1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (const auto &RAG : ForwardRefAttrGroups) { 125 Value *V = RAG.first; 126 const std::vector<unsigned> &Attrs = RAG.second; 127 AttrBuilder B; 128 129 for (const auto &Attr : Attrs) 130 B.merge(NumberedAttrBuilders[Attr]); 131 132 if (Function *Fn = dyn_cast<Function>(V)) { 133 AttributeList AS = Fn->getAttributes(); 134 AttrBuilder FnAttrs(AS.getFnAttributes()); 135 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 136 137 FnAttrs.merge(B); 138 139 // If the alignment was parsed as an attribute, move to the alignment 140 // field. 141 if (FnAttrs.hasAlignmentAttr()) { 142 Fn->setAlignment(FnAttrs.getAlignment()); 143 FnAttrs.removeAttribute(Attribute::Alignment); 144 } 145 146 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 147 AttributeSet::get(Context, FnAttrs)); 148 Fn->setAttributes(AS); 149 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 150 AttributeList AS = CI->getAttributes(); 151 AttrBuilder FnAttrs(AS.getFnAttributes()); 152 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 153 FnAttrs.merge(B); 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 CI->setAttributes(AS); 157 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 158 AttributeList AS = II->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 II->setAttributes(AS); 165 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 166 AttrBuilder Attrs(GV->getAttributes()); 167 Attrs.merge(B); 168 GV->setAttributes(AttributeSet::get(Context,Attrs)); 169 } else { 170 llvm_unreachable("invalid object with forward attribute group reference"); 171 } 172 } 173 174 // If there are entries in ForwardRefBlockAddresses at this point, the 175 // function was never defined. 176 if (!ForwardRefBlockAddresses.empty()) 177 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 178 "expected function name in blockaddress"); 179 180 for (const auto &NT : NumberedTypes) 181 if (NT.second.second.isValid()) 182 return Error(NT.second.second, 183 "use of undefined type '%" + Twine(NT.first) + "'"); 184 185 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 186 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 187 if (I->second.second.isValid()) 188 return Error(I->second.second, 189 "use of undefined type named '" + I->getKey() + "'"); 190 191 if (!ForwardRefComdats.empty()) 192 return Error(ForwardRefComdats.begin()->second, 193 "use of undefined comdat '$" + 194 ForwardRefComdats.begin()->first + "'"); 195 196 if (!ForwardRefVals.empty()) 197 return Error(ForwardRefVals.begin()->second.second, 198 "use of undefined value '@" + ForwardRefVals.begin()->first + 199 "'"); 200 201 if (!ForwardRefValIDs.empty()) 202 return Error(ForwardRefValIDs.begin()->second.second, 203 "use of undefined value '@" + 204 Twine(ForwardRefValIDs.begin()->first) + "'"); 205 206 if (!ForwardRefMDNodes.empty()) 207 return Error(ForwardRefMDNodes.begin()->second.second, 208 "use of undefined metadata '!" + 209 Twine(ForwardRefMDNodes.begin()->first) + "'"); 210 211 // Resolve metadata cycles. 212 for (auto &N : NumberedMetadata) { 213 if (N.second && !N.second->isResolved()) 214 N.second->resolveCycles(); 215 } 216 217 for (auto *Inst : InstsWithTBAATag) { 218 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 219 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 220 auto *UpgradedMD = UpgradeTBAANode(*MD); 221 if (MD != UpgradedMD) 222 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 223 } 224 225 // Look for intrinsic functions and CallInst that need to be upgraded 226 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 227 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 228 229 // Some types could be renamed during loading if several modules are 230 // loaded in the same LLVMContext (LTO scenario). In this case we should 231 // remangle intrinsics names as well. 232 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 233 Function *F = &*FI++; 234 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 235 F->replaceAllUsesWith(Remangled.getValue()); 236 F->eraseFromParent(); 237 } 238 } 239 240 if (UpgradeDebugInfo) 241 llvm::UpgradeDebugInfo(*M); 242 243 UpgradeModuleFlags(*M); 244 UpgradeSectionAttributes(*M); 245 246 if (!Slots) 247 return false; 248 // Initialize the slot mapping. 249 // Because by this point we've parsed and validated everything, we can "steal" 250 // the mapping from LLParser as it doesn't need it anymore. 251 Slots->GlobalValues = std::move(NumberedVals); 252 Slots->MetadataNodes = std::move(NumberedMetadata); 253 for (const auto &I : NamedTypes) 254 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 255 for (const auto &I : NumberedTypes) 256 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 257 258 return false; 259 } 260 261 //===----------------------------------------------------------------------===// 262 // Top-Level Entities 263 //===----------------------------------------------------------------------===// 264 265 bool LLParser::ParseTopLevelEntities() { 266 while (true) { 267 switch (Lex.getKind()) { 268 default: return TokError("expected top-level entity"); 269 case lltok::Eof: return false; 270 case lltok::kw_declare: if (ParseDeclare()) return true; break; 271 case lltok::kw_define: if (ParseDefine()) return true; break; 272 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 273 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 274 case lltok::kw_source_filename: 275 if (ParseSourceFileName()) 276 return true; 277 break; 278 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 279 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 280 case lltok::LocalVar: if (ParseNamedType()) return true; break; 281 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 282 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 283 case lltok::ComdatVar: if (parseComdat()) return true; break; 284 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 285 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 286 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 287 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 288 case lltok::kw_uselistorder_bb: 289 if (ParseUseListOrderBB()) 290 return true; 291 break; 292 } 293 } 294 } 295 296 /// toplevelentity 297 /// ::= 'module' 'asm' STRINGCONSTANT 298 bool LLParser::ParseModuleAsm() { 299 assert(Lex.getKind() == lltok::kw_module); 300 Lex.Lex(); 301 302 std::string AsmStr; 303 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 304 ParseStringConstant(AsmStr)) return true; 305 306 M->appendModuleInlineAsm(AsmStr); 307 return false; 308 } 309 310 /// toplevelentity 311 /// ::= 'target' 'triple' '=' STRINGCONSTANT 312 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 313 bool LLParser::ParseTargetDefinition() { 314 assert(Lex.getKind() == lltok::kw_target); 315 std::string Str; 316 switch (Lex.Lex()) { 317 default: return TokError("unknown target property"); 318 case lltok::kw_triple: 319 Lex.Lex(); 320 if (ParseToken(lltok::equal, "expected '=' after target triple") || 321 ParseStringConstant(Str)) 322 return true; 323 M->setTargetTriple(Str); 324 return false; 325 case lltok::kw_datalayout: 326 Lex.Lex(); 327 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 328 ParseStringConstant(Str)) 329 return true; 330 if (DataLayoutStr.empty()) 331 M->setDataLayout(Str); 332 return false; 333 } 334 } 335 336 /// toplevelentity 337 /// ::= 'source_filename' '=' STRINGCONSTANT 338 bool LLParser::ParseSourceFileName() { 339 assert(Lex.getKind() == lltok::kw_source_filename); 340 std::string Str; 341 Lex.Lex(); 342 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 343 ParseStringConstant(Str)) 344 return true; 345 M->setSourceFileName(Str); 346 return false; 347 } 348 349 /// toplevelentity 350 /// ::= 'deplibs' '=' '[' ']' 351 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 352 /// FIXME: Remove in 4.0. Currently parse, but ignore. 353 bool LLParser::ParseDepLibs() { 354 assert(Lex.getKind() == lltok::kw_deplibs); 355 Lex.Lex(); 356 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 357 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 358 return true; 359 360 if (EatIfPresent(lltok::rsquare)) 361 return false; 362 363 do { 364 std::string Str; 365 if (ParseStringConstant(Str)) return true; 366 } while (EatIfPresent(lltok::comma)); 367 368 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 369 } 370 371 /// ParseUnnamedType: 372 /// ::= LocalVarID '=' 'type' type 373 bool LLParser::ParseUnnamedType() { 374 LocTy TypeLoc = Lex.getLoc(); 375 unsigned TypeID = Lex.getUIntVal(); 376 Lex.Lex(); // eat LocalVarID; 377 378 if (ParseToken(lltok::equal, "expected '=' after name") || 379 ParseToken(lltok::kw_type, "expected 'type' after '='")) 380 return true; 381 382 Type *Result = nullptr; 383 if (ParseStructDefinition(TypeLoc, "", 384 NumberedTypes[TypeID], Result)) return true; 385 386 if (!isa<StructType>(Result)) { 387 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 388 if (Entry.first) 389 return Error(TypeLoc, "non-struct types may not be recursive"); 390 Entry.first = Result; 391 Entry.second = SMLoc(); 392 } 393 394 return false; 395 } 396 397 /// toplevelentity 398 /// ::= LocalVar '=' 'type' type 399 bool LLParser::ParseNamedType() { 400 std::string Name = Lex.getStrVal(); 401 LocTy NameLoc = Lex.getLoc(); 402 Lex.Lex(); // eat LocalVar. 403 404 if (ParseToken(lltok::equal, "expected '=' after name") || 405 ParseToken(lltok::kw_type, "expected 'type' after name")) 406 return true; 407 408 Type *Result = nullptr; 409 if (ParseStructDefinition(NameLoc, Name, 410 NamedTypes[Name], Result)) return true; 411 412 if (!isa<StructType>(Result)) { 413 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 414 if (Entry.first) 415 return Error(NameLoc, "non-struct types may not be recursive"); 416 Entry.first = Result; 417 Entry.second = SMLoc(); 418 } 419 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'declare' FunctionHeader 425 bool LLParser::ParseDeclare() { 426 assert(Lex.getKind() == lltok::kw_declare); 427 Lex.Lex(); 428 429 std::vector<std::pair<unsigned, MDNode *>> MDs; 430 while (Lex.getKind() == lltok::MetadataVar) { 431 unsigned MDK; 432 MDNode *N; 433 if (ParseMetadataAttachment(MDK, N)) 434 return true; 435 MDs.push_back({MDK, N}); 436 } 437 438 Function *F; 439 if (ParseFunctionHeader(F, false)) 440 return true; 441 for (auto &MD : MDs) 442 F->addMetadata(MD.first, *MD.second); 443 return false; 444 } 445 446 /// toplevelentity 447 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 448 bool LLParser::ParseDefine() { 449 assert(Lex.getKind() == lltok::kw_define); 450 Lex.Lex(); 451 452 Function *F; 453 return ParseFunctionHeader(F, true) || 454 ParseOptionalFunctionMetadata(*F) || 455 ParseFunctionBody(*F); 456 } 457 458 /// ParseGlobalType 459 /// ::= 'constant' 460 /// ::= 'global' 461 bool LLParser::ParseGlobalType(bool &IsConstant) { 462 if (Lex.getKind() == lltok::kw_constant) 463 IsConstant = true; 464 else if (Lex.getKind() == lltok::kw_global) 465 IsConstant = false; 466 else { 467 IsConstant = false; 468 return TokError("expected 'global' or 'constant'"); 469 } 470 Lex.Lex(); 471 return false; 472 } 473 474 bool LLParser::ParseOptionalUnnamedAddr( 475 GlobalVariable::UnnamedAddr &UnnamedAddr) { 476 if (EatIfPresent(lltok::kw_unnamed_addr)) 477 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 478 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 479 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 480 else 481 UnnamedAddr = GlobalValue::UnnamedAddr::None; 482 return false; 483 } 484 485 /// ParseUnnamedGlobal: 486 /// OptionalVisibility (ALIAS | IFUNC) ... 487 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 488 /// OptionalDLLStorageClass 489 /// ... -> global variable 490 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 491 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 492 /// OptionalDLLStorageClass 493 /// ... -> global variable 494 bool LLParser::ParseUnnamedGlobal() { 495 unsigned VarID = NumberedVals.size(); 496 std::string Name; 497 LocTy NameLoc = Lex.getLoc(); 498 499 // Handle the GlobalID form. 500 if (Lex.getKind() == lltok::GlobalID) { 501 if (Lex.getUIntVal() != VarID) 502 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 503 Twine(VarID) + "'"); 504 Lex.Lex(); // eat GlobalID; 505 506 if (ParseToken(lltok::equal, "expected '=' after name")) 507 return true; 508 } 509 510 bool HasLinkage; 511 unsigned Linkage, Visibility, DLLStorageClass; 512 bool DSOLocal; 513 GlobalVariable::ThreadLocalMode TLM; 514 GlobalVariable::UnnamedAddr UnnamedAddr; 515 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 516 DSOLocal) || 517 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 518 return true; 519 520 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 521 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 522 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 523 524 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 525 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 526 } 527 528 /// ParseNamedGlobal: 529 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 530 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 531 /// OptionalVisibility OptionalDLLStorageClass 532 /// ... -> global variable 533 bool LLParser::ParseNamedGlobal() { 534 assert(Lex.getKind() == lltok::GlobalVar); 535 LocTy NameLoc = Lex.getLoc(); 536 std::string Name = Lex.getStrVal(); 537 Lex.Lex(); 538 539 bool HasLinkage; 540 unsigned Linkage, Visibility, DLLStorageClass; 541 bool DSOLocal; 542 GlobalVariable::ThreadLocalMode TLM; 543 GlobalVariable::UnnamedAddr UnnamedAddr; 544 if (ParseToken(lltok::equal, "expected '=' in global variable") || 545 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 546 DSOLocal) || 547 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 548 return true; 549 550 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 551 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 552 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 553 554 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 555 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 556 } 557 558 bool LLParser::parseComdat() { 559 assert(Lex.getKind() == lltok::ComdatVar); 560 std::string Name = Lex.getStrVal(); 561 LocTy NameLoc = Lex.getLoc(); 562 Lex.Lex(); 563 564 if (ParseToken(lltok::equal, "expected '=' here")) 565 return true; 566 567 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 568 return TokError("expected comdat type"); 569 570 Comdat::SelectionKind SK; 571 switch (Lex.getKind()) { 572 default: 573 return TokError("unknown selection kind"); 574 case lltok::kw_any: 575 SK = Comdat::Any; 576 break; 577 case lltok::kw_exactmatch: 578 SK = Comdat::ExactMatch; 579 break; 580 case lltok::kw_largest: 581 SK = Comdat::Largest; 582 break; 583 case lltok::kw_noduplicates: 584 SK = Comdat::NoDuplicates; 585 break; 586 case lltok::kw_samesize: 587 SK = Comdat::SameSize; 588 break; 589 } 590 Lex.Lex(); 591 592 // See if the comdat was forward referenced, if so, use the comdat. 593 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 594 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 595 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 596 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 597 598 Comdat *C; 599 if (I != ComdatSymTab.end()) 600 C = &I->second; 601 else 602 C = M->getOrInsertComdat(Name); 603 C->setSelectionKind(SK); 604 605 return false; 606 } 607 608 // MDString: 609 // ::= '!' STRINGCONSTANT 610 bool LLParser::ParseMDString(MDString *&Result) { 611 std::string Str; 612 if (ParseStringConstant(Str)) return true; 613 Result = MDString::get(Context, Str); 614 return false; 615 } 616 617 // MDNode: 618 // ::= '!' MDNodeNumber 619 bool LLParser::ParseMDNodeID(MDNode *&Result) { 620 // !{ ..., !42, ... } 621 LocTy IDLoc = Lex.getLoc(); 622 unsigned MID = 0; 623 if (ParseUInt32(MID)) 624 return true; 625 626 // If not a forward reference, just return it now. 627 if (NumberedMetadata.count(MID)) { 628 Result = NumberedMetadata[MID]; 629 return false; 630 } 631 632 // Otherwise, create MDNode forward reference. 633 auto &FwdRef = ForwardRefMDNodes[MID]; 634 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 635 636 Result = FwdRef.first.get(); 637 NumberedMetadata[MID].reset(Result); 638 return false; 639 } 640 641 /// ParseNamedMetadata: 642 /// !foo = !{ !1, !2 } 643 bool LLParser::ParseNamedMetadata() { 644 assert(Lex.getKind() == lltok::MetadataVar); 645 std::string Name = Lex.getStrVal(); 646 Lex.Lex(); 647 648 if (ParseToken(lltok::equal, "expected '=' here") || 649 ParseToken(lltok::exclaim, "Expected '!' here") || 650 ParseToken(lltok::lbrace, "Expected '{' here")) 651 return true; 652 653 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 654 if (Lex.getKind() != lltok::rbrace) 655 do { 656 MDNode *N = nullptr; 657 // Parse DIExpressions inline as a special case. They are still MDNodes, 658 // so they can still appear in named metadata. Remove this logic if they 659 // become plain Metadata. 660 if (Lex.getKind() == lltok::MetadataVar && 661 Lex.getStrVal() == "DIExpression") { 662 if (ParseDIExpression(N, /*IsDistinct=*/false)) 663 return true; 664 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 665 ParseMDNodeID(N)) { 666 return true; 667 } 668 NMD->addOperand(N); 669 } while (EatIfPresent(lltok::comma)); 670 671 return ParseToken(lltok::rbrace, "expected end of metadata node"); 672 } 673 674 /// ParseStandaloneMetadata: 675 /// !42 = !{...} 676 bool LLParser::ParseStandaloneMetadata() { 677 assert(Lex.getKind() == lltok::exclaim); 678 Lex.Lex(); 679 unsigned MetadataID = 0; 680 681 MDNode *Init; 682 if (ParseUInt32(MetadataID) || 683 ParseToken(lltok::equal, "expected '=' here")) 684 return true; 685 686 // Detect common error, from old metadata syntax. 687 if (Lex.getKind() == lltok::Type) 688 return TokError("unexpected type in metadata definition"); 689 690 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 691 if (Lex.getKind() == lltok::MetadataVar) { 692 if (ParseSpecializedMDNode(Init, IsDistinct)) 693 return true; 694 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 695 ParseMDTuple(Init, IsDistinct)) 696 return true; 697 698 // See if this was forward referenced, if so, handle it. 699 auto FI = ForwardRefMDNodes.find(MetadataID); 700 if (FI != ForwardRefMDNodes.end()) { 701 FI->second.first->replaceAllUsesWith(Init); 702 ForwardRefMDNodes.erase(FI); 703 704 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 705 } else { 706 if (NumberedMetadata.count(MetadataID)) 707 return TokError("Metadata id is already used"); 708 NumberedMetadata[MetadataID].reset(Init); 709 } 710 711 return false; 712 } 713 714 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 715 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 716 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 717 } 718 719 // If there was an explicit dso_local, update GV. In the absence of an explicit 720 // dso_local we keep the default value. 721 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 722 if (DSOLocal) 723 GV.setDSOLocal(true); 724 } 725 726 /// parseIndirectSymbol: 727 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 728 /// OptionalVisibility OptionalDLLStorageClass 729 /// OptionalThreadLocal OptionalUnnamedAddr 730 // 'alias|ifunc' IndirectSymbol 731 /// 732 /// IndirectSymbol 733 /// ::= TypeAndValue 734 /// 735 /// Everything through OptionalUnnamedAddr has already been parsed. 736 /// 737 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 738 unsigned L, unsigned Visibility, 739 unsigned DLLStorageClass, bool DSOLocal, 740 GlobalVariable::ThreadLocalMode TLM, 741 GlobalVariable::UnnamedAddr UnnamedAddr) { 742 bool IsAlias; 743 if (Lex.getKind() == lltok::kw_alias) 744 IsAlias = true; 745 else if (Lex.getKind() == lltok::kw_ifunc) 746 IsAlias = false; 747 else 748 llvm_unreachable("Not an alias or ifunc!"); 749 Lex.Lex(); 750 751 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 752 753 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 754 return Error(NameLoc, "invalid linkage type for alias"); 755 756 if (!isValidVisibilityForLinkage(Visibility, L)) 757 return Error(NameLoc, 758 "symbol with local linkage must have default visibility"); 759 760 Type *Ty; 761 LocTy ExplicitTypeLoc = Lex.getLoc(); 762 if (ParseType(Ty) || 763 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 764 return true; 765 766 Constant *Aliasee; 767 LocTy AliaseeLoc = Lex.getLoc(); 768 if (Lex.getKind() != lltok::kw_bitcast && 769 Lex.getKind() != lltok::kw_getelementptr && 770 Lex.getKind() != lltok::kw_addrspacecast && 771 Lex.getKind() != lltok::kw_inttoptr) { 772 if (ParseGlobalTypeAndValue(Aliasee)) 773 return true; 774 } else { 775 // The bitcast dest type is not present, it is implied by the dest type. 776 ValID ID; 777 if (ParseValID(ID)) 778 return true; 779 if (ID.Kind != ValID::t_Constant) 780 return Error(AliaseeLoc, "invalid aliasee"); 781 Aliasee = ID.ConstantVal; 782 } 783 784 Type *AliaseeType = Aliasee->getType(); 785 auto *PTy = dyn_cast<PointerType>(AliaseeType); 786 if (!PTy) 787 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 788 unsigned AddrSpace = PTy->getAddressSpace(); 789 790 if (IsAlias && Ty != PTy->getElementType()) 791 return Error( 792 ExplicitTypeLoc, 793 "explicit pointee type doesn't match operand's pointee type"); 794 795 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 796 return Error( 797 ExplicitTypeLoc, 798 "explicit pointee type should be a function type"); 799 800 GlobalValue *GVal = nullptr; 801 802 // See if the alias was forward referenced, if so, prepare to replace the 803 // forward reference. 804 if (!Name.empty()) { 805 GVal = M->getNamedValue(Name); 806 if (GVal) { 807 if (!ForwardRefVals.erase(Name)) 808 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 809 } 810 } else { 811 auto I = ForwardRefValIDs.find(NumberedVals.size()); 812 if (I != ForwardRefValIDs.end()) { 813 GVal = I->second.first; 814 ForwardRefValIDs.erase(I); 815 } 816 } 817 818 // Okay, create the alias but do not insert it into the module yet. 819 std::unique_ptr<GlobalIndirectSymbol> GA; 820 if (IsAlias) 821 GA.reset(GlobalAlias::create(Ty, AddrSpace, 822 (GlobalValue::LinkageTypes)Linkage, Name, 823 Aliasee, /*Parent*/ nullptr)); 824 else 825 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 826 (GlobalValue::LinkageTypes)Linkage, Name, 827 Aliasee, /*Parent*/ nullptr)); 828 GA->setThreadLocalMode(TLM); 829 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 830 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 831 GA->setUnnamedAddr(UnnamedAddr); 832 maybeSetDSOLocal(DSOLocal, *GA); 833 834 if (Name.empty()) 835 NumberedVals.push_back(GA.get()); 836 837 if (GVal) { 838 // Verify that types agree. 839 if (GVal->getType() != GA->getType()) 840 return Error( 841 ExplicitTypeLoc, 842 "forward reference and definition of alias have different types"); 843 844 // If they agree, just RAUW the old value with the alias and remove the 845 // forward ref info. 846 GVal->replaceAllUsesWith(GA.get()); 847 GVal->eraseFromParent(); 848 } 849 850 // Insert into the module, we know its name won't collide now. 851 if (IsAlias) 852 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 853 else 854 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 855 assert(GA->getName() == Name && "Should not be a name conflict!"); 856 857 // The module owns this now 858 GA.release(); 859 860 return false; 861 } 862 863 /// ParseGlobal 864 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 865 /// OptionalVisibility OptionalDLLStorageClass 866 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 867 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 868 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 869 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 870 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 871 /// Const OptionalAttrs 872 /// 873 /// Everything up to and including OptionalUnnamedAddr has been parsed 874 /// already. 875 /// 876 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 877 unsigned Linkage, bool HasLinkage, 878 unsigned Visibility, unsigned DLLStorageClass, 879 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 880 GlobalVariable::UnnamedAddr UnnamedAddr) { 881 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 882 return Error(NameLoc, 883 "symbol with local linkage must have default visibility"); 884 885 unsigned AddrSpace; 886 bool IsConstant, IsExternallyInitialized; 887 LocTy IsExternallyInitializedLoc; 888 LocTy TyLoc; 889 890 Type *Ty = nullptr; 891 if (ParseOptionalAddrSpace(AddrSpace) || 892 ParseOptionalToken(lltok::kw_externally_initialized, 893 IsExternallyInitialized, 894 &IsExternallyInitializedLoc) || 895 ParseGlobalType(IsConstant) || 896 ParseType(Ty, TyLoc)) 897 return true; 898 899 // If the linkage is specified and is external, then no initializer is 900 // present. 901 Constant *Init = nullptr; 902 if (!HasLinkage || 903 !GlobalValue::isValidDeclarationLinkage( 904 (GlobalValue::LinkageTypes)Linkage)) { 905 if (ParseGlobalValue(Ty, Init)) 906 return true; 907 } 908 909 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 910 return Error(TyLoc, "invalid type for global variable"); 911 912 GlobalValue *GVal = nullptr; 913 914 // See if the global was forward referenced, if so, use the global. 915 if (!Name.empty()) { 916 GVal = M->getNamedValue(Name); 917 if (GVal) { 918 if (!ForwardRefVals.erase(Name)) 919 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 920 } 921 } else { 922 auto I = ForwardRefValIDs.find(NumberedVals.size()); 923 if (I != ForwardRefValIDs.end()) { 924 GVal = I->second.first; 925 ForwardRefValIDs.erase(I); 926 } 927 } 928 929 GlobalVariable *GV; 930 if (!GVal) { 931 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 932 Name, nullptr, GlobalVariable::NotThreadLocal, 933 AddrSpace); 934 } else { 935 if (GVal->getValueType() != Ty) 936 return Error(TyLoc, 937 "forward reference and definition of global have different types"); 938 939 GV = cast<GlobalVariable>(GVal); 940 941 // Move the forward-reference to the correct spot in the module. 942 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 943 } 944 945 if (Name.empty()) 946 NumberedVals.push_back(GV); 947 948 // Set the parsed properties on the global. 949 if (Init) 950 GV->setInitializer(Init); 951 GV->setConstant(IsConstant); 952 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 953 maybeSetDSOLocal(DSOLocal, *GV); 954 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 955 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 956 GV->setExternallyInitialized(IsExternallyInitialized); 957 GV->setThreadLocalMode(TLM); 958 GV->setUnnamedAddr(UnnamedAddr); 959 960 // Parse attributes on the global. 