1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (const auto &RAG : ForwardRefAttrGroups) {
125     Value *V = RAG.first;
126     const std::vector<unsigned> &Attrs = RAG.second;
127     AttrBuilder B;
128 
129     for (const auto &Attr : Attrs)
130       B.merge(NumberedAttrBuilders[Attr]);
131 
132     if (Function *Fn = dyn_cast<Function>(V)) {
133       AttributeList AS = Fn->getAttributes();
134       AttrBuilder FnAttrs(AS.getFnAttributes());
135       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
136 
137       FnAttrs.merge(B);
138 
139       // If the alignment was parsed as an attribute, move to the alignment
140       // field.
141       if (FnAttrs.hasAlignmentAttr()) {
142         Fn->setAlignment(FnAttrs.getAlignment());
143         FnAttrs.removeAttribute(Attribute::Alignment);
144       }
145 
146       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
147                             AttributeSet::get(Context, FnAttrs));
148       Fn->setAttributes(AS);
149     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150       AttributeList AS = CI->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes());
152       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
153       FnAttrs.merge(B);
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       CI->setAttributes(AS);
157     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158       AttributeList AS = II->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       II->setAttributes(AS);
165     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166       AttrBuilder Attrs(GV->getAttributes());
167       Attrs.merge(B);
168       GV->setAttributes(AttributeSet::get(Context,Attrs));
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   if (UpgradeDebugInfo)
241     llvm::UpgradeDebugInfo(*M);
242 
243   UpgradeModuleFlags(*M);
244   UpgradeSectionAttributes(*M);
245 
246   if (!Slots)
247     return false;
248   // Initialize the slot mapping.
249   // Because by this point we've parsed and validated everything, we can "steal"
250   // the mapping from LLParser as it doesn't need it anymore.
251   Slots->GlobalValues = std::move(NumberedVals);
252   Slots->MetadataNodes = std::move(NumberedMetadata);
253   for (const auto &I : NamedTypes)
254     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
255   for (const auto &I : NumberedTypes)
256     Slots->Types.insert(std::make_pair(I.first, I.second.first));
257 
258   return false;
259 }
260 
261 //===----------------------------------------------------------------------===//
262 // Top-Level Entities
263 //===----------------------------------------------------------------------===//
264 
265 bool LLParser::ParseTopLevelEntities() {
266   while (true) {
267     switch (Lex.getKind()) {
268     default:         return TokError("expected top-level entity");
269     case lltok::Eof: return false;
270     case lltok::kw_declare: if (ParseDeclare()) return true; break;
271     case lltok::kw_define:  if (ParseDefine()) return true; break;
272     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
273     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
274     case lltok::kw_source_filename:
275       if (ParseSourceFileName())
276         return true;
277       break;
278     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
279     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
280     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
281     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
282     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
283     case lltok::ComdatVar:  if (parseComdat()) return true; break;
284     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
285     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
286     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
287     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
288     case lltok::kw_uselistorder_bb:
289       if (ParseUseListOrderBB())
290         return true;
291       break;
292     }
293   }
294 }
295 
296 /// toplevelentity
297 ///   ::= 'module' 'asm' STRINGCONSTANT
298 bool LLParser::ParseModuleAsm() {
299   assert(Lex.getKind() == lltok::kw_module);
300   Lex.Lex();
301 
302   std::string AsmStr;
303   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
304       ParseStringConstant(AsmStr)) return true;
305 
306   M->appendModuleInlineAsm(AsmStr);
307   return false;
308 }
309 
310 /// toplevelentity
311 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
312 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
313 bool LLParser::ParseTargetDefinition() {
314   assert(Lex.getKind() == lltok::kw_target);
315   std::string Str;
316   switch (Lex.Lex()) {
317   default: return TokError("unknown target property");
318   case lltok::kw_triple:
319     Lex.Lex();
320     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
321         ParseStringConstant(Str))
322       return true;
323     M->setTargetTriple(Str);
324     return false;
325   case lltok::kw_datalayout:
326     Lex.Lex();
327     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
328         ParseStringConstant(Str))
329       return true;
330     if (DataLayoutStr.empty())
331       M->setDataLayout(Str);
332     return false;
333   }
334 }
335 
336 /// toplevelentity
337 ///   ::= 'source_filename' '=' STRINGCONSTANT
338 bool LLParser::ParseSourceFileName() {
339   assert(Lex.getKind() == lltok::kw_source_filename);
340   std::string Str;
341   Lex.Lex();
342   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
343       ParseStringConstant(Str))
344     return true;
345   M->setSourceFileName(Str);
346   return false;
347 }
348 
349 /// toplevelentity
350 ///   ::= 'deplibs' '=' '[' ']'
351 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
352 /// FIXME: Remove in 4.0. Currently parse, but ignore.
353 bool LLParser::ParseDepLibs() {
354   assert(Lex.getKind() == lltok::kw_deplibs);
355   Lex.Lex();
356   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
357       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
358     return true;
359 
360   if (EatIfPresent(lltok::rsquare))
361     return false;
362 
363   do {
364     std::string Str;
365     if (ParseStringConstant(Str)) return true;
366   } while (EatIfPresent(lltok::comma));
367 
368   return ParseToken(lltok::rsquare, "expected ']' at end of list");
369 }
370 
371 /// ParseUnnamedType:
372 ///   ::= LocalVarID '=' 'type' type
373 bool LLParser::ParseUnnamedType() {
374   LocTy TypeLoc = Lex.getLoc();
375   unsigned TypeID = Lex.getUIntVal();
376   Lex.Lex(); // eat LocalVarID;
377 
378   if (ParseToken(lltok::equal, "expected '=' after name") ||
379       ParseToken(lltok::kw_type, "expected 'type' after '='"))
380     return true;
381 
382   Type *Result = nullptr;
383   if (ParseStructDefinition(TypeLoc, "",
384                             NumberedTypes[TypeID], Result)) return true;
385 
386   if (!isa<StructType>(Result)) {
387     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
388     if (Entry.first)
389       return Error(TypeLoc, "non-struct types may not be recursive");
390     Entry.first = Result;
391     Entry.second = SMLoc();
392   }
393 
394   return false;
395 }
396 
397 /// toplevelentity
398 ///   ::= LocalVar '=' 'type' type
399 bool LLParser::ParseNamedType() {
400   std::string Name = Lex.getStrVal();
401   LocTy NameLoc = Lex.getLoc();
402   Lex.Lex();  // eat LocalVar.
403 
404   if (ParseToken(lltok::equal, "expected '=' after name") ||
405       ParseToken(lltok::kw_type, "expected 'type' after name"))
406     return true;
407 
408   Type *Result = nullptr;
409   if (ParseStructDefinition(NameLoc, Name,
410                             NamedTypes[Name], Result)) return true;
411 
412   if (!isa<StructType>(Result)) {
413     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
414     if (Entry.first)
415       return Error(NameLoc, "non-struct types may not be recursive");
416     Entry.first = Result;
417     Entry.second = SMLoc();
418   }
419 
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'declare' FunctionHeader
425 bool LLParser::ParseDeclare() {
426   assert(Lex.getKind() == lltok::kw_declare);
427   Lex.Lex();
428 
429   std::vector<std::pair<unsigned, MDNode *>> MDs;
430   while (Lex.getKind() == lltok::MetadataVar) {
431     unsigned MDK;
432     MDNode *N;
433     if (ParseMetadataAttachment(MDK, N))
434       return true;
435     MDs.push_back({MDK, N});
436   }
437 
438   Function *F;
439   if (ParseFunctionHeader(F, false))
440     return true;
441   for (auto &MD : MDs)
442     F->addMetadata(MD.first, *MD.second);
443   return false;
444 }
445 
446 /// toplevelentity
447 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
448 bool LLParser::ParseDefine() {
449   assert(Lex.getKind() == lltok::kw_define);
450   Lex.Lex();
451 
452   Function *F;
453   return ParseFunctionHeader(F, true) ||
454          ParseOptionalFunctionMetadata(*F) ||
455          ParseFunctionBody(*F);
456 }
457 
458 /// ParseGlobalType
459 ///   ::= 'constant'
460 ///   ::= 'global'
461 bool LLParser::ParseGlobalType(bool &IsConstant) {
462   if (Lex.getKind() == lltok::kw_constant)
463     IsConstant = true;
464   else if (Lex.getKind() == lltok::kw_global)
465     IsConstant = false;
466   else {
467     IsConstant = false;
468     return TokError("expected 'global' or 'constant'");
469   }
470   Lex.Lex();
471   return false;
472 }
473 
474 bool LLParser::ParseOptionalUnnamedAddr(
475     GlobalVariable::UnnamedAddr &UnnamedAddr) {
476   if (EatIfPresent(lltok::kw_unnamed_addr))
477     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
478   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
479     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
480   else
481     UnnamedAddr = GlobalValue::UnnamedAddr::None;
482   return false;
483 }
484 
485 /// ParseUnnamedGlobal:
486 ///   OptionalVisibility (ALIAS | IFUNC) ...
487 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
488 ///   OptionalDLLStorageClass
489 ///                                                     ...   -> global variable
490 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
491 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
492 ///                OptionalDLLStorageClass
493 ///                                                     ...   -> global variable
494 bool LLParser::ParseUnnamedGlobal() {
495   unsigned VarID = NumberedVals.size();
496   std::string Name;
497   LocTy NameLoc = Lex.getLoc();
498 
499   // Handle the GlobalID form.
500   if (Lex.getKind() == lltok::GlobalID) {
501     if (Lex.getUIntVal() != VarID)
502       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
503                    Twine(VarID) + "'");
504     Lex.Lex(); // eat GlobalID;
505 
506     if (ParseToken(lltok::equal, "expected '=' after name"))
507       return true;
508   }
509 
510   bool HasLinkage;
511   unsigned Linkage, Visibility, DLLStorageClass;
512   bool DSOLocal;
513   GlobalVariable::ThreadLocalMode TLM;
514   GlobalVariable::UnnamedAddr UnnamedAddr;
515   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
516                            DSOLocal) ||
517       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
518     return true;
519 
520   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
521     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
522                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
523 
524   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
525                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
526 }
527 
528 /// ParseNamedGlobal:
529 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
530 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
531 ///                 OptionalVisibility OptionalDLLStorageClass
532 ///                                                     ...   -> global variable
533 bool LLParser::ParseNamedGlobal() {
534   assert(Lex.getKind() == lltok::GlobalVar);
535   LocTy NameLoc = Lex.getLoc();
536   std::string Name = Lex.getStrVal();
537   Lex.Lex();
538 
539   bool HasLinkage;
540   unsigned Linkage, Visibility, DLLStorageClass;
541   bool DSOLocal;
542   GlobalVariable::ThreadLocalMode TLM;
543   GlobalVariable::UnnamedAddr UnnamedAddr;
544   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
545       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
546                            DSOLocal) ||
547       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
548     return true;
549 
550   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
551     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
552                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
553 
554   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
555                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
556 }
557 
558 bool LLParser::parseComdat() {
559   assert(Lex.getKind() == lltok::ComdatVar);
560   std::string Name = Lex.getStrVal();
561   LocTy NameLoc = Lex.getLoc();
562   Lex.Lex();
563 
564   if (ParseToken(lltok::equal, "expected '=' here"))
565     return true;
566 
567   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
568     return TokError("expected comdat type");
569 
570   Comdat::SelectionKind SK;
571   switch (Lex.getKind()) {
572   default:
573     return TokError("unknown selection kind");
574   case lltok::kw_any:
575     SK = Comdat::Any;
576     break;
577   case lltok::kw_exactmatch:
578     SK = Comdat::ExactMatch;
579     break;
580   case lltok::kw_largest:
581     SK = Comdat::Largest;
582     break;
583   case lltok::kw_noduplicates:
584     SK = Comdat::NoDuplicates;
585     break;
586   case lltok::kw_samesize:
587     SK = Comdat::SameSize;
588     break;
589   }
590   Lex.Lex();
591 
592   // See if the comdat was forward referenced, if so, use the comdat.
