression(0, 7, -1)
5232 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5233   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5234   Lex.Lex();
5235 
5236   if (parseToken(lltok::lparen, "expected '(' here"))
5237     return true;
5238 
5239   SmallVector<uint64_t, 8> Elements;
5240   if (Lex.getKind() != lltok::rparen)
5241     do {
5242       if (Lex.getKind() == lltok::DwarfOp) {
5243         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5244           Lex.Lex();
5245           Elements.push_back(Op);
5246           continue;
5247         }
5248         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5249       }
5250 
5251       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5252         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5253           Lex.Lex();
5254           Elements.push_back(Op);
5255           continue;
5256         }
5257         return tokError(Twine("invalid DWARF attribute encoding '") +
5258                         Lex.getStrVal() + "'");
5259       }
5260 
5261       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5262         return tokError("expected unsigned integer");
5263 
5264       auto &U = Lex.getAPSIntVal();
5265       if (U.ugt(UINT64_MAX))
5266         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5267       Elements.push_back(U.getZExtValue());
5268       Lex.Lex();
5269     } while (EatIfPresent(lltok::comma));
5270 
5271   if (parseToken(lltok::rparen, "expected ')' here"))
5272     return true;
5273 
5274   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5275   return false;
5276 }
5277 
5278 /// parseDIGlobalVariableExpression:
5279 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5280 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5281                                                bool IsDistinct) {
5282 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5283   REQUIRED(var, MDField, );                                                    \
5284   REQUIRED(expr, MDField, );
5285   PARSE_MD_FIELDS();
5286 #undef VISIT_MD_FIELDS
5287 
5288   Result =
5289       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5290   return false;
5291 }
5292 
5293 /// parseDIObjCProperty:
5294 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5295 ///                       getter: "getFoo", attributes: 7, type: !2)
5296 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5297 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5298   OPTIONAL(name, MDStringField, );                                             \
5299   OPTIONAL(file, MDField, );                                                   \
5300   OPTIONAL(line, LineField, );                                                 \
5301   OPTIONAL(setter, MDStringField, );                                           \
5302   OPTIONAL(getter, MDStringField, );                                           \
5303   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5304   OPTIONAL(type, MDField, );
5305   PARSE_MD_FIELDS();
5306 #undef VISIT_MD_FIELDS
5307 
5308   Result = GET_OR_DISTINCT(DIObjCProperty,
5309                            (Context, name.Val, file.Val, line.Val, setter.Val,
5310                             getter.Val, attributes.Val, type.Val));
5311   return false;
5312 }
5313 
5314 /// parseDIImportedEntity:
5315 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5316 ///                         line: 7, name: "foo")
5317 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5318 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5319   REQUIRED(tag, DwarfTagField, );                                              \
5320   REQUIRED(scope, MDField, );                                                  \
5321   OPTIONAL(entity, MDField, );                                                 \
5322   OPTIONAL(file, MDField, );                                                   \
5323   OPTIONAL(line, LineField, );                                                 \
5324   OPTIONAL(name, MDStringField, );
5325   PARSE_MD_FIELDS();
5326 #undef VISIT_MD_FIELDS
5327 
5328   Result = GET_OR_DISTINCT(
5329       DIImportedEntity,
5330       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5331   return false;
5332 }
5333 
5334 #undef PARSE_MD_FIELD
5335 #undef NOP_FIELD
5336 #undef REQUIRE_FIELD
5337 #undef DECLARE_FIELD
5338 
5339 /// parseMetadataAsValue
5340 ///  ::= metadata i32 %local
5341 ///  ::= metadata i32 @global
5342 ///  ::= metadata i32 7
5343 ///  ::= metadata !0
5344 ///  ::= metadata !{...}
5345 ///  ::= metadata !"string"
5346 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5347   // Note: the type 'metadata' has already been parsed.
5348   Metadata *MD;
5349   if (parseMetadata(MD, &PFS))
5350     return true;
5351 
5352   V = MetadataAsValue::get(Context, MD);
5353   return false;
5354 }
5355 
5356 /// parseValueAsMetadata
5357 ///  ::= i32 %local
5358 ///  ::= i32 @global
5359 ///  ::= i32 7
5360 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5361                                     PerFunctionState *PFS) {
5362   Type *Ty;
5363   LocTy Loc;
5364   if (parseType(Ty, TypeMsg, Loc))
5365     return true;
5366   if (Ty->isMetadataTy())
5367     return error(Loc, "invalid metadata-value-metadata roundtrip");
5368 
5369   Value *V;
5370   if (parseValue(Ty, V, PFS))
5371     return true;
5372 
5373   MD = ValueAsMetadata::get(V);
5374   return false;
5375 }
5376 
5377 /// parseMetadata
5378 ///  ::= i32 %local
5379 ///  ::= i32 @global
5380 ///  ::= i32 7
5381 ///  ::= !42
5382 ///  ::= !{...}
5383 ///  ::= !"string"
5384 ///  ::= !DILocation(...)
5385 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5386   if (Lex.getKind() == lltok::MetadataVar) {
5387     MDNode *N;
5388     if (parseSpecializedMDNode(N))
5389       return true;
5390     MD = N;
5391     return false;
5392   }
5393 
5394   // ValueAsMetadata:
5395   // <type> <value>
5396   if (Lex.getKind() != lltok::exclaim)
5397     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5398 
5399   // '!'.
5400   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5401   Lex.Lex();
5402 
5403   // MDString:
5404   //   ::= '!' STRINGCONSTANT
5405   if (Lex.getKind() == lltok::StringConstant) {
5406     MDString *S;
5407     if (parseMDString(S))
5408       return true;
5409     MD = S;
5410     return false;
5411   }
5412 
5413   // MDNode:
5414   // !{ ... }
5415   // !7
5416   MDNode *N;
5417   if (parseMDNodeTail(N))
5418     return true;
5419   MD = N;
5420   return false;
5421 }
5422 
5423 //===----------------------------------------------------------------------===//
5424 // Function Parsing.
5425 //===----------------------------------------------------------------------===//
5426 
5427 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5428                                    PerFunctionState *PFS, bool IsCall) {
5429   if (Ty->isFunctionTy())
5430     return error(ID.Loc, "functions are not values, refer to them as pointers");
5431 
5432   switch (ID.Kind) {
5433   case ValID::t_LocalID:
5434     if (!PFS)
5435       return error(ID.Loc, "invalid use of function-local name");
5436     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5437     return V == nullptr;
5438   case ValID::t_LocalName:
5439     if (!PFS)
5440       return error(ID.Loc, "invalid use of function-local name");
5441     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5442     return V == nullptr;
5443   case ValID::t_InlineAsm: {
5444     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5445       return error(ID.Loc, "invalid type for inline asm constraint string");
5446     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5447                        (ID.UIntVal >> 1) & 1,
5448                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5449     return false;
5450   }
5451   case ValID::t_GlobalName:
5452     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5453     return V == nullptr;
5454   case ValID::t_GlobalID:
5455     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5456     return V == nullptr;
5457   case ValID::t_APSInt:
5458     if (!Ty->isIntegerTy())
5459       return error(ID.Loc, "integer constant must have integer type");
5460     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5461     V = ConstantInt::get(Context, ID.APSIntVal);
5462     return false;
5463   case ValID::t_APFloat:
5464     if (!Ty->isFloatingPointTy() ||
5465         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5466       return error(ID.Loc, "floating point constant invalid for type");
5467 
5468     // The lexer has no type info, so builds all half, bfloat, float, and double
5469     // FP constants as double.  Fix this here.  Long double does not need this.
5470     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5471       // Check for signaling before potentially converting and losing that info.
5472       bool IsSNAN = ID.APFloatVal.isSignaling();
5473       bool Ignored;
5474       if (Ty->isHalfTy())
5475         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5476                               &Ignored);
5477       else if (Ty->isBFloatTy())
5478         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5479                               &Ignored);
5480       else if (Ty->isFloatTy())
5481         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5482                               &Ignored);
5483       if (IsSNAN) {
5484         // The convert call above may quiet an SNaN, so manufacture another
5485         // SNaN. The bitcast works because the payload (significand) parameter
5486         // is truncated to fit.
5487         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5488         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5489                                          ID.APFloatVal.isNegative(), &Payload);
5490       }
5491     }
5492     V = ConstantFP::get(Context, ID.APFloatVal);
5493 
5494     if (V->getType() != Ty)
5495       return error(ID.Loc, "floating point constant does not have type '" +
5496                                getTypeString(Ty) + "'");
5497 
5498     return false;
5499   case ValID::t_Null:
5500     if (!Ty->isPointerTy())
5501       return error(ID.Loc, "null must be a pointer type");
5502     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5503     return false;
5504   case ValID::t_Undef:
5505     // FIXME: LabelTy should not be a first-class type.
5506     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5507       return error(ID.Loc, "invalid type for undef constant");
5508     V = UndefValue::get(Ty);
5509     return false;
5510   case ValID::t_EmptyArray:
5511     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5512       return error(ID.Loc, "invalid empty array initializer");
5513     V = UndefValue::get(Ty);
5514     return false;
5515   case ValID::t_Zero:
5516     // FIXME: LabelTy should not be a first-class type.
5517     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5518       return error(ID.Loc, "invalid type for null constant");
5519     V = Constant::getNullValue(Ty);
5520     return false;
5521   case ValID::t_None:
5522     if (!Ty->isTokenTy())
5523       return error(ID.Loc, "invalid type for none constant");
5524     V = Constant::getNullValue(Ty);
5525     return false;
5526   case ValID::t_Constant:
5527     if (ID.ConstantVal->getType() != Ty)
5528       return error(ID.Loc, "constant expression type mismatch");
5529 
5530     V = ID.ConstantVal;
5531     return false;
5532   case ValID::t_ConstantStruct:
5533   case ValID::t_PackedConstantStruct:
5534     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5535       if (ST->getNumElements() != ID.UIntVal)
5536         return error(ID.Loc,
5537                      "initializer with struct type has wrong # elements");
5538       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5539         return error(ID.Loc, "packed'ness of initializer and type don't match");
5540 
5541       // Verify that the elements are compatible with the structtype.
5542       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5543         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5544           return error(
5545               ID.Loc,
5546               "element " + Twine(i) +
5547                   " of struct initializer doesn't match struct element type");
5548 
5549       V = ConstantStruct::get(
5550           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5551     } else
5552       return error(ID.Loc, "constant expression type mismatch");
5553     return false;
5554   }
5555   llvm_unreachable("Invalid ValID");
5556 }
5557 
5558 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5559   C = nullptr;
5560   ValID ID;
5561   auto Loc = Lex.getLoc();
5562   if (parseValID(ID, /*PFS=*/nullptr))
5563     return true;
5564   switch (ID.Kind) {
5565   case ValID::t_APSInt:
5566   case ValID::t_APFloat:
5567   case ValID::t_Undef:
5568   case ValID::t_Constant:
5569   case ValID::t_ConstantStruct:
5570   case ValID::t_PackedConstantStruct: {
5571     Value *V;
5572     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5573       return true;
5574     assert(isa<Constant>(V) && "Expected a constant value");
5575     C = cast<Constant>(V);
5576     return false;
5577   }
5578   case ValID::t_Null:
5579     C = Constant::getNullValue(Ty);
5580     return false;
5581   default:
5582     return error(Loc, "expected a constant value");
5583   }
5584 }
5585 
5586 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5587   V = nullptr;
5588   ValID ID;
5589   return parseValID(ID, PFS) ||
5590          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5591 }
5592 
5593 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5594   Type *Ty = nullptr;
5595   return parseType(Ty) || parseValue(Ty, V, PFS);
5596 }
5597 
5598 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5599                                       PerFunctionState &PFS) {
5600   Value *V;
5601   Loc = Lex.getLoc();
5602   if (parseTypeAndValue(V, PFS))
5603     return true;
5604   if (!isa<BasicBlock>(V))
5605     return error(Loc, "expected a basic block");
5606   BB = cast<BasicBlock>(V);
5607   return false;
5608 }
5609 
5610 /// FunctionHeader
5611 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5612 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5613 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5614 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5615 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5616   // parse the linkage.
5617   LocTy LinkageLoc = Lex.getLoc();
5618   unsigned Linkage;
5619   unsigned Visibility;
5620   unsigned DLLStorageClass;
5621   bool DSOLocal;
5622   AttrBuilder RetAttrs;
5623   unsigned CC;
5624   bool HasLinkage;
5625   Type *RetType = nullptr;
5626   LocTy RetTypeLoc = Lex.getLoc();
5627   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5628                            DSOLocal) ||
5629       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5630       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5631     return true;
5632 
5633   // Verify that the linkage is ok.
5634   switch ((GlobalValue::LinkageTypes)Linkage) {
5635   case GlobalValue::ExternalLinkage:
5636     break; // always ok.
5637   case GlobalValue::ExternalWeakLinkage:
5638     if (IsDefine)
5639       return error(LinkageLoc, "invalid linkage for function definition");
5640     break;
5641   case GlobalValue::PrivateLinkage:
5642   case GlobalValue::InternalLinkage:
5643   case GlobalValue::AvailableExternallyLinkage:
5644   case GlobalValue::LinkOnceAnyLinkage:
5645   case GlobalValue::LinkOnceODRLinkage:
5646   case GlobalValue::WeakAnyLinkage:
5647   case GlobalValue::WeakODRLinkage:
5648     if (!IsDefine)
5649       return error(LinkageLoc, "invalid linkage for function declaration");
5650     break;
5651   case GlobalValue::AppendingLinkage:
5652   case GlobalValue::CommonLinkage:
5653     return error(LinkageLoc, "invalid function linkage type");
5654   }
5655 
5656   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5657     return error(LinkageLoc,
5658                  "symbol with local linkage must have default visibility");
5659 
5660   if (!FunctionType::isValidReturnType(RetType))
5661     return error(RetTypeLoc, "invalid function return type");
5662 
5663   LocTy NameLoc = Lex.getLoc();
5664 
5665   std::string FunctionName;
5666   if (Lex.getKind() == lltok::GlobalVar) {
5667     FunctionName = Lex.getStrVal();
5668   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5669     unsigned NameID = Lex.getUIntVal();
5670 
5671     if (NameID != NumberedVals.size())
5672       return tokError("function expected to be numbered '%" +
5673                       Twine(NumberedVals.size()) + "'");
5674   } else {
5675     return tokError("expected function name");
5676   }
5677 
5678   Lex.Lex();
5679 
5680   if (Lex.getKind() != lltok::lparen)
5681     return tokError("expected '(' in function argument list");
5682 
5683   SmallVector<ArgInfo, 8> ArgList;
5684   bool IsVarArg;
5685   AttrBuilder FuncAttrs;
5686   std::vector<unsigned> FwdRefAttrGrps;
5687   LocTy BuiltinLoc;
5688   std::string Section;
5689   std::string Partition;
5690   MaybeAlign Alignment;
5691   std::string GC;
5692   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5693   unsigned AddrSpace = 0;
5694   Constant *Prefix = nullptr;
5695   Constant *Prologue = nullptr;
5696   Constant *PersonalityFn = nullptr;
5697   Comdat *C;
5698 
5699   if (parseArgumentList(ArgList, IsVarArg) ||
5700       parseOptionalUnnamedAddr(UnnamedAddr) ||
5701       parseOptionalProgramAddrSpace(AddrSpace) ||
5702       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5703                                  BuiltinLoc) ||
5704       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5705       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5706       parseOptionalComdat(FunctionName, C) ||
5707       parseOptionalAlignment(Alignment) ||
5708       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5709       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5710       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5711       (EatIfPresent(lltok::kw_personality) &&
5712        parseGlobalTypeAndValue(PersonalityFn)))
5713     return true;
5714 
5715   if (FuncAttrs.contains(Attribute::Builtin))
5716     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5717 
5718   // If the alignment was parsed as an attribute, move to the alignment field.
5719   if (FuncAttrs.hasAlignmentAttr()) {
5720     Alignment = FuncAttrs.getAlignment();
5721     FuncAttrs.removeAttribute(Attribute::Alignment);
5722   }
5723 
5724   // Okay, if we got here, the function is syntactically valid.  Convert types
5725   // and do semantic checks.
5726   std::vector<Type*> ParamTypeList;
5727   SmallVector<AttributeSet, 8> Attrs;
5728 
5729   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5730     ParamTypeList.push_back(ArgList[i].Ty);
5731     Attrs.push_back(ArgList[i].Attrs);
5732   }
5733 
5734   AttributeList PAL =
5735       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5736                          AttributeSet::get(Context, RetAttrs), Attrs);
5737 
5738   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5739     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5740 
5741   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5742   PointerType *PFT = PointerType::get(FT, AddrSpace);
5743 
5744   Fn = nullptr;
5745   if (!FunctionName.empty()) {
5746     // If this was a definition of a forward reference, remove the definition
5747     // from the forward reference table and fill in the forward ref.