961 while (Lex.getKind() == lltok::comma) { 962 Lex.Lex(); 963 964 if (Lex.getKind() == lltok::kw_section) { 965 Lex.Lex(); 966 GV->setSection(Lex.getStrVal()); 967 if (ParseToken(lltok::StringConstant, "expected global section string")) 968 return true; 969 } else if (Lex.getKind() == lltok::kw_align) { 970 unsigned Alignment; 971 if (ParseOptionalAlignment(Alignment)) return true; 972 GV->setAlignment(Alignment); 973 } else if (Lex.getKind() == lltok::MetadataVar) { 974 if (ParseGlobalObjectMetadataAttachment(*GV)) 975 return true; 976 } else { 977 Comdat *C; 978 if (parseOptionalComdat(Name, C)) 979 return true; 980 if (C) 981 GV->setComdat(C); 982 else 983 return TokError("unknown global variable property!"); 984 } 985 } 986 987 AttrBuilder Attrs; 988 LocTy BuiltinLoc; 989 std::vector<unsigned> FwdRefAttrGrps; 990 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 991 return true; 992 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 993 GV->setAttributes(AttributeSet::get(Context, Attrs)); 994 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 995 } 996 997 return false; 998 } 999 1000 /// ParseUnnamedAttrGrp 1001 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1002 bool LLParser::ParseUnnamedAttrGrp() { 1003 assert(Lex.getKind() == lltok::kw_attributes); 1004 LocTy AttrGrpLoc = Lex.getLoc(); 1005 Lex.Lex(); 1006 1007 if (Lex.getKind() != lltok::AttrGrpID) 1008 return TokError("expected attribute group id"); 1009 1010 unsigned VarID = Lex.getUIntVal(); 1011 std::vector<unsigned> unused; 1012 LocTy BuiltinLoc; 1013 Lex.Lex(); 1014 1015 if (ParseToken(lltok::equal, "expected '=' here") || 1016 ParseToken(lltok::lbrace, "expected '{' here") || 1017 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1018 BuiltinLoc) || 1019 ParseToken(lltok::rbrace, "expected end of attribute group")) 1020 return true; 1021 1022 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1023 return Error(AttrGrpLoc, "attribute group has no attributes"); 1024 1025 return false; 1026 } 1027 1028 /// ParseFnAttributeValuePairs 1029 /// ::= <attr> | <attr> '=' <value> 1030 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1031 std::vector<unsigned> &FwdRefAttrGrps, 1032 bool inAttrGrp, LocTy &BuiltinLoc) { 1033 bool HaveError = false; 1034 1035 B.clear(); 1036 1037 while (true) { 1038 lltok::Kind Token = Lex.getKind(); 1039 if (Token == lltok::kw_builtin) 1040 BuiltinLoc = Lex.getLoc(); 1041 switch (Token) { 1042 default: 1043 if (!inAttrGrp) return HaveError; 1044 return Error(Lex.getLoc(), "unterminated attribute group"); 1045 case lltok::rbrace: 1046 // Finished. 1047 return false; 1048 1049 case lltok::AttrGrpID: { 1050 // Allow a function to reference an attribute group: 1051 // 1052 // define void @foo() #1 { ... } 1053 if (inAttrGrp) 1054 HaveError |= 1055 Error(Lex.getLoc(), 1056 "cannot have an attribute group reference in an attribute group"); 1057 1058 unsigned AttrGrpNum = Lex.getUIntVal(); 1059 if (inAttrGrp) break; 1060 1061 // Save the reference to the attribute group. We'll fill it in later. 1062 FwdRefAttrGrps.push_back(AttrGrpNum); 1063 break; 1064 } 1065 // Target-dependent attributes: 1066 case lltok::StringConstant: { 1067 if (ParseStringAttribute(B)) 1068 return true; 1069 continue; 1070 } 1071 1072 // Target-independent attributes: 1073 case lltok::kw_align: { 1074 // As a hack, we allow function alignment to be initially parsed as an 1075 // attribute on a function declaration/definition or added to an attribute 1076 // group and later moved to the alignment field. 1077 unsigned Alignment; 1078 if (inAttrGrp) { 1079 Lex.Lex(); 1080 if (ParseToken(lltok::equal, "expected '=' here") || 1081 ParseUInt32(Alignment)) 1082 return true; 1083 } else { 1084 if (ParseOptionalAlignment(Alignment)) 1085 return true; 1086 } 1087 B.addAlignmentAttr(Alignment); 1088 continue; 1089 } 1090 case lltok::kw_alignstack: { 1091 unsigned Alignment; 1092 if (inAttrGrp) { 1093 Lex.Lex(); 1094 if (ParseToken(lltok::equal, "expected '=' here") || 1095 ParseUInt32(Alignment)) 1096 return true; 1097 } else { 1098 if (ParseOptionalStackAlignment(Alignment)) 1099 return true; 1100 } 1101 B.addStackAlignmentAttr(Alignment); 1102 continue; 1103 } 1104 case lltok::kw_allocsize: { 1105 unsigned ElemSizeArg; 1106 Optional<unsigned> NumElemsArg; 1107 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1108 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1109 return true; 1110 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1111 continue; 1112 } 1113 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1114 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1115 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1116 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1117 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1118 case lltok::kw_inaccessiblememonly: 1119 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1120 case lltok::kw_inaccessiblemem_or_argmemonly: 1121 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1122 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1123 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1124 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1125 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1126 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1127 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1128 case lltok::kw_noimplicitfloat: 1129 B.addAttribute(Attribute::NoImplicitFloat); break; 1130 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1131 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1132 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1133 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1134 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1135 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1136 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1137 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1138 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1139 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1140 case lltok::kw_returns_twice: 1141 B.addAttribute(Attribute::ReturnsTwice); break; 1142 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1143 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1144 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1145 case lltok::kw_sspstrong: 1146 B.addAttribute(Attribute::StackProtectStrong); break; 1147 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1148 case lltok::kw_sanitize_address: 1149 B.addAttribute(Attribute::SanitizeAddress); break; 1150 case lltok::kw_sanitize_hwaddress: 1151 B.addAttribute(Attribute::SanitizeHWAddress); break; 1152 case lltok::kw_sanitize_thread: 1153 B.addAttribute(Attribute::SanitizeThread); break; 1154 case lltok::kw_sanitize_memory: 1155 B.addAttribute(Attribute::SanitizeMemory); break; 1156 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1157 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1158 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1159 1160 // Error handling. 1161 case lltok::kw_inreg: 1162 case lltok::kw_signext: 1163 case lltok::kw_zeroext: 1164 HaveError |= 1165 Error(Lex.getLoc(), 1166 "invalid use of attribute on a function"); 1167 break; 1168 case lltok::kw_byval: 1169 case lltok::kw_dereferenceable: 1170 case lltok::kw_dereferenceable_or_null: 1171 case lltok::kw_inalloca: 1172 case lltok::kw_nest: 1173 case lltok::kw_noalias: 1174 case lltok::kw_nocapture: 1175 case lltok::kw_nonnull: 1176 case lltok::kw_returned: 1177 case lltok::kw_sret: 1178 case lltok::kw_swifterror: 1179 case lltok::kw_swiftself: 1180 HaveError |= 1181 Error(Lex.getLoc(), 1182 "invalid use of parameter-only attribute on a function"); 1183 break; 1184 } 1185 1186 Lex.Lex(); 1187 } 1188 } 1189 1190 //===----------------------------------------------------------------------===// 1191 // GlobalValue Reference/Resolution Routines. 1192 //===----------------------------------------------------------------------===// 1193 1194 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1195 const std::string &Name) { 1196 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1197 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1198 else 1199 return new GlobalVariable(*M, PTy->getElementType(), false, 1200 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1201 nullptr, GlobalVariable::NotThreadLocal, 1202 PTy->getAddressSpace()); 1203 } 1204 1205 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1206 /// forward reference record if needed. This can return null if the value 1207 /// exists but does not have the right type. 1208 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1209 LocTy Loc) { 1210 PointerType *PTy = dyn_cast<PointerType>(Ty); 1211 if (!PTy) { 1212 Error(Loc, "global variable reference must have pointer type"); 1213 return nullptr; 1214 } 1215 1216 // Look this name up in the normal function symbol table. 1217 GlobalValue *Val = 1218 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1219 1220 // If this is a forward reference for the value, see if we already created a 1221 // forward ref record. 1222 if (!Val) { 1223 auto I = ForwardRefVals.find(Name); 1224 if (I != ForwardRefVals.end()) 1225 Val = I->second.first; 1226 } 1227 1228 // If we have the value in the symbol table or fwd-ref table, return it. 1229 if (Val) { 1230 if (Val->getType() == Ty) return Val; 1231 Error(Loc, "'@" + Name + "' defined with type '" + 1232 getTypeString(Val->getType()) + "'"); 1233 return nullptr; 1234 } 1235 1236 // Otherwise, create a new forward reference for this value and remember it. 1237 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1238 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1239 return FwdVal; 1240 } 1241 1242 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1243 PointerType *PTy = dyn_cast<PointerType>(Ty); 1244 if (!PTy) { 1245 Error(Loc, "global variable reference must have pointer type"); 1246 return nullptr; 1247 } 1248 1249 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1250 1251 // If this is a forward reference for the value, see if we already created a 1252 // forward ref record. 1253 if (!Val) { 1254 auto I = ForwardRefValIDs.find(ID); 1255 if (I != ForwardRefValIDs.end()) 1256 Val = I->second.first; 1257 } 1258 1259 // If we have the value in the symbol table or fwd-ref table, return it. 1260 if (Val) { 1261 if (Val->getType() == Ty) return Val; 1262 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1263 getTypeString(Val->getType()) + "'"); 1264 return nullptr; 1265 } 1266 1267 // Otherwise, create a new forward reference for this value and remember it. 1268 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1269 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1270 return FwdVal; 1271 } 1272 1273 //===----------------------------------------------------------------------===// 1274 // Comdat Reference/Resolution Routines. 1275 //===----------------------------------------------------------------------===// 1276 1277 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1278 // Look this name up in the comdat symbol table. 1279 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1280 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1281 if (I != ComdatSymTab.end()) 1282 return &I->second; 1283 1284 // Otherwise, create a new forward reference for this value and remember it. 1285 Comdat *C = M->getOrInsertComdat(Name); 1286 ForwardRefComdats[Name] = Loc; 1287 return C; 1288 } 1289 1290 //===----------------------------------------------------------------------===// 1291 // Helper Routines. 1292 //===----------------------------------------------------------------------===// 1293 1294 /// ParseToken - If the current token has the specified kind, eat it and return 1295 /// success. Otherwise, emit the specified error and return failure. 1296 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1297 if (Lex.getKind() != T) 1298 return TokError(ErrMsg); 1299 Lex.Lex(); 1300 return false; 1301 } 1302 1303 /// ParseStringConstant 1304 /// ::= StringConstant 1305 bool LLParser::ParseStringConstant(std::string &Result) { 1306 if (Lex.getKind() != lltok::StringConstant) 1307 return TokError("expected string constant"); 1308 Result = Lex.getStrVal(); 1309 Lex.Lex(); 1310 return false; 1311 } 1312 1313 /// ParseUInt32 1314 /// ::= uint32 1315 bool LLParser::ParseUInt32(uint32_t &Val) { 1316 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1317 return TokError("expected integer"); 1318 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1319 if (Val64 != unsigned(Val64)) 1320 return TokError("expected 32-bit integer (too large)"); 1321 Val = Val64; 1322 Lex.Lex(); 1323 return false; 1324 } 1325 1326 /// ParseUInt64 1327 /// ::= uint64 1328 bool LLParser::ParseUInt64(uint64_t &Val) { 1329 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1330 return TokError("expected integer"); 1331 Val = Lex.getAPSIntVal().getLimitedValue(); 1332 Lex.Lex(); 1333 return false; 1334 } 1335 1336 /// ParseTLSModel 1337 /// := 'localdynamic' 1338 /// := 'initialexec' 1339 /// := 'localexec' 1340 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1341 switch (Lex.getKind()) { 1342 default: 1343 return TokError("expected localdynamic, initialexec or localexec"); 1344 case lltok::kw_localdynamic: 1345 TLM = GlobalVariable::LocalDynamicTLSModel; 1346 break; 1347 case lltok::kw_initialexec: 1348 TLM = GlobalVariable::InitialExecTLSModel; 1349 break; 1350 case lltok::kw_localexec: 1351 TLM = GlobalVariable::LocalExecTLSModel; 1352 break; 1353 } 1354 1355 Lex.Lex(); 1356 return false; 1357 } 1358 1359 /// ParseOptionalThreadLocal 1360 /// := /*empty*/ 1361 /// := 'thread_local' 1362 /// := 'thread_local' '(' tlsmodel ')' 1363 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1364 TLM = GlobalVariable::NotThreadLocal; 1365 if (!EatIfPresent(lltok::kw_thread_local)) 1366 return false; 1367 1368 TLM = GlobalVariable::GeneralDynamicTLSModel; 1369 if (Lex.getKind() == lltok::lparen) { 1370 Lex.Lex(); 1371 return ParseTLSModel(TLM) || 1372 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1373 } 1374 return false; 1375 } 1376 1377 /// ParseOptionalAddrSpace 1378 /// := /*empty*/ 1379 /// := 'addrspace' '(' uint32 ')' 1380 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1381 AddrSpace = 0; 1382 if (!EatIfPresent(lltok::kw_addrspace)) 1383 return false; 1384 return ParseToken(lltok::lparen, "expected '(' in address space") || 1385 ParseUInt32(AddrSpace) || 1386 ParseToken(lltok::rparen, "expected ')' in address space"); 1387 } 1388 1389 /// ParseStringAttribute 1390 /// := StringConstant 1391 /// := StringConstant '=' StringConstant 1392 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1393 std::string Attr = Lex.getStrVal(); 1394 Lex.Lex(); 1395 std::string Val; 1396 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1397 return true; 1398 B.addAttribute(Attr, Val); 1399 return false; 1400 } 1401 1402 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1403 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1404 bool HaveError = false; 1405 1406 B.clear(); 1407 1408 while (true) { 1409 lltok::Kind Token = Lex.getKind(); 1410 switch (Token) { 1411 default: // End of attributes. 1412 return HaveError; 1413 case lltok::StringConstant: { 1414 if (ParseStringAttribute(B)) 1415 return true; 1416 continue; 1417 } 1418 case lltok::kw_align: { 1419 unsigned Alignment; 1420 if (ParseOptionalAlignment(Alignment)) 1421 return true; 1422 B.addAlignmentAttr(Alignment); 1423 continue; 1424 } 1425 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1426 case lltok::kw_dereferenceable: { 1427 uint64_t Bytes; 1428 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1429 return true; 1430 B.addDereferenceableAttr(Bytes); 1431 continue; 1432 } 1433 case lltok::kw_dereferenceable_or_null: { 1434 uint64_t Bytes; 1435 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1436 return true; 1437 B.addDereferenceableOrNullAttr(Bytes); 1438 continue; 1439 } 1440 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1441 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1442 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1443 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1444 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1445 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1446 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1447 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1448 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1449 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1450 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1451 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1452 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1453 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1454 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1455 1456 case lltok::kw_alignstack: 1457 case lltok::kw_alwaysinline: 1458 case lltok::kw_argmemonly: 1459 case lltok::kw_builtin: 1460 case lltok::kw_inlinehint: 1461 case lltok::kw_jumptable: 1462 case lltok::kw_minsize: 1463 case lltok::kw_naked: 1464 case lltok::kw_nobuiltin: 1465 case lltok::kw_noduplicate: 1466 case lltok::kw_noimplicitfloat: 1467 case lltok::kw_noinline: 1468 case lltok::kw_nonlazybind: 1469 case lltok::kw_noredzone: 1470 case lltok::kw_noreturn: 1471 case lltok::kw_nounwind: 1472 case lltok::kw_optnone: 1473 case lltok::kw_optsize: 1474 case lltok::kw_returns_twice: 1475 case lltok::kw_sanitize_address: 1476 case lltok::kw_sanitize_hwaddress: 1477 case lltok::kw_sanitize_memory: 1478 case lltok::kw_sanitize_thread: 1479 case lltok::kw_ssp: 1480 case lltok::kw_sspreq: 1481 case lltok::kw_sspstrong: 1482 case lltok::kw_safestack: 1483 case lltok::kw_strictfp: 1484 case lltok::kw_uwtable: 1485 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1486 break; 1487 } 1488 1489 Lex.Lex(); 1490 } 1491 } 1492 1493 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1494 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1495 bool HaveError = false; 1496 1497 B.clear(); 1498 1499 while (true) { 1500 lltok::Kind Token = Lex.getKind(); 1501 switch (Token) { 1502 default: // End of attributes. 1503 return HaveError; 1504 case lltok::StringConstant: { 1505 if (ParseStringAttribute(B)) 1506 return true; 1507 continue; 1508 } 1509 case lltok::kw_dereferenceable: { 1510 uint64_t Bytes; 1511 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1512 return true; 1513 B.addDereferenceableAttr(Bytes); 1514 continue; 1515 } 1516 case lltok::kw_dereferenceable_or_null: { 1517 uint64_t Bytes; 1518 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1519 return true; 1520 B.addDereferenceableOrNullAttr(Bytes); 1521 continue; 1522 } 1523 case lltok::kw_align: { 1524 unsigned Alignment; 1525 if (ParseOptionalAlignment(Alignment)) 1526 return true; 1527 B.addAlignmentAttr(Alignment); 1528 continue; 1529 } 1530 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1531 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1532 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1533 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1534 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1535 1536 // Error handling. 1537 case lltok::kw_byval: 1538 case lltok::kw_inalloca: 1539 case lltok::kw_nest: 1540 case lltok::kw_nocapture: 1541 case lltok::kw_returned: 1542 case lltok::kw_sret: 1543 case lltok::kw_swifterror: 1544 case lltok::kw_swiftself: 1545 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1546 break; 1547 1548 case lltok::kw_alignstack: 1549 case lltok::kw_alwaysinline: 1550 case lltok::kw_argmemonly: 1551 case lltok::kw_builtin: 1552 case lltok::kw_cold: 1553 case lltok::kw_inlinehint: 1554 case lltok::kw_jumptable: 1555 case lltok::kw_minsize: 1556 case lltok::kw_naked: 1557 case lltok::kw_nobuiltin: 1558 case lltok::kw_noduplicate: 1559 case lltok::kw_noimplicitfloat: 1560 case lltok::kw_noinline: 1561 case lltok::kw_nonlazybind: 1562 case lltok::kw_noredzone: 1563 case lltok::kw_noreturn: 1564 case lltok::kw_nounwind: 1565 case lltok::kw_optnone: 1566 case lltok::kw_optsize: 1567 case lltok::kw_returns_twice: 1568 case lltok::kw_sanitize_address: 1569 case lltok::kw_sanitize_hwaddress: 1570 case lltok::kw_sanitize_memory: 1571 case lltok::kw_sanitize_thread: 1572 case lltok::kw_ssp: 1573 case lltok::kw_sspreq: 1574 case lltok::kw_sspstrong: 1575 case lltok::kw_safestack: 1576 case lltok::kw_strictfp: 1577 case lltok::kw_uwtable: 1578 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1579 break; 1580 1581 case lltok::kw_readnone: 1582 case lltok::kw_readonly: 1583 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1584 } 1585 1586 Lex.Lex(); 1587 } 1588 } 1589 1590 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1591 HasLinkage = true; 1592 switch (Kind) { 1593 default: 1594 HasLinkage = false; 1595 return GlobalValue::ExternalLinkage; 1596 case lltok::kw_private: 1597 return GlobalValue::PrivateLinkage; 1598 case lltok::kw_internal: 1599 return GlobalValue::InternalLinkage; 1600 case lltok::kw_weak: 1601 return GlobalValue::WeakAnyLinkage; 1602 case lltok::kw_weak_odr: 1603 return GlobalValue::WeakODRLinkage; 1604 case lltok::kw_linkonce: 1605 return GlobalValue::LinkOnceAnyLinkage; 1606 case lltok::kw_linkonce_odr: 1607 return GlobalValue::LinkOnceODRLinkage; 1608 case lltok::kw_available_externally: 1609 return GlobalValue::AvailableExternallyLinkage; 1610 case lltok::kw_appending: 1611 return GlobalValue::AppendingLinkage; 1612 case lltok::kw_common: 1613 return GlobalValue::CommonLinkage; 1614 case lltok::kw_extern_weak: 1615 return GlobalValue::ExternalWeakLinkage; 1616 case lltok::kw_external: 1617 return GlobalValue::ExternalLinkage; 1618 } 1619 } 1620 1621 /// ParseOptionalLinkage 1622 /// ::= /*empty*/ 1623 /// ::= 'private' 1624 /// ::= 'internal' 1625 /// ::= 'weak' 1626 /// ::= 'weak_odr' 1627 /// ::= 'linkonce' 1628 /// ::= 'linkonce_odr' 1629 /// ::= 'available_externally' 1630 /// ::= 'appending' 1631 /// ::= 'common' 1632 /// ::= 'extern_weak' 1633 /// ::= 'external' 1634 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1635 unsigned &Visibility, 1636 unsigned &DLLStorageClass, 1637 bool &DSOLocal) { 1638 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1639 if (HasLinkage) 1640 Lex.Lex(); 1641 ParseOptionalDSOLocal(DSOLocal); 1642 ParseOptionalVisibility(Visibility); 1643 ParseOptionalDLLStorageClass(DLLStorageClass); 1644 1645 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1646 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1647 } 1648 1649 return false; 1650 } 1651 1652 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1653 switch (Lex.getKind()) { 1654 default: 1655 DSOLocal = false; 1656 break; 1657 case lltok::kw_dso_local: 1658 DSOLocal = true; 1659 Lex.Lex(); 1660 break; 1661 case lltok::kw_dso_preemptable: 1662 DSOLocal = false; 1663 Lex.Lex(); 1664 break; 1665 } 1666 } 1667 1668 /// ParseOptionalVisibility 1669 /// ::= /*empty*/ 1670 /// ::= 'default' 1671 /// ::= 'hidden' 1672 /// ::= 'protected' 1673 /// 1674 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1675 switch (Lex.getKind()) { 1676 default: 1677 Res = GlobalValue::DefaultVisibility; 1678 return; 1679 case lltok::kw_default: 1680 Res = GlobalValue::DefaultVisibility; 1681 break; 1682 case lltok::kw_hidden: 1683 Res = GlobalValue::HiddenVisibility; 1684 break; 1685 case lltok::kw_protected: 1686 Res = GlobalValue::ProtectedVisibility; 1687 break; 1688 } 1689 Lex.Lex(); 1690 } 1691 1692 /// ParseOptionalDLLStorageClass 1693 /// ::= /*empty*/ 1694 /// ::= 'dllimport' 1695 /// ::= 'dllexport' 1696 /// 1697 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1698 switch (Lex.getKind()) { 1699 default: 1700 Res = GlobalValue::DefaultStorageClass; 1701 return; 1702 case lltok::kw_dllimport: 1703 Res = GlobalValue::DLLImportStorageClass; 1704 break; 1705 case lltok::kw_dllexport: 1706 Res = GlobalValue::DLLExportStorageClass; 1707 break; 1708 } 1709 Lex.Lex(); 1710 } 1711 1712 /// ParseOptionalCallingConv 1713 /// ::= /*empty*/ 1714 /// ::= 'ccc' 1715 /// ::= 'fastcc' 1716 /// ::= 'intel_ocl_bicc' 1717 /// ::= 'coldcc' 1718 /// ::= 'x86_stdcallcc' 1719 /// ::= 'x86_fastcallcc' 1720 /// ::= 'x86_thiscallcc' 1721 /// ::= 'x86_vectorcallcc' 1722 /// ::= 'arm_apcscc' 1723 /// ::= 'arm_aapcscc' 1724 /// ::= 'arm_aapcs_vfpcc' 1725 /// ::= 'msp430_intrcc' 1726 /// ::= 'avr_intrcc' 1727 /// ::= 'avr_signalcc' 1728 /// ::= 'ptx_kernel' 1729 /// ::= 'ptx_device' 1730 /// ::= 'spir_func' 1731 /// ::= 'spir_kernel' 1732 /// ::= 'x86_64_sysvcc' 1733 /// ::= 'win64cc' 1734 /// ::= 'webkit_jscc' 1735 /// ::= 'anyregcc' 1736 /// ::= 'preserve_mostcc' 1737 /// ::= 'preserve_allcc' 1738 /// ::= 'ghccc' 1739 /// ::= 'swiftcc' 1740 /// ::= 'x86_intrcc' 1741 /// ::= 'hhvmcc' 1742 /// ::= 'hhvm_ccc' 1743 /// ::= 'cxx_fast_tlscc' 1744 /// ::= 'amdgpu_vs' 1745 /// ::= 'amdgpu_ls' 1746 /// ::= 'amdgpu_hs' 1747 /// ::= 'amdgpu_es' 1748 /// ::= 'amdgpu_gs' 1749 /// ::= 'amdgpu_ps' 1750 /// ::= 'amdgpu_cs' 1751 /// ::= 'amdgpu_kernel' 1752 /// ::= 'cc' UINT 1753 /// 1754 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1755 switch (Lex.getKind()) { 1756 default: CC = CallingConv::C; return false; 1757 case lltok::kw_ccc: CC = CallingConv::C; break; 1758 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1759 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1760 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1761 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1762 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1763 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1764 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1765 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1766 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1767 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1768 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1769 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1770 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1771 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1772 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1773 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1774 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1775 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1776 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1777 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1778 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1779 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1780 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1781 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1782 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1783 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1784 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1785 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1786 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1787 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1788 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1789 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1790 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1791 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1792 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1793 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1794 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1795 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1796 case lltok::kw_cc: { 1797 Lex.Lex(); 1798 return ParseUInt32(CC); 1799 } 1800 } 1801 1802 Lex.Lex(); 1803 return false; 1804 } 1805 1806 /// ParseMetadataAttachment 1807 /// ::= !dbg !42 1808 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1809 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1810 1811 std::string Name = Lex.getStrVal(); 1812 Kind = M->getMDKindID(Name); 1813 Lex.Lex(); 1814 1815 return ParseMDNode(MD); 1816 } 1817 1818 /// ParseInstructionMetadata 1819 /// ::= !dbg !42 (',' !dbg !57)* 1820 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1821 do { 1822 if (Lex.getKind() != lltok::MetadataVar) 1823 return TokError("expected metadata after comma"); 1824 1825 unsigned MDK; 1826 MDNode *N; 1827 if (ParseMetadataAttachment(MDK, N)) 1828 return true; 1829 1830 Inst.setMetadata(MDK, N); 1831 if (MDK == LLVMContext::MD_tbaa) 1832 InstsWithTBAATag.push_back(&Inst); 1833 1834 // If this is the end of the list, we're done. 1835 } while (EatIfPresent(lltok::comma)); 1836 return false; 1837 } 1838 1839 /// ParseGlobalObjectMetadataAttachment 1840 /// ::= !dbg !57 1841 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1842 unsigned MDK; 1843 MDNode *N; 1844 if (ParseMetadataAttachment(MDK, N)) 1845 return true; 1846 1847 GO.addMetadata(MDK, *N); 1848 return false; 1849 } 1850 1851 /// ParseOptionalFunctionMetadata 1852 /// ::= (!dbg !57)* 1853 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1854 while (Lex.getKind() == lltok::MetadataVar) 1855 if (ParseGlobalObjectMetadataAttachment(F)) 1856 return true; 1857 return false; 1858 } 1859 1860 /// ParseOptionalAlignment 1861 /// ::= /* empty */ 1862 /// ::= 'align' 4 1863 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1864 Alignment = 0; 1865 if (!EatIfPresent(lltok::kw_align)) 1866 return false; 1867 LocTy AlignLoc = Lex.getLoc(); 1868 if (ParseUInt32(Alignment)) return true; 1869 if (!isPowerOf2_32(Alignment)) 1870 return Error(AlignLoc, "alignment is not a power of two"); 1871 if (Alignment > Value::MaximumAlignment) 1872 return Error(AlignLoc, "huge alignments are not supported yet"); 1873 return false; 1874 } 1875 1876 /// ParseOptionalDerefAttrBytes 1877 /// ::= /* empty */ 1878 /// ::= AttrKind '(' 4 ')' 1879 /// 1880 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1881 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1882 uint64_t &Bytes) { 1883 assert((AttrKind == lltok::kw_dereferenceable || 1884 AttrKind == lltok::kw_dereferenceable_or_null) && 1885 "contract!"); 1886 1887 Bytes = 0; 1888 if (!EatIfPresent(AttrKind)) 1889 return false; 1890 LocTy ParenLoc = Lex.getLoc(); 1891 if (!EatIfPresent(lltok::lparen)) 1892 return Error(ParenLoc, "expected '('"); 1893 LocTy DerefLoc = Lex.getLoc(); 1894 if (ParseUInt64(Bytes)) return true; 1895 ParenLoc = Lex.getLoc(); 1896 if (!EatIfPresent(lltok::rparen)) 1897 return Error(ParenLoc, "expected ')'"); 1898 if (!Bytes) 1899 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1900 return false; 1901 } 1902 1903 /// ParseOptionalCommaAlign 1904 /// ::= 1905 /// ::= ',' align 4 1906 /// 1907 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1908 /// end. 1909 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1910 bool &AteExtraComma) { 1911 AteExtraComma = false; 1912 while (EatIfPresent(lltok::comma)) { 1913 // Metadata at the end is an early exit. 1914 if (Lex.getKind() == lltok::MetadataVar) { 1915 AteExtraComma = true; 1916 return false; 1917 } 1918 1919 if (Lex.getKind() != lltok::kw_align) 1920 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1921 1922 if (ParseOptionalAlignment(Alignment)) return true; 1923 } 1924 1925 return false; 1926 } 1927 1928 /// ParseOptionalCommaAddrSpace 1929 /// ::= 1930 /// ::= ',' addrspace(1) 1931 /// 1932 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1933 /// end. 1934 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 1935 LocTy &Loc, 1936 bool &AteExtraComma) { 1937 AteExtraComma = false; 1938 while (EatIfPresent(lltok::comma)) { 1939 // Metadata at the end is an early exit. 1940 if (Lex.getKind() == lltok::MetadataVar) { 1941 AteExtraComma = true; 1942 return false; 1943 } 1944 1945 Loc = Lex.getLoc(); 1946 if (Lex.getKind() != lltok::kw_addrspace) 1947 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 1948 1949 if (ParseOptionalAddrSpace(AddrSpace)) 1950 return true; 1951 } 1952 1953 return false; 1954 } 1955 1956 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1957 Optional<unsigned> &HowManyArg) { 1958 Lex.Lex(); 1959 1960 auto StartParen = Lex.getLoc(); 1961 if (!EatIfPresent(lltok::lparen)) 1962 return Error(StartParen, "expected '('"); 1963 1964 if (ParseUInt32(BaseSizeArg)) 1965 return true; 1966 1967 if (EatIfPresent(lltok::comma)) { 1968 auto HowManyAt = Lex.getLoc(); 1969 unsigned HowMany; 1970 if (ParseUInt32(HowMany)) 1971 return true; 1972 if (HowMany == BaseSizeArg) 1973 return Error(HowManyAt, 1974 "'allocsize' indices can't refer to the same parameter"); 1975 HowManyArg = HowMany; 1976 } else 1977 HowManyArg = None; 1978 1979 auto EndParen = Lex.getLoc(); 1980 if (!EatIfPresent(lltok::rparen)) 1981 return Error(EndParen, "expected ')'"); 1982 return false; 1983 } 1984 1985 /// ParseScopeAndOrdering 1986 /// if isAtomic: ::= SyncScope? AtomicOrdering 1987 /// else: ::= 1988 /// 1989 /// This sets Scope and Ordering to the parsed values. 