1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/AsmParser/SlotMapping.h" 18 #include "llvm/IR/AutoUpgrade.h" 19 #include "llvm/IR/CallingConv.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/Dwarf.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/SaveAndRestore.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 static std::string getTypeString(Type *T) { 37 std::string Result; 38 raw_string_ostream Tmp(Result); 39 Tmp << *T; 40 return Tmp.str(); 41 } 42 43 /// Run: module ::= toplevelentity* 44 bool LLParser::Run() { 45 // Prime the lexer. 46 Lex.Lex(); 47 48 return ParseTopLevelEntities() || 49 ValidateEndOfModule(); 50 } 51 52 bool LLParser::parseStandaloneConstantValue(Constant *&C, 53 const SlotMapping *Slots) { 54 restoreParsingState(Slots); 55 Lex.Lex(); 56 57 Type *Ty = nullptr; 58 if (ParseType(Ty) || parseConstantValue(Ty, C)) 59 return true; 60 if (Lex.getKind() != lltok::Eof) 61 return Error(Lex.getLoc(), "expected end of string"); 62 return false; 63 } 64 65 void LLParser::restoreParsingState(const SlotMapping *Slots) { 66 if (!Slots) 67 return; 68 NumberedVals = Slots->GlobalValues; 69 NumberedMetadata = Slots->MetadataNodes; 70 for (const auto &I : Slots->NamedTypes) 71 NamedTypes.insert( 72 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 73 for (const auto &I : Slots->Types) 74 NumberedTypes.insert( 75 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 76 } 77 78 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 79 /// module. 80 bool LLParser::ValidateEndOfModule() { 81 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 82 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 83 84 // Handle any function attribute group forward references. 85 for (std::map<Value*, std::vector<unsigned> >::iterator 86 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 87 I != E; ++I) { 88 Value *V = I->first; 89 std::vector<unsigned> &Vec = I->second; 90 AttrBuilder B; 91 92 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 93 VI != VE; ++VI) 94 B.merge(NumberedAttrBuilders[*VI]); 95 96 if (Function *Fn = dyn_cast<Function>(V)) { 97 AttributeSet AS = Fn->getAttributes(); 98 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 99 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 100 AS.getFnAttributes()); 101 102 FnAttrs.merge(B); 103 104 // If the alignment was parsed as an attribute, move to the alignment 105 // field. 106 if (FnAttrs.hasAlignmentAttr()) { 107 Fn->setAlignment(FnAttrs.getAlignment()); 108 FnAttrs.removeAttribute(Attribute::Alignment); 109 } 110 111 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 112 AttributeSet::get(Context, 113 AttributeSet::FunctionIndex, 114 FnAttrs)); 115 Fn->setAttributes(AS); 116 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 117 AttributeSet AS = CI->getAttributes(); 118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 120 AS.getFnAttributes()); 121 FnAttrs.merge(B); 122 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 123 AttributeSet::get(Context, 124 AttributeSet::FunctionIndex, 125 FnAttrs)); 126 CI->setAttributes(AS); 127 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 128 AttributeSet AS = II->getAttributes(); 129 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 130 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 131 AS.getFnAttributes()); 132 FnAttrs.merge(B); 133 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 134 AttributeSet::get(Context, 135 AttributeSet::FunctionIndex, 136 FnAttrs)); 137 II->setAttributes(AS); 138 } else { 139 llvm_unreachable("invalid object with forward attribute group reference"); 140 } 141 } 142 143 // If there are entries in ForwardRefBlockAddresses at this point, the 144 // function was never defined. 145 if (!ForwardRefBlockAddresses.empty()) 146 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 147 "expected function name in blockaddress"); 148 149 for (const auto &NT : NumberedTypes) 150 if (NT.second.second.isValid()) 151 return Error(NT.second.second, 152 "use of undefined type '%" + Twine(NT.first) + "'"); 153 154 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 155 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 156 if (I->second.second.isValid()) 157 return Error(I->second.second, 158 "use of undefined type named '" + I->getKey() + "'"); 159 160 if (!ForwardRefComdats.empty()) 161 return Error(ForwardRefComdats.begin()->second, 162 "use of undefined comdat '$" + 163 ForwardRefComdats.begin()->first + "'"); 164 165 if (!ForwardRefVals.empty()) 166 return Error(ForwardRefVals.begin()->second.second, 167 "use of undefined value '@" + ForwardRefVals.begin()->first + 168 "'"); 169 170 if (!ForwardRefValIDs.empty()) 171 return Error(ForwardRefValIDs.begin()->second.second, 172 "use of undefined value '@" + 173 Twine(ForwardRefValIDs.begin()->first) + "'"); 174 175 if (!ForwardRefMDNodes.empty()) 176 return Error(ForwardRefMDNodes.begin()->second.second, 177 "use of undefined metadata '!" + 178 Twine(ForwardRefMDNodes.begin()->first) + "'"); 179 180 // Resolve metadata cycles. 181 for (auto &N : NumberedMetadata) { 182 if (N.second && !N.second->isResolved()) 183 N.second->resolveCycles(); 184 } 185 186 // Look for intrinsic functions and CallInst that need to be upgraded 187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 188 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 189 190 UpgradeDebugInfo(*M); 191 192 if (!Slots) 193 return false; 194 // Initialize the slot mapping. 195 // Because by this point we've parsed and validated everything, we can "steal" 196 // the mapping from LLParser as it doesn't need it anymore. 197 Slots->GlobalValues = std::move(NumberedVals); 198 Slots->MetadataNodes = std::move(NumberedMetadata); 199 for (const auto &I : NamedTypes) 200 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 201 for (const auto &I : NumberedTypes) 202 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 203 204 return false; 205 } 206 207 //===----------------------------------------------------------------------===// 208 // Top-Level Entities 209 //===----------------------------------------------------------------------===// 210 211 bool LLParser::ParseTopLevelEntities() { 212 while (1) { 213 switch (Lex.getKind()) { 214 default: return TokError("expected top-level entity"); 215 case lltok::Eof: return false; 216 case lltok::kw_declare: if (ParseDeclare()) return true; break; 217 case lltok::kw_define: if (ParseDefine()) return true; break; 218 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 219 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 220 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 221 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 222 case lltok::LocalVar: if (ParseNamedType()) return true; break; 223 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 224 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 225 case lltok::ComdatVar: if (parseComdat()) return true; break; 226 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 227 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 228 229 // The Global variable production with no name can have many different 230 // optional leading prefixes, the production is: 231 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 232 // OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr 233 // ('constant'|'global') ... 234 case lltok::kw_private: // OptionalLinkage 235 case lltok::kw_internal: // OptionalLinkage 236 case lltok::kw_weak: // OptionalLinkage 237 case lltok::kw_weak_odr: // OptionalLinkage 238 case lltok::kw_linkonce: // OptionalLinkage 239 case lltok::kw_linkonce_odr: // OptionalLinkage 240 case lltok::kw_appending: // OptionalLinkage 241 case lltok::kw_common: // OptionalLinkage 242 case lltok::kw_extern_weak: // OptionalLinkage 243 case lltok::kw_external: // OptionalLinkage 244 case lltok::kw_default: // OptionalVisibility 245 case lltok::kw_hidden: // OptionalVisibility 246 case lltok::kw_protected: // OptionalVisibility 247 case lltok::kw_dllimport: // OptionalDLLStorageClass 248 case lltok::kw_dllexport: // OptionalDLLStorageClass 249 case lltok::kw_thread_local: // OptionalThreadLocal 250 case lltok::kw_addrspace: // OptionalAddrSpace 251 case lltok::kw_constant: // GlobalType 252 case lltok::kw_global: { // GlobalType 253 unsigned Linkage, Visibility, DLLStorageClass; 254 bool UnnamedAddr; 255 GlobalVariable::ThreadLocalMode TLM; 256 bool HasLinkage; 257 if (ParseOptionalLinkage(Linkage, HasLinkage) || 258 ParseOptionalVisibility(Visibility) || 259 ParseOptionalDLLStorageClass(DLLStorageClass) || 260 ParseOptionalThreadLocal(TLM) || 261 parseOptionalUnnamedAddr(UnnamedAddr) || 262 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility, 263 DLLStorageClass, TLM, UnnamedAddr)) 264 return true; 265 break; 266 } 267 268 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 269 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 270 case lltok::kw_uselistorder_bb: 271 if (ParseUseListOrderBB()) return true; break; 272 } 273 } 274 } 275 276 277 /// toplevelentity 278 /// ::= 'module' 'asm' STRINGCONSTANT 279 bool LLParser::ParseModuleAsm() { 280 assert(Lex.getKind() == lltok::kw_module); 281 Lex.Lex(); 282 283 std::string AsmStr; 284 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 285 ParseStringConstant(AsmStr)) return true; 286 287 M->appendModuleInlineAsm(AsmStr); 288 return false; 289 } 290 291 /// toplevelentity 292 /// ::= 'target' 'triple' '=' STRINGCONSTANT 293 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 294 bool LLParser::ParseTargetDefinition() { 295 assert(Lex.getKind() == lltok::kw_target); 296 std::string Str; 297 switch (Lex.Lex()) { 298 default: return TokError("unknown target property"); 299 case lltok::kw_triple: 300 Lex.Lex(); 301 if (ParseToken(lltok::equal, "expected '=' after target triple") || 302 ParseStringConstant(Str)) 303 return true; 304 M->setTargetTriple(Str); 305 return false; 306 case lltok::kw_datalayout: 307 Lex.Lex(); 308 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 309 ParseStringConstant(Str)) 310 return true; 311 M->setDataLayout(Str); 312 return false; 313 } 314 } 315 316 /// toplevelentity 317 /// ::= 'deplibs' '=' '[' ']' 318 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 319 /// FIXME: Remove in 4.0. Currently parse, but ignore. 320 bool LLParser::ParseDepLibs() { 321 assert(Lex.getKind() == lltok::kw_deplibs); 322 Lex.Lex(); 323 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 324 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 325 return true; 326 327 if (EatIfPresent(lltok::rsquare)) 328 return false; 329 330 do { 331 std::string Str; 332 if (ParseStringConstant(Str)) return true; 333 } while (EatIfPresent(lltok::comma)); 334 335 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 336 } 337 338 /// ParseUnnamedType: 339 /// ::= LocalVarID '=' 'type' type 340 bool LLParser::ParseUnnamedType() { 341 LocTy TypeLoc = Lex.getLoc(); 342 unsigned TypeID = Lex.getUIntVal(); 343 Lex.Lex(); // eat LocalVarID; 344 345 if (ParseToken(lltok::equal, "expected '=' after name") || 346 ParseToken(lltok::kw_type, "expected 'type' after '='")) 347 return true; 348 349 Type *Result = nullptr; 350 if (ParseStructDefinition(TypeLoc, "", 351 NumberedTypes[TypeID], Result)) return true; 352 353 if (!isa<StructType>(Result)) { 354 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 355 if (Entry.first) 356 return Error(TypeLoc, "non-struct types may not be recursive"); 357 Entry.first = Result; 358 Entry.second = SMLoc(); 359 } 360 361 return false; 362 } 363 364 365 /// toplevelentity 366 /// ::= LocalVar '=' 'type' type 367 bool LLParser::ParseNamedType() { 368 std::string Name = Lex.getStrVal(); 369 LocTy NameLoc = Lex.getLoc(); 370 Lex.Lex(); // eat LocalVar. 371 372 if (ParseToken(lltok::equal, "expected '=' after name") || 373 ParseToken(lltok::kw_type, "expected 'type' after name")) 374 return true; 375 376 Type *Result = nullptr; 377 if (ParseStructDefinition(NameLoc, Name, 378 NamedTypes[Name], Result)) return true; 379 380 if (!isa<StructType>(Result)) { 381 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 382 if (Entry.first) 383 return Error(NameLoc, "non-struct types may not be recursive"); 384 Entry.first = Result; 385 Entry.second = SMLoc(); 386 } 387 388 return false; 389 } 390 391 392 /// toplevelentity 393 /// ::= 'declare' FunctionHeader 394 bool LLParser::ParseDeclare() { 395 assert(Lex.getKind() == lltok::kw_declare); 396 Lex.Lex(); 397 398 Function *F; 399 return ParseFunctionHeader(F, false); 400 } 401 402 /// toplevelentity 403 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 404 bool LLParser::ParseDefine() { 405 assert(Lex.getKind() == lltok::kw_define); 406 Lex.Lex(); 407 408 Function *F; 409 return ParseFunctionHeader(F, true) || 410 ParseOptionalFunctionMetadata(*F) || 411 ParseFunctionBody(*F); 412 } 413 414 /// ParseGlobalType 415 /// ::= 'constant' 416 /// ::= 'global' 417 bool LLParser::ParseGlobalType(bool &IsConstant) { 418 if (Lex.getKind() == lltok::kw_constant) 419 IsConstant = true; 420 else if (Lex.getKind() == lltok::kw_global) 421 IsConstant = false; 422 else { 423 IsConstant = false; 424 return TokError("expected 'global' or 'constant'"); 425 } 426 Lex.Lex(); 427 return false; 428 } 429 430 /// ParseUnnamedGlobal: 431 /// OptionalVisibility ALIAS ... 432 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 433 /// ... -> global variable 434 /// GlobalID '=' OptionalVisibility ALIAS ... 435 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 436 /// ... -> global variable 437 bool LLParser::ParseUnnamedGlobal() { 438 unsigned VarID = NumberedVals.size(); 439 std::string Name; 440 LocTy NameLoc = Lex.getLoc(); 441 442 // Handle the GlobalID form. 443 if (Lex.getKind() == lltok::GlobalID) { 444 if (Lex.getUIntVal() != VarID) 445 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 446 Twine(VarID) + "'"); 447 Lex.Lex(); // eat GlobalID; 448 449 if (ParseToken(lltok::equal, "expected '=' after name")) 450 return true; 451 } 452 453 bool HasLinkage; 454 unsigned Linkage, Visibility, DLLStorageClass; 455 GlobalVariable::ThreadLocalMode TLM; 456 bool UnnamedAddr; 457 if (ParseOptionalLinkage(Linkage, HasLinkage) || 458 ParseOptionalVisibility(Visibility) || 459 ParseOptionalDLLStorageClass(DLLStorageClass) || 460 ParseOptionalThreadLocal(TLM) || 461 parseOptionalUnnamedAddr(UnnamedAddr)) 462 return true; 463 464 if (Lex.getKind() != lltok::kw_alias) 465 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 466 DLLStorageClass, TLM, UnnamedAddr); 467 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 468 UnnamedAddr); 469 } 470 471 /// ParseNamedGlobal: 472 /// GlobalVar '=' OptionalVisibility ALIAS ... 473 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 474 /// ... -> global variable 475 bool LLParser::ParseNamedGlobal() { 476 assert(Lex.getKind() == lltok::GlobalVar); 477 LocTy NameLoc = Lex.getLoc(); 478 std::string Name = Lex.getStrVal(); 479 Lex.Lex(); 480 481 bool HasLinkage; 482 unsigned Linkage, Visibility, DLLStorageClass; 483 GlobalVariable::ThreadLocalMode TLM; 484 bool UnnamedAddr; 485 if (ParseToken(lltok::equal, "expected '=' in global variable") || 486 ParseOptionalLinkage(Linkage, HasLinkage) || 487 ParseOptionalVisibility(Visibility) || 488 ParseOptionalDLLStorageClass(DLLStorageClass) || 489 ParseOptionalThreadLocal(TLM) || 490 parseOptionalUnnamedAddr(UnnamedAddr)) 491 return true; 492 493 if (Lex.getKind() != lltok::kw_alias) 494 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 495 DLLStorageClass, TLM, UnnamedAddr); 496 497 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 498 UnnamedAddr); 499 } 500 501 bool LLParser::parseComdat() { 502 assert(Lex.getKind() == lltok::ComdatVar); 503 std::string Name = Lex.getStrVal(); 504 LocTy NameLoc = Lex.getLoc(); 505 Lex.Lex(); 506 507 if (ParseToken(lltok::equal, "expected '=' here")) 508 return true; 509 510 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 511 return TokError("expected comdat type"); 512 513 Comdat::SelectionKind SK; 514 switch (Lex.getKind()) { 515 default: 516 return TokError("unknown selection kind"); 517 case lltok::kw_any: 518 SK = Comdat::Any; 519 break; 520 case lltok::kw_exactmatch: 521 SK = Comdat::ExactMatch; 522 break; 523 case lltok::kw_largest: 524 SK = Comdat::Largest; 525 break; 526 case lltok::kw_noduplicates: 527 SK = Comdat::NoDuplicates; 528 break; 529 case lltok::kw_samesize: 530 SK = Comdat::SameSize; 531 break; 532 } 533 Lex.Lex(); 534 535 // See if the comdat was forward referenced, if so, use the comdat. 536 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 537 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 538 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 539 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 540 541 Comdat *C; 542 if (I != ComdatSymTab.end()) 543 C = &I->second; 544 else 545 C = M->getOrInsertComdat(Name); 546 C->setSelectionKind(SK); 547 548 return false; 549 } 550 551 // MDString: 552 // ::= '!' STRINGCONSTANT 553 bool LLParser::ParseMDString(MDString *&Result) { 554 std::string Str; 555 if (ParseStringConstant(Str)) return true; 556 llvm::UpgradeMDStringConstant(Str); 557 Result = MDString::get(Context, Str); 558 return false; 559 } 560 561 // MDNode: 562 // ::= '!' MDNodeNumber 563 bool LLParser::ParseMDNodeID(MDNode *&Result) { 564 // !{ ..., !42, ... } 565 unsigned MID = 0; 566 if (ParseUInt32(MID)) 567 return true; 568 569 // If not a forward reference, just return it now. 570 if (NumberedMetadata.count(MID)) { 571 Result = NumberedMetadata[MID]; 572 return false; 573 } 574 575 // Otherwise, create MDNode forward reference. 576 auto &FwdRef = ForwardRefMDNodes[MID]; 577 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc()); 578 579 Result = FwdRef.first.get(); 580 NumberedMetadata[MID].reset(Result); 581 return false; 582 } 583 584 /// ParseNamedMetadata: 585 /// !foo = !{ !1, !2 } 586 bool LLParser::ParseNamedMetadata() { 587 assert(Lex.getKind() == lltok::MetadataVar); 588 std::string Name = Lex.getStrVal(); 589 Lex.Lex(); 590 591 if (ParseToken(lltok::equal, "expected '=' here") || 592 ParseToken(lltok::exclaim, "Expected '!' here") || 593 ParseToken(lltok::lbrace, "Expected '{' here")) 594 return true; 595 596 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 597 if (Lex.getKind() != lltok::rbrace) 598 do { 599 if (ParseToken(lltok::exclaim, "Expected '!' here")) 600 return true; 601 602 MDNode *N = nullptr; 603 if (ParseMDNodeID(N)) return true; 604 NMD->addOperand(N); 605 } while (EatIfPresent(lltok::comma)); 606 607 return ParseToken(lltok::rbrace, "expected end of metadata node"); 608 } 609 610 /// ParseStandaloneMetadata: 611 /// !42 = !{...} 612 bool LLParser::ParseStandaloneMetadata() { 613 assert(Lex.getKind() == lltok::exclaim); 614 Lex.Lex(); 615 unsigned MetadataID = 0; 616 617 MDNode *Init; 618 if (ParseUInt32(MetadataID) || 619 ParseToken(lltok::equal, "expected '=' here")) 620 return true; 621 622 // Detect common error, from old metadata syntax. 623 if (Lex.getKind() == lltok::Type) 624 return TokError("unexpected type in metadata definition"); 625 626 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 627 if (Lex.getKind() == lltok::MetadataVar) { 628 if (ParseSpecializedMDNode(Init, IsDistinct)) 629 return true; 630 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 631 ParseMDTuple(Init, IsDistinct)) 632 return true; 633 634 // See if this was forward referenced, if so, handle it. 635 auto FI = ForwardRefMDNodes.find(MetadataID); 636 if (FI != ForwardRefMDNodes.end()) { 637 FI->second.first->replaceAllUsesWith(Init); 638 ForwardRefMDNodes.erase(FI); 639 640 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 641 } else { 642 if (NumberedMetadata.count(MetadataID)) 643 return TokError("Metadata id is already used"); 644 NumberedMetadata[MetadataID].reset(Init); 645 } 646 647 return false; 648 } 649 650 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 651 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 652 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 653 } 654 655 /// ParseAlias: 656 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 657 /// OptionalDLLStorageClass OptionalThreadLocal 658 /// OptionalUnnamedAddr 'alias' Aliasee 659 /// 660 /// Aliasee 661 /// ::= TypeAndValue 662 /// 663 /// Everything through OptionalUnnamedAddr has already been parsed. 664 /// 665 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L, 666 unsigned Visibility, unsigned DLLStorageClass, 667 GlobalVariable::ThreadLocalMode TLM, 668 bool UnnamedAddr) { 669 assert(Lex.getKind() == lltok::kw_alias); 670 Lex.Lex(); 671 672 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 673 674 if(!GlobalAlias::isValidLinkage(Linkage)) 675 return Error(NameLoc, "invalid linkage type for alias"); 676 677 if (!isValidVisibilityForLinkage(Visibility, L)) 678 return Error(NameLoc, 679 "symbol with local linkage must have default visibility"); 680 681 Type *Ty; 682 LocTy ExplicitTypeLoc = Lex.getLoc(); 683 if (ParseType(Ty) || 684 ParseToken(lltok::comma, "expected comma after alias's type")) 685 return true; 686 687 Constant *Aliasee; 688 LocTy AliaseeLoc = Lex.getLoc(); 689 if (Lex.getKind() != lltok::kw_bitcast && 690 Lex.getKind() != lltok::kw_getelementptr && 691 Lex.getKind() != lltok::kw_addrspacecast && 692 Lex.getKind() != lltok::kw_inttoptr) { 693 if (ParseGlobalTypeAndValue(Aliasee)) 694 return true; 695 } else { 696 // The bitcast dest type is not present, it is implied by the dest type. 697 ValID ID; 698 if (ParseValID(ID)) 699 return true; 700 if (ID.Kind != ValID::t_Constant) 701 return Error(AliaseeLoc, "invalid aliasee"); 702 Aliasee = ID.ConstantVal; 703 } 704 705 Type *AliaseeType = Aliasee->getType(); 706 auto *PTy = dyn_cast<PointerType>(AliaseeType); 707 if (!PTy) 708 return Error(AliaseeLoc, "An alias must have pointer type"); 709 unsigned AddrSpace = PTy->getAddressSpace(); 710 711 if (Ty != PTy->getElementType()) 712 return Error( 713 ExplicitTypeLoc, 714 "explicit pointee type doesn't match operand's pointee type"); 715 716 // Okay, create the alias but do not insert it into the module yet. 717 std::unique_ptr<GlobalAlias> GA( 718 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, 719 Name, Aliasee, /*Parent*/ nullptr)); 720 GA->setThreadLocalMode(TLM); 721 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 722 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 723 GA->setUnnamedAddr(UnnamedAddr); 724 725 if (Name.empty()) 726 NumberedVals.push_back(GA.get()); 727 728 // See if this value already exists in the symbol table. If so, it is either 729 // a redefinition or a definition of a forward reference. 730 if (GlobalValue *Val = M->getNamedValue(Name)) { 731 // See if this was a redefinition. If so, there is no entry in 732 // ForwardRefVals. 733 auto I = ForwardRefVals.find(Name); 734 if (I == ForwardRefVals.end()) 735 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 736 737 // Otherwise, this was a definition of forward ref. Verify that types 738 // agree. 739 if (Val->getType() != GA->getType()) 740 return Error(NameLoc, 741 "forward reference and definition of alias have different types"); 742 743 // If they agree, just RAUW the old value with the alias and remove the 744 // forward ref info. 745 Val->replaceAllUsesWith(GA.get()); 746 Val->eraseFromParent(); 747 ForwardRefVals.erase(I); 748 } 749 750 // Insert into the module, we know its name won't collide now. 751 M->getAliasList().push_back(GA.get()); 752 assert(GA->getName() == Name && "Should not be a name conflict!"); 753 754 // The module owns this now 755 GA.release(); 756 757 return false; 758 } 759 760 /// ParseGlobal 761 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 762 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 763 /// OptionalExternallyInitialized GlobalType Type Const 764 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 765 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 766 /// OptionalExternallyInitialized GlobalType Type Const 767 /// 768 /// Everything up to and including OptionalUnnamedAddr has been parsed 769 /// already. 770 /// 771 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 772 unsigned Linkage, bool HasLinkage, 773 unsigned Visibility, unsigned DLLStorageClass, 774 GlobalVariable::ThreadLocalMode TLM, 775 bool UnnamedAddr) { 776 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 777 return Error(NameLoc, 778 "symbol with local linkage must have default visibility"); 779 780 unsigned AddrSpace; 781 bool IsConstant, IsExternallyInitialized; 782 LocTy IsExternallyInitializedLoc; 783 LocTy TyLoc; 784 785 Type *Ty = nullptr; 786 if (ParseOptionalAddrSpace(AddrSpace) || 787 ParseOptionalToken(lltok::kw_externally_initialized, 788 IsExternallyInitialized, 789 &IsExternallyInitializedLoc) || 790 ParseGlobalType(IsConstant) || 791 ParseType(Ty, TyLoc)) 792 return true; 793 794 // If the linkage is specified and is external, then no initializer is 795 // present. 796 Constant *Init = nullptr; 797 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage && 798 Linkage != GlobalValue::ExternalLinkage)) { 799 if (ParseGlobalValue(Ty, Init)) 800 return true; 801 } 802 803 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 804 return Error(TyLoc, "invalid type for global variable"); 805 806 GlobalValue *GVal = nullptr; 807 808 // See if the global was forward referenced, if so, use the global. 809 if (!Name.empty()) { 810 GVal = M->getNamedValue(Name); 811 if (GVal) { 812 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 813 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 814 } 815 } else { 816 auto I = ForwardRefValIDs.find(NumberedVals.size()); 817 if (I != ForwardRefValIDs.end()) { 818 GVal = I->second.first; 819 ForwardRefValIDs.erase(I); 820 } 821 } 822 823 GlobalVariable *GV; 824 if (!GVal) { 825 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 826 Name, nullptr, GlobalVariable::NotThreadLocal, 827 AddrSpace); 828 } else { 829 if (GVal->getValueType() != Ty) 830 return Error(TyLoc, 831 "forward reference and definition of global have different types"); 832 833 GV = cast<GlobalVariable>(GVal); 834 835 // Move the forward-reference to the correct spot in the module. 