593   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
594   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
595   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
596     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
597 
598   Comdat *C;
599   if (I != ComdatSymTab.end())
600     C = &I->second;
601   else
602     C = M->getOrInsertComdat(Name);
603   C->setSelectionKind(SK);
604 
605   return false;
606 }
607 
608 // MDString:
609 //   ::= '!' STRINGCONSTANT
610 bool LLParser::ParseMDString(MDString *&Result) {
611   std::string Str;
612   if (ParseStringConstant(Str)) return true;
613   Result = MDString::get(Context, Str);
614   return false;
615 }
616 
617 // MDNode:
618 //   ::= '!' MDNodeNumber
619 bool LLParser::ParseMDNodeID(MDNode *&Result) {
620   // !{ ..., !42, ... }
621   LocTy IDLoc = Lex.getLoc();
622   unsigned MID = 0;
623   if (ParseUInt32(MID))
624     return true;
625 
626   // If not a forward reference, just return it now.
627   if (NumberedMetadata.count(MID)) {
628     Result = NumberedMetadata[MID];
629     return false;
630   }
631 
632   // Otherwise, create MDNode forward reference.
633   auto &FwdRef = ForwardRefMDNodes[MID];
634   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
635 
636   Result = FwdRef.first.get();
637   NumberedMetadata[MID].reset(Result);
638   return false;
639 }
640 
641 /// ParseNamedMetadata:
642 ///   !foo = !{ !1, !2 }
643 bool LLParser::ParseNamedMetadata() {
644   assert(Lex.getKind() == lltok::MetadataVar);
645   std::string Name = Lex.getStrVal();
646   Lex.Lex();
647 
648   if (ParseToken(lltok::equal, "expected '=' here") ||
649       ParseToken(lltok::exclaim, "Expected '!' here") ||
650       ParseToken(lltok::lbrace, "Expected '{' here"))
651     return true;
652 
653   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
654   if (Lex.getKind() != lltok::rbrace)
655     do {
656       MDNode *N = nullptr;
657       // Parse DIExpressions inline as a special case. They are still MDNodes,
658       // so they can still appear in named metadata. Remove this logic if they
659       // become plain Metadata.
660       if (Lex.getKind() == lltok::MetadataVar &&
661           Lex.getStrVal() == "DIExpression") {
662         if (ParseDIExpression(N, /*IsDistinct=*/false))
663           return true;
664       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
665                  ParseMDNodeID(N)) {
666         return true;
667       }
668       NMD->addOperand(N);
669     } while (EatIfPresent(lltok::comma));
670 
671   return ParseToken(lltok::rbrace, "expected end of metadata node");
672 }
673 
674 /// ParseStandaloneMetadata:
675 ///   !42 = !{...}
676 bool LLParser::ParseStandaloneMetadata() {
677   assert(Lex.getKind() == lltok::exclaim);
678   Lex.Lex();
679   unsigned MetadataID = 0;
680 
681   MDNode *Init;
682   if (ParseUInt32(MetadataID) ||
683       ParseToken(lltok::equal, "expected '=' here"))
684     return true;
685 
686   // Detect common error, from old metadata syntax.
687   if (Lex.getKind() == lltok::Type)
688     return TokError("unexpected type in metadata definition");
689 
690   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
691   if (Lex.getKind() == lltok::MetadataVar) {
692     if (ParseSpecializedMDNode(Init, IsDistinct))
693       return true;
694   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
695              ParseMDTuple(Init, IsDistinct))
696     return true;
697 
698   // See if this was forward referenced, if so, handle it.
699   auto FI = ForwardRefMDNodes.find(MetadataID);
700   if (FI != ForwardRefMDNodes.end()) {
701     FI->second.first->replaceAllUsesWith(Init);
702     ForwardRefMDNodes.erase(FI);
703 
704     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
705   } else {
706     if (NumberedMetadata.count(MetadataID))
707       return TokError("Metadata id is already used");
708     NumberedMetadata[MetadataID].reset(Init);
709   }
710 
711   return false;
712 }
713 
714 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
715   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
716          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
717 }
718 
719 // If there was an explicit dso_local, update GV. In the absence of an explicit
720 // dso_local we keep the default value.
721 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
722   if (DSOLocal)
723     GV.setDSOLocal(true);
724 }
725 
726 /// parseIndirectSymbol:
727 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
728 ///                     OptionalVisibility OptionalDLLStorageClass
729 ///                     OptionalThreadLocal OptionalUnnamedAddr
730 //                      'alias|ifunc' IndirectSymbol
731 ///
732 /// IndirectSymbol
733 ///   ::= TypeAndValue
734 ///
735 /// Everything through OptionalUnnamedAddr has already been parsed.
736 ///
737 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
738                                    unsigned L, unsigned Visibility,
739                                    unsigned DLLStorageClass, bool DSOLocal,
740                                    GlobalVariable::ThreadLocalMode TLM,
741                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
742   bool IsAlias;
743   if (Lex.getKind() == lltok::kw_alias)
744     IsAlias = true;
745   else if (Lex.getKind() == lltok::kw_ifunc)
746     IsAlias = false;
747   else
748     llvm_unreachable("Not an alias or ifunc!");
749   Lex.Lex();
750 
751   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
752 
753   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
754     return Error(NameLoc, "invalid linkage type for alias");
755 
756   if (!isValidVisibilityForLinkage(Visibility, L))
757     return Error(NameLoc,
758                  "symbol with local linkage must have default visibility");
759 
760   Type *Ty;
761   LocTy ExplicitTypeLoc = Lex.getLoc();
762   if (ParseType(Ty) ||
763       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
764     return true;
765 
766   Constant *Aliasee;
767   LocTy AliaseeLoc = Lex.getLoc();
768   if (Lex.getKind() != lltok::kw_bitcast &&
769       Lex.getKind() != lltok::kw_getelementptr &&
770       Lex.getKind() != lltok::kw_addrspacecast &&
771       Lex.getKind() != lltok::kw_inttoptr) {
772     if (ParseGlobalTypeAndValue(Aliasee))
773       return true;
774   } else {
775     // The bitcast dest type is not present, it is implied by the dest type.
776     ValID ID;
777     if (ParseValID(ID))
778       return true;
779     if (ID.Kind != ValID::t_Constant)
780       return Error(AliaseeLoc, "invalid aliasee");
781     Aliasee = ID.ConstantVal;
782   }
783 
784   Type *AliaseeType = Aliasee->getType();
785   auto *PTy = dyn_cast<PointerType>(AliaseeType);
786   if (!PTy)
787     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
788   unsigned AddrSpace = PTy->getAddressSpace();
789 
790   if (IsAlias && Ty != PTy->getElementType())
791     return Error(
792         ExplicitTypeLoc,
793         "explicit pointee type doesn't match operand's pointee type");
794 
795   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
796     return Error(
797         ExplicitTypeLoc,
798         "explicit pointee type should be a function type");
799 
800   GlobalValue *GVal = nullptr;
801 
802   // See if the alias was forward referenced, if so, prepare to replace the
803   // forward reference.
804   if (!Name.empty()) {
805     GVal = M->getNamedValue(Name);
806     if (GVal) {
807       if (!ForwardRefVals.erase(Name))
808         return Error(NameLoc, "redefinition of global '@" + Name + "'");
809     }
810   } else {
811     auto I = ForwardRefValIDs.find(NumberedVals.size());
812     if (I != ForwardRefValIDs.end()) {
813       GVal = I->second.first;
814       ForwardRefValIDs.erase(I);
815     }
816   }
817 
818   // Okay, create the alias but do not insert it into the module yet.
819   std::unique_ptr<GlobalIndirectSymbol> GA;
820   if (IsAlias)
821     GA.reset(GlobalAlias::create(Ty, AddrSpace,
822                                  (GlobalValue::LinkageTypes)Linkage, Name,
823                                  Aliasee, /*Parent*/ nullptr));
824   else
825     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
826                                  (GlobalValue::LinkageTypes)Linkage, Name,
827                                  Aliasee, /*Parent*/ nullptr));
828   GA->setThreadLocalMode(TLM);
829   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
830   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
831   GA->setUnnamedAddr(UnnamedAddr);
832   maybeSetDSOLocal(DSOLocal, *GA);
833 
834   if (Name.empty())
835     NumberedVals.push_back(GA.get());
836 
837   if (GVal) {
838     // Verify that types agree.
839     if (GVal->getType() != GA->getType())
840       return Error(
841           ExplicitTypeLoc,
842           "forward reference and definition of alias have different types");
843 
844     // If they agree, just RAUW the old value with the alias and remove the
845     // forward ref info.
846     GVal->replaceAllUsesWith(GA.get());
847     GVal->eraseFromParent();
848   }
849 
850   // Insert into the module, we know its name won't collide now.
851   if (IsAlias)
852     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
853   else
854     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
855   assert(GA->getName() == Name && "Should not be a name conflict!");
856 
857   // The module owns this now
858   GA.release();
859 
860   return false;
861 }
862 
863 /// ParseGlobal
864 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
865 ///       OptionalVisibility OptionalDLLStorageClass
866 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
867 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
868 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
869 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
870 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
871 ///       Const OptionalAttrs
872 ///
873 /// Everything up to and including OptionalUnnamedAddr has been parsed
874 /// already.
875 ///
876 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
877                            unsigned Linkage, bool HasLinkage,
878                            unsigned Visibility, unsigned DLLStorageClass,
879                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
880                            GlobalVariable::UnnamedAddr UnnamedAddr) {
881   if (!isValidVisibilityForLinkage(Visibility, Linkage))
882     return Error(NameLoc,
883                  "symbol with local linkage must have default visibility");
884 
885   unsigned AddrSpace;
886   bool IsConstant, IsExternallyInitialized;
887   LocTy IsExternallyInitializedLoc;
888   LocTy TyLoc;
889 
890   Type *Ty = nullptr;
891   if (ParseOptionalAddrSpace(AddrSpace) ||
892       ParseOptionalToken(lltok::kw_externally_initialized,
893                          IsExternallyInitialized,
894                          &IsExternallyInitializedLoc) ||
895       ParseGlobalType(IsConstant) ||
896       ParseType(Ty, TyLoc))
897     return true;
898 
899   // If the linkage is specified and is external, then no initializer is
900   // present.
901   Constant *Init = nullptr;
902   if (!HasLinkage ||
903       !GlobalValue::isValidDeclarationLinkage(
904           (GlobalValue::LinkageTypes)Linkage)) {
905     if (ParseGlobalValue(Ty, Init))
906       return true;
907   }
908 
909   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
910     return Error(TyLoc, "invalid type for global variable");
911 
912   GlobalValue *GVal = nullptr;
913 
914   // See if the global was forward referenced, if so, use the global.
915   if (!Name.empty()) {
916     GVal = M->getNamedValue(Name);
917     if (GVal) {
918       if (!ForwardRefVals.erase(Name))
919         return Error(NameLoc, "redefinition of global '@" + Name + "'");
920     }
921   } else {
922     auto I = ForwardRefValIDs.find(NumberedVals.size());
923     if (I != ForwardRefValIDs.end()) {
924       GVal = I->second.first;
925       ForwardRefValIDs.erase(I);
926     }
927   }
928 
929   GlobalVariable *GV;
930   if (!GVal) {
931     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
932                             Name, nullptr, GlobalVariable::NotThreadLocal,
933                             AddrSpace);
934   } else {
935     if (GVal->getValueType() != Ty)
936       return Error(TyLoc,
937             "forward reference and definition of global have different types");
938 
939     GV = cast<GlobalVariable>(GVal);
940 
941     // Move the forward-reference to the correct spot in the module.
942     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
943   }
944 
945   if (Name.empty())
946     NumberedVals.push_back(GV);
947 
948   // Set the parsed properties on the global.
949   if (Init)
950     GV->setInitializer(Init);
951   GV->setConstant(IsConstant);
952   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
953   maybeSetDSOLocal(DSOLocal, *GV);
954   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956   GV->setExternallyInitialized(IsExternallyInitialized);
957   GV->setThreadLocalMode(TLM);
958   GV->setUnnamedAddr(UnnamedAddr);
959 
960   // Parse attributes on the global.