1990 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 1991 AtomicOrdering &Ordering) { 1992 if (!isAtomic) 1993 return false; 1994 1995 return ParseScope(SSID) || ParseOrdering(Ordering); 1996 } 1997 1998 /// ParseScope 1999 /// ::= syncscope("singlethread" | "<target scope>")? 2000 /// 2001 /// This sets synchronization scope ID to the ID of the parsed value. 2002 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2003 SSID = SyncScope::System; 2004 if (EatIfPresent(lltok::kw_syncscope)) { 2005 auto StartParenAt = Lex.getLoc(); 2006 if (!EatIfPresent(lltok::lparen)) 2007 return Error(StartParenAt, "Expected '(' in syncscope"); 2008 2009 std::string SSN; 2010 auto SSNAt = Lex.getLoc(); 2011 if (ParseStringConstant(SSN)) 2012 return Error(SSNAt, "Expected synchronization scope name"); 2013 2014 auto EndParenAt = Lex.getLoc(); 2015 if (!EatIfPresent(lltok::rparen)) 2016 return Error(EndParenAt, "Expected ')' in syncscope"); 2017 2018 SSID = Context.getOrInsertSyncScopeID(SSN); 2019 } 2020 2021 return false; 2022 } 2023 2024 /// ParseOrdering 2025 /// ::= AtomicOrdering 2026 /// 2027 /// This sets Ordering to the parsed value. 2028 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2029 switch (Lex.getKind()) { 2030 default: return TokError("Expected ordering on atomic instruction"); 2031 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2032 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2033 // Not specified yet: 2034 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2035 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2036 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2037 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2038 case lltok::kw_seq_cst: 2039 Ordering = AtomicOrdering::SequentiallyConsistent; 2040 break; 2041 } 2042 Lex.Lex(); 2043 return false; 2044 } 2045 2046 /// ParseOptionalStackAlignment 2047 /// ::= /* empty */ 2048 /// ::= 'alignstack' '(' 4 ')' 2049 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2050 Alignment = 0; 2051 if (!EatIfPresent(lltok::kw_alignstack)) 2052 return false; 2053 LocTy ParenLoc = Lex.getLoc(); 2054 if (!EatIfPresent(lltok::lparen)) 2055 return Error(ParenLoc, "expected '('"); 2056 LocTy AlignLoc = Lex.getLoc(); 2057 if (ParseUInt32(Alignment)) return true; 2058 ParenLoc = Lex.getLoc(); 2059 if (!EatIfPresent(lltok::rparen)) 2060 return Error(ParenLoc, "expected ')'"); 2061 if (!isPowerOf2_32(Alignment)) 2062 return Error(AlignLoc, "stack alignment is not a power of two"); 2063 return false; 2064 } 2065 2066 /// ParseIndexList - This parses the index list for an insert/extractvalue 2067 /// instruction. This sets AteExtraComma in the case where we eat an extra 2068 /// comma at the end of the line and find that it is followed by metadata. 2069 /// Clients that don't allow metadata can call the version of this function that 2070 /// only takes one argument. 2071 /// 2072 /// ParseIndexList 2073 /// ::= (',' uint32)+ 2074 /// 2075 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2076 bool &AteExtraComma) { 2077 AteExtraComma = false; 2078 2079 if (Lex.getKind() != lltok::comma) 2080 return TokError("expected ',' as start of index list"); 2081 2082 while (EatIfPresent(lltok::comma)) { 2083 if (Lex.getKind() == lltok::MetadataVar) { 2084 if (Indices.empty()) return TokError("expected index"); 2085 AteExtraComma = true; 2086 return false; 2087 } 2088 unsigned Idx = 0; 2089 if (ParseUInt32(Idx)) return true; 2090 Indices.push_back(Idx); 2091 } 2092 2093 return false; 2094 } 2095 2096 //===----------------------------------------------------------------------===// 2097 // Type Parsing. 2098 //===----------------------------------------------------------------------===// 2099 2100 /// ParseType - Parse a type. 2101 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2102 SMLoc TypeLoc = Lex.getLoc(); 2103 switch (Lex.getKind()) { 2104 default: 2105 return TokError(Msg); 2106 case lltok::Type: 2107 // Type ::= 'float' | 'void' (etc) 2108 Result = Lex.getTyVal(); 2109 Lex.Lex(); 2110 break; 2111 case lltok::lbrace: 2112 // Type ::= StructType 2113 if (ParseAnonStructType(Result, false)) 2114 return true; 2115 break; 2116 case lltok::lsquare: 2117 // Type ::= '[' ... ']' 2118 Lex.Lex(); // eat the lsquare. 2119 if (ParseArrayVectorType(Result, false)) 2120 return true; 2121 break; 2122 case lltok::less: // Either vector or packed struct. 2123 // Type ::= '<' ... '>' 2124 Lex.Lex(); 2125 if (Lex.getKind() == lltok::lbrace) { 2126 if (ParseAnonStructType(Result, true) || 2127 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2128 return true; 2129 } else if (ParseArrayVectorType(Result, true)) 2130 return true; 2131 break; 2132 case lltok::LocalVar: { 2133 // Type ::= %foo 2134 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2135 2136 // If the type hasn't been defined yet, create a forward definition and 2137 // remember where that forward def'n was seen (in case it never is defined). 2138 if (!Entry.first) { 2139 Entry.first = StructType::create(Context, Lex.getStrVal()); 2140 Entry.second = Lex.getLoc(); 2141 } 2142 Result = Entry.first; 2143 Lex.Lex(); 2144 break; 2145 } 2146 2147 case lltok::LocalVarID: { 2148 // Type ::= %4 2149 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2150 2151 // If the type hasn't been defined yet, create a forward definition and 2152 // remember where that forward def'n was seen (in case it never is defined). 2153 if (!Entry.first) { 2154 Entry.first = StructType::create(Context); 2155 Entry.second = Lex.getLoc(); 2156 } 2157 Result = Entry.first; 2158 Lex.Lex(); 2159 break; 2160 } 2161 } 2162 2163 // Parse the type suffixes. 2164 while (true) { 2165 switch (Lex.getKind()) { 2166 // End of type. 2167 default: 2168 if (!AllowVoid && Result->isVoidTy()) 2169 return Error(TypeLoc, "void type only allowed for function results"); 2170 return false; 2171 2172 // Type ::= Type '*' 2173 case lltok::star: 2174 if (Result->isLabelTy()) 2175 return TokError("basic block pointers are invalid"); 2176 if (Result->isVoidTy()) 2177 return TokError("pointers to void are invalid - use i8* instead"); 2178 if (!PointerType::isValidElementType(Result)) 2179 return TokError("pointer to this type is invalid"); 2180 Result = PointerType::getUnqual(Result); 2181 Lex.Lex(); 2182 break; 2183 2184 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2185 case lltok::kw_addrspace: { 2186 if (Result->isLabelTy()) 2187 return TokError("basic block pointers are invalid"); 2188 if (Result->isVoidTy()) 2189 return TokError("pointers to void are invalid; use i8* instead"); 2190 if (!PointerType::isValidElementType(Result)) 2191 return TokError("pointer to this type is invalid"); 2192 unsigned AddrSpace; 2193 if (ParseOptionalAddrSpace(AddrSpace) || 2194 ParseToken(lltok::star, "expected '*' in address space")) 2195 return true; 2196 2197 Result = PointerType::get(Result, AddrSpace); 2198 break; 2199 } 2200 2201 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2202 case lltok::lparen: 2203 if (ParseFunctionType(Result)) 2204 return true; 2205 break; 2206 } 2207 } 2208 } 2209 2210 /// ParseParameterList 2211 /// ::= '(' ')' 2212 /// ::= '(' Arg (',' Arg)* ')' 2213 /// Arg 2214 /// ::= Type OptionalAttributes Value OptionalAttributes 2215 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2216 PerFunctionState &PFS, bool IsMustTailCall, 2217 bool InVarArgsFunc) { 2218 if (ParseToken(lltok::lparen, "expected '(' in call")) 2219 return true; 2220 2221 while (Lex.getKind() != lltok::rparen) { 2222 // If this isn't the first argument, we need a comma. 2223 if (!ArgList.empty() && 2224 ParseToken(lltok::comma, "expected ',' in argument list")) 2225 return true; 2226 2227 // Parse an ellipsis if this is a musttail call in a variadic function. 2228 if (Lex.getKind() == lltok::dotdotdot) { 2229 const char *Msg = "unexpected ellipsis in argument list for "; 2230 if (!IsMustTailCall) 2231 return TokError(Twine(Msg) + "non-musttail call"); 2232 if (!InVarArgsFunc) 2233 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2234 Lex.Lex(); // Lex the '...', it is purely for readability. 2235 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2236 } 2237 2238 // Parse the argument. 2239 LocTy ArgLoc; 2240 Type *ArgTy = nullptr; 2241 AttrBuilder ArgAttrs; 2242 Value *V; 2243 if (ParseType(ArgTy, ArgLoc)) 2244 return true; 2245 2246 if (ArgTy->isMetadataTy()) { 2247 if (ParseMetadataAsValue(V, PFS)) 2248 return true; 2249 } else { 2250 // Otherwise, handle normal operands. 2251 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2252 return true; 2253 } 2254 ArgList.push_back(ParamInfo( 2255 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2256 } 2257 2258 if (IsMustTailCall && InVarArgsFunc) 2259 return TokError("expected '...' at end of argument list for musttail call " 2260 "in varargs function"); 2261 2262 Lex.Lex(); // Lex the ')'. 2263 return false; 2264 } 2265 2266 /// ParseOptionalOperandBundles 2267 /// ::= /*empty*/ 2268 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2269 /// 2270 /// OperandBundle 2271 /// ::= bundle-tag '(' ')' 2272 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2273 /// 2274 /// bundle-tag ::= String Constant 2275 bool LLParser::ParseOptionalOperandBundles( 2276 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2277 LocTy BeginLoc = Lex.getLoc(); 2278 if (!EatIfPresent(lltok::lsquare)) 2279 return false; 2280 2281 while (Lex.getKind() != lltok::rsquare) { 2282 // If this isn't the first operand bundle, we need a comma. 2283 if (!BundleList.empty() && 2284 ParseToken(lltok::comma, "expected ',' in input list")) 2285 return true; 2286 2287 std::string Tag; 2288 if (ParseStringConstant(Tag)) 2289 return true; 2290 2291 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2292 return true; 2293 2294 std::vector<Value *> Inputs; 2295 while (Lex.getKind() != lltok::rparen) { 2296 // If this isn't the first input, we need a comma. 2297 if (!Inputs.empty() && 2298 ParseToken(lltok::comma, "expected ',' in input list")) 2299 return true; 2300 2301 Type *Ty = nullptr; 2302 Value *Input = nullptr; 2303 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2304 return true; 2305 Inputs.push_back(Input); 2306 } 2307 2308 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2309 2310 Lex.Lex(); // Lex the ')'. 2311 } 2312 2313 if (BundleList.empty()) 2314 return Error(BeginLoc, "operand bundle set must not be empty"); 2315 2316 Lex.Lex(); // Lex the ']'. 2317 return false; 2318 } 2319 2320 /// ParseArgumentList - Parse the argument list for a function type or function 2321 /// prototype. 2322 /// ::= '(' ArgTypeListI ')' 2323 /// ArgTypeListI 2324 /// ::= /*empty*/ 2325 /// ::= '...' 2326 /// ::= ArgTypeList ',' '...' 2327 /// ::= ArgType (',' ArgType)* 2328 /// 2329 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2330 bool &isVarArg){ 2331 isVarArg = false; 2332 assert(Lex.getKind() == lltok::lparen); 2333 Lex.Lex(); // eat the (. 2334 2335 if (Lex.getKind() == lltok::rparen) { 2336 // empty 2337 } else if (Lex.getKind() == lltok::dotdotdot) { 2338 isVarArg = true; 2339 Lex.Lex(); 2340 } else { 2341 LocTy TypeLoc = Lex.getLoc(); 2342 Type *ArgTy = nullptr; 2343 AttrBuilder Attrs; 2344 std::string Name; 2345 2346 if (ParseType(ArgTy) || 2347 ParseOptionalParamAttrs(Attrs)) return true; 2348 2349 if (ArgTy->isVoidTy()) 2350 return Error(TypeLoc, "argument can not have void type"); 2351 2352 if (Lex.getKind() == lltok::LocalVar) { 2353 Name = Lex.getStrVal(); 2354 Lex.Lex(); 2355 } 2356 2357 if (!FunctionType::isValidArgumentType(ArgTy)) 2358 return Error(TypeLoc, "invalid type for function argument"); 2359 2360 ArgList.emplace_back(TypeLoc, ArgTy, 2361 AttributeSet::get(ArgTy->getContext(), Attrs), 2362 std::move(Name)); 2363 2364 while (EatIfPresent(lltok::comma)) { 2365 // Handle ... at end of arg list. 2366 if (EatIfPresent(lltok::dotdotdot)) { 2367 isVarArg = true; 2368 break; 2369 } 2370 2371 // Otherwise must be an argument type. 2372 TypeLoc = Lex.getLoc(); 2373 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2374 2375 if (ArgTy->isVoidTy()) 2376 return Error(TypeLoc, "argument can not have void type"); 2377 2378 if (Lex.getKind() == lltok::LocalVar) { 2379 Name = Lex.getStrVal(); 2380 Lex.Lex(); 2381 } else { 2382 Name = ""; 2383 } 2384 2385 if (!ArgTy->isFirstClassType()) 2386 return Error(TypeLoc, "invalid type for function argument"); 2387 2388 ArgList.emplace_back(TypeLoc, ArgTy, 2389 AttributeSet::get(ArgTy->getContext(), Attrs), 2390 std::move(Name)); 2391 } 2392 } 2393 2394 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2395 } 2396 2397 /// ParseFunctionType 2398 /// ::= Type ArgumentList OptionalAttrs 2399 bool LLParser::ParseFunctionType(Type *&Result) { 2400 assert(Lex.getKind() == lltok::lparen); 2401 2402 if (!FunctionType::isValidReturnType(Result)) 2403 return TokError("invalid function return type"); 2404 2405 SmallVector<ArgInfo, 8> ArgList; 2406 bool isVarArg; 2407 if (ParseArgumentList(ArgList, isVarArg)) 2408 return true; 2409 2410 // Reject names on the arguments lists. 2411 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2412 if (!ArgList[i].Name.empty()) 2413 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2414 if (ArgList[i].Attrs.hasAttributes()) 2415 return Error(ArgList[i].Loc, 2416 "argument attributes invalid in function type"); 2417 } 2418 2419 SmallVector<Type*, 16> ArgListTy; 2420 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2421 ArgListTy.push_back(ArgList[i].Ty); 2422 2423 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2424 return false; 2425 } 2426 2427 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2428 /// other structs. 2429 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2430 SmallVector<Type*, 8> Elts; 2431 if (ParseStructBody(Elts)) return true; 2432 2433 Result = StructType::get(Context, Elts, Packed); 2434 return false; 2435 } 2436 2437 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2438 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2439 std::pair<Type*, LocTy> &Entry, 2440 Type *&ResultTy) { 2441 // If the type was already defined, diagnose the redefinition. 2442 if (Entry.first && !Entry.second.isValid()) 2443 return Error(TypeLoc, "redefinition of type"); 2444 2445 // If we have opaque, just return without filling in the definition for the 2446 // struct. This counts as a definition as far as the .ll file goes. 2447 if (EatIfPresent(lltok::kw_opaque)) { 2448 // This type is being defined, so clear the location to indicate this. 2449 Entry.second = SMLoc(); 2450 2451 // If this type number has never been uttered, create it. 2452 if (!Entry.first) 2453 Entry.first = StructType::create(Context, Name); 2454 ResultTy = Entry.first; 2455 return false; 2456 } 2457 2458 // If the type starts with '<', then it is either a packed struct or a vector. 2459 bool isPacked = EatIfPresent(lltok::less); 2460 2461 // If we don't have a struct, then we have a random type alias, which we 2462 // accept for compatibility with old files. These types are not allowed to be 2463 // forward referenced and not allowed to be recursive. 2464 if (Lex.getKind() != lltok::lbrace) { 2465 if (Entry.first) 2466 return Error(TypeLoc, "forward references to non-struct type"); 2467 2468 ResultTy = nullptr; 2469 if (isPacked) 2470 return ParseArrayVectorType(ResultTy, true); 2471 return ParseType(ResultTy); 2472 } 2473 2474 // This type is being defined, so clear the location to indicate this. 2475 Entry.second = SMLoc(); 2476 2477 // If this type number has never been uttered, create it. 2478 if (!Entry.first) 2479 Entry.first = StructType::create(Context, Name); 2480 2481 StructType *STy = cast<StructType>(Entry.first); 2482 2483 SmallVector<Type*, 8> Body; 2484 if (ParseStructBody(Body) || 2485 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2486 return true; 2487 2488 STy->setBody(Body, isPacked); 2489 ResultTy = STy; 2490 return false; 2491 } 2492 2493 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2494 /// StructType 2495 /// ::= '{' '}' 2496 /// ::= '{' Type (',' Type)* '}' 2497 /// ::= '<' '{' '}' '>' 2498 /// ::= '<' '{' Type (',' Type)* '}' '>' 2499 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2500 assert(Lex.getKind() == lltok::lbrace); 2501 Lex.Lex(); // Consume the '{' 2502 2503 // Handle the empty struct. 2504 if (EatIfPresent(lltok::rbrace)) 2505 return false; 2506 2507 LocTy EltTyLoc = Lex.getLoc(); 2508 Type *Ty = nullptr; 2509 if (ParseType(Ty)) return true; 2510 Body.push_back(Ty); 2511 2512 if (!StructType::isValidElementType(Ty)) 2513 return Error(EltTyLoc, "invalid element type for struct"); 2514 2515 while (EatIfPresent(lltok::comma)) { 2516 EltTyLoc = Lex.getLoc(); 2517 if (ParseType(Ty)) return true; 2518 2519 if (!StructType::isValidElementType(Ty)) 2520 return Error(EltTyLoc, "invalid element type for struct"); 2521 2522 Body.push_back(Ty); 2523 } 2524 2525 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2526 } 2527 2528 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2529 /// token has already been consumed. 2530 /// Type 2531 /// ::= '[' APSINTVAL 'x' Types ']' 2532 /// ::= '<' APSINTVAL 'x' Types '>' 2533 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2534 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2535 Lex.getAPSIntVal().getBitWidth() > 64) 2536 return TokError("expected number in address space"); 2537 2538 LocTy SizeLoc = Lex.getLoc(); 2539 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2540 Lex.Lex(); 2541 2542 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2543 return true; 2544 2545 LocTy TypeLoc = Lex.getLoc(); 2546 Type *EltTy = nullptr; 2547 if (ParseType(EltTy)) return true; 2548 2549 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2550 "expected end of sequential type")) 2551 return true; 2552 2553 if (isVector) { 2554 if (Size == 0) 2555 return Error(SizeLoc, "zero element vector is illegal"); 2556 if ((unsigned)Size != Size) 2557 return Error(SizeLoc, "size too large for vector"); 2558 if (!VectorType::isValidElementType(EltTy)) 2559 return Error(TypeLoc, "invalid vector element type"); 2560 Result = VectorType::get(EltTy, unsigned(Size)); 2561 } else { 2562 if (!ArrayType::isValidElementType(EltTy)) 2563 return Error(TypeLoc, "invalid array element type"); 2564 Result = ArrayType::get(EltTy, Size); 2565 } 2566 return false; 2567 } 2568 2569 //===----------------------------------------------------------------------===// 2570 // Function Semantic Analysis. 2571 //===----------------------------------------------------------------------===// 2572 2573 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2574 int functionNumber) 2575 : P(p), F(f), FunctionNumber(functionNumber) { 2576 2577 // Insert unnamed arguments into the NumberedVals list. 2578 for (Argument &A : F.args()) 2579 if (!A.hasName()) 2580 NumberedVals.push_back(&A); 2581 } 2582 2583 LLParser::PerFunctionState::~PerFunctionState() { 2584 // If there were any forward referenced non-basicblock values, delete them. 2585 2586 for (const auto &P : ForwardRefVals) { 2587 if (isa<BasicBlock>(P.second.first)) 2588 continue; 2589 P.second.first->replaceAllUsesWith( 2590 UndefValue::get(P.second.first->getType())); 2591 P.second.first->deleteValue(); 2592 } 2593 2594 for (const auto &P : ForwardRefValIDs) { 2595 if (isa<BasicBlock>(P.second.first)) 2596 continue; 2597 P.second.first->replaceAllUsesWith( 2598 UndefValue::get(P.second.first->getType())); 2599 P.second.first->deleteValue(); 2600 } 2601 } 2602 2603 bool LLParser::PerFunctionState::FinishFunction() { 2604 if (!ForwardRefVals.empty()) 2605 return P.Error(ForwardRefVals.begin()->second.second, 2606 "use of undefined value '%" + ForwardRefVals.begin()->first + 2607 "'"); 2608 if (!ForwardRefValIDs.empty()) 2609 return P.Error(ForwardRefValIDs.begin()->second.second, 2610 "use of undefined value '%" + 2611 Twine(ForwardRefValIDs.begin()->first) + "'"); 2612 return false; 2613 } 2614 2615 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) { 2616 if (Val->getType() == Ty) 2617 return true; 2618 // For calls we also accept variables in the program address space 2619 if (IsCall && isa<PointerType>(Ty)) { 2620 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 2621 M->getDataLayout().getProgramAddressSpace()); 2622 if (Val->getType() == TyInProgAS) 2623 return true; 2624 } 2625 return false; 2626 } 2627 2628 /// GetVal - Get a value with the specified name or ID, creating a 2629 /// forward reference record if needed. This can return null if the value 2630 /// exists but does not have the right type. 2631 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2632 LocTy Loc, bool IsCall) { 2633 // Look this name up in the normal function symbol table. 2634 Value *Val = F.getValueSymbolTable()->lookup(Name); 2635 2636 // If this is a forward reference for the value, see if we already created a 2637 // forward ref record. 2638 if (!Val) { 2639 auto I = ForwardRefVals.find(Name); 2640 if (I != ForwardRefVals.end()) 2641 Val = I->second.first; 2642 } 2643 2644 // If we have the value in the symbol table or fwd-ref table, return it. 2645 if (Val) { 2646 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2647 return Val; 2648 if (Ty->isLabelTy()) 2649 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2650 else 2651 P.Error(Loc, "'%" + Name + "' defined with type '" + 2652 getTypeString(Val->getType()) + "'"); 2653 return nullptr; 2654 } 2655 2656 // Don't make placeholders with invalid type. 2657 if (!Ty->isFirstClassType()) { 2658 P.Error(Loc, "invalid use of a non-first-class type"); 2659 return nullptr; 2660 } 2661 2662 // Otherwise, create a new forward reference for this value and remember it. 2663 Value *FwdVal; 2664 if (Ty->isLabelTy()) { 2665 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2666 } else { 2667 FwdVal = new Argument(Ty, Name); 2668 } 2669 2670 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2671 return FwdVal; 2672 } 2673 2674 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2675 bool IsCall) { 2676 // Look this name up in the normal function symbol table. 2677 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2678 2679 // If this is a forward reference for the value, see if we already created a 2680 // forward ref record. 2681 if (!Val) { 2682 auto I = ForwardRefValIDs.find(ID); 2683 if (I != ForwardRefValIDs.end()) 2684 Val = I->second.first; 2685 } 2686 2687 // If we have the value in the symbol table or fwd-ref table, return it. 2688 if (Val) { 2689 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2690 return Val; 2691 if (Ty->isLabelTy()) 2692 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2693 else 2694 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2695 getTypeString(Val->getType()) + "'"); 2696 return nullptr; 2697 } 2698 2699 if (!Ty->isFirstClassType()) { 2700 P.Error(Loc, "invalid use of a non-first-class type"); 2701 return nullptr; 2702 } 2703 2704 // Otherwise, create a new forward reference for this value and remember it. 2705 Value *FwdVal; 2706 if (Ty->isLabelTy()) { 2707 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2708 } else { 2709 FwdVal = new Argument(Ty); 2710 } 2711 2712 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2713 return FwdVal; 2714 } 2715 2716 /// SetInstName - After an instruction is parsed and inserted into its 2717 /// basic block, this installs its name. 2718 bool LLParser::PerFunctionState::SetInstName(int NameID, 2719 const std::string &NameStr, 2720 LocTy NameLoc, Instruction *Inst) { 2721 // If this instruction has void type, it cannot have a name or ID specified. 2722 if (Inst->getType()->isVoidTy()) { 2723 if (NameID != -1 || !NameStr.empty()) 2724 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2725 return false; 2726 } 2727 2728 // If this was a numbered instruction, verify that the instruction is the 2729 // expected value and resolve any forward references. 