836 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 837 } 838 839 if (Name.empty()) 840 NumberedVals.push_back(GV); 841 842 // Set the parsed properties on the global. 843 if (Init) 844 GV->setInitializer(Init); 845 GV->setConstant(IsConstant); 846 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 847 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 848 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 849 GV->setExternallyInitialized(IsExternallyInitialized); 850 GV->setThreadLocalMode(TLM); 851 GV->setUnnamedAddr(UnnamedAddr); 852 853 // Parse attributes on the global. 854 while (Lex.getKind() == lltok::comma) { 855 Lex.Lex(); 856 857 if (Lex.getKind() == lltok::kw_section) { 858 Lex.Lex(); 859 GV->setSection(Lex.getStrVal()); 860 if (ParseToken(lltok::StringConstant, "expected global section string")) 861 return true; 862 } else if (Lex.getKind() == lltok::kw_align) { 863 unsigned Alignment; 864 if (ParseOptionalAlignment(Alignment)) return true; 865 GV->setAlignment(Alignment); 866 } else { 867 Comdat *C; 868 if (parseOptionalComdat(Name, C)) 869 return true; 870 if (C) 871 GV->setComdat(C); 872 else 873 return TokError("unknown global variable property!"); 874 } 875 } 876 877 return false; 878 } 879 880 /// ParseUnnamedAttrGrp 881 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 882 bool LLParser::ParseUnnamedAttrGrp() { 883 assert(Lex.getKind() == lltok::kw_attributes); 884 LocTy AttrGrpLoc = Lex.getLoc(); 885 Lex.Lex(); 886 887 if (Lex.getKind() != lltok::AttrGrpID) 888 return TokError("expected attribute group id"); 889 890 unsigned VarID = Lex.getUIntVal(); 891 std::vector<unsigned> unused; 892 LocTy BuiltinLoc; 893 Lex.Lex(); 894 895 if (ParseToken(lltok::equal, "expected '=' here") || 896 ParseToken(lltok::lbrace, "expected '{' here") || 897 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 898 BuiltinLoc) || 899 ParseToken(lltok::rbrace, "expected end of attribute group")) 900 return true; 901 902 if (!NumberedAttrBuilders[VarID].hasAttributes()) 903 return Error(AttrGrpLoc, "attribute group has no attributes"); 904 905 return false; 906 } 907 908 /// ParseFnAttributeValuePairs 909 /// ::= <attr> | <attr> '=' <value> 910 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 911 std::vector<unsigned> &FwdRefAttrGrps, 912 bool inAttrGrp, LocTy &BuiltinLoc) { 913 bool HaveError = false; 914 915 B.clear(); 916 917 while (true) { 918 lltok::Kind Token = Lex.getKind(); 919 if (Token == lltok::kw_builtin) 920 BuiltinLoc = Lex.getLoc(); 921 switch (Token) { 922 default: 923 if (!inAttrGrp) return HaveError; 924 return Error(Lex.getLoc(), "unterminated attribute group"); 925 case lltok::rbrace: 926 // Finished. 927 return false; 928 929 case lltok::AttrGrpID: { 930 // Allow a function to reference an attribute group: 931 // 932 // define void @foo() #1 { ... } 933 if (inAttrGrp) 934 HaveError |= 935 Error(Lex.getLoc(), 936 "cannot have an attribute group reference in an attribute group"); 937 938 unsigned AttrGrpNum = Lex.getUIntVal(); 939 if (inAttrGrp) break; 940 941 // Save the reference to the attribute group. We'll fill it in later. 942 FwdRefAttrGrps.push_back(AttrGrpNum); 943 break; 944 } 945 // Target-dependent attributes: 946 case lltok::StringConstant: { 947 if (ParseStringAttribute(B)) 948 return true; 949 continue; 950 } 951 952 // Target-independent attributes: 953 case lltok::kw_align: { 954 // As a hack, we allow function alignment to be initially parsed as an 955 // attribute on a function declaration/definition or added to an attribute 956 // group and later moved to the alignment field. 957 unsigned Alignment; 958 if (inAttrGrp) { 959 Lex.Lex(); 960 if (ParseToken(lltok::equal, "expected '=' here") || 961 ParseUInt32(Alignment)) 962 return true; 963 } else { 964 if (ParseOptionalAlignment(Alignment)) 965 return true; 966 } 967 B.addAlignmentAttr(Alignment); 968 continue; 969 } 970 case lltok::kw_alignstack: { 971 unsigned Alignment; 972 if (inAttrGrp) { 973 Lex.Lex(); 974 if (ParseToken(lltok::equal, "expected '=' here") || 975 ParseUInt32(Alignment)) 976 return true; 977 } else { 978 if (ParseOptionalStackAlignment(Alignment)) 979 return true; 980 } 981 B.addStackAlignmentAttr(Alignment); 982 continue; 983 } 984 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 985 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 986 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 987 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 988 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 989 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 990 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 991 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 992 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 993 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 994 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 995 case lltok::kw_noimplicitfloat: 996 B.addAttribute(Attribute::NoImplicitFloat); break; 997 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 998 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 999 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1000 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1001 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1002 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1003 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1004 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1005 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1006 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1007 case lltok::kw_returns_twice: 1008 B.addAttribute(Attribute::ReturnsTwice); break; 1009 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1010 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1011 case lltok::kw_sspstrong: 1012 B.addAttribute(Attribute::StackProtectStrong); break; 1013 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1014 case lltok::kw_sanitize_address: 1015 B.addAttribute(Attribute::SanitizeAddress); break; 1016 case lltok::kw_sanitize_thread: 1017 B.addAttribute(Attribute::SanitizeThread); break; 1018 case lltok::kw_sanitize_memory: 1019 B.addAttribute(Attribute::SanitizeMemory); break; 1020 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1021 1022 // Error handling. 1023 case lltok::kw_inreg: 1024 case lltok::kw_signext: 1025 case lltok::kw_zeroext: 1026 HaveError |= 1027 Error(Lex.getLoc(), 1028 "invalid use of attribute on a function"); 1029 break; 1030 case lltok::kw_byval: 1031 case lltok::kw_dereferenceable: 1032 case lltok::kw_dereferenceable_or_null: 1033 case lltok::kw_inalloca: 1034 case lltok::kw_nest: 1035 case lltok::kw_noalias: 1036 case lltok::kw_nocapture: 1037 case lltok::kw_nonnull: 1038 case lltok::kw_returned: 1039 case lltok::kw_sret: 1040 HaveError |= 1041 Error(Lex.getLoc(), 1042 "invalid use of parameter-only attribute on a function"); 1043 break; 1044 } 1045 1046 Lex.Lex(); 1047 } 1048 } 1049 1050 //===----------------------------------------------------------------------===// 1051 // GlobalValue Reference/Resolution Routines. 1052 //===----------------------------------------------------------------------===// 1053 1054 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1055 const std::string &Name) { 1056 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1057 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1058 else 1059 return new GlobalVariable(*M, PTy->getElementType(), false, 1060 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1061 nullptr, GlobalVariable::NotThreadLocal, 1062 PTy->getAddressSpace()); 1063 } 1064 1065 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1066 /// forward reference record if needed. This can return null if the value 1067 /// exists but does not have the right type. 1068 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1069 LocTy Loc) { 1070 PointerType *PTy = dyn_cast<PointerType>(Ty); 1071 if (!PTy) { 1072 Error(Loc, "global variable reference must have pointer type"); 1073 return nullptr; 1074 } 1075 1076 // Look this name up in the normal function symbol table. 1077 GlobalValue *Val = 1078 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1079 1080 // If this is a forward reference for the value, see if we already created a 1081 // forward ref record. 1082 if (!Val) { 1083 auto I = ForwardRefVals.find(Name); 1084 if (I != ForwardRefVals.end()) 1085 Val = I->second.first; 1086 } 1087 1088 // If we have the value in the symbol table or fwd-ref table, return it. 1089 if (Val) { 1090 if (Val->getType() == Ty) return Val; 1091 Error(Loc, "'@" + Name + "' defined with type '" + 1092 getTypeString(Val->getType()) + "'"); 1093 return nullptr; 1094 } 1095 1096 // Otherwise, create a new forward reference for this value and remember it. 1097 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1098 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1099 return FwdVal; 1100 } 1101 1102 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1103 PointerType *PTy = dyn_cast<PointerType>(Ty); 1104 if (!PTy) { 1105 Error(Loc, "global variable reference must have pointer type"); 1106 return nullptr; 1107 } 1108 1109 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1110 1111 // If this is a forward reference for the value, see if we already created a 1112 // forward ref record. 1113 if (!Val) { 1114 auto I = ForwardRefValIDs.find(ID); 1115 if (I != ForwardRefValIDs.end()) 1116 Val = I->second.first; 1117 } 1118 1119 // If we have the value in the symbol table or fwd-ref table, return it. 1120 if (Val) { 1121 if (Val->getType() == Ty) return Val; 1122 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1123 getTypeString(Val->getType()) + "'"); 1124 return nullptr; 1125 } 1126 1127 // Otherwise, create a new forward reference for this value and remember it. 1128 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1129 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1130 return FwdVal; 1131 } 1132 1133 1134 //===----------------------------------------------------------------------===// 1135 // Comdat Reference/Resolution Routines. 1136 //===----------------------------------------------------------------------===// 1137 1138 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1139 // Look this name up in the comdat symbol table. 1140 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1141 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1142 if (I != ComdatSymTab.end()) 1143 return &I->second; 1144 1145 // Otherwise, create a new forward reference for this value and remember it. 1146 Comdat *C = M->getOrInsertComdat(Name); 1147 ForwardRefComdats[Name] = Loc; 1148 return C; 1149 } 1150 1151 1152 //===----------------------------------------------------------------------===// 1153 // Helper Routines. 1154 //===----------------------------------------------------------------------===// 1155 1156 /// ParseToken - If the current token has the specified kind, eat it and return 1157 /// success. Otherwise, emit the specified error and return failure. 1158 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1159 if (Lex.getKind() != T) 1160 return TokError(ErrMsg); 1161 Lex.Lex(); 1162 return false; 1163 } 1164 1165 /// ParseStringConstant 1166 /// ::= StringConstant 1167 bool LLParser::ParseStringConstant(std::string &Result) { 1168 if (Lex.getKind() != lltok::StringConstant) 1169 return TokError("expected string constant"); 1170 Result = Lex.getStrVal(); 1171 Lex.Lex(); 1172 return false; 1173 } 1174 1175 /// ParseUInt32 1176 /// ::= uint32 1177 bool LLParser::ParseUInt32(unsigned &Val) { 1178 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1179 return TokError("expected integer"); 1180 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1181 if (Val64 != unsigned(Val64)) 1182 return TokError("expected 32-bit integer (too large)"); 1183 Val = Val64; 1184 Lex.Lex(); 1185 return false; 1186 } 1187 1188 /// ParseUInt64 1189 /// ::= uint64 1190 bool LLParser::ParseUInt64(uint64_t &Val) { 1191 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1192 return TokError("expected integer"); 1193 Val = Lex.getAPSIntVal().getLimitedValue(); 1194 Lex.Lex(); 1195 return false; 1196 } 1197 1198 /// ParseTLSModel 1199 /// := 'localdynamic' 1200 /// := 'initialexec' 1201 /// := 'localexec' 1202 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1203 switch (Lex.getKind()) { 1204 default: 1205 return TokError("expected localdynamic, initialexec or localexec"); 1206 case lltok::kw_localdynamic: 1207 TLM = GlobalVariable::LocalDynamicTLSModel; 1208 break; 1209 case lltok::kw_initialexec: 1210 TLM = GlobalVariable::InitialExecTLSModel; 1211 break; 1212 case lltok::kw_localexec: 1213 TLM = GlobalVariable::LocalExecTLSModel; 1214 break; 1215 } 1216 1217 Lex.Lex(); 1218 return false; 1219 } 1220 1221 /// ParseOptionalThreadLocal 1222 /// := /*empty*/ 1223 /// := 'thread_local' 1224 /// := 'thread_local' '(' tlsmodel ')' 1225 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1226 TLM = GlobalVariable::NotThreadLocal; 1227 if (!EatIfPresent(lltok::kw_thread_local)) 1228 return false; 1229 1230 TLM = GlobalVariable::GeneralDynamicTLSModel; 1231 if (Lex.getKind() == lltok::lparen) { 1232 Lex.Lex(); 1233 return ParseTLSModel(TLM) || 1234 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1235 } 1236 return false; 1237 } 1238 1239 /// ParseOptionalAddrSpace 1240 /// := /*empty*/ 1241 /// := 'addrspace' '(' uint32 ')' 1242 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1243 AddrSpace = 0; 1244 if (!EatIfPresent(lltok::kw_addrspace)) 1245 return false; 1246 return ParseToken(lltok::lparen, "expected '(' in address space") || 1247 ParseUInt32(AddrSpace) || 1248 ParseToken(lltok::rparen, "expected ')' in address space"); 1249 } 1250 1251 /// ParseStringAttribute 1252 /// := StringConstant 1253 /// := StringConstant '=' StringConstant 1254 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1255 std::string Attr = Lex.getStrVal(); 1256 Lex.Lex(); 1257 std::string Val; 1258 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1259 return true; 1260 B.addAttribute(Attr, Val); 1261 return false; 1262 } 1263 1264 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1265 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1266 bool HaveError = false; 1267 1268 B.clear(); 1269 1270 while (1) { 1271 lltok::Kind Token = Lex.getKind(); 1272 switch (Token) { 1273 default: // End of attributes. 1274 return HaveError; 1275 case lltok::StringConstant: { 1276 if (ParseStringAttribute(B)) 1277 return true; 1278 continue; 1279 } 1280 case lltok::kw_align: { 1281 unsigned Alignment; 1282 if (ParseOptionalAlignment(Alignment)) 1283 return true; 1284 B.addAlignmentAttr(Alignment); 1285 continue; 1286 } 1287 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1288 case lltok::kw_dereferenceable: { 1289 uint64_t Bytes; 1290 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1291 return true; 1292 B.addDereferenceableAttr(Bytes); 1293 continue; 1294 } 1295 case lltok::kw_dereferenceable_or_null: { 1296 uint64_t Bytes; 1297 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1298 return true; 1299 B.addDereferenceableOrNullAttr(Bytes); 1300 continue; 1301 } 1302 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1303 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1304 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1305 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1306 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1307 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1308 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1309 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1310 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1311 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1312 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1313 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1314 1315 case lltok::kw_alignstack: 1316 case lltok::kw_alwaysinline: 1317 case lltok::kw_argmemonly: 1318 case lltok::kw_builtin: 1319 case lltok::kw_inlinehint: 1320 case lltok::kw_jumptable: 1321 case lltok::kw_minsize: 1322 case lltok::kw_naked: 1323 case lltok::kw_nobuiltin: 1324 case lltok::kw_noduplicate: 1325 case lltok::kw_noimplicitfloat: 1326 case lltok::kw_noinline: 1327 case lltok::kw_nonlazybind: 1328 case lltok::kw_noredzone: 1329 case lltok::kw_noreturn: 1330 case lltok::kw_nounwind: 1331 case lltok::kw_optnone: 1332 case lltok::kw_optsize: 1333 case lltok::kw_returns_twice: 1334 case lltok::kw_sanitize_address: 1335 case lltok::kw_sanitize_memory: 1336 case lltok::kw_sanitize_thread: 1337 case lltok::kw_ssp: 1338 case lltok::kw_sspreq: 1339 case lltok::kw_sspstrong: 1340 case lltok::kw_safestack: 1341 case lltok::kw_uwtable: 1342 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1343 break; 1344 } 1345 1346 Lex.Lex(); 1347 } 1348 } 1349 1350 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1351 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1352 bool HaveError = false; 1353 1354 B.clear(); 1355 1356 while (1) { 1357 lltok::Kind Token = Lex.getKind(); 1358 switch (Token) { 1359 default: // End of attributes. 1360 return HaveError; 1361 case lltok::StringConstant: { 1362 if (ParseStringAttribute(B)) 1363 return true; 1364 continue; 1365 } 1366 case lltok::kw_dereferenceable: { 1367 uint64_t Bytes; 1368 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1369 return true; 1370 B.addDereferenceableAttr(Bytes); 1371 continue; 1372 } 1373 case lltok::kw_dereferenceable_or_null: { 1374 uint64_t Bytes; 1375 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1376 return true; 1377 B.addDereferenceableOrNullAttr(Bytes); 1378 continue; 1379 } 1380 case lltok::kw_align: { 1381 unsigned Alignment; 1382 if (ParseOptionalAlignment(Alignment)) 1383 return true; 1384 B.addAlignmentAttr(Alignment); 1385 continue; 1386 } 1387 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1388 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1389 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1390 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1391 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1392 1393 // Error handling. 1394 case lltok::kw_byval: 1395 case lltok::kw_inalloca: 1396 case lltok::kw_nest: 1397 case lltok::kw_nocapture: 1398 case lltok::kw_returned: 1399 case lltok::kw_sret: 1400 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1401 break; 1402 1403 case lltok::kw_alignstack: 1404 case lltok::kw_alwaysinline: 1405 case lltok::kw_argmemonly: 1406 case lltok::kw_builtin: 1407 case lltok::kw_cold: 1408 case lltok::kw_inlinehint: 1409 case lltok::kw_jumptable: 1410 case lltok::kw_minsize: 1411 case lltok::kw_naked: 1412 case lltok::kw_nobuiltin: 1413 case lltok::kw_noduplicate: 1414 case lltok::kw_noimplicitfloat: 1415 case lltok::kw_noinline: 1416 case lltok::kw_nonlazybind: 1417 case lltok::kw_noredzone: 1418 case lltok::kw_noreturn: 1419 case lltok::kw_nounwind: 1420 case lltok::kw_optnone: 1421 case lltok::kw_optsize: 1422 case lltok::kw_returns_twice: 1423 case lltok::kw_sanitize_address: 1424 case lltok::kw_sanitize_memory: 1425 case lltok::kw_sanitize_thread: 1426 case lltok::kw_ssp: 1427 case lltok::kw_sspreq: 1428 case lltok::kw_sspstrong: 1429 case lltok::kw_safestack: 1430 case lltok::kw_uwtable: 1431 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1432 break; 1433 1434 case lltok::kw_readnone: 1435 case lltok::kw_readonly: 1436 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1437 } 1438 1439 Lex.Lex(); 1440 } 1441 } 1442 1443 /// ParseOptionalLinkage 1444 /// ::= /*empty*/ 1445 /// ::= 'private' 1446 /// ::= 'internal' 1447 /// ::= 'weak' 1448 /// ::= 'weak_odr' 1449 /// ::= 'linkonce' 1450 /// ::= 'linkonce_odr' 1451 /// ::= 'available_externally' 1452 /// ::= 'appending' 1453 /// ::= 'common' 1454 /// ::= 'extern_weak' 1455 /// ::= 'external' 1456 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1457 HasLinkage = false; 1458 switch (Lex.getKind()) { 1459 default: Res=GlobalValue::ExternalLinkage; return false; 1460 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1461 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1462 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1463 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1464 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1465 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1466 case lltok::kw_available_externally: 1467 Res = GlobalValue::AvailableExternallyLinkage; 1468 break; 1469 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1470 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1471 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1472 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1473 } 1474 Lex.Lex(); 1475 HasLinkage = true; 1476 return false; 1477 } 1478 1479 /// ParseOptionalVisibility 1480 /// ::= /*empty*/ 1481 /// ::= 'default' 1482 /// ::= 'hidden' 1483 /// ::= 'protected' 1484 /// 1485 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1486 switch (Lex.getKind()) { 1487 default: Res = GlobalValue::DefaultVisibility; return false; 1488 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1489 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1490 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1491 } 1492 Lex.Lex(); 1493 return false; 1494 } 1495 1496 /// ParseOptionalDLLStorageClass 1497 /// ::= /*empty*/ 1498 /// ::= 'dllimport' 1499 /// ::= 'dllexport' 1500 /// 1501 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1502 switch (Lex.getKind()) { 1503 default: Res = GlobalValue::DefaultStorageClass; return false; 1504 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; 1505 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; 1506 } 1507 Lex.Lex(); 1508 return false; 1509 } 1510 1511 /// ParseOptionalCallingConv 1512 /// ::= /*empty*/ 1513 /// ::= 'ccc' 1514 /// ::= 'fastcc' 1515 /// ::= 'intel_ocl_bicc' 1516 /// ::= 'coldcc' 1517 /// ::= 'x86_stdcallcc' 1518 /// ::= 'x86_fastcallcc' 1519 /// ::= 'x86_thiscallcc' 1520 /// ::= 'x86_vectorcallcc' 1521 /// ::= 'arm_apcscc' 1522 /// ::= 'arm_aapcscc' 1523 /// ::= 'arm_aapcs_vfpcc' 1524 /// ::= 'msp430_intrcc' 1525 /// ::= 'ptx_kernel' 1526 /// ::= 'ptx_device' 1527 /// ::= 'spir_func' 1528 /// ::= 'spir_kernel' 1529 /// ::= 'x86_64_sysvcc' 1530 /// ::= 'x86_64_win64cc' 1531 /// ::= 'webkit_jscc' 1532 /// ::= 'anyregcc' 1533 /// ::= 'preserve_mostcc' 1534 /// ::= 'preserve_allcc' 1535 /// ::= 'ghccc' 1536 /// ::= 'hhvmcc' 1537 /// ::= 'hhvm_ccc' 1538 /// ::= 'cc' UINT 1539 /// 1540 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1541 switch (Lex.getKind()) { 1542 default: CC = CallingConv::C; return false; 1543 case lltok::kw_ccc: CC = CallingConv::C; break; 1544 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1545 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1546 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1547 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1548 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1549 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1550 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1551 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1552 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1553 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1554 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1555 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1556 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1557 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1558 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1559 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1560 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1561 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1562 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1563 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1564 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1565 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1566 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1567 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1568 case lltok::kw_cc: { 1569 Lex.Lex(); 1570 return ParseUInt32(CC); 1571 } 1572 } 1573 1574 Lex.Lex(); 1575 return false; 1576 } 1577 1578 /// ParseMetadataAttachment 1579 /// ::= !dbg !42 1580 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1581 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1582 1583 std::string Name = Lex.getStrVal(); 1584 Kind = M->getMDKindID(Name); 1585 Lex.Lex(); 1586 1587 return ParseMDNode(MD); 1588 } 1589 1590 /// ParseInstructionMetadata 1591 /// ::= !dbg !42 (',' !dbg !57)* 1592 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1593 do { 1594 if (Lex.getKind() != lltok::MetadataVar) 1595 return TokError("expected metadata after comma"); 1596 1597 unsigned MDK; 1598 MDNode *N; 1599 if (ParseMetadataAttachment(MDK, N)) 1600 return true; 1601 1602 Inst.setMetadata(MDK, N); 1603 if (MDK == LLVMContext::MD_tbaa) 1604 InstsWithTBAATag.push_back(&Inst); 1605 1606 // If this is the end of the list, we're done. 1607 } while (EatIfPresent(lltok::comma)); 1608 return false; 1609 } 1610 1611 /// ParseOptionalFunctionMetadata 1612 /// ::= (!dbg !57)* 1613 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1614 while (Lex.getKind() == lltok::MetadataVar) { 1615 unsigned MDK; 1616 MDNode *N; 1617 if (ParseMetadataAttachment(MDK, N)) 1618 return true; 1619 1620 F.setMetadata(MDK, N); 1621 } 1622 return false; 1623 } 1624 1625 /// ParseOptionalAlignment 1626 /// ::= /* empty */ 1627 /// ::= 'align' 4 1628 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1629 Alignment = 0; 1630 if (!EatIfPresent(lltok::kw_align)) 1631 return false; 1632 LocTy AlignLoc = Lex.getLoc(); 1633 if (ParseUInt32(Alignment)) return true; 1634 if (!isPowerOf2_32(Alignment)) 1635 return Error(AlignLoc, "alignment is not a power of two"); 1636 if (Alignment > Value::MaximumAlignment) 1637 return Error(AlignLoc, "huge alignments are not supported yet"); 1638 return false; 1639 } 1640 1641 /// ParseOptionalDerefAttrBytes 1642 /// ::= /* empty */ 1643 /// ::= AttrKind '(' 4 ')' 1644 /// 1645 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1646 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1647 uint64_t &Bytes) { 1648 assert((AttrKind == lltok::kw_dereferenceable || 1649 AttrKind == lltok::kw_dereferenceable_or_null) && 1650 "contract!"); 1651 1652 Bytes = 0; 1653 if (!EatIfPresent(AttrKind)) 1654 return false; 1655 LocTy ParenLoc = Lex.getLoc(); 1656 if (!EatIfPresent(lltok::lparen)) 1657 return Error(ParenLoc, "expected '('"); 1658 LocTy DerefLoc = Lex.getLoc(); 1659 if (ParseUInt64(Bytes)) return true; 1660 ParenLoc = Lex.getLoc(); 1661 if (!EatIfPresent(lltok::rparen)) 1662 return Error(ParenLoc, "expected ')'"); 1663 if (!Bytes) 1664 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1665 return false; 1666 } 1667 1668 /// ParseOptionalCommaAlign 1669 /// ::= 1670 /// ::= ',' align 4 1671 /// 1672 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1673 /// end. 1674 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1675 bool &AteExtraComma) { 1676 AteExtraComma = false; 1677 while (EatIfPresent(lltok::comma)) { 1678 // Metadata at the end is an early exit. 1679 if (Lex.getKind() == lltok::MetadataVar) { 1680 AteExtraComma = true; 1681 return false; 1682 } 1683 1684 if (Lex.getKind() != lltok::kw_align) 1685 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1686 1687 if (ParseOptionalAlignment(Alignment)) return true; 1688 } 1689 1690 return false; 1691 } 1692 1693 /// ParseScopeAndOrdering 1694 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1695 /// else: ::= 1696 /// 1697 /// This sets Scope and Ordering to the parsed values. 