5748     auto FRVI = ForwardRefVals.find(FunctionName);
5749     if (FRVI != ForwardRefVals.end()) {
5750       Fn = M->getFunction(FunctionName);
5751       if (!Fn)
5752         return error(FRVI->second.second, "invalid forward reference to "
5753                                           "function as global value!");
5754       if (Fn->getType() != PFT)
5755         return error(FRVI->second.second,
5756                      "invalid forward reference to "
5757                      "function '" +
5758                          FunctionName +
5759                          "' with wrong type: "
5760                          "expected '" +
5761                          getTypeString(PFT) + "' but was '" +
5762                          getTypeString(Fn->getType()) + "'");
5763       ForwardRefVals.erase(FRVI);
5764     } else if ((Fn = M->getFunction(FunctionName))) {
5765       // Reject redefinitions.
5766       return error(NameLoc,
5767                    "invalid redefinition of function '" + FunctionName + "'");
5768     } else if (M->getNamedValue(FunctionName)) {
5769       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5770     }
5771 
5772   } else {
5773     // If this is a definition of a forward referenced function, make sure the
5774     // types agree.
5775     auto I = ForwardRefValIDs.find(NumberedVals.size());
5776     if (I != ForwardRefValIDs.end()) {
5777       Fn = cast<Function>(I->second.first);
5778       if (Fn->getType() != PFT)
5779         return error(NameLoc, "type of definition and forward reference of '@" +
5780                                   Twine(NumberedVals.size()) +
5781                                   "' disagree: "
5782                                   "expected '" +
5783                                   getTypeString(PFT) + "' but was '" +
5784                                   getTypeString(Fn->getType()) + "'");
5785       ForwardRefValIDs.erase(I);
5786     }
5787   }
5788 
5789   if (!Fn)
5790     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5791                           FunctionName, M);
5792   else // Move the forward-reference to the correct spot in the module.
5793     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5794 
5795   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5796 
5797   if (FunctionName.empty())
5798     NumberedVals.push_back(Fn);
5799 
5800   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5801   maybeSetDSOLocal(DSOLocal, *Fn);
5802   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5803   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5804   Fn->setCallingConv(CC);
5805   Fn->setAttributes(PAL);
5806   Fn->setUnnamedAddr(UnnamedAddr);
5807   Fn->setAlignment(MaybeAlign(Alignment));
5808   Fn->setSection(Section);
5809   Fn->setPartition(Partition);
5810   Fn->setComdat(C);
5811   Fn->setPersonalityFn(PersonalityFn);
5812   if (!GC.empty()) Fn->setGC(GC);
5813   Fn->setPrefixData(Prefix);
5814   Fn->setPrologueData(Prologue);
5815   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5816 
5817   // Add all of the arguments we parsed to the function.
5818   Function::arg_iterator ArgIt = Fn->arg_begin();
5819   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5820     // If the argument has a name, insert it into the argument symbol table.
5821     if (ArgList[i].Name.empty()) continue;
5822 
5823     // Set the name, if it conflicted, it will be auto-renamed.
5824     ArgIt->setName(ArgList[i].Name);
5825 
5826     if (ArgIt->getName() != ArgList[i].Name)
5827       return error(ArgList[i].Loc,
5828                    "redefinition of argument '%" + ArgList[i].Name + "'");
5829   }
5830 
5831   if (IsDefine)
5832     return false;
5833 
5834   // Check the declaration has no block address forward references.
5835   ValID ID;
5836   if (FunctionName.empty()) {
5837     ID.Kind = ValID::t_GlobalID;
5838     ID.UIntVal = NumberedVals.size() - 1;
5839   } else {
5840     ID.Kind = ValID::t_GlobalName;
5841     ID.StrVal = FunctionName;
5842   }
5843   auto Blocks = ForwardRefBlockAddresses.find(ID);
5844   if (Blocks != ForwardRefBlockAddresses.end())
5845     return error(Blocks->first.Loc,
5846                  "cannot take blockaddress inside a declaration");
5847   return false;
5848 }
5849 
5850 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5851   ValID ID;
5852   if (FunctionNumber == -1) {
5853     ID.Kind = ValID::t_GlobalName;
5854     ID.StrVal = std::string(F.getName());
5855   } else {
5856     ID.Kind = ValID::t_GlobalID;
5857     ID.UIntVal = FunctionNumber;
5858   }
5859 
5860   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5861   if (Blocks == P.ForwardRefBlockAddresses.end())
5862     return false;
5863 
5864   for (const auto &I : Blocks->second) {
5865     const ValID &BBID = I.first;
5866     GlobalValue *GV = I.second;
5867 
5868     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5869            "Expected local id or name");
5870     BasicBlock *BB;
5871     if (BBID.Kind == ValID::t_LocalName)
5872       BB = getBB(BBID.StrVal, BBID.Loc);
5873     else
5874       BB = getBB(BBID.UIntVal, BBID.Loc);
5875     if (!BB)
5876       return P.error(BBID.Loc, "referenced value is not a basic block");
5877 
5878     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5879     GV->eraseFromParent();
5880   }
5881 
5882   P.ForwardRefBlockAddresses.erase(Blocks);
5883   return false;
5884 }
5885 
5886 /// parseFunctionBody
5887 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5888 bool LLParser::parseFunctionBody(Function &Fn) {
5889   if (Lex.getKind() != lltok::lbrace)
5890     return tokError("expected '{' in function body");
5891   Lex.Lex();  // eat the {.
5892 
5893   int FunctionNumber = -1;
5894   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5895 
5896   PerFunctionState PFS(*this, Fn, FunctionNumber);
5897 
5898   // Resolve block addresses and allow basic blocks to be forward-declared
5899   // within this function.
5900   if (PFS.resolveForwardRefBlockAddresses())
5901     return true;
5902   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5903 
5904   // We need at least one basic block.
5905   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5906     return tokError("function body requires at least one basic block");
5907 
5908   while (Lex.getKind() != lltok::rbrace &&
5909          Lex.getKind() != lltok::kw_uselistorder)
5910     if (parseBasicBlock(PFS))
5911       return true;
5912 
5913   while (Lex.getKind() != lltok::rbrace)
5914     if (parseUseListOrder(&PFS))
5915       return true;
5916 
5917   // Eat the }.
5918   Lex.Lex();
5919 
5920   // Verify function is ok.
5921   return PFS.finishFunction();
5922 }
5923 
5924 /// parseBasicBlock
5925 ///   ::= (LabelStr|LabelID)? Instruction*
5926 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5927   // If this basic block starts out with a name, remember it.
5928   std::string Name;
5929   int NameID = -1;
5930   LocTy NameLoc = Lex.getLoc();
5931   if (Lex.getKind() == lltok::LabelStr) {
5932     Name = Lex.getStrVal();
5933     Lex.Lex();
5934   } else if (Lex.getKind() == lltok::LabelID) {
5935     NameID = Lex.getUIntVal();
5936     Lex.Lex();
5937   }
5938 
5939   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5940   if (!BB)
5941     return true;
5942 
5943   std::string NameStr;
5944 
5945   // parse the instructions in this block until we get a terminator.
5946   Instruction *Inst;
5947   do {
5948     // This instruction may have three possibilities for a name: a) none
5949     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5950     LocTy NameLoc = Lex.getLoc();
5951     int NameID = -1;
5952     NameStr = "";
5953 
5954     if (Lex.getKind() == lltok::LocalVarID) {
5955       NameID = Lex.getUIntVal();
5956       Lex.Lex();
5957       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5958         return true;
5959     } else if (Lex.getKind() == lltok::LocalVar) {
5960       NameStr = Lex.getStrVal();
5961       Lex.Lex();
5962       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5963         return true;
5964     }
5965 
5966     switch (parseInstruction(Inst, BB, PFS)) {
5967     default:
5968       llvm_unreachable("Unknown parseInstruction result!");
5969     case InstError: return true;
5970     case InstNormal:
5971       BB->getInstList().push_back(Inst);
5972 
5973       // With a normal result, we check to see if the instruction is followed by
5974       // a comma and metadata.
5975       if (EatIfPresent(lltok::comma))
5976         if (parseInstructionMetadata(*Inst))
5977           return true;
5978       break;
5979     case InstExtraComma:
5980       BB->getInstList().push_back(Inst);
5981 
5982       // If the instruction parser ate an extra comma at the end of it, it
5983       // *must* be followed by metadata.
5984       if (parseInstructionMetadata(*Inst))
5985         return true;
5986       break;
5987     }
5988 
5989     // Set the name on the instruction.
5990     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5991       return true;
5992   } while (!Inst->isTerminator());
5993 
5994   return false;
5995 }
5996 
5997 //===----------------------------------------------------------------------===//
5998 // Instruction Parsing.
5999 //===----------------------------------------------------------------------===//
6000 
6001 /// parseInstruction - parse one of the many different instructions.
6002 ///
6003 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6004                                PerFunctionState &PFS) {
6005   lltok::Kind Token = Lex.getKind();
6006   if (Token == lltok::Eof)
6007     return tokError("found end of file when expecting more instructions");
6008   LocTy Loc = Lex.getLoc();
6009   unsigned KeywordVal = Lex.getUIntVal();
6010   Lex.Lex();  // Eat the keyword.
6011 
6012   switch (Token) {
6013   default:
6014     return error(Loc, "expected instruction opcode");
6015   // Terminator Instructions.
6016   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6017   case lltok::kw_ret:
6018     return parseRet(Inst, BB, PFS);
6019   case lltok::kw_br:
6020     return parseBr(Inst, PFS);
6021   case lltok::kw_switch:
6022     return parseSwitch(Inst, PFS);
6023   case lltok::kw_indirectbr:
6024     return parseIndirectBr(Inst, PFS);
6025   case lltok::kw_invoke:
6026     return parseInvoke(Inst, PFS);
6027   case lltok::kw_resume:
6028     return parseResume(Inst, PFS);
6029   case lltok::kw_cleanupret:
6030     return parseCleanupRet(Inst, PFS);
6031   case lltok::kw_catchret:
6032     return parseCatchRet(Inst, PFS);
6033   case lltok::kw_catchswitch:
6034     return parseCatchSwitch(Inst, PFS);
6035   case lltok::kw_catchpad:
6036     return parseCatchPad(Inst, PFS);
6037   case lltok::kw_cleanuppad:
6038     return parseCleanupPad(Inst, PFS);
6039   case lltok::kw_callbr:
6040     return parseCallBr(Inst, PFS);
6041   // Unary Operators.
6042   case lltok::kw_fneg: {
6043     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6044     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6045     if (Res != 0)
6046       return Res;
6047     if (FMF.any())
6048       Inst->setFastMathFlags(FMF);
6049     return false;
6050   }
6051   // Binary Operators.
6052   case lltok::kw_add:
6053   case lltok::kw_sub:
6054   case lltok::kw_mul:
6055   case lltok::kw_shl: {
6056     bool NUW = EatIfPresent(lltok::kw_nuw);
6057     bool NSW = EatIfPresent(lltok::kw_nsw);
6058     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6059 
6060     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6061       return true;
6062 
6063     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6064     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6065     return false;
6066   }
6067   case lltok::kw_fadd:
6068   case lltok::kw_fsub:
6069   case lltok::kw_fmul:
6070   case lltok::kw_fdiv:
6071   case lltok::kw_frem: {
6072     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6073     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6074     if (Res != 0)
6075       return Res;
6076     if (FMF.any())
6077       Inst->setFastMathFlags(FMF);
6078     return 0;
6079   }
6080 
6081   case lltok::kw_sdiv:
6082   case lltok::kw_udiv:
6083   case lltok::kw_lshr:
6084   case lltok::kw_ashr: {
6085     bool Exact = EatIfPresent(lltok::kw_exact);
6086 
6087     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6088       return true;
6089     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6090     return false;
6091   }
6092 
6093   case lltok::kw_urem:
6094   case lltok::kw_srem:
6095     return parseArithmetic(Inst, PFS, KeywordVal,
6096                            /*IsFP*/ false);
6097   case lltok::kw_and:
6098   case lltok::kw_or:
6099   case lltok::kw_xor:
6100     return parseLogical(Inst, PFS, KeywordVal);
6101   case lltok::kw_icmp:
6102     return parseCompare(Inst, PFS, KeywordVal);
6103   case lltok::kw_fcmp: {
6104     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6105     int Res = parseCompare(Inst, PFS, KeywordVal);
6106     if (Res != 0)
6107       return Res;
6108     if (FMF.any())
6109       Inst->setFastMathFlags(FMF);
6110     return 0;
6111   }
6112 
6113   // Casts.
6114   case lltok::kw_trunc:
6115   case lltok::kw_zext:
6116   case lltok::kw_sext:
6117   case lltok::kw_fptrunc:
6118   case lltok::kw_fpext:
6119   case lltok::kw_bitcast:
6120   case lltok::kw_addrspacecast:
6121   case lltok::kw_uitofp:
6122   case lltok::kw_sitofp:
6123   case lltok::kw_fptoui:
6124   case lltok::kw_fptosi:
6125   case lltok::kw_inttoptr:
6126   case lltok::kw_ptrtoint:
6127     return parseCast(Inst, PFS, KeywordVal);
6128   // Other.
6129   case lltok::kw_select: {
6130     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6131     int Res = parseSelect(Inst, PFS);
6132     if (Res != 0)
6133       return Res;
6134     if (FMF.any()) {
6135       if (!isa<FPMathOperator>(Inst))
6136         return error(Loc, "fast-math-flags specified for select without "
6137                           "floating-point scalar or vector return type");
6138       Inst->setFastMathFlags(FMF);
6139     }
6140     return 0;
6141   }
6142   case lltok::kw_va_arg:
6143     return parseVAArg(Inst, PFS);
6144   case lltok::kw_extractelement:
6145     return parseExtractElement(Inst, PFS);
6146   case lltok::kw_insertelement:
6147     return parseInsertElement(Inst, PFS);
6148   case lltok::kw_shufflevector:
6149     return parseShuffleVector(Inst, PFS);
6150   case lltok::kw_phi: {
6151     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6152     int Res = parsePHI(Inst, PFS);
6153     if (Res != 0)
6154       return Res;
6155     if (FMF.any()) {
6156       if (!isa<FPMathOperator>(Inst))
6157         return error(Loc, "fast-math-flags specified for phi without "
6158                           "floating-point scalar or vector return type");
6159       Inst->setFastMathFlags(FMF);
6160     }
6161     return 0;
6162   }
6163   case lltok::kw_landingpad:
6164     return parseLandingPad(Inst, PFS);
6165   case lltok::kw_freeze:
6166     return parseFreeze(Inst, PFS);
6167   // Call.
6168   case lltok::kw_call:
6169     return parseCall(Inst, PFS, CallInst::TCK_None);
6170   case lltok::kw_tail:
6171     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6172   case lltok::kw_musttail:
6173     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6174   case lltok::kw_notail:
6175     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6176   // Memory.
6177   case lltok::kw_alloca:
6178     return parseAlloc(Inst, PFS);
6179   case lltok::kw_load:
6180     return parseLoad(Inst, PFS);
6181   case lltok::kw_store:
6182     return parseStore(Inst, PFS);
6183   case lltok::kw_cmpxchg:
6184     return parseCmpXchg(Inst, PFS);
6185   case lltok::kw_atomicrmw:
6186     return parseAtomicRMW(Inst, PFS);
6187   case lltok::kw_fence:
6188     return parseFence(Inst, PFS);
6189   case lltok::kw_getelementptr:
6190     return parseGetElementPtr(Inst, PFS);
6191   case lltok::kw_extractvalue:
6192     return parseExtractValue(Inst, PFS);
6193   case lltok::kw_insertvalue:
6194     return parseInsertValue(Inst, PFS);
6195   }
6196 }
6197 
6198 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6199 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6200   if (Opc == Instruction::FCmp) {
6201     switch (Lex.getKind()) {
6202     default:
6203       return tokError("expected fcmp predicate (e.g. 'oeq')");
6204     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6205     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6206     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6207     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6208     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6209     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6210     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6211     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6212     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6213     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6214     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6215     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6216     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6217     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6218     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6219     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6220     }
6221   } else {
6222     switch (Lex.getKind()) {
6223     default:
6224       return tokError("expected icmp predicate (e.g. 'eq')");
6225     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6226     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6227     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6228     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6229     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6230     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6231     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6232     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6233     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6234     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6235     }
6236   }
6237   Lex.Lex();
6238   return false;
6239 }
6240 
6241 //===----------------------------------------------------------------------===//
6242 // Terminator Instructions.
6243 //===----------------------------------------------------------------------===//
6244 
6245 /// parseRet - parse a return instruction.