2730 if (NameStr.empty()) { 2731 // If neither a name nor an ID was specified, just use the next ID. 2732 if (NameID == -1) 2733 NameID = NumberedVals.size(); 2734 2735 if (unsigned(NameID) != NumberedVals.size()) 2736 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2737 Twine(NumberedVals.size()) + "'"); 2738 2739 auto FI = ForwardRefValIDs.find(NameID); 2740 if (FI != ForwardRefValIDs.end()) { 2741 Value *Sentinel = FI->second.first; 2742 if (Sentinel->getType() != Inst->getType()) 2743 return P.Error(NameLoc, "instruction forward referenced with type '" + 2744 getTypeString(FI->second.first->getType()) + "'"); 2745 2746 Sentinel->replaceAllUsesWith(Inst); 2747 Sentinel->deleteValue(); 2748 ForwardRefValIDs.erase(FI); 2749 } 2750 2751 NumberedVals.push_back(Inst); 2752 return false; 2753 } 2754 2755 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2756 auto FI = ForwardRefVals.find(NameStr); 2757 if (FI != ForwardRefVals.end()) { 2758 Value *Sentinel = FI->second.first; 2759 if (Sentinel->getType() != Inst->getType()) 2760 return P.Error(NameLoc, "instruction forward referenced with type '" + 2761 getTypeString(FI->second.first->getType()) + "'"); 2762 2763 Sentinel->replaceAllUsesWith(Inst); 2764 Sentinel->deleteValue(); 2765 ForwardRefVals.erase(FI); 2766 } 2767 2768 // Set the name on the instruction. 2769 Inst->setName(NameStr); 2770 2771 if (Inst->getName() != NameStr) 2772 return P.Error(NameLoc, "multiple definition of local value named '" + 2773 NameStr + "'"); 2774 return false; 2775 } 2776 2777 /// GetBB - Get a basic block with the specified name or ID, creating a 2778 /// forward reference record if needed. 2779 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2780 LocTy Loc) { 2781 return dyn_cast_or_null<BasicBlock>( 2782 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2783 } 2784 2785 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2786 return dyn_cast_or_null<BasicBlock>( 2787 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2788 } 2789 2790 /// DefineBB - Define the specified basic block, which is either named or 2791 /// unnamed. If there is an error, this returns null otherwise it returns 2792 /// the block being defined. 2793 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2794 LocTy Loc) { 2795 BasicBlock *BB; 2796 if (Name.empty()) 2797 BB = GetBB(NumberedVals.size(), Loc); 2798 else 2799 BB = GetBB(Name, Loc); 2800 if (!BB) return nullptr; // Already diagnosed error. 2801 2802 // Move the block to the end of the function. Forward ref'd blocks are 2803 // inserted wherever they happen to be referenced. 2804 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2805 2806 // Remove the block from forward ref sets. 2807 if (Name.empty()) { 2808 ForwardRefValIDs.erase(NumberedVals.size()); 2809 NumberedVals.push_back(BB); 2810 } else { 2811 // BB forward references are already in the function symbol table. 2812 ForwardRefVals.erase(Name); 2813 } 2814 2815 return BB; 2816 } 2817 2818 //===----------------------------------------------------------------------===// 2819 // Constants. 2820 //===----------------------------------------------------------------------===// 2821 2822 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2823 /// type implied. For example, if we parse "4" we don't know what integer type 2824 /// it has. The value will later be combined with its type and checked for 2825 /// sanity. PFS is used to convert function-local operands of metadata (since 2826 /// metadata operands are not just parsed here but also converted to values). 2827 /// PFS can be null when we are not parsing metadata values inside a function. 2828 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2829 ID.Loc = Lex.getLoc(); 2830 switch (Lex.getKind()) { 2831 default: return TokError("expected value token"); 2832 case lltok::GlobalID: // @42 2833 ID.UIntVal = Lex.getUIntVal(); 2834 ID.Kind = ValID::t_GlobalID; 2835 break; 2836 case lltok::GlobalVar: // @foo 2837 ID.StrVal = Lex.getStrVal(); 2838 ID.Kind = ValID::t_GlobalName; 2839 break; 2840 case lltok::LocalVarID: // %42 2841 ID.UIntVal = Lex.getUIntVal(); 2842 ID.Kind = ValID::t_LocalID; 2843 break; 2844 case lltok::LocalVar: // %foo 2845 ID.StrVal = Lex.getStrVal(); 2846 ID.Kind = ValID::t_LocalName; 2847 break; 2848 case lltok::APSInt: 2849 ID.APSIntVal = Lex.getAPSIntVal(); 2850 ID.Kind = ValID::t_APSInt; 2851 break; 2852 case lltok::APFloat: 2853 ID.APFloatVal = Lex.getAPFloatVal(); 2854 ID.Kind = ValID::t_APFloat; 2855 break; 2856 case lltok::kw_true: 2857 ID.ConstantVal = ConstantInt::getTrue(Context); 2858 ID.Kind = ValID::t_Constant; 2859 break; 2860 case lltok::kw_false: 2861 ID.ConstantVal = ConstantInt::getFalse(Context); 2862 ID.Kind = ValID::t_Constant; 2863 break; 2864 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2865 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2866 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2867 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2868 2869 case lltok::lbrace: { 2870 // ValID ::= '{' ConstVector '}' 2871 Lex.Lex(); 2872 SmallVector<Constant*, 16> Elts; 2873 if (ParseGlobalValueVector(Elts) || 2874 ParseToken(lltok::rbrace, "expected end of struct constant")) 2875 return true; 2876 2877 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2878 ID.UIntVal = Elts.size(); 2879 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2880 Elts.size() * sizeof(Elts[0])); 2881 ID.Kind = ValID::t_ConstantStruct; 2882 return false; 2883 } 2884 case lltok::less: { 2885 // ValID ::= '<' ConstVector '>' --> Vector. 2886 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2887 Lex.Lex(); 2888 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2889 2890 SmallVector<Constant*, 16> Elts; 2891 LocTy FirstEltLoc = Lex.getLoc(); 2892 if (ParseGlobalValueVector(Elts) || 2893 (isPackedStruct && 2894 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2895 ParseToken(lltok::greater, "expected end of constant")) 2896 return true; 2897 2898 if (isPackedStruct) { 2899 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2900 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2901 Elts.size() * sizeof(Elts[0])); 2902 ID.UIntVal = Elts.size(); 2903 ID.Kind = ValID::t_PackedConstantStruct; 2904 return false; 2905 } 2906 2907 if (Elts.empty()) 2908 return Error(ID.Loc, "constant vector must not be empty"); 2909 2910 if (!Elts[0]->getType()->isIntegerTy() && 2911 !Elts[0]->getType()->isFloatingPointTy() && 2912 !Elts[0]->getType()->isPointerTy()) 2913 return Error(FirstEltLoc, 2914 "vector elements must have integer, pointer or floating point type"); 2915 2916 // Verify that all the vector elements have the same type. 2917 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2918 if (Elts[i]->getType() != Elts[0]->getType()) 2919 return Error(FirstEltLoc, 2920 "vector element #" + Twine(i) + 2921 " is not of type '" + getTypeString(Elts[0]->getType())); 2922 2923 ID.ConstantVal = ConstantVector::get(Elts); 2924 ID.Kind = ValID::t_Constant; 2925 return false; 2926 } 2927 case lltok::lsquare: { // Array Constant 2928 Lex.Lex(); 2929 SmallVector<Constant*, 16> Elts; 2930 LocTy FirstEltLoc = Lex.getLoc(); 2931 if (ParseGlobalValueVector(Elts) || 2932 ParseToken(lltok::rsquare, "expected end of array constant")) 2933 return true; 2934 2935 // Handle empty element. 2936 if (Elts.empty()) { 2937 // Use undef instead of an array because it's inconvenient to determine 2938 // the element type at this point, there being no elements to examine. 2939 ID.Kind = ValID::t_EmptyArray; 2940 return false; 2941 } 2942 2943 if (!Elts[0]->getType()->isFirstClassType()) 2944 return Error(FirstEltLoc, "invalid array element type: " + 2945 getTypeString(Elts[0]->getType())); 2946 2947 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2948 2949 // Verify all elements are correct type! 2950 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2951 if (Elts[i]->getType() != Elts[0]->getType()) 2952 return Error(FirstEltLoc, 2953 "array element #" + Twine(i) + 2954 " is not of type '" + getTypeString(Elts[0]->getType())); 2955 } 2956 2957 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2958 ID.Kind = ValID::t_Constant; 2959 return false; 2960 } 2961 case lltok::kw_c: // c "foo" 2962 Lex.Lex(); 2963 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2964 false); 2965 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2966 ID.Kind = ValID::t_Constant; 2967 return false; 2968 2969 case lltok::kw_asm: { 2970 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2971 // STRINGCONSTANT 2972 bool HasSideEffect, AlignStack, AsmDialect; 2973 Lex.Lex(); 2974 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2975 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2976 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2977 ParseStringConstant(ID.StrVal) || 2978 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2979 ParseToken(lltok::StringConstant, "expected constraint string")) 2980 return true; 2981 ID.StrVal2 = Lex.getStrVal(); 2982 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2983 (unsigned(AsmDialect)<<2); 2984 ID.Kind = ValID::t_InlineAsm; 2985 return false; 2986 } 2987 2988 case lltok::kw_blockaddress: { 2989 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2990 Lex.Lex(); 2991 2992 ValID Fn, Label; 2993 2994 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2995 ParseValID(Fn) || 2996 ParseToken(lltok::comma, "expected comma in block address expression")|| 2997 ParseValID(Label) || 2998 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2999 return true; 3000 3001 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3002 return Error(Fn.Loc, "expected function name in blockaddress"); 3003 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3004 return Error(Label.Loc, "expected basic block name in blockaddress"); 3005 3006 // Try to find the function (but skip it if it's forward-referenced). 3007 GlobalValue *GV = nullptr; 3008 if (Fn.Kind == ValID::t_GlobalID) { 3009 if (Fn.UIntVal < NumberedVals.size()) 3010 GV = NumberedVals[Fn.UIntVal]; 3011 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3012 GV = M->getNamedValue(Fn.StrVal); 3013 } 3014 Function *F = nullptr; 3015 if (GV) { 3016 // Confirm that it's actually a function with a definition. 3017 if (!isa<Function>(GV)) 3018 return Error(Fn.Loc, "expected function name in blockaddress"); 3019 F = cast<Function>(GV); 3020 if (F->isDeclaration()) 3021 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3022 } 3023 3024 if (!F) { 3025 // Make a global variable as a placeholder for this reference. 3026 GlobalValue *&FwdRef = 3027 ForwardRefBlockAddresses.insert(std::make_pair( 3028 std::move(Fn), 3029 std::map<ValID, GlobalValue *>())) 3030 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3031 .first->second; 3032 if (!FwdRef) 3033 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3034 GlobalValue::InternalLinkage, nullptr, ""); 3035 ID.ConstantVal = FwdRef; 3036 ID.Kind = ValID::t_Constant; 3037 return false; 3038 } 3039 3040 // We found the function; now find the basic block. Don't use PFS, since we 3041 // might be inside a constant expression. 3042 BasicBlock *BB; 3043 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3044 if (Label.Kind == ValID::t_LocalID) 3045 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3046 else 3047 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3048 if (!BB) 3049 return Error(Label.Loc, "referenced value is not a basic block"); 3050 } else { 3051 if (Label.Kind == ValID::t_LocalID) 3052 return Error(Label.Loc, "cannot take address of numeric label after " 3053 "the function is defined"); 3054 BB = dyn_cast_or_null<BasicBlock>( 3055 F->getValueSymbolTable()->lookup(Label.StrVal)); 3056 if (!BB) 3057 return Error(Label.Loc, "referenced value is not a basic block"); 3058 } 3059 3060 ID.ConstantVal = BlockAddress::get(F, BB); 3061 ID.Kind = ValID::t_Constant; 3062 return false; 3063 } 3064 3065 case lltok::kw_trunc: 3066 case lltok::kw_zext: 3067 case lltok::kw_sext: 3068 case lltok::kw_fptrunc: 3069 case lltok::kw_fpext: 3070 case lltok::kw_bitcast: 3071 case lltok::kw_addrspacecast: 3072 case lltok::kw_uitofp: 3073 case lltok::kw_sitofp: 3074 case lltok::kw_fptoui: 3075 case lltok::kw_fptosi: 3076 case lltok::kw_inttoptr: 3077 case lltok::kw_ptrtoint: { 3078 unsigned Opc = Lex.getUIntVal(); 3079 Type *DestTy = nullptr; 3080 Constant *SrcVal; 3081 Lex.Lex(); 3082 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3083 ParseGlobalTypeAndValue(SrcVal) || 3084 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3085 ParseType(DestTy) || 3086 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3087 return true; 3088 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3089 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3090 getTypeString(SrcVal->getType()) + "' to '" + 3091 getTypeString(DestTy) + "'"); 3092 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3093 SrcVal, DestTy); 3094 ID.Kind = ValID::t_Constant; 3095 return false; 3096 } 3097 case lltok::kw_extractvalue: { 3098 Lex.Lex(); 3099 Constant *Val; 3100 SmallVector<unsigned, 4> Indices; 3101 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3102 ParseGlobalTypeAndValue(Val) || 3103 ParseIndexList(Indices) || 3104 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3105 return true; 3106 3107 if (!Val->getType()->isAggregateType()) 3108 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3109 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3110 return Error(ID.Loc, "invalid indices for extractvalue"); 3111 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3112 ID.Kind = ValID::t_Constant; 3113 return false; 3114 } 3115 case lltok::kw_insertvalue: { 3116 Lex.Lex(); 3117 Constant *Val0, *Val1; 3118 SmallVector<unsigned, 4> Indices; 3119 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3120 ParseGlobalTypeAndValue(Val0) || 3121 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3122 ParseGlobalTypeAndValue(Val1) || 3123 ParseIndexList(Indices) || 3124 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3125 return true; 3126 if (!Val0->getType()->isAggregateType()) 3127 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3128 Type *IndexedType = 3129 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3130 if (!IndexedType) 3131 return Error(ID.Loc, "invalid indices for insertvalue"); 3132 if (IndexedType != Val1->getType()) 3133 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3134 getTypeString(Val1->getType()) + 3135 "' instead of '" + getTypeString(IndexedType) + 3136 "'"); 3137 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3138 ID.Kind = ValID::t_Constant; 3139 return false; 3140 } 3141 case lltok::kw_icmp: 3142 case lltok::kw_fcmp: { 3143 unsigned PredVal, Opc = Lex.getUIntVal(); 3144 Constant *Val0, *Val1; 3145 Lex.Lex(); 3146 if (ParseCmpPredicate(PredVal, Opc) || 3147 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3148 ParseGlobalTypeAndValue(Val0) || 3149 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3150 ParseGlobalTypeAndValue(Val1) || 3151 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3152 return true; 3153 3154 if (Val0->getType() != Val1->getType()) 3155 return Error(ID.Loc, "compare operands must have the same type"); 3156 3157 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3158 3159 if (Opc == Instruction::FCmp) { 3160 if (!Val0->getType()->isFPOrFPVectorTy()) 3161 return Error(ID.Loc, "fcmp requires floating point operands"); 3162 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3163 } else { 3164 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3165 if (!Val0->getType()->isIntOrIntVectorTy() && 3166 !Val0->getType()->isPtrOrPtrVectorTy()) 3167 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3168 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3169 } 3170 ID.Kind = ValID::t_Constant; 3171 return false; 3172 } 3173 3174 // Binary Operators. 3175 case lltok::kw_add: 3176 case lltok::kw_fadd: 3177 case lltok::kw_sub: 3178 case lltok::kw_fsub: 3179 case lltok::kw_mul: 3180 case lltok::kw_fmul: 3181 case lltok::kw_udiv: 3182 case lltok::kw_sdiv: 3183 case lltok::kw_fdiv: 3184 case lltok::kw_urem: 3185 case lltok::kw_srem: 3186 case lltok::kw_frem: 3187 case lltok::kw_shl: 3188 case lltok::kw_lshr: 3189 case lltok::kw_ashr: { 3190 bool NUW = false; 3191 bool NSW = false; 3192 bool Exact = false; 3193 unsigned Opc = Lex.getUIntVal(); 3194 Constant *Val0, *Val1; 3195 Lex.Lex(); 3196 LocTy ModifierLoc = Lex.getLoc(); 3197 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3198 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3199 if (EatIfPresent(lltok::kw_nuw)) 3200 NUW = true; 3201 if (EatIfPresent(lltok::kw_nsw)) { 3202 NSW = true; 3203 if (EatIfPresent(lltok::kw_nuw)) 3204 NUW = true; 3205 } 3206 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3207 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3208 if (EatIfPresent(lltok::kw_exact)) 3209 Exact = true; 3210 } 3211 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3212 ParseGlobalTypeAndValue(Val0) || 3213 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3214 ParseGlobalTypeAndValue(Val1) || 3215 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3216 return true; 3217 if (Val0->getType() != Val1->getType()) 3218 return Error(ID.Loc, "operands of constexpr must have same type"); 3219 if (!Val0->getType()->isIntOrIntVectorTy()) { 3220 if (NUW) 3221 return Error(ModifierLoc, "nuw only applies to integer operations"); 3222 if (NSW) 3223 return Error(ModifierLoc, "nsw only applies to integer operations"); 3224 } 3225 // Check that the type is valid for the operator. 3226 switch (Opc) { 3227 case Instruction::Add: 3228 case Instruction::Sub: 3229 case Instruction::Mul: 3230 case Instruction::UDiv: 3231 case Instruction::SDiv: 3232 case Instruction::URem: 3233 case Instruction::SRem: 3234 case Instruction::Shl: 3235 case Instruction::AShr: 3236 case Instruction::LShr: 3237 if (!Val0->getType()->isIntOrIntVectorTy()) 3238 return Error(ID.Loc, "constexpr requires integer operands"); 3239 break; 3240 case Instruction::FAdd: 3241 case Instruction::FSub: 3242 case Instruction::FMul: 3243 case Instruction::FDiv: 3244 case Instruction::FRem: 3245 if (!Val0->getType()->isFPOrFPVectorTy()) 3246 return Error(ID.Loc, "constexpr requires fp operands"); 3247 break; 3248 default: llvm_unreachable("Unknown binary operator!"); 3249 } 3250 unsigned Flags = 0; 3251 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3252 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3253 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3254 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3255 ID.ConstantVal = C; 3256 ID.Kind = ValID::t_Constant; 3257 return false; 3258 } 3259 3260 // Logical Operations 3261 case lltok::kw_and: 3262 case lltok::kw_or: 3263 case lltok::kw_xor: { 3264 unsigned Opc = Lex.getUIntVal(); 3265 Constant *Val0, *Val1; 3266 Lex.Lex(); 3267 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3268 ParseGlobalTypeAndValue(Val0) || 3269 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3270 ParseGlobalTypeAndValue(Val1) || 3271 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3272 return true; 3273 if (Val0->getType() != Val1->getType()) 3274 return Error(ID.Loc, "operands of constexpr must have same type"); 3275 if (!Val0->getType()->isIntOrIntVectorTy()) 3276 return Error(ID.Loc, 3277 "constexpr requires integer or integer vector operands"); 3278 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3279 ID.Kind = ValID::t_Constant; 3280 return false; 3281 } 3282 3283 case lltok::kw_getelementptr: 3284 case lltok::kw_shufflevector: 3285 case lltok::kw_insertelement: 3286 case lltok::kw_extractelement: 3287 case lltok::kw_select: { 3288 unsigned Opc = Lex.getUIntVal(); 3289 SmallVector<Constant*, 16> Elts; 3290 bool InBounds = false; 3291 Type *Ty; 3292 Lex.Lex(); 3293 3294 if (Opc == Instruction::GetElementPtr) 3295 InBounds = EatIfPresent(lltok::kw_inbounds); 3296 3297 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3298 return true; 3299 3300 LocTy ExplicitTypeLoc = Lex.getLoc(); 3301 if (Opc == Instruction::GetElementPtr) { 3302 if (ParseType(Ty) || 3303 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3304 return true; 3305 } 3306 3307 Optional<unsigned> InRangeOp; 3308 if (ParseGlobalValueVector( 3309 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3310 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3311 return true; 3312 3313 if (Opc == Instruction::GetElementPtr) { 3314 if (Elts.size() == 0 || 3315 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3316 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3317 3318 Type *BaseType = Elts[0]->getType(); 3319 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3320 if (Ty != BasePointerType->getElementType()) 3321 return Error( 3322 ExplicitTypeLoc, 3323 "explicit pointee type doesn't match operand's pointee type"); 3324 3325 unsigned GEPWidth = 3326 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3327 3328 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3329 for (Constant *Val : Indices) { 3330 Type *ValTy = Val->getType(); 3331 if (!ValTy->isIntOrIntVectorTy()) 3332 return Error(ID.Loc, "getelementptr index must be an integer"); 3333 if (ValTy->isVectorTy()) { 3334 unsigned ValNumEl = ValTy->getVectorNumElements(); 3335 if (GEPWidth && (ValNumEl != GEPWidth)) 3336 return Error( 3337 ID.Loc, 3338 "getelementptr vector index has a wrong number of elements"); 3339 // GEPWidth may have been unknown because the base is a scalar, 3340 // but it is known now. 3341 GEPWidth = ValNumEl; 3342 } 3343 } 3344 3345 SmallPtrSet<Type*, 4> Visited; 3346 if (!Indices.empty() && !Ty->isSized(&Visited)) 3347 return Error(ID.Loc, "base element of getelementptr must be sized"); 3348 3349 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3350 return Error(ID.Loc, "invalid getelementptr indices"); 3351 3352 if (InRangeOp) { 3353 if (*InRangeOp == 0) 3354 return Error(ID.Loc, 3355 "inrange keyword may not appear on pointer operand"); 3356 --*InRangeOp; 3357 } 3358 3359 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3360 InBounds, InRangeOp); 3361 } else if (Opc == Instruction::Select) { 3362 if (Elts.size() != 3) 3363 return Error(ID.Loc, "expected three operands to select"); 3364 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3365 Elts[2])) 3366 return Error(ID.Loc, Reason); 3367 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3368 } else if (Opc == Instruction::ShuffleVector) { 3369 if (Elts.size() != 3) 3370 return Error(ID.Loc, "expected three operands to shufflevector"); 3371 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3372 return Error(ID.Loc, "invalid operands to shufflevector"); 3373 ID.ConstantVal = 3374 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3375 } else if (Opc == Instruction::ExtractElement) { 3376 if (Elts.size() != 2) 3377 return Error(ID.Loc, "expected two operands to extractelement"); 3378 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3379 return Error(ID.Loc, "invalid extractelement operands"); 3380 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3381 } else { 3382 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3383 if (Elts.size() != 3) 3384 return Error(ID.Loc, "expected three operands to insertelement"); 3385 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3386 return Error(ID.Loc, "invalid insertelement operands"); 3387 ID.ConstantVal = 3388 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3389 } 3390 3391 ID.Kind = ValID::t_Constant; 3392 return false; 3393 } 3394 } 3395 3396 Lex.Lex(); 3397 return false; 3398 } 3399 3400 /// ParseGlobalValue - Parse a global value with the specified type. 3401 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3402 C = nullptr; 3403 ValID ID; 3404 Value *V = nullptr; 3405 bool Parsed = ParseValID(ID) || 3406 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3407 if (V && !(C = dyn_cast<Constant>(V))) 3408 return Error(ID.Loc, "global values must be constants"); 3409 return Parsed; 3410 } 3411 3412 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3413 Type *Ty = nullptr; 3414 return ParseType(Ty) || 3415 ParseGlobalValue(Ty, V); 3416 } 3417 3418 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3419 C = nullptr; 3420 3421 LocTy KwLoc = Lex.getLoc(); 3422 if (!EatIfPresent(lltok::kw_comdat)) 3423 return false; 3424 3425 if (EatIfPresent(lltok::lparen)) { 3426 if (Lex.getKind() != lltok::ComdatVar) 3427 return TokError("expected comdat variable"); 3428 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3429 Lex.Lex(); 3430 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3431 return true; 3432 } else { 3433 if (GlobalName.empty()) 3434 return TokError("comdat cannot be unnamed"); 3435 C = getComdat(GlobalName, KwLoc); 3436 } 3437 3438 return false; 3439 } 3440 3441 /// ParseGlobalValueVector 3442 /// ::= /*empty*/ 3443 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3444 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3445 Optional<unsigned> *InRangeOp) { 3446 // Empty list. 3447 if (Lex.getKind() == lltok::rbrace || 3448 Lex.getKind() == lltok::rsquare || 3449 Lex.getKind() == lltok::greater || 3450 Lex.getKind() == lltok::rparen) 3451 return false; 3452 3453 do { 3454 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3455 *InRangeOp = Elts.size(); 3456 3457 Constant *C; 3458 if (ParseGlobalTypeAndValue(C)) return true; 3459 Elts.push_back(C); 3460 } while (EatIfPresent(lltok::comma)); 3461 3462 return false; 3463 } 3464 3465 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3466 SmallVector<Metadata *, 16> Elts; 3467 if (ParseMDNodeVector(Elts)) 3468 return true; 3469 3470 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3471 return false; 3472 } 3473 3474 /// MDNode: 3475 /// ::= !{ ... } 3476 /// ::= !7 3477 /// ::= !DILocation(...) 3478 bool LLParser::ParseMDNode(MDNode *&N) { 3479 if (Lex.getKind() == lltok::MetadataVar) 3480 return ParseSpecializedMDNode(N); 3481 3482 return ParseToken(lltok::exclaim, "expected '!' here") || 3483 ParseMDNodeTail(N); 3484 } 3485 3486 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3487 // !{ ... } 3488 if (Lex.getKind() == lltok::lbrace) 3489 return ParseMDTuple(N); 3490 3491 // !42 3492 return ParseMDNodeID(N); 3493 } 3494 3495 namespace { 3496 3497 /// Structure to represent an optional metadata field. 3498 template <class FieldTy> struct MDFieldImpl { 3499 typedef MDFieldImpl ImplTy; 3500 FieldTy Val; 3501 bool Seen; 3502 3503 void assign(FieldTy Val) { 3504 Seen = true; 3505 this->Val = std::move(Val); 3506 } 3507 3508 explicit MDFieldImpl(FieldTy Default) 3509 : Val(std::move(Default)), Seen(false) {} 3510 }; 3511 3512 /// Structure to represent an optional metadata field that 3513 /// can be of either type (A or B) and encapsulates the 3514 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3515 /// to reimplement the specifics for representing each Field. 