1698 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1699 AtomicOrdering &Ordering) { 1700 if (!isAtomic) 1701 return false; 1702 1703 Scope = CrossThread; 1704 if (EatIfPresent(lltok::kw_singlethread)) 1705 Scope = SingleThread; 1706 1707 return ParseOrdering(Ordering); 1708 } 1709 1710 /// ParseOrdering 1711 /// ::= AtomicOrdering 1712 /// 1713 /// This sets Ordering to the parsed value. 1714 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1715 switch (Lex.getKind()) { 1716 default: return TokError("Expected ordering on atomic instruction"); 1717 case lltok::kw_unordered: Ordering = Unordered; break; 1718 case lltok::kw_monotonic: Ordering = Monotonic; break; 1719 case lltok::kw_acquire: Ordering = Acquire; break; 1720 case lltok::kw_release: Ordering = Release; break; 1721 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1722 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1723 } 1724 Lex.Lex(); 1725 return false; 1726 } 1727 1728 /// ParseOptionalStackAlignment 1729 /// ::= /* empty */ 1730 /// ::= 'alignstack' '(' 4 ')' 1731 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1732 Alignment = 0; 1733 if (!EatIfPresent(lltok::kw_alignstack)) 1734 return false; 1735 LocTy ParenLoc = Lex.getLoc(); 1736 if (!EatIfPresent(lltok::lparen)) 1737 return Error(ParenLoc, "expected '('"); 1738 LocTy AlignLoc = Lex.getLoc(); 1739 if (ParseUInt32(Alignment)) return true; 1740 ParenLoc = Lex.getLoc(); 1741 if (!EatIfPresent(lltok::rparen)) 1742 return Error(ParenLoc, "expected ')'"); 1743 if (!isPowerOf2_32(Alignment)) 1744 return Error(AlignLoc, "stack alignment is not a power of two"); 1745 return false; 1746 } 1747 1748 /// ParseIndexList - This parses the index list for an insert/extractvalue 1749 /// instruction. This sets AteExtraComma in the case where we eat an extra 1750 /// comma at the end of the line and find that it is followed by metadata. 1751 /// Clients that don't allow metadata can call the version of this function that 1752 /// only takes one argument. 1753 /// 1754 /// ParseIndexList 1755 /// ::= (',' uint32)+ 1756 /// 1757 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1758 bool &AteExtraComma) { 1759 AteExtraComma = false; 1760 1761 if (Lex.getKind() != lltok::comma) 1762 return TokError("expected ',' as start of index list"); 1763 1764 while (EatIfPresent(lltok::comma)) { 1765 if (Lex.getKind() == lltok::MetadataVar) { 1766 if (Indices.empty()) return TokError("expected index"); 1767 AteExtraComma = true; 1768 return false; 1769 } 1770 unsigned Idx = 0; 1771 if (ParseUInt32(Idx)) return true; 1772 Indices.push_back(Idx); 1773 } 1774 1775 return false; 1776 } 1777 1778 //===----------------------------------------------------------------------===// 1779 // Type Parsing. 1780 //===----------------------------------------------------------------------===// 1781 1782 /// ParseType - Parse a type. 1783 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1784 SMLoc TypeLoc = Lex.getLoc(); 1785 switch (Lex.getKind()) { 1786 default: 1787 return TokError(Msg); 1788 case lltok::Type: 1789 // Type ::= 'float' | 'void' (etc) 1790 Result = Lex.getTyVal(); 1791 Lex.Lex(); 1792 break; 1793 case lltok::lbrace: 1794 // Type ::= StructType 1795 if (ParseAnonStructType(Result, false)) 1796 return true; 1797 break; 1798 case lltok::lsquare: 1799 // Type ::= '[' ... ']' 1800 Lex.Lex(); // eat the lsquare. 1801 if (ParseArrayVectorType(Result, false)) 1802 return true; 1803 break; 1804 case lltok::less: // Either vector or packed struct. 1805 // Type ::= '<' ... '>' 1806 Lex.Lex(); 1807 if (Lex.getKind() == lltok::lbrace) { 1808 if (ParseAnonStructType(Result, true) || 1809 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1810 return true; 1811 } else if (ParseArrayVectorType(Result, true)) 1812 return true; 1813 break; 1814 case lltok::LocalVar: { 1815 // Type ::= %foo 1816 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1817 1818 // If the type hasn't been defined yet, create a forward definition and 1819 // remember where that forward def'n was seen (in case it never is defined). 1820 if (!Entry.first) { 1821 Entry.first = StructType::create(Context, Lex.getStrVal()); 1822 Entry.second = Lex.getLoc(); 1823 } 1824 Result = Entry.first; 1825 Lex.Lex(); 1826 break; 1827 } 1828 1829 case lltok::LocalVarID: { 1830 // Type ::= %4 1831 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1832 1833 // If the type hasn't been defined yet, create a forward definition and 1834 // remember where that forward def'n was seen (in case it never is defined). 1835 if (!Entry.first) { 1836 Entry.first = StructType::create(Context); 1837 Entry.second = Lex.getLoc(); 1838 } 1839 Result = Entry.first; 1840 Lex.Lex(); 1841 break; 1842 } 1843 } 1844 1845 // Parse the type suffixes. 1846 while (1) { 1847 switch (Lex.getKind()) { 1848 // End of type. 1849 default: 1850 if (!AllowVoid && Result->isVoidTy()) 1851 return Error(TypeLoc, "void type only allowed for function results"); 1852 return false; 1853 1854 // Type ::= Type '*' 1855 case lltok::star: 1856 if (Result->isLabelTy()) 1857 return TokError("basic block pointers are invalid"); 1858 if (Result->isVoidTy()) 1859 return TokError("pointers to void are invalid - use i8* instead"); 1860 if (!PointerType::isValidElementType(Result)) 1861 return TokError("pointer to this type is invalid"); 1862 Result = PointerType::getUnqual(Result); 1863 Lex.Lex(); 1864 break; 1865 1866 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1867 case lltok::kw_addrspace: { 1868 if (Result->isLabelTy()) 1869 return TokError("basic block pointers are invalid"); 1870 if (Result->isVoidTy()) 1871 return TokError("pointers to void are invalid; use i8* instead"); 1872 if (!PointerType::isValidElementType(Result)) 1873 return TokError("pointer to this type is invalid"); 1874 unsigned AddrSpace; 1875 if (ParseOptionalAddrSpace(AddrSpace) || 1876 ParseToken(lltok::star, "expected '*' in address space")) 1877 return true; 1878 1879 Result = PointerType::get(Result, AddrSpace); 1880 break; 1881 } 1882 1883 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1884 case lltok::lparen: 1885 if (ParseFunctionType(Result)) 1886 return true; 1887 break; 1888 } 1889 } 1890 } 1891 1892 /// ParseParameterList 1893 /// ::= '(' ')' 1894 /// ::= '(' Arg (',' Arg)* ')' 1895 /// Arg 1896 /// ::= Type OptionalAttributes Value OptionalAttributes 1897 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1898 PerFunctionState &PFS, bool IsMustTailCall, 1899 bool InVarArgsFunc) { 1900 if (ParseToken(lltok::lparen, "expected '(' in call")) 1901 return true; 1902 1903 unsigned AttrIndex = 1; 1904 while (Lex.getKind() != lltok::rparen) { 1905 // If this isn't the first argument, we need a comma. 1906 if (!ArgList.empty() && 1907 ParseToken(lltok::comma, "expected ',' in argument list")) 1908 return true; 1909 1910 // Parse an ellipsis if this is a musttail call in a variadic function. 1911 if (Lex.getKind() == lltok::dotdotdot) { 1912 const char *Msg = "unexpected ellipsis in argument list for "; 1913 if (!IsMustTailCall) 1914 return TokError(Twine(Msg) + "non-musttail call"); 1915 if (!InVarArgsFunc) 1916 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 1917 Lex.Lex(); // Lex the '...', it is purely for readability. 1918 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1919 } 1920 1921 // Parse the argument. 1922 LocTy ArgLoc; 1923 Type *ArgTy = nullptr; 1924 AttrBuilder ArgAttrs; 1925 Value *V; 1926 if (ParseType(ArgTy, ArgLoc)) 1927 return true; 1928 1929 if (ArgTy->isMetadataTy()) { 1930 if (ParseMetadataAsValue(V, PFS)) 1931 return true; 1932 } else { 1933 // Otherwise, handle normal operands. 1934 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 1935 return true; 1936 } 1937 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 1938 AttrIndex++, 1939 ArgAttrs))); 1940 } 1941 1942 if (IsMustTailCall && InVarArgsFunc) 1943 return TokError("expected '...' at end of argument list for musttail call " 1944 "in varargs function"); 1945 1946 Lex.Lex(); // Lex the ')'. 1947 return false; 1948 } 1949 1950 /// ParseOptionalOperandBundles 1951 /// ::= /*empty*/ 1952 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 1953 /// 1954 /// OperandBundle 1955 /// ::= bundle-tag '(' ')' 1956 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 1957 /// 1958 /// bundle-tag ::= String Constant 1959 bool LLParser::ParseOptionalOperandBundles( 1960 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 1961 LocTy BeginLoc = Lex.getLoc(); 1962 if (!EatIfPresent(lltok::lsquare)) 1963 return false; 1964 1965 while (Lex.getKind() != lltok::rsquare) { 1966 // If this isn't the first operand bundle, we need a comma. 1967 if (!BundleList.empty() && 1968 ParseToken(lltok::comma, "expected ',' in input list")) 1969 return true; 1970 1971 std::string Tag; 1972 if (ParseStringConstant(Tag)) 1973 return true; 1974 1975 BundleList.emplace_back(); 1976 auto &OBI = BundleList.back(); 1977 1978 OBI.Tag = std::move(Tag); 1979 1980 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 1981 return true; 1982 1983 while (Lex.getKind() != lltok::rparen) { 1984 // If this isn't the first input, we need a comma. 1985 if (!OBI.Inputs.empty() && 1986 ParseToken(lltok::comma, "expected ',' in input list")) 1987 return true; 1988 1989 Type *Ty = nullptr; 1990 Value *Input = nullptr; 1991 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 1992 return true; 1993 OBI.Inputs.push_back(Input); 1994 } 1995 1996 Lex.Lex(); // Lex the ')'. 1997 } 1998 1999 if (BundleList.empty()) 2000 return Error(BeginLoc, "operand bundle set must not be empty"); 2001 2002 Lex.Lex(); // Lex the ']'. 2003 return false; 2004 } 2005 2006 /// ParseArgumentList - Parse the argument list for a function type or function 2007 /// prototype. 2008 /// ::= '(' ArgTypeListI ')' 2009 /// ArgTypeListI 2010 /// ::= /*empty*/ 2011 /// ::= '...' 2012 /// ::= ArgTypeList ',' '...' 2013 /// ::= ArgType (',' ArgType)* 2014 /// 2015 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2016 bool &isVarArg){ 2017 isVarArg = false; 2018 assert(Lex.getKind() == lltok::lparen); 2019 Lex.Lex(); // eat the (. 2020 2021 if (Lex.getKind() == lltok::rparen) { 2022 // empty 2023 } else if (Lex.getKind() == lltok::dotdotdot) { 2024 isVarArg = true; 2025 Lex.Lex(); 2026 } else { 2027 LocTy TypeLoc = Lex.getLoc(); 2028 Type *ArgTy = nullptr; 2029 AttrBuilder Attrs; 2030 std::string Name; 2031 2032 if (ParseType(ArgTy) || 2033 ParseOptionalParamAttrs(Attrs)) return true; 2034 2035 if (ArgTy->isVoidTy()) 2036 return Error(TypeLoc, "argument can not have void type"); 2037 2038 if (Lex.getKind() == lltok::LocalVar) { 2039 Name = Lex.getStrVal(); 2040 Lex.Lex(); 2041 } 2042 2043 if (!FunctionType::isValidArgumentType(ArgTy)) 2044 return Error(TypeLoc, "invalid type for function argument"); 2045 2046 unsigned AttrIndex = 1; 2047 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2048 AttrIndex++, Attrs), 2049 std::move(Name)); 2050 2051 while (EatIfPresent(lltok::comma)) { 2052 // Handle ... at end of arg list. 2053 if (EatIfPresent(lltok::dotdotdot)) { 2054 isVarArg = true; 2055 break; 2056 } 2057 2058 // Otherwise must be an argument type. 2059 TypeLoc = Lex.getLoc(); 2060 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2061 2062 if (ArgTy->isVoidTy()) 2063 return Error(TypeLoc, "argument can not have void type"); 2064 2065 if (Lex.getKind() == lltok::LocalVar) { 2066 Name = Lex.getStrVal(); 2067 Lex.Lex(); 2068 } else { 2069 Name = ""; 2070 } 2071 2072 if (!ArgTy->isFirstClassType()) 2073 return Error(TypeLoc, "invalid type for function argument"); 2074 2075 ArgList.emplace_back( 2076 TypeLoc, ArgTy, 2077 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2078 std::move(Name)); 2079 } 2080 } 2081 2082 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2083 } 2084 2085 /// ParseFunctionType 2086 /// ::= Type ArgumentList OptionalAttrs 2087 bool LLParser::ParseFunctionType(Type *&Result) { 2088 assert(Lex.getKind() == lltok::lparen); 2089 2090 if (!FunctionType::isValidReturnType(Result)) 2091 return TokError("invalid function return type"); 2092 2093 SmallVector<ArgInfo, 8> ArgList; 2094 bool isVarArg; 2095 if (ParseArgumentList(ArgList, isVarArg)) 2096 return true; 2097 2098 // Reject names on the arguments lists. 2099 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2100 if (!ArgList[i].Name.empty()) 2101 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2102 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2103 return Error(ArgList[i].Loc, 2104 "argument attributes invalid in function type"); 2105 } 2106 2107 SmallVector<Type*, 16> ArgListTy; 2108 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2109 ArgListTy.push_back(ArgList[i].Ty); 2110 2111 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2112 return false; 2113 } 2114 2115 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2116 /// other structs. 2117 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2118 SmallVector<Type*, 8> Elts; 2119 if (ParseStructBody(Elts)) return true; 2120 2121 Result = StructType::get(Context, Elts, Packed); 2122 return false; 2123 } 2124 2125 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2126 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2127 std::pair<Type*, LocTy> &Entry, 2128 Type *&ResultTy) { 2129 // If the type was already defined, diagnose the redefinition. 2130 if (Entry.first && !Entry.second.isValid()) 2131 return Error(TypeLoc, "redefinition of type"); 2132 2133 // If we have opaque, just return without filling in the definition for the 2134 // struct. This counts as a definition as far as the .ll file goes. 2135 if (EatIfPresent(lltok::kw_opaque)) { 2136 // This type is being defined, so clear the location to indicate this. 2137 Entry.second = SMLoc(); 2138 2139 // If this type number has never been uttered, create it. 2140 if (!Entry.first) 2141 Entry.first = StructType::create(Context, Name); 2142 ResultTy = Entry.first; 2143 return false; 2144 } 2145 2146 // If the type starts with '<', then it is either a packed struct or a vector. 2147 bool isPacked = EatIfPresent(lltok::less); 2148 2149 // If we don't have a struct, then we have a random type alias, which we 2150 // accept for compatibility with old files. These types are not allowed to be 2151 // forward referenced and not allowed to be recursive. 2152 if (Lex.getKind() != lltok::lbrace) { 2153 if (Entry.first) 2154 return Error(TypeLoc, "forward references to non-struct type"); 2155 2156 ResultTy = nullptr; 2157 if (isPacked) 2158 return ParseArrayVectorType(ResultTy, true); 2159 return ParseType(ResultTy); 2160 } 2161 2162 // This type is being defined, so clear the location to indicate this. 2163 Entry.second = SMLoc(); 2164 2165 // If this type number has never been uttered, create it. 2166 if (!Entry.first) 2167 Entry.first = StructType::create(Context, Name); 2168 2169 StructType *STy = cast<StructType>(Entry.first); 2170 2171 SmallVector<Type*, 8> Body; 2172 if (ParseStructBody(Body) || 2173 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2174 return true; 2175 2176 STy->setBody(Body, isPacked); 2177 ResultTy = STy; 2178 return false; 2179 } 2180 2181 2182 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2183 /// StructType 2184 /// ::= '{' '}' 2185 /// ::= '{' Type (',' Type)* '}' 2186 /// ::= '<' '{' '}' '>' 2187 /// ::= '<' '{' Type (',' Type)* '}' '>' 2188 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2189 assert(Lex.getKind() == lltok::lbrace); 2190 Lex.Lex(); // Consume the '{' 2191 2192 // Handle the empty struct. 2193 if (EatIfPresent(lltok::rbrace)) 2194 return false; 2195 2196 LocTy EltTyLoc = Lex.getLoc(); 2197 Type *Ty = nullptr; 2198 if (ParseType(Ty)) return true; 2199 Body.push_back(Ty); 2200 2201 if (!StructType::isValidElementType(Ty)) 2202 return Error(EltTyLoc, "invalid element type for struct"); 2203 2204 while (EatIfPresent(lltok::comma)) { 2205 EltTyLoc = Lex.getLoc(); 2206 if (ParseType(Ty)) return true; 2207 2208 if (!StructType::isValidElementType(Ty)) 2209 return Error(EltTyLoc, "invalid element type for struct"); 2210 2211 Body.push_back(Ty); 2212 } 2213 2214 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2215 } 2216 2217 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2218 /// token has already been consumed. 2219 /// Type 2220 /// ::= '[' APSINTVAL 'x' Types ']' 2221 /// ::= '<' APSINTVAL 'x' Types '>' 2222 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2223 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2224 Lex.getAPSIntVal().getBitWidth() > 64) 2225 return TokError("expected number in address space"); 2226 2227 LocTy SizeLoc = Lex.getLoc(); 2228 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2229 Lex.Lex(); 2230 2231 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2232 return true; 2233 2234 LocTy TypeLoc = Lex.getLoc(); 2235 Type *EltTy = nullptr; 2236 if (ParseType(EltTy)) return true; 2237 2238 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2239 "expected end of sequential type")) 2240 return true; 2241 2242 if (isVector) { 2243 if (Size == 0) 2244 return Error(SizeLoc, "zero element vector is illegal"); 2245 if ((unsigned)Size != Size) 2246 return Error(SizeLoc, "size too large for vector"); 2247 if (!VectorType::isValidElementType(EltTy)) 2248 return Error(TypeLoc, "invalid vector element type"); 2249 Result = VectorType::get(EltTy, unsigned(Size)); 2250 } else { 2251 if (!ArrayType::isValidElementType(EltTy)) 2252 return Error(TypeLoc, "invalid array element type"); 2253 Result = ArrayType::get(EltTy, Size); 2254 } 2255 return false; 2256 } 2257 2258 //===----------------------------------------------------------------------===// 2259 // Function Semantic Analysis. 2260 //===----------------------------------------------------------------------===// 2261 2262 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2263 int functionNumber) 2264 : P(p), F(f), FunctionNumber(functionNumber) { 2265 2266 // Insert unnamed arguments into the NumberedVals list. 2267 for (Argument &A : F.args()) 2268 if (!A.hasName()) 2269 NumberedVals.push_back(&A); 2270 } 2271 2272 LLParser::PerFunctionState::~PerFunctionState() { 2273 // If there were any forward referenced non-basicblock values, delete them. 2274 2275 for (const auto &P : ForwardRefVals) { 2276 if (isa<BasicBlock>(P.second.first)) 2277 continue; 2278 P.second.first->replaceAllUsesWith( 2279 UndefValue::get(P.second.first->getType())); 2280 delete P.second.first; 2281 } 2282 2283 for (const auto &P : ForwardRefValIDs) { 2284 if (isa<BasicBlock>(P.second.first)) 2285 continue; 2286 P.second.first->replaceAllUsesWith( 2287 UndefValue::get(P.second.first->getType())); 2288 delete P.second.first; 2289 } 2290 } 2291 2292 bool LLParser::PerFunctionState::FinishFunction() { 2293 if (!ForwardRefVals.empty()) 2294 return P.Error(ForwardRefVals.begin()->second.second, 2295 "use of undefined value '%" + ForwardRefVals.begin()->first + 2296 "'"); 2297 if (!ForwardRefValIDs.empty()) 2298 return P.Error(ForwardRefValIDs.begin()->second.second, 2299 "use of undefined value '%" + 2300 Twine(ForwardRefValIDs.begin()->first) + "'"); 2301 return false; 2302 } 2303 2304 2305 /// GetVal - Get a value with the specified name or ID, creating a 2306 /// forward reference record if needed. This can return null if the value 2307 /// exists but does not have the right type. 2308 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2309 LocTy Loc, OperatorConstraint OC) { 2310 // Look this name up in the normal function symbol table. 2311 Value *Val = F.getValueSymbolTable().lookup(Name); 2312 2313 // If this is a forward reference for the value, see if we already created a 2314 // forward ref record. 2315 if (!Val) { 2316 auto I = ForwardRefVals.find(Name); 2317 if (I != ForwardRefVals.end()) 2318 Val = I->second.first; 2319 } 2320 2321 // If we have the value in the symbol table or fwd-ref table, return it. 2322 if (Val) { 2323 // Check operator constraints. 2324 switch (OC) { 2325 case OC_None: 2326 // no constraint 2327 break; 2328 case OC_CatchPad: 2329 if (!isa<CatchPadInst>(Val)) { 2330 P.Error(Loc, "'%" + Name + "' is not a catchpad"); 2331 return nullptr; 2332 } 2333 break; 2334 case OC_CleanupPad: 2335 if (!isa<CleanupPadInst>(Val)) { 2336 P.Error(Loc, "'%" + Name + "' is not a cleanuppad"); 2337 return nullptr; 2338 } 2339 break; 2340 } 2341 if (Val->getType() == Ty) return Val; 2342 if (Ty->isLabelTy()) 2343 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2344 else 2345 P.Error(Loc, "'%" + Name + "' defined with type '" + 2346 getTypeString(Val->getType()) + "'"); 2347 return nullptr; 2348 } 2349 2350 // Don't make placeholders with invalid type. 2351 if (!Ty->isFirstClassType()) { 2352 P.Error(Loc, "invalid use of a non-first-class type"); 2353 return nullptr; 2354 } 2355 2356 // Otherwise, create a new forward reference for this value and remember it. 2357 Value *FwdVal; 2358 if (Ty->isLabelTy()) { 2359 assert(!OC); 2360 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2361 } else if (!OC) { 2362 FwdVal = new Argument(Ty, Name); 2363 } else { 2364 switch (OC) { 2365 case OC_CatchPad: 2366 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}, 2367 Name); 2368 break; 2369 case OC_CleanupPad: 2370 FwdVal = CleanupPadInst::Create(F.getContext(), {}, Name); 2371 break; 2372 default: 2373 llvm_unreachable("unexpected constraint"); 2374 } 2375 } 2376 2377 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2378 return FwdVal; 2379 } 2380 2381 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2382 OperatorConstraint OC) { 2383 // Look this name up in the normal function symbol table. 2384 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2385 2386 // If this is a forward reference for the value, see if we already created a 2387 // forward ref record. 2388 if (!Val) { 2389 auto I = ForwardRefValIDs.find(ID); 2390 if (I != ForwardRefValIDs.end()) 2391 Val = I->second.first; 2392 } 2393 2394 // If we have the value in the symbol table or fwd-ref table, return it. 2395 if (Val) { 2396 // Check operator constraint. 2397 switch (OC) { 2398 case OC_None: 2399 // no constraint 2400 break; 2401 case OC_CatchPad: 2402 if (!isa<CatchPadInst>(Val)) { 2403 P.Error(Loc, "'%" + Twine(ID) + "' is not a catchpad"); 2404 return nullptr; 2405 } 2406 break; 2407 case OC_CleanupPad: 2408 if (!isa<CleanupPadInst>(Val)) { 2409 P.Error(Loc, "'%" + Twine(ID) + "' is not a cleanuppad"); 2410 return nullptr; 2411 } 2412 break; 2413 } 2414 if (Val->getType() == Ty) return Val; 2415 if (Ty->isLabelTy()) 2416 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2417 else 2418 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2419 getTypeString(Val->getType()) + "'"); 2420 return nullptr; 2421 } 2422 2423 if (!Ty->isFirstClassType()) { 2424 P.Error(Loc, "invalid use of a non-first-class type"); 2425 return nullptr; 2426 } 2427 2428 // Otherwise, create a new forward reference for this value and remember it. 2429 Value *FwdVal; 2430 if (Ty->isLabelTy()) { 2431 assert(!OC); 2432 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2433 } else if (!OC) { 2434 FwdVal = new Argument(Ty); 2435 } else { 2436 switch (OC) { 2437 case OC_CatchPad: 2438 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}); 2439 break; 2440 case OC_CleanupPad: 2441 FwdVal = CleanupPadInst::Create(F.getContext(), {}); 2442 break; 2443 default: 2444 llvm_unreachable("unexpected constraint"); 2445 } 2446 } 2447 2448 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2449 return FwdVal; 2450 } 2451 2452 /// SetInstName - After an instruction is parsed and inserted into its 2453 /// basic block, this installs its name. 2454 bool LLParser::PerFunctionState::SetInstName(int NameID, 2455 const std::string &NameStr, 2456 LocTy NameLoc, Instruction *Inst) { 2457 // If this instruction has void type, it cannot have a name or ID specified. 2458 if (Inst->getType()->isVoidTy()) { 2459 if (NameID != -1 || !NameStr.empty()) 2460 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2461 return false; 2462 } 2463 2464 // If this was a numbered instruction, verify that the instruction is the 2465 // expected value and resolve any forward references. 