961   while (Lex.getKind() == lltok::comma) {
962     Lex.Lex();
963 
964     if (Lex.getKind() == lltok::kw_section) {
965       Lex.Lex();
966       GV->setSection(Lex.getStrVal());
967       if (ParseToken(lltok::StringConstant, "expected global section string"))
968         return true;
969     } else if (Lex.getKind() == lltok::kw_align) {
970       unsigned Alignment;
971       if (ParseOptionalAlignment(Alignment)) return true;
972       GV->setAlignment(Alignment);
973     } else if (Lex.getKind() == lltok::MetadataVar) {
974       if (ParseGlobalObjectMetadataAttachment(*GV))
975         return true;
976     } else {
977       Comdat *C;
978       if (parseOptionalComdat(Name, C))
979         return true;
980       if (C)
981         GV->setComdat(C);
982       else
983         return TokError("unknown global variable property!");
984     }
985   }
986 
987   AttrBuilder Attrs;
988   LocTy BuiltinLoc;
989   std::vector<unsigned> FwdRefAttrGrps;
990   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
991     return true;
992   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
993     GV->setAttributes(AttributeSet::get(Context, Attrs));
994     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
995   }
996 
997   return false;
998 }
999 
1000 /// ParseUnnamedAttrGrp
1001 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1002 bool LLParser::ParseUnnamedAttrGrp() {
1003   assert(Lex.getKind() == lltok::kw_attributes);
1004   LocTy AttrGrpLoc = Lex.getLoc();
1005   Lex.Lex();
1006 
1007   if (Lex.getKind() != lltok::AttrGrpID)
1008     return TokError("expected attribute group id");
1009 
1010   unsigned VarID = Lex.getUIntVal();
1011   std::vector<unsigned> unused;
1012   LocTy BuiltinLoc;
1013   Lex.Lex();
1014 
1015   if (ParseToken(lltok::equal, "expected '=' here") ||
1016       ParseToken(lltok::lbrace, "expected '{' here") ||
1017       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1018                                  BuiltinLoc) ||
1019       ParseToken(lltok::rbrace, "expected end of attribute group"))
1020     return true;
1021 
1022   if (!NumberedAttrBuilders[VarID].hasAttributes())
1023     return Error(AttrGrpLoc, "attribute group has no attributes");
1024 
1025   return false;
1026 }
1027 
1028 /// ParseFnAttributeValuePairs
1029 ///   ::= <attr> | <attr> '=' <value>
1030 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1031                                           std::vector<unsigned> &FwdRefAttrGrps,
1032                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1033   bool HaveError = false;
1034 
1035   B.clear();
1036 
1037   while (true) {
1038     lltok::Kind Token = Lex.getKind();
1039     if (Token == lltok::kw_builtin)
1040       BuiltinLoc = Lex.getLoc();
1041     switch (Token) {
1042     default:
1043       if (!inAttrGrp) return HaveError;
1044       return Error(Lex.getLoc(), "unterminated attribute group");
1045     case lltok::rbrace:
1046       // Finished.
1047       return false;
1048 
1049     case lltok::AttrGrpID: {
1050       // Allow a function to reference an attribute group:
1051       //
1052       //   define void @foo() #1 { ... }
1053       if (inAttrGrp)
1054         HaveError |=
1055           Error(Lex.getLoc(),
1056               "cannot have an attribute group reference in an attribute group");
1057 
1058       unsigned AttrGrpNum = Lex.getUIntVal();
1059       if (inAttrGrp) break;
1060 
1061       // Save the reference to the attribute group. We'll fill it in later.
1062       FwdRefAttrGrps.push_back(AttrGrpNum);
1063       break;
1064     }
1065     // Target-dependent attributes:
1066     case lltok::StringConstant: {
1067       if (ParseStringAttribute(B))
1068         return true;
1069       continue;
1070     }
1071 
1072     // Target-independent attributes:
1073     case lltok::kw_align: {
1074       // As a hack, we allow function alignment to be initially parsed as an
1075       // attribute on a function declaration/definition or added to an attribute
1076       // group and later moved to the alignment field.
1077       unsigned Alignment;
1078       if (inAttrGrp) {
1079         Lex.Lex();
1080         if (ParseToken(lltok::equal, "expected '=' here") ||
1081             ParseUInt32(Alignment))
1082           return true;
1083       } else {
1084         if (ParseOptionalAlignment(Alignment))
1085           return true;
1086       }
1087       B.addAlignmentAttr(Alignment);
1088       continue;
1089     }
1090     case lltok::kw_alignstack: {
1091       unsigned Alignment;
1092       if (inAttrGrp) {
1093         Lex.Lex();
1094         if (ParseToken(lltok::equal, "expected '=' here") ||
1095             ParseUInt32(Alignment))
1096           return true;
1097       } else {
1098         if (ParseOptionalStackAlignment(Alignment))
1099           return true;
1100       }
1101       B.addStackAlignmentAttr(Alignment);
1102       continue;
1103     }
1104     case lltok::kw_allocsize: {
1105       unsigned ElemSizeArg;
1106       Optional<unsigned> NumElemsArg;
1107       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1108       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1109         return true;
1110       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1111       continue;
1112     }
1113     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1114     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1115     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1116     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1117     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1118     case lltok::kw_inaccessiblememonly:
1119       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1120     case lltok::kw_inaccessiblemem_or_argmemonly:
1121       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1122     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1123     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1124     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1125     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1126     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1127     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1128     case lltok::kw_noimplicitfloat:
1129       B.addAttribute(Attribute::NoImplicitFloat); break;
1130     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1131     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1132     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1133     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1134     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1135     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1136     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1137     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1138     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1139     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1140     case lltok::kw_returns_twice:
1141       B.addAttribute(Attribute::ReturnsTwice); break;
1142     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1143     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1144     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1145     case lltok::kw_sspstrong:
1146       B.addAttribute(Attribute::StackProtectStrong); break;
1147     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1148     case lltok::kw_sanitize_address:
1149       B.addAttribute(Attribute::SanitizeAddress); break;
1150     case lltok::kw_sanitize_hwaddress:
1151       B.addAttribute(Attribute::SanitizeHWAddress); break;
1152     case lltok::kw_sanitize_thread:
1153       B.addAttribute(Attribute::SanitizeThread); break;
1154     case lltok::kw_sanitize_memory:
1155       B.addAttribute(Attribute::SanitizeMemory); break;
1156     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1157     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1158     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1159 
1160     // Error handling.
1161     case lltok::kw_inreg:
1162     case lltok::kw_signext:
1163     case lltok::kw_zeroext:
1164       HaveError |=
1165         Error(Lex.getLoc(),
1166               "invalid use of attribute on a function");
1167       break;
1168     case lltok::kw_byval:
1169     case lltok::kw_dereferenceable:
1170     case lltok::kw_dereferenceable_or_null:
1171     case lltok::kw_inalloca:
1172     case lltok::kw_nest:
1173     case lltok::kw_noalias:
1174     case lltok::kw_nocapture:
1175     case lltok::kw_nonnull:
1176     case lltok::kw_returned:
1177     case lltok::kw_sret:
1178     case lltok::kw_swifterror:
1179     case lltok::kw_swiftself:
1180       HaveError |=
1181         Error(Lex.getLoc(),
1182               "invalid use of parameter-only attribute on a function");
1183       break;
1184     }
1185 
1186     Lex.Lex();
1187   }
1188 }
1189 
1190 //===----------------------------------------------------------------------===//
1191 // GlobalValue Reference/Resolution Routines.
1192 //===----------------------------------------------------------------------===//
1193 
1194 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1195                                               const std::string &Name) {
1196   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1197     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1198   else
1199     return new GlobalVariable(*M, PTy->getElementType(), false,
1200                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1201                               nullptr, GlobalVariable::NotThreadLocal,
1202                               PTy->getAddressSpace());
1203 }
1204 
1205 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1206 /// forward reference record if needed.  This can return null if the value
1207 /// exists but does not have the right type.
1208 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1209                                     LocTy Loc) {
1210   PointerType *PTy = dyn_cast<PointerType>(Ty);
1211   if (!PTy) {
1212     Error(Loc, "global variable reference must have pointer type");
1213     return nullptr;
1214   }
1215 
1216   // Look this name up in the normal function symbol table.
1217   GlobalValue *Val =
1218     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1219 
1220   // If this is a forward reference for the value, see if we already created a
1221   // forward ref record.
1222   if (!Val) {
1223     auto I = ForwardRefVals.find(Name);
1224     if (I != ForwardRefVals.end())
1225       Val = I->second.first;
1226   }
1227 
1228   // If we have the value in the symbol table or fwd-ref table, return it.
1229   if (Val) {
1230     if (Val->getType() == Ty) return Val;
1231     Error(Loc, "'@" + Name + "' defined with type '" +
1232           getTypeString(Val->getType()) + "'");
1233     return nullptr;
1234   }
1235 
1236   // Otherwise, create a new forward reference for this value and remember it.
1237   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1238   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1239   return FwdVal;
1240 }
1241 
1242 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1243   PointerType *PTy = dyn_cast<PointerType>(Ty);
1244   if (!PTy) {
1245     Error(Loc, "global variable reference must have pointer type");
1246     return nullptr;
1247   }
1248 
1249   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1250 
1251   // If this is a forward reference for the value, see if we already created a
1252   // forward ref record.
1253   if (!Val) {
1254     auto I = ForwardRefValIDs.find(ID);
1255     if (I != ForwardRefValIDs.end())
1256       Val = I->second.first;
1257   }
1258 
1259   // If we have the value in the symbol table or fwd-ref table, return it.
1260   if (Val) {
1261     if (Val->getType() == Ty) return Val;
1262     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1263           getTypeString(Val->getType()) + "'");
1264     return nullptr;
1265   }
1266 
1267   // Otherwise, create a new forward reference for this value and remember it.
1268   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1269   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1270   return FwdVal;
1271 }
1272 
1273 //===----------------------------------------------------------------------===//
1274 // Comdat Reference/Resolution Routines.
1275 //===----------------------------------------------------------------------===//
1276 
1277 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1278   // Look this name up in the comdat symbol table.
1279   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1280   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1281   if (I != ComdatSymTab.end())
1282     return &I->second;
1283 
1284   // Otherwise, create a new forward reference for this value and remember it.
1285   Comdat *C = M->getOrInsertComdat(Name);
1286   ForwardRefComdats[Name] = Loc;
1287   return C;
1288 }
1289 
1290 //===----------------------------------------------------------------------===//
1291 // Helper Routines.
1292 //===----------------------------------------------------------------------===//
1293 
1294 /// ParseToken - If the current token has the specified kind, eat it and return
1295 /// success.  Otherwise, emit the specified error and return failure.