3516 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3517 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3518 FieldTypeA A; 3519 FieldTypeB B; 3520 bool Seen; 3521 3522 enum { 3523 IsInvalid = 0, 3524 IsTypeA = 1, 3525 IsTypeB = 2 3526 } WhatIs; 3527 3528 void assign(FieldTypeA A) { 3529 Seen = true; 3530 this->A = std::move(A); 3531 WhatIs = IsTypeA; 3532 } 3533 3534 void assign(FieldTypeB B) { 3535 Seen = true; 3536 this->B = std::move(B); 3537 WhatIs = IsTypeB; 3538 } 3539 3540 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3541 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3542 WhatIs(IsInvalid) {} 3543 }; 3544 3545 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3546 uint64_t Max; 3547 3548 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3549 : ImplTy(Default), Max(Max) {} 3550 }; 3551 3552 struct LineField : public MDUnsignedField { 3553 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3554 }; 3555 3556 struct ColumnField : public MDUnsignedField { 3557 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3558 }; 3559 3560 struct DwarfTagField : public MDUnsignedField { 3561 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3562 DwarfTagField(dwarf::Tag DefaultTag) 3563 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3564 }; 3565 3566 struct DwarfMacinfoTypeField : public MDUnsignedField { 3567 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3568 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3569 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3570 }; 3571 3572 struct DwarfAttEncodingField : public MDUnsignedField { 3573 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3574 }; 3575 3576 struct DwarfVirtualityField : public MDUnsignedField { 3577 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3578 }; 3579 3580 struct DwarfLangField : public MDUnsignedField { 3581 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3582 }; 3583 3584 struct DwarfCCField : public MDUnsignedField { 3585 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3586 }; 3587 3588 struct EmissionKindField : public MDUnsignedField { 3589 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3590 }; 3591 3592 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3593 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3594 }; 3595 3596 struct MDSignedField : public MDFieldImpl<int64_t> { 3597 int64_t Min; 3598 int64_t Max; 3599 3600 MDSignedField(int64_t Default = 0) 3601 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3602 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3603 : ImplTy(Default), Min(Min), Max(Max) {} 3604 }; 3605 3606 struct MDBoolField : public MDFieldImpl<bool> { 3607 MDBoolField(bool Default = false) : ImplTy(Default) {} 3608 }; 3609 3610 struct MDField : public MDFieldImpl<Metadata *> { 3611 bool AllowNull; 3612 3613 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3614 }; 3615 3616 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3617 MDConstant() : ImplTy(nullptr) {} 3618 }; 3619 3620 struct MDStringField : public MDFieldImpl<MDString *> { 3621 bool AllowEmpty; 3622 MDStringField(bool AllowEmpty = true) 3623 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3624 }; 3625 3626 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3627 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3628 }; 3629 3630 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3631 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3632 }; 3633 3634 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3635 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3636 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3637 3638 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3639 bool AllowNull = true) 3640 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3641 3642 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3643 bool isMDField() const { return WhatIs == IsTypeB; } 3644 int64_t getMDSignedValue() const { 3645 assert(isMDSignedField() && "Wrong field type"); 3646 return A.Val; 3647 } 3648 Metadata *getMDFieldValue() const { 3649 assert(isMDField() && "Wrong field type"); 3650 return B.Val; 3651 } 3652 }; 3653 3654 struct MDSignedOrUnsignedField 3655 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3656 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3657 3658 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3659 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3660 int64_t getMDSignedValue() const { 3661 assert(isMDSignedField() && "Wrong field type"); 3662 return A.Val; 3663 } 3664 uint64_t getMDUnsignedValue() const { 3665 assert(isMDUnsignedField() && "Wrong field type"); 3666 return B.Val; 3667 } 3668 }; 3669 3670 } // end anonymous namespace 3671 3672 namespace llvm { 3673 3674 template <> 3675 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3676 MDUnsignedField &Result) { 3677 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3678 return TokError("expected unsigned integer"); 3679 3680 auto &U = Lex.getAPSIntVal(); 3681 if (U.ugt(Result.Max)) 3682 return TokError("value for '" + Name + "' too large, limit is " + 3683 Twine(Result.Max)); 3684 Result.assign(U.getZExtValue()); 3685 assert(Result.Val <= Result.Max && "Expected value in range"); 3686 Lex.Lex(); 3687 return false; 3688 } 3689 3690 template <> 3691 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3692 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3693 } 3694 template <> 3695 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3696 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3697 } 3698 3699 template <> 3700 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3701 if (Lex.getKind() == lltok::APSInt) 3702 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3703 3704 if (Lex.getKind() != lltok::DwarfTag) 3705 return TokError("expected DWARF tag"); 3706 3707 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3708 if (Tag == dwarf::DW_TAG_invalid) 3709 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3710 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3711 3712 Result.assign(Tag); 3713 Lex.Lex(); 3714 return false; 3715 } 3716 3717 template <> 3718 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3719 DwarfMacinfoTypeField &Result) { 3720 if (Lex.getKind() == lltok::APSInt) 3721 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3722 3723 if (Lex.getKind() != lltok::DwarfMacinfo) 3724 return TokError("expected DWARF macinfo type"); 3725 3726 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3727 if (Macinfo == dwarf::DW_MACINFO_invalid) 3728 return TokError( 3729 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3730 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3731 3732 Result.assign(Macinfo); 3733 Lex.Lex(); 3734 return false; 3735 } 3736 3737 template <> 3738 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3739 DwarfVirtualityField &Result) { 3740 if (Lex.getKind() == lltok::APSInt) 3741 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3742 3743 if (Lex.getKind() != lltok::DwarfVirtuality) 3744 return TokError("expected DWARF virtuality code"); 3745 3746 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3747 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3748 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3749 Lex.getStrVal() + "'"); 3750 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3751 Result.assign(Virtuality); 3752 Lex.Lex(); 3753 return false; 3754 } 3755 3756 template <> 3757 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3758 if (Lex.getKind() == lltok::APSInt) 3759 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3760 3761 if (Lex.getKind() != lltok::DwarfLang) 3762 return TokError("expected DWARF language"); 3763 3764 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3765 if (!Lang) 3766 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3767 "'"); 3768 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3769 Result.assign(Lang); 3770 Lex.Lex(); 3771 return false; 3772 } 3773 3774 template <> 3775 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3776 if (Lex.getKind() == lltok::APSInt) 3777 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3778 3779 if (Lex.getKind() != lltok::DwarfCC) 3780 return TokError("expected DWARF calling convention"); 3781 3782 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3783 if (!CC) 3784 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3785 "'"); 3786 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3787 Result.assign(CC); 3788 Lex.Lex(); 3789 return false; 3790 } 3791 3792 template <> 3793 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3794 if (Lex.getKind() == lltok::APSInt) 3795 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3796 3797 if (Lex.getKind() != lltok::EmissionKind) 3798 return TokError("expected emission kind"); 3799 3800 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3801 if (!Kind) 3802 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3803 "'"); 3804 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3805 Result.assign(*Kind); 3806 Lex.Lex(); 3807 return false; 3808 } 3809 3810 template <> 3811 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3812 DwarfAttEncodingField &Result) { 3813 if (Lex.getKind() == lltok::APSInt) 3814 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3815 3816 if (Lex.getKind() != lltok::DwarfAttEncoding) 3817 return TokError("expected DWARF type attribute encoding"); 3818 3819 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3820 if (!Encoding) 3821 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3822 Lex.getStrVal() + "'"); 3823 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3824 Result.assign(Encoding); 3825 Lex.Lex(); 3826 return false; 3827 } 3828 3829 /// DIFlagField 3830 /// ::= uint32 3831 /// ::= DIFlagVector 3832 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3833 template <> 3834 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3835 3836 // Parser for a single flag. 3837 auto parseFlag = [&](DINode::DIFlags &Val) { 3838 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3839 uint32_t TempVal = static_cast<uint32_t>(Val); 3840 bool Res = ParseUInt32(TempVal); 3841 Val = static_cast<DINode::DIFlags>(TempVal); 3842 return Res; 3843 } 3844 3845 if (Lex.getKind() != lltok::DIFlag) 3846 return TokError("expected debug info flag"); 3847 3848 Val = DINode::getFlag(Lex.getStrVal()); 3849 if (!Val) 3850 return TokError(Twine("invalid debug info flag flag '") + 3851 Lex.getStrVal() + "'"); 3852 Lex.Lex(); 3853 return false; 3854 }; 3855 3856 // Parse the flags and combine them together. 3857 DINode::DIFlags Combined = DINode::FlagZero; 3858 do { 3859 DINode::DIFlags Val; 3860 if (parseFlag(Val)) 3861 return true; 3862 Combined |= Val; 3863 } while (EatIfPresent(lltok::bar)); 3864 3865 Result.assign(Combined); 3866 return false; 3867 } 3868 3869 template <> 3870 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3871 MDSignedField &Result) { 3872 if (Lex.getKind() != lltok::APSInt) 3873 return TokError("expected signed integer"); 3874 3875 auto &S = Lex.getAPSIntVal(); 3876 if (S < Result.Min) 3877 return TokError("value for '" + Name + "' too small, limit is " + 3878 Twine(Result.Min)); 3879 if (S > Result.Max) 3880 return TokError("value for '" + Name + "' too large, limit is " + 3881 Twine(Result.Max)); 3882 Result.assign(S.getExtValue()); 3883 assert(Result.Val >= Result.Min && "Expected value in range"); 3884 assert(Result.Val <= Result.Max && "Expected value in range"); 3885 Lex.Lex(); 3886 return false; 3887 } 3888 3889 template <> 3890 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3891 switch (Lex.getKind()) { 3892 default: 3893 return TokError("expected 'true' or 'false'"); 3894 case lltok::kw_true: 3895 Result.assign(true); 3896 break; 3897 case lltok::kw_false: 3898 Result.assign(false); 3899 break; 3900 } 3901 Lex.Lex(); 3902 return false; 3903 } 3904 3905 template <> 3906 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3907 if (Lex.getKind() == lltok::kw_null) { 3908 if (!Result.AllowNull) 3909 return TokError("'" + Name + "' cannot be null"); 3910 Lex.Lex(); 3911 Result.assign(nullptr); 3912 return false; 3913 } 3914 3915 Metadata *MD; 3916 if (ParseMetadata(MD, nullptr)) 3917 return true; 3918 3919 Result.assign(MD); 3920 return false; 3921 } 3922 3923 template <> 3924 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3925 MDSignedOrMDField &Result) { 3926 // Try to parse a signed int. 3927 if (Lex.getKind() == lltok::APSInt) { 3928 MDSignedField Res = Result.A; 3929 if (!ParseMDField(Loc, Name, Res)) { 3930 Result.assign(Res); 3931 return false; 3932 } 3933 return true; 3934 } 3935 3936 // Otherwise, try to parse as an MDField. 3937 MDField Res = Result.B; 3938 if (!ParseMDField(Loc, Name, Res)) { 3939 Result.assign(Res); 3940 return false; 3941 } 3942 3943 return true; 3944 } 3945 3946 template <> 3947 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3948 MDSignedOrUnsignedField &Result) { 3949 if (Lex.getKind() != lltok::APSInt) 3950 return false; 3951 3952 if (Lex.getAPSIntVal().isSigned()) { 3953 MDSignedField Res = Result.A; 3954 if (ParseMDField(Loc, Name, Res)) 3955 return true; 3956 Result.assign(Res); 3957 return false; 3958 } 3959 3960 MDUnsignedField Res = Result.B; 3961 if (ParseMDField(Loc, Name, Res)) 3962 return true; 3963 Result.assign(Res); 3964 return false; 3965 } 3966 3967 template <> 3968 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3969 LocTy ValueLoc = Lex.getLoc(); 3970 std::string S; 3971 if (ParseStringConstant(S)) 3972 return true; 3973 3974 if (!Result.AllowEmpty && S.empty()) 3975 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3976 3977 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3978 return false; 3979 } 3980 3981 template <> 3982 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3983 SmallVector<Metadata *, 4> MDs; 3984 if (ParseMDNodeVector(MDs)) 3985 return true; 3986 3987 Result.assign(std::move(MDs)); 3988 return false; 3989 } 3990 3991 template <> 3992 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3993 ChecksumKindField &Result) { 3994 Optional<DIFile::ChecksumKind> CSKind = 3995 DIFile::getChecksumKind(Lex.getStrVal()); 3996 3997 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 3998 return TokError( 3999 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4000 4001 Result.assign(*CSKind); 4002 Lex.Lex(); 4003 return false; 4004 } 4005 4006 } // end namespace llvm 4007 4008 template <class ParserTy> 4009 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4010 do { 4011 if (Lex.getKind() != lltok::LabelStr) 4012 return TokError("expected field label here"); 4013 4014 if (parseField()) 4015 return true; 4016 } while (EatIfPresent(lltok::comma)); 4017 4018 return false; 4019 } 4020 4021 template <class ParserTy> 4022 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4023 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4024 Lex.Lex(); 4025 4026 if (ParseToken(lltok::lparen, "expected '(' here")) 4027 return true; 4028 if (Lex.getKind() != lltok::rparen) 4029 if (ParseMDFieldsImplBody(parseField)) 4030 return true; 4031 4032 ClosingLoc = Lex.getLoc(); 4033 return ParseToken(lltok::rparen, "expected ')' here"); 4034 } 4035 4036 template <class FieldTy> 4037 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4038 if (Result.Seen) 4039 return TokError("field '" + Name + "' cannot be specified more than once"); 4040 4041 LocTy Loc = Lex.getLoc(); 4042 Lex.Lex(); 4043 return ParseMDField(Loc, Name, Result); 4044 } 4045 4046 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4047 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4048 4049 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4050 if (Lex.getStrVal() == #CLASS) \ 4051 return Parse##CLASS(N, IsDistinct); 4052 #include "llvm/IR/Metadata.def" 4053 4054 return TokError("expected metadata type"); 4055 } 4056 4057 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4058 #define NOP_FIELD(NAME, TYPE, INIT) 4059 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4060 if (!NAME.Seen) \ 4061 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4062 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4063 if (Lex.getStrVal() == #NAME) \ 4064 return ParseMDField(#NAME, NAME); 4065 #define PARSE_MD_FIELDS() \ 4066 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4067 do { \ 4068 LocTy ClosingLoc; \ 4069 if (ParseMDFieldsImpl([&]() -> bool { \ 4070 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4071 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4072 }, ClosingLoc)) \ 4073 return true; \ 4074 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4075 } while (false) 4076 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4077 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4078 4079 /// ParseDILocationFields: 4080 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 4081 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4082 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4083 OPTIONAL(line, LineField, ); \ 4084 OPTIONAL(column, ColumnField, ); \ 4085 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4086 OPTIONAL(inlinedAt, MDField, ); 4087 PARSE_MD_FIELDS(); 4088 #undef VISIT_MD_FIELDS 4089 4090 Result = GET_OR_DISTINCT( 4091 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 4092 return false; 4093 } 4094 4095 /// ParseGenericDINode: 4096 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4097 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4098 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4099 REQUIRED(tag, DwarfTagField, ); \ 4100 OPTIONAL(header, MDStringField, ); \ 4101 OPTIONAL(operands, MDFieldList, ); 4102 PARSE_MD_FIELDS(); 4103 #undef VISIT_MD_FIELDS 4104 4105 Result = GET_OR_DISTINCT(GenericDINode, 4106 (Context, tag.Val, header.Val, operands.Val)); 4107 return false; 4108 } 4109 4110 /// ParseDISubrange: 4111 /// ::= !DISubrange(count: 30, lowerBound: 2) 4112 /// ::= !DISubrange(count: !node, lowerBound: 2) 4113 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4114 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4115 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4116 OPTIONAL(lowerBound, MDSignedField, ); 4117 PARSE_MD_FIELDS(); 4118 #undef VISIT_MD_FIELDS 4119 4120 if (count.isMDSignedField()) 4121 Result = GET_OR_DISTINCT( 4122 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4123 else if (count.isMDField()) 4124 Result = GET_OR_DISTINCT( 4125 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4126 else 4127 return true; 4128 4129 return false; 4130 } 4131 4132 /// ParseDIEnumerator: 4133 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4134 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4135 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4136 REQUIRED(name, MDStringField, ); \ 4137 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4138 OPTIONAL(isUnsigned, MDBoolField, (false)); 4139 PARSE_MD_FIELDS(); 4140 #undef VISIT_MD_FIELDS 4141 4142 if (isUnsigned.Val && value.isMDSignedField()) 4143 return TokError("unsigned enumerator with negative value"); 4144 4145 int64_t Value = value.isMDSignedField() 4146 ? value.getMDSignedValue() 4147 : static_cast<int64_t>(value.getMDUnsignedValue()); 4148 Result = 4149 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4150 4151 return false; 4152 } 4153 4154 /// ParseDIBasicType: 4155 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 4156 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4157 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4158 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4159 OPTIONAL(name, MDStringField, ); \ 4160 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4161 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4162 OPTIONAL(encoding, DwarfAttEncodingField, ); 4163 PARSE_MD_FIELDS(); 4164 #undef VISIT_MD_FIELDS 4165 4166 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4167 align.Val, encoding.Val)); 4168 return false; 4169 } 4170 4171 /// ParseDIDerivedType: 4172 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4173 /// line: 7, scope: !1, baseType: !2, size: 32, 4174 /// align: 32, offset: 0, flags: 0, extraData: !3, 4175 /// dwarfAddressSpace: 3) 4176 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4177 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4178 REQUIRED(tag, DwarfTagField, ); \ 4179 OPTIONAL(name, MDStringField, ); \ 4180 OPTIONAL(file, MDField, ); \ 4181 OPTIONAL(line, LineField, ); \ 4182 OPTIONAL(scope, MDField, ); \ 4183 REQUIRED(baseType, MDField, ); \ 4184 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4185 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4186 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4187 OPTIONAL(flags, DIFlagField, ); \ 4188 OPTIONAL(extraData, MDField, ); \ 4189 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4190 PARSE_MD_FIELDS(); 4191 #undef VISIT_MD_FIELDS 4192 4193 Optional<unsigned> DWARFAddressSpace; 4194 if (dwarfAddressSpace.Val != UINT32_MAX) 4195 DWARFAddressSpace = dwarfAddressSpace.Val; 4196 4197 Result = GET_OR_DISTINCT(DIDerivedType, 4198 (Context, tag.Val, name.Val, file.Val, line.Val, 4199 scope.Val, baseType.Val, size.Val, align.Val, 4200 offset.Val, DWARFAddressSpace, flags.Val, 4201 extraData.Val)); 4202 return false; 4203 } 4204 4205 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4206 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4207 REQUIRED(tag, DwarfTagField, ); \ 4208 OPTIONAL(name, MDStringField, ); \ 4209 OPTIONAL(file, MDField, ); \ 4210 OPTIONAL(line, LineField, ); \ 4211 OPTIONAL(scope, MDField, ); \ 4212 OPTIONAL(baseType, MDField, ); \ 4213 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4214 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4215 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4216 OPTIONAL(flags, DIFlagField, ); \ 4217 OPTIONAL(elements, MDField, ); \ 4218 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4219 OPTIONAL(vtableHolder, MDField, ); \ 4220 OPTIONAL(templateParams, MDField, ); \ 4221 OPTIONAL(identifier, MDStringField, ); \ 4222 OPTIONAL(discriminator, MDField, ); 4223 PARSE_MD_FIELDS(); 4224 #undef VISIT_MD_FIELDS 4225 4226 // If this has an identifier try to build an ODR type. 4227 if (identifier.Val) 4228 if (auto *CT = DICompositeType::buildODRType( 4229 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4230 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4231 elements.Val, runtimeLang.Val, vtableHolder.Val, 4232 templateParams.Val, discriminator.Val)) { 4233 Result = CT; 4234 return false; 4235 } 4236 4237 // Create a new node, and save it in the context if it belongs in the type 4238 // map. 4239 Result = GET_OR_DISTINCT( 4240 DICompositeType, 4241 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4242 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4243 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4244 discriminator.Val)); 4245 return false; 4246 } 4247 4248 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4249 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4250 OPTIONAL(flags, DIFlagField, ); \ 4251 OPTIONAL(cc, DwarfCCField, ); \ 4252 REQUIRED(types, MDField, ); 4253 PARSE_MD_FIELDS(); 4254 #undef VISIT_MD_FIELDS 4255 4256 Result = GET_OR_DISTINCT(DISubroutineType, 4257 (Context, flags.Val, cc.Val, types.Val)); 4258 return false; 4259 } 4260 4261 /// ParseDIFileType: 4262 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4263 /// checksumkind: CSK_MD5, 4264 /// checksum: "000102030405060708090a0b0c0d0e0f", 4265 /// source: "source file contents") 4266 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4267 // The default constructed value for checksumkind is required, but will never 4268 // be used, as the parser checks if the field was actually Seen before using 4269 // the Val. 4270 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4271 REQUIRED(filename, MDStringField, ); \ 4272 REQUIRED(directory, MDStringField, ); \ 4273 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4274 OPTIONAL(checksum, MDStringField, ); \ 4275 OPTIONAL(source, MDStringField, ); 4276 PARSE_MD_FIELDS(); 4277 #undef VISIT_MD_FIELDS 4278 4279 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4280 if (checksumkind.Seen && checksum.Seen) 4281 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4282 else if (checksumkind.Seen || checksum.Seen) 4283 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4284 4285 Optional<MDString *> OptSource; 4286 if (source.Seen) 4287 OptSource = source.Val; 4288 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4289 OptChecksum, OptSource)); 4290 return false; 4291 } 4292 4293 /// ParseDICompileUnit: 4294 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4295 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4296 /// splitDebugFilename: "abc.debug", 4297 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4298 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4299 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4300 if (!IsDistinct) 4301 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4302 4303 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4304 REQUIRED(language, DwarfLangField, ); \ 4305 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4306 OPTIONAL(producer, MDStringField, ); \ 4307 OPTIONAL(isOptimized, MDBoolField, ); \ 4308 OPTIONAL(flags, MDStringField, ); \ 4309 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4310 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4311 OPTIONAL(emissionKind, EmissionKindField, ); \ 4312 OPTIONAL(enums, MDField, ); \ 4313 OPTIONAL(retainedTypes, MDField, ); \ 4314 OPTIONAL(globals, MDField, ); \ 4315 OPTIONAL(imports, MDField, ); \ 4316 OPTIONAL(macros, MDField, ); \ 4317 OPTIONAL(dwoId, MDUnsignedField, ); \ 4318 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4319 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4320 OPTIONAL(gnuPubnames, MDBoolField, = false); 4321 PARSE_MD_FIELDS(); 4322 #undef VISIT_MD_FIELDS 4323 4324 Result = DICompileUnit::getDistinct( 4325 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4326 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4327 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4328 splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val); 4329 return false; 4330 } 4331 4332 /// ParseDISubprogram: 4333 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4334 /// file: !1, line: 7, type: !2, isLocal: false, 4335 /// isDefinition: true, scopeLine: 8, containingType: !3, 4336 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4337 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4338 /// isOptimized: false, templateParams: !4, declaration: !5, 4339 /// variables: !6, thrownTypes: !7) 4340 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4341 auto Loc = Lex.getLoc(); 4342 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4343 OPTIONAL(scope, MDField, ); \ 4344 OPTIONAL(name, MDStringField, ); \ 4345 OPTIONAL(linkageName, MDStringField, ); \ 4346 OPTIONAL(file, MDField, ); \ 4347 OPTIONAL(line, LineField, ); \ 4348 OPTIONAL(type, MDField, ); \ 4349 OPTIONAL(isLocal, MDBoolField, ); \ 4350 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4351 OPTIONAL(scopeLine, LineField, ); \ 4352 OPTIONAL(containingType, MDField, ); \ 4353 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4354 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4355 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4356 OPTIONAL(flags, DIFlagField, ); \ 4357 OPTIONAL(isOptimized, MDBoolField, ); \ 4358 OPTIONAL(unit, MDField, ); \ 4359 OPTIONAL(templateParams, MDField, ); \ 4360 OPTIONAL(declaration, MDField, ); \ 4361 OPTIONAL(variables, MDField, ); \ 4362 OPTIONAL(thrownTypes, MDField, ); 4363 PARSE_MD_FIELDS(); 4364 #undef VISIT_MD_FIELDS 4365 4366 if (isDefinition.Val && !IsDistinct) 4367 return Lex.Error( 4368 Loc, 4369 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4370 4371 Result = GET_OR_DISTINCT( 4372 DISubprogram, 4373 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4374 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4375 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4376 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4377 declaration.Val, variables.Val, thrownTypes.Val)); 4378 return false; 4379 } 4380 4381 /// ParseDILexicalBlock: 4382 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4383 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4384 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4385 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4386 OPTIONAL(file, MDField, ); \ 4387 OPTIONAL(line, LineField, ); \ 4388 OPTIONAL(column, ColumnField, ); 4389 PARSE_MD_FIELDS(); 4390 #undef VISIT_MD_FIELDS 4391 4392 Result = GET_OR_DISTINCT( 4393 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4394 return false; 4395 } 4396 4397 /// ParseDILexicalBlockFile: 4398 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4399 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4400 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4401 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4402 OPTIONAL(file, MDField, ); \ 4403 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4404 PARSE_MD_FIELDS(); 4405 #undef VISIT_MD_FIELDS 4406 4407 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4408 (Context, scope.Val, file.Val, discriminator.Val)); 4409 return false; 4410 } 4411 4412 /// ParseDINamespace: 4413 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4414 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4415 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4416 REQUIRED(scope, MDField, ); \ 4417 OPTIONAL(name, MDStringField, ); \ 4418 OPTIONAL(exportSymbols, MDBoolField, ); 4419 PARSE_MD_FIELDS(); 4420 #undef VISIT_MD_FIELDS 4421 4422 Result = GET_OR_DISTINCT(DINamespace, 4423 (Context, scope.Val, name.Val, exportSymbols.Val)); 4424 return false; 4425 } 4426 4427 /// ParseDIMacro: 4428 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4429 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4430 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4431 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4432 OPTIONAL(line, LineField, ); \ 4433 REQUIRED(name, MDStringField, ); \ 4434 OPTIONAL(value, MDStringField, ); 4435 PARSE_MD_FIELDS(); 4436 #undef VISIT_MD_FIELDS 4437 4438 Result = GET_OR_DISTINCT(DIMacro, 4439 (Context, type.Val, line.Val, name.Val, value.Val)); 4440 return false; 4441 } 4442 4443 /// ParseDIMacroFile: 4444 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4445 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4446 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4447 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4448 OPTIONAL(line, LineField, ); \ 4449 REQUIRED(file, MDField, ); \ 4450 OPTIONAL(nodes, MDField, ); 4451 PARSE_MD_FIELDS(); 4452 #undef VISIT_MD_FIELDS 4453 4454 Result = GET_OR_DISTINCT(DIMacroFile, 4455 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4456 return false; 4457 } 4458 4459 /// ParseDIModule: 4460 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4461 /// includePath: "/usr/include", isysroot: "/") 4462 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4463 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4464 REQUIRED(scope, MDField, ); \ 4465 REQUIRED(name, MDStringField, ); \ 4466 OPTIONAL(configMacros, MDStringField, ); \ 4467 OPTIONAL(includePath, MDStringField, ); \ 4468 OPTIONAL(isysroot, MDStringField, ); 4469 PARSE_MD_FIELDS(); 4470 #undef VISIT_MD_FIELDS 4471 4472 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4473 configMacros.Val, includePath.Val, isysroot.Val)); 4474 return false; 4475 } 4476 4477 /// ParseDITemplateTypeParameter: 4478 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4479 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4480 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4481 OPTIONAL(name, MDStringField, ); \ 4482 REQUIRED(type, MDField, ); 4483 PARSE_MD_FIELDS(); 4484 #undef VISIT_MD_FIELDS 4485 4486 Result = 4487 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4488 return false; 4489 } 4490 4491 /// ParseDITemplateValueParameter: 4492 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4493 /// name: "V", type: !1, value: i32 7) 4494 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4495 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4496 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4497 OPTIONAL(name, MDStringField, ); \ 4498 OPTIONAL(type, MDField, ); \ 4499 REQUIRED(value, MDField, ); 4500 PARSE_MD_FIELDS(); 4501 #undef VISIT_MD_FIELDS 4502 4503 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4504 (Context, tag.Val, name.Val, type.Val, value.Val)); 4505 return false; 4506 } 4507 4508 /// ParseDIGlobalVariable: 4509 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4510 /// file: !1, line: 7, type: !2, isLocal: false, 4511 /// isDefinition: true, declaration: !3, align: 8) 4512 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4513 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4514 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4515 OPTIONAL(scope, MDField, ); \ 4516 OPTIONAL(linkageName, MDStringField, ); \ 4517 OPTIONAL(file, MDField, ); \ 4518 OPTIONAL(line, LineField, ); \ 4519 OPTIONAL(type, MDField, ); \ 4520 OPTIONAL(isLocal, MDBoolField, ); \ 4521 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4522 OPTIONAL(declaration, MDField, ); \ 4523 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4524 PARSE_MD_FIELDS(); 4525 #undef VISIT_MD_FIELDS 4526 4527 Result = GET_OR_DISTINCT(DIGlobalVariable, 4528 (Context, scope.Val, name.Val, linkageName.Val, 4529 file.Val, line.Val, type.Val, isLocal.Val, 4530 isDefinition.Val, declaration.Val, align.Val)); 4531 return false; 4532 } 4533 4534 /// ParseDILocalVariable: 4535 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4536 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4537 /// align: 8) 4538 /// ::= !DILocalVariable(scope: !0, name: "foo", 4539 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4540 /// align: 8) 4541 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4542 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4543 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4544 OPTIONAL(name, MDStringField, ); \ 4545 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4546 OPTIONAL(file, MDField, ); \ 4547 OPTIONAL(line, LineField, ); \ 4548 OPTIONAL(type, MDField, ); \ 4549 OPTIONAL(flags, DIFlagField, ); \ 4550 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4551 PARSE_MD_FIELDS(); 4552 #undef VISIT_MD_FIELDS 4553 4554 Result = GET_OR_DISTINCT(DILocalVariable, 4555 (Context, scope.Val, name.Val, file.Val, line.Val, 4556 type.Val, arg.Val, flags.Val, align.Val)); 4557 return false; 4558 } 4559 4560 /// ParseDIExpression: 4561 /// ::= !DIExpression(0, 7, -1) 4562 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4563 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4564 Lex.Lex(); 4565 4566 if (ParseToken(lltok::lparen, "expected '(' here")) 4567 return true; 4568 4569 SmallVector<uint64_t, 8> Elements; 4570 if (Lex.getKind() != lltok::rparen) 4571 do { 4572 if (Lex.getKind() == lltok::DwarfOp) { 4573 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4574 Lex.Lex(); 4575 Elements.push_back(Op); 4576 continue; 4577 } 4578 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4579 } 4580 4581 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4582 return TokError("expected unsigned integer"); 4583 4584 auto &U = Lex.getAPSIntVal(); 4585 if (U.ugt(UINT64_MAX)) 4586 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4587 Elements.push_back(U.getZExtValue()); 4588 Lex.Lex(); 4589 } while (EatIfPresent(lltok::comma)); 4590 4591 if (ParseToken(lltok::rparen, "expected ')' here")) 4592 return true; 4593 4594 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4595 return false; 4596 } 4597 4598 /// ParseDIGlobalVariableExpression: 4599 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4600 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4601 bool IsDistinct) { 4602 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4603 REQUIRED(var, MDField, ); \ 4604 REQUIRED(expr, MDField, ); 4605 PARSE_MD_FIELDS(); 4606 #undef VISIT_MD_FIELDS 4607 4608 Result = 4609 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4610 return false; 4611 } 4612 4613 /// ParseDIObjCProperty: 4614 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4615 /// getter: "getFoo", attributes: 7, type: !2) 4616 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4617 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4618 OPTIONAL(name, MDStringField, ); \ 4619 OPTIONAL(file, MDField, ); \ 4620 OPTIONAL(line, LineField, ); \ 4621 OPTIONAL(setter, MDStringField, ); \ 4622 OPTIONAL(getter, MDStringField, ); \ 4623 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4624 OPTIONAL(type, MDField, ); 4625 PARSE_MD_FIELDS(); 4626 #undef VISIT_MD_FIELDS 4627 4628 Result = GET_OR_DISTINCT(DIObjCProperty, 4629 (Context, name.Val, file.Val, line.Val, setter.Val, 4630 getter.Val, attributes.Val, type.Val)); 4631 return false; 4632 } 4633 4634 /// ParseDIImportedEntity: 4635 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4636 /// line: 7, name: "foo") 4637 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4638 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4639 REQUIRED(tag, DwarfTagField, ); \ 4640 REQUIRED(scope, MDField, ); \ 4641 OPTIONAL(entity, MDField, ); \ 4642 OPTIONAL(file, MDField, ); \ 4643 OPTIONAL(line, LineField, ); \ 4644 OPTIONAL(name, MDStringField, ); 4645 PARSE_MD_FIELDS(); 4646 #undef VISIT_MD_FIELDS 4647 4648 Result = GET_OR_DISTINCT( 4649 DIImportedEntity, 4650 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4651 return false; 4652 } 4653 4654 #undef PARSE_MD_FIELD 4655 #undef NOP_FIELD 4656 #undef REQUIRE_FIELD 4657 #undef DECLARE_FIELD 4658 4659 /// ParseMetadataAsValue 4660 /// ::= metadata i32 %local 4661 /// ::= metadata i32 @global 4662 /// ::= metadata i32 7 4663 /// ::= metadata !0 4664 /// ::= metadata !{...} 4665 /// ::= metadata !"string" 4666 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4667 // Note: the type 'metadata' has already been parsed. 4668 Metadata *MD; 4669 if (ParseMetadata(MD, &PFS)) 4670 return true; 4671 4672 V = MetadataAsValue::get(Context, MD); 4673 return false; 4674 } 4675 4676 /// ParseValueAsMetadata 4677 /// ::= i32 %local 4678 /// ::= i32 @global 4679 /// ::= i32 7 4680 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4681 PerFunctionState *PFS) { 4682 Type *Ty; 4683 LocTy Loc; 4684 if (ParseType(Ty, TypeMsg, Loc)) 4685 return true; 4686 if (Ty->isMetadataTy()) 4687 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4688 4689 Value *V; 4690 if (ParseValue(Ty, V, PFS)) 4691 return true; 4692 4693 MD = ValueAsMetadata::get(V); 4694 return false; 4695 } 4696 4697 /// ParseMetadata 4698 /// ::= i32 %local 4699 /// ::= i32 @global 4700 /// ::= i32 7 4701 /// ::= !42 4702 /// ::= !{...} 4703 /// ::= !"string" 4704 /// ::= !DILocation(...) 4705 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4706 if (Lex.getKind() == lltok::MetadataVar) { 4707 MDNode *N; 4708 if (ParseSpecializedMDNode(N)) 4709 return true; 4710 MD = N; 4711 return false; 4712 } 4713 4714 // ValueAsMetadata: 4715 // <type> <value> 4716 if (Lex.getKind() != lltok::exclaim) 4717 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4718 4719 // '!'. 4720 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4721 Lex.Lex(); 4722 4723 // MDString: 4724 // ::= '!' STRINGCONSTANT 4725 if (Lex.getKind() == lltok::StringConstant) { 4726 MDString *S; 4727 if (ParseMDString(S)) 4728 return true; 4729 MD = S; 4730 return false; 4731 } 4732 4733 // MDNode: 4734 // !{ ... } 4735 // !7 4736 MDNode *N; 4737 if (ParseMDNodeTail(N)) 4738 return true; 4739 MD = N; 4740 return false; 4741 } 4742 4743 //===----------------------------------------------------------------------===// 4744 // Function Parsing. 4745 //===----------------------------------------------------------------------===// 4746 4747 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4748 PerFunctionState *PFS, bool IsCall) { 4749 if (Ty->isFunctionTy()) 4750 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4751 4752 switch (ID.Kind) { 4753 case ValID::t_LocalID: 4754 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4755 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 4756 return V == nullptr; 4757 case ValID::t_LocalName: 4758 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4759 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 4760 return V == nullptr; 4761 case ValID::t_InlineAsm: { 4762 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4763 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4764 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4765 (ID.UIntVal >> 1) & 1, 4766 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4767 return false; 4768 } 4769 case ValID::t_GlobalName: 4770 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4771 return V == nullptr; 4772 case ValID::t_GlobalID: 4773 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4774 return V == nullptr; 4775 case ValID::t_APSInt: 4776 if (!Ty->isIntegerTy()) 4777 return Error(ID.Loc, "integer constant must have integer type"); 4778 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4779 V = ConstantInt::get(Context, ID.APSIntVal); 4780 return false; 4781 case ValID::t_APFloat: 4782 if (!Ty->isFloatingPointTy() || 4783 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4784 return Error(ID.Loc, "floating point constant invalid for type"); 4785 4786 // The lexer has no type info, so builds all half, float, and double FP 4787 // constants as double. Fix this here. Long double does not need this. 4788 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4789 bool Ignored; 4790 if (Ty->isHalfTy()) 4791 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4792 &Ignored); 4793 else if (Ty->isFloatTy()) 4794 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4795 &Ignored); 4796 } 4797 V = ConstantFP::get(Context, ID.APFloatVal); 4798 4799 if (V->getType() != Ty) 4800 return Error(ID.Loc, "floating point constant does not have type '" + 4801 getTypeString(Ty) + "'"); 4802 4803 return false; 4804 case ValID::t_Null: 4805 if (!Ty->isPointerTy()) 4806 return Error(ID.Loc, "null must be a pointer type"); 4807 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4808 return false; 4809 case ValID::t_Undef: 4810 // FIXME: LabelTy should not be a first-class type. 4811 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4812 return Error(ID.Loc, "invalid type for undef constant"); 4813 V = UndefValue::get(Ty); 4814 return false; 4815 case ValID::t_EmptyArray: 4816 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4817 return Error(ID.Loc, "invalid empty array initializer"); 4818 V = UndefValue::get(Ty); 4819 return false; 4820 case ValID::t_Zero: 4821 // FIXME: LabelTy should not be a first-class type. 4822 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4823 return Error(ID.Loc, "invalid type for null constant"); 4824 V = Constant::getNullValue(Ty); 4825 return false; 4826 case ValID::t_None: 4827 if (!Ty->isTokenTy()) 4828 return Error(ID.Loc, "invalid type for none constant"); 4829 V = Constant::getNullValue(Ty); 4830 return false; 4831 case ValID::t_Constant: 4832 if (ID.ConstantVal->getType() != Ty) 4833 return Error(ID.Loc, "constant expression type mismatch"); 4834 4835 V = ID.ConstantVal; 4836 return false; 4837 case ValID::t_ConstantStruct: 4838 case ValID::t_PackedConstantStruct: 4839 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4840 if (ST->getNumElements() != ID.UIntVal) 4841 return Error(ID.Loc, 4842 "initializer with struct type has wrong # elements"); 4843 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4844 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4845 4846 // Verify that the elements are compatible with the structtype. 4847 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4848 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4849 return Error(ID.Loc, "element " + Twine(i) + 4850 " of struct initializer doesn't match struct element type"); 4851 4852 V = ConstantStruct::get( 4853 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4854 } else 4855 return Error(ID.Loc, "constant expression type mismatch"); 4856 return false; 4857 } 4858 llvm_unreachable("Invalid ValID"); 4859 } 4860 4861 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4862 C = nullptr; 4863 ValID ID; 4864 auto Loc = Lex.getLoc(); 4865 if (ParseValID(ID, /*PFS=*/nullptr)) 4866 return true; 4867 switch (ID.Kind) { 4868 case ValID::t_APSInt: 4869 case ValID::t_APFloat: 4870 case ValID::t_Undef: 4871 case ValID::t_Constant: 4872 case ValID::t_ConstantStruct: 4873 case ValID::t_PackedConstantStruct: { 4874 Value *V; 4875 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 4876 return true; 4877 assert(isa<Constant>(V) && "Expected a constant value"); 4878 C = cast<Constant>(V); 4879 return false; 4880 } 4881 case ValID::t_Null: 4882 C = Constant::getNullValue(Ty); 4883 return false; 4884 default: 4885 return Error(Loc, "expected a constant value"); 4886 } 4887 } 4888 4889 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4890 V = nullptr; 4891 ValID ID; 4892 return ParseValID(ID, PFS) || 4893 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 4894 } 4895 4896 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4897 Type *Ty = nullptr; 4898 return ParseType(Ty) || 4899 ParseValue(Ty, V, PFS); 4900 } 4901 4902 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4903 PerFunctionState &PFS) { 4904 Value *V; 4905 Loc = Lex.getLoc(); 4906 if (ParseTypeAndValue(V, PFS)) return true; 4907 if (!isa<BasicBlock>(V)) 4908 return Error(Loc, "expected a basic block"); 4909 BB = cast<BasicBlock>(V); 4910 return false; 4911 } 4912 4913 /// FunctionHeader 4914 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 4915 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 4916 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC 4917 /// OptionalPrefix OptionalPrologue OptPersonalityFn 4918 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4919 // Parse the linkage. 4920 LocTy LinkageLoc = Lex.getLoc(); 4921 unsigned Linkage; 4922 unsigned Visibility; 4923 unsigned DLLStorageClass; 4924 bool DSOLocal; 4925 AttrBuilder RetAttrs; 4926 unsigned CC; 4927 bool HasLinkage; 4928 Type *RetType = nullptr; 4929 LocTy RetTypeLoc = Lex.getLoc(); 4930 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 4931 DSOLocal) || 4932 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4933 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4934 return true; 4935 4936 // Verify that the linkage is ok. 4937 switch ((GlobalValue::LinkageTypes)Linkage) { 4938 case GlobalValue::ExternalLinkage: 4939 break; // always ok. 4940 case GlobalValue::ExternalWeakLinkage: 4941 if (isDefine) 4942 return Error(LinkageLoc, "invalid linkage for function definition"); 4943 break; 4944 case GlobalValue::PrivateLinkage: 4945 case GlobalValue::InternalLinkage: 4946 case GlobalValue::AvailableExternallyLinkage: 4947 case GlobalValue::LinkOnceAnyLinkage: 4948 case GlobalValue::LinkOnceODRLinkage: 4949 case GlobalValue::WeakAnyLinkage: 4950 case GlobalValue::WeakODRLinkage: 4951 if (!isDefine) 4952 return Error(LinkageLoc, "invalid linkage for function declaration"); 4953 break; 4954 case GlobalValue::AppendingLinkage: 4955 case GlobalValue::CommonLinkage: 4956 return Error(LinkageLoc, "invalid function linkage type"); 4957 } 4958 4959 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4960 return Error(LinkageLoc, 4961 "symbol with local linkage must have default visibility"); 4962 4963 if (!FunctionType::isValidReturnType(RetType)) 4964 return Error(RetTypeLoc, "invalid function return type"); 4965 4966 LocTy NameLoc = Lex.getLoc(); 4967 4968 std::string FunctionName; 4969 if (Lex.getKind() == lltok::GlobalVar) { 4970 FunctionName = Lex.getStrVal(); 4971 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4972 unsigned NameID = Lex.getUIntVal(); 4973 4974 if (NameID != NumberedVals.size()) 4975 return TokError("function expected to be numbered '%" + 4976 Twine(NumberedVals.size()) + "'"); 4977 } else { 4978 return TokError("expected function name"); 4979 } 4980 4981 Lex.Lex(); 4982 4983 if (Lex.getKind() != lltok::lparen) 4984 return TokError("expected '(' in function argument list"); 4985 4986 SmallVector<ArgInfo, 8> ArgList; 4987 bool isVarArg; 4988 AttrBuilder FuncAttrs; 4989 std::vector<unsigned> FwdRefAttrGrps; 4990 LocTy BuiltinLoc; 4991 std::string Section; 4992 unsigned Alignment; 4993 std::string GC; 4994 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4995 Constant *Prefix = nullptr; 4996 Constant *Prologue = nullptr; 4997 Constant *PersonalityFn = nullptr; 4998 Comdat *C; 4999 5000 if (ParseArgumentList(ArgList, isVarArg) || 5001 ParseOptionalUnnamedAddr(UnnamedAddr) || 5002 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5003 BuiltinLoc) || 5004 (EatIfPresent(lltok::kw_section) && 5005 ParseStringConstant(Section)) || 5006 parseOptionalComdat(FunctionName, C) || 5007 ParseOptionalAlignment(Alignment) || 5008 (EatIfPresent(lltok::kw_gc) && 5009 ParseStringConstant(GC)) || 5010 (EatIfPresent(lltok::kw_prefix) && 5011 ParseGlobalTypeAndValue(Prefix)) || 5012 (EatIfPresent(lltok::kw_prologue) && 5013 ParseGlobalTypeAndValue(Prologue)) || 5014 (EatIfPresent(lltok::kw_personality) && 5015 ParseGlobalTypeAndValue(PersonalityFn))) 5016 return true; 5017 5018 if (FuncAttrs.contains(Attribute::Builtin)) 5019 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5020 5021 // If the alignment was parsed as an attribute, move to the alignment field. 5022 if (FuncAttrs.hasAlignmentAttr()) { 5023 Alignment = FuncAttrs.getAlignment(); 5024 FuncAttrs.removeAttribute(Attribute::Alignment); 5025 } 5026 5027 // Okay, if we got here, the function is syntactically valid. Convert types 5028 // and do semantic checks. 5029 std::vector<Type*> ParamTypeList; 5030 SmallVector<AttributeSet, 8> Attrs; 5031 5032 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5033 ParamTypeList.push_back(ArgList[i].Ty); 5034 Attrs.push_back(ArgList[i].Attrs); 5035 } 5036 5037 AttributeList PAL = 5038 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5039 AttributeSet::get(Context, RetAttrs), Attrs); 5040 5041 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5042 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5043 5044 FunctionType *FT = 5045 FunctionType::get(RetType, ParamTypeList, isVarArg); 5046 PointerType *PFT = PointerType::getUnqual(FT); 5047 5048 Fn = nullptr; 5049 if (!FunctionName.empty()) { 5050 // If this was a definition of a forward reference, remove the definition 5051 // from the forward reference table and fill in the forward ref. 5052 auto FRVI = ForwardRefVals.find(FunctionName); 5053 if (FRVI != ForwardRefVals.end()) { 5054 Fn = M->getFunction(FunctionName); 5055 if (!Fn) 5056 return Error(FRVI->second.second, "invalid forward reference to " 5057 "function as global value!"); 5058 if (Fn->getType() != PFT) 5059 return Error(FRVI->second.second, "invalid forward reference to " 5060 "function '" + FunctionName + "' with wrong type!"); 5061 5062 ForwardRefVals.erase(FRVI); 5063 } else if ((Fn = M->getFunction(FunctionName))) { 5064 // Reject redefinitions. 5065 return Error(NameLoc, "invalid redefinition of function '" + 5066 FunctionName + "'"); 5067 } else if (M->getNamedValue(FunctionName)) { 5068 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5069 } 5070 5071 } else { 5072 // If this is a definition of a forward referenced function, make sure the 5073 // types agree. 5074 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5075 if (I != ForwardRefValIDs.end()) { 5076 Fn = cast<Function>(I->second.first); 5077 if (Fn->getType() != PFT) 5078 return Error(NameLoc, "type of definition and forward reference of '@" + 5079 Twine(NumberedVals.size()) + "' disagree"); 5080 ForwardRefValIDs.erase(I); 5081 } 5082 } 5083 5084 if (!Fn) 5085 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 5086 else // Move the forward-reference to the correct spot in the module. 5087 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5088 5089 if (FunctionName.empty()) 5090 NumberedVals.push_back(Fn); 5091 5092 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5093 maybeSetDSOLocal(DSOLocal, *Fn); 5094 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5095 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5096 Fn->setCallingConv(CC); 5097 Fn->setAttributes(PAL); 5098 Fn->setUnnamedAddr(UnnamedAddr); 5099 Fn->setAlignment(Alignment); 5100 Fn->setSection(Section); 5101 Fn->setComdat(C); 5102 Fn->setPersonalityFn(PersonalityFn); 5103 if (!GC.empty()) Fn->setGC(GC); 5104 Fn->setPrefixData(Prefix); 5105 Fn->setPrologueData(Prologue); 5106 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5107 5108 // Add all of the arguments we parsed to the function. 5109 Function::arg_iterator ArgIt = Fn->arg_begin(); 5110 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5111 // If the argument has a name, insert it into the argument symbol table. 5112 if (ArgList[i].Name.empty()) continue; 5113 5114 // Set the name, if it conflicted, it will be auto-renamed. 5115 ArgIt->setName(ArgList[i].Name); 5116 5117 if (ArgIt->getName() != ArgList[i].Name) 5118 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5119 ArgList[i].Name + "'"); 5120 } 5121 5122 if (isDefine) 5123 return false; 5124 5125 // Check the declaration has no block address forward references. 5126 ValID ID; 5127 if (FunctionName.empty()) { 5128 ID.Kind = ValID::t_GlobalID; 5129 ID.UIntVal = NumberedVals.size() - 1; 5130 } else { 5131 ID.Kind = ValID::t_GlobalName; 5132 ID.StrVal = FunctionName; 5133 } 5134 auto Blocks = ForwardRefBlockAddresses.find(ID); 5135 if (Blocks != ForwardRefBlockAddresses.end()) 5136 return Error(Blocks->first.Loc, 5137 "cannot take blockaddress inside a declaration"); 5138 return false; 5139 } 5140 5141 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5142 ValID ID; 5143 if (FunctionNumber == -1) { 5144 ID.Kind = ValID::t_GlobalName; 5145 ID.StrVal = F.getName(); 5146 } else { 5147 ID.Kind = ValID::t_GlobalID; 5148 ID.UIntVal = FunctionNumber; 5149 } 5150 5151 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5152 if (Blocks == P.ForwardRefBlockAddresses.end()) 5153 return false; 5154 5155 for (const auto &I : Blocks->second) { 5156 const ValID &BBID = I.first; 5157 GlobalValue *GV = I.second; 5158 5159 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5160 "Expected local id or name"); 5161 BasicBlock *BB; 5162 if (BBID.Kind == ValID::t_LocalName) 5163 BB = GetBB(BBID.StrVal, BBID.Loc); 5164 else 5165 BB = GetBB(BBID.UIntVal, BBID.Loc); 5166 if (!BB) 5167 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5168 5169 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5170 GV->eraseFromParent(); 5171 } 5172 5173 P.ForwardRefBlockAddresses.erase(Blocks); 5174 return false; 5175 } 5176 5177 /// ParseFunctionBody 5178 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5179 bool LLParser::ParseFunctionBody(Function &Fn) { 5180 if (Lex.getKind() != lltok::lbrace) 5181 return TokError("expected '{' in function body"); 5182 Lex.Lex(); // eat the {. 5183 5184 int FunctionNumber = -1; 5185 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5186 5187 PerFunctionState PFS(*this, Fn, FunctionNumber); 5188 5189 // Resolve block addresses and allow basic blocks to be forward-declared 5190 // within this function. 5191 if (PFS.resolveForwardRefBlockAddresses()) 5192 return true; 5193 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5194 5195 // We need at least one basic block. 5196 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5197 return TokError("function body requires at least one basic block"); 5198 5199 while (Lex.getKind() != lltok::rbrace && 5200 Lex.getKind() != lltok::kw_uselistorder) 5201 if (ParseBasicBlock(PFS)) return true; 5202 5203 while (Lex.getKind() != lltok::rbrace) 5204 if (ParseUseListOrder(&PFS)) 5205 return true; 5206 5207 // Eat the }. 5208 Lex.Lex(); 5209 5210 // Verify function is ok. 5211 return PFS.FinishFunction(); 5212 } 5213 5214 /// ParseBasicBlock 5215 /// ::= LabelStr? Instruction* 5216 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5217 // If this basic block starts out with a name, remember it. 5218 std::string Name; 5219 LocTy NameLoc = Lex.getLoc(); 5220 if (Lex.getKind() == lltok::LabelStr) { 5221 Name = Lex.getStrVal(); 5222 Lex.Lex(); 5223 } 5224 5225 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5226 if (!BB) 5227 return Error(NameLoc, 5228 "unable to create block named '" + Name + "'"); 5229 5230 std::string NameStr; 5231 5232 // Parse the instructions in this block until we get a terminator. 