2466 if (NameStr.empty()) { 2467 // If neither a name nor an ID was specified, just use the next ID. 2468 if (NameID == -1) 2469 NameID = NumberedVals.size(); 2470 2471 if (unsigned(NameID) != NumberedVals.size()) 2472 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2473 Twine(NumberedVals.size()) + "'"); 2474 2475 auto FI = ForwardRefValIDs.find(NameID); 2476 if (FI != ForwardRefValIDs.end()) { 2477 Value *Sentinel = FI->second.first; 2478 if (Sentinel->getType() != Inst->getType()) 2479 return P.Error(NameLoc, "instruction forward referenced with type '" + 2480 getTypeString(FI->second.first->getType()) + "'"); 2481 // Check operator constraints. We only put cleanuppads or catchpads in 2482 // the forward value map if the value is constrained to match. 2483 if (isa<CatchPadInst>(Sentinel)) { 2484 if (!isa<CatchPadInst>(Inst)) 2485 return P.Error(FI->second.second, 2486 "'%" + Twine(NameID) + "' is not a catchpad"); 2487 } else if (isa<CleanupPadInst>(Sentinel)) { 2488 if (!isa<CleanupPadInst>(Inst)) 2489 return P.Error(FI->second.second, 2490 "'%" + Twine(NameID) + "' is not a cleanuppad"); 2491 } 2492 2493 Sentinel->replaceAllUsesWith(Inst); 2494 delete Sentinel; 2495 ForwardRefValIDs.erase(FI); 2496 } 2497 2498 NumberedVals.push_back(Inst); 2499 return false; 2500 } 2501 2502 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2503 auto FI = ForwardRefVals.find(NameStr); 2504 if (FI != ForwardRefVals.end()) { 2505 Value *Sentinel = FI->second.first; 2506 if (Sentinel->getType() != Inst->getType()) 2507 return P.Error(NameLoc, "instruction forward referenced with type '" + 2508 getTypeString(FI->second.first->getType()) + "'"); 2509 // Check operator constraints. We only put cleanuppads or catchpads in 2510 // the forward value map if the value is constrained to match. 2511 if (isa<CatchPadInst>(Sentinel)) { 2512 if (!isa<CatchPadInst>(Inst)) 2513 return P.Error(FI->second.second, 2514 "'%" + NameStr + "' is not a catchpad"); 2515 } else if (isa<CleanupPadInst>(Sentinel)) { 2516 if (!isa<CleanupPadInst>(Inst)) 2517 return P.Error(FI->second.second, 2518 "'%" + NameStr + "' is not a cleanuppad"); 2519 } 2520 2521 Sentinel->replaceAllUsesWith(Inst); 2522 delete Sentinel; 2523 ForwardRefVals.erase(FI); 2524 } 2525 2526 // Set the name on the instruction. 2527 Inst->setName(NameStr); 2528 2529 if (Inst->getName() != NameStr) 2530 return P.Error(NameLoc, "multiple definition of local value named '" + 2531 NameStr + "'"); 2532 return false; 2533 } 2534 2535 /// GetBB - Get a basic block with the specified name or ID, creating a 2536 /// forward reference record if needed. 2537 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2538 LocTy Loc) { 2539 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2540 Type::getLabelTy(F.getContext()), Loc)); 2541 } 2542 2543 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2544 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2545 Type::getLabelTy(F.getContext()), Loc)); 2546 } 2547 2548 /// DefineBB - Define the specified basic block, which is either named or 2549 /// unnamed. If there is an error, this returns null otherwise it returns 2550 /// the block being defined. 2551 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2552 LocTy Loc) { 2553 BasicBlock *BB; 2554 if (Name.empty()) 2555 BB = GetBB(NumberedVals.size(), Loc); 2556 else 2557 BB = GetBB(Name, Loc); 2558 if (!BB) return nullptr; // Already diagnosed error. 2559 2560 // Move the block to the end of the function. Forward ref'd blocks are 2561 // inserted wherever they happen to be referenced. 2562 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2563 2564 // Remove the block from forward ref sets. 2565 if (Name.empty()) { 2566 ForwardRefValIDs.erase(NumberedVals.size()); 2567 NumberedVals.push_back(BB); 2568 } else { 2569 // BB forward references are already in the function symbol table. 2570 ForwardRefVals.erase(Name); 2571 } 2572 2573 return BB; 2574 } 2575 2576 //===----------------------------------------------------------------------===// 2577 // Constants. 2578 //===----------------------------------------------------------------------===// 2579 2580 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2581 /// type implied. For example, if we parse "4" we don't know what integer type 2582 /// it has. The value will later be combined with its type and checked for 2583 /// sanity. PFS is used to convert function-local operands of metadata (since 2584 /// metadata operands are not just parsed here but also converted to values). 2585 /// PFS can be null when we are not parsing metadata values inside a function. 2586 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2587 ID.Loc = Lex.getLoc(); 2588 switch (Lex.getKind()) { 2589 default: return TokError("expected value token"); 2590 case lltok::GlobalID: // @42 2591 ID.UIntVal = Lex.getUIntVal(); 2592 ID.Kind = ValID::t_GlobalID; 2593 break; 2594 case lltok::GlobalVar: // @foo 2595 ID.StrVal = Lex.getStrVal(); 2596 ID.Kind = ValID::t_GlobalName; 2597 break; 2598 case lltok::LocalVarID: // %42 2599 ID.UIntVal = Lex.getUIntVal(); 2600 ID.Kind = ValID::t_LocalID; 2601 break; 2602 case lltok::LocalVar: // %foo 2603 ID.StrVal = Lex.getStrVal(); 2604 ID.Kind = ValID::t_LocalName; 2605 break; 2606 case lltok::APSInt: 2607 ID.APSIntVal = Lex.getAPSIntVal(); 2608 ID.Kind = ValID::t_APSInt; 2609 break; 2610 case lltok::APFloat: 2611 ID.APFloatVal = Lex.getAPFloatVal(); 2612 ID.Kind = ValID::t_APFloat; 2613 break; 2614 case lltok::kw_true: 2615 ID.ConstantVal = ConstantInt::getTrue(Context); 2616 ID.Kind = ValID::t_Constant; 2617 break; 2618 case lltok::kw_false: 2619 ID.ConstantVal = ConstantInt::getFalse(Context); 2620 ID.Kind = ValID::t_Constant; 2621 break; 2622 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2623 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2624 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2625 2626 case lltok::lbrace: { 2627 // ValID ::= '{' ConstVector '}' 2628 Lex.Lex(); 2629 SmallVector<Constant*, 16> Elts; 2630 if (ParseGlobalValueVector(Elts) || 2631 ParseToken(lltok::rbrace, "expected end of struct constant")) 2632 return true; 2633 2634 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2635 ID.UIntVal = Elts.size(); 2636 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2637 Elts.size() * sizeof(Elts[0])); 2638 ID.Kind = ValID::t_ConstantStruct; 2639 return false; 2640 } 2641 case lltok::less: { 2642 // ValID ::= '<' ConstVector '>' --> Vector. 2643 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2644 Lex.Lex(); 2645 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2646 2647 SmallVector<Constant*, 16> Elts; 2648 LocTy FirstEltLoc = Lex.getLoc(); 2649 if (ParseGlobalValueVector(Elts) || 2650 (isPackedStruct && 2651 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2652 ParseToken(lltok::greater, "expected end of constant")) 2653 return true; 2654 2655 if (isPackedStruct) { 2656 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2657 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2658 Elts.size() * sizeof(Elts[0])); 2659 ID.UIntVal = Elts.size(); 2660 ID.Kind = ValID::t_PackedConstantStruct; 2661 return false; 2662 } 2663 2664 if (Elts.empty()) 2665 return Error(ID.Loc, "constant vector must not be empty"); 2666 2667 if (!Elts[0]->getType()->isIntegerTy() && 2668 !Elts[0]->getType()->isFloatingPointTy() && 2669 !Elts[0]->getType()->isPointerTy()) 2670 return Error(FirstEltLoc, 2671 "vector elements must have integer, pointer or floating point type"); 2672 2673 // Verify that all the vector elements have the same type. 2674 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2675 if (Elts[i]->getType() != Elts[0]->getType()) 2676 return Error(FirstEltLoc, 2677 "vector element #" + Twine(i) + 2678 " is not of type '" + getTypeString(Elts[0]->getType())); 2679 2680 ID.ConstantVal = ConstantVector::get(Elts); 2681 ID.Kind = ValID::t_Constant; 2682 return false; 2683 } 2684 case lltok::lsquare: { // Array Constant 2685 Lex.Lex(); 2686 SmallVector<Constant*, 16> Elts; 2687 LocTy FirstEltLoc = Lex.getLoc(); 2688 if (ParseGlobalValueVector(Elts) || 2689 ParseToken(lltok::rsquare, "expected end of array constant")) 2690 return true; 2691 2692 // Handle empty element. 2693 if (Elts.empty()) { 2694 // Use undef instead of an array because it's inconvenient to determine 2695 // the element type at this point, there being no elements to examine. 2696 ID.Kind = ValID::t_EmptyArray; 2697 return false; 2698 } 2699 2700 if (!Elts[0]->getType()->isFirstClassType()) 2701 return Error(FirstEltLoc, "invalid array element type: " + 2702 getTypeString(Elts[0]->getType())); 2703 2704 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2705 2706 // Verify all elements are correct type! 2707 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2708 if (Elts[i]->getType() != Elts[0]->getType()) 2709 return Error(FirstEltLoc, 2710 "array element #" + Twine(i) + 2711 " is not of type '" + getTypeString(Elts[0]->getType())); 2712 } 2713 2714 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2715 ID.Kind = ValID::t_Constant; 2716 return false; 2717 } 2718 case lltok::kw_c: // c "foo" 2719 Lex.Lex(); 2720 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2721 false); 2722 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2723 ID.Kind = ValID::t_Constant; 2724 return false; 2725 2726 case lltok::kw_asm: { 2727 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2728 // STRINGCONSTANT 2729 bool HasSideEffect, AlignStack, AsmDialect; 2730 Lex.Lex(); 2731 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2732 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2733 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2734 ParseStringConstant(ID.StrVal) || 2735 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2736 ParseToken(lltok::StringConstant, "expected constraint string")) 2737 return true; 2738 ID.StrVal2 = Lex.getStrVal(); 2739 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2740 (unsigned(AsmDialect)<<2); 2741 ID.Kind = ValID::t_InlineAsm; 2742 return false; 2743 } 2744 2745 case lltok::kw_blockaddress: { 2746 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2747 Lex.Lex(); 2748 2749 ValID Fn, Label; 2750 2751 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2752 ParseValID(Fn) || 2753 ParseToken(lltok::comma, "expected comma in block address expression")|| 2754 ParseValID(Label) || 2755 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2756 return true; 2757 2758 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2759 return Error(Fn.Loc, "expected function name in blockaddress"); 2760 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2761 return Error(Label.Loc, "expected basic block name in blockaddress"); 2762 2763 // Try to find the function (but skip it if it's forward-referenced). 2764 GlobalValue *GV = nullptr; 2765 if (Fn.Kind == ValID::t_GlobalID) { 2766 if (Fn.UIntVal < NumberedVals.size()) 2767 GV = NumberedVals[Fn.UIntVal]; 2768 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2769 GV = M->getNamedValue(Fn.StrVal); 2770 } 2771 Function *F = nullptr; 2772 if (GV) { 2773 // Confirm that it's actually a function with a definition. 2774 if (!isa<Function>(GV)) 2775 return Error(Fn.Loc, "expected function name in blockaddress"); 2776 F = cast<Function>(GV); 2777 if (F->isDeclaration()) 2778 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2779 } 2780 2781 if (!F) { 2782 // Make a global variable as a placeholder for this reference. 2783 GlobalValue *&FwdRef = 2784 ForwardRefBlockAddresses.insert(std::make_pair( 2785 std::move(Fn), 2786 std::map<ValID, GlobalValue *>())) 2787 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2788 .first->second; 2789 if (!FwdRef) 2790 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2791 GlobalValue::InternalLinkage, nullptr, ""); 2792 ID.ConstantVal = FwdRef; 2793 ID.Kind = ValID::t_Constant; 2794 return false; 2795 } 2796 2797 // We found the function; now find the basic block. Don't use PFS, since we 2798 // might be inside a constant expression. 2799 BasicBlock *BB; 2800 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2801 if (Label.Kind == ValID::t_LocalID) 2802 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2803 else 2804 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2805 if (!BB) 2806 return Error(Label.Loc, "referenced value is not a basic block"); 2807 } else { 2808 if (Label.Kind == ValID::t_LocalID) 2809 return Error(Label.Loc, "cannot take address of numeric label after " 2810 "the function is defined"); 2811 BB = dyn_cast_or_null<BasicBlock>( 2812 F->getValueSymbolTable().lookup(Label.StrVal)); 2813 if (!BB) 2814 return Error(Label.Loc, "referenced value is not a basic block"); 2815 } 2816 2817 ID.ConstantVal = BlockAddress::get(F, BB); 2818 ID.Kind = ValID::t_Constant; 2819 return false; 2820 } 2821 2822 case lltok::kw_trunc: 2823 case lltok::kw_zext: 2824 case lltok::kw_sext: 2825 case lltok::kw_fptrunc: 2826 case lltok::kw_fpext: 2827 case lltok::kw_bitcast: 2828 case lltok::kw_addrspacecast: 2829 case lltok::kw_uitofp: 2830 case lltok::kw_sitofp: 2831 case lltok::kw_fptoui: 2832 case lltok::kw_fptosi: 2833 case lltok::kw_inttoptr: 2834 case lltok::kw_ptrtoint: { 2835 unsigned Opc = Lex.getUIntVal(); 2836 Type *DestTy = nullptr; 2837 Constant *SrcVal; 2838 Lex.Lex(); 2839 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2840 ParseGlobalTypeAndValue(SrcVal) || 2841 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2842 ParseType(DestTy) || 2843 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2844 return true; 2845 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2846 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2847 getTypeString(SrcVal->getType()) + "' to '" + 2848 getTypeString(DestTy) + "'"); 2849 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2850 SrcVal, DestTy); 2851 ID.Kind = ValID::t_Constant; 2852 return false; 2853 } 2854 case lltok::kw_extractvalue: { 2855 Lex.Lex(); 2856 Constant *Val; 2857 SmallVector<unsigned, 4> Indices; 2858 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2859 ParseGlobalTypeAndValue(Val) || 2860 ParseIndexList(Indices) || 2861 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2862 return true; 2863 2864 if (!Val->getType()->isAggregateType()) 2865 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2866 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2867 return Error(ID.Loc, "invalid indices for extractvalue"); 2868 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2869 ID.Kind = ValID::t_Constant; 2870 return false; 2871 } 2872 case lltok::kw_insertvalue: { 2873 Lex.Lex(); 2874 Constant *Val0, *Val1; 2875 SmallVector<unsigned, 4> Indices; 2876 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2877 ParseGlobalTypeAndValue(Val0) || 2878 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2879 ParseGlobalTypeAndValue(Val1) || 2880 ParseIndexList(Indices) || 2881 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2882 return true; 2883 if (!Val0->getType()->isAggregateType()) 2884 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2885 Type *IndexedType = 2886 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2887 if (!IndexedType) 2888 return Error(ID.Loc, "invalid indices for insertvalue"); 2889 if (IndexedType != Val1->getType()) 2890 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2891 getTypeString(Val1->getType()) + 2892 "' instead of '" + getTypeString(IndexedType) + 2893 "'"); 2894 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2895 ID.Kind = ValID::t_Constant; 2896 return false; 2897 } 2898 case lltok::kw_icmp: 2899 case lltok::kw_fcmp: { 2900 unsigned PredVal, Opc = Lex.getUIntVal(); 2901 Constant *Val0, *Val1; 2902 Lex.Lex(); 2903 if (ParseCmpPredicate(PredVal, Opc) || 2904 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2905 ParseGlobalTypeAndValue(Val0) || 2906 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2907 ParseGlobalTypeAndValue(Val1) || 2908 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2909 return true; 2910 2911 if (Val0->getType() != Val1->getType()) 2912 return Error(ID.Loc, "compare operands must have the same type"); 2913 2914 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2915 2916 if (Opc == Instruction::FCmp) { 2917 if (!Val0->getType()->isFPOrFPVectorTy()) 2918 return Error(ID.Loc, "fcmp requires floating point operands"); 2919 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2920 } else { 2921 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2922 if (!Val0->getType()->isIntOrIntVectorTy() && 2923 !Val0->getType()->getScalarType()->isPointerTy()) 2924 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2925 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2926 } 2927 ID.Kind = ValID::t_Constant; 2928 return false; 2929 } 2930 2931 // Binary Operators. 2932 case lltok::kw_add: 2933 case lltok::kw_fadd: 2934 case lltok::kw_sub: 2935 case lltok::kw_fsub: 2936 case lltok::kw_mul: 2937 case lltok::kw_fmul: 2938 case lltok::kw_udiv: 2939 case lltok::kw_sdiv: 2940 case lltok::kw_fdiv: 2941 case lltok::kw_urem: 2942 case lltok::kw_srem: 2943 case lltok::kw_frem: 2944 case lltok::kw_shl: 2945 case lltok::kw_lshr: 2946 case lltok::kw_ashr: { 2947 bool NUW = false; 2948 bool NSW = false; 2949 bool Exact = false; 2950 unsigned Opc = Lex.getUIntVal(); 2951 Constant *Val0, *Val1; 2952 Lex.Lex(); 2953 LocTy ModifierLoc = Lex.getLoc(); 2954 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2955 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2956 if (EatIfPresent(lltok::kw_nuw)) 2957 NUW = true; 2958 if (EatIfPresent(lltok::kw_nsw)) { 2959 NSW = true; 2960 if (EatIfPresent(lltok::kw_nuw)) 2961 NUW = true; 2962 } 2963 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2964 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2965 if (EatIfPresent(lltok::kw_exact)) 2966 Exact = true; 2967 } 2968 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2969 ParseGlobalTypeAndValue(Val0) || 2970 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2971 ParseGlobalTypeAndValue(Val1) || 2972 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2973 return true; 2974 if (Val0->getType() != Val1->getType()) 2975 return Error(ID.Loc, "operands of constexpr must have same type"); 2976 if (!Val0->getType()->isIntOrIntVectorTy()) { 2977 if (NUW) 2978 return Error(ModifierLoc, "nuw only applies to integer operations"); 2979 if (NSW) 2980 return Error(ModifierLoc, "nsw only applies to integer operations"); 2981 } 2982 // Check that the type is valid for the operator. 2983 switch (Opc) { 2984 case Instruction::Add: 2985 case Instruction::Sub: 2986 case Instruction::Mul: 2987 case Instruction::UDiv: 2988 case Instruction::SDiv: 2989 case Instruction::URem: 2990 case Instruction::SRem: 2991 case Instruction::Shl: 2992 case Instruction::AShr: 2993 case Instruction::LShr: 2994 if (!Val0->getType()->isIntOrIntVectorTy()) 2995 return Error(ID.Loc, "constexpr requires integer operands"); 2996 break; 2997 case Instruction::FAdd: 2998 case Instruction::FSub: 2999 case Instruction::FMul: 3000 case Instruction::FDiv: 3001 case Instruction::FRem: 3002 if (!Val0->getType()->isFPOrFPVectorTy()) 3003 return Error(ID.Loc, "constexpr requires fp operands"); 3004 break; 3005 default: llvm_unreachable("Unknown binary operator!"); 3006 } 3007 unsigned Flags = 0; 3008 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3009 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3010 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3011 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3012 ID.ConstantVal = C; 3013 ID.Kind = ValID::t_Constant; 3014 return false; 3015 } 3016 3017 // Logical Operations 3018 case lltok::kw_and: 3019 case lltok::kw_or: 3020 case lltok::kw_xor: { 3021 unsigned Opc = Lex.getUIntVal(); 3022 Constant *Val0, *Val1; 3023 Lex.Lex(); 3024 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3025 ParseGlobalTypeAndValue(Val0) || 3026 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3027 ParseGlobalTypeAndValue(Val1) || 3028 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3029 return true; 3030 if (Val0->getType() != Val1->getType()) 3031 return Error(ID.Loc, "operands of constexpr must have same type"); 3032 if (!Val0->getType()->isIntOrIntVectorTy()) 3033 return Error(ID.Loc, 3034 "constexpr requires integer or integer vector operands"); 3035 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3036 ID.Kind = ValID::t_Constant; 3037 return false; 3038 } 3039 3040 case lltok::kw_getelementptr: 3041 case lltok::kw_shufflevector: 3042 case lltok::kw_insertelement: 3043 case lltok::kw_extractelement: 3044 case lltok::kw_select: { 3045 unsigned Opc = Lex.getUIntVal(); 3046 SmallVector<Constant*, 16> Elts; 3047 bool InBounds = false; 3048 Type *Ty; 3049 Lex.Lex(); 3050 3051 if (Opc == Instruction::GetElementPtr) 3052 InBounds = EatIfPresent(lltok::kw_inbounds); 3053 3054 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3055 return true; 3056 3057 LocTy ExplicitTypeLoc = Lex.getLoc(); 3058 if (Opc == Instruction::GetElementPtr) { 3059 if (ParseType(Ty) || 3060 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3061 return true; 3062 } 3063 3064 if (ParseGlobalValueVector(Elts) || 3065 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3066 return true; 3067 3068 if (Opc == Instruction::GetElementPtr) { 3069 if (Elts.size() == 0 || 3070 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3071 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3072 3073 Type *BaseType = Elts[0]->getType(); 3074 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3075 if (Ty != BasePointerType->getElementType()) 3076 return Error( 3077 ExplicitTypeLoc, 3078 "explicit pointee type doesn't match operand's pointee type"); 3079 3080 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3081 for (Constant *Val : Indices) { 3082 Type *ValTy = Val->getType(); 3083 if (!ValTy->getScalarType()->isIntegerTy()) 3084 return Error(ID.Loc, "getelementptr index must be an integer"); 3085 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3086 return Error(ID.Loc, "getelementptr index type missmatch"); 3087 if (ValTy->isVectorTy()) { 3088 unsigned ValNumEl = ValTy->getVectorNumElements(); 3089 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3090 if (ValNumEl != PtrNumEl) 3091 return Error( 3092 ID.Loc, 3093 "getelementptr vector index has a wrong number of elements"); 3094 } 3095 } 3096 3097 SmallPtrSet<Type*, 4> Visited; 3098 if (!Indices.empty() && !Ty->isSized(&Visited)) 3099 return Error(ID.Loc, "base element of getelementptr must be sized"); 3100 3101 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3102 return Error(ID.Loc, "invalid getelementptr indices"); 3103 ID.ConstantVal = 3104 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3105 } else if (Opc == Instruction::Select) { 3106 if (Elts.size() != 3) 3107 return Error(ID.Loc, "expected three operands to select"); 3108 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3109 Elts[2])) 3110 return Error(ID.Loc, Reason); 3111 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3112 } else if (Opc == Instruction::ShuffleVector) { 3113 if (Elts.size() != 3) 3114 return Error(ID.Loc, "expected three operands to shufflevector"); 3115 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3116 return Error(ID.Loc, "invalid operands to shufflevector"); 3117 ID.ConstantVal = 3118 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3119 } else if (Opc == Instruction::ExtractElement) { 3120 if (Elts.size() != 2) 3121 return Error(ID.Loc, "expected two operands to extractelement"); 3122 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3123 return Error(ID.Loc, "invalid extractelement operands"); 3124 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3125 } else { 3126 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3127 if (Elts.size() != 3) 3128 return Error(ID.Loc, "expected three operands to insertelement"); 3129 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3130 return Error(ID.Loc, "invalid insertelement operands"); 3131 ID.ConstantVal = 3132 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3133 } 3134 3135 ID.Kind = ValID::t_Constant; 3136 return false; 3137 } 3138 } 3139 3140 Lex.Lex(); 3141 return false; 3142 } 3143 3144 /// ParseGlobalValue - Parse a global value with the specified type. 3145 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3146 C = nullptr; 3147 ValID ID; 3148 Value *V = nullptr; 3149 bool Parsed = ParseValID(ID) || 3150 ConvertValIDToValue(Ty, ID, V, nullptr); 3151 if (V && !(C = dyn_cast<Constant>(V))) 3152 return Error(ID.Loc, "global values must be constants"); 3153 return Parsed; 3154 } 3155 3156 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3157 Type *Ty = nullptr; 3158 return ParseType(Ty) || 3159 ParseGlobalValue(Ty, V); 3160 } 3161 3162 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3163 C = nullptr; 3164 3165 LocTy KwLoc = Lex.getLoc(); 3166 if (!EatIfPresent(lltok::kw_comdat)) 3167 return false; 3168 3169 if (EatIfPresent(lltok::lparen)) { 3170 if (Lex.getKind() != lltok::ComdatVar) 3171 return TokError("expected comdat variable"); 3172 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3173 Lex.Lex(); 3174 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3175 return true; 3176 } else { 3177 if (GlobalName.empty()) 3178 return TokError("comdat cannot be unnamed"); 3179 C = getComdat(GlobalName, KwLoc); 3180 } 3181 3182 return false; 3183 } 3184 3185 /// ParseGlobalValueVector 3186 /// ::= /*empty*/ 3187 /// ::= TypeAndValue (',' TypeAndValue)* 3188 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3189 // Empty list. 3190 if (Lex.getKind() == lltok::rbrace || 3191 Lex.getKind() == lltok::rsquare || 3192 Lex.getKind() == lltok::greater || 3193 Lex.getKind() == lltok::rparen) 3194 return false; 3195 3196 Constant *C; 3197 if (ParseGlobalTypeAndValue(C)) return true; 3198 Elts.push_back(C); 3199 3200 while (EatIfPresent(lltok::comma)) { 3201 if (ParseGlobalTypeAndValue(C)) return true; 3202 Elts.push_back(C); 3203 } 3204 3205 return false; 3206 } 3207 3208 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3209 SmallVector<Metadata *, 16> Elts; 3210 if (ParseMDNodeVector(Elts)) 3211 return true; 3212 3213 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3214 return false; 3215 } 3216 3217 /// MDNode: 3218 /// ::= !