1296 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1297   if (Lex.getKind() != T)
1298     return TokError(ErrMsg);
1299   Lex.Lex();
1300   return false;
1301 }
1302 
1303 /// ParseStringConstant
1304 ///   ::= StringConstant
1305 bool LLParser::ParseStringConstant(std::string &Result) {
1306   if (Lex.getKind() != lltok::StringConstant)
1307     return TokError("expected string constant");
1308   Result = Lex.getStrVal();
1309   Lex.Lex();
1310   return false;
1311 }
1312 
1313 /// ParseUInt32
1314 ///   ::= uint32
1315 bool LLParser::ParseUInt32(uint32_t &Val) {
1316   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1317     return TokError("expected integer");
1318   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1319   if (Val64 != unsigned(Val64))
1320     return TokError("expected 32-bit integer (too large)");
1321   Val = Val64;
1322   Lex.Lex();
1323   return false;
1324 }
1325 
1326 /// ParseUInt64
1327 ///   ::= uint64
1328 bool LLParser::ParseUInt64(uint64_t &Val) {
1329   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1330     return TokError("expected integer");
1331   Val = Lex.getAPSIntVal().getLimitedValue();
1332   Lex.Lex();
1333   return false;
1334 }
1335 
1336 /// ParseTLSModel
1337 ///   := 'localdynamic'
1338 ///   := 'initialexec'
1339 ///   := 'localexec'
1340 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1341   switch (Lex.getKind()) {
1342     default:
1343       return TokError("expected localdynamic, initialexec or localexec");
1344     case lltok::kw_localdynamic:
1345       TLM = GlobalVariable::LocalDynamicTLSModel;
1346       break;
1347     case lltok::kw_initialexec:
1348       TLM = GlobalVariable::InitialExecTLSModel;
1349       break;
1350     case lltok::kw_localexec:
1351       TLM = GlobalVariable::LocalExecTLSModel;
1352       break;
1353   }
1354 
1355   Lex.Lex();
1356   return false;
1357 }
1358 
1359 /// ParseOptionalThreadLocal
1360 ///   := /*empty*/
1361 ///   := 'thread_local'
1362 ///   := 'thread_local' '(' tlsmodel ')'
1363 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1364   TLM = GlobalVariable::NotThreadLocal;
1365   if (!EatIfPresent(lltok::kw_thread_local))
1366     return false;
1367 
1368   TLM = GlobalVariable::GeneralDynamicTLSModel;
1369   if (Lex.getKind() == lltok::lparen) {
1370     Lex.Lex();
1371     return ParseTLSModel(TLM) ||
1372       ParseToken(lltok::rparen, "expected ')' after thread local model");
1373   }
1374   return false;
1375 }
1376 
1377 /// ParseOptionalAddrSpace
1378 ///   := /*empty*/
1379 ///   := 'addrspace' '(' uint32 ')'
1380 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1381   AddrSpace = 0;
1382   if (!EatIfPresent(lltok::kw_addrspace))
1383     return false;
1384   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1385          ParseUInt32(AddrSpace) ||
1386          ParseToken(lltok::rparen, "expected ')' in address space");
1387 }
1388 
1389 /// ParseStringAttribute
1390 ///   := StringConstant
1391 ///   := StringConstant '=' StringConstant
1392 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1393   std::string Attr = Lex.getStrVal();
1394   Lex.Lex();
1395   std::string Val;
1396   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1397     return true;
1398   B.addAttribute(Attr, Val);
1399   return false;
1400 }
1401 
1402 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1403 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1404   bool HaveError = false;
1405 
1406   B.clear();
1407 
1408   while (true) {
1409     lltok::Kind Token = Lex.getKind();
1410     switch (Token) {
1411     default:  // End of attributes.
1412       return HaveError;
1413     case lltok::StringConstant: {
1414       if (ParseStringAttribute(B))
1415         return true;
1416       continue;
1417     }
1418     case lltok::kw_align: {
1419       unsigned Alignment;
1420       if (ParseOptionalAlignment(Alignment))
1421         return true;
1422       B.addAlignmentAttr(Alignment);
1423       continue;
1424     }
1425     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1426     case lltok::kw_dereferenceable: {
1427       uint64_t Bytes;
1428       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1429         return true;
1430       B.addDereferenceableAttr(Bytes);
1431       continue;
1432     }
1433     case lltok::kw_dereferenceable_or_null: {
1434       uint64_t Bytes;
1435       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1436         return true;
1437       B.addDereferenceableOrNullAttr(Bytes);
1438       continue;
1439     }
1440     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1441     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1442     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1443     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1444     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1445     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1446     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1447     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1448     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1449     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1450     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1451     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1452     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1453     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1454     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1455 
1456     case lltok::kw_alignstack:
1457     case lltok::kw_alwaysinline:
1458     case lltok::kw_argmemonly:
1459     case lltok::kw_builtin:
1460     case lltok::kw_inlinehint:
1461     case lltok::kw_jumptable:
1462     case lltok::kw_minsize:
1463     case lltok::kw_naked:
1464     case lltok::kw_nobuiltin:
1465     case lltok::kw_noduplicate:
1466     case lltok::kw_noimplicitfloat:
1467     case lltok::kw_noinline:
1468     case lltok::kw_nonlazybind:
1469     case lltok::kw_noredzone:
1470     case lltok::kw_noreturn:
1471     case lltok::kw_nounwind:
1472     case lltok::kw_optnone:
1473     case lltok::kw_optsize:
1474     case lltok::kw_returns_twice:
1475     case lltok::kw_sanitize_address:
1476     case lltok::kw_sanitize_hwaddress:
1477     case lltok::kw_sanitize_memory:
1478     case lltok::kw_sanitize_thread:
1479     case lltok::kw_ssp:
1480     case lltok::kw_sspreq:
1481     case lltok::kw_sspstrong:
1482     case lltok::kw_safestack:
1483     case lltok::kw_strictfp:
1484     case lltok::kw_uwtable:
1485       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1486       break;
1487     }
1488 
1489     Lex.Lex();
1490   }
1491 }
1492 
1493 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1494 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1495   bool HaveError = false;
1496 
1497   B.clear();
1498 
1499   while (true) {
1500     lltok::Kind Token = Lex.getKind();
1501     switch (Token) {
1502     default:  // End of attributes.
1503       return HaveError;
1504     case lltok::StringConstant: {
1505       if (ParseStringAttribute(B))
1506         return true;
1507       continue;
1508     }
1509     case lltok::kw_dereferenceable: {
1510       uint64_t Bytes;
1511       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1512         return true;
1513       B.addDereferenceableAttr(Bytes);
1514       continue;
1515     }
1516     case lltok::kw_dereferenceable_or_null: {
1517       uint64_t Bytes;
1518       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1519         return true;
1520       B.addDereferenceableOrNullAttr(Bytes);
1521       continue;
1522     }
1523     case lltok::kw_align: {
1524       unsigned Alignment;
1525       if (ParseOptionalAlignment(Alignment))
1526         return true;
1527       B.addAlignmentAttr(Alignment);
1528       continue;
1529     }
1530     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1531     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1532     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1533     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1534     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1535 
1536     // Error handling.
1537     case lltok::kw_byval:
1538     case lltok::kw_inalloca:
1539     case lltok::kw_nest:
1540     case lltok::kw_nocapture:
1541     case lltok::kw_returned:
1542     case lltok::kw_sret:
1543     case lltok::kw_swifterror:
1544     case lltok::kw_swiftself:
1545       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1546       break;
1547 
1548     case lltok::kw_alignstack:
1549     case lltok::kw_alwaysinline:
1550     case lltok::kw_argmemonly:
1551     case lltok::kw_builtin:
1552     case lltok::kw_cold:
1553     case lltok::kw_inlinehint:
1554     case lltok::kw_jumptable:
1555     case lltok::kw_minsize:
1556     case lltok::kw_naked:
1557     case lltok::kw_nobuiltin:
1558     case lltok::kw_noduplicate:
1559     case lltok::kw_noimplicitfloat:
1560     case lltok::kw_noinline:
1561     case lltok::kw_nonlazybind:
1562     case lltok::kw_noredzone:
1563     case lltok::kw_noreturn:
1564     case lltok::kw_nounwind:
1565     case lltok::kw_optnone:
1566     case lltok::kw_optsize:
1567     case lltok::kw_returns_twice:
1568     case lltok::kw_sanitize_address:
1569     case lltok::kw_sanitize_hwaddress:
1570     case lltok::kw_sanitize_memory:
1571     case lltok::kw_sanitize_thread:
1572     case lltok::kw_ssp:
1573     case lltok::kw_sspreq:
1574     case lltok::kw_sspstrong:
1575     case lltok::kw_safestack:
1576     case lltok::kw_strictfp:
1577     case lltok::kw_uwtable:
1578       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1579       break;
1580 
1581     case lltok::kw_readnone:
1582     case lltok::kw_readonly:
1583       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1584     }
1585 
1586     Lex.Lex();
1587   }
1588 }
1589 
1590 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1591   HasLinkage = true;
1592   switch (Kind) {
1593   default:
1594     HasLinkage = false;
1595     return GlobalValue::ExternalLinkage;
1596   case lltok::kw_private:
1597     return GlobalValue::PrivateLinkage;
1598   case lltok::kw_internal:
1599     return GlobalValue::InternalLinkage;
1600   case lltok::kw_weak:
1601     return GlobalValue::WeakAnyLinkage;
1602   case lltok::kw_weak_odr:
1603     return GlobalValue::WeakODRLinkage;
1604   case lltok::kw_linkonce:
1605     return GlobalValue::LinkOnceAnyLinkage;
1606   case lltok::kw_linkonce_odr:
1607     return GlobalValue::LinkOnceODRLinkage;
1608   case lltok::kw_available_externally:
1609     return GlobalValue::AvailableExternallyLinkage;
1610   case lltok::kw_appending:
1611     return GlobalValue::AppendingLinkage;
1612   case lltok::kw_common:
1613     return GlobalValue::CommonLinkage;
1614   case lltok::kw_extern_weak:
1615     return GlobalValue::ExternalWeakLinkage;
1616   case lltok::kw_external:
1617     return GlobalValue::ExternalLinkage;
1618   }
1619 }
1620 
1621 /// ParseOptionalLinkage
1622 ///   ::= /*empty*/
1623 ///   ::= 'private'
1624 ///   ::= 'internal'
1625 ///   ::= 'weak'
1626 ///   ::= 'weak_odr'
1627 ///   ::= 'linkonce'
1628 ///   ::= 'linkonce_odr'
1629 ///   ::= 'available_externally'
1630 ///   ::= 'appending'
1631 ///   ::= 'common'
1632 ///   ::= 'extern_weak'
1633 ///   ::= 'external'
1634 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1635                                     unsigned &Visibility,
1636                                     unsigned &DLLStorageClass,
1637                                     bool &DSOLocal) {
1638   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1639   if (HasLinkage)
1640     Lex.Lex();
1641   ParseOptionalDSOLocal(DSOLocal);
1642   ParseOptionalVisibility(Visibility);
1643   ParseOptionalDLLStorageClass(DLLStorageClass);
1644 
1645   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1646     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1647   }
1648 
1649   return false;
1650 }
1651 
1652 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1653   switch (Lex.getKind()) {
1654   default:
1655     DSOLocal = false;
1656     break;
1657   case lltok::kw_dso_local:
1658     DSOLocal = true;
1659     Lex.Lex();
1660     break;
1661   case lltok::kw_dso_preemptable:
1662     DSOLocal = false;
1663     Lex.Lex();
1664     break;
1665   }
1666 }
1667 
1668 /// ParseOptionalVisibility
1669 ///   ::= /*empty*/
1670 ///   ::= 'default'
1671 ///   ::= 'hidden'
1672 ///   ::= 'protected'
1673 ///
1674 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1675   switch (Lex.getKind()) {
1676   default:
1677     Res = GlobalValue::DefaultVisibility;
1678     return;
1679   case lltok::kw_default:
1680     Res = GlobalValue::DefaultVisibility;
1681     break;
1682   case lltok::kw_hidden:
1683     Res = GlobalValue::HiddenVisibility;
1684     break;
1685   case lltok::kw_protected:
1686     Res = GlobalValue::ProtectedVisibility;
1687     break;
1688   }
1689   Lex.Lex();
1690 }
1691 
1692 /// ParseOptionalDLLStorageClass
1693 ///   ::= /*empty*/
1694 ///   ::= 'dllimport'
1695 ///   ::= 'dllexport'
1696 ///
1697 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1698   switch (Lex.getKind()) {
1699   default:
1700     Res = GlobalValue::DefaultStorageClass;
1701     return;
1702   case lltok::kw_dllimport:
1703     Res = GlobalValue::DLLImportStorageClass;
1704     break;
1705   case lltok::kw_dllexport:
1706     Res = GlobalValue::DLLExportStorageClass;
1707     break;
1708   }
1709   Lex.Lex();
1710 }
1711 
1712 /// ParseOptionalCallingConv
1713 ///   ::= /*empty*/
1714 ///   ::= 'ccc'
1715 ///   ::= 'fastcc'
1716 ///   ::= 'intel_ocl_bicc'
1717 ///   ::= 'coldcc'
1718 ///   ::= 'x86_stdcallcc'
1719 ///   ::= 'x86_fastcallcc'
1720 ///   ::= 'x86_thiscallcc'
1721 ///   ::= 'x86_vectorcallcc'
1722 ///   ::= 'arm_apcscc'
1723 ///   ::= 'arm_aapcscc'
1724 ///   ::= 'arm_aapcs_vfpcc'
1725 ///   ::= 'msp430_intrcc'
1726 ///   ::= 'avr_intrcc'
1727 ///   ::= 'avr_signalcc'
1728 ///   ::= 'ptx_kernel'
1729 ///   ::= 'ptx_device'
1730 ///   ::= 'spir_func'
1731 ///   ::= 'spir_kernel'
1732 ///   ::= 'x86_64_sysvcc'
1733 ///   ::= 'win64cc'
1734 ///   ::= 'webkit_jscc'
1735 ///   ::= 'anyregcc'
1736 ///   ::= 'preserve_mostcc'
1737 ///   ::= 'preserve_allcc'
1738 ///   ::= 'ghccc'
1739 ///   ::= 'swiftcc'
1740 ///   ::= 'x86_intrcc'
1741 ///   ::= 'hhvmcc'
1742 ///   ::= 'hhvm_ccc'
1743 ///   ::= 'cxx_fast_tlscc'
1744 ///   ::= 'amdgpu_vs'
1745 ///   ::= 'amdgpu_ls'
1746 ///   ::= 'amdgpu_hs'
1747 ///   ::= 'amdgpu_es'
1748 ///   ::= 'amdgpu_gs'
1749 ///   ::= 'amdgpu_ps'
1750 ///   ::= 'amdgpu_cs'
1751 ///   ::= 'amdgpu_kernel'
1752 ///   ::= 'cc' UINT
1753 ///
1754 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1755   switch (Lex.getKind()) {
1756   default:                       CC = CallingConv::C; return false;
1757   case lltok::kw_ccc:            CC = CallingConv::C; break;
1758   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1759   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1760   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1761   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1762   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1763   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1764   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1765   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1766   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1767   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1768   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1769   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1770   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1771   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1772   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1773   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1774   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1775   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1776   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1777   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1778   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1779   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1780   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1781   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1782   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1783   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1784   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1785   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1786   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1787   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1788   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1789   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1790   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1791   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1792   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1793   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1794   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1795   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1796   case lltok::kw_cc: {
1797       Lex.Lex();
1798       return ParseUInt32(CC);
1799     }
1800   }
1801 
1802   Lex.Lex();
1803   return false;
1804 }
1805 
1806 /// ParseMetadataAttachment
1807 ///   ::= !dbg !42
1808 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1809   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1810 
1811   std::string Name = Lex.getStrVal();
1812   Kind = M->getMDKindID(Name);
1813   Lex.Lex();
1814 
1815   return ParseMDNode(MD);
1816 }
1817 
1818 /// ParseInstructionMetadata
1819 ///   ::= !dbg !42 (',' !dbg !57)*
1820 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1821   do {
1822     if (Lex.getKind() != lltok::MetadataVar)
1823       return TokError("expected metadata after comma");
1824 
1825     unsigned MDK;
1826     MDNode *N;
1827     if (ParseMetadataAttachment(MDK, N))
1828       return true;
1829 
1830     Inst.setMetadata(MDK, N);
1831     if (MDK == LLVMContext::MD_tbaa)
1832       InstsWithTBAATag.push_back(&Inst);
1833 
1834     // If this is the end of the list, we're done.