5233 Instruction *Inst; 5234 do { 5235 // This instruction may have three possibilities for a name: a) none 5236 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5237 LocTy NameLoc = Lex.getLoc(); 5238 int NameID = -1; 5239 NameStr = ""; 5240 5241 if (Lex.getKind() == lltok::LocalVarID) { 5242 NameID = Lex.getUIntVal(); 5243 Lex.Lex(); 5244 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5245 return true; 5246 } else if (Lex.getKind() == lltok::LocalVar) { 5247 NameStr = Lex.getStrVal(); 5248 Lex.Lex(); 5249 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5250 return true; 5251 } 5252 5253 switch (ParseInstruction(Inst, BB, PFS)) { 5254 default: llvm_unreachable("Unknown ParseInstruction result!"); 5255 case InstError: return true; 5256 case InstNormal: 5257 BB->getInstList().push_back(Inst); 5258 5259 // With a normal result, we check to see if the instruction is followed by 5260 // a comma and metadata. 5261 if (EatIfPresent(lltok::comma)) 5262 if (ParseInstructionMetadata(*Inst)) 5263 return true; 5264 break; 5265 case InstExtraComma: 5266 BB->getInstList().push_back(Inst); 5267 5268 // If the instruction parser ate an extra comma at the end of it, it 5269 // *must* be followed by metadata. 5270 if (ParseInstructionMetadata(*Inst)) 5271 return true; 5272 break; 5273 } 5274 5275 // Set the name on the instruction. 5276 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5277 } while (!isa<TerminatorInst>(Inst)); 5278 5279 return false; 5280 } 5281 5282 //===----------------------------------------------------------------------===// 5283 // Instruction Parsing. 5284 //===----------------------------------------------------------------------===// 5285 5286 /// ParseInstruction - Parse one of the many different instructions. 5287 /// 5288 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5289 PerFunctionState &PFS) { 5290 lltok::Kind Token = Lex.getKind(); 5291 if (Token == lltok::Eof) 5292 return TokError("found end of file when expecting more instructions"); 5293 LocTy Loc = Lex.getLoc(); 5294 unsigned KeywordVal = Lex.getUIntVal(); 5295 Lex.Lex(); // Eat the keyword. 5296 5297 switch (Token) { 5298 default: return Error(Loc, "expected instruction opcode"); 5299 // Terminator Instructions. 5300 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5301 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5302 case lltok::kw_br: return ParseBr(Inst, PFS); 5303 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5304 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5305 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5306 case lltok::kw_resume: return ParseResume(Inst, PFS); 5307 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5308 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5309 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5310 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5311 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5312 // Binary Operators. 5313 case lltok::kw_add: 5314 case lltok::kw_sub: 5315 case lltok::kw_mul: 5316 case lltok::kw_shl: { 5317 bool NUW = EatIfPresent(lltok::kw_nuw); 5318 bool NSW = EatIfPresent(lltok::kw_nsw); 5319 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5320 5321 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5322 5323 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5324 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5325 return false; 5326 } 5327 case lltok::kw_fadd: 5328 case lltok::kw_fsub: 5329 case lltok::kw_fmul: 5330 case lltok::kw_fdiv: 5331 case lltok::kw_frem: { 5332 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5333 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5334 if (Res != 0) 5335 return Res; 5336 if (FMF.any()) 5337 Inst->setFastMathFlags(FMF); 5338 return 0; 5339 } 5340 5341 case lltok::kw_sdiv: 5342 case lltok::kw_udiv: 5343 case lltok::kw_lshr: 5344 case lltok::kw_ashr: { 5345 bool Exact = EatIfPresent(lltok::kw_exact); 5346 5347 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5348 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5349 return false; 5350 } 5351 5352 case lltok::kw_urem: 5353 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5354 case lltok::kw_and: 5355 case lltok::kw_or: 5356 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5357 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5358 case lltok::kw_fcmp: { 5359 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5360 int Res = ParseCompare(Inst, PFS, KeywordVal); 5361 if (Res != 0) 5362 return Res; 5363 if (FMF.any()) 5364 Inst->setFastMathFlags(FMF); 5365 return 0; 5366 } 5367 5368 // Casts. 5369 case lltok::kw_trunc: 5370 case lltok::kw_zext: 5371 case lltok::kw_sext: 5372 case lltok::kw_fptrunc: 5373 case lltok::kw_fpext: 5374 case lltok::kw_bitcast: 5375 case lltok::kw_addrspacecast: 5376 case lltok::kw_uitofp: 5377 case lltok::kw_sitofp: 5378 case lltok::kw_fptoui: 5379 case lltok::kw_fptosi: 5380 case lltok::kw_inttoptr: 5381 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5382 // Other. 5383 case lltok::kw_select: return ParseSelect(Inst, PFS); 5384 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5385 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5386 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5387 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5388 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5389 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5390 // Call. 5391 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5392 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5393 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5394 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5395 // Memory. 5396 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5397 case lltok::kw_load: return ParseLoad(Inst, PFS); 5398 case lltok::kw_store: return ParseStore(Inst, PFS); 5399 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5400 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5401 case lltok::kw_fence: return ParseFence(Inst, PFS); 5402 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5403 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5404 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5405 } 5406 } 5407 5408 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5409 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5410 if (Opc == Instruction::FCmp) { 5411 switch (Lex.getKind()) { 5412 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5413 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5414 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5415 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5416 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5417 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5418 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5419 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5420 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5421 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5422 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5423 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5424 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5425 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5426 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5427 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5428 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5429 } 5430 } else { 5431 switch (Lex.getKind()) { 5432 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5433 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5434 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5435 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5436 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5437 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5438 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5439 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5440 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5441 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5442 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5443 } 5444 } 5445 Lex.Lex(); 5446 return false; 5447 } 5448 5449 //===----------------------------------------------------------------------===// 5450 // Terminator Instructions. 5451 //===----------------------------------------------------------------------===// 5452 5453 /// ParseRet - Parse a return instruction. 5454 /// ::= 'ret' void (',' !dbg, !1)* 5455 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5456 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5457 PerFunctionState &PFS) { 5458 SMLoc TypeLoc = Lex.getLoc(); 5459 Type *Ty = nullptr; 5460 if (ParseType(Ty, true /*void allowed*/)) return true; 5461 5462 Type *ResType = PFS.getFunction().getReturnType(); 5463 5464 if (Ty->isVoidTy()) { 5465 if (!ResType->isVoidTy()) 5466 return Error(TypeLoc, "value doesn't match function result type '" + 5467 getTypeString(ResType) + "'"); 5468 5469 Inst = ReturnInst::Create(Context); 5470 return false; 5471 } 5472 5473 Value *RV; 5474 if (ParseValue(Ty, RV, PFS)) return true; 5475 5476 if (ResType != RV->getType()) 5477 return Error(TypeLoc, "value doesn't match function result type '" + 5478 getTypeString(ResType) + "'"); 5479 5480 Inst = ReturnInst::Create(Context, RV); 5481 return false; 5482 } 5483 5484 /// ParseBr 5485 /// ::= 'br' TypeAndValue 5486 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5487 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5488 LocTy Loc, Loc2; 5489 Value *Op0; 5490 BasicBlock *Op1, *Op2; 5491 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5492 5493 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5494 Inst = BranchInst::Create(BB); 5495 return false; 5496 } 5497 5498 if (Op0->getType() != Type::getInt1Ty(Context)) 5499 return Error(Loc, "branch condition must have 'i1' type"); 5500 5501 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5502 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5503 ParseToken(lltok::comma, "expected ',' after true destination") || 5504 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5505 return true; 5506 5507 Inst = BranchInst::Create(Op1, Op2, Op0); 5508 return false; 5509 } 5510 5511 /// ParseSwitch 5512 /// Instruction 5513 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5514 /// JumpTable 5515 /// ::= (TypeAndValue ',' TypeAndValue)* 5516 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5517 LocTy CondLoc, BBLoc; 5518 Value *Cond; 5519 BasicBlock *DefaultBB; 5520 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5521 ParseToken(lltok::comma, "expected ',' after switch condition") || 5522 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5523 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5524 return true; 5525 5526 if (!Cond->getType()->isIntegerTy()) 5527 return Error(CondLoc, "switch condition must have integer type"); 5528 5529 // Parse the jump table pairs. 5530 SmallPtrSet<Value*, 32> SeenCases; 5531 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5532 while (Lex.getKind() != lltok::rsquare) { 5533 Value *Constant; 5534 BasicBlock *DestBB; 5535 5536 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5537 ParseToken(lltok::comma, "expected ',' after case value") || 5538 ParseTypeAndBasicBlock(DestBB, PFS)) 5539 return true; 5540 5541 if (!SeenCases.insert(Constant).second) 5542 return Error(CondLoc, "duplicate case value in switch"); 5543 if (!isa<ConstantInt>(Constant)) 5544 return Error(CondLoc, "case value is not a constant integer"); 5545 5546 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5547 } 5548 5549 Lex.Lex(); // Eat the ']'. 5550 5551 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5552 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5553 SI->addCase(Table[i].first, Table[i].second); 5554 Inst = SI; 5555 return false; 5556 } 5557 5558 /// ParseIndirectBr 5559 /// Instruction 5560 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5561 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5562 LocTy AddrLoc; 5563 Value *Address; 5564 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5565 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5566 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5567 return true; 5568 5569 if (!Address->getType()->isPointerTy()) 5570 return Error(AddrLoc, "indirectbr address must have pointer type"); 5571 5572 // Parse the destination list. 5573 SmallVector<BasicBlock*, 16> DestList; 5574 5575 if (Lex.getKind() != lltok::rsquare) { 5576 BasicBlock *DestBB; 5577 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5578 return true; 5579 DestList.push_back(DestBB); 5580 5581 while (EatIfPresent(lltok::comma)) { 5582 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5583 return true; 5584 DestList.push_back(DestBB); 5585 } 5586 } 5587 5588 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5589 return true; 5590 5591 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5592 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5593 IBI->addDestination(DestList[i]); 5594 Inst = IBI; 5595 return false; 5596 } 5597 5598 /// ParseInvoke 5599 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5600 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5601 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5602 LocTy CallLoc = Lex.getLoc(); 5603 AttrBuilder RetAttrs, FnAttrs; 5604 std::vector<unsigned> FwdRefAttrGrps; 5605 LocTy NoBuiltinLoc; 5606 unsigned CC; 5607 Type *RetType = nullptr; 5608 LocTy RetTypeLoc; 5609 ValID CalleeID; 5610 SmallVector<ParamInfo, 16> ArgList; 5611 SmallVector<OperandBundleDef, 2> BundleList; 5612 5613 BasicBlock *NormalBB, *UnwindBB; 5614 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5615 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5616 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5617 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5618 NoBuiltinLoc) || 5619 ParseOptionalOperandBundles(BundleList, PFS) || 5620 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5621 ParseTypeAndBasicBlock(NormalBB, PFS) || 5622 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5623 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5624 return true; 5625 5626 // If RetType is a non-function pointer type, then this is the short syntax 5627 // for the call, which means that RetType is just the return type. Infer the 5628 // rest of the function argument types from the arguments that are present. 5629 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5630 if (!Ty) { 5631 // Pull out the types of all of the arguments... 5632 std::vector<Type*> ParamTypes; 5633 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5634 ParamTypes.push_back(ArgList[i].V->getType()); 5635 5636 if (!FunctionType::isValidReturnType(RetType)) 5637 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5638 5639 Ty = FunctionType::get(RetType, ParamTypes, false); 5640 } 5641 5642 CalleeID.FTy = Ty; 5643 5644 // Look up the callee. 5645 Value *Callee; 5646 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 5647 /*IsCall=*/true)) 5648 return true; 5649 5650 // Set up the Attribute for the function. 5651 SmallVector<Value *, 8> Args; 5652 SmallVector<AttributeSet, 8> ArgAttrs; 5653 5654 // Loop through FunctionType's arguments and ensure they are specified 5655 // correctly. Also, gather any parameter attributes. 5656 FunctionType::param_iterator I = Ty->param_begin(); 5657 FunctionType::param_iterator E = Ty->param_end(); 5658 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5659 Type *ExpectedTy = nullptr; 5660 if (I != E) { 5661 ExpectedTy = *I++; 5662 } else if (!Ty->isVarArg()) { 5663 return Error(ArgList[i].Loc, "too many arguments specified"); 5664 } 5665 5666 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5667 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5668 getTypeString(ExpectedTy) + "'"); 5669 Args.push_back(ArgList[i].V); 5670 ArgAttrs.push_back(ArgList[i].Attrs); 5671 } 5672 5673 if (I != E) 5674 return Error(CallLoc, "not enough parameters specified for call"); 5675 5676 if (FnAttrs.hasAlignmentAttr()) 5677 return Error(CallLoc, "invoke instructions may not have an alignment"); 5678 5679 // Finish off the Attribute and check them 5680 AttributeList PAL = 5681 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5682 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5683 5684 InvokeInst *II = 5685 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5686 II->setCallingConv(CC); 5687 II->setAttributes(PAL); 5688 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5689 Inst = II; 5690 return false; 5691 } 5692 5693 /// ParseResume 5694 /// ::= 'resume' TypeAndValue 5695 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5696 Value *Exn; LocTy ExnLoc; 5697 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5698 return true; 5699 5700 ResumeInst *RI = ResumeInst::Create(Exn); 5701 Inst = RI; 5702 return false; 5703 } 5704 5705 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5706 PerFunctionState &PFS) { 5707 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5708 return true; 5709 5710 while (Lex.getKind() != lltok::rsquare) { 5711 // If this isn't the first argument, we need a comma. 5712 if (!Args.empty() && 5713 ParseToken(lltok::comma, "expected ',' in argument list")) 5714 return true; 5715 5716 // Parse the argument. 5717 LocTy ArgLoc; 5718 Type *ArgTy = nullptr; 5719 if (ParseType(ArgTy, ArgLoc)) 5720 return true; 5721 5722 Value *V; 5723 if (ArgTy->isMetadataTy()) { 5724 if (ParseMetadataAsValue(V, PFS)) 5725 return true; 5726 } else { 5727 if (ParseValue(ArgTy, V, PFS)) 5728 return true; 5729 } 5730 Args.push_back(V); 5731 } 5732 5733 Lex.Lex(); // Lex the ']'. 5734 return false; 5735 } 5736 5737 /// ParseCleanupRet 5738 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5739 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5740 Value *CleanupPad = nullptr; 5741 5742 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5743 return true; 5744 5745 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5746 return true; 5747 5748 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5749 return true; 5750 5751 BasicBlock *UnwindBB = nullptr; 5752 if (Lex.getKind() == lltok::kw_to) { 5753 Lex.Lex(); 5754 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5755 return true; 5756 } else { 5757 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5758 return true; 5759 } 5760 } 5761 5762 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5763 return false; 5764 } 5765 5766 /// ParseCatchRet 5767 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5768 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5769 Value *CatchPad = nullptr; 5770 5771 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5772 return true; 5773 5774 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5775 return true; 5776 5777 BasicBlock *BB; 5778 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5779 ParseTypeAndBasicBlock(BB, PFS)) 5780 return true; 5781 5782 Inst = CatchReturnInst::Create(CatchPad, BB); 5783 return false; 5784 } 5785 5786 /// ParseCatchSwitch 5787 /// ::= 'catchswitch' within Parent 5788 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5789 Value *ParentPad; 5790 5791 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5792 return true; 5793 5794 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5795 Lex.getKind() != lltok::LocalVarID) 5796 return TokError("expected scope value for catchswitch"); 5797 5798 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5799 return true; 5800 5801 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5802 return true; 5803 5804 SmallVector<BasicBlock *, 32> Table; 5805 do { 5806 BasicBlock *DestBB; 5807 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5808 return true; 5809 Table.push_back(DestBB); 5810 } while (EatIfPresent(lltok::comma)); 5811 5812 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5813 return true; 5814 5815 if (ParseToken(lltok::kw_unwind, 5816 "expected 'unwind' after catchswitch scope")) 5817 return true; 5818 5819 BasicBlock *UnwindBB = nullptr; 5820 if (EatIfPresent(lltok::kw_to)) { 5821 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5822 return true; 5823 } else { 5824 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5825 return true; 5826 } 5827 5828 auto *CatchSwitch = 5829 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5830 for (BasicBlock *DestBB : Table) 5831 CatchSwitch->addHandler(DestBB); 5832 Inst = CatchSwitch; 5833 return false; 5834 } 5835 5836 /// ParseCatchPad 5837 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5838 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5839 Value *CatchSwitch = nullptr; 5840 5841 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5842 return true; 5843 5844 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5845 return TokError("expected scope value for catchpad"); 5846 5847 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5848 return true; 5849 5850 SmallVector<Value *, 8> Args; 5851 if (ParseExceptionArgs(Args, PFS)) 5852 return true; 5853 5854 Inst = CatchPadInst::Create(CatchSwitch, Args); 5855 return false; 5856 } 5857 5858 /// ParseCleanupPad 5859 /// ::= 'cleanuppad' within Parent ParamList 5860 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5861 Value *ParentPad = nullptr; 5862 5863 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5864 return true; 5865 5866 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5867 Lex.getKind() != lltok::LocalVarID) 5868 return TokError("expected scope value for cleanuppad"); 5869 5870 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5871 return true; 5872 5873 SmallVector<Value *, 8> Args; 5874 if (ParseExceptionArgs(Args, PFS)) 5875 return true; 5876 5877 Inst = CleanupPadInst::Create(ParentPad, Args); 5878 return false; 5879 } 5880 5881 //===----------------------------------------------------------------------===// 5882 // Binary Operators. 5883 //===----------------------------------------------------------------------===// 5884 5885 /// ParseArithmetic 5886 /// ::= ArithmeticOps TypeAndValue ',' Value 5887 /// 5888 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5889 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5890 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5891 unsigned Opc, unsigned OperandType) { 5892 LocTy Loc; Value *LHS, *RHS; 5893 if (ParseTypeAndValue(LHS, Loc, PFS) || 5894 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5895 ParseValue(LHS->getType(), RHS, PFS)) 5896 return true; 5897 5898 bool Valid; 5899 switch (OperandType) { 5900 default: llvm_unreachable("Unknown operand type!"); 5901 case 0: // int or FP. 5902 Valid = LHS->getType()->isIntOrIntVectorTy() || 5903 LHS->getType()->isFPOrFPVectorTy(); 5904 break; 5905 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5906 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5907 } 5908 5909 if (!Valid) 5910 return Error(Loc, "invalid operand type for instruction"); 5911 5912 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5913 return false; 5914 } 5915 5916 /// ParseLogical 5917 /// ::= ArithmeticOps TypeAndValue ',' Value { 5918 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5919 unsigned Opc) { 5920 LocTy Loc; Value *LHS, *RHS; 5921 if (ParseTypeAndValue(LHS, Loc, PFS) || 5922 ParseToken(lltok::comma, "expected ',' in logical operation") || 5923 ParseValue(LHS->getType(), RHS, PFS)) 5924 return true; 5925 5926 if (!LHS->getType()->isIntOrIntVectorTy()) 5927 return Error(Loc,"instruction requires integer or integer vector operands"); 5928 5929 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5930 return false; 5931 } 5932 5933 /// ParseCompare 5934 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5935 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5936 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5937 unsigned Opc) { 5938 // Parse the integer/fp comparison predicate. 5939 LocTy Loc; 5940 unsigned Pred; 5941 Value *LHS, *RHS; 5942 if (ParseCmpPredicate(Pred, Opc) || 5943 ParseTypeAndValue(LHS, Loc, PFS) || 5944 ParseToken(lltok::comma, "expected ',' after compare value") || 5945 ParseValue(LHS->getType(), RHS, PFS)) 5946 return true; 5947 5948 if (Opc == Instruction::FCmp) { 5949 if (!LHS->getType()->isFPOrFPVectorTy()) 5950 return Error(Loc, "fcmp requires floating point operands"); 5951 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5952 } else { 5953 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5954 if (!LHS->getType()->isIntOrIntVectorTy() && 5955 !LHS->getType()->isPtrOrPtrVectorTy()) 5956 return Error(Loc, "icmp requires integer operands"); 5957 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5958 } 5959 return false; 5960 } 5961 5962 //===----------------------------------------------------------------------===// 5963 // Other Instructions. 5964 //===----------------------------------------------------------------------===// 5965 5966 5967 /// ParseCast 5968 /// ::= CastOpc TypeAndValue 'to' Type 5969 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5970 unsigned Opc) { 5971 LocTy Loc; 5972 Value *Op; 5973 Type *DestTy = nullptr; 5974 if (ParseTypeAndValue(Op, Loc, PFS) || 5975 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5976 ParseType(DestTy)) 5977 return true; 5978 5979 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5980 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5981 return Error(Loc, "invalid cast opcode for cast from '" + 5982 getTypeString(Op->getType()) + "' to '" + 5983 getTypeString(DestTy) + "'"); 5984 } 5985 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5986 return false; 5987 } 5988 5989 /// ParseSelect 5990 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5991 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5992 LocTy Loc; 5993 Value *Op0, *Op1, *Op2; 5994 if (ParseTypeAndValue(Op0, Loc, PFS) || 5995 ParseToken(lltok::comma, "expected ',' after select condition") || 5996 ParseTypeAndValue(Op1, PFS) || 5997 ParseToken(lltok::comma, "expected ',' after select value") || 5998 ParseTypeAndValue(Op2, PFS)) 5999 return true; 6000 6001 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6002 return Error(Loc, Reason); 6003 6004 Inst = SelectInst::Create(Op0, Op1, Op2); 6005 return false; 6006 } 6007 6008 /// ParseVA_Arg 6009 /// ::= 'va_arg' TypeAndValue ',' Type 6010 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6011 Value *Op; 6012 Type *EltTy = nullptr; 6013 LocTy TypeLoc; 6014 if (ParseTypeAndValue(Op, PFS) || 6015 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6016 ParseType(EltTy, TypeLoc)) 6017 return true; 6018 6019 if (!EltTy->isFirstClassType()) 6020 return Error(TypeLoc, "va_arg requires operand with first class type"); 6021 6022 Inst = new VAArgInst(Op, EltTy); 6023 return false; 6024 } 6025 6026 /// ParseExtractElement 6027 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6028 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6029 LocTy Loc; 6030 Value *Op0, *Op1; 6031 if (ParseTypeAndValue(Op0, Loc, PFS) || 6032 ParseToken(lltok::comma, "expected ',' after extract value") || 6033 ParseTypeAndValue(Op1, PFS)) 6034 return true; 6035 6036 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6037 return Error(Loc, "invalid extractelement operands"); 6038 6039 Inst = ExtractElementInst::Create(Op0, Op1); 6040 return false; 6041 } 6042 6043 /// ParseInsertElement 6044 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6045 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6046 LocTy Loc; 6047 Value *Op0, *Op1, *Op2; 6048 if (ParseTypeAndValue(Op0, Loc, PFS) || 6049 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6050 ParseTypeAndValue(Op1, PFS) || 6051 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6052 ParseTypeAndValue(Op2, PFS)) 6053 return true; 6054 6055 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6056 return Error(Loc, "invalid insertelement operands"); 6057 6058 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6059 return false; 6060 } 6061 6062 /// ParseShuffleVector 6063 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6064 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6065 LocTy Loc; 6066 Value *Op0, *Op1, *Op2; 6067 if (ParseTypeAndValue(Op0, Loc, PFS) || 6068 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6069 ParseTypeAndValue(Op1, PFS) || 6070 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6071 ParseTypeAndValue(Op2, PFS)) 6072 return true; 6073 6074 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6075 return Error(Loc, "invalid shufflevector operands"); 6076 6077 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6078 return false; 6079 } 6080 6081 /// ParsePHI 6082 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6083 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6084 Type *Ty = nullptr; LocTy TypeLoc; 6085 Value *Op0, *Op1; 6086 6087 if (ParseType(Ty, TypeLoc) || 6088 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6089 ParseValue(Ty, Op0, PFS) || 6090 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6091 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6092 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6093 return true; 6094 6095 bool AteExtraComma = false; 6096 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6097 6098 while (true) { 6099 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6100 6101 if (!EatIfPresent(lltok::comma)) 6102 break; 6103 6104 if (Lex.getKind() == lltok::MetadataVar) { 6105 AteExtraComma = true; 6106 break; 6107 } 6108 6109 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6110 ParseValue(Ty, Op0, PFS) || 6111 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6112 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6113 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6114 return true; 6115 } 6116 6117 if (!Ty->isFirstClassType()) 6118 return Error(TypeLoc, "phi node must have first class type"); 6119 6120 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6121 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6122 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6123 Inst = PN; 6124 return AteExtraComma ? InstExtraComma : InstNormal; 6125 } 6126 6127 /// ParseLandingPad 6128 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6129 /// Clause 6130 /// ::= 'catch' TypeAndValue 6131 /// ::= 'filter' 6132 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6133 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6134 Type *Ty = nullptr; LocTy TyLoc; 6135 6136 if (ParseType(Ty, TyLoc)) 6137 return true; 6138 6139 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6140 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6141 6142 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6143 LandingPadInst::ClauseType CT; 6144 if (EatIfPresent(lltok::kw_catch)) 6145 CT = LandingPadInst::Catch; 6146 else if (EatIfPresent(lltok::kw_filter)) 6147 CT = LandingPadInst::Filter; 6148 else 6149 return TokError("expected 'catch' or 'filter' clause type"); 6150 6151 Value *V; 6152 LocTy VLoc; 6153 if (ParseTypeAndValue(V, VLoc, PFS)) 6154 return true; 6155 6156 // A 'catch' type expects a non-array constant. A filter clause expects an 6157 // array constant. 