{ ... } 3219 /// ::= !7 3220 /// ::= !DILocation(...) 3221 bool LLParser::ParseMDNode(MDNode *&N) { 3222 if (Lex.getKind() == lltok::MetadataVar) 3223 return ParseSpecializedMDNode(N); 3224 3225 return ParseToken(lltok::exclaim, "expected '!' here") || 3226 ParseMDNodeTail(N); 3227 } 3228 3229 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3230 // !{ ... } 3231 if (Lex.getKind() == lltok::lbrace) 3232 return ParseMDTuple(N); 3233 3234 // !42 3235 return ParseMDNodeID(N); 3236 } 3237 3238 namespace { 3239 3240 /// Structure to represent an optional metadata field. 3241 template <class FieldTy> struct MDFieldImpl { 3242 typedef MDFieldImpl ImplTy; 3243 FieldTy Val; 3244 bool Seen; 3245 3246 void assign(FieldTy Val) { 3247 Seen = true; 3248 this->Val = std::move(Val); 3249 } 3250 3251 explicit MDFieldImpl(FieldTy Default) 3252 : Val(std::move(Default)), Seen(false) {} 3253 }; 3254 3255 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3256 uint64_t Max; 3257 3258 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3259 : ImplTy(Default), Max(Max) {} 3260 }; 3261 struct LineField : public MDUnsignedField { 3262 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3263 }; 3264 struct ColumnField : public MDUnsignedField { 3265 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3266 }; 3267 struct DwarfTagField : public MDUnsignedField { 3268 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3269 DwarfTagField(dwarf::Tag DefaultTag) 3270 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3271 }; 3272 struct DwarfAttEncodingField : public MDUnsignedField { 3273 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3274 }; 3275 struct DwarfVirtualityField : public MDUnsignedField { 3276 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3277 }; 3278 struct DwarfLangField : public MDUnsignedField { 3279 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3280 }; 3281 3282 struct DIFlagField : public MDUnsignedField { 3283 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3284 }; 3285 3286 struct MDSignedField : public MDFieldImpl<int64_t> { 3287 int64_t Min; 3288 int64_t Max; 3289 3290 MDSignedField(int64_t Default = 0) 3291 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3292 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3293 : ImplTy(Default), Min(Min), Max(Max) {} 3294 }; 3295 3296 struct MDBoolField : public MDFieldImpl<bool> { 3297 MDBoolField(bool Default = false) : ImplTy(Default) {} 3298 }; 3299 struct MDField : public MDFieldImpl<Metadata *> { 3300 bool AllowNull; 3301 3302 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3303 }; 3304 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3305 MDConstant() : ImplTy(nullptr) {} 3306 }; 3307 struct MDStringField : public MDFieldImpl<MDString *> { 3308 bool AllowEmpty; 3309 MDStringField(bool AllowEmpty = true) 3310 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3311 }; 3312 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3313 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3314 }; 3315 3316 } // end namespace 3317 3318 namespace llvm { 3319 3320 template <> 3321 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3322 MDUnsignedField &Result) { 3323 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3324 return TokError("expected unsigned integer"); 3325 3326 auto &U = Lex.getAPSIntVal(); 3327 if (U.ugt(Result.Max)) 3328 return TokError("value for '" + Name + "' too large, limit is " + 3329 Twine(Result.Max)); 3330 Result.assign(U.getZExtValue()); 3331 assert(Result.Val <= Result.Max && "Expected value in range"); 3332 Lex.Lex(); 3333 return false; 3334 } 3335 3336 template <> 3337 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3338 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3339 } 3340 template <> 3341 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3342 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3343 } 3344 3345 template <> 3346 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3347 if (Lex.getKind() == lltok::APSInt) 3348 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3349 3350 if (Lex.getKind() != lltok::DwarfTag) 3351 return TokError("expected DWARF tag"); 3352 3353 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3354 if (Tag == dwarf::DW_TAG_invalid) 3355 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3356 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3357 3358 Result.assign(Tag); 3359 Lex.Lex(); 3360 return false; 3361 } 3362 3363 template <> 3364 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3365 DwarfVirtualityField &Result) { 3366 if (Lex.getKind() == lltok::APSInt) 3367 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3368 3369 if (Lex.getKind() != lltok::DwarfVirtuality) 3370 return TokError("expected DWARF virtuality code"); 3371 3372 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3373 if (!Virtuality) 3374 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3375 Lex.getStrVal() + "'"); 3376 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3377 Result.assign(Virtuality); 3378 Lex.Lex(); 3379 return false; 3380 } 3381 3382 template <> 3383 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3384 if (Lex.getKind() == lltok::APSInt) 3385 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3386 3387 if (Lex.getKind() != lltok::DwarfLang) 3388 return TokError("expected DWARF language"); 3389 3390 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3391 if (!Lang) 3392 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3393 "'"); 3394 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3395 Result.assign(Lang); 3396 Lex.Lex(); 3397 return false; 3398 } 3399 3400 template <> 3401 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3402 DwarfAttEncodingField &Result) { 3403 if (Lex.getKind() == lltok::APSInt) 3404 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3405 3406 if (Lex.getKind() != lltok::DwarfAttEncoding) 3407 return TokError("expected DWARF type attribute encoding"); 3408 3409 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3410 if (!Encoding) 3411 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3412 Lex.getStrVal() + "'"); 3413 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3414 Result.assign(Encoding); 3415 Lex.Lex(); 3416 return false; 3417 } 3418 3419 /// DIFlagField 3420 /// ::= uint32 3421 /// ::= DIFlagVector 3422 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3423 template <> 3424 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3425 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3426 3427 // Parser for a single flag. 3428 auto parseFlag = [&](unsigned &Val) { 3429 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3430 return ParseUInt32(Val); 3431 3432 if (Lex.getKind() != lltok::DIFlag) 3433 return TokError("expected debug info flag"); 3434 3435 Val = DINode::getFlag(Lex.getStrVal()); 3436 if (!Val) 3437 return TokError(Twine("invalid debug info flag flag '") + 3438 Lex.getStrVal() + "'"); 3439 Lex.Lex(); 3440 return false; 3441 }; 3442 3443 // Parse the flags and combine them together. 3444 unsigned Combined = 0; 3445 do { 3446 unsigned Val; 3447 if (parseFlag(Val)) 3448 return true; 3449 Combined |= Val; 3450 } while (EatIfPresent(lltok::bar)); 3451 3452 Result.assign(Combined); 3453 return false; 3454 } 3455 3456 template <> 3457 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3458 MDSignedField &Result) { 3459 if (Lex.getKind() != lltok::APSInt) 3460 return TokError("expected signed integer"); 3461 3462 auto &S = Lex.getAPSIntVal(); 3463 if (S < Result.Min) 3464 return TokError("value for '" + Name + "' too small, limit is " + 3465 Twine(Result.Min)); 3466 if (S > Result.Max) 3467 return TokError("value for '" + Name + "' too large, limit is " + 3468 Twine(Result.Max)); 3469 Result.assign(S.getExtValue()); 3470 assert(Result.Val >= Result.Min && "Expected value in range"); 3471 assert(Result.Val <= Result.Max && "Expected value in range"); 3472 Lex.Lex(); 3473 return false; 3474 } 3475 3476 template <> 3477 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3478 switch (Lex.getKind()) { 3479 default: 3480 return TokError("expected 'true' or 'false'"); 3481 case lltok::kw_true: 3482 Result.assign(true); 3483 break; 3484 case lltok::kw_false: 3485 Result.assign(false); 3486 break; 3487 } 3488 Lex.Lex(); 3489 return false; 3490 } 3491 3492 template <> 3493 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3494 if (Lex.getKind() == lltok::kw_null) { 3495 if (!Result.AllowNull) 3496 return TokError("'" + Name + "' cannot be null"); 3497 Lex.Lex(); 3498 Result.assign(nullptr); 3499 return false; 3500 } 3501 3502 Metadata *MD; 3503 if (ParseMetadata(MD, nullptr)) 3504 return true; 3505 3506 Result.assign(MD); 3507 return false; 3508 } 3509 3510 template <> 3511 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3512 Metadata *MD; 3513 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3514 return true; 3515 3516 Result.assign(cast<ConstantAsMetadata>(MD)); 3517 return false; 3518 } 3519 3520 template <> 3521 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3522 LocTy ValueLoc = Lex.getLoc(); 3523 std::string S; 3524 if (ParseStringConstant(S)) 3525 return true; 3526 3527 if (!Result.AllowEmpty && S.empty()) 3528 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3529 3530 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3531 return false; 3532 } 3533 3534 template <> 3535 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3536 SmallVector<Metadata *, 4> MDs; 3537 if (ParseMDNodeVector(MDs)) 3538 return true; 3539 3540 Result.assign(std::move(MDs)); 3541 return false; 3542 } 3543 3544 } // end namespace llvm 3545 3546 template <class ParserTy> 3547 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3548 do { 3549 if (Lex.getKind() != lltok::LabelStr) 3550 return TokError("expected field label here"); 3551 3552 if (parseField()) 3553 return true; 3554 } while (EatIfPresent(lltok::comma)); 3555 3556 return false; 3557 } 3558 3559 template <class ParserTy> 3560 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3561 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3562 Lex.Lex(); 3563 3564 if (ParseToken(lltok::lparen, "expected '(' here")) 3565 return true; 3566 if (Lex.getKind() != lltok::rparen) 3567 if (ParseMDFieldsImplBody(parseField)) 3568 return true; 3569 3570 ClosingLoc = Lex.getLoc(); 3571 return ParseToken(lltok::rparen, "expected ')' here"); 3572 } 3573 3574 template <class FieldTy> 3575 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3576 if (Result.Seen) 3577 return TokError("field '" + Name + "' cannot be specified more than once"); 3578 3579 LocTy Loc = Lex.getLoc(); 3580 Lex.Lex(); 3581 return ParseMDField(Loc, Name, Result); 3582 } 3583 3584 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3585 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3586 3587 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3588 if (Lex.getStrVal() == #CLASS) \ 3589 return Parse##CLASS(N, IsDistinct); 3590 #include "llvm/IR/Metadata.def" 3591 3592 return TokError("expected metadata type"); 3593 } 3594 3595 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3596 #define NOP_FIELD(NAME, TYPE, INIT) 3597 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3598 if (!NAME.Seen) \ 3599 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3600 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3601 if (Lex.getStrVal() == #NAME) \ 3602 return ParseMDField(#NAME, NAME); 3603 #define PARSE_MD_FIELDS() \ 3604 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3605 do { \ 3606 LocTy ClosingLoc; \ 3607 if (ParseMDFieldsImpl([&]() -> bool { \ 3608 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3609 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3610 }, ClosingLoc)) \ 3611 return true; \ 3612 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3613 } while (false) 3614 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3615 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3616 3617 /// ParseDILocationFields: 3618 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3619 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3620 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3621 OPTIONAL(line, LineField, ); \ 3622 OPTIONAL(column, ColumnField, ); \ 3623 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3624 OPTIONAL(inlinedAt, MDField, ); 3625 PARSE_MD_FIELDS(); 3626 #undef VISIT_MD_FIELDS 3627 3628 Result = GET_OR_DISTINCT( 3629 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3630 return false; 3631 } 3632 3633 /// ParseGenericDINode: 3634 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3635 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3637 REQUIRED(tag, DwarfTagField, ); \ 3638 OPTIONAL(header, MDStringField, ); \ 3639 OPTIONAL(operands, MDFieldList, ); 3640 PARSE_MD_FIELDS(); 3641 #undef VISIT_MD_FIELDS 3642 3643 Result = GET_OR_DISTINCT(GenericDINode, 3644 (Context, tag.Val, header.Val, operands.Val)); 3645 return false; 3646 } 3647 3648 /// ParseDISubrange: 3649 /// ::= !DISubrange(count: 30, lowerBound: 2) 3650 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3651 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3652 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3653 OPTIONAL(lowerBound, MDSignedField, ); 3654 PARSE_MD_FIELDS(); 3655 #undef VISIT_MD_FIELDS 3656 3657 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3658 return false; 3659 } 3660 3661 /// ParseDIEnumerator: 3662 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3663 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3664 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3665 REQUIRED(name, MDStringField, ); \ 3666 REQUIRED(value, MDSignedField, ); 3667 PARSE_MD_FIELDS(); 3668 #undef VISIT_MD_FIELDS 3669 3670 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3671 return false; 3672 } 3673 3674 /// ParseDIBasicType: 3675 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3676 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3677 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3678 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3679 OPTIONAL(name, MDStringField, ); \ 3680 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3681 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3682 OPTIONAL(encoding, DwarfAttEncodingField, ); 3683 PARSE_MD_FIELDS(); 3684 #undef VISIT_MD_FIELDS 3685 3686 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3687 align.Val, encoding.Val)); 3688 return false; 3689 } 3690 3691 /// ParseDIDerivedType: 3692 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3693 /// line: 7, scope: !1, baseType: !2, size: 32, 3694 /// align: 32, offset: 0, flags: 0, extraData: !3) 3695 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3696 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3697 REQUIRED(tag, DwarfTagField, ); \ 3698 OPTIONAL(name, MDStringField, ); \ 3699 OPTIONAL(file, MDField, ); \ 3700 OPTIONAL(line, LineField, ); \ 3701 OPTIONAL(scope, MDField, ); \ 3702 REQUIRED(baseType, MDField, ); \ 3703 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3704 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3705 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3706 OPTIONAL(flags, DIFlagField, ); \ 3707 OPTIONAL(extraData, MDField, ); 3708 PARSE_MD_FIELDS(); 3709 #undef VISIT_MD_FIELDS 3710 3711 Result = GET_OR_DISTINCT(DIDerivedType, 3712 (Context, tag.Val, name.Val, file.Val, line.Val, 3713 scope.Val, baseType.Val, size.Val, align.Val, 3714 offset.Val, flags.Val, extraData.Val)); 3715 return false; 3716 } 3717 3718 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3719 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3720 REQUIRED(tag, DwarfTagField, ); \ 3721 OPTIONAL(name, MDStringField, ); \ 3722 OPTIONAL(file, MDField, ); \ 3723 OPTIONAL(line, LineField, ); \ 3724 OPTIONAL(scope, MDField, ); \ 3725 OPTIONAL(baseType, MDField, ); \ 3726 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3727 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3728 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3729 OPTIONAL(flags, DIFlagField, ); \ 3730 OPTIONAL(elements, MDField, ); \ 3731 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3732 OPTIONAL(vtableHolder, MDField, ); \ 3733 OPTIONAL(templateParams, MDField, ); \ 3734 OPTIONAL(identifier, MDStringField, ); 3735 PARSE_MD_FIELDS(); 3736 #undef VISIT_MD_FIELDS 3737 3738 Result = GET_OR_DISTINCT( 3739 DICompositeType, 3740 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3741 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3742 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3743 return false; 3744 } 3745 3746 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3748 OPTIONAL(flags, DIFlagField, ); \ 3749 REQUIRED(types, MDField, ); 3750 PARSE_MD_FIELDS(); 3751 #undef VISIT_MD_FIELDS 3752 3753 Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val)); 3754 return false; 3755 } 3756 3757 /// ParseDIFileType: 3758 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3759 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3760 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3761 REQUIRED(filename, MDStringField, ); \ 3762 REQUIRED(directory, MDStringField, ); 3763 PARSE_MD_FIELDS(); 3764 #undef VISIT_MD_FIELDS 3765 3766 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3767 return false; 3768 } 3769 3770 /// ParseDICompileUnit: 3771 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3772 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3773 /// splitDebugFilename: "abc.debug", emissionKind: 1, 3774 /// enums: !1, retainedTypes: !2, subprograms: !3, 3775 /// globals: !4, imports: !5, dwoId: 0x0abcd) 3776 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3777 if (!IsDistinct) 3778 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3779 3780 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3781 REQUIRED(language, DwarfLangField, ); \ 3782 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3783 OPTIONAL(producer, MDStringField, ); \ 3784 OPTIONAL(isOptimized, MDBoolField, ); \ 3785 OPTIONAL(flags, MDStringField, ); \ 3786 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3787 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3788 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \ 3789 OPTIONAL(enums, MDField, ); \ 3790 OPTIONAL(retainedTypes, MDField, ); \ 3791 OPTIONAL(subprograms, MDField, ); \ 3792 OPTIONAL(globals, MDField, ); \ 3793 OPTIONAL(imports, MDField, ); \ 3794 OPTIONAL(dwoId, MDUnsignedField, ); 3795 PARSE_MD_FIELDS(); 3796 #undef VISIT_MD_FIELDS 3797 3798 Result = DICompileUnit::getDistinct( 3799 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3800 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3801 retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, dwoId.Val); 3802 return false; 3803 } 3804 3805 /// ParseDISubprogram: 3806 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3807 /// file: !1, line: 7, type: !2, isLocal: false, 3808 /// isDefinition: true, scopeLine: 8, containingType: !3, 3809 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3810 /// virtualIndex: 10, flags: 11, 3811 /// isOptimized: false, templateParams: !4, declaration: !5, 3812 /// variables: !6) 3813 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3814 auto Loc = Lex.getLoc(); 3815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3816 OPTIONAL(scope, MDField, ); \ 3817 OPTIONAL(name, MDStringField, ); \ 3818 OPTIONAL(linkageName, MDStringField, ); \ 3819 OPTIONAL(file, MDField, ); \ 3820 OPTIONAL(line, LineField, ); \ 3821 OPTIONAL(type, MDField, ); \ 3822 OPTIONAL(isLocal, MDBoolField, ); \ 3823 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3824 OPTIONAL(scopeLine, LineField, ); \ 3825 OPTIONAL(containingType, MDField, ); \ 3826 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3827 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3828 OPTIONAL(flags, DIFlagField, ); \ 3829 OPTIONAL(isOptimized, MDBoolField, ); \ 3830 OPTIONAL(templateParams, MDField, ); \ 3831 OPTIONAL(declaration, MDField, ); \ 3832 OPTIONAL(variables, MDField, ); 3833 PARSE_MD_FIELDS(); 3834 #undef VISIT_MD_FIELDS 3835 3836 if (isDefinition.Val && !IsDistinct) 3837 return Lex.Error( 3838 Loc, 3839 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 3840 3841 Result = GET_OR_DISTINCT( 3842 DISubprogram, 3843 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 3844 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 3845 containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val, 3846 isOptimized.Val, templateParams.Val, declaration.Val, variables.Val)); 3847 return false; 3848 } 3849 3850 /// ParseDILexicalBlock: 3851 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 3852 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 3853 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3854 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3855 OPTIONAL(file, MDField, ); \ 3856 OPTIONAL(line, LineField, ); \ 3857 OPTIONAL(column, ColumnField, ); 3858 PARSE_MD_FIELDS(); 3859 #undef VISIT_MD_FIELDS 3860 3861 Result = GET_OR_DISTINCT( 3862 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 3863 return false; 3864 } 3865 3866 /// ParseDILexicalBlockFile: 3867 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 3868 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 3869 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3870 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3871 OPTIONAL(file, MDField, ); \ 3872 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 3873 PARSE_MD_FIELDS(); 3874 #undef VISIT_MD_FIELDS 3875 3876 Result = GET_OR_DISTINCT(DILexicalBlockFile, 3877 (Context, scope.Val, file.Val, discriminator.Val)); 3878 return false; 3879 } 3880 3881 /// ParseDINamespace: 3882 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 3883 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 3884 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3885 REQUIRED(scope, MDField, ); \ 3886 OPTIONAL(file, MDField, ); \ 3887 OPTIONAL(name, MDStringField, ); \ 3888 OPTIONAL(line, LineField, ); 3889 PARSE_MD_FIELDS(); 3890 #undef VISIT_MD_FIELDS 3891 3892 Result = GET_OR_DISTINCT(DINamespace, 3893 (Context, scope.Val, file.Val, name.Val, line.Val)); 3894 return false; 3895 } 3896 3897 /// ParseDIModule: 3898 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 3899 /// includePath: "/usr/include", isysroot: "/") 3900 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 3901 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3902 REQUIRED(scope, MDField, ); \ 3903 REQUIRED(name, MDStringField, ); \ 3904 OPTIONAL(configMacros, MDStringField, ); \ 3905 OPTIONAL(includePath, MDStringField, ); \ 3906 OPTIONAL(isysroot, MDStringField, ); 3907 PARSE_MD_FIELDS(); 3908 #undef VISIT_MD_FIELDS 3909 3910 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 3911 configMacros.Val, includePath.Val, isysroot.Val)); 3912 return false; 3913 } 3914 3915 /// ParseDITemplateTypeParameter: 3916 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 3917 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 3918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3919 OPTIONAL(name, MDStringField, ); \ 3920 REQUIRED(type, MDField, ); 3921 PARSE_MD_FIELDS(); 3922 #undef VISIT_MD_FIELDS 3923 3924 Result = 3925 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 3926 return false; 3927 } 3928 3929 /// ParseDITemplateValueParameter: 3930 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 3931 /// name: "V", type: !1, value: i32 7) 3932 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 3933 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3934 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 3935 OPTIONAL(name, MDStringField, ); \ 3936 OPTIONAL(type, MDField, ); \ 3937 REQUIRED(value, MDField, ); 3938 PARSE_MD_FIELDS(); 3939 #undef VISIT_MD_FIELDS 3940 3941 Result = GET_OR_DISTINCT(DITemplateValueParameter, 3942 (Context, tag.Val, name.Val, type.Val, value.Val)); 3943 return false; 3944 } 3945 3946 /// ParseDIGlobalVariable: 3947 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 3948 /// file: !1, line: 7, type: !2, isLocal: false, 3949 /// isDefinition: true, variable: i32* @foo, 3950 /// declaration: !3) 3951 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 3952 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3953 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 3954 OPTIONAL(scope, MDField, ); \ 3955 OPTIONAL(linkageName, MDStringField, ); \ 3956 OPTIONAL(file, MDField, ); \ 3957 OPTIONAL(line, LineField, ); \ 3958 OPTIONAL(type, MDField, ); \ 3959 OPTIONAL(isLocal, MDBoolField, ); \ 3960 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3961 OPTIONAL(variable, MDConstant, ); \ 3962 OPTIONAL(declaration, MDField, ); 3963 PARSE_MD_FIELDS(); 3964 #undef VISIT_MD_FIELDS 3965 3966 Result = GET_OR_DISTINCT(DIGlobalVariable, 3967 (Context, scope.Val, name.Val, linkageName.Val, 3968 file.Val, line.Val, type.Val, isLocal.Val, 3969 isDefinition.Val, variable.Val, declaration.Val)); 3970 return false; 3971 } 3972 3973 /// ParseDILocalVariable: 3974 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 3975 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3976 /// ::= !DILocalVariable(scope: !0, name: "foo", 3977 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3978 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 3979 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3980 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3981 OPTIONAL(name, MDStringField, ); \ 3982 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 3983 OPTIONAL(file, MDField, ); \ 3984 OPTIONAL(line, LineField, ); \ 3985 OPTIONAL(type, MDField, ); \ 3986 OPTIONAL(flags, DIFlagField, ); 3987 PARSE_MD_FIELDS(); 3988 #undef VISIT_MD_FIELDS 3989 3990 Result = GET_OR_DISTINCT(DILocalVariable, 3991 (Context, scope.Val, name.Val, file.Val, line.Val, 3992 type.Val, arg.Val, flags.Val)); 3993 return false; 3994 } 3995 3996 /// ParseDIExpression: 3997 /// ::= !DIExpression(0, 7, -1) 3998 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 3999 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4000 Lex.Lex(); 4001 4002 if (ParseToken(lltok::lparen, "expected '(' here")) 4003 return true; 4004 4005 SmallVector<uint64_t, 8> Elements; 4006 if (Lex.getKind() != lltok::rparen) 4007 do { 4008 if (Lex.getKind() == lltok::DwarfOp) { 4009 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4010 Lex.Lex(); 4011 Elements.push_back(Op); 4012 continue; 4013 } 4014 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4015 } 4016 4017 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4018 return TokError("expected unsigned integer"); 4019 4020 auto &U = Lex.getAPSIntVal(); 4021 if (U.ugt(UINT64_MAX)) 4022 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4023 Elements.push_back(U.getZExtValue()); 4024 Lex.Lex(); 4025 } while (EatIfPresent(lltok::comma)); 4026 4027 if (ParseToken(lltok::rparen, "expected ')' here")) 4028 return true; 4029 4030 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4031 return false; 4032 } 4033 4034 /// ParseDIObjCProperty: 4035 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4036 /// getter: "getFoo", attributes: 7, type: !2) 4037 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4038 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4039 OPTIONAL(name, MDStringField, ); \ 4040 OPTIONAL(file, MDField, ); \ 4041 OPTIONAL(line, LineField, ); \ 4042 OPTIONAL(setter, MDStringField, ); \ 4043 OPTIONAL(getter, MDStringField, ); \ 4044 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4045 OPTIONAL(type, MDField, ); 4046 PARSE_MD_FIELDS(); 4047 #undef VISIT_MD_FIELDS 4048 4049 Result = GET_OR_DISTINCT(DIObjCProperty, 4050 (Context, name.Val, file.Val, line.Val, setter.Val, 4051 getter.Val, attributes.Val, type.Val)); 4052 return false; 4053 } 4054 4055 /// ParseDIImportedEntity: 4056 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4057 /// line: 7, name: "foo") 4058 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4059 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4060 REQUIRED(tag, DwarfTagField, ); \ 4061 REQUIRED(scope, MDField, ); \ 4062 OPTIONAL(entity, MDField, ); \ 4063 OPTIONAL(line, LineField, ); \ 4064 OPTIONAL(name, MDStringField, ); 4065 PARSE_MD_FIELDS(); 4066 #undef VISIT_MD_FIELDS 4067 4068 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4069 entity.Val, line.Val, name.Val)); 4070 return false; 4071 } 4072 4073 #undef PARSE_MD_FIELD 4074 #undef NOP_FIELD 4075 #undef REQUIRE_FIELD 4076 #undef DECLARE_FIELD 4077 4078 /// ParseMetadataAsValue 4079 /// ::= metadata i32 %local 4080 /// ::= metadata i32 @global 4081 /// ::= metadata i32 7 4082 /// ::= metadata !0 4083 /// ::= metadata !