6246 ///   ::= 'ret' void (',' !dbg, !1)*
6247 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6248 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6249                         PerFunctionState &PFS) {
6250   SMLoc TypeLoc = Lex.getLoc();
6251   Type *Ty = nullptr;
6252   if (parseType(Ty, true /*void allowed*/))
6253     return true;
6254 
6255   Type *ResType = PFS.getFunction().getReturnType();
6256 
6257   if (Ty->isVoidTy()) {
6258     if (!ResType->isVoidTy())
6259       return error(TypeLoc, "value doesn't match function result type '" +
6260                                 getTypeString(ResType) + "'");
6261 
6262     Inst = ReturnInst::Create(Context);
6263     return false;
6264   }
6265 
6266   Value *RV;
6267   if (parseValue(Ty, RV, PFS))
6268     return true;
6269 
6270   if (ResType != RV->getType())
6271     return error(TypeLoc, "value doesn't match function result type '" +
6272                               getTypeString(ResType) + "'");
6273 
6274   Inst = ReturnInst::Create(Context, RV);
6275   return false;
6276 }
6277 
6278 /// parseBr
6279 ///   ::= 'br' TypeAndValue
6280 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6281 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6282   LocTy Loc, Loc2;
6283   Value *Op0;
6284   BasicBlock *Op1, *Op2;
6285   if (parseTypeAndValue(Op0, Loc, PFS))
6286     return true;
6287 
6288   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6289     Inst = BranchInst::Create(BB);
6290     return false;
6291   }
6292 
6293   if (Op0->getType() != Type::getInt1Ty(Context))
6294     return error(Loc, "branch condition must have 'i1' type");
6295 
6296   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6297       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6298       parseToken(lltok::comma, "expected ',' after true destination") ||
6299       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6300     return true;
6301 
6302   Inst = BranchInst::Create(Op1, Op2, Op0);
6303   return false;
6304 }
6305 
6306 /// parseSwitch
6307 ///  Instruction
6308 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6309 ///  JumpTable
6310 ///    ::= (TypeAndValue ',' TypeAndValue)*
6311 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6312   LocTy CondLoc, BBLoc;
6313   Value *Cond;
6314   BasicBlock *DefaultBB;
6315   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6316       parseToken(lltok::comma, "expected ',' after switch condition") ||
6317       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6318       parseToken(lltok::lsquare, "expected '[' with switch table"))
6319     return true;
6320 
6321   if (!Cond->getType()->isIntegerTy())
6322     return error(CondLoc, "switch condition must have integer type");
6323 
6324   // parse the jump table pairs.
6325   SmallPtrSet<Value*, 32> SeenCases;
6326   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6327   while (Lex.getKind() != lltok::rsquare) {
6328     Value *Constant;
6329     BasicBlock *DestBB;
6330 
6331     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6332         parseToken(lltok::comma, "expected ',' after case value") ||
6333         parseTypeAndBasicBlock(DestBB, PFS))
6334       return true;
6335 
6336     if (!SeenCases.insert(Constant).second)
6337       return error(CondLoc, "duplicate case value in switch");
6338     if (!isa<ConstantInt>(Constant))
6339       return error(CondLoc, "case value is not a constant integer");
6340 
6341     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6342   }
6343 
6344   Lex.Lex();  // Eat the ']'.
6345 
6346   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6347   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6348     SI->addCase(Table[i].first, Table[i].second);
6349   Inst = SI;
6350   return false;
6351 }
6352 
6353 /// parseIndirectBr
6354 ///  Instruction
6355 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6356 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6357   LocTy AddrLoc;
6358   Value *Address;
6359   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6360       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6361       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6362     return true;
6363 
6364   if (!Address->getType()->isPointerTy())
6365     return error(AddrLoc, "indirectbr address must have pointer type");
6366 
6367   // parse the destination list.
6368   SmallVector<BasicBlock*, 16> DestList;
6369 
6370   if (Lex.getKind() != lltok::rsquare) {
6371     BasicBlock *DestBB;
6372     if (parseTypeAndBasicBlock(DestBB, PFS))
6373       return true;
6374     DestList.push_back(DestBB);
6375 
6376     while (EatIfPresent(lltok::comma)) {
6377       if (parseTypeAndBasicBlock(DestBB, PFS))
6378         return true;
6379       DestList.push_back(DestBB);
6380     }
6381   }
6382 
6383   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6384     return true;
6385 
6386   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6387   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6388     IBI->addDestination(DestList[i]);
6389   Inst = IBI;
6390   return false;
6391 }
6392 
6393 /// parseInvoke
6394 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6395 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6396 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6397   LocTy CallLoc = Lex.getLoc();
6398   AttrBuilder RetAttrs, FnAttrs;
6399   std::vector<unsigned> FwdRefAttrGrps;
6400   LocTy NoBuiltinLoc;
6401   unsigned CC;
6402   unsigned InvokeAddrSpace;
6403   Type *RetType = nullptr;
6404   LocTy RetTypeLoc;
6405   ValID CalleeID;
6406   SmallVector<ParamInfo, 16> ArgList;
6407   SmallVector<OperandBundleDef, 2> BundleList;
6408 
6409   BasicBlock *NormalBB, *UnwindBB;
6410   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6411       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6412       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6413       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6414       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6415                                  NoBuiltinLoc) ||
6416       parseOptionalOperandBundles(BundleList, PFS) ||
6417       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6418       parseTypeAndBasicBlock(NormalBB, PFS) ||
6419       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6420       parseTypeAndBasicBlock(UnwindBB, PFS))
6421     return true;
6422 
6423   // If RetType is a non-function pointer type, then this is the short syntax
6424   // for the call, which means that RetType is just the return type.  Infer the
6425   // rest of the function argument types from the arguments that are present.
6426   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6427   if (!Ty) {
6428     // Pull out the types of all of the arguments...
6429     std::vector<Type*> ParamTypes;
6430     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6431       ParamTypes.push_back(ArgList[i].V->getType());
6432 
6433     if (!FunctionType::isValidReturnType(RetType))
6434       return error(RetTypeLoc, "Invalid result type for LLVM function");
6435 
6436     Ty = FunctionType::get(RetType, ParamTypes, false);
6437   }
6438 
6439   CalleeID.FTy = Ty;
6440 
6441   // Look up the callee.
6442   Value *Callee;
6443   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6444                           Callee, &PFS, /*IsCall=*/true))
6445     return true;
6446 
6447   // Set up the Attribute for the function.
6448   SmallVector<Value *, 8> Args;
6449   SmallVector<AttributeSet, 8> ArgAttrs;
6450 
6451   // Loop through FunctionType's arguments and ensure they are specified
6452   // correctly.  Also, gather any parameter attributes.
6453   FunctionType::param_iterator I = Ty->param_begin();
6454   FunctionType::param_iterator E = Ty->param_end();
6455   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6456     Type *ExpectedTy = nullptr;
6457     if (I != E) {
6458       ExpectedTy = *I++;
6459     } else if (!Ty->isVarArg()) {
6460       return error(ArgList[i].Loc, "too many arguments specified");
6461     }
6462 
6463     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6464       return error(ArgList[i].Loc, "argument is not of expected type '" +
6465                                        getTypeString(ExpectedTy) + "'");
6466     Args.push_back(ArgList[i].V);
6467     ArgAttrs.push_back(ArgList[i].Attrs);
6468   }
6469 
6470   if (I != E)
6471     return error(CallLoc, "not enough parameters specified for call");
6472 
6473   if (FnAttrs.hasAlignmentAttr())
6474     return error(CallLoc, "invoke instructions may not have an alignment");
6475 
6476   // Finish off the Attribute and check them
6477   AttributeList PAL =
6478       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6479                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6480 
6481   InvokeInst *II =
6482       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6483   II->setCallingConv(CC);
6484   II->setAttributes(PAL);
6485   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6486   Inst = II;
6487   return false;
6488 }
6489 
6490 /// parseResume
6491 ///   ::= 'resume' TypeAndValue
6492 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6493   Value *Exn; LocTy ExnLoc;
6494   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6495     return true;
6496 
6497   ResumeInst *RI = ResumeInst::Create(Exn);
6498   Inst = RI;
6499   return false;
6500 }
6501 
6502 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6503                                   PerFunctionState &PFS) {
6504   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6505     return true;
6506 
6507   while (Lex.getKind() != lltok::rsquare) {
6508     // If this isn't the first argument, we need a comma.
6509     if (!Args.empty() &&
6510         parseToken(lltok::comma, "expected ',' in argument list"))
6511       return true;
6512 
6513     // parse the argument.
6514     LocTy ArgLoc;
6515     Type *ArgTy = nullptr;
6516     if (parseType(ArgTy, ArgLoc))
6517       return true;
6518 
6519     Value *V;
6520     if (ArgTy->isMetadataTy()) {
6521       if (parseMetadataAsValue(V, PFS))
6522         return true;
6523     } else {
6524       if (parseValue(ArgTy, V, PFS))
6525         return true;
6526     }
6527     Args.push_back(V);
6528   }
6529 
6530   Lex.Lex();  // Lex the ']'.
6531   return false;
6532 }
6533 
6534 /// parseCleanupRet
6535 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6536 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6537   Value *CleanupPad = nullptr;
6538 
6539   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6540     return true;
6541 
6542   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6543     return true;
6544 
6545   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6546     return true;
6547 
6548   BasicBlock *UnwindBB = nullptr;
6549   if (Lex.getKind() == lltok::kw_to) {
6550     Lex.Lex();
6551     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6552       return true;
6553   } else {
6554     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6555       return true;
6556     }
6557   }
6558 
6559   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6560   return false;
6561 }
6562 
6563 /// parseCatchRet
6564 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6565 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6566   Value *CatchPad = nullptr;
6567 
6568   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6569     return true;
6570 
6571   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6572     return true;
6573 
6574   BasicBlock *BB;
6575   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6576       parseTypeAndBasicBlock(BB, PFS))
6577     return true;
6578 
6579   Inst = CatchReturnInst::Create(CatchPad, BB);
6580   return false;
6581 }
6582 
6583 /// parseCatchSwitch
6584 ///   ::= 'catchswitch' within Parent
6585 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6586   Value *ParentPad;
6587 
6588   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6589     return true;
6590 
6591   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6592       Lex.getKind() != lltok::LocalVarID)
6593     return tokError("expected scope value for catchswitch");
6594 
6595   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6596     return true;
6597 
6598   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6599     return true;
6600 
6601   SmallVector<BasicBlock *, 32> Table;
6602   do {
6603     BasicBlock *DestBB;
6604     if (parseTypeAndBasicBlock(DestBB, PFS))
6605       return true;
6606     Table.push_back(DestBB);
6607   } while (EatIfPresent(lltok::comma));
6608 
6609   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6610     return true;
6611 
6612   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6613     return true;
6614 
6615   BasicBlock *UnwindBB = nullptr;
6616   if (EatIfPresent(lltok::kw_to)) {
6617     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6618       return true;
6619   } else {
6620     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6621       return true;
6622   }
6623 
6624   auto *CatchSwitch =
6625       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6626   for (BasicBlock *DestBB : Table)
6627     CatchSwitch->addHandler(DestBB);
6628   Inst = CatchSwitch;
6629   return false;
6630 }
6631 
6632 /// parseCatchPad
6633 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6634 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6635   Value *CatchSwitch = nullptr;
6636 
6637   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6638     return true;
6639 
6640   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6641     return tokError("expected scope value for catchpad");
6642 
6643   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6644     return true;
6645 
6646   SmallVector<Value *, 8> Args;
6647   if (parseExceptionArgs(Args, PFS))
6648     return true;
6649 
6650   Inst = CatchPadInst::Create(CatchSwitch, Args);
6651   return false;
6652 }
6653 
6654 /// parseCleanupPad
6655 ///   ::= 'cleanuppad' within Parent ParamList
6656 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6657   Value *ParentPad = nullptr;
6658 
6659   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6660     return true;
6661 
6662   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6663       Lex.getKind() != lltok::LocalVarID)
6664     return tokError("expected scope value for cleanuppad");
6665 
6666   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6667     return true;
6668 
6669   SmallVector<Value *, 8> Args;
6670   if (parseExceptionArgs(Args, PFS))
6671     return true;
6672 
6673   Inst = CleanupPadInst::Create(ParentPad, Args);
6674   return false;
6675 }
6676 
6677 //===----------------------------------------------------------------------===//
6678 // Unary Operators.
6679 //===----------------------------------------------------------------------===//
6680 
6681 /// parseUnaryOp
6682 ///  ::= UnaryOp TypeAndValue ',' Value
6683 ///
6684 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6685 /// operand is allowed.
6686 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6687                             unsigned Opc, bool IsFP) {
6688   LocTy Loc; Value *LHS;
6689   if (parseTypeAndValue(LHS, Loc, PFS))
6690     return true;
6691 
6692   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6693                     : LHS->getType()->isIntOrIntVectorTy();
6694 
6695   if (!Valid)
6696     return error(Loc, "invalid operand type for instruction");
6697 
6698   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6699   return false;
6700 }
6701 
6702 /// parseCallBr
6703 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6704 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6705 ///       '[' LabelList ']'
6706 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6707   LocTy CallLoc = Lex.getLoc();
6708   AttrBuilder RetAttrs, FnAttrs;
6709   std::vector<unsigned> FwdRefAttrGrps;
6710   LocTy NoBuiltinLoc;
6711   unsigned CC;
6712   Type *RetType = nullptr;
6713   LocTy RetTypeLoc;
6714   ValID CalleeID;
6715   SmallVector<ParamInfo, 16> ArgList;
6716   SmallVector<OperandBundleDef, 2> BundleList;
6717 
6718   BasicBlock *DefaultDest;
6719   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6720       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6721       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6722       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6723                                  NoBuiltinLoc) ||
6724       parseOptionalOperandBundles(BundleList, PFS) ||
6725       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6726       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6727       parseToken(lltok::lsquare, "expected '[' in callbr"))
6728     return true;
6729 
6730   // parse the destination list.
6731   SmallVector<BasicBlock *, 16> IndirectDests;
6732 
6733   if (Lex.getKind() != lltok::rsquare) {
6734     BasicBlock *DestBB;
6735     if (parseTypeAndBasicBlock(DestBB, PFS))
6736       return true;
6737     IndirectDests.push_back(DestBB);
6738 
6739     while (EatIfPresent(lltok::comma)) {
6740       if (parseTypeAndBasicBlock(DestBB, PFS))
6741         return true;
6742       IndirectDests.push_back(DestBB);
6743     }
6744   }
6745 
6746   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6747     return true;
6748 
6749   // If RetType is a non-function pointer type, then this is the short syntax
6750   // for the call, which means that RetType is just the return type.  Infer the
6751   // rest of the function argument types from the arguments that are present.
6752   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6753   if (!Ty) {
6754     // Pull out the types of all of the arguments...
6755     std::vector<Type *> ParamTypes;
6756     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6757       ParamTypes.push_back(ArgList[i].V->getType());
6758 
6759     if (!FunctionType::isValidReturnType(RetType))
6760       return error(RetTypeLoc, "Invalid result type for LLVM function");
6761 
6762     Ty = FunctionType::get(RetType, ParamTypes, false);
6763   }
6764 
6765   CalleeID.FTy = Ty;
6766 
6767   // Look up the callee.
6768   Value *Callee;
6769   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6770                           /*IsCall=*/true))
6771     return true;
6772 
6773   // Set up the Attribute for the function.
6774   SmallVector<Value *, 8> Args;
6775   SmallVector<AttributeSet, 8> ArgAttrs;
6776 
6777   // Loop through FunctionType's arguments and ensure they are specified
6778   // correctly.  Also, gather any parameter attributes.
6779   FunctionType::param_iterator I = Ty->param_begin();
6780   FunctionType::param_iterator E = Ty->param_end();
6781   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6782     Type *ExpectedTy = nullptr;
6783     if (I != E) {
6784       ExpectedTy = *I++;
6785     } else if (!Ty->isVarArg()) {
6786       return error(ArgList[i].Loc, "too many arguments specified");
6787     }
6788 
6789     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6790       return error(ArgList[i].Loc, "argument is not of expected type '" +
6791                                        getTypeString(ExpectedTy) + "'");
6792     Args.push_back(ArgList[i].V);
6793     ArgAttrs.push_back(ArgList[i].Attrs);
6794   }
6795 
6796   if (I != E)
6797     return error(CallLoc, "not enough parameters specified for call");
6798 
6799   if (FnAttrs.hasAlignmentAttr())
6800     return error(CallLoc, "callbr instructions may not have an alignment");
6801 
6802   // Finish off the Attribute and check them
6803   AttributeList PAL =
6804       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6805                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6806 
6807   CallBrInst *CBI =
6808       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6809                          BundleList);
6810   CBI->setCallingConv(CC);
6811   CBI->setAttributes(PAL);
6812   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6813   Inst = CBI;
6814   return false;
6815 }
6816 
6817 //===----------------------------------------------------------------------===//
6818 // Binary Operators.