1835   } while (EatIfPresent(lltok::comma));
1836   return false;
1837 }
1838 
1839 /// ParseGlobalObjectMetadataAttachment
1840 ///   ::= !dbg !57
1841 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1842   unsigned MDK;
1843   MDNode *N;
1844   if (ParseMetadataAttachment(MDK, N))
1845     return true;
1846 
1847   GO.addMetadata(MDK, *N);
1848   return false;
1849 }
1850 
1851 /// ParseOptionalFunctionMetadata
1852 ///   ::= (!dbg !57)*
1853 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1854   while (Lex.getKind() == lltok::MetadataVar)
1855     if (ParseGlobalObjectMetadataAttachment(F))
1856       return true;
1857   return false;
1858 }
1859 
1860 /// ParseOptionalAlignment
1861 ///   ::= /* empty */
1862 ///   ::= 'align' 4
1863 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1864   Alignment = 0;
1865   if (!EatIfPresent(lltok::kw_align))
1866     return false;
1867   LocTy AlignLoc = Lex.getLoc();
1868   if (ParseUInt32(Alignment)) return true;
1869   if (!isPowerOf2_32(Alignment))
1870     return Error(AlignLoc, "alignment is not a power of two");
1871   if (Alignment > Value::MaximumAlignment)
1872     return Error(AlignLoc, "huge alignments are not supported yet");
1873   return false;
1874 }
1875 
1876 /// ParseOptionalDerefAttrBytes
1877 ///   ::= /* empty */
1878 ///   ::= AttrKind '(' 4 ')'
1879 ///
1880 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1881 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1882                                            uint64_t &Bytes) {
1883   assert((AttrKind == lltok::kw_dereferenceable ||
1884           AttrKind == lltok::kw_dereferenceable_or_null) &&
1885          "contract!");
1886 
1887   Bytes = 0;
1888   if (!EatIfPresent(AttrKind))
1889     return false;
1890   LocTy ParenLoc = Lex.getLoc();
1891   if (!EatIfPresent(lltok::lparen))
1892     return Error(ParenLoc, "expected '('");
1893   LocTy DerefLoc = Lex.getLoc();
1894   if (ParseUInt64(Bytes)) return true;
1895   ParenLoc = Lex.getLoc();
1896   if (!EatIfPresent(lltok::rparen))
1897     return Error(ParenLoc, "expected ')'");
1898   if (!Bytes)
1899     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1900   return false;
1901 }
1902 
1903 /// ParseOptionalCommaAlign
1904 ///   ::=
1905 ///   ::= ',' align 4
1906 ///
1907 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1908 /// end.
1909 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1910                                        bool &AteExtraComma) {
1911   AteExtraComma = false;
1912   while (EatIfPresent(lltok::comma)) {
1913     // Metadata at the end is an early exit.
1914     if (Lex.getKind() == lltok::MetadataVar) {
1915       AteExtraComma = true;
1916       return false;
1917     }
1918 
1919     if (Lex.getKind() != lltok::kw_align)
1920       return Error(Lex.getLoc(), "expected metadata or 'align'");
1921 
1922     if (ParseOptionalAlignment(Alignment)) return true;
1923   }
1924 
1925   return false;
1926 }
1927 
1928 /// ParseOptionalCommaAddrSpace
1929 ///   ::=
1930 ///   ::= ',' addrspace(1)
1931 ///
1932 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1933 /// end.
1934 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1935                                            LocTy &Loc,
1936                                            bool &AteExtraComma) {
1937   AteExtraComma = false;
1938   while (EatIfPresent(lltok::comma)) {
1939     // Metadata at the end is an early exit.
1940     if (Lex.getKind() == lltok::MetadataVar) {
1941       AteExtraComma = true;
1942       return false;
1943     }
1944 
1945     Loc = Lex.getLoc();
1946     if (Lex.getKind() != lltok::kw_addrspace)
1947       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1948 
1949     if (ParseOptionalAddrSpace(AddrSpace))
1950       return true;
1951   }
1952 
1953   return false;
1954 }
1955 
1956 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1957                                        Optional<unsigned> &HowManyArg) {
1958   Lex.Lex();
1959 
1960   auto StartParen = Lex.getLoc();
1961   if (!EatIfPresent(lltok::lparen))
1962     return Error(StartParen, "expected '('");
1963 
1964   if (ParseUInt32(BaseSizeArg))
1965     return true;
1966 
1967   if (EatIfPresent(lltok::comma)) {
1968     auto HowManyAt = Lex.getLoc();
1969     unsigned HowMany;
1970     if (ParseUInt32(HowMany))
1971       return true;
1972     if (HowMany == BaseSizeArg)
1973       return Error(HowManyAt,
1974                    "'allocsize' indices can't refer to the same parameter");
1975     HowManyArg = HowMany;
1976   } else
1977     HowManyArg = None;
1978 
1979   auto EndParen = Lex.getLoc();
1980   if (!EatIfPresent(lltok::rparen))
1981     return Error(EndParen, "expected ')'");
1982   return false;
1983 }
1984 
1985 /// ParseScopeAndOrdering
1986 ///   if isAtomic: ::= SyncScope? AtomicOrdering
1987 ///   else: ::=
1988 ///
1989 /// This sets Scope and Ordering to the parsed values.
1990 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
1991                                      AtomicOrdering &Ordering) {
1992   if (!isAtomic)
1993     return false;
1994 
1995   return ParseScope(SSID) || ParseOrdering(Ordering);
1996 }
1997 
1998 /// ParseScope
1999 ///   ::= syncscope("singlethread" | "<target scope>")?
2000 ///
2001 /// This sets synchronization scope ID to the ID of the parsed value.
2002 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2003   SSID = SyncScope::System;
2004   if (EatIfPresent(lltok::kw_syncscope)) {
2005     auto StartParenAt = Lex.getLoc();
2006     if (!EatIfPresent(lltok::lparen))
2007       return Error(StartParenAt, "Expected '(' in syncscope");
2008 
2009     std::string SSN;
2010     auto SSNAt = Lex.getLoc();
2011     if (ParseStringConstant(SSN))
2012       return Error(SSNAt, "Expected synchronization scope name");
2013 
2014     auto EndParenAt = Lex.getLoc();
2015     if (!EatIfPresent(lltok::rparen))
2016       return Error(EndParenAt, "Expected ')' in syncscope");
2017 
2018     SSID = Context.getOrInsertSyncScopeID(SSN);
2019   }
2020 
2021   return false;
2022 }
2023 
2024 /// ParseOrdering
2025 ///   ::= AtomicOrdering
2026 ///
2027 /// This sets Ordering to the parsed value.
2028 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2029   switch (Lex.getKind()) {
2030   default: return TokError("Expected ordering on atomic instruction");
2031   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2032   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2033   // Not specified yet:
2034   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2035   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2036   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2037   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2038   case lltok::kw_seq_cst:
2039     Ordering = AtomicOrdering::SequentiallyConsistent;
2040     break;
2041   }
2042   Lex.Lex();
2043   return false;
2044 }
2045 
2046 /// ParseOptionalStackAlignment
2047 ///   ::= /* empty */
2048 ///   ::= 'alignstack' '(' 4 ')'
2049 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2050   Alignment = 0;
2051   if (!EatIfPresent(lltok::kw_alignstack))
2052     return false;
2053   LocTy ParenLoc = Lex.getLoc();
2054   if (!EatIfPresent(lltok::lparen))
2055     return Error(ParenLoc, "expected '('");
2056   LocTy AlignLoc = Lex.getLoc();
2057   if (ParseUInt32(Alignment)) return true;
2058   ParenLoc = Lex.getLoc();
2059   if (!EatIfPresent(lltok::rparen))
2060     return Error(ParenLoc, "expected ')'");
2061   if (!isPowerOf2_32(Alignment))
2062     return Error(AlignLoc, "stack alignment is not a power of two");
2063   return false;
2064 }
2065 
2066 /// ParseIndexList - This parses the index list for an insert/extractvalue
2067 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2068 /// comma at the end of the line and find that it is followed by metadata.
2069 /// Clients that don't allow metadata can call the version of this function that
2070 /// only takes one argument.
2071 ///
2072 /// ParseIndexList
2073 ///    ::=  (',' uint32)+
2074 ///
2075 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2076                               bool &AteExtraComma) {
2077   AteExtraComma = false;
2078 
2079   if (Lex.getKind() != lltok::comma)
2080     return TokError("expected ',' as start of index list");
2081 
2082   while (EatIfPresent(lltok::comma)) {
2083     if (Lex.getKind() == lltok::MetadataVar) {
2084       if (Indices.empty()) return TokError("expected index");
2085       AteExtraComma = true;
2086       return false;
2087     }
2088     unsigned Idx = 0;
2089     if (ParseUInt32(Idx)) return true;
2090     Indices.push_back(Idx);
2091   }
2092 
2093   return false;
2094 }
2095 
2096 //===----------------------------------------------------------------------===//
2097 // Type Parsing.
2098 //===----------------------------------------------------------------------===//
2099 
2100 /// ParseType - Parse a type.