{...} 4084 /// ::= metadata !"string" 4085 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4086 // Note: the type 'metadata' has already been parsed. 4087 Metadata *MD; 4088 if (ParseMetadata(MD, &PFS)) 4089 return true; 4090 4091 V = MetadataAsValue::get(Context, MD); 4092 return false; 4093 } 4094 4095 /// ParseValueAsMetadata 4096 /// ::= i32 %local 4097 /// ::= i32 @global 4098 /// ::= i32 7 4099 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4100 PerFunctionState *PFS) { 4101 Type *Ty; 4102 LocTy Loc; 4103 if (ParseType(Ty, TypeMsg, Loc)) 4104 return true; 4105 if (Ty->isMetadataTy()) 4106 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4107 4108 Value *V; 4109 if (ParseValue(Ty, V, PFS)) 4110 return true; 4111 4112 MD = ValueAsMetadata::get(V); 4113 return false; 4114 } 4115 4116 /// ParseMetadata 4117 /// ::= i32 %local 4118 /// ::= i32 @global 4119 /// ::= i32 7 4120 /// ::= !42 4121 /// ::= !{...} 4122 /// ::= !"string" 4123 /// ::= !DILocation(...) 4124 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4125 if (Lex.getKind() == lltok::MetadataVar) { 4126 MDNode *N; 4127 if (ParseSpecializedMDNode(N)) 4128 return true; 4129 MD = N; 4130 return false; 4131 } 4132 4133 // ValueAsMetadata: 4134 // <type> <value> 4135 if (Lex.getKind() != lltok::exclaim) 4136 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4137 4138 // '!'. 4139 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4140 Lex.Lex(); 4141 4142 // MDString: 4143 // ::= '!' STRINGCONSTANT 4144 if (Lex.getKind() == lltok::StringConstant) { 4145 MDString *S; 4146 if (ParseMDString(S)) 4147 return true; 4148 MD = S; 4149 return false; 4150 } 4151 4152 // MDNode: 4153 // !{ ... } 4154 // !7 4155 MDNode *N; 4156 if (ParseMDNodeTail(N)) 4157 return true; 4158 MD = N; 4159 return false; 4160 } 4161 4162 4163 //===----------------------------------------------------------------------===// 4164 // Function Parsing. 4165 //===----------------------------------------------------------------------===// 4166 4167 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4168 PerFunctionState *PFS, 4169 OperatorConstraint OC) { 4170 if (Ty->isFunctionTy()) 4171 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4172 4173 if (OC && ID.Kind != ValID::t_LocalID && ID.Kind != ValID::t_LocalName) { 4174 switch (OC) { 4175 case OC_CatchPad: 4176 return Error(ID.Loc, "Catchpad value required in this position"); 4177 case OC_CleanupPad: 4178 return Error(ID.Loc, "Cleanuppad value required in this position"); 4179 default: 4180 llvm_unreachable("Unexpected constraint kind"); 4181 } 4182 } 4183 4184 switch (ID.Kind) { 4185 case ValID::t_LocalID: 4186 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4187 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, OC); 4188 return V == nullptr; 4189 case ValID::t_LocalName: 4190 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4191 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, OC); 4192 return V == nullptr; 4193 case ValID::t_InlineAsm: { 4194 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4195 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4196 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4197 (ID.UIntVal >> 1) & 1, 4198 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4199 return false; 4200 } 4201 case ValID::t_GlobalName: 4202 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4203 return V == nullptr; 4204 case ValID::t_GlobalID: 4205 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4206 return V == nullptr; 4207 case ValID::t_APSInt: 4208 if (!Ty->isIntegerTy()) 4209 return Error(ID.Loc, "integer constant must have integer type"); 4210 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4211 V = ConstantInt::get(Context, ID.APSIntVal); 4212 return false; 4213 case ValID::t_APFloat: 4214 if (!Ty->isFloatingPointTy() || 4215 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4216 return Error(ID.Loc, "floating point constant invalid for type"); 4217 4218 // The lexer has no type info, so builds all half, float, and double FP 4219 // constants as double. Fix this here. Long double does not need this. 4220 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4221 bool Ignored; 4222 if (Ty->isHalfTy()) 4223 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4224 &Ignored); 4225 else if (Ty->isFloatTy()) 4226 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4227 &Ignored); 4228 } 4229 V = ConstantFP::get(Context, ID.APFloatVal); 4230 4231 if (V->getType() != Ty) 4232 return Error(ID.Loc, "floating point constant does not have type '" + 4233 getTypeString(Ty) + "'"); 4234 4235 return false; 4236 case ValID::t_Null: 4237 if (!Ty->isPointerTy()) 4238 return Error(ID.Loc, "null must be a pointer type"); 4239 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4240 return false; 4241 case ValID::t_Undef: 4242 // FIXME: LabelTy should not be a first-class type. 4243 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4244 return Error(ID.Loc, "invalid type for undef constant"); 4245 V = UndefValue::get(Ty); 4246 return false; 4247 case ValID::t_EmptyArray: 4248 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4249 return Error(ID.Loc, "invalid empty array initializer"); 4250 V = UndefValue::get(Ty); 4251 return false; 4252 case ValID::t_Zero: 4253 // FIXME: LabelTy should not be a first-class type. 4254 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4255 return Error(ID.Loc, "invalid type for null constant"); 4256 V = Constant::getNullValue(Ty); 4257 return false; 4258 case ValID::t_Constant: 4259 if (ID.ConstantVal->getType() != Ty) 4260 return Error(ID.Loc, "constant expression type mismatch"); 4261 4262 V = ID.ConstantVal; 4263 return false; 4264 case ValID::t_ConstantStruct: 4265 case ValID::t_PackedConstantStruct: 4266 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4267 if (ST->getNumElements() != ID.UIntVal) 4268 return Error(ID.Loc, 4269 "initializer with struct type has wrong # elements"); 4270 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4271 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4272 4273 // Verify that the elements are compatible with the structtype. 4274 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4275 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4276 return Error(ID.Loc, "element " + Twine(i) + 4277 " of struct initializer doesn't match struct element type"); 4278 4279 V = ConstantStruct::get( 4280 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4281 } else 4282 return Error(ID.Loc, "constant expression type mismatch"); 4283 return false; 4284 } 4285 llvm_unreachable("Invalid ValID"); 4286 } 4287 4288 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4289 C = nullptr; 4290 ValID ID; 4291 auto Loc = Lex.getLoc(); 4292 if (ParseValID(ID, /*PFS=*/nullptr)) 4293 return true; 4294 switch (ID.Kind) { 4295 case ValID::t_APSInt: 4296 case ValID::t_APFloat: 4297 case ValID::t_Undef: 4298 case ValID::t_Constant: 4299 case ValID::t_ConstantStruct: 4300 case ValID::t_PackedConstantStruct: { 4301 Value *V; 4302 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4303 return true; 4304 assert(isa<Constant>(V) && "Expected a constant value"); 4305 C = cast<Constant>(V); 4306 return false; 4307 } 4308 default: 4309 return Error(Loc, "expected a constant value"); 4310 } 4311 } 4312 4313 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS, 4314 OperatorConstraint OC) { 4315 V = nullptr; 4316 ValID ID; 4317 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS, OC); 4318 } 4319 4320 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4321 Type *Ty = nullptr; 4322 return ParseType(Ty) || 4323 ParseValue(Ty, V, PFS); 4324 } 4325 4326 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4327 PerFunctionState &PFS) { 4328 Value *V; 4329 Loc = Lex.getLoc(); 4330 if (ParseTypeAndValue(V, PFS)) return true; 4331 if (!isa<BasicBlock>(V)) 4332 return Error(Loc, "expected a basic block"); 4333 BB = cast<BasicBlock>(V); 4334 return false; 4335 } 4336 4337 4338 /// FunctionHeader 4339 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4340 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4341 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4342 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4343 // Parse the linkage. 4344 LocTy LinkageLoc = Lex.getLoc(); 4345 unsigned Linkage; 4346 4347 unsigned Visibility; 4348 unsigned DLLStorageClass; 4349 AttrBuilder RetAttrs; 4350 unsigned CC; 4351 Type *RetType = nullptr; 4352 LocTy RetTypeLoc = Lex.getLoc(); 4353 if (ParseOptionalLinkage(Linkage) || 4354 ParseOptionalVisibility(Visibility) || 4355 ParseOptionalDLLStorageClass(DLLStorageClass) || 4356 ParseOptionalCallingConv(CC) || 4357 ParseOptionalReturnAttrs(RetAttrs) || 4358 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4359 return true; 4360 4361 // Verify that the linkage is ok. 4362 switch ((GlobalValue::LinkageTypes)Linkage) { 4363 case GlobalValue::ExternalLinkage: 4364 break; // always ok. 4365 case GlobalValue::ExternalWeakLinkage: 4366 if (isDefine) 4367 return Error(LinkageLoc, "invalid linkage for function definition"); 4368 break; 4369 case GlobalValue::PrivateLinkage: 4370 case GlobalValue::InternalLinkage: 4371 case GlobalValue::AvailableExternallyLinkage: 4372 case GlobalValue::LinkOnceAnyLinkage: 4373 case GlobalValue::LinkOnceODRLinkage: 4374 case GlobalValue::WeakAnyLinkage: 4375 case GlobalValue::WeakODRLinkage: 4376 if (!isDefine) 4377 return Error(LinkageLoc, "invalid linkage for function declaration"); 4378 break; 4379 case GlobalValue::AppendingLinkage: 4380 case GlobalValue::CommonLinkage: 4381 return Error(LinkageLoc, "invalid function linkage type"); 4382 } 4383 4384 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4385 return Error(LinkageLoc, 4386 "symbol with local linkage must have default visibility"); 4387 4388 if (!FunctionType::isValidReturnType(RetType)) 4389 return Error(RetTypeLoc, "invalid function return type"); 4390 4391 LocTy NameLoc = Lex.getLoc(); 4392 4393 std::string FunctionName; 4394 if (Lex.getKind() == lltok::GlobalVar) { 4395 FunctionName = Lex.getStrVal(); 4396 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4397 unsigned NameID = Lex.getUIntVal(); 4398 4399 if (NameID != NumberedVals.size()) 4400 return TokError("function expected to be numbered '%" + 4401 Twine(NumberedVals.size()) + "'"); 4402 } else { 4403 return TokError("expected function name"); 4404 } 4405 4406 Lex.Lex(); 4407 4408 if (Lex.getKind() != lltok::lparen) 4409 return TokError("expected '(' in function argument list"); 4410 4411 SmallVector<ArgInfo, 8> ArgList; 4412 bool isVarArg; 4413 AttrBuilder FuncAttrs; 4414 std::vector<unsigned> FwdRefAttrGrps; 4415 LocTy BuiltinLoc; 4416 std::string Section; 4417 unsigned Alignment; 4418 std::string GC; 4419 bool UnnamedAddr; 4420 LocTy UnnamedAddrLoc; 4421 Constant *Prefix = nullptr; 4422 Constant *Prologue = nullptr; 4423 Constant *PersonalityFn = nullptr; 4424 Comdat *C; 4425 4426 if (ParseArgumentList(ArgList, isVarArg) || 4427 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 4428 &UnnamedAddrLoc) || 4429 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4430 BuiltinLoc) || 4431 (EatIfPresent(lltok::kw_section) && 4432 ParseStringConstant(Section)) || 4433 parseOptionalComdat(FunctionName, C) || 4434 ParseOptionalAlignment(Alignment) || 4435 (EatIfPresent(lltok::kw_gc) && 4436 ParseStringConstant(GC)) || 4437 (EatIfPresent(lltok::kw_prefix) && 4438 ParseGlobalTypeAndValue(Prefix)) || 4439 (EatIfPresent(lltok::kw_prologue) && 4440 ParseGlobalTypeAndValue(Prologue)) || 4441 (EatIfPresent(lltok::kw_personality) && 4442 ParseGlobalTypeAndValue(PersonalityFn))) 4443 return true; 4444 4445 if (FuncAttrs.contains(Attribute::Builtin)) 4446 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4447 4448 // If the alignment was parsed as an attribute, move to the alignment field. 4449 if (FuncAttrs.hasAlignmentAttr()) { 4450 Alignment = FuncAttrs.getAlignment(); 4451 FuncAttrs.removeAttribute(Attribute::Alignment); 4452 } 4453 4454 // Okay, if we got here, the function is syntactically valid. Convert types 4455 // and do semantic checks. 4456 std::vector<Type*> ParamTypeList; 4457 SmallVector<AttributeSet, 8> Attrs; 4458 4459 if (RetAttrs.hasAttributes()) 4460 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4461 AttributeSet::ReturnIndex, 4462 RetAttrs)); 4463 4464 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4465 ParamTypeList.push_back(ArgList[i].Ty); 4466 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4467 AttrBuilder B(ArgList[i].Attrs, i + 1); 4468 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4469 } 4470 } 4471 4472 if (FuncAttrs.hasAttributes()) 4473 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4474 AttributeSet::FunctionIndex, 4475 FuncAttrs)); 4476 4477 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4478 4479 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4480 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4481 4482 FunctionType *FT = 4483 FunctionType::get(RetType, ParamTypeList, isVarArg); 4484 PointerType *PFT = PointerType::getUnqual(FT); 4485 4486 Fn = nullptr; 4487 if (!FunctionName.empty()) { 4488 // If this was a definition of a forward reference, remove the definition 4489 // from the forward reference table and fill in the forward ref. 4490 auto FRVI = ForwardRefVals.find(FunctionName); 4491 if (FRVI != ForwardRefVals.end()) { 4492 Fn = M->getFunction(FunctionName); 4493 if (!Fn) 4494 return Error(FRVI->second.second, "invalid forward reference to " 4495 "function as global value!"); 4496 if (Fn->getType() != PFT) 4497 return Error(FRVI->second.second, "invalid forward reference to " 4498 "function '" + FunctionName + "' with wrong type!"); 4499 4500 ForwardRefVals.erase(FRVI); 4501 } else if ((Fn = M->getFunction(FunctionName))) { 4502 // Reject redefinitions. 4503 return Error(NameLoc, "invalid redefinition of function '" + 4504 FunctionName + "'"); 4505 } else if (M->getNamedValue(FunctionName)) { 4506 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4507 } 4508 4509 } else { 4510 // If this is a definition of a forward referenced function, make sure the 4511 // types agree. 4512 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4513 if (I != ForwardRefValIDs.end()) { 4514 Fn = cast<Function>(I->second.first); 4515 if (Fn->getType() != PFT) 4516 return Error(NameLoc, "type of definition and forward reference of '@" + 4517 Twine(NumberedVals.size()) + "' disagree"); 4518 ForwardRefValIDs.erase(I); 4519 } 4520 } 4521 4522 if (!Fn) 4523 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4524 else // Move the forward-reference to the correct spot in the module. 4525 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4526 4527 if (FunctionName.empty()) 4528 NumberedVals.push_back(Fn); 4529 4530 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4531 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4532 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4533 Fn->setCallingConv(CC); 4534 Fn->setAttributes(PAL); 4535 Fn->setUnnamedAddr(UnnamedAddr); 4536 Fn->setAlignment(Alignment); 4537 Fn->setSection(Section); 4538 Fn->setComdat(C); 4539 Fn->setPersonalityFn(PersonalityFn); 4540 if (!GC.empty()) Fn->setGC(GC.c_str()); 4541 Fn->setPrefixData(Prefix); 4542 Fn->setPrologueData(Prologue); 4543 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4544 4545 // Add all of the arguments we parsed to the function. 4546 Function::arg_iterator ArgIt = Fn->arg_begin(); 4547 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4548 // If the argument has a name, insert it into the argument symbol table. 4549 if (ArgList[i].Name.empty()) continue; 4550 4551 // Set the name, if it conflicted, it will be auto-renamed. 4552 ArgIt->setName(ArgList[i].Name); 4553 4554 if (ArgIt->getName() != ArgList[i].Name) 4555 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4556 ArgList[i].Name + "'"); 4557 } 4558 4559 if (isDefine) 4560 return false; 4561 4562 // Check the declaration has no block address forward references. 4563 ValID ID; 4564 if (FunctionName.empty()) { 4565 ID.Kind = ValID::t_GlobalID; 4566 ID.UIntVal = NumberedVals.size() - 1; 4567 } else { 4568 ID.Kind = ValID::t_GlobalName; 4569 ID.StrVal = FunctionName; 4570 } 4571 auto Blocks = ForwardRefBlockAddresses.find(ID); 4572 if (Blocks != ForwardRefBlockAddresses.end()) 4573 return Error(Blocks->first.Loc, 4574 "cannot take blockaddress inside a declaration"); 4575 return false; 4576 } 4577 4578 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4579 ValID ID; 4580 if (FunctionNumber == -1) { 4581 ID.Kind = ValID::t_GlobalName; 4582 ID.StrVal = F.getName(); 4583 } else { 4584 ID.Kind = ValID::t_GlobalID; 4585 ID.UIntVal = FunctionNumber; 4586 } 4587 4588 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4589 if (Blocks == P.ForwardRefBlockAddresses.end()) 4590 return false; 4591 4592 for (const auto &I : Blocks->second) { 4593 const ValID &BBID = I.first; 4594 GlobalValue *GV = I.second; 4595 4596 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4597 "Expected local id or name"); 4598 BasicBlock *BB; 4599 if (BBID.Kind == ValID::t_LocalName) 4600 BB = GetBB(BBID.StrVal, BBID.Loc); 4601 else 4602 BB = GetBB(BBID.UIntVal, BBID.Loc); 4603 if (!BB) 4604 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4605 4606 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4607 GV->eraseFromParent(); 4608 } 4609 4610 P.ForwardRefBlockAddresses.erase(Blocks); 4611 return false; 4612 } 4613 4614 /// ParseFunctionBody 4615 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4616 bool LLParser::ParseFunctionBody(Function &Fn) { 4617 if (Lex.getKind() != lltok::lbrace) 4618 return TokError("expected '{' in function body"); 4619 Lex.Lex(); // eat the {. 4620 4621 int FunctionNumber = -1; 4622 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4623 4624 PerFunctionState PFS(*this, Fn, FunctionNumber); 4625 4626 // Resolve block addresses and allow basic blocks to be forward-declared 4627 // within this function. 4628 if (PFS.resolveForwardRefBlockAddresses()) 4629 return true; 4630 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4631 4632 // We need at least one basic block. 4633 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4634 return TokError("function body requires at least one basic block"); 4635 4636 while (Lex.getKind() != lltok::rbrace && 4637 Lex.getKind() != lltok::kw_uselistorder) 4638 if (ParseBasicBlock(PFS)) return true; 4639 4640 while (Lex.getKind() != lltok::rbrace) 4641 if (ParseUseListOrder(&PFS)) 4642 return true; 4643 4644 // Eat the }. 4645 Lex.Lex(); 4646 4647 // Verify function is ok. 4648 return PFS.FinishFunction(); 4649 } 4650 4651 /// ParseBasicBlock 4652 /// ::= LabelStr? Instruction* 4653 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4654 // If this basic block starts out with a name, remember it. 4655 std::string Name; 4656 LocTy NameLoc = Lex.getLoc(); 4657 if (Lex.getKind() == lltok::LabelStr) { 4658 Name = Lex.getStrVal(); 4659 Lex.Lex(); 4660 } 4661 4662 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4663 if (!BB) 4664 return Error(NameLoc, 4665 "unable to create block named '" + Name + "'"); 4666 4667 std::string NameStr; 4668 4669 // Parse the instructions in this block until we get a terminator. 4670 Instruction *Inst; 4671 do { 4672 // This instruction may have three possibilities for a name: a) none 4673 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4674 LocTy NameLoc = Lex.getLoc(); 4675 int NameID = -1; 4676 NameStr = ""; 4677 4678 if (Lex.getKind() == lltok::LocalVarID) { 4679 NameID = Lex.getUIntVal(); 4680 Lex.Lex(); 4681 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4682 return true; 4683 } else if (Lex.getKind() == lltok::LocalVar) { 4684 NameStr = Lex.getStrVal(); 4685 Lex.Lex(); 4686 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4687 return true; 4688 } 4689 4690 switch (ParseInstruction(Inst, BB, PFS)) { 4691 default: llvm_unreachable("Unknown ParseInstruction result!"); 4692 case InstError: return true; 4693 case InstNormal: 4694 BB->getInstList().push_back(Inst); 4695 4696 // With a normal result, we check to see if the instruction is followed by 4697 // a comma and metadata. 4698 if (EatIfPresent(lltok::comma)) 4699 if (ParseInstructionMetadata(*Inst)) 4700 return true; 4701 break; 4702 case InstExtraComma: 4703 BB->getInstList().push_back(Inst); 4704 4705 // If the instruction parser ate an extra comma at the end of it, it 4706 // *must* be followed by metadata. 4707 if (ParseInstructionMetadata(*Inst)) 4708 return true; 4709 break; 4710 } 4711 4712 // Set the name on the instruction. 4713 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4714 } while (!isa<TerminatorInst>(Inst)); 4715 4716 return false; 4717 } 4718 4719 //===----------------------------------------------------------------------===// 4720 // Instruction Parsing. 4721 //===----------------------------------------------------------------------===// 4722 4723 /// ParseInstruction - Parse one of the many different instructions. 4724 /// 4725 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4726 PerFunctionState &PFS) { 4727 lltok::Kind Token = Lex.getKind(); 4728 if (Token == lltok::Eof) 4729 return TokError("found end of file when expecting more instructions"); 4730 LocTy Loc = Lex.getLoc(); 4731 unsigned KeywordVal = Lex.getUIntVal(); 4732 Lex.Lex(); // Eat the keyword. 4733 4734 switch (Token) { 4735 default: return Error(Loc, "expected instruction opcode"); 4736 // Terminator Instructions. 4737 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4738 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4739 case lltok::kw_br: return ParseBr(Inst, PFS); 4740 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4741 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4742 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4743 case lltok::kw_resume: return ParseResume(Inst, PFS); 4744 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4745 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4746 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4747 case lltok::kw_terminatepad: return ParseTerminatePad(Inst, PFS); 4748 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4749 case lltok::kw_catchendpad: return ParseCatchEndPad(Inst, PFS); 4750 case lltok::kw_cleanupendpad: return ParseCleanupEndPad(Inst, PFS); 4751 // Binary Operators. 