6819 //===----------------------------------------------------------------------===//
6820 
6821 /// parseArithmetic
6822 ///  ::= ArithmeticOps TypeAndValue ',' Value
6823 ///
6824 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6825 /// operand is allowed.
6826 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6827                                unsigned Opc, bool IsFP) {
6828   LocTy Loc; Value *LHS, *RHS;
6829   if (parseTypeAndValue(LHS, Loc, PFS) ||
6830       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6831       parseValue(LHS->getType(), RHS, PFS))
6832     return true;
6833 
6834   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6835                     : LHS->getType()->isIntOrIntVectorTy();
6836 
6837   if (!Valid)
6838     return error(Loc, "invalid operand type for instruction");
6839 
6840   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6841   return false;
6842 }
6843 
6844 /// parseLogical
6845 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6846 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6847                             unsigned Opc) {
6848   LocTy Loc; Value *LHS, *RHS;
6849   if (parseTypeAndValue(LHS, Loc, PFS) ||
6850       parseToken(lltok::comma, "expected ',' in logical operation") ||
6851       parseValue(LHS->getType(), RHS, PFS))
6852     return true;
6853 
6854   if (!LHS->getType()->isIntOrIntVectorTy())
6855     return error(Loc,
6856                  "instruction requires integer or integer vector operands");
6857 
6858   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6859   return false;
6860 }
6861 
6862 /// parseCompare
6863 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6864 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6865 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6866                             unsigned Opc) {
6867   // parse the integer/fp comparison predicate.
6868   LocTy Loc;
6869   unsigned Pred;
6870   Value *LHS, *RHS;
6871   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6872       parseToken(lltok::comma, "expected ',' after compare value") ||
6873       parseValue(LHS->getType(), RHS, PFS))
6874     return true;
6875 
6876   if (Opc == Instruction::FCmp) {
6877     if (!LHS->getType()->isFPOrFPVectorTy())
6878       return error(Loc, "fcmp requires floating point operands");
6879     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6880   } else {
6881     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6882     if (!LHS->getType()->isIntOrIntVectorTy() &&
6883         !LHS->getType()->isPtrOrPtrVectorTy())
6884       return error(Loc, "icmp requires integer operands");
6885     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6886   }
6887   return false;
6888 }
6889 
6890 //===----------------------------------------------------------------------===//
6891 // Other Instructions.
6892 //===----------------------------------------------------------------------===//
6893 
6894 /// parseCast
6895 ///   ::= CastOpc TypeAndValue 'to' Type
6896 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6897                          unsigned Opc) {
6898   LocTy Loc;
6899   Value *Op;
6900   Type *DestTy = nullptr;
6901   if (parseTypeAndValue(Op, Loc, PFS) ||
6902       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6903       parseType(DestTy))
6904     return true;
6905 
6906   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6907     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6908     return error(Loc, "invalid cast opcode for cast from '" +
6909                           getTypeString(Op->getType()) + "' to '" +
6910                           getTypeString(DestTy) + "'");
6911   }
6912   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6913   return false;
6914 }
6915 
6916 /// parseSelect
6917 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6918 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6919   LocTy Loc;
6920   Value *Op0, *Op1, *Op2;
6921   if (parseTypeAndValue(Op0, Loc, PFS) ||
6922       parseToken(lltok::comma, "expected ',' after select condition") ||
6923       parseTypeAndValue(Op1, PFS) ||
6924       parseToken(lltok::comma, "expected ',' after select value") ||
6925       parseTypeAndValue(Op2, PFS))
6926     return true;
6927 
6928   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6929     return error(Loc, Reason);
6930 
6931   Inst = SelectInst::Create(Op0, Op1, Op2);
6932   return false;
6933 }
6934 
6935 /// parseVAArg
6936 ///   ::= 'va_arg' TypeAndValue ',' Type
6937 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6938   Value *Op;
6939   Type *EltTy = nullptr;
6940   LocTy TypeLoc;
6941   if (parseTypeAndValue(Op, PFS) ||
6942       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6943       parseType(EltTy, TypeLoc))
6944     return true;
6945 
6946   if (!EltTy->isFirstClassType())
6947     return error(TypeLoc, "va_arg requires operand with first class type");
6948 
6949   Inst = new VAArgInst(Op, EltTy);
6950   return false;
6951 }
6952 
6953 /// parseExtractElement
6954 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6955 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6956   LocTy Loc;
6957   Value *Op0, *Op1;
6958   if (parseTypeAndValue(Op0, Loc, PFS) ||
6959       parseToken(lltok::comma, "expected ',' after extract value") ||
6960       parseTypeAndValue(Op1, PFS))
6961     return true;
6962 
6963   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6964     return error(Loc, "invalid extractelement operands");
6965 
6966   Inst = ExtractElementInst::Create(Op0, Op1);
6967   return false;
6968 }
6969 
6970 /// parseInsertElement
6971 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6972 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6973   LocTy Loc;
6974   Value *Op0, *Op1, *Op2;
6975   if (parseTypeAndValue(Op0, Loc, PFS) ||
6976       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6977       parseTypeAndValue(Op1, PFS) ||
6978       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6979       parseTypeAndValue(Op2, PFS))
6980     return true;
6981 
6982   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6983     return error(Loc, "invalid insertelement operands");
6984 
6985   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6986   return false;
6987 }
6988 
6989 /// parseShuffleVector
6990 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6991 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6992   LocTy Loc;
6993   Value *Op0, *Op1, *Op2;
6994   if (parseTypeAndValue(Op0, Loc, PFS) ||
6995       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6996       parseTypeAndValue(Op1, PFS) ||
6997       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6998       parseTypeAndValue(Op2, PFS))
6999     return true;
7000 
7001   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7002     return error(Loc, "invalid shufflevector operands");
7003 
7004   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7005   return false;
7006 }
7007 
7008 /// parsePHI
7009 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7010 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7011   Type *Ty = nullptr;  LocTy TypeLoc;
7012   Value *Op0, *Op1;
7013 
7014   if (parseType(Ty, TypeLoc) ||
7015       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7016       parseValue(Ty, Op0, PFS) ||
7017       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7018       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7019       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7020     return true;
7021 
7022   bool AteExtraComma = false;
7023   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7024 
7025   while (true) {
7026     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7027 
7028     if (!EatIfPresent(lltok::comma))
7029       break;
7030 
7031     if (Lex.getKind() == lltok::MetadataVar) {
7032       AteExtraComma = true;
7033       break;
7034     }
7035 
7036     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7037         parseValue(Ty, Op0, PFS) ||
7038         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7039         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7040         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7041       return true;
7042   }
7043 
7044   if (!Ty->isFirstClassType())
7045     return error(TypeLoc, "phi node must have first class type");
7046 
7047   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7048   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7049     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7050   Inst = PN;
7051   return AteExtraComma ? InstExtraComma : InstNormal;
7052 }
7053 
7054 /// parseLandingPad
7055 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7056 /// Clause
7057 ///   ::= 'catch' TypeAndValue
7058 ///   ::= 'filter'
7059 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7060 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7061   Type *Ty = nullptr; LocTy TyLoc;
7062 
7063   if (parseType(Ty, TyLoc))
7064     return true;
7065 
7066   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7067   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7068 
7069   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7070     LandingPadInst::ClauseType CT;
7071     if (EatIfPresent(lltok::kw_catch))
7072       CT = LandingPadInst::Catch;
7073     else if (EatIfPresent(lltok::kw_filter))
7074       CT = LandingPadInst::Filter;
7075     else
7076       return tokError("expected 'catch' or 'filter' clause type");
7077 
7078     Value *V;
7079     LocTy VLoc;
7080     if (parseTypeAndValue(V, VLoc, PFS))
7081       return true;
7082 
7083     // A 'catch' type expects a non-array constant. A filter clause expects an
7084     // array constant.
7085     if (CT == LandingPadInst::Catch) {
7086       if (isa<ArrayType>(V->getType()))
7087         error(VLoc, "'catch' clause has an invalid type");
7088     } else {
7089       if (!isa<ArrayType>(V->getType()))
7090         error(VLoc, "'filter' clause has an invalid type");
7091     }
7092 
7093     Constant *CV = dyn_cast<Constant>(V);
7094     if (!CV)
7095       return error(VLoc, "clause argument must be a constant");
7096     LP->addClause(CV);
7097   }
7098 
7099   Inst = LP.release();
7100   return false;
7101 }
7102 
7103 /// parseFreeze
7104 ///   ::= 'freeze' Type Value
7105 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7106   LocTy Loc;
7107   Value *Op;
7108   if (parseTypeAndValue(Op, Loc, PFS))
7109     return true;
7110 
7111   Inst = new FreezeInst(Op);
7112   return false;
7113 }
7114 
7115 /// parseCall
7116 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7117 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7118 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7119 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7120 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7121 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7122 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7123 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7124 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7125                          CallInst::TailCallKind TCK) {
7126   AttrBuilder RetAttrs, FnAttrs;
7127   std::vector<unsigned> FwdRefAttrGrps;
7128   LocTy BuiltinLoc;
7129   unsigned CallAddrSpace;
7130   unsigned CC;
7131   Type *RetType = nullptr;
7132   LocTy RetTypeLoc;
7133   ValID CalleeID;
7134   SmallVector<ParamInfo, 16> ArgList;
7135   SmallVector<OperandBundleDef, 2> BundleList;
7136   LocTy CallLoc = Lex.getLoc();
7137 
7138   if (TCK != CallInst::TCK_None &&
7139       parseToken(lltok::kw_call,
7140                  "expected 'tail call', 'musttail call', or 'notail call'"))
7141     return true;
7142 
7143   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7144 
7145   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7146       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7147       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7148       parseValID(CalleeID) ||
7149       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7150                          PFS.getFunction().isVarArg()) ||
7151       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7152       parseOptionalOperandBundles(BundleList, PFS))
7153     return true;
7154 
7155   // If RetType is a non-function pointer type, then this is the short syntax
7156   // for the call, which means that RetType is just the return type.  Infer the
7157   // rest of the function argument types from the arguments that are present.
7158   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7159   if (!Ty) {
7160     // Pull out the types of all of the arguments...
7161     std::vector<Type*> ParamTypes;
7162     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7163       ParamTypes.push_back(ArgList[i].V->getType());
7164 
7165     if (!FunctionType::isValidReturnType(RetType))
7166       return error(RetTypeLoc, "Invalid result type for LLVM function");
7167 
7168     Ty = FunctionType::get(RetType, ParamTypes, false);
7169   }
7170 
7171   CalleeID.FTy = Ty;
7172 
7173   // Look up the callee.
7174   Value *Callee;
7175   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7176                           &PFS, /*IsCall=*/true))
7177     return true;
7178 
7179   // Set up the Attribute for the function.
7180   SmallVector<AttributeSet, 8> Attrs;
7181 
7182   SmallVector<Value*, 8> Args;
7183 
7184   // Loop through FunctionType's arguments and ensure they are specified
7185   // correctly.  Also, gather any parameter attributes.
7186   FunctionType::param_iterator I = Ty->param_begin();
7187   FunctionType::param_iterator E = Ty->param_end();
7188   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7189     Type *ExpectedTy = nullptr;
7190     if (I != E) {
7191       ExpectedTy = *I++;
7192     } else if (!Ty->isVarArg()) {
7193       return error(ArgList[i].Loc, "too many arguments specified");
7194     }
7195 
7196     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7197       return error(ArgList[i].Loc, "argument is not of expected type '" +
7198                                        getTypeString(ExpectedTy) + "'");
7199     Args.push_back(ArgList[i].V);
7200     Attrs.push_back(ArgList[i].Attrs);
7201   }
7202 
7203   if (I != E)
7204     return error(CallLoc, "not enough parameters specified for call");
7205 
7206   if (FnAttrs.hasAlignmentAttr())
7207     return error(CallLoc, "call instructions may not have an alignment");
7208 
7209   // Finish off the Attribute and check them
7210   AttributeList PAL =
7211       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7212                          AttributeSet::get(Context, RetAttrs), Attrs);
7213 
7214   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7215   CI->setTailCallKind(TCK);
7216   CI->setCallingConv(CC);
7217   if (FMF.any()) {
7218     if (!isa<FPMathOperator>(CI)) {
7219       CI->deleteValue();
7220       return error(CallLoc, "fast-math-flags specified for call without "
7221                             "floating-point scalar or vector return type");
7222     }
7223     CI->setFastMathFlags(FMF);
7224   }
7225   CI->setAttributes(PAL);
7226   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7227   Inst = CI;
7228   return false;
7229 }
7230 
7231 //===----------------------------------------------------------------------===//
7232 // Memory Instructions.