2101 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2102   SMLoc TypeLoc = Lex.getLoc();
2103   switch (Lex.getKind()) {
2104   default:
2105     return TokError(Msg);
2106   case lltok::Type:
2107     // Type ::= 'float' | 'void' (etc)
2108     Result = Lex.getTyVal();
2109     Lex.Lex();
2110     break;
2111   case lltok::lbrace:
2112     // Type ::= StructType
2113     if (ParseAnonStructType(Result, false))
2114       return true;
2115     break;
2116   case lltok::lsquare:
2117     // Type ::= '[' ... ']'
2118     Lex.Lex(); // eat the lsquare.
2119     if (ParseArrayVectorType(Result, false))
2120       return true;
2121     break;
2122   case lltok::less: // Either vector or packed struct.
2123     // Type ::= '<' ... '>'
2124     Lex.Lex();
2125     if (Lex.getKind() == lltok::lbrace) {
2126       if (ParseAnonStructType(Result, true) ||
2127           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2128         return true;
2129     } else if (ParseArrayVectorType(Result, true))
2130       return true;
2131     break;
2132   case lltok::LocalVar: {
2133     // Type ::= %foo
2134     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2135 
2136     // If the type hasn't been defined yet, create a forward definition and
2137     // remember where that forward def'n was seen (in case it never is defined).
2138     if (!Entry.first) {
2139       Entry.first = StructType::create(Context, Lex.getStrVal());
2140       Entry.second = Lex.getLoc();
2141     }
2142     Result = Entry.first;
2143     Lex.Lex();
2144     break;
2145   }
2146 
2147   case lltok::LocalVarID: {
2148     // Type ::= %4
2149     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2150 
2151     // If the type hasn't been defined yet, create a forward definition and
2152     // remember where that forward def'n was seen (in case it never is defined).
2153     if (!Entry.first) {
2154       Entry.first = StructType::create(Context);
2155       Entry.second = Lex.getLoc();
2156     }
2157     Result = Entry.first;
2158     Lex.Lex();
2159     break;
2160   }
2161   }
2162 
2163   // Parse the type suffixes.
2164   while (true) {
2165     switch (Lex.getKind()) {
2166     // End of type.
2167     default:
2168       if (!AllowVoid && Result->isVoidTy())
2169         return Error(TypeLoc, "void type only allowed for function results");
2170       return false;
2171 
2172     // Type ::= Type '*'
2173     case lltok::star:
2174       if (Result->isLabelTy())
2175         return TokError("basic block pointers are invalid");
2176       if (Result->isVoidTy())
2177         return TokError("pointers to void are invalid - use i8* instead");
2178       if (!PointerType::isValidElementType(Result))
2179         return TokError("pointer to this type is invalid");
2180       Result = PointerType::getUnqual(Result);
2181       Lex.Lex();
2182       break;
2183 
2184     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2185     case lltok::kw_addrspace: {
2186       if (Result->isLabelTy())
2187         return TokError("basic block pointers are invalid");
2188       if (Result->isVoidTy())
2189         return TokError("pointers to void are invalid; use i8* instead");
2190       if (!PointerType::isValidElementType(Result))
2191         return TokError("pointer to this type is invalid");
2192       unsigned AddrSpace;
2193       if (ParseOptionalAddrSpace(AddrSpace) ||
2194           ParseToken(lltok::star, "expected '*' in address space"))
2195         return true;
2196 
2197       Result = PointerType::get(Result, AddrSpace);
2198       break;
2199     }
2200 
2201     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2202     case lltok::lparen:
2203       if (ParseFunctionType(Result))
2204         return true;
2205       break;
2206     }
2207   }
2208 }
2209 
2210 /// ParseParameterList
2211 ///    ::= '(' ')'
2212 ///    ::= '(' Arg (',' Arg)* ')'
2213 ///  Arg
2214 ///    ::= Type OptionalAttributes Value OptionalAttributes
2215 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2216                                   PerFunctionState &PFS, bool IsMustTailCall,
2217                                   bool InVarArgsFunc) {
2218   if (ParseToken(lltok::lparen, "expected '(' in call"))
2219     return true;
2220 
2221   while (Lex.getKind() != lltok::rparen) {
2222     // If this isn't the first argument, we need a comma.
2223     if (!ArgList.empty() &&
2224         ParseToken(lltok::comma, "expected ',' in argument list"))
2225       return true;
2226 
2227     // Parse an ellipsis if this is a musttail call in a variadic function.
2228     if (Lex.getKind() == lltok::dotdotdot) {
2229       const char *Msg = "unexpected ellipsis in argument list for ";
2230       if (!IsMustTailCall)
2231         return TokError(Twine(Msg) + "non-musttail call");
2232       if (!InVarArgsFunc)
2233         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2234       Lex.Lex();  // Lex the '...', it is purely for readability.
2235       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2236     }
2237 
2238     // Parse the argument.
2239     LocTy ArgLoc;
2240     Type *ArgTy = nullptr;
2241     AttrBuilder ArgAttrs;
2242     Value *V;
2243     if (ParseType(ArgTy, ArgLoc))
2244       return true;
2245 
2246     if (ArgTy->isMetadataTy()) {
2247       if (ParseMetadataAsValue(V, PFS))
2248         return true;
2249     } else {
2250       // Otherwise, handle normal operands.
2251       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2252         return true;
2253     }
2254     ArgList.push_back(ParamInfo(
2255         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2256   }
2257 
2258   if (IsMustTailCall && InVarArgsFunc)
2259     return TokError("expected '...' at end of argument list for musttail call "
2260                     "in varargs function");
2261 
2262   Lex.Lex();  // Lex the ')'.
2263   return false;
2264 }
2265 
2266 /// ParseOptionalOperandBundles
2267 ///    ::= /*empty*/
2268 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2269 ///
2270 /// OperandBundle
2271 ///    ::= bundle-tag '(' ')'
2272 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2273 ///
2274 /// bundle-tag ::= String Constant
2275 bool LLParser::ParseOptionalOperandBundles(
2276     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2277   LocTy BeginLoc = Lex.getLoc();
2278   if (!EatIfPresent(lltok::lsquare))
2279     return false;
2280 
2281   while (Lex.getKind() != lltok::rsquare) {
2282     // If this isn't the first operand bundle, we need a comma.
2283     if (!BundleList.empty() &&
2284         ParseToken(lltok::comma, "expected ',' in input list"))
2285       return true;
2286 
2287     std::string Tag;
2288     if (ParseStringConstant(Tag))
2289       return true;
2290 
2291     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2292       return true;
2293 
2294     std::vector<Value *> Inputs;
2295     while (Lex.getKind() != lltok::rparen) {
2296       // If this isn't the first input, we need a comma.
2297       if (!Inputs.empty() &&
2298           ParseToken(lltok::comma, "expected ',' in input list"))
2299         return true;
2300 
2301       Type *Ty = nullptr;
2302       Value *Input = nullptr;
2303       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2304         return true;
2305       Inputs.push_back(Input);
2306     }
2307 
2308     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2309 
2310     Lex.Lex(); // Lex the ')'.
2311   }
2312 
2313   if (BundleList.empty())
2314     return Error(BeginLoc, "operand bundle set must not be empty");
2315 
2316   Lex.Lex(); // Lex the ']'.
2317   return false;
2318 }
2319 
2320 /// ParseArgumentList - Parse the argument list for a function type or function
2321 /// prototype.
2322 ///   ::= '(' ArgTypeListI ')'
2323 /// ArgTypeListI
2324 ///   ::= /*empty*/
2325 ///   ::= '...'
2326 ///   ::= ArgTypeList ',' '...'
2327 ///   ::= ArgType (',' ArgType)*
2328 ///
2329 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2330                                  bool &isVarArg){
2331   isVarArg = false;
2332   assert(Lex.getKind() == lltok::lparen);
2333   Lex.Lex(); // eat the (.
2334 
2335   if (Lex.getKind() == lltok::rparen) {
2336     // empty
2337   } else if (Lex.getKind() == lltok::dotdotdot) {
2338     isVarArg = true;
2339     Lex.Lex();
2340   } else {
2341     LocTy TypeLoc = Lex.getLoc();
2342     Type *ArgTy = nullptr;
2343     AttrBuilder Attrs;
2344     std::string Name;
2345 
2346     if (ParseType(ArgTy) ||
2347         ParseOptionalParamAttrs(Attrs)) return true;
2348 
2349     if (ArgTy->isVoidTy())
2350       return Error(TypeLoc, "argument can not have void type");
2351 
2352     if (Lex.getKind() == lltok::LocalVar) {
2353       Name = Lex.getStrVal();
2354       Lex.Lex();
2355     }
2356 
2357     if (!FunctionType::isValidArgumentType(ArgTy))
2358       return Error(TypeLoc, "invalid type for function argument");
2359 
2360     ArgList.emplace_back(TypeLoc, ArgTy,
2361                          AttributeSet::get(ArgTy->getContext(), Attrs),
2362                          std::move(Name));
2363 
2364     while (EatIfPresent(lltok::comma)) {
2365       // Handle ... at end of arg list.
2366       if (EatIfPresent(lltok::dotdotdot)) {
2367         isVarArg = true;
2368         break;
2369       }
2370 
2371       // Otherwise must be an argument type.
2372       TypeLoc = Lex.getLoc();
2373       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2374 
2375       if (ArgTy->isVoidTy())
2376         return Error(TypeLoc, "argument can not have void type");
2377 
2378       if (Lex.getKind() == lltok::LocalVar) {
2379         Name = Lex.getStrVal();
2380         Lex.Lex();
2381       } else {
2382         Name = "";
2383       }
2384 
2385       if (!ArgTy->isFirstClassType())
2386         return Error(TypeLoc, "invalid type for function argument");
2387 
2388       ArgList.emplace_back(TypeLoc, ArgTy,
2389                            AttributeSet::get(ArgTy->getContext(), Attrs),
2390                            std::move(Name));
2391     }
2392   }
2393 
2394   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2395 }
2396 
2397 /// ParseFunctionType
2398 ///  ::= Type ArgumentList OptionalAttrs
2399 bool LLParser::ParseFunctionType(Type *&Result) {
2400   assert(Lex.getKind() == lltok::lparen);
2401 
2402   if (!FunctionType::isValidReturnType(Result))
2403     return TokError("invalid function return type");
2404 
2405   SmallVector<ArgInfo, 8> ArgList;
2406   bool isVarArg;
2407   if (ParseArgumentList(ArgList, isVarArg))
2408     return true;
2409 
2410   // Reject names on the arguments lists.
2411   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2412     if (!ArgList[i].Name.empty())
2413       return Error(ArgList[i].Loc, "argument name invalid in function type");
2414     if (ArgList[i].Attrs.hasAttributes())
2415       return Error(ArgList[i].Loc,
2416                    "argument attributes invalid in function type");
2417   }
2418 
2419   SmallVector<Type*, 16> ArgListTy;
2420   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2421     ArgListTy.push_back(ArgList[i].Ty);
2422 
2423   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2424   return false;
2425 }
2426 
2427 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2428 /// other structs.
2429 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2430   SmallVector<Type*, 8> Elts;
2431   if (ParseStructBody(Elts)) return true;
2432 
2433   Result = StructType::get(Context, Elts, Packed);
2434   return false;
2435 }
2436 
2437 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2438 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2439                                      std::pair<Type*, LocTy> &Entry,
2440                                      Type *&ResultTy) {
2441   // If the type was already defined, diagnose the redefinition.
2442   if (Entry.first && !Entry.second.isValid())
2443     return Error(TypeLoc, "redefinition of type");
2444 
2445   // If we have opaque, just return without filling in the definition for the
2446   // struct.  This counts as a definition as far as the .ll file goes.
2447   if (EatIfPresent(lltok::kw_opaque)) {
2448     // This type is being defined, so clear the location to indicate this.
2449     Entry.second = SMLoc();
2450 
2451     // If this type number has never been uttered, create it.
2452     if (!Entry.first)
2453       Entry.first = StructType::create(Context, Name);
2454     ResultTy = Entry.first;
2455     return false;
2456   }
2457 
2458   // If the type starts with '<', then it is either a packed struct or a vector.
2459   bool isPacked = EatIfPresent(lltok::less);
2460 
2461   // If we don't have a struct, then we have a random type alias, which we
2462   // accept for compatibility with old files.  These types are not allowed to be
2463   // forward referenced and not allowed to be recursive.