4752 case lltok::kw_add: 4753 case lltok::kw_sub: 4754 case lltok::kw_mul: 4755 case lltok::kw_shl: { 4756 bool NUW = EatIfPresent(lltok::kw_nuw); 4757 bool NSW = EatIfPresent(lltok::kw_nsw); 4758 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4759 4760 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4761 4762 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4763 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4764 return false; 4765 } 4766 case lltok::kw_fadd: 4767 case lltok::kw_fsub: 4768 case lltok::kw_fmul: 4769 case lltok::kw_fdiv: 4770 case lltok::kw_frem: { 4771 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4772 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4773 if (Res != 0) 4774 return Res; 4775 if (FMF.any()) 4776 Inst->setFastMathFlags(FMF); 4777 return 0; 4778 } 4779 4780 case lltok::kw_sdiv: 4781 case lltok::kw_udiv: 4782 case lltok::kw_lshr: 4783 case lltok::kw_ashr: { 4784 bool Exact = EatIfPresent(lltok::kw_exact); 4785 4786 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4787 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4788 return false; 4789 } 4790 4791 case lltok::kw_urem: 4792 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4793 case lltok::kw_and: 4794 case lltok::kw_or: 4795 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4796 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4797 case lltok::kw_fcmp: { 4798 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4799 int Res = ParseCompare(Inst, PFS, KeywordVal); 4800 if (Res != 0) 4801 return Res; 4802 if (FMF.any()) 4803 Inst->setFastMathFlags(FMF); 4804 return 0; 4805 } 4806 4807 // Casts. 4808 case lltok::kw_trunc: 4809 case lltok::kw_zext: 4810 case lltok::kw_sext: 4811 case lltok::kw_fptrunc: 4812 case lltok::kw_fpext: 4813 case lltok::kw_bitcast: 4814 case lltok::kw_addrspacecast: 4815 case lltok::kw_uitofp: 4816 case lltok::kw_sitofp: 4817 case lltok::kw_fptoui: 4818 case lltok::kw_fptosi: 4819 case lltok::kw_inttoptr: 4820 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4821 // Other. 4822 case lltok::kw_select: return ParseSelect(Inst, PFS); 4823 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4824 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4825 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4826 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4827 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4828 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 4829 // Call. 4830 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 4831 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 4832 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 4833 // Memory. 4834 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 4835 case lltok::kw_load: return ParseLoad(Inst, PFS); 4836 case lltok::kw_store: return ParseStore(Inst, PFS); 4837 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 4838 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 4839 case lltok::kw_fence: return ParseFence(Inst, PFS); 4840 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 4841 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 4842 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 4843 } 4844 } 4845 4846 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 4847 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 4848 if (Opc == Instruction::FCmp) { 4849 switch (Lex.getKind()) { 4850 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 4851 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 4852 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 4853 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 4854 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 4855 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 4856 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 4857 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 4858 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 4859 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 4860 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 4861 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 4862 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 4863 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 4864 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 4865 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 4866 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 4867 } 4868 } else { 4869 switch (Lex.getKind()) { 4870 default: return TokError("expected icmp predicate (e.g. 'eq')"); 4871 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 4872 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 4873 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 4874 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 4875 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 4876 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 4877 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 4878 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 4879 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 4880 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 4881 } 4882 } 4883 Lex.Lex(); 4884 return false; 4885 } 4886 4887 //===----------------------------------------------------------------------===// 4888 // Terminator Instructions. 4889 //===----------------------------------------------------------------------===// 4890 4891 /// ParseRet - Parse a return instruction. 4892 /// ::= 'ret' void (',' !dbg, !1)* 4893 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 4894 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 4895 PerFunctionState &PFS) { 4896 SMLoc TypeLoc = Lex.getLoc(); 4897 Type *Ty = nullptr; 4898 if (ParseType(Ty, true /*void allowed*/)) return true; 4899 4900 Type *ResType = PFS.getFunction().getReturnType(); 4901 4902 if (Ty->isVoidTy()) { 4903 if (!ResType->isVoidTy()) 4904 return Error(TypeLoc, "value doesn't match function result type '" + 4905 getTypeString(ResType) + "'"); 4906 4907 Inst = ReturnInst::Create(Context); 4908 return false; 4909 } 4910 4911 Value *RV; 4912 if (ParseValue(Ty, RV, PFS)) return true; 4913 4914 if (ResType != RV->getType()) 4915 return Error(TypeLoc, "value doesn't match function result type '" + 4916 getTypeString(ResType) + "'"); 4917 4918 Inst = ReturnInst::Create(Context, RV); 4919 return false; 4920 } 4921 4922 4923 /// ParseBr 4924 /// ::= 'br' TypeAndValue 4925 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4926 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 4927 LocTy Loc, Loc2; 4928 Value *Op0; 4929 BasicBlock *Op1, *Op2; 4930 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 4931 4932 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 4933 Inst = BranchInst::Create(BB); 4934 return false; 4935 } 4936 4937 if (Op0->getType() != Type::getInt1Ty(Context)) 4938 return Error(Loc, "branch condition must have 'i1' type"); 4939 4940 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 4941 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 4942 ParseToken(lltok::comma, "expected ',' after true destination") || 4943 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 4944 return true; 4945 4946 Inst = BranchInst::Create(Op1, Op2, Op0); 4947 return false; 4948 } 4949 4950 /// ParseSwitch 4951 /// Instruction 4952 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 4953 /// JumpTable 4954 /// ::= (TypeAndValue ',' TypeAndValue)* 4955 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 4956 LocTy CondLoc, BBLoc; 4957 Value *Cond; 4958 BasicBlock *DefaultBB; 4959 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 4960 ParseToken(lltok::comma, "expected ',' after switch condition") || 4961 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 4962 ParseToken(lltok::lsquare, "expected '[' with switch table")) 4963 return true; 4964 4965 if (!Cond->getType()->isIntegerTy()) 4966 return Error(CondLoc, "switch condition must have integer type"); 4967 4968 // Parse the jump table pairs. 4969 SmallPtrSet<Value*, 32> SeenCases; 4970 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 4971 while (Lex.getKind() != lltok::rsquare) { 4972 Value *Constant; 4973 BasicBlock *DestBB; 4974 4975 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 4976 ParseToken(lltok::comma, "expected ',' after case value") || 4977 ParseTypeAndBasicBlock(DestBB, PFS)) 4978 return true; 4979 4980 if (!SeenCases.insert(Constant).second) 4981 return Error(CondLoc, "duplicate case value in switch"); 4982 if (!isa<ConstantInt>(Constant)) 4983 return Error(CondLoc, "case value is not a constant integer"); 4984 4985 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 4986 } 4987 4988 Lex.Lex(); // Eat the ']'. 4989 4990 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 4991 for (unsigned i = 0, e = Table.size(); i != e; ++i) 4992 SI->addCase(Table[i].first, Table[i].second); 4993 Inst = SI; 4994 return false; 4995 } 4996 4997 /// ParseIndirectBr 4998 /// Instruction 4999 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5000 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5001 LocTy AddrLoc; 5002 Value *Address; 5003 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5004 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5005 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5006 return true; 5007 5008 if (!Address->getType()->isPointerTy()) 5009 return Error(AddrLoc, "indirectbr address must have pointer type"); 5010 5011 // Parse the destination list. 5012 SmallVector<BasicBlock*, 16> DestList; 5013 5014 if (Lex.getKind() != lltok::rsquare) { 5015 BasicBlock *DestBB; 5016 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5017 return true; 5018 DestList.push_back(DestBB); 5019 5020 while (EatIfPresent(lltok::comma)) { 5021 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5022 return true; 5023 DestList.push_back(DestBB); 5024 } 5025 } 5026 5027 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5028 return true; 5029 5030 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5031 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5032 IBI->addDestination(DestList[i]); 5033 Inst = IBI; 5034 return false; 5035 } 5036 5037 5038 /// ParseInvoke 5039 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5040 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5041 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5042 LocTy CallLoc = Lex.getLoc(); 5043 AttrBuilder RetAttrs, FnAttrs; 5044 std::vector<unsigned> FwdRefAttrGrps; 5045 LocTy NoBuiltinLoc; 5046 unsigned CC; 5047 Type *RetType = nullptr; 5048 LocTy RetTypeLoc; 5049 ValID CalleeID; 5050 SmallVector<ParamInfo, 16> ArgList; 5051 SmallVector<OperandBundleDef, 2> BundleList; 5052 5053 BasicBlock *NormalBB, *UnwindBB; 5054 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5055 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5056 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5057 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5058 NoBuiltinLoc) || 5059 ParseOptionalOperandBundles(BundleList, PFS) || 5060 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5061 ParseTypeAndBasicBlock(NormalBB, PFS) || 5062 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5063 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5064 return true; 5065 5066 // If RetType is a non-function pointer type, then this is the short syntax 5067 // for the call, which means that RetType is just the return type. Infer the 5068 // rest of the function argument types from the arguments that are present. 5069 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5070 if (!Ty) { 5071 // Pull out the types of all of the arguments... 5072 std::vector<Type*> ParamTypes; 5073 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5074 ParamTypes.push_back(ArgList[i].V->getType()); 5075 5076 if (!FunctionType::isValidReturnType(RetType)) 5077 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5078 5079 Ty = FunctionType::get(RetType, ParamTypes, false); 5080 } 5081 5082 CalleeID.FTy = Ty; 5083 5084 // Look up the callee. 5085 Value *Callee; 5086 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5087 return true; 5088 5089 // Set up the Attribute for the function. 5090 SmallVector<AttributeSet, 8> Attrs; 5091 if (RetAttrs.hasAttributes()) 5092 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5093 AttributeSet::ReturnIndex, 5094 RetAttrs)); 5095 5096 SmallVector<Value*, 8> Args; 5097 5098 // Loop through FunctionType's arguments and ensure they are specified 5099 // correctly. Also, gather any parameter attributes. 5100 FunctionType::param_iterator I = Ty->param_begin(); 5101 FunctionType::param_iterator E = Ty->param_end(); 5102 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5103 Type *ExpectedTy = nullptr; 5104 if (I != E) { 5105 ExpectedTy = *I++; 5106 } else if (!Ty->isVarArg()) { 5107 return Error(ArgList[i].Loc, "too many arguments specified"); 5108 } 5109 5110 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5111 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5112 getTypeString(ExpectedTy) + "'"); 5113 Args.push_back(ArgList[i].V); 5114 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5115 AttrBuilder B(ArgList[i].Attrs, i + 1); 5116 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5117 } 5118 } 5119 5120 if (I != E) 5121 return Error(CallLoc, "not enough parameters specified for call"); 5122 5123 if (FnAttrs.hasAttributes()) { 5124 if (FnAttrs.hasAlignmentAttr()) 5125 return Error(CallLoc, "invoke instructions may not have an alignment"); 5126 5127 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5128 AttributeSet::FunctionIndex, 5129 FnAttrs)); 5130 } 5131 5132 // Finish off the Attribute and check them 5133 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5134 5135 InvokeInst *II = 5136 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5137 II->setCallingConv(CC); 5138 II->setAttributes(PAL); 5139 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5140 Inst = II; 5141 return false; 5142 } 5143 5144 /// ParseResume 5145 /// ::= 'resume' TypeAndValue 5146 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5147 Value *Exn; LocTy ExnLoc; 5148 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5149 return true; 5150 5151 ResumeInst *RI = ResumeInst::Create(Exn); 5152 Inst = RI; 5153 return false; 5154 } 5155 5156 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5157 PerFunctionState &PFS) { 5158 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5159 return true; 5160 5161 while (Lex.getKind() != lltok::rsquare) { 5162 // If this isn't the first argument, we need a comma. 5163 if (!Args.empty() && 5164 ParseToken(lltok::comma, "expected ',' in argument list")) 5165 return true; 5166 5167 // Parse the argument. 5168 LocTy ArgLoc; 5169 Type *ArgTy = nullptr; 5170 if (ParseType(ArgTy, ArgLoc)) 5171 return true; 5172 5173 Value *V; 5174 if (ArgTy->isMetadataTy()) { 5175 if (ParseMetadataAsValue(V, PFS)) 5176 return true; 5177 } else { 5178 if (ParseValue(ArgTy, V, PFS)) 5179 return true; 5180 } 5181 Args.push_back(V); 5182 } 5183 5184 Lex.Lex(); // Lex the ']'. 5185 return false; 5186 } 5187 5188 /// ParseCleanupRet 5189 /// ::= 'cleanupret' Value unwind ('to' 'caller' | TypeAndValue) 5190 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5191 Value *CleanupPad = nullptr; 5192 5193 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5194 return true; 5195 5196 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5197 return true; 5198 5199 BasicBlock *UnwindBB = nullptr; 5200 if (Lex.getKind() == lltok::kw_to) { 5201 Lex.Lex(); 5202 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5203 return true; 5204 } else { 5205 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5206 return true; 5207 } 5208 } 5209 5210 Inst = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5211 return false; 5212 } 5213 5214 /// ParseCatchRet 5215 /// ::= 'catchret' Value 'to' TypeAndValue 5216 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5217 Value *CatchPad = nullptr; 5218 5219 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS, OC_CatchPad)) 5220 return true; 5221 5222 BasicBlock *BB; 5223 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5224 ParseTypeAndBasicBlock(BB, PFS)) 5225 return true; 5226 5227 Inst = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 5228 return false; 5229 } 5230 5231 /// ParseCatchPad 5232 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5233 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5234 SmallVector<Value *, 8> Args; 5235 if (ParseExceptionArgs(Args, PFS)) 5236 return true; 5237 5238 BasicBlock *NormalBB, *UnwindBB; 5239 if (ParseToken(lltok::kw_to, "expected 'to' in catchpad") || 5240 ParseTypeAndBasicBlock(NormalBB, PFS) || 5241 ParseToken(lltok::kw_unwind, "expected 'unwind' in catchpad") || 5242 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5243 return true; 5244 5245 Inst = CatchPadInst::Create(NormalBB, UnwindBB, Args); 5246 return false; 5247 } 5248 5249 /// ParseTerminatePad 5250 /// ::= 'terminatepad' ParamList 'to' TypeAndValue 5251 bool LLParser::ParseTerminatePad(Instruction *&Inst, PerFunctionState &PFS) { 5252 SmallVector<Value *, 8> Args; 5253 if (ParseExceptionArgs(Args, PFS)) 5254 return true; 5255 5256 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in terminatepad")) 5257 return true; 5258 5259 BasicBlock *UnwindBB = nullptr; 5260 if (Lex.getKind() == lltok::kw_to) { 5261 Lex.Lex(); 5262 if (ParseToken(lltok::kw_caller, "expected 'caller' in terminatepad")) 5263 return true; 5264 } else { 5265 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5266 return true; 5267 } 5268 } 5269 5270 Inst = TerminatePadInst::Create(Context, UnwindBB, Args); 5271 return false; 5272 } 5273 5274 /// ParseCleanupPad 5275 /// ::= 'cleanuppad' ParamList 5276 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5277 SmallVector<Value *, 8> Args; 5278 if (ParseExceptionArgs(Args, PFS)) 5279 return true; 5280 5281 Inst = CleanupPadInst::Create(Context, Args); 5282 return false; 5283 } 5284 5285 /// ParseCatchEndPad 5286 /// ::= 'catchendpad' unwind ('to' 'caller' | TypeAndValue) 5287 bool LLParser::ParseCatchEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5288 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5289 return true; 5290 5291 BasicBlock *UnwindBB = nullptr; 5292 if (Lex.getKind() == lltok::kw_to) { 5293 Lex.Lex(); 5294 if (Lex.getKind() == lltok::kw_caller) { 5295 Lex.Lex(); 5296 } else { 5297 return true; 5298 } 5299 } else { 5300 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5301 return true; 5302 } 5303 } 5304 5305 Inst = CatchEndPadInst::Create(Context, UnwindBB); 5306 return false; 5307 } 5308 5309 /// ParseCatchEndPad 5310 /// ::= 'cleanupendpad' Value unwind ('to' 'caller' | TypeAndValue) 5311 bool LLParser::ParseCleanupEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5312 Value *CleanupPad = nullptr; 5313 5314 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5315 return true; 5316 5317 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5318 return true; 5319 5320 BasicBlock *UnwindBB = nullptr; 5321 if (Lex.getKind() == lltok::kw_to) { 5322 Lex.Lex(); 5323 if (Lex.getKind() == lltok::kw_caller) { 5324 Lex.Lex(); 5325 } else { 5326 return true; 5327 } 5328 } else { 5329 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5330 return true; 5331 } 5332 } 5333 5334 Inst = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5335 return false; 5336 } 5337 5338 //===----------------------------------------------------------------------===// 5339 // Binary Operators. 5340 //===----------------------------------------------------------------------===// 5341 5342 /// ParseArithmetic 5343 /// ::= ArithmeticOps TypeAndValue ',' Value 5344 /// 5345 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5346 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5347 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5348 unsigned Opc, unsigned OperandType) { 5349 LocTy Loc; Value *LHS, *RHS; 5350 if (ParseTypeAndValue(LHS, Loc, PFS) || 5351 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5352 ParseValue(LHS->getType(), RHS, PFS)) 5353 return true; 5354 5355 bool Valid; 5356 switch (OperandType) { 5357 default: llvm_unreachable("Unknown operand type!"); 5358 case 0: // int or FP. 5359 Valid = LHS->getType()->isIntOrIntVectorTy() || 5360 LHS->getType()->isFPOrFPVectorTy(); 5361 break; 5362 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5363 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5364 } 5365 5366 if (!Valid) 5367 return Error(Loc, "invalid operand type for instruction"); 5368 5369 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5370 return false; 5371 } 5372 5373 /// ParseLogical 5374 /// ::= ArithmeticOps TypeAndValue ',' Value { 5375 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5376 unsigned Opc) { 5377 LocTy Loc; Value *LHS, *RHS; 5378 if (ParseTypeAndValue(LHS, Loc, PFS) || 5379 ParseToken(lltok::comma, "expected ',' in logical operation") || 5380 ParseValue(LHS->getType(), RHS, PFS)) 5381 return true; 5382 5383 if (!LHS->getType()->isIntOrIntVectorTy()) 5384 return Error(Loc,"instruction requires integer or integer vector operands"); 5385 5386 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5387 return false; 5388 } 5389 5390 5391 /// ParseCompare 5392 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5393 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5394 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5395 unsigned Opc) { 5396 // Parse the integer/fp comparison predicate. 5397 LocTy Loc; 5398 unsigned Pred; 5399 Value *LHS, *RHS; 5400 if (ParseCmpPredicate(Pred, Opc) || 5401 ParseTypeAndValue(LHS, Loc, PFS) || 5402 ParseToken(lltok::comma, "expected ',' after compare value") || 5403 ParseValue(LHS->getType(), RHS, PFS)) 5404 return true; 5405 5406 if (Opc == Instruction::FCmp) { 5407 if (!LHS->getType()->isFPOrFPVectorTy()) 5408 return Error(Loc, "fcmp requires floating point operands"); 5409 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5410 } else { 5411 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5412 if (!LHS->getType()->isIntOrIntVectorTy() && 5413 !LHS->getType()->getScalarType()->isPointerTy()) 5414 return Error(Loc, "icmp requires integer operands"); 5415 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5416 } 5417 return false; 5418 } 5419 5420 //===----------------------------------------------------------------------===// 5421 // Other Instructions. 5422 //===----------------------------------------------------------------------===// 5423 5424 5425 /// ParseCast 5426 /// ::= CastOpc TypeAndValue 'to' Type 5427 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5428 unsigned Opc) { 5429 LocTy Loc; 5430 Value *Op; 5431 Type *DestTy = nullptr; 5432 if (ParseTypeAndValue(Op, Loc, PFS) || 5433 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5434 ParseType(DestTy)) 5435 return true; 5436 5437 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5438 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5439 return Error(Loc, "invalid cast opcode for cast from '" + 5440 getTypeString(Op->getType()) + "' to '" + 5441 getTypeString(DestTy) + "'"); 5442 } 5443 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5444 return false; 5445 } 5446 5447 /// ParseSelect 5448 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5449 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5450 LocTy Loc; 5451 Value *Op0, *Op1, *Op2; 5452 if (ParseTypeAndValue(Op0, Loc, PFS) || 5453 ParseToken(lltok::comma, "expected ',' after select condition") || 5454 ParseTypeAndValue(Op1, PFS) || 5455 ParseToken(lltok::comma, "expected ',' after select value") || 5456 ParseTypeAndValue(Op2, PFS)) 5457 return true; 5458 5459 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5460 return Error(Loc, Reason); 5461 5462 Inst = SelectInst::Create(Op0, Op1, Op2); 5463 return false; 5464 } 5465 5466 /// ParseVA_Arg 5467 /// ::= 'va_arg' TypeAndValue ',' Type 5468 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5469 Value *Op; 5470 Type *EltTy = nullptr; 5471 LocTy TypeLoc; 5472 if (ParseTypeAndValue(Op, PFS) || 5473 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5474 ParseType(EltTy, TypeLoc)) 5475 return true; 5476 5477 if (!EltTy->isFirstClassType()) 5478 return Error(TypeLoc, "va_arg requires operand with first class type"); 5479 5480 Inst = new VAArgInst(Op, EltTy); 5481 return false; 5482 } 5483 5484 /// ParseExtractElement 5485 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5486 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5487 LocTy Loc; 5488 Value *Op0, *Op1; 5489 if (ParseTypeAndValue(Op0, Loc, PFS) || 5490 ParseToken(lltok::comma, "expected ',' after extract value") || 5491 ParseTypeAndValue(Op1, PFS)) 5492 return true; 5493 5494 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5495 return Error(Loc, "invalid extractelement operands"); 5496 5497 Inst = ExtractElementInst::Create(Op0, Op1); 5498 return false; 5499 } 5500 5501 /// ParseInsertElement 5502 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5503 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5504 LocTy Loc; 5505 Value *Op0, *Op1, *Op2; 5506 if (ParseTypeAndValue(Op0, Loc, PFS) || 5507 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5508 ParseTypeAndValue(Op1, PFS) || 5509 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5510 ParseTypeAndValue(Op2, PFS)) 5511 return true; 5512 5513 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5514 return Error(Loc, "invalid insertelement operands"); 5515 5516 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5517 return false; 5518 } 5519 5520 /// ParseShuffleVector 5521 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5522 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5523 LocTy Loc; 5524 Value *Op0, *Op1, *Op2; 5525 if (ParseTypeAndValue(Op0, Loc, PFS) || 5526 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5527 ParseTypeAndValue(Op1, PFS) || 5528 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5529 ParseTypeAndValue(Op2, PFS)) 5530 return true; 5531 5532 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5533 return Error(Loc, "invalid shufflevector operands"); 5534 5535 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5536 return false; 5537 } 5538 5539 /// ParsePHI 5540 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5541 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5542 Type *Ty = nullptr; LocTy TypeLoc; 5543 Value *Op0, *Op1; 5544 5545 if (ParseType(Ty, TypeLoc) || 5546 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5547 ParseValue(Ty, Op0, PFS) || 5548 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5549 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5550 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5551 return true; 5552 5553 bool AteExtraComma = false; 5554 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5555 while (1) { 5556 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5557 5558 if (!EatIfPresent(lltok::comma)) 5559 break; 5560 5561 if (Lex.getKind() == lltok::MetadataVar) { 5562 AteExtraComma = true; 5563 break; 5564 } 5565 5566 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5567 ParseValue(Ty, Op0, PFS) || 5568 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5569 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5570 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5571 return true; 5572 } 5573 5574 if (!Ty->isFirstClassType()) 5575 return Error(TypeLoc, "phi node must have first class type"); 5576 5577 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5578 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5579 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5580 Inst = PN; 5581 return AteExtraComma ? InstExtraComma : InstNormal; 5582 } 5583 5584 /// ParseLandingPad 5585 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5586 /// Clause 5587 /// ::= 'catch' TypeAndValue 5588 /// ::= 'filter' 5589 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5590 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5591 Type *Ty = nullptr; LocTy TyLoc; 5592 5593 if (ParseType(Ty, TyLoc)) 5594 return true; 5595 5596 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5597 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5598 5599 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5600 LandingPadInst::ClauseType CT; 5601 if (EatIfPresent(lltok::kw_catch)) 5602 CT = LandingPadInst::Catch; 5603 else if (EatIfPresent(lltok::kw_filter)) 5604 CT = LandingPadInst::Filter; 5605 else 5606 return TokError("expected 'catch' or 'filter' clause type"); 5607 5608 Value *V; 5609 LocTy VLoc; 5610 if (ParseTypeAndValue(V, VLoc, PFS)) 5611 return true; 5612 5613 // A 'catch' type expects a non-array constant. A filter clause expects an 5614 // array constant. 