7233 //===----------------------------------------------------------------------===//
7234 
7235 /// parseAlloc
7236 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7237 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7238 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7239   Value *Size = nullptr;
7240   LocTy SizeLoc, TyLoc, ASLoc;
7241   MaybeAlign Alignment;
7242   unsigned AddrSpace = 0;
7243   Type *Ty = nullptr;
7244 
7245   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7246   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7247 
7248   if (parseType(Ty, TyLoc))
7249     return true;
7250 
7251   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7252     return error(TyLoc, "invalid type for alloca");
7253 
7254   bool AteExtraComma = false;
7255   if (EatIfPresent(lltok::comma)) {
7256     if (Lex.getKind() == lltok::kw_align) {
7257       if (parseOptionalAlignment(Alignment))
7258         return true;
7259       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7260         return true;
7261     } else if (Lex.getKind() == lltok::kw_addrspace) {
7262       ASLoc = Lex.getLoc();
7263       if (parseOptionalAddrSpace(AddrSpace))
7264         return true;
7265     } else if (Lex.getKind() == lltok::MetadataVar) {
7266       AteExtraComma = true;
7267     } else {
7268       if (parseTypeAndValue(Size, SizeLoc, PFS))
7269         return true;
7270       if (EatIfPresent(lltok::comma)) {
7271         if (Lex.getKind() == lltok::kw_align) {
7272           if (parseOptionalAlignment(Alignment))
7273             return true;
7274           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7275             return true;
7276         } else if (Lex.getKind() == lltok::kw_addrspace) {
7277           ASLoc = Lex.getLoc();
7278           if (parseOptionalAddrSpace(AddrSpace))
7279             return true;
7280         } else if (Lex.getKind() == lltok::MetadataVar) {
7281           AteExtraComma = true;
7282         }
7283       }
7284     }
7285   }
7286 
7287   if (Size && !Size->getType()->isIntegerTy())
7288     return error(SizeLoc, "element count must have integer type");
7289 
7290   SmallPtrSet<Type *, 4> Visited;
7291   if (!Alignment && !Ty->isSized(&Visited))
7292     return error(TyLoc, "Cannot allocate unsized type");
7293   if (!Alignment)
7294     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7295   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7296   AI->setUsedWithInAlloca(IsInAlloca);
7297   AI->setSwiftError(IsSwiftError);
7298   Inst = AI;
7299   return AteExtraComma ? InstExtraComma : InstNormal;
7300 }
7301 
7302 /// parseLoad
7303 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7304 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7305 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7306 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7307   Value *Val; LocTy Loc;
7308   MaybeAlign Alignment;
7309   bool AteExtraComma = false;
7310   bool isAtomic = false;
7311   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7312   SyncScope::ID SSID = SyncScope::System;
7313 
7314   if (Lex.getKind() == lltok::kw_atomic) {
7315     isAtomic = true;
7316     Lex.Lex();
7317   }
7318 
7319   bool isVolatile = false;
7320   if (Lex.getKind() == lltok::kw_volatile) {
7321     isVolatile = true;
7322     Lex.Lex();
7323   }
7324 
7325   Type *Ty;
7326   LocTy ExplicitTypeLoc = Lex.getLoc();
7327   if (parseType(Ty) ||
7328       parseToken(lltok::comma, "expected comma after load's type") ||
7329       parseTypeAndValue(Val, Loc, PFS) ||
7330       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7331       parseOptionalCommaAlign(Alignment, AteExtraComma))
7332     return true;
7333 
7334   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7335     return error(Loc, "load operand must be a pointer to a first class type");
7336   if (isAtomic && !Alignment)
7337     return error(Loc, "atomic load must have explicit non-zero alignment");
7338   if (Ordering == AtomicOrdering::Release ||
7339       Ordering == AtomicOrdering::AcquireRelease)
7340     return error(Loc, "atomic load cannot use Release ordering");
7341 
7342   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7343     return error(ExplicitTypeLoc,
7344                  "explicit pointee type doesn't match operand's pointee type");
7345   SmallPtrSet<Type *, 4> Visited;
7346   if (!Alignment && !Ty->isSized(&Visited))
7347     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7348   if (!Alignment)
7349     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7350   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7351   return AteExtraComma ? InstExtraComma : InstNormal;
7352 }
7353 
7354 /// parseStore
7355 
7356 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7357 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7358 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7359 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7360   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7361   MaybeAlign Alignment;
7362   bool AteExtraComma = false;
7363   bool isAtomic = false;
7364   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7365   SyncScope::ID SSID = SyncScope::System;
7366 
7367   if (Lex.getKind() == lltok::kw_atomic) {
7368     isAtomic = true;
7369     Lex.Lex();
7370   }
7371 
7372   bool isVolatile = false;
7373   if (Lex.getKind() == lltok::kw_volatile) {
7374     isVolatile = true;
7375     Lex.Lex();
7376   }
7377 
7378   if (parseTypeAndValue(Val, Loc, PFS) ||
7379       parseToken(lltok::comma, "expected ',' after store operand") ||
7380       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7381       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7382       parseOptionalCommaAlign(Alignment, AteExtraComma))
7383     return true;
7384 
7385   if (!Ptr->getType()->isPointerTy())
7386     return error(PtrLoc, "store operand must be a pointer");
7387   if (!Val->getType()->isFirstClassType())
7388     return error(Loc, "store operand must be a first class value");
7389   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7390     return error(Loc, "stored value and pointer type do not match");
7391   if (isAtomic && !Alignment)
7392     return error(Loc, "atomic store must have explicit non-zero alignment");
7393   if (Ordering == AtomicOrdering::Acquire ||
7394       Ordering == AtomicOrdering::AcquireRelease)
7395     return error(Loc, "atomic store cannot use Acquire ordering");
7396   SmallPtrSet<Type *, 4> Visited;
7397   if (!Alignment && !Val->getType()->isSized(&Visited))
7398     return error(Loc, "storing unsized types is not allowed");
7399   if (!Alignment)
7400     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7401 
7402   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7403   return AteExtraComma ? InstExtraComma : InstNormal;
7404 }
7405 
7406 /// parseCmpXchg
7407 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7408 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7409 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7410   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7411   bool AteExtraComma = false;
7412   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7413   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7414   SyncScope::ID SSID = SyncScope::System;
7415   bool isVolatile = false;
7416   bool isWeak = false;
7417 
7418   if (EatIfPresent(lltok::kw_weak))
7419     isWeak = true;
7420 
7421   if (EatIfPresent(lltok::kw_volatile))
7422     isVolatile = true;
7423 
7424   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7425       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7426       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7427       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7428       parseTypeAndValue(New, NewLoc, PFS) ||
7429       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7430       parseOrdering(FailureOrdering))
7431     return true;
7432 
7433   if (SuccessOrdering == AtomicOrdering::Unordered ||
7434       FailureOrdering == AtomicOrdering::Unordered)
7435     return tokError("cmpxchg cannot be unordered");
7436   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7437     return tokError("cmpxchg failure argument shall be no stronger than the "
7438                     "success argument");
7439   if (FailureOrdering == AtomicOrdering::Release ||
7440       FailureOrdering == AtomicOrdering::AcquireRelease)
7441     return tokError(
7442         "cmpxchg failure ordering cannot include release semantics");
7443   if (!Ptr->getType()->isPointerTy())
7444     return error(PtrLoc, "cmpxchg operand must be a pointer");
7445   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7446     return error(CmpLoc, "compare value and pointer type do not match");
7447   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7448     return error(NewLoc, "new value and pointer type do not match");
7449   if (!New->getType()->isFirstClassType())
7450     return error(NewLoc, "cmpxchg operand must be a first class value");
7451 
7452   Align Alignment(
7453       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7454           Cmp->getType()));
7455 
7456   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7457       Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID);
7458   CXI->setVolatile(isVolatile);
7459   CXI->setWeak(isWeak);
7460   Inst = CXI;
7461   return AteExtraComma ? InstExtraComma : InstNormal;
7462 }
7463 
7464 /// parseAtomicRMW
7465 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7466 ///       'singlethread'? AtomicOrdering
7467 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7468   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7469   bool AteExtraComma = false;
7470   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7471   SyncScope::ID SSID = SyncScope::System;
7472   bool isVolatile = false;
7473   bool IsFP = false;
7474   AtomicRMWInst::BinOp Operation;
7475 
7476   if (EatIfPresent(lltok::kw_volatile))
7477     isVolatile = true;
7478 
7479   switch (Lex.getKind()) {
7480   default:
7481     return tokError("expected binary operation in atomicrmw");
7482   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7483   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7484   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7485   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7486   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7487   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7488   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7489   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7490   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7491   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7492   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7493   case lltok::kw_fadd:
7494     Operation = AtomicRMWInst::FAdd;
7495     IsFP = true;
7496     break;
7497   case lltok::kw_fsub:
7498     Operation = AtomicRMWInst::FSub;
7499     IsFP = true;
7500     break;
7501   }
7502   Lex.Lex();  // Eat the operation.
7503 
7504   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7505       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7506       parseTypeAndValue(Val, ValLoc, PFS) ||
7507       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7508     return true;
7509 
7510   if (Ordering == AtomicOrdering::Unordered)
7511     return tokError("atomicrmw cannot be unordered");
7512   if (!Ptr->getType()->isPointerTy())
7513     return error(PtrLoc, "atomicrmw operand must be a pointer");
7514   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7515     return error(ValLoc, "atomicrmw value and pointer type do not match");
7516 
7517   if (Operation == AtomicRMWInst::Xchg) {
7518     if (!Val->getType()->isIntegerTy() &&
7519         !Val->getType()->isFloatingPointTy()) {
7520       return error(ValLoc,
7521                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7522                        " operand must be an integer or floating point type");
7523     }
7524   } else if (IsFP) {
7525     if (!Val->getType()->isFloatingPointTy()) {
7526       return error(ValLoc, "atomicrmw " +
7527                                AtomicRMWInst::getOperationName(Operation) +
7528                                " operand must be a floating point type");
7529     }
7530   } else {
7531     if (!Val->getType()->isIntegerTy()) {
7532       return error(ValLoc, "atomicrmw " +
7533                                AtomicRMWInst::getOperationName(Operation) +
7534                                " operand must be an integer");
7535     }
7536   }
7537 
7538   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7539   if (Size < 8 || (Size & (Size - 1)))
7540     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7541                          " integer");
7542   Align Alignment(
7543       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7544           Val->getType()));
7545   AtomicRMWInst *RMWI =
7546       new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
7547   RMWI->setVolatile(isVolatile);
7548   Inst = RMWI;
7549   return AteExtraComma ? InstExtraComma : InstNormal;
7550 }
7551 
7552 /// parseFence
7553 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7554 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7555   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7556   SyncScope::ID SSID = SyncScope::System;
7557   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7558     return true;
7559 
7560   if (Ordering == AtomicOrdering::Unordered)
7561     return tokError("fence cannot be unordered");
7562   if (Ordering == AtomicOrdering::Monotonic)
7563     return tokError("fence cannot be monotonic");
7564 
7565   Inst = new FenceInst(Context, Ordering, SSID);
7566   return InstNormal;
7567 }
7568 
7569 /// parseGetElementPtr
7570 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7571 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7572   Value *Ptr = nullptr;
7573   Value *Val = nullptr;
7574   LocTy Loc, EltLoc;
7575 
7576   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7577 
7578   Type *Ty = nullptr;
7579   LocTy ExplicitTypeLoc = Lex.getLoc();
7580   if (parseType(Ty) ||
7581       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7582       parseTypeAndValue(Ptr, Loc, PFS))
7583     return true;
7584 
7585   Type *BaseType = Ptr->getType();
7586   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7587   if (!BasePointerType)
7588     return error(Loc, "base of getelementptr must be a pointer");
7589 
7590   if (Ty != BasePointerType->getElementType())
7591     return error(ExplicitTypeLoc,
7592                  "explicit pointee type doesn't match operand's pointee type");
7593 
7594   SmallVector<Value*, 16> Indices;
7595   bool AteExtraComma = false;
7596   // GEP returns a vector of pointers if at least one of parameters is a vector.
7597   // All vector parameters should have the same vector width.
7598   ElementCount GEPWidth = BaseType->isVectorTy()
7599                               ? cast<VectorType>(BaseType)->getElementCount()
7600                               : ElementCount::getFixed(0);
7601 
7602   while (EatIfPresent(lltok::comma)) {
7603     if (Lex.getKind() == lltok::MetadataVar) {
7604       AteExtraComma = true;
7605       break;
7606     }
7607     if (parseTypeAndValue(Val, EltLoc, PFS))
7608       return true;
7609     if (!Val->getType()->isIntOrIntVectorTy())
7610       return error(EltLoc, "getelementptr index must be an integer");
7611 
7612     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7613       ElementCount ValNumEl = ValVTy->getElementCount();
7614       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7615         return error(
7616             EltLoc,
7617             "getelementptr vector index has a wrong number of elements");
7618       GEPWidth = ValNumEl;
7619     }
7620     Indices.push_back(Val);
7621   }
7622 
7623   SmallPtrSet<Type*, 4> Visited;
7624   if (!Indices.empty() && !Ty->isSized(&Visited))
7625     return error(Loc, "base element of getelementptr must be sized");
7626 
7627   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7628     return error(Loc, "invalid getelementptr indices");
7629   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7630   if (InBounds)
7631     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7632   return AteExtraComma ? InstExtraComma : InstNormal;
7633 }
7634 
7635 /// parseExtractValue
7636 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7637 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7638   Value *Val; LocTy Loc;
7639   SmallVector<unsigned, 4> Indices;
7640   bool AteExtraComma;
7641   if (parseTypeAndValue(Val, Loc, PFS) ||
7642       parseIndexList(Indices, AteExtraComma))
7643     return true;
7644 
7645   if (!Val->getType()->isAggregateType())
7646     return error(Loc, "extractvalue operand must be aggregate type");
7647 
7648   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7649     return error(Loc, "invalid indices for extractvalue");
7650   Inst = ExtractValueInst::Create(Val, Indices);
7651   return AteExtraComma ? InstExtraComma : InstNormal;
7652 }
7653 
7654 /// parseInsertValue
7655 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7656 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7657   Value *Val0, *Val1; LocTy Loc0, Loc1;
7658   SmallVector<unsigned, 4> Indices;
7659   bool AteExtraComma;
7660   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7661       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7662       parseTypeAndValue(Val1, Loc1, PFS) ||
7663       parseIndexList(Indices, AteExtraComma))
7664     return true;
7665 
7666   if (!Val0->getType()->isAggregateType())
7667     return error(Loc0, "insertvalue operand must be aggregate type");
7668 
7669   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7670   if (!IndexedType)
7671     return error(Loc0, "invalid indices for insertvalue");
7672   if (IndexedType != Val1->getType())
7673     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7674                            getTypeString(Val1->getType()) + "' instead of '" +
7675                            getTypeString(IndexedType) + "'");
7676   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7677   return AteExtraComma ? InstExtraComma : InstNormal;
7678 }
7679 
7680 //===----------------------------------------------------------------------===//
7681 // Embedded metadata.
7682 //===----------------------------------------------------------------------===//
7683 
7684 /// parseMDNodeVector
7685 ///   ::= { Element (',' Element)* }
7686 /// Element
7687 ///   ::= 'null' | TypeAndValue
7688 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7689   if (parseToken(lltok::lbrace, "expected '{' here"))
7690     return true;
7691 
7692   // Check for an empty list.
7693   if (EatIfPresent(lltok::rbrace))
7694     return false;
7695 
7696   do {
7697     // Null is a special case since it is typeless.
7698     if (EatIfPresent(lltok::kw_null)) {
7699       Elts.push_back(nullptr);
7700       continue;
7701     }
7702 
7703     Metadata *MD;
7704     if (parseMetadata(MD, nullptr))
7705       return true;
7706     Elts.push_back(MD);
7707   } while (EatIfPresent(lltok::comma));
7708 
7709   return parseToken(lltok::rbrace, "expected end of metadata node");
7710 }
7711 
7712 //===----------------------------------------------------------------------===//
7713 // Use-list order directives.
7714 //===----------------------------------------------------------------------===//
7715 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7716                                 SMLoc Loc) {
7717   if (V->use_empty())
7718     return error(Loc, "value has no uses");
7719 
7720   unsigned NumUses = 0;
7721   SmallDenseMap<const Use *, unsigned, 16> Order;
7722   for (const Use &U : V->uses()) {
7723     if (++NumUses > Indexes.size())
7724       break;
7725     Order[&U] = Indexes[NumUses - 1];
7726   }
7727   if (NumUses < 2)
7728     return error(Loc, "value only has one use");
7729   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7730     return error(Loc,
7731                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7732 
7733   V->sortUseList([&](const Use &L, const Use &R) {
7734     return Order.lookup(&L) < Order.lookup(&R);
7735   });
7736   return false;
7737 }
7738 
7739 /// parseUseListOrderIndexes
7740 ///   ::= '{' uint32 (',' uint32)+ '}'
7741 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7742   SMLoc Loc = Lex.getLoc();
7743   if (parseToken(lltok::lbrace, "expected '{' here"))
7744     return true;
7745   if (Lex.getKind() == lltok::rbrace)
7746     return Lex.Error("expected non-empty list of uselistorder indexes");
7747 
7748   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7749   // indexes should be distinct numbers in the range [0, size-1], and should
7750   // not be in order.
7751   unsigned Offset = 0;
7752   unsigned Max = 0;
7753   bool IsOrdered = true;
7754   assert(Indexes.empty() && "Expected empty order vector");
7755   do {
7756     unsigned Index;
7757     if (parseUInt32(Index))
7758       return true;
7759 
7760     // Update consistency checks.
7761     Offset += Index - Indexes.size();
7762     Max = std::max(Max, Index);
7763     IsOrdered &= Index == Indexes.size();
7764 
7765     Indexes.push_back(Index);
7766   } while (EatIfPresent(lltok::comma));
7767 
7768   if (parseToken(lltok::rbrace, "expected '}' here"))
7769     return true;
7770 
7771   if (Indexes.size() < 2)
7772     return error(Loc, "expected >= 2 uselistorder indexes");
7773   if (Offset != 0 || Max >= Indexes.size())
7774     return error(Loc,
7775                  "expected distinct uselistorder indexes in range [0, size)");
7776   if (IsOrdered)
7777     return error(Loc, "expected uselistorder indexes to change the order");
7778 
7779   return false;
7780 }
7781 
7782 /// parseUseListOrder
7783 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7784 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7785   SMLoc Loc = Lex.getLoc();
7786   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7787     return true;
7788 
7789   Value *V;
7790   SmallVector<unsigned, 16> Indexes;
7791   if (parseTypeAndValue(V, PFS) ||
7792       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7793       parseUseListOrderIndexes(Indexes))
7794     return true;
7795 
7796   return sortUseListOrder(V, Indexes, Loc);
7797 }
7798 
7799 /// parseUseListOrderBB
7800 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7801 bool LLParser::parseUseListOrderBB() {
7802   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7803   SMLoc Loc = Lex.getLoc();
7804   Lex.Lex();
7805 
7806   ValID Fn, Label;
7807   SmallVector<unsigned, 16> Indexes;
7808   if (parseValID(Fn) ||
7809       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7810       parseValID(Label) ||
7811       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7812       parseUseListOrderIndexes(Indexes))
7813     return true;
7814 
7815   // Check the function.
7816   GlobalValue *GV;
7817   if (Fn.Kind == ValID::t_GlobalName)
7818     GV = M->getNamedValue(Fn.StrVal);
7819   else if (Fn.Kind == ValID::t_GlobalID)
7820     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7821   else
7822     return error(Fn.Loc, "expected function name in uselistorder_bb");
7823   if (!GV)
7824     return error(Fn.Loc,
7825                  "invalid function forward reference in uselistorder_bb");
7826   auto *F = dyn_cast<Function>(GV);
7827   if (!F)
7828     return error(Fn.Loc, "expected function name in uselistorder_bb");
7829   if (F->isDeclaration())
7830     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7831 
7832   // Check the basic block.