2464   if (Lex.getKind() != lltok::lbrace) {
2465     if (Entry.first)
2466       return Error(TypeLoc, "forward references to non-struct type");
2467 
2468     ResultTy = nullptr;
2469     if (isPacked)
2470       return ParseArrayVectorType(ResultTy, true);
2471     return ParseType(ResultTy);
2472   }
2473 
2474   // This type is being defined, so clear the location to indicate this.
2475   Entry.second = SMLoc();
2476 
2477   // If this type number has never been uttered, create it.
2478   if (!Entry.first)
2479     Entry.first = StructType::create(Context, Name);
2480 
2481   StructType *STy = cast<StructType>(Entry.first);
2482 
2483   SmallVector<Type*, 8> Body;
2484   if (ParseStructBody(Body) ||
2485       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2486     return true;
2487 
2488   STy->setBody(Body, isPacked);
2489   ResultTy = STy;
2490   return false;
2491 }
2492 
2493 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2494 ///   StructType
2495 ///     ::= '{' '}'
2496 ///     ::= '{' Type (',' Type)* '}'
2497 ///     ::= '<' '{' '}' '>'
2498 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2499 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2500   assert(Lex.getKind() == lltok::lbrace);
2501   Lex.Lex(); // Consume the '{'
2502 
2503   // Handle the empty struct.
2504   if (EatIfPresent(lltok::rbrace))
2505     return false;
2506 
2507   LocTy EltTyLoc = Lex.getLoc();
2508   Type *Ty = nullptr;
2509   if (ParseType(Ty)) return true;
2510   Body.push_back(Ty);
2511 
2512   if (!StructType::isValidElementType(Ty))
2513     return Error(EltTyLoc, "invalid element type for struct");
2514 
2515   while (EatIfPresent(lltok::comma)) {
2516     EltTyLoc = Lex.getLoc();
2517     if (ParseType(Ty)) return true;
2518 
2519     if (!StructType::isValidElementType(Ty))
2520       return Error(EltTyLoc, "invalid element type for struct");
2521 
2522     Body.push_back(Ty);
2523   }
2524 
2525   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2526 }
2527 
2528 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2529 /// token has already been consumed.
2530 ///   Type
2531 ///     ::= '[' APSINTVAL 'x' Types ']'
2532 ///     ::= '<' APSINTVAL 'x' Types '>'
2533 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2534   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2535       Lex.getAPSIntVal().getBitWidth() > 64)
2536     return TokError("expected number in address space");
2537 
2538   LocTy SizeLoc = Lex.getLoc();
2539   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2540   Lex.Lex();
2541 
2542   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2543       return true;
2544 
2545   LocTy TypeLoc = Lex.getLoc();
2546   Type *EltTy = nullptr;
2547   if (ParseType(EltTy)) return true;
2548 
2549   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2550                  "expected end of sequential type"))
2551     return true;
2552 
2553   if (isVector) {
2554     if (Size == 0)
2555       return Error(SizeLoc, "zero element vector is illegal");
2556     if ((unsigned)Size != Size)
2557       return Error(SizeLoc, "size too large for vector");
2558     if (!VectorType::isValidElementType(EltTy))
2559       return Error(TypeLoc, "invalid vector element type");
2560     Result = VectorType::get(EltTy, unsigned(Size));
2561   } else {
2562     if (!ArrayType::isValidElementType(EltTy))
2563       return Error(TypeLoc, "invalid array element type");
2564     Result = ArrayType::get(EltTy, Size);
2565   }
2566   return false;
2567 }
2568 
2569 //===----------------------------------------------------------------------===//
2570 // Function Semantic Analysis.
2571 //===----------------------------------------------------------------------===//
2572 
2573 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2574                                              int functionNumber)
2575   : P(p), F(f), FunctionNumber(functionNumber) {
2576 
2577   // Insert unnamed arguments into the NumberedVals list.
2578   for (Argument &A : F.args())
2579     if (!A.hasName())
2580       NumberedVals.push_back(&A);
2581 }
2582 
2583 LLParser::PerFunctionState::~PerFunctionState() {
2584   // If there were any forward referenced non-basicblock values, delete them.
2585 
2586   for (const auto &P : ForwardRefVals) {
2587     if (isa<BasicBlock>(P.second.first))
2588       continue;
2589     P.second.first->replaceAllUsesWith(
2590         UndefValue::get(P.second.first->getType()));
2591     P.second.first->deleteValue();
2592   }
2593 
2594   for (const auto &P : ForwardRefValIDs) {
2595     if (isa<BasicBlock>(P.second.first))
2596       continue;
2597     P.second.first->replaceAllUsesWith(
2598         UndefValue::get(P.second.first->getType()));
2599     P.second.first->deleteValue();
2600   }
2601 }
2602 
2603 bool LLParser::PerFunctionState::FinishFunction() {
2604   if (!ForwardRefVals.empty())
2605     return P.Error(ForwardRefVals.begin()->second.second,
2606                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2607                    "'");
2608   if (!ForwardRefValIDs.empty())
2609     return P.Error(ForwardRefValIDs.begin()->second.second,
2610                    "use of undefined value '%" +
2611                    Twine(ForwardRefValIDs.begin()->first) + "'");
2612   return false;
2613 }
2614 
2615 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) {
2616   if (Val->getType() == Ty)
2617     return true;
2618   // For calls we also accept variables in the program address space
2619   if (IsCall && isa<PointerType>(Ty)) {
2620     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
2621         M->getDataLayout().getProgramAddressSpace());
2622     if (Val->getType() == TyInProgAS)
2623       return true;
2624   }
2625   return false;
2626 }
2627 
2628 /// GetVal - Get a value with the specified name or ID, creating a
2629 /// forward reference record if needed.  This can return null if the value
2630 /// exists but does not have the right type.
2631 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2632                                           LocTy Loc, bool IsCall) {
2633   // Look this name up in the normal function symbol table.
2634   Value *Val = F.getValueSymbolTable()->lookup(Name);
2635 
2636   // If this is a forward reference for the value, see if we already created a
2637   // forward ref record.
2638   if (!Val) {
2639     auto I = ForwardRefVals.find(Name);
2640     if (I != ForwardRefVals.end())
2641       Val = I->second.first;
2642   }
2643 
2644   // If we have the value in the symbol table or fwd-ref table, return it.
2645   if (Val) {
2646     if (isValidVariableType(P.M, Ty, Val, IsCall))
2647       return Val;
2648     if (Ty->isLabelTy())
2649       P.Error(Loc, "'%" + Name + "' is not a basic block");
2650     else
2651       P.Error(Loc, "'%" + Name + "' defined with type '" +
2652               getTypeString(Val->getType()) + "'");
2653     return nullptr;
2654   }
2655 
2656   // Don't make placeholders with invalid type.
2657   if (!Ty->isFirstClassType()) {
2658     P.Error(Loc, "invalid use of a non-first-class type");
2659     return nullptr;
2660   }
2661 
2662   // Otherwise, create a new forward reference for this value and remember it.
2663   Value *FwdVal;
2664   if (Ty->isLabelTy()) {
2665     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2666   } else {
2667     FwdVal = new Argument(Ty, Name);
2668   }
2669 
2670   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2671   return FwdVal;
2672 }
2673 
2674 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2675                                           bool IsCall) {
2676   // Look this name up in the normal function symbol table.
2677   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2678 
2679   // If this is a forward reference for the value, see if we already created a
2680   // forward ref record.
2681   if (!Val) {
2682     auto I = ForwardRefValIDs.find(ID);
2683     if (I != ForwardRefValIDs.end())
2684       Val = I->second.first;
2685   }
2686 
2687   // If we have the value in the symbol table or fwd-ref table, return it.
2688   if (Val) {
2689     if (isValidVariableType(P.M, Ty, Val, IsCall))
2690       return Val;
2691     if (Ty->isLabelTy())
2692       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2693     else
2694       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2695               getTypeString(Val->getType()) + "'");
2696     return nullptr;
2697   }
2698 
2699   if (!Ty->isFirstClassType()) {
2700     P.Error(Loc, "invalid use of a non-first-class type");
2701     return nullptr;
2702   }
2703 
2704   // Otherwise, create a new forward reference for this value and remember it.
2705   Value *FwdVal;
2706   if (Ty->isLabelTy()) {
2707     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2708   } else {
2709     FwdVal = new Argument(Ty);
2710   }
2711 
2712   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2713   return FwdVal;
2714 }
2715 
2716 /// SetInstName - After an instruction is parsed and inserted into its
2717 /// basic block, this installs its name.
2718 bool LLParser::PerFunctionState::SetInstName(int NameID,
2719                                              const std::string &NameStr,
2720                                              LocTy NameLoc, Instruction *Inst) {
2721   // If this instruction has void type, it cannot have a name or ID specified.
2722   if (Inst->getType()->isVoidTy()) {
2723     if (NameID != -1 || !NameStr.empty())
2724       return P.Error(NameLoc, "instructions returning void cannot have a name");
2725     return false;
2726   }
2727 
2728   // If this was a numbered instruction, verify that the instruction is the
2729   // expected value and resolve any forward references.
2730   if (NameStr.empty()) {
2731     // If neither a name nor an ID was specified, just use the next ID.
2732     if (NameID == -1)
2733       NameID = NumberedVals.size();
2734 
2735     if (unsigned(NameID) != NumberedVals.size())
2736       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2737                      Twine(NumberedVals.size()) + "'");
2738 
2739     auto FI = ForwardRefValIDs.find(NameID);
2740     if (FI != ForwardRefValIDs.end()) {
2741       Value *Sentinel = FI->second.first;
2742       if (Sentinel->getType() != Inst->getType())
2743         return P.Error(NameLoc, "instruction forward referenced with type '" +
2744                        getTypeString(FI->second.first->getType()) + "'");
2745 
2746       Sentinel->replaceAllUsesWith(Inst);
2747       Sentinel->deleteValue();
2748       ForwardRefValIDs.erase(FI);
2749     }
2750 
2751     NumberedVals.push_back(Inst);
2752     return false;
2753   }
2754 
2755   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2756   auto FI = ForwardRefVals.find(NameStr);
2757   if (FI != ForwardRefVals.end()) {
2758     Value *Sentinel = FI->second.first;
2759     if (Sentinel->getType() != Inst->getType())
2760       return P.Error(NameLoc, "instruction forward referenced with type '" +
2761                      getTypeString(FI->second.first->getType()) + "'");
2762 
2763     Sentinel->replaceAllUsesWith(Inst);
2764     Sentinel->deleteValue();
2765     ForwardRefVals.erase(FI);
2766   }
2767 
2768   // Set the name on the instruction.
2769   Inst->setName(NameStr);
2770 
2771   if (Inst->getName() != NameStr)
2772     return P.Error(NameLoc, "multiple definition of local value named '" +
2773                    NameStr + "'");
2774   return false;
2775 }
2776 
2777 /// GetBB - Get a basic block with the specified name or ID, creating a
2778 /// forward reference record if needed.
2779 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2780                                               LocTy Loc) {
2781   return dyn_cast_or_null<BasicBlock>(
2782       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2783 }
2784 
2785 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2786   return dyn_cast_or_null<BasicBlock>(
2787       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2788 }
2789 
2790 /// DefineBB - Define the specified basic block, which is either named or
2791 /// unnamed.  If there is an error, this returns null otherwise it returns
2792 /// the block being defined.
2793 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2794                                                  LocTy Loc) {
2795   BasicBlock *BB;
2796   if (Name.empty())
2797     BB = GetBB(NumberedVals.size(), Loc);
2798   else
2799     BB = GetBB(Name, Loc);
2800   if (!BB) return nullptr; // Already diagnosed error.
2801 
2802   // Move the block to the end of the function.  Forward ref'd blocks are
2803   // inserted wherever they happen to be referenced.
2804   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2805 
2806   // Remove the block from forward ref sets.
2807   if (Name.empty()) {
2808     ForwardRefValIDs.erase(NumberedVals.size());
2809     NumberedVals.push_back(BB);
2810   } else {
2811     // BB forward references are already in the function symbol table.