5615 if (CT == LandingPadInst::Catch) { 5616 if (isa<ArrayType>(V->getType())) 5617 Error(VLoc, "'catch' clause has an invalid type"); 5618 } else { 5619 if (!isa<ArrayType>(V->getType())) 5620 Error(VLoc, "'filter' clause has an invalid type"); 5621 } 5622 5623 Constant *CV = dyn_cast<Constant>(V); 5624 if (!CV) 5625 return Error(VLoc, "clause argument must be a constant"); 5626 LP->addClause(CV); 5627 } 5628 5629 Inst = LP.release(); 5630 return false; 5631 } 5632 5633 /// ParseCall 5634 /// ::= 'call' OptionalCallingConv OptionalAttrs Type Value 5635 /// ParameterList OptionalAttrs 5636 /// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value 5637 /// ParameterList OptionalAttrs 5638 /// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value 5639 /// ParameterList OptionalAttrs 5640 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5641 CallInst::TailCallKind TCK) { 5642 AttrBuilder RetAttrs, FnAttrs; 5643 std::vector<unsigned> FwdRefAttrGrps; 5644 LocTy BuiltinLoc; 5645 unsigned CC; 5646 Type *RetType = nullptr; 5647 LocTy RetTypeLoc; 5648 ValID CalleeID; 5649 SmallVector<ParamInfo, 16> ArgList; 5650 SmallVector<OperandBundleDef, 2> BundleList; 5651 LocTy CallLoc = Lex.getLoc(); 5652 5653 if ((TCK != CallInst::TCK_None && 5654 ParseToken(lltok::kw_call, "expected 'tail call'")) || 5655 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5656 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5657 ParseValID(CalleeID) || 5658 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5659 PFS.getFunction().isVarArg()) || 5660 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5661 ParseOptionalOperandBundles(BundleList, PFS)) 5662 return true; 5663 5664 // If RetType is a non-function pointer type, then this is the short syntax 5665 // for the call, which means that RetType is just the return type. Infer the 5666 // rest of the function argument types from the arguments that are present. 5667 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5668 if (!Ty) { 5669 // Pull out the types of all of the arguments... 5670 std::vector<Type*> ParamTypes; 5671 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5672 ParamTypes.push_back(ArgList[i].V->getType()); 5673 5674 if (!FunctionType::isValidReturnType(RetType)) 5675 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5676 5677 Ty = FunctionType::get(RetType, ParamTypes, false); 5678 } 5679 5680 CalleeID.FTy = Ty; 5681 5682 // Look up the callee. 5683 Value *Callee; 5684 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5685 return true; 5686 5687 // Set up the Attribute for the function. 5688 SmallVector<AttributeSet, 8> Attrs; 5689 if (RetAttrs.hasAttributes()) 5690 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5691 AttributeSet::ReturnIndex, 5692 RetAttrs)); 5693 5694 SmallVector<Value*, 8> Args; 5695 5696 // Loop through FunctionType's arguments and ensure they are specified 5697 // correctly. Also, gather any parameter attributes. 5698 FunctionType::param_iterator I = Ty->param_begin(); 5699 FunctionType::param_iterator E = Ty->param_end(); 5700 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5701 Type *ExpectedTy = nullptr; 5702 if (I != E) { 5703 ExpectedTy = *I++; 5704 } else if (!Ty->isVarArg()) { 5705 return Error(ArgList[i].Loc, "too many arguments specified"); 5706 } 5707 5708 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5709 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5710 getTypeString(ExpectedTy) + "'"); 5711 Args.push_back(ArgList[i].V); 5712 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5713 AttrBuilder B(ArgList[i].Attrs, i + 1); 5714 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5715 } 5716 } 5717 5718 if (I != E) 5719 return Error(CallLoc, "not enough parameters specified for call"); 5720 5721 if (FnAttrs.hasAttributes()) { 5722 if (FnAttrs.hasAlignmentAttr()) 5723 return Error(CallLoc, "call instructions may not have an alignment"); 5724 5725 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5726 AttributeSet::FunctionIndex, 5727 FnAttrs)); 5728 } 5729 5730 // Finish off the Attribute and check them 5731 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5732 5733 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5734 CI->setTailCallKind(TCK); 5735 CI->setCallingConv(CC); 5736 CI->setAttributes(PAL); 5737 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5738 Inst = CI; 5739 return false; 5740 } 5741 5742 //===----------------------------------------------------------------------===// 5743 // Memory Instructions. 5744 //===----------------------------------------------------------------------===// 5745 5746 /// ParseAlloc 5747 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)? 5748 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5749 Value *Size = nullptr; 5750 LocTy SizeLoc, TyLoc; 5751 unsigned Alignment = 0; 5752 Type *Ty = nullptr; 5753 5754 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5755 5756 if (ParseType(Ty, TyLoc)) return true; 5757 5758 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5759 return Error(TyLoc, "invalid type for alloca"); 5760 5761 bool AteExtraComma = false; 5762 if (EatIfPresent(lltok::comma)) { 5763 if (Lex.getKind() == lltok::kw_align) { 5764 if (ParseOptionalAlignment(Alignment)) return true; 5765 } else if (Lex.getKind() == lltok::MetadataVar) { 5766 AteExtraComma = true; 5767 } else { 5768 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5769 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5770 return true; 5771 } 5772 } 5773 5774 if (Size && !Size->getType()->isIntegerTy()) 5775 return Error(SizeLoc, "element count must have integer type"); 5776 5777 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5778 AI->setUsedWithInAlloca(IsInAlloca); 5779 Inst = AI; 5780 return AteExtraComma ? InstExtraComma : InstNormal; 5781 } 5782 5783 /// ParseLoad 5784 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5785 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5786 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5787 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5788 Value *Val; LocTy Loc; 5789 unsigned Alignment = 0; 5790 bool AteExtraComma = false; 5791 bool isAtomic = false; 5792 AtomicOrdering Ordering = NotAtomic; 5793 SynchronizationScope Scope = CrossThread; 5794 5795 if (Lex.getKind() == lltok::kw_atomic) { 5796 isAtomic = true; 5797 Lex.Lex(); 5798 } 5799 5800 bool isVolatile = false; 5801 if (Lex.getKind() == lltok::kw_volatile) { 5802 isVolatile = true; 5803 Lex.Lex(); 5804 } 5805 5806 Type *Ty; 5807 LocTy ExplicitTypeLoc = Lex.getLoc(); 5808 if (ParseType(Ty) || 5809 ParseToken(lltok::comma, "expected comma after load's type") || 5810 ParseTypeAndValue(Val, Loc, PFS) || 5811 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5812 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5813 return true; 5814 5815 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 5816 return Error(Loc, "load operand must be a pointer to a first class type"); 5817 if (isAtomic && !Alignment) 5818 return Error(Loc, "atomic load must have explicit non-zero alignment"); 5819 if (Ordering == Release || Ordering == AcquireRelease) 5820 return Error(Loc, "atomic load cannot use Release ordering"); 5821 5822 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 5823 return Error(ExplicitTypeLoc, 5824 "explicit pointee type doesn't match operand's pointee type"); 5825 5826 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 5827 return AteExtraComma ? InstExtraComma : InstNormal; 5828 } 5829 5830 /// ParseStore 5831 5832 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 5833 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 5834 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5835 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 5836 Value *Val, *Ptr; LocTy Loc, PtrLoc; 5837 unsigned Alignment = 0; 5838 bool AteExtraComma = false; 5839 bool isAtomic = false; 5840 AtomicOrdering Ordering = NotAtomic; 5841 SynchronizationScope Scope = CrossThread; 5842 5843 if (Lex.getKind() == lltok::kw_atomic) { 5844 isAtomic = true; 5845 Lex.Lex(); 5846 } 5847 5848 bool isVolatile = false; 5849 if (Lex.getKind() == lltok::kw_volatile) { 5850 isVolatile = true; 5851 Lex.Lex(); 5852 } 5853 5854 if (ParseTypeAndValue(Val, Loc, PFS) || 5855 ParseToken(lltok::comma, "expected ',' after store operand") || 5856 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5857 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5858 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5859 return true; 5860 5861 if (!Ptr->getType()->isPointerTy()) 5862 return Error(PtrLoc, "store operand must be a pointer"); 5863 if (!Val->getType()->isFirstClassType()) 5864 return Error(Loc, "store operand must be a first class value"); 5865 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5866 return Error(Loc, "stored value and pointer type do not match"); 5867 if (isAtomic && !Alignment) 5868 return Error(Loc, "atomic store must have explicit non-zero alignment"); 5869 if (Ordering == Acquire || Ordering == AcquireRelease) 5870 return Error(Loc, "atomic store cannot use Acquire ordering"); 5871 5872 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 5873 return AteExtraComma ? InstExtraComma : InstNormal; 5874 } 5875 5876 /// ParseCmpXchg 5877 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 5878 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 5879 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 5880 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 5881 bool AteExtraComma = false; 5882 AtomicOrdering SuccessOrdering = NotAtomic; 5883 AtomicOrdering FailureOrdering = NotAtomic; 5884 SynchronizationScope Scope = CrossThread; 5885 bool isVolatile = false; 5886 bool isWeak = false; 5887 5888 if (EatIfPresent(lltok::kw_weak)) 5889 isWeak = true; 5890 5891 if (EatIfPresent(lltok::kw_volatile)) 5892 isVolatile = true; 5893 5894 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5895 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 5896 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 5897 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 5898 ParseTypeAndValue(New, NewLoc, PFS) || 5899 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 5900 ParseOrdering(FailureOrdering)) 5901 return true; 5902 5903 if (SuccessOrdering == Unordered || FailureOrdering == Unordered) 5904 return TokError("cmpxchg cannot be unordered"); 5905 if (SuccessOrdering < FailureOrdering) 5906 return TokError("cmpxchg must be at least as ordered on success as failure"); 5907 if (FailureOrdering == Release || FailureOrdering == AcquireRelease) 5908 return TokError("cmpxchg failure ordering cannot include release semantics"); 5909 if (!Ptr->getType()->isPointerTy()) 5910 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 5911 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 5912 return Error(CmpLoc, "compare value and pointer type do not match"); 5913 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 5914 return Error(NewLoc, "new value and pointer type do not match"); 5915 if (!New->getType()->isIntegerTy()) 5916 return Error(NewLoc, "cmpxchg operand must be an integer"); 5917 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 5918 if (Size < 8 || (Size & (Size - 1))) 5919 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 5920 " integer"); 5921 5922 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 5923 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 5924 CXI->setVolatile(isVolatile); 5925 CXI->setWeak(isWeak); 5926 Inst = CXI; 5927 return AteExtraComma ? InstExtraComma : InstNormal; 5928 } 5929 5930 /// ParseAtomicRMW 5931 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 5932 /// 'singlethread'? AtomicOrdering 5933 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 5934 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 5935 bool AteExtraComma = false; 5936 AtomicOrdering Ordering = NotAtomic; 5937 SynchronizationScope Scope = CrossThread; 5938 bool isVolatile = false; 5939 AtomicRMWInst::BinOp Operation; 5940 5941 if (EatIfPresent(lltok::kw_volatile)) 5942 isVolatile = true; 5943 5944 switch (Lex.getKind()) { 5945 default: return TokError("expected binary operation in atomicrmw"); 5946 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 5947 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 5948 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 5949 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 5950 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 5951 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 5952 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 5953 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 5954 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 5955 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 5956 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 5957 } 5958 Lex.Lex(); // Eat the operation. 5959 5960 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5961 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 5962 ParseTypeAndValue(Val, ValLoc, PFS) || 5963 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5964 return true; 5965 5966 if (Ordering == Unordered) 5967 return TokError("atomicrmw cannot be unordered"); 5968 if (!Ptr->getType()->isPointerTy()) 5969 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 5970 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5971 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 5972 if (!Val->getType()->isIntegerTy()) 5973 return Error(ValLoc, "atomicrmw operand must be an integer"); 5974 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 5975 if (Size < 8 || (Size & (Size - 1))) 5976 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 5977 " integer"); 5978 5979 AtomicRMWInst *RMWI = 5980 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 5981 RMWI->setVolatile(isVolatile); 5982 Inst = RMWI; 5983 return AteExtraComma ? InstExtraComma : InstNormal; 5984 } 5985 5986 /// ParseFence 5987 /// ::= 'fence' 'singlethread'? AtomicOrdering 5988 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 5989 AtomicOrdering Ordering = NotAtomic; 5990 SynchronizationScope Scope = CrossThread; 5991 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5992 return true; 5993 5994 if (Ordering == Unordered) 5995 return TokError("fence cannot be unordered"); 5996 if (Ordering == Monotonic) 5997 return TokError("fence cannot be monotonic"); 5998 5999 Inst = new FenceInst(Context, Ordering, Scope); 6000 return InstNormal; 6001 } 6002 6003 /// ParseGetElementPtr 6004 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6005 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6006 Value *Ptr = nullptr; 6007 Value *Val = nullptr; 6008 LocTy Loc, EltLoc; 6009 6010 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6011 6012 Type *Ty = nullptr; 6013 LocTy ExplicitTypeLoc = Lex.getLoc(); 6014 if (ParseType(Ty) || 6015 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6016 ParseTypeAndValue(Ptr, Loc, PFS)) 6017 return true; 6018 6019 Type *BaseType = Ptr->getType(); 6020 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6021 if (!BasePointerType) 6022 return Error(Loc, "base of getelementptr must be a pointer"); 6023 6024 if (Ty != BasePointerType->getElementType()) 6025 return Error(ExplicitTypeLoc, 6026 "explicit pointee type doesn't match operand's pointee type"); 6027 6028 SmallVector<Value*, 16> Indices; 6029 bool AteExtraComma = false; 6030 // GEP returns a vector of pointers if at least one of parameters is a vector. 6031 // All vector parameters should have the same vector width. 6032 unsigned GEPWidth = BaseType->isVectorTy() ? 6033 BaseType->getVectorNumElements() : 0; 6034 6035 while (EatIfPresent(lltok::comma)) { 6036 if (Lex.getKind() == lltok::MetadataVar) { 6037 AteExtraComma = true; 6038 break; 6039 } 6040 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6041 if (!Val->getType()->getScalarType()->isIntegerTy()) 6042 return Error(EltLoc, "getelementptr index must be an integer"); 6043 6044 if (Val->getType()->isVectorTy()) { 6045 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6046 if (GEPWidth && GEPWidth != ValNumEl) 6047 return Error(EltLoc, 6048 "getelementptr vector index has a wrong number of elements"); 6049 GEPWidth = ValNumEl; 6050 } 6051 Indices.push_back(Val); 6052 } 6053 6054 SmallPtrSet<Type*, 4> Visited; 6055 if (!Indices.empty() && !Ty->isSized(&Visited)) 6056 return Error(Loc, "base element of getelementptr must be sized"); 6057 6058 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6059 return Error(Loc, "invalid getelementptr indices"); 6060 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6061 if (InBounds) 6062 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6063 return AteExtraComma ? InstExtraComma : InstNormal; 6064 } 6065 6066 /// ParseExtractValue 6067 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6068 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6069 Value *Val; LocTy Loc; 6070 SmallVector<unsigned, 4> Indices; 6071 bool AteExtraComma; 6072 if (ParseTypeAndValue(Val, Loc, PFS) || 6073 ParseIndexList(Indices, AteExtraComma)) 6074 return true; 6075 6076 if (!Val->getType()->isAggregateType()) 6077 return Error(Loc, "extractvalue operand must be aggregate type"); 6078 6079 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6080 return Error(Loc, "invalid indices for extractvalue"); 6081 Inst = ExtractValueInst::Create(Val, Indices); 6082 return AteExtraComma ? InstExtraComma : InstNormal; 6083 } 6084 6085 /// ParseInsertValue 6086 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6087 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6088 Value *Val0, *Val1; LocTy Loc0, Loc1; 6089 SmallVector<unsigned, 4> Indices; 6090 bool AteExtraComma; 6091 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6092 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6093 ParseTypeAndValue(Val1, Loc1, PFS) || 6094 ParseIndexList(Indices, AteExtraComma)) 6095 return true; 6096 6097 if (!Val0->getType()->isAggregateType()) 6098 return Error(Loc0, "insertvalue operand must be aggregate type"); 6099 6100 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6101 if (!IndexedType) 6102 return Error(Loc0, "invalid indices for insertvalue"); 6103 if (IndexedType != Val1->getType()) 6104 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6105 getTypeString(Val1->getType()) + "' instead of '" + 6106 getTypeString(IndexedType) + "'"); 6107 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6108 return AteExtraComma ? InstExtraComma : InstNormal; 6109 } 6110 6111 //===----------------------------------------------------------------------===// 6112 // Embedded metadata. 6113 //===----------------------------------------------------------------------===// 6114 6115 /// ParseMDNodeVector 6116 /// ::= { Element (',' Element)* } 6117 /// Element 6118 /// ::= 'null' | TypeAndValue 6119 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6120 if (ParseToken(lltok::lbrace, "expected '{' here")) 6121 return true; 6122 6123 // Check for an empty list. 6124 if (EatIfPresent(lltok::rbrace)) 6125 return false; 6126 6127 do { 6128 // Null is a special case since it is typeless. 6129 if (EatIfPresent(lltok::kw_null)) { 6130 Elts.push_back(nullptr); 6131 continue; 6132 } 6133 6134 Metadata *MD; 6135 if (ParseMetadata(MD, nullptr)) 6136 return true; 6137 Elts.push_back(MD); 6138 } while (EatIfPresent(lltok::comma)); 6139 6140 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6141 } 6142 6143 //===----------------------------------------------------------------------===// 6144 // Use-list order directives. 6145 //===----------------------------------------------------------------------===// 6146 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6147 SMLoc Loc) { 6148 if (V->use_empty()) 6149 return Error(Loc, "value has no uses"); 6150 6151 unsigned NumUses = 0; 6152 SmallDenseMap<const Use *, unsigned, 16> Order; 6153 for (const Use &U : V->uses()) { 6154 if (++NumUses > Indexes.size()) 6155 break; 6156 Order[&U] = Indexes[NumUses - 1]; 6157 } 6158 if (NumUses < 2) 6159 return Error(Loc, "value only has one use"); 6160 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6161 return Error(Loc, "wrong number of indexes, expected " + 6162 Twine(std::distance(V->use_begin(), V->use_end()))); 6163 6164 V->sortUseList([&](const Use &L, const Use &R) { 6165 return Order.lookup(&L) < Order.lookup(&R); 6166 }); 6167 return false; 6168 } 6169 6170 /// ParseUseListOrderIndexes 6171 /// ::= '{' uint32 (',' uint32)+ '}' 6172 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6173 SMLoc Loc = Lex.getLoc(); 6174 if (ParseToken(lltok::lbrace, "expected '{' here")) 6175 return true; 6176 if (Lex.getKind() == lltok::rbrace) 6177 return Lex.Error("expected non-empty list of uselistorder indexes"); 6178 6179 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6180 // indexes should be distinct numbers in the range [0, size-1], and should 6181 // not be in order. 6182 unsigned Offset = 0; 6183 unsigned Max = 0; 6184 bool IsOrdered = true; 6185 assert(Indexes.empty() && "Expected empty order vector"); 6186 do { 6187 unsigned Index; 6188 if (ParseUInt32(Index)) 6189 return true; 6190 6191 // Update consistency checks. 6192 Offset += Index - Indexes.size(); 6193 Max = std::max(Max, Index); 6194 IsOrdered &= Index == Indexes.size(); 6195 6196 Indexes.push_back(Index); 6197 } while (EatIfPresent(lltok::comma)); 6198 6199 if (ParseToken(lltok::rbrace, "expected '}' here")) 6200 return true; 6201 6202 if (Indexes.size() < 2) 6203 return Error(Loc, "expected >= 2 uselistorder indexes"); 6204 if (Offset != 0 || Max >= Indexes.size()) 6205 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6206 if (IsOrdered) 6207 return Error(Loc, "expected uselistorder indexes to change the order"); 6208 6209 return false; 6210 } 6211 6212 /// ParseUseListOrder 6213 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6214 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6215 SMLoc Loc = Lex.getLoc(); 6216 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6217 return true; 6218 6219 Value *V; 6220 SmallVector<unsigned, 16> Indexes; 6221 if (ParseTypeAndValue(V, PFS) || 6222 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6223 ParseUseListOrderIndexes(Indexes)) 6224 return true; 6225 6226 return sortUseListOrder(V, Indexes, Loc); 6227 } 6228 6229 /// ParseUseListOrderBB 6230 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6231 bool LLParser::ParseUseListOrderBB() { 6232 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6233 SMLoc Loc = Lex.getLoc(); 6234 Lex.Lex(); 6235 6236 ValID Fn, Label; 6237 SmallVector<unsigned, 16> Indexes; 6238 if (ParseValID(Fn) || 6239 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6240 ParseValID(Label) || 6241 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6242 ParseUseListOrderIndexes(Indexes)) 6243 return true; 6244 6245 // Check the function. 6246 GlobalValue *GV; 6247 if (Fn.Kind == ValID::t_GlobalName) 6248 GV = M->getNamedValue(Fn.StrVal); 6249 else if (Fn.Kind == ValID::t_GlobalID) 6250 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6251 else 6252 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6253 if (!GV) 6254 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6255 auto *F = dyn_cast<Function>(GV); 6256 if (!F) 6257 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6258 if (F->isDeclaration()) 6259 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6260 6261 // Check the basic block. 6262 if (Label.Kind == ValID::t_LocalID) 6263 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6264 if (Label.Kind != ValID::t_LocalName) 6265 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6266 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6267 if (!V) 6268 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6269 if (!isa<BasicBlock>(V)) 6270 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6271 6272 return sortUseListOrder(V, Indexes, Loc); 6273 } 6274