7833   if (Label.Kind == ValID::t_LocalID)
7834     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7835   if (Label.Kind != ValID::t_LocalName)
7836     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7837   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7838   if (!V)
7839     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7840   if (!isa<BasicBlock>(V))
7841     return error(Label.Loc, "expected basic block in uselistorder_bb");
7842 
7843   return sortUseListOrder(V, Indexes, Loc);
7844 }
7845 
7846 /// ModuleEntry
7847 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7848 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7849 bool LLParser::parseModuleEntry(unsigned ID) {
7850   assert(Lex.getKind() == lltok::kw_module);
7851   Lex.Lex();
7852 
7853   std::string Path;
7854   if (parseToken(lltok::colon, "expected ':' here") ||
7855       parseToken(lltok::lparen, "expected '(' here") ||
7856       parseToken(lltok::kw_path, "expected 'path' here") ||
7857       parseToken(lltok::colon, "expected ':' here") ||
7858       parseStringConstant(Path) ||
7859       parseToken(lltok::comma, "expected ',' here") ||
7860       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7861       parseToken(lltok::colon, "expected ':' here") ||
7862       parseToken(lltok::lparen, "expected '(' here"))
7863     return true;
7864 
7865   ModuleHash Hash;
7866   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7867       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7868       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7869       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7870       parseUInt32(Hash[4]))
7871     return true;
7872 
7873   if (parseToken(lltok::rparen, "expected ')' here") ||
7874       parseToken(lltok::rparen, "expected ')' here"))
7875     return true;
7876 
7877   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7878   ModuleIdMap[ID] = ModuleEntry->first();
7879 
7880   return false;
7881 }
7882 
7883 /// TypeIdEntry
7884 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7885 bool LLParser::parseTypeIdEntry(unsigned ID) {
7886   assert(Lex.getKind() == lltok::kw_typeid);
7887   Lex.Lex();
7888 
7889   std::string Name;
7890   if (parseToken(lltok::colon, "expected ':' here") ||
7891       parseToken(lltok::lparen, "expected '(' here") ||
7892       parseToken(lltok::kw_name, "expected 'name' here") ||
7893       parseToken(lltok::colon, "expected ':' here") ||
7894       parseStringConstant(Name))
7895     return true;
7896 
7897   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7898   if (parseToken(lltok::comma, "expected ',' here") ||
7899       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7900     return true;
7901 
7902   // Check if this ID was forward referenced, and if so, update the
7903   // corresponding GUIDs.
7904   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7905   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7906     for (auto TIDRef : FwdRefTIDs->second) {
7907       assert(!*TIDRef.first &&
7908              "Forward referenced type id GUID expected to be 0");
7909       *TIDRef.first = GlobalValue::getGUID(Name);
7910     }
7911     ForwardRefTypeIds.erase(FwdRefTIDs);
7912   }
7913 
7914   return false;
7915 }
7916 
7917 /// TypeIdSummary
7918 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7919 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7920   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7921       parseToken(lltok::colon, "expected ':' here") ||
7922       parseToken(lltok::lparen, "expected '(' here") ||
7923       parseTypeTestResolution(TIS.TTRes))
7924     return true;
7925 
7926   if (EatIfPresent(lltok::comma)) {
7927     // Expect optional wpdResolutions field
7928     if (parseOptionalWpdResolutions(TIS.WPDRes))
7929       return true;
7930   }
7931 
7932   if (parseToken(lltok::rparen, "expected ')' here"))
7933     return true;
7934 
7935   return false;
7936 }
7937 
7938 static ValueInfo EmptyVI =
7939     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7940 
7941 /// TypeIdCompatibleVtableEntry
7942 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7943 ///   TypeIdCompatibleVtableInfo
7944 ///   ')'
7945 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7946   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7947   Lex.Lex();
7948 
7949   std::string Name;
7950   if (parseToken(lltok::colon, "expected ':' here") ||
7951       parseToken(lltok::lparen, "expected '(' here") ||
7952       parseToken(lltok::kw_name, "expected 'name' here") ||
7953       parseToken(lltok::colon, "expected ':' here") ||
7954       parseStringConstant(Name))
7955     return true;
7956 
7957   TypeIdCompatibleVtableInfo &TI =
7958       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7959   if (parseToken(lltok::comma, "expected ',' here") ||
7960       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7961       parseToken(lltok::colon, "expected ':' here") ||
7962       parseToken(lltok::lparen, "expected '(' here"))
7963     return true;
7964 
7965   IdToIndexMapType IdToIndexMap;
7966   // parse each call edge
7967   do {
7968     uint64_t Offset;
7969     if (parseToken(lltok::lparen, "expected '(' here") ||
7970         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7971         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7972         parseToken(lltok::comma, "expected ',' here"))
7973       return true;
7974 
7975     LocTy Loc = Lex.getLoc();
7976     unsigned GVId;
7977     ValueInfo VI;
7978     if (parseGVReference(VI, GVId))
7979       return true;
7980 
7981     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7982     // forward reference. We will save the location of the ValueInfo needing an
7983     // update, but can only do so once the std::vector is finalized.
7984     if (VI == EmptyVI)
7985       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7986     TI.push_back({Offset, VI});
7987 
7988     if (parseToken(lltok::rparen, "expected ')' in call"))
7989       return true;
7990   } while (EatIfPresent(lltok::comma));
7991 
7992   // Now that the TI vector is finalized, it is safe to save the locations
7993   // of any forward GV references that need updating later.
7994   for (auto I : IdToIndexMap) {
7995     auto &Infos = ForwardRefValueInfos[I.first];
7996     for (auto P : I.second) {
7997       assert(TI[P.first].VTableVI == EmptyVI &&
7998              "Forward referenced ValueInfo expected to be empty");
7999       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8000     }
8001   }
8002 
8003   if (parseToken(lltok::rparen, "expected ')' here") ||
8004       parseToken(lltok::rparen, "expected ')' here"))
8005     return true;
8006 
8007   // Check if this ID was forward referenced, and if so, update the
8008   // corresponding GUIDs.
8009   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8010   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8011     for (auto TIDRef : FwdRefTIDs->second) {
8012       assert(!*TIDRef.first &&
8013              "Forward referenced type id GUID expected to be 0");
8014       *TIDRef.first = GlobalValue::getGUID(Name);
8015     }
8016     ForwardRefTypeIds.erase(FwdRefTIDs);
8017   }
8018 
8019   return false;
8020 }
8021 
8022 /// TypeTestResolution
8023 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8024 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8025 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8026 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8027 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8028 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8029   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8030       parseToken(lltok::colon, "expected ':' here") ||
8031       parseToken(lltok::lparen, "expected '(' here") ||
8032       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8033       parseToken(lltok::colon, "expected ':' here"))
8034     return true;
8035 
8036   switch (Lex.getKind()) {
8037   case lltok::kw_unknown:
8038     TTRes.TheKind = TypeTestResolution::Unknown;
8039     break;
8040   case lltok::kw_unsat:
8041     TTRes.TheKind = TypeTestResolution::Unsat;
8042     break;
8043   case lltok::kw_byteArray:
8044     TTRes.TheKind = TypeTestResolution::ByteArray;
8045     break;
8046   case lltok::kw_inline:
8047     TTRes.TheKind = TypeTestResolution::Inline;
8048     break;
8049   case lltok::kw_single:
8050     TTRes.TheKind = TypeTestResolution::Single;
8051     break;
8052   case lltok::kw_allOnes:
8053     TTRes.TheKind = TypeTestResolution::AllOnes;
8054     break;
8055   default:
8056     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8057   }
8058   Lex.Lex();
8059 
8060   if (parseToken(lltok::comma, "expected ',' here") ||
8061       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8062       parseToken(lltok::colon, "expected ':' here") ||
8063       parseUInt32(TTRes.SizeM1BitWidth))
8064     return true;
8065 
8066   // parse optional fields
8067   while (EatIfPresent(lltok::comma)) {
8068     switch (Lex.getKind()) {
8069     case lltok::kw_alignLog2:
8070       Lex.Lex();
8071       if (parseToken(lltok::colon, "expected ':'") ||
8072           parseUInt64(TTRes.AlignLog2))
8073         return true;
8074       break;
8075     case lltok::kw_sizeM1:
8076       Lex.Lex();
8077       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8078         return true;
8079       break;
8080     case lltok::kw_bitMask: {
8081       unsigned Val;
8082       Lex.Lex();
8083       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8084         return true;
8085       assert(Val <= 0xff);
8086       TTRes.BitMask = (uint8_t)Val;
8087       break;
8088     }
8089     case lltok::kw_inlineBits:
8090       Lex.Lex();
8091       if (parseToken(lltok::colon, "expected ':'") ||
8092           parseUInt64(TTRes.InlineBits))
8093         return true;
8094       break;
8095     default:
8096       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8097     }
8098   }
8099 
8100   if (parseToken(lltok::rparen, "expected ')' here"))
8101     return true;
8102 
8103   return false;
8104 }
8105 
8106 /// OptionalWpdResolutions
8107 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8108 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8109 bool LLParser::parseOptionalWpdResolutions(
8110     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8111   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8112       parseToken(lltok::colon, "expected ':' here") ||
8113       parseToken(lltok::lparen, "expected '(' here"))
8114     return true;
8115 
8116   do {
8117     uint64_t Offset;
8118     WholeProgramDevirtResolution WPDRes;
8119     if (parseToken(lltok::lparen, "expected '(' here") ||
8120         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8121         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8122         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8123         parseToken(lltok::rparen, "expected ')' here"))
8124       return true;
8125     WPDResMap[Offset] = WPDRes;
8126   } while (EatIfPresent(lltok::comma));
8127 
8128   if (parseToken(lltok::rparen, "expected ')' here"))
8129     return true;
8130 
8131   return false;
8132 }
8133 
8134 /// WpdRes
8135 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8136 ///         [',' OptionalResByArg]? ')'
8137 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8138 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8139 ///         [',' OptionalResByArg]? ')'
8140 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8141 ///         [',' OptionalResByArg]? ')'
8142 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8143   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8144       parseToken(lltok::colon, "expected ':' here") ||
8145       parseToken(lltok::lparen, "expected '(' here") ||
8146       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8147       parseToken(lltok::colon, "expected ':' here"))
8148     return true;
8149 
8150   switch (Lex.getKind()) {
8151   case lltok::kw_indir:
8152     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8153     break;
8154   case lltok::kw_singleImpl:
8155     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8156     break;
8157   case lltok::kw_branchFunnel:
8158     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8159     break;
8160   default:
8161     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8162   }
8163   Lex.Lex();
8164 
8165   // parse optional fields
8166   while (EatIfPresent(lltok::comma)) {
8167     switch (Lex.getKind()) {
8168     case lltok::kw_singleImplName:
8169       Lex.Lex();
8170       if (parseToken(lltok::colon, "expected ':' here") ||
8171           parseStringConstant(WPDRes.SingleImplName))
8172         return true;
8173       break;
8174     case lltok::kw_resByArg:
8175       if (parseOptionalResByArg(WPDRes.ResByArg))
8176         return true;
8177       break;
8178     default:
8179       return error(Lex.getLoc(),
8180                    "expected optional WholeProgramDevirtResolution field");
8181     }
8182   }
8183 
8184   if (parseToken(lltok::rparen, "expected ')' here"))
8185     return true;
8186 
8187   return false;
8188 }
8189 
8190 /// OptionalResByArg
8191 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8192 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8193 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8194 ///                  'virtualConstProp' )
8195 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8196 ///                [',' 'bit' ':' UInt32]? ')'
8197 bool LLParser::parseOptionalResByArg(
8198     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8199         &ResByArg) {
8200   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8201       parseToken(lltok::colon, "expected ':' here") ||
8202       parseToken(lltok::lparen, "expected '(' here"))
8203     return true;
8204 
8205   do {
8206     std::vector<uint64_t> Args;
8207     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8208         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8209         parseToken(lltok::colon, "expected ':' here") ||
8210         parseToken(lltok::lparen, "expected '(' here") ||
8211         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8212         parseToken(lltok::colon, "expected ':' here"))
8213       return true;
8214 
8215     WholeProgramDevirtResolution::ByArg ByArg;
8216     switch (Lex.getKind()) {
8217     case lltok::kw_indir:
8218       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8219       break;
8220     case lltok::kw_uniformRetVal:
8221       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8222       break;
8223     case lltok::kw_uniqueRetVal:
8224       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8225       break;
8226     case lltok::kw_virtualConstProp:
8227       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8228       break;
8229     default:
8230       return error(Lex.getLoc(),
8231                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8232     }
8233     Lex.Lex();
8234 
8235     // parse optional fields
8236     while (EatIfPresent(lltok::comma)) {
8237       switch (Lex.getKind()) {
8238       case lltok::kw_info:
8239         Lex.Lex();
8240         if (parseToken(lltok::colon, "expected ':' here") ||
8241             parseUInt64(ByArg.Info))
8242           return true;
8243         break;
8244       case lltok::kw_byte:
8245         Lex.Lex();
8246         if (parseToken(lltok::colon, "expected ':' here") ||
8247             parseUInt32(ByArg.Byte))
8248           return true;
8249         break;
8250       case lltok::kw_bit:
8251         Lex.Lex();
8252         if (parseToken(lltok::colon, "expected ':' here") ||
8253             parseUInt32(ByArg.Bit))
8254           return true;
8255         break;
8256       default:
8257         return error(Lex.getLoc(),
8258                      "expected optional whole program devirt field");
8259       }
8260     }
8261 
8262     if (parseToken(lltok::rparen, "expected ')' here"))
8263       return true;
8264 
8265     ResByArg[Args] = ByArg;
8266   } while (EatIfPresent(lltok::comma));
8267 
8268   if (parseToken(lltok::rparen, "expected ')' here"))
8269     return true;
8270 
8271   return false;
8272 }
8273 
8274 /// OptionalResByArg
8275 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8276 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8277   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8278       parseToken(lltok::colon, "expected ':' here") ||
8279       parseToken(lltok::lparen, "expected '(' here"))
8280     return true;
8281 
8282   do {
8283     uint64_t Val;
8284     if (parseUInt64(Val))
8285       return true;
8286     Args.push_back(Val);
8287   } while (EatIfPresent(lltok::comma));
8288 
8289   if (parseToken(lltok::rparen, "expected ')' here"))
8290     return true;
8291 
8292   return false;
8293 }
8294 
8295 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8296 
8297 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8298   bool ReadOnly = Fwd->isReadOnly();
8299   bool WriteOnly = Fwd->isWriteOnly();
8300   assert(!(ReadOnly && WriteOnly));
8301   *Fwd = Resolved;
8302   if (ReadOnly)
8303     Fwd->setReadOnly();
8304   if (WriteOnly)
8305     Fwd->setWriteOnly();
8306 }
8307 
8308 /// Stores the given Name/GUID and associated summary into the Index.
8309 /// Also updates any forward references to the associated entry ID.
8310 void LLParser::addGlobalValueToIndex(
8311     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8312     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8313   // First create the ValueInfo utilizing the Name or GUID.
8314   ValueInfo VI;
8315   if (GUID != 0) {
8316     assert(Name.empty());
8317     VI = Index->getOrInsertValueInfo(GUID);
8318   } else {
8319     assert(!Name.empty());
8320     if (M) {
8321       auto *GV = M->getNamedValue(Name);
8322       assert(GV);
8323       VI = Index->getOrInsertValueInfo(GV);
8324     } else {
8325       assert(
8326           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8327           "Need a source_filename to compute GUID for local");
8328       GUID = GlobalValue::getGUID(
8329           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8330       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8331     }
8332   }
8333 
8334   // Resolve forward references from calls/refs
8335   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8336   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8337     for (auto VIRef : FwdRefVIs->second) {
8338       assert(VIRef.first->getRef() == FwdVIRef &&
8339              "Forward referenced ValueInfo expected to be empty");
8340       resolveFwdRef(VIRef.first, VI);
8341     }
8342     ForwardRefValueInfos.erase(FwdRefVIs);
8343   }
8344 
8345   // Resolve forward references from aliases
8346   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8347   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8348     for (auto AliaseeRef : FwdRefAliasees->second) {
8349       assert(!AliaseeRef.first->hasAliasee() &&
8350              "Forward referencing alias already has aliasee");
8351       assert(Summary && "Aliasee must be a definition");
8352       AliaseeRef.first->setAliasee(VI, Summary.get());
8353     }
8354     ForwardRefAliasees.erase(FwdRefAliasees);
8355   }
8356 
8357   // Add the summary if one was provided.
8358   if (Summary)
8359     Index->addGlobalValueSummary(VI, std::move(Summary));
8360 
8361   // Save the associated ValueInfo for use in later references by ID.
8362   if (ID == NumberedValueInfos.size())
8363     NumberedValueInfos.push_back(VI);
8364   else {
8365     // Handle non-continuous numbers (to make test simplification easier).