6158 if (CT == LandingPadInst::Catch) { 6159 if (isa<ArrayType>(V->getType())) 6160 Error(VLoc, "'catch' clause has an invalid type"); 6161 } else { 6162 if (!isa<ArrayType>(V->getType())) 6163 Error(VLoc, "'filter' clause has an invalid type"); 6164 } 6165 6166 Constant *CV = dyn_cast<Constant>(V); 6167 if (!CV) 6168 return Error(VLoc, "clause argument must be a constant"); 6169 LP->addClause(CV); 6170 } 6171 6172 Inst = LP.release(); 6173 return false; 6174 } 6175 6176 /// ParseCall 6177 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6178 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6179 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6180 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6181 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6182 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6183 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6184 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6185 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6186 CallInst::TailCallKind TCK) { 6187 AttrBuilder RetAttrs, FnAttrs; 6188 std::vector<unsigned> FwdRefAttrGrps; 6189 LocTy BuiltinLoc; 6190 unsigned CC; 6191 Type *RetType = nullptr; 6192 LocTy RetTypeLoc; 6193 ValID CalleeID; 6194 SmallVector<ParamInfo, 16> ArgList; 6195 SmallVector<OperandBundleDef, 2> BundleList; 6196 LocTy CallLoc = Lex.getLoc(); 6197 6198 if (TCK != CallInst::TCK_None && 6199 ParseToken(lltok::kw_call, 6200 "expected 'tail call', 'musttail call', or 'notail call'")) 6201 return true; 6202 6203 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6204 6205 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6206 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6207 ParseValID(CalleeID) || 6208 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6209 PFS.getFunction().isVarArg()) || 6210 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6211 ParseOptionalOperandBundles(BundleList, PFS)) 6212 return true; 6213 6214 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6215 return Error(CallLoc, "fast-math-flags specified for call without " 6216 "floating-point scalar or vector return type"); 6217 6218 // If RetType is a non-function pointer type, then this is the short syntax 6219 // for the call, which means that RetType is just the return type. Infer the 6220 // rest of the function argument types from the arguments that are present. 6221 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6222 if (!Ty) { 6223 // Pull out the types of all of the arguments... 6224 std::vector<Type*> ParamTypes; 6225 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6226 ParamTypes.push_back(ArgList[i].V->getType()); 6227 6228 if (!FunctionType::isValidReturnType(RetType)) 6229 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6230 6231 Ty = FunctionType::get(RetType, ParamTypes, false); 6232 } 6233 6234 CalleeID.FTy = Ty; 6235 6236 // Look up the callee. 6237 Value *Callee; 6238 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6239 /*IsCall=*/true)) 6240 return true; 6241 6242 // Set up the Attribute for the function. 6243 SmallVector<AttributeSet, 8> Attrs; 6244 6245 SmallVector<Value*, 8> Args; 6246 6247 // Loop through FunctionType's arguments and ensure they are specified 6248 // correctly. Also, gather any parameter attributes. 6249 FunctionType::param_iterator I = Ty->param_begin(); 6250 FunctionType::param_iterator E = Ty->param_end(); 6251 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6252 Type *ExpectedTy = nullptr; 6253 if (I != E) { 6254 ExpectedTy = *I++; 6255 } else if (!Ty->isVarArg()) { 6256 return Error(ArgList[i].Loc, "too many arguments specified"); 6257 } 6258 6259 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6260 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6261 getTypeString(ExpectedTy) + "'"); 6262 Args.push_back(ArgList[i].V); 6263 Attrs.push_back(ArgList[i].Attrs); 6264 } 6265 6266 if (I != E) 6267 return Error(CallLoc, "not enough parameters specified for call"); 6268 6269 if (FnAttrs.hasAlignmentAttr()) 6270 return Error(CallLoc, "call instructions may not have an alignment"); 6271 6272 // Finish off the Attribute and check them 6273 AttributeList PAL = 6274 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6275 AttributeSet::get(Context, RetAttrs), Attrs); 6276 6277 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6278 CI->setTailCallKind(TCK); 6279 CI->setCallingConv(CC); 6280 if (FMF.any()) 6281 CI->setFastMathFlags(FMF); 6282 CI->setAttributes(PAL); 6283 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6284 Inst = CI; 6285 return false; 6286 } 6287 6288 //===----------------------------------------------------------------------===// 6289 // Memory Instructions. 6290 //===----------------------------------------------------------------------===// 6291 6292 /// ParseAlloc 6293 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6294 /// (',' 'align' i32)? (',', 'addrspace(n))? 6295 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6296 Value *Size = nullptr; 6297 LocTy SizeLoc, TyLoc, ASLoc; 6298 unsigned Alignment = 0; 6299 unsigned AddrSpace = 0; 6300 Type *Ty = nullptr; 6301 6302 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6303 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6304 6305 if (ParseType(Ty, TyLoc)) return true; 6306 6307 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6308 return Error(TyLoc, "invalid type for alloca"); 6309 6310 bool AteExtraComma = false; 6311 if (EatIfPresent(lltok::comma)) { 6312 if (Lex.getKind() == lltok::kw_align) { 6313 if (ParseOptionalAlignment(Alignment)) 6314 return true; 6315 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6316 return true; 6317 } else if (Lex.getKind() == lltok::kw_addrspace) { 6318 ASLoc = Lex.getLoc(); 6319 if (ParseOptionalAddrSpace(AddrSpace)) 6320 return true; 6321 } else if (Lex.getKind() == lltok::MetadataVar) { 6322 AteExtraComma = true; 6323 } else { 6324 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6325 return true; 6326 if (EatIfPresent(lltok::comma)) { 6327 if (Lex.getKind() == lltok::kw_align) { 6328 if (ParseOptionalAlignment(Alignment)) 6329 return true; 6330 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6331 return true; 6332 } else if (Lex.getKind() == lltok::kw_addrspace) { 6333 ASLoc = Lex.getLoc(); 6334 if (ParseOptionalAddrSpace(AddrSpace)) 6335 return true; 6336 } else if (Lex.getKind() == lltok::MetadataVar) { 6337 AteExtraComma = true; 6338 } 6339 } 6340 } 6341 } 6342 6343 if (Size && !Size->getType()->isIntegerTy()) 6344 return Error(SizeLoc, "element count must have integer type"); 6345 6346 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6347 AI->setUsedWithInAlloca(IsInAlloca); 6348 AI->setSwiftError(IsSwiftError); 6349 Inst = AI; 6350 return AteExtraComma ? InstExtraComma : InstNormal; 6351 } 6352 6353 /// ParseLoad 6354 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6355 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6356 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6357 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6358 Value *Val; LocTy Loc; 6359 unsigned Alignment = 0; 6360 bool AteExtraComma = false; 6361 bool isAtomic = false; 6362 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6363 SyncScope::ID SSID = SyncScope::System; 6364 6365 if (Lex.getKind() == lltok::kw_atomic) { 6366 isAtomic = true; 6367 Lex.Lex(); 6368 } 6369 6370 bool isVolatile = false; 6371 if (Lex.getKind() == lltok::kw_volatile) { 6372 isVolatile = true; 6373 Lex.Lex(); 6374 } 6375 6376 Type *Ty; 6377 LocTy ExplicitTypeLoc = Lex.getLoc(); 6378 if (ParseType(Ty) || 6379 ParseToken(lltok::comma, "expected comma after load's type") || 6380 ParseTypeAndValue(Val, Loc, PFS) || 6381 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6382 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6383 return true; 6384 6385 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6386 return Error(Loc, "load operand must be a pointer to a first class type"); 6387 if (isAtomic && !Alignment) 6388 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6389 if (Ordering == AtomicOrdering::Release || 6390 Ordering == AtomicOrdering::AcquireRelease) 6391 return Error(Loc, "atomic load cannot use Release ordering"); 6392 6393 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6394 return Error(ExplicitTypeLoc, 6395 "explicit pointee type doesn't match operand's pointee type"); 6396 6397 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6398 return AteExtraComma ? InstExtraComma : InstNormal; 6399 } 6400 6401 /// ParseStore 6402 6403 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6404 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6405 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6406 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6407 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6408 unsigned Alignment = 0; 6409 bool AteExtraComma = false; 6410 bool isAtomic = false; 6411 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6412 SyncScope::ID SSID = SyncScope::System; 6413 6414 if (Lex.getKind() == lltok::kw_atomic) { 6415 isAtomic = true; 6416 Lex.Lex(); 6417 } 6418 6419 bool isVolatile = false; 6420 if (Lex.getKind() == lltok::kw_volatile) { 6421 isVolatile = true; 6422 Lex.Lex(); 6423 } 6424 6425 if (ParseTypeAndValue(Val, Loc, PFS) || 6426 ParseToken(lltok::comma, "expected ',' after store operand") || 6427 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6428 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6429 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6430 return true; 6431 6432 if (!Ptr->getType()->isPointerTy()) 6433 return Error(PtrLoc, "store operand must be a pointer"); 6434 if (!Val->getType()->isFirstClassType()) 6435 return Error(Loc, "store operand must be a first class value"); 6436 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6437 return Error(Loc, "stored value and pointer type do not match"); 6438 if (isAtomic && !Alignment) 6439 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6440 if (Ordering == AtomicOrdering::Acquire || 6441 Ordering == AtomicOrdering::AcquireRelease) 6442 return Error(Loc, "atomic store cannot use Acquire ordering"); 6443 6444 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6445 return AteExtraComma ? InstExtraComma : InstNormal; 6446 } 6447 6448 /// ParseCmpXchg 6449 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6450 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6451 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6452 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6453 bool AteExtraComma = false; 6454 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6455 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6456 SyncScope::ID SSID = SyncScope::System; 6457 bool isVolatile = false; 6458 bool isWeak = false; 6459 6460 if (EatIfPresent(lltok::kw_weak)) 6461 isWeak = true; 6462 6463 if (EatIfPresent(lltok::kw_volatile)) 6464 isVolatile = true; 6465 6466 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6467 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6468 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6469 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6470 ParseTypeAndValue(New, NewLoc, PFS) || 6471 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6472 ParseOrdering(FailureOrdering)) 6473 return true; 6474 6475 if (SuccessOrdering == AtomicOrdering::Unordered || 6476 FailureOrdering == AtomicOrdering::Unordered) 6477 return TokError("cmpxchg cannot be unordered"); 6478 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6479 return TokError("cmpxchg failure argument shall be no stronger than the " 6480 "success argument"); 6481 if (FailureOrdering == AtomicOrdering::Release || 6482 FailureOrdering == AtomicOrdering::AcquireRelease) 6483 return TokError( 6484 "cmpxchg failure ordering cannot include release semantics"); 6485 if (!Ptr->getType()->isPointerTy()) 6486 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6487 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6488 return Error(CmpLoc, "compare value and pointer type do not match"); 6489 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6490 return Error(NewLoc, "new value and pointer type do not match"); 6491 if (!New->getType()->isFirstClassType()) 6492 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6493 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6494 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6495 CXI->setVolatile(isVolatile); 6496 CXI->setWeak(isWeak); 6497 Inst = CXI; 6498 return AteExtraComma ? InstExtraComma : InstNormal; 6499 } 6500 6501 /// ParseAtomicRMW 6502 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6503 /// 'singlethread'? AtomicOrdering 6504 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6505 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6506 bool AteExtraComma = false; 6507 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6508 SyncScope::ID SSID = SyncScope::System; 6509 bool isVolatile = false; 6510 AtomicRMWInst::BinOp Operation; 6511 6512 if (EatIfPresent(lltok::kw_volatile)) 6513 isVolatile = true; 6514 6515 switch (Lex.getKind()) { 6516 default: return TokError("expected binary operation in atomicrmw"); 6517 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6518 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6519 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6520 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6521 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6522 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6523 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6524 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6525 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6526 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6527 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6528 } 6529 Lex.Lex(); // Eat the operation. 6530 6531 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6532 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6533 ParseTypeAndValue(Val, ValLoc, PFS) || 6534 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6535 return true; 6536 6537 if (Ordering == AtomicOrdering::Unordered) 6538 return TokError("atomicrmw cannot be unordered"); 6539 if (!Ptr->getType()->isPointerTy()) 6540 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6541 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6542 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6543 if (!Val->getType()->isIntegerTy()) 6544 return Error(ValLoc, "atomicrmw operand must be an integer"); 6545 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6546 if (Size < 8 || (Size & (Size - 1))) 6547 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6548 " integer"); 6549 6550 AtomicRMWInst *RMWI = 6551 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6552 RMWI->setVolatile(isVolatile); 6553 Inst = RMWI; 6554 return AteExtraComma ? InstExtraComma : InstNormal; 6555 } 6556 6557 /// ParseFence 6558 /// ::= 'fence' 'singlethread'? AtomicOrdering 6559 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6560 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6561 SyncScope::ID SSID = SyncScope::System; 6562 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6563 return true; 6564 6565 if (Ordering == AtomicOrdering::Unordered) 6566 return TokError("fence cannot be unordered"); 6567 if (Ordering == AtomicOrdering::Monotonic) 6568 return TokError("fence cannot be monotonic"); 6569 6570 Inst = new FenceInst(Context, Ordering, SSID); 6571 return InstNormal; 6572 } 6573 6574 /// ParseGetElementPtr 6575 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6576 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6577 Value *Ptr = nullptr; 6578 Value *Val = nullptr; 6579 LocTy Loc, EltLoc; 6580 6581 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6582 6583 Type *Ty = nullptr; 6584 LocTy ExplicitTypeLoc = Lex.getLoc(); 6585 if (ParseType(Ty) || 6586 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6587 ParseTypeAndValue(Ptr, Loc, PFS)) 6588 return true; 6589 6590 Type *BaseType = Ptr->getType(); 6591 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6592 if (!BasePointerType) 6593 return Error(Loc, "base of getelementptr must be a pointer"); 6594 6595 if (Ty != BasePointerType->getElementType()) 6596 return Error(ExplicitTypeLoc, 6597 "explicit pointee type doesn't match operand's pointee type"); 6598 6599 SmallVector<Value*, 16> Indices; 6600 bool AteExtraComma = false; 6601 // GEP returns a vector of pointers if at least one of parameters is a vector. 6602 // All vector parameters should have the same vector width. 6603 unsigned GEPWidth = BaseType->isVectorTy() ? 6604 BaseType->getVectorNumElements() : 0; 6605 6606 while (EatIfPresent(lltok::comma)) { 6607 if (Lex.getKind() == lltok::MetadataVar) { 6608 AteExtraComma = true; 6609 break; 6610 } 6611 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6612 if (!Val->getType()->isIntOrIntVectorTy()) 6613 return Error(EltLoc, "getelementptr index must be an integer"); 6614 6615 if (Val->getType()->isVectorTy()) { 6616 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6617 if (GEPWidth && GEPWidth != ValNumEl) 6618 return Error(EltLoc, 6619 "getelementptr vector index has a wrong number of elements"); 6620 GEPWidth = ValNumEl; 6621 } 6622 Indices.push_back(Val); 6623 } 6624 6625 SmallPtrSet<Type*, 4> Visited; 6626 if (!Indices.empty() && !Ty->isSized(&Visited)) 6627 return Error(Loc, "base element of getelementptr must be sized"); 6628 6629 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6630 return Error(Loc, "invalid getelementptr indices"); 6631 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6632 if (InBounds) 6633 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6634 return AteExtraComma ? InstExtraComma : InstNormal; 6635 } 6636 6637 /// ParseExtractValue 6638 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6639 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6640 Value *Val; LocTy Loc; 6641 SmallVector<unsigned, 4> Indices; 6642 bool AteExtraComma; 6643 if (ParseTypeAndValue(Val, Loc, PFS) || 6644 ParseIndexList(Indices, AteExtraComma)) 6645 return true; 6646 6647 if (!Val->getType()->isAggregateType()) 6648 return Error(Loc, "extractvalue operand must be aggregate type"); 6649 6650 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6651 return Error(Loc, "invalid indices for extractvalue"); 6652 Inst = ExtractValueInst::Create(Val, Indices); 6653 return AteExtraComma ? InstExtraComma : InstNormal; 6654 } 6655 6656 /// ParseInsertValue 6657 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6658 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6659 Value *Val0, *Val1; LocTy Loc0, Loc1; 6660 SmallVector<unsigned, 4> Indices; 6661 bool AteExtraComma; 6662 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6663 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6664 ParseTypeAndValue(Val1, Loc1, PFS) || 6665 ParseIndexList(Indices, AteExtraComma)) 6666 return true; 6667 6668 if (!Val0->getType()->isAggregateType()) 6669 return Error(Loc0, "insertvalue operand must be aggregate type"); 6670 6671 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6672 if (!IndexedType) 6673 return Error(Loc0, "invalid indices for insertvalue"); 6674 if (IndexedType != Val1->getType()) 6675 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6676 getTypeString(Val1->getType()) + "' instead of '" + 6677 getTypeString(IndexedType) + "'"); 6678 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6679 return AteExtraComma ? InstExtraComma : InstNormal; 6680 } 6681 6682 //===----------------------------------------------------------------------===// 6683 // Embedded metadata. 6684 //===----------------------------------------------------------------------===// 6685 6686 /// ParseMDNodeVector 6687 /// ::= { Element (',' Element)* } 6688 /// Element 6689 /// ::= 'null' | TypeAndValue 6690 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6691 if (ParseToken(lltok::lbrace, "expected '{' here")) 6692 return true; 6693 6694 // Check for an empty list. 6695 if (EatIfPresent(lltok::rbrace)) 6696 return false; 6697 6698 do { 6699 // Null is a special case since it is typeless. 6700 if (EatIfPresent(lltok::kw_null)) { 6701 Elts.push_back(nullptr); 6702 continue; 6703 } 6704 6705 Metadata *MD; 6706 if (ParseMetadata(MD, nullptr)) 6707 return true; 6708 Elts.push_back(MD); 6709 } while (EatIfPresent(lltok::comma)); 6710 6711 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6712 } 6713 6714 //===----------------------------------------------------------------------===// 6715 // Use-list order directives. 6716 //===----------------------------------------------------------------------===// 6717 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6718 SMLoc Loc) { 6719 if (V->use_empty()) 6720 return Error(Loc, "value has no uses"); 6721 6722 unsigned NumUses = 0; 6723 SmallDenseMap<const Use *, unsigned, 16> Order; 6724 for (const Use &U : V->uses()) { 6725 if (++NumUses > Indexes.size()) 6726 break; 6727 Order[&U] = Indexes[NumUses - 1]; 6728 } 6729 if (NumUses < 2) 6730 return Error(Loc, "value only has one use"); 6731 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6732 return Error(Loc, "wrong number of indexes, expected " + 6733 Twine(std::distance(V->use_begin(), V->use_end()))); 6734 6735 V->sortUseList([&](const Use &L, const Use &R) { 6736 return Order.lookup(&L) < Order.lookup(&R); 6737 }); 6738 return false; 6739 } 6740 6741 /// ParseUseListOrderIndexes 6742 /// ::= '{' uint32 (',' uint32)+ '}' 6743 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6744 SMLoc Loc = Lex.getLoc(); 6745 if (ParseToken(lltok::lbrace, "expected '{' here")) 6746 return true; 6747 if (Lex.getKind() == lltok::rbrace) 6748 return Lex.Error("expected non-empty list of uselistorder indexes"); 6749 6750 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6751 // indexes should be distinct numbers in the range [0, size-1], and should 6752 // not be in order. 6753 unsigned Offset = 0; 6754 unsigned Max = 0; 6755 bool IsOrdered = true; 6756 assert(Indexes.empty() && "Expected empty order vector"); 6757 do { 6758 unsigned Index; 6759 if (ParseUInt32(Index)) 6760 return true; 6761 6762 // Update consistency checks. 6763 Offset += Index - Indexes.size(); 6764 Max = std::max(Max, Index); 6765 IsOrdered &= Index == Indexes.size(); 6766 6767 Indexes.push_back(Index); 6768 } while (EatIfPresent(lltok::comma)); 6769 6770 if (ParseToken(lltok::rbrace, "expected '}' here")) 6771 return true; 6772 6773 if (Indexes.size() < 2) 6774 return Error(Loc, "expected >= 2 uselistorder indexes"); 6775 if (Offset != 0 || Max >= Indexes.size()) 6776 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6777 if (IsOrdered) 6778 return Error(Loc, "expected uselistorder indexes to change the order"); 6779 6780 return false; 6781 } 6782 6783 /// ParseUseListOrder 6784 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6785 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6786 SMLoc Loc = Lex.getLoc(); 6787 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6788 return true; 6789 6790 Value *V; 6791 SmallVector<unsigned, 16> Indexes; 6792 if (ParseTypeAndValue(V, PFS) || 6793 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6794 ParseUseListOrderIndexes(Indexes)) 6795 return true; 6796 6797 return sortUseListOrder(V, Indexes, Loc); 6798 } 6799 6800 /// ParseUseListOrderBB 6801 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6802 bool LLParser::ParseUseListOrderBB() { 6803 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6804 SMLoc Loc = Lex.getLoc(); 6805 Lex.Lex(); 6806 6807 ValID Fn, Label; 6808 SmallVector<unsigned, 16> Indexes; 6809 if (ParseValID(Fn) || 6810 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6811 ParseValID(Label) || 6812 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6813 ParseUseListOrderIndexes(Indexes)) 6814 return true; 6815 6816 // Check the function. 6817 GlobalValue *GV; 6818 if (Fn.Kind == ValID::t_GlobalName) 6819 GV = M->getNamedValue(Fn.StrVal); 6820 else if (Fn.Kind == ValID::t_GlobalID) 6821 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6822 else 6823 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6824 if (!GV) 6825 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6826 auto *F = dyn_cast<Function>(GV); 6827 if (!F) 6828 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6829 if (F->isDeclaration()) 6830 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6831 6832 // Check the basic block. 6833 if (Label.Kind == ValID::t_LocalID) 6834 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6835 if (Label.Kind != ValID::t_LocalName) 6836 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6837 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6838 if (!V) 6839 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6840 if (!isa<BasicBlock>(V)) 6841 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6842 6843 return sortUseListOrder(V, Indexes, Loc); 6844 } 6845