8366     if (ID > NumberedValueInfos.size())
8367       NumberedValueInfos.resize(ID + 1);
8368     NumberedValueInfos[ID] = VI;
8369   }
8370 }
8371 
8372 /// parseSummaryIndexFlags
8373 ///   ::= 'flags' ':' UInt64
8374 bool LLParser::parseSummaryIndexFlags() {
8375   assert(Lex.getKind() == lltok::kw_flags);
8376   Lex.Lex();
8377 
8378   if (parseToken(lltok::colon, "expected ':' here"))
8379     return true;
8380   uint64_t Flags;
8381   if (parseUInt64(Flags))
8382     return true;
8383   if (Index)
8384     Index->setFlags(Flags);
8385   return false;
8386 }
8387 
8388 /// parseBlockCount
8389 ///   ::= 'blockcount' ':' UInt64
8390 bool LLParser::parseBlockCount() {
8391   assert(Lex.getKind() == lltok::kw_blockcount);
8392   Lex.Lex();
8393 
8394   if (parseToken(lltok::colon, "expected ':' here"))
8395     return true;
8396   uint64_t BlockCount;
8397   if (parseUInt64(BlockCount))
8398     return true;
8399   if (Index)
8400     Index->setBlockCount(BlockCount);
8401   return false;
8402 }
8403 
8404 /// parseGVEntry
8405 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8406 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8407 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8408 bool LLParser::parseGVEntry(unsigned ID) {
8409   assert(Lex.getKind() == lltok::kw_gv);
8410   Lex.Lex();
8411 
8412   if (parseToken(lltok::colon, "expected ':' here") ||
8413       parseToken(lltok::lparen, "expected '(' here"))
8414     return true;
8415 
8416   std::string Name;
8417   GlobalValue::GUID GUID = 0;
8418   switch (Lex.getKind()) {
8419   case lltok::kw_name:
8420     Lex.Lex();
8421     if (parseToken(lltok::colon, "expected ':' here") ||
8422         parseStringConstant(Name))
8423       return true;
8424     // Can't create GUID/ValueInfo until we have the linkage.
8425     break;
8426   case lltok::kw_guid:
8427     Lex.Lex();
8428     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8429       return true;
8430     break;
8431   default:
8432     return error(Lex.getLoc(), "expected name or guid tag");
8433   }
8434 
8435   if (!EatIfPresent(lltok::comma)) {
8436     // No summaries. Wrap up.
8437     if (parseToken(lltok::rparen, "expected ')' here"))
8438       return true;
8439     // This was created for a call to an external or indirect target.
8440     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8441     // created for indirect calls with VP. A Name with no GUID came from
8442     // an external definition. We pass ExternalLinkage since that is only
8443     // used when the GUID must be computed from Name, and in that case
8444     // the symbol must have external linkage.
8445     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8446                           nullptr);
8447     return false;
8448   }
8449 
8450   // Have a list of summaries
8451   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8452       parseToken(lltok::colon, "expected ':' here") ||
8453       parseToken(lltok::lparen, "expected '(' here"))
8454     return true;
8455   do {
8456     switch (Lex.getKind()) {
8457     case lltok::kw_function:
8458       if (parseFunctionSummary(Name, GUID, ID))
8459         return true;
8460       break;
8461     case lltok::kw_variable:
8462       if (parseVariableSummary(Name, GUID, ID))
8463         return true;
8464       break;
8465     case lltok::kw_alias:
8466       if (parseAliasSummary(Name, GUID, ID))
8467         return true;
8468       break;
8469     default:
8470       return error(Lex.getLoc(), "expected summary type");
8471     }
8472   } while (EatIfPresent(lltok::comma));
8473 
8474   if (parseToken(lltok::rparen, "expected ')' here") ||
8475       parseToken(lltok::rparen, "expected ')' here"))
8476     return true;
8477 
8478   return false;
8479 }
8480 
8481 /// FunctionSummary
8482 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8483 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8484 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8485 ///         [',' OptionalRefs]? ')'
8486 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8487                                     unsigned ID) {
8488   assert(Lex.getKind() == lltok::kw_function);
8489   Lex.Lex();
8490 
8491   StringRef ModulePath;
8492   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8493       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8494       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8495   unsigned InstCount;
8496   std::vector<FunctionSummary::EdgeTy> Calls;
8497   FunctionSummary::TypeIdInfo TypeIdInfo;
8498   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8499   std::vector<ValueInfo> Refs;
8500   // Default is all-zeros (conservative values).
8501   FunctionSummary::FFlags FFlags = {};
8502   if (parseToken(lltok::colon, "expected ':' here") ||
8503       parseToken(lltok::lparen, "expected '(' here") ||
8504       parseModuleReference(ModulePath) ||
8505       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8506       parseToken(lltok::comma, "expected ',' here") ||
8507       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8508       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8509     return true;
8510 
8511   // parse optional fields
8512   while (EatIfPresent(lltok::comma)) {
8513     switch (Lex.getKind()) {
8514     case lltok::kw_funcFlags:
8515       if (parseOptionalFFlags(FFlags))
8516         return true;
8517       break;
8518     case lltok::kw_calls:
8519       if (parseOptionalCalls(Calls))
8520         return true;
8521       break;
8522     case lltok::kw_typeIdInfo:
8523       if (parseOptionalTypeIdInfo(TypeIdInfo))
8524         return true;
8525       break;
8526     case lltok::kw_refs:
8527       if (parseOptionalRefs(Refs))
8528         return true;
8529       break;
8530     case lltok::kw_params:
8531       if (parseOptionalParamAccesses(ParamAccesses))
8532         return true;
8533       break;
8534     default:
8535       return error(Lex.getLoc(), "expected optional function summary field");
8536     }
8537   }
8538 
8539   if (parseToken(lltok::rparen, "expected ')' here"))
8540     return true;
8541 
8542   auto FS = std::make_unique<FunctionSummary>(
8543       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8544       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8545       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8546       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8547       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8548       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8549       std::move(ParamAccesses));
8550 
8551   FS->setModulePath(ModulePath);
8552 
8553   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8554                         ID, std::move(FS));
8555 
8556   return false;
8557 }
8558 
8559 /// VariableSummary
8560 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8561 ///         [',' OptionalRefs]? ')'
8562 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8563                                     unsigned ID) {
8564   assert(Lex.getKind() == lltok::kw_variable);
8565   Lex.Lex();
8566 
8567   StringRef ModulePath;
8568   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8569       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8570       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8571   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8572                                         /* WriteOnly */ false,
8573                                         /* Constant */ false,
8574                                         GlobalObject::VCallVisibilityPublic);
8575   std::vector<ValueInfo> Refs;
8576   VTableFuncList VTableFuncs;
8577   if (parseToken(lltok::colon, "expected ':' here") ||
8578       parseToken(lltok::lparen, "expected '(' here") ||
8579       parseModuleReference(ModulePath) ||
8580       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8581       parseToken(lltok::comma, "expected ',' here") ||
8582       parseGVarFlags(GVarFlags))
8583     return true;
8584 
8585   // parse optional fields
8586   while (EatIfPresent(lltok::comma)) {
8587     switch (Lex.getKind()) {
8588     case lltok::kw_vTableFuncs:
8589       if (parseOptionalVTableFuncs(VTableFuncs))
8590         return true;
8591       break;
8592     case lltok::kw_refs:
8593       if (parseOptionalRefs(Refs))
8594         return true;
8595       break;
8596     default:
8597       return error(Lex.getLoc(), "expected optional variable summary field");
8598     }
8599   }
8600 
8601   if (parseToken(lltok::rparen, "expected ')' here"))
8602     return true;
8603 
8604   auto GS =
8605       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8606 
8607   GS->setModulePath(ModulePath);
8608   GS->setVTableFuncs(std::move(VTableFuncs));
8609 
8610   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8611                         ID, std::move(GS));
8612 
8613   return false;
8614 }
8615 
8616 /// AliasSummary
8617 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8618 ///         'aliasee' ':' GVReference ')'
8619 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8620                                  unsigned ID) {
8621   assert(Lex.getKind() == lltok::kw_alias);
8622   LocTy Loc = Lex.getLoc();
8623   Lex.Lex();
8624 
8625   StringRef ModulePath;
8626   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8627       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8628       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8629   if (parseToken(lltok::colon, "expected ':' here") ||
8630       parseToken(lltok::lparen, "expected '(' here") ||
8631       parseModuleReference(ModulePath) ||
8632       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8633       parseToken(lltok::comma, "expected ',' here") ||
8634       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8635       parseToken(lltok::colon, "expected ':' here"))
8636     return true;
8637 
8638   ValueInfo AliaseeVI;
8639   unsigned GVId;
8640   if (parseGVReference(AliaseeVI, GVId))
8641     return true;
8642 
8643   if (parseToken(lltok::rparen, "expected ')' here"))
8644     return true;
8645 
8646   auto AS = std::make_unique<AliasSummary>(GVFlags);
8647 
8648   AS->setModulePath(ModulePath);
8649 
8650   // Record forward reference if the aliasee is not parsed yet.
8651   if (AliaseeVI.getRef() == FwdVIRef) {
8652     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8653   } else {
8654     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8655     assert(Summary && "Aliasee must be a definition");
8656     AS->setAliasee(AliaseeVI, Summary);
8657   }
8658 
8659   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8660                         ID, std::move(AS));
8661 
8662   return false;
8663 }
8664 
8665 /// Flag
8666 ///   ::= [0|1]
8667 bool LLParser::parseFlag(unsigned &Val) {
8668   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8669     return tokError("expected integer");
8670   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8671   Lex.Lex();
8672   return false;
8673 }
8674 
8675 /// OptionalFFlags
8676 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8677 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8678 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8679 ///        [',' 'noInline' ':' Flag]? ')'
8680 ///        [',' 'alwaysInline' ':' Flag]? ')'
8681 
8682 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8683   assert(Lex.getKind() == lltok::kw_funcFlags);
8684   Lex.Lex();
8685 
8686   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8687       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8688     return true;
8689 
8690   do {
8691     unsigned Val = 0;
8692     switch (Lex.getKind()) {
8693     case lltok::kw_readNone:
8694       Lex.Lex();
8695       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8696         return true;
8697       FFlags.ReadNone = Val;
8698       break;
8699     case lltok::kw_readOnly:
8700       Lex.Lex();
8701       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8702         return true;
8703       FFlags.ReadOnly = Val;
8704       break;
8705     case lltok::kw_noRecurse:
8706       Lex.Lex();
8707       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8708         return true;
8709       FFlags.NoRecurse = Val;
8710       break;
8711     case lltok::kw_returnDoesNotAlias:
8712       Lex.Lex();
8713       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8714         return true;
8715       FFlags.ReturnDoesNotAlias = Val;
8716       break;
8717     case lltok::kw_noInline:
8718       Lex.Lex();
8719       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8720         return true;
8721       FFlags.NoInline = Val;
8722       break;
8723     case lltok::kw_alwaysInline:
8724       Lex.Lex();
8725       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8726         return true;
8727       FFlags.AlwaysInline = Val;
8728       break;
8729     default:
8730       return error(Lex.getLoc(), "expected function flag type");
8731     }
8732   } while (EatIfPresent(lltok::comma));
8733 
8734   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8735     return true;
8736 
8737   return false;
8738 }
8739 
8740 /// OptionalCalls
8741 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8742 /// Call ::= '(' 'callee' ':' GVReference
8743 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8744 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8745   assert(Lex.getKind() == lltok::kw_calls);
8746   Lex.Lex();
8747 
8748   if (parseToken(lltok::colon, "expected ':' in calls") |
8749       parseToken(lltok::lparen, "expected '(' in calls"))
8750     return true;
8751 
8752   IdToIndexMapType IdToIndexMap;
8753   // parse each call edge
8754   do {
8755     ValueInfo VI;
8756     if (parseToken(lltok::lparen, "expected '(' in call") ||
8757         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8758         parseToken(lltok::colon, "expected ':'"))
8759       return true;
8760 
8761     LocTy Loc = Lex.getLoc();
8762     unsigned GVId;
8763     if (parseGVReference(VI, GVId))
8764       return true;
8765 
8766     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8767     unsigned RelBF = 0;
8768     if (EatIfPresent(lltok::comma)) {
8769       // Expect either hotness or relbf
8770       if (EatIfPresent(lltok::kw_hotness)) {
8771         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8772           return true;
8773       } else {
8774         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8775             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8776           return true;
8777       }
8778     }
8779     // Keep track of the Call array index needing a forward reference.
8780     // We will save the location of the ValueInfo needing an update, but
8781     // can only do so once the std::vector is finalized.
8782     if (VI.getRef() == FwdVIRef)
8783       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8784     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8785 
8786     if (parseToken(lltok::rparen, "expected ')' in call"))
8787       return true;
8788   } while (EatIfPresent(lltok::comma));
8789 
8790   // Now that the Calls vector is finalized, it is safe to save the locations
8791   // of any forward GV references that need updating later.
8792   for (auto I : IdToIndexMap) {
8793     auto &Infos = ForwardRefValueInfos[I.first];
8794     for (auto P : I.second) {
8795       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8796              "Forward referenced ValueInfo expected to be empty");
8797       Infos.emplace_back(&Calls[P.first].first, P.second);
8798     }
8799   }
8800 
8801   if (parseToken(lltok::rparen, "expected ')' in calls"))
8802     return true;
8803 
8804   return false;
8805 }
8806 
8807 /// Hotness
8808 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8809 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8810   switch (Lex.getKind()) {
8811   case lltok::kw_unknown:
8812     Hotness = CalleeInfo::HotnessType::Unknown;
8813     break;
8814   case lltok::kw_cold:
8815     Hotness = CalleeInfo::HotnessType::Cold;
8816     break;
8817   case lltok::kw_none:
8818     Hotness = CalleeInfo::HotnessType::None;
8819     break;
8820   case lltok::kw_hot:
8821     Hotness = CalleeInfo::HotnessType::Hot;
8822     break;
8823   case lltok::kw_critical:
8824     Hotness = CalleeInfo::HotnessType::Critical;
8825     break;
8826   default:
8827     return error(Lex.getLoc(), "invalid call edge hotness");
8828   }
8829   Lex.Lex();
8830   return false;
8831 }
8832 
8833 /// OptionalVTableFuncs
8834 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8835 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8836 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8837   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8838   Lex.Lex();
8839 
8840   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8841       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8842     return true;
8843 
8844   IdToIndexMapType IdToIndexMap;
8845   // parse each virtual function pair
8846   do {
8847     ValueInfo VI;
8848     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8849         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8850         parseToken(lltok::colon, "expected ':'"))
8851       return true;
8852 
8853     LocTy Loc = Lex.getLoc();
8854     unsigned GVId;
8855     if (parseGVReference(VI, GVId))
8856       return true;
8857 
8858     uint64_t Offset;
8859     if (parseToken(lltok::comma, "expected comma") ||
8860         parseToken(lltok::kw_offset, "expected offset") ||
8861         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8862       return true;
8863 
8864     // Keep track of the VTableFuncs array index needing a forward reference.
8865     // We will save the location of the ValueInfo needing an update, but
8866     // can only do so once the std::vector is finalized.
8867     if (VI == EmptyVI)
8868       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8869     VTableFuncs.push_back({VI, Offset});
8870 
8871     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8872       return true;
8873   } while (EatIfPresent(lltok::comma));
8874 
8875   // Now that the VTableFuncs vector is finalized, it is safe to save the
8876   // locations of any forward GV references that need updating later.
8877   for (auto I : IdToIndexMap) {
8878     auto &Infos = ForwardRefValueInfos[I.first];
8879     for (auto P : I.second) {
8880       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8881              "Forward referenced ValueInfo expected to be empty");
8882       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8883     }
8884   }
8885 
8886   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8887     return true;
8888 
8889   return false;
8890 }
8891 
8892 /// ParamNo := 'param' ':' UInt64
8893 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8894   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8895       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8896     return true;
8897   return false;
8898 }
8899 
8900 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8901 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8902   APSInt Lower;
8903   APSInt Upper;
8904   auto ParseAPSInt = [&](APSInt &Val) {
8905     if (Lex.getKind() != lltok::APSInt)
8906       return tokError("expected integer");
8907     Val = Lex.getAPSIntVal();
8908     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8909     Val.setIsSigned(true);
8910     Lex.Lex();
8911     return false;
8912   };
8913   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8914       parseToken(lltok::colon, "expected ':' here") ||
8915       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8916       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8917       parseToken(lltok::rsquare, "expected ']' here"))
8918     return true;
8919 
8920   ++Upper;
8921   Range =
8922       (Lower == Upper && !Lower.isMaxValue())
8923           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8924           : ConstantRange(Lower, Upper);
8925 
8926   return false;
8927 }
8928 
8929 /// ParamAccessCall
8930 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8931 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8932                                     IdLocListType &IdLocList) {
8933   if (parseToken(lltok::lparen, "expected '(' here") ||
8934       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8935       parseToken(lltok::colon, "expected ':' here"))
8936     return true;
8937 
8938   unsigned GVId;
8939   ValueInfo VI;
8940   LocTy Loc = Lex.getLoc();
8941   if (parseGVReference(VI, GVId))
8942     return true;
8943 
8944   Call.Callee = VI;
8945   IdLocList.emplace_back(GVId, Loc);
8946 
8947   if (parseToken(lltok::comma, "expected ',' here") ||
8948       parseParamNo(Call.ParamNo) ||
8949       parseToken(lltok::comma, "expected ',' here") ||
8950       parseParamAccessOffset(Call.Offsets))
8951     return true;
8952 
8953   if (parseToken(lltok::rparen, "expected ')' here"))
8954     return true;
8955 
8956   return false;
8957 }
8958 
8959 /// ParamAccess
8960 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8961 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8962 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8963                                 IdLocListType &IdLocList) {
8964   if (parseToken(lltok::lparen, "expected '(' here") ||
8965       parseParamNo(Param.ParamNo) ||
8966       parseToken(lltok::comma, "expected ',' here") ||
8967       parseParamAccessOffset(Param.Use))
8968     return true;
8969 
8970   if (EatIfPresent(lltok::comma)) {
8971     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8972         parseToken(lltok::colon, "expected ':' here") ||
8973         parseToken(lltok::lparen, "expected '(' here"))
8974       return true;
8975     do {
8976       FunctionSummary::ParamAccess::Call Call;
8977       if (parseParamAccessCall(Call, IdLocList))
8978         return true;
8979       Param.Calls.push_back(Call);
8980     } while (EatIfPresent(lltok::comma));
8981 
8982     if (parseToken(lltok::rparen, "expected ')' here"))
8983       return true;
8984   }
8985 
8986   if (parseToken(lltok::rparen, "expected ')' here"))
8987     return true;
8988 
8989   return false;
8990 }
8991 
8992 /// OptionalParamAccesses
8993 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8994 bool LLParser::parseOptionalParamAccesses(
8995     std::vector<FunctionSummary::ParamAccess> &Params) {
8996   assert(Lex.getKind() == lltok::kw_params);
8997   Lex.Lex();
8998 
8999   if (parseToken(lltok::colon, "expected ':' here") ||
9000       parseToken(lltok::lparen, "expected '(' here"))
9001     return true;
9002 
9003   IdLocListType VContexts;
9004   size_t CallsNum = 0;
9005   do {
9006     FunctionSummary::ParamAccess ParamAccess;
9007     if (parseParamAccess(ParamAccess, VContexts))
9008       return true;
9009     CallsNum += ParamAccess.Calls.size();
9010     assert(VContexts.size() == CallsNum);
9011     Params.emplace_back(std::move(ParamAccess));
9012   } while (EatIfPresent(lltok::comma));
9013 
9014   if (parseToken(lltok::rparen, "expected ')' here"))
9015     return true;
9016 
9017   // Now that the Params is finalized, it is safe to save the locations
9018   // of any forward GV references that need updating later.
9019   IdLocListType::const_iterator ItContext = VContexts.begin();
9020   for (auto &PA : Params) {
9021     for (auto &C : PA.Calls) {
9022       if (C.Callee.getRef() == FwdVIRef)
9023         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9024                                                             ItContext->second);
9025       ++ItContext;
9026     }
9027   }
9028   assert(ItContext == VContexts.end());
9029 
9030   return false;
9031 }
9032 
9033 /// OptionalRefs
9034 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9035 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9036   assert(Lex.getKind() == lltok::kw_refs);
9037   Lex.Lex();
9038 
9039   if (parseToken(lltok::colon, "expected ':' in refs") ||
9040       parseToken(lltok::lparen, "expected '(' in refs"))
9041     return true;
9042 
9043   struct ValueContext {
9044     ValueInfo VI;
9045     unsigned GVId;
9046     LocTy Loc;
9047   };
9048   std::vector<ValueContext> VContexts;
9049   // parse each ref edge
9050   do {
9051     ValueContext VC;
9052     VC.Loc = Lex.getLoc();
9053     if (parseGVReference(VC.VI, VC.GVId))
9054       return true;
9055     VContexts.push_back(VC);
9056   } while (EatIfPresent(lltok::comma));
9057 
9058   // Sort value contexts so that ones with writeonly
9059   // and readonly ValueInfo  are at the end of VContexts vector.
9060   // See FunctionSummary::specialRefCounts()
9061   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9062     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9063   });
9064 
9065   IdToIndexMapType IdToIndexMap;
9066   for (auto &VC : VContexts) {
9067     // Keep track of the Refs array index needing a forward reference.
9068     // We will save the location of the ValueInfo needing an update, but
9069     // can only do so once the std::vector is finalized.
9070     if (VC.VI.getRef() == FwdVIRef)
9071       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9072     Refs.push_back(VC.VI);
9073   }
9074 
9075   // Now that the Refs vector is finalized, it is safe to save the locations
9076   // of any forward GV references that need updating later.
9077   for (auto I : IdToIndexMap) {
9078     auto &Infos = ForwardRefValueInfos[I.first];
9079     for (auto P : I.second) {
9080       assert(Refs[P.first].getRef() == FwdVIRef &&
9081              "Forward referenced ValueInfo expected to be empty");
9082       Infos.emplace_back(&Refs[P.first], P.second);
9083     }
9084   }
9085 
9086   if (parseToken(lltok::rparen, "expected ')' in refs"))
9087     return true;
9088 
9089   return false;
9090 }
9091 
9092 /// OptionalTypeIdInfo
9093 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9094 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9095 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9096 bool LLParser::parseOptionalTypeIdInfo(
9097     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9098   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9099   Lex.Lex();
9100 
9101   if (parseToken(lltok::colon, "expected ':' here") ||
9102       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9103     return true;
9104 
9105   do {
9106     switch (Lex.getKind()) {
9107     case lltok::kw_typeTests:
9108       if (parseTypeTests(TypeIdInfo.TypeTests))
9109         return true;
9110       break;
9111     case lltok::kw_typeTestAssumeVCalls:
9112       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9113                            TypeIdInfo.TypeTestAssumeVCalls))
9114         return true;
9115       break;
9116     case lltok::kw_typeCheckedLoadVCalls:
9117       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9118                            TypeIdInfo.TypeCheckedLoadVCalls))
9119         return true;
9120       break;
9121     case lltok::kw_typeTestAssumeConstVCalls:
9122       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9123                               TypeIdInfo.TypeTestAssumeConstVCalls))
9124         return true;
9125       break;
9126     case lltok::kw_typeCheckedLoadConstVCalls:
9127       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9128                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9129         return true;
9130       break;
9131     default:
9132       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9133     }
9134   } while (EatIfPresent(lltok::comma));
9135 
9136   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9137     return true;
9138 
9139   return false;
9140 }
9141 
9142 /// TypeTests
9143 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9144 ///         [',' (SummaryID | UInt64)]* ')'
9145 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9146   assert(Lex.getKind() == lltok::kw_typeTests);
9147   Lex.Lex();
9148 
9149   if (parseToken(lltok::colon, "expected ':' here") ||
9150       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9151     return true;
9152 
9153   IdToIndexMapType IdToIndexMap;
9154   do {
9155     GlobalValue::GUID GUID = 0;
9156     if (Lex.getKind() == lltok::SummaryID) {
9157       unsigned ID = Lex.getUIntVal();
9158       LocTy Loc = Lex.getLoc();
9159       // Keep track of the TypeTests array index needing a forward reference.
9160       // We will save the location of the GUID needing an update, but
9161       // can only do so once the std::vector is finalized.
9162       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9163       Lex.Lex();
9164     } else if (parseUInt64(GUID))
9165       return true;
9166     TypeTests.push_back(GUID);
9167   } while (EatIfPresent(lltok::comma));
9168 
9169   // Now that the TypeTests vector is finalized, it is safe to save the
9170   // locations of any forward GV references that need updating later.
9171   for (auto I : IdToIndexMap) {
9172     auto &Ids = ForwardRefTypeIds[I.first];
9173     for (auto P : I.second) {
9174       assert(TypeTests[P.first] == 0 &&
9175              "Forward referenced type id GUID expected to be 0");
9176       Ids.emplace_back(&TypeTests[P.first], P.second);
9177     }
9178   }
9179 
9180   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9181     return true;
9182 
9183   return false;
9184 }
9185 
9186 /// VFuncIdList
9187 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9188 bool LLParser::parseVFuncIdList(
9189     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9190   assert(Lex.getKind() == Kind);
9191   Lex.Lex();
9192 
9193   if (parseToken(lltok::colon, "expected ':' here") ||
9194       parseToken(lltok::lparen, "expected '(' here"))
9195     return true;
9196 
9197   IdToIndexMapType IdToIndexMap;
9198   do {
9199     FunctionSummary::VFuncId VFuncId;
9200     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9201       return true;
9202     VFuncIdList.push_back(VFuncId);
9203   } while (EatIfPresent(lltok::comma));
9204 
9205   if (parseToken(lltok::rparen, "expected ')' here"))
9206     return true;
9207 
9208   // Now that the VFuncIdList vector is finalized, it is safe to save the
9209   // locations of any forward GV references that need updating later.
9210   for (auto I : IdToIndexMap) {
9211     auto &Ids = ForwardRefTypeIds[I.first];
9212     for (auto P : I.second) {
9213       assert(VFuncIdList[P.first].GUID == 0 &&
9214              "Forward referenced type id GUID expected to be 0");
9215       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9216     }
9217   }
9218 
9219   return false;
9220 }
9221 
9222 /// ConstVCallList
9223 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9224 bool LLParser::parseConstVCallList(
9225     lltok::Kind Kind,
9226     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9227   assert(Lex.getKind() == Kind);
9228   Lex.Lex();
9229 
9230   if (parseToken(lltok::colon, "expected ':' here") ||
9231       parseToken(lltok::lparen, "expected '(' here"))
9232     return true;
9233 
9234   IdToIndexMapType IdToIndexMap;
9235   do {
9236     FunctionSummary::ConstVCall ConstVCall;
9237     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9238       return true;
9239     ConstVCallList.push_back(ConstVCall);
9240   } while (EatIfPresent(lltok::comma));
9241 
9242   if (parseToken(lltok::rparen, "expected ')' here"))
9243     return true;
9244 
9245   // Now that the ConstVCallList vector is finalized, it is safe to save the
9246   // locations of any forward GV references that need updating later.
9247   for (auto I : IdToIndexMap) {
9248     auto &Ids = ForwardRefTypeIds[I.first];
9249     for (auto P : I.second) {
9250       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9251              "Forward referenced type id GUID expected to be 0");
9252       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9253     }
9254   }
9255 
9256   return false;
9257 }
9258 
9259 /// ConstVCall
9260 ///   ::= '(' VFuncId ',' Args ')'
9261 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9262                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9263   if (parseToken(lltok::lparen, "expected '(' here") ||
9264       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9265     return true;
9266 
9267   if (EatIfPresent(lltok::comma))
9268     if (parseArgs(ConstVCall.Args))
9269       return true;
9270 
9271   if (parseToken(lltok::rparen, "expected ')' here"))
9272     return true;
9273 
9274   return false;
9275 }
9276 
9277 /// VFuncId
9278 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9279 ///         'offset' ':' UInt64 ')'
9280 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9281                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9282   assert(Lex.getKind() == lltok::kw_vFuncId);
9283   Lex.Lex();
9284 
9285   if (parseToken(lltok::colon, "expected ':' here") ||
9286       parseToken(lltok::lparen, "expected '(' here"))
9287     return true;
9288 
9289   if (Lex.getKind() == lltok::SummaryID) {
9290     VFuncId.GUID = 0;
9291     unsigned ID = Lex.getUIntVal();
9292     LocTy Loc = Lex.getLoc();
9293     // Keep track of the array index needing a forward reference.
9294     // We will save the location of the GUID needing an update, but
9295     // can only do so once the caller's std::vector is finalized.
9296     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9297     Lex.Lex();
9298   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9299              parseToken(lltok::colon, "expected ':' here") ||
9300              parseUInt64(VFuncId.GUID))
9301     return true;
9302 
9303   if (parseToken(lltok::comma, "expected ',' here") ||
9304       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9305       parseToken(lltok::colon, "expected ':' here") ||
9306       parseUInt64(VFuncId.Offset) ||
9307       parseToken(lltok::rparen, "expected ')' here"))
9308     return true;
9309 
9310   return false;
9311 }
9312 
9313 /// GVFlags
9314 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9315 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
9316 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
9317 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9318   assert(Lex.getKind() == lltok::kw_flags);
9319   Lex.Lex();
9320 
9321   if (parseToken(lltok::colon, "expected ':' here") ||
9322       parseToken(lltok::lparen, "expected '(' here"))
9323     return true;
9324 
9325   do {
9326     unsigned Flag = 0;
9327     switch (Lex.getKind()) {
9328     case lltok::kw_linkage:
9329       Lex.Lex();
9330       if (parseToken(lltok::colon, "expected ':'"))
9331         return true;
9332       bool HasLinkage;
9333       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9334       assert(HasLinkage && "Linkage not optional in summary entry");
9335       Lex.Lex();
9336       break;
9337     case lltok::kw_notEligibleToImport:
9338       Lex.Lex();
9339       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9340         return true;
9341       GVFlags.NotEligibleToImport = Flag;
9342       break;
9343     case lltok::kw_live:
9344       Lex.Lex();
9345       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9346         return true;
9347       GVFlags.Live = Flag;
9348       break;
9349     case lltok::kw_dsoLocal:
9350       Lex.Lex();
9351       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9352         return true;
9353       GVFlags.DSOLocal = Flag;
9354       break;
9355     case lltok::kw_canAutoHide:
9356       Lex.Lex();
9357       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9358         return true;
9359       GVFlags.CanAutoHide = Flag;
9360       break;
9361     default:
9362       return error(Lex.getLoc(), "expected gv flag type");
9363     }
9364   } while (EatIfPresent(lltok::comma));
9365 
9366   if (parseToken(lltok::rparen, "expected ')' here"))
9367     return true;
9368 
9369   return false;
9370 }
9371 
9372 /// GVarFlags
9373 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9374 ///                      ',' 'writeonly' ':' Flag
9375 ///                      ',' 'constant' ':' Flag ')'
9376 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9377   assert(Lex.getKind() == lltok::kw_varFlags);
9378   Lex.Lex();
9379 
9380   if (parseToken(lltok::colon, "expected ':' here") ||
9381       parseToken(lltok::lparen, "expected '(' here"))
9382     return true;
9383 
9384   auto ParseRest = [this](unsigned int &Val) {
9385     Lex.Lex();
9386     if (parseToken(lltok::colon, "expected ':'"))
9387       return true;
9388     return parseFlag(Val);
9389   };
9390 
9391   do {
9392     unsigned Flag = 0;
9393     switch (Lex.getKind()) {
9394     case lltok::kw_readonly:
9395       if (ParseRest(Flag))
9396         return true;
9397       GVarFlags.MaybeReadOnly = Flag;
9398       break;
9399     case lltok::kw_writeonly:
9400       if (ParseRest(Flag))
9401         return true;
9402       GVarFlags.MaybeWriteOnly = Flag;
9403       break;
9404     case lltok::kw_constant:
9405       if (ParseRest(Flag))
9406         return true;
9407       GVarFlags.Constant = Flag;
9408       break;
9409     case lltok::kw_vcall_visibility:
9410       if (ParseRest(Flag))
9411         return true;
9412       GVarFlags.VCallVisibility = Flag;
9413       break;
9414     default:
9415       return error(Lex.getLoc(), "expected gvar flag type");
9416     }
9417   } while (EatIfPresent(lltok::comma));
9418   return parseToken(lltok::rparen, "expected ')' here");
9419 }
9420 
9421 /// ModuleReference
9422 ///   ::= 'module' ':' UInt
9423 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9424   // parse module id.
9425   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9426       parseToken(lltok::colon, "expected ':' here") ||
9427       parseToken(lltok::SummaryID, "expected module ID"))
9428     return true;
9429 
9430   unsigned ModuleID = Lex.getUIntVal();
9431   auto I = ModuleIdMap.find(ModuleID);
9432   // We should have already parsed all module IDs
9433   assert(I != ModuleIdMap.end());
9434   ModulePath = I->second;
9435   return false;
9436 }
9437 
9438 /// GVReference
9439 ///   ::= SummaryID
9440 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9441   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9442   if (!ReadOnly)
9443     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9444   if (parseToken(lltok::SummaryID, "expected GV ID"))
9445     return true;
9446 
9447   GVId = Lex.getUIntVal();
9448   // Check if we already have a VI for this GV
9449   if (GVId < NumberedValueInfos.size()) {
9450     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9451     VI = NumberedValueInfos[GVId];
9452   } else
9453     // We will create a forward reference to the stored location.
9454     VI = ValueInfo(false, FwdVIRef);
9455 
9456   if (ReadOnly)
9457     VI.setReadOnly();
9458   if (WriteOnly)
9459     VI.setWriteOnly();
9460   return false;
9461 }
9462