2812     ForwardRefVals.erase(Name);
2813   }
2814 
2815   return BB;
2816 }
2817 
2818 //===----------------------------------------------------------------------===//
2819 // Constants.
2820 //===----------------------------------------------------------------------===//
2821 
2822 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2823 /// type implied.  For example, if we parse "4" we don't know what integer type
2824 /// it has.  The value will later be combined with its type and checked for
2825 /// sanity.  PFS is used to convert function-local operands of metadata (since
2826 /// metadata operands are not just parsed here but also converted to values).
2827 /// PFS can be null when we are not parsing metadata values inside a function.
2828 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2829   ID.Loc = Lex.getLoc();
2830   switch (Lex.getKind()) {
2831   default: return TokError("expected value token");
2832   case lltok::GlobalID:  // @42
2833     ID.UIntVal = Lex.getUIntVal();
2834     ID.Kind = ValID::t_GlobalID;
2835     break;
2836   case lltok::GlobalVar:  // @foo
2837     ID.StrVal = Lex.getStrVal();
2838     ID.Kind = ValID::t_GlobalName;
2839     break;
2840   case lltok::LocalVarID:  // %42
2841     ID.UIntVal = Lex.getUIntVal();
2842     ID.Kind = ValID::t_LocalID;
2843     break;
2844   case lltok::LocalVar:  // %foo
2845     ID.StrVal = Lex.getStrVal();
2846     ID.Kind = ValID::t_LocalName;
2847     break;
2848   case lltok::APSInt:
2849     ID.APSIntVal = Lex.getAPSIntVal();
2850     ID.Kind = ValID::t_APSInt;
2851     break;
2852   case lltok::APFloat:
2853     ID.APFloatVal = Lex.getAPFloatVal();
2854     ID.Kind = ValID::t_APFloat;
2855     break;
2856   case lltok::kw_true:
2857     ID.ConstantVal = ConstantInt::getTrue(Context);
2858     ID.Kind = ValID::t_Constant;
2859     break;
2860   case lltok::kw_false:
2861     ID.ConstantVal = ConstantInt::getFalse(Context);
2862     ID.Kind = ValID::t_Constant;
2863     break;
2864   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2865   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2866   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2867   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2868 
2869   case lltok::lbrace: {
2870     // ValID ::= '{' ConstVector '}'
2871     Lex.Lex();
2872     SmallVector<Constant*, 16> Elts;
2873     if (ParseGlobalValueVector(Elts) ||
2874         ParseToken(lltok::rbrace, "expected end of struct constant"))
2875       return true;
2876 
2877     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2878     ID.UIntVal = Elts.size();
2879     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2880            Elts.size() * sizeof(Elts[0]));
2881     ID.Kind = ValID::t_ConstantStruct;
2882     return false;
2883   }
2884   case lltok::less: {
2885     // ValID ::= '<' ConstVector '>'         --> Vector.
2886     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2887     Lex.Lex();
2888     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2889 
2890     SmallVector<Constant*, 16> Elts;
2891     LocTy FirstEltLoc = Lex.getLoc();
2892     if (ParseGlobalValueVector(Elts) ||
2893         (isPackedStruct &&
2894          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2895         ParseToken(lltok::greater, "expected end of constant"))
2896       return true;
2897 
2898     if (isPackedStruct) {
2899       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2900       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2901              Elts.size() * sizeof(Elts[0]));
2902       ID.UIntVal = Elts.size();
2903       ID.Kind = ValID::t_PackedConstantStruct;
2904       return false;
2905     }
2906 
2907     if (Elts.empty())
2908       return Error(ID.Loc, "constant vector must not be empty");
2909 
2910     if (!Elts[0]->getType()->isIntegerTy() &&
2911         !Elts[0]->getType()->isFloatingPointTy() &&
2912         !Elts[0]->getType()->isPointerTy())
2913       return Error(FirstEltLoc,
2914             "vector elements must have integer, pointer or floating point type");
2915 
2916     // Verify that all the vector elements have the same type.
2917     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2918       if (Elts[i]->getType() != Elts[0]->getType())
2919         return Error(FirstEltLoc,
2920                      "vector element #" + Twine(i) +
2921                     " is not of type '" + getTypeString(Elts[0]->getType()));
2922 
2923     ID.ConstantVal = ConstantVector::get(Elts);
2924     ID.Kind = ValID::t_Constant;
2925     return false;
2926   }
2927   case lltok::lsquare: {   // Array Constant
2928     Lex.Lex();
2929     SmallVector<Constant*, 16> Elts;
2930     LocTy FirstEltLoc = Lex.getLoc();
2931     if (ParseGlobalValueVector(Elts) ||
2932         ParseToken(lltok::rsquare, "expected end of array constant"))
2933       return true;
2934 
2935     // Handle empty element.
2936     if (Elts.empty()) {
2937       // Use undef instead of an array because it's inconvenient to determine
2938       // the element type at this point, there being no elements to examine.
2939       ID.Kind = ValID::t_EmptyArray;
2940       return false;
2941     }
2942 
2943     if (!Elts[0]->getType()->isFirstClassType())
2944       return Error(FirstEltLoc, "invalid array element type: " +
2945                    getTypeString(Elts[0]->getType()));
2946 
2947     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2948 
2949     // Verify all elements are correct type!
2950     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2951       if (Elts[i]->getType() != Elts[0]->getType())
2952         return Error(FirstEltLoc,
2953                      "array element #" + Twine(i) +
2954                      " is not of type '" + getTypeString(Elts[0]->getType()));
2955     }
2956 
2957     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2958     ID.Kind = ValID::t_Constant;
2959     return false;
2960   }
2961   case lltok::kw_c:  // c "foo"
2962     Lex.Lex();
2963     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2964                                                   false);
2965     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2966     ID.Kind = ValID::t_Constant;
2967     return false;
2968 
2969   case lltok::kw_asm: {
2970     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2971     //             STRINGCONSTANT
2972     bool HasSideEffect, AlignStack, AsmDialect;
2973     Lex.Lex();
2974     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2975         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2976         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2977         ParseStringConstant(ID.StrVal) ||
2978         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2979         ParseToken(lltok::StringConstant, "expected constraint string"))
2980       return true;
2981     ID.StrVal2 = Lex.getStrVal();
2982     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2983       (unsigned(AsmDialect)<<2);
2984     ID.Kind = ValID::t_InlineAsm;
2985     return false;
2986   }
2987 
2988   case lltok::kw_blockaddress: {
2989     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2990     Lex.Lex();
2991 
2992     ValID Fn, Label;
2993 
2994     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2995         ParseValID(Fn) ||
2996         ParseToken(lltok::comma, "expected comma in block address expression")||
2997         ParseValID(Label) ||
2998         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2999       return true;
3000 
3001     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3002       return Error(Fn.Loc, "expected function name in blockaddress");
3003     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3004       return Error(Label.Loc, "expected basic block name in blockaddress");
3005 
3006     // Try to find the function (but skip it if it's forward-referenced).
3007     GlobalValue *GV = nullptr;
3008     if (Fn.Kind == ValID::t_GlobalID) {
3009       if (Fn.UIntVal < NumberedVals.size())
3010         GV = NumberedVals[Fn.UIntVal];
3011     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3012       GV = M->getNamedValue(Fn.StrVal);
3013     }
3014     Function *F = nullptr;
3015     if (GV) {
3016       // Confirm that it's actually a function with a definition.
3017       if (!isa<Function>(GV))
3018         return Error(Fn.Loc, "expected function name in blockaddress");
3019       F = cast<Function>(GV);
3020       if (F->isDeclaration())
3021         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3022     }
3023 
3024     if (!F) {
3025       // Make a global variable as a placeholder for this reference.
3026       GlobalValue *&FwdRef =
3027           ForwardRefBlockAddresses.insert(std::make_pair(
3028                                               std::move(Fn),
3029                                               std::map<ValID, GlobalValue *>()))
3030               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3031               .first->second;
3032       if (!FwdRef)
3033         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3034                                     GlobalValue::InternalLinkage, nullptr, "");
3035       ID.ConstantVal = FwdRef;
3036       ID.Kind = ValID::t_Constant;
3037       return false;
3038     }
3039 
3040     // We found the function; now find the basic block.  Don't use PFS, since we
3041     // might be inside a constant expression.
3042     BasicBlock *BB;
3043     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3044       if (Label.Kind == ValID::t_LocalID)
3045         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3046       else
3047         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3048       if (!BB)
3049         return Error(Label.Loc, "referenced value is not a basic block");
3050     } else {
3051       if (Label.Kind == ValID::t_LocalID)
3052         return Error(Label.Loc, "cannot take address of numeric label after "
3053                                 "the function is defined");
3054       BB = dyn_cast_or_null<BasicBlock>(
3055           F->getValueSymbolTable()->lookup(Label.StrVal));
3056       if (!BB)
3057         return Error(Label.Loc, "referenced value is not a basic block");
3058     }
3059 
3060     ID.ConstantVal = BlockAddress::get(F, BB);
3061     ID.Kind = ValID::t_Constant;
3062     return false;
3063   }
3064 
3065   case lltok::kw_trunc:
3066   case lltok::kw_zext:
3067   case lltok::kw_sext:
3068   case lltok::kw_fptrunc:
3069   case lltok::kw_fpext:
3070   case lltok::kw_bitcast:
3071   case lltok::kw_addrspacecast:
3072   case lltok::kw_uitofp:
3073   case lltok::kw_sitofp:
3074   case lltok::kw_fptoui:
3075   case lltok::kw_fptosi:
3076   case lltok::kw_inttoptr:
3077   case lltok::kw_ptrtoint: {
3078     unsigned Opc = Lex.getUIntVal();
3079     Type *DestTy = nullptr;
3080     Constant *SrcVal;
3081     Lex.Lex();
3082     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3083         ParseGlobalTypeAndValue(SrcVal) ||
3084         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3085         ParseType(DestTy) ||
3086         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3087       return true;
3088     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3089       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3090                    getTypeString(SrcVal->getType()) + "' to '" +
3091                    getTypeString(DestTy) + "'");
3092     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3093                                                  SrcVal, DestTy);
3094     ID.Kind = ValID::t_Constant;
3095     return false;
3096   }
3097   case lltok::kw_extractvalue: {
3098     Lex.Lex();
3099     Constant *Val;
3100     SmallVector<unsigned, 4> Indices;
3101     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3102         ParseGlobalTypeAndValue(Val) ||
3103         ParseIndexList(Indices) ||
3104         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3105       return true;
3106 
3107     if (!Val->getType()->isAggregateType())
3108       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3109     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3110       return Error(ID.Loc, "invalid indices for extractvalue");
3111     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3112     ID.Kind = ValID::t_Constant;
3113     return false;
3114   }
3115   case lltok::kw_insertvalue: {
3116     Lex.Lex();
3117     Constant *Val0, *Val1;
3118     SmallVector<unsigned, 4> Indices;
3119     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3120         ParseGlobalTypeAndValue(Val0) ||
3121         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3122         ParseGlobalTypeAndValue(Val1) ||
3123         ParseIndexList(Indices) ||
3124         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3125       return true;
3126     if (!Val0->getType()->isAggregateType())
3127       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3128     Type *IndexedType =
3129         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3130     if (!IndexedType)
3131       return Error(ID.Loc, "invalid indices for insertvalue");
3132     if (IndexedType != Val1->getType())
3133       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3134                                getTypeString(Val1->getType()) +
3135                                "' instead of '" + getTypeString(IndexedType) +
3136                                "'");
3137     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3138     ID.Kind = ValID::t_Constant;
3139     return false;
3140   }
3141   case lltok::kw_icmp:
3142   case lltok::kw_fcmp: {
3143     unsigned PredVal, Opc = Lex.getUIntVal();
3144     Constant *Val0, *Val1;
3145     Lex.Lex();
3146     if (ParseCmpPredicate(PredVal, Opc) ||
3147         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3148         ParseGlobalTypeAndValue(Val0) ||
3149         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3150         ParseGlobalTypeAndValue(Val1) ||
3151         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3152       return true;
3153 
3154     if (Val0->getType() != Val1->getType())
3155       return Error(ID.Loc, "compare operands must have the same type");
3156 
3157     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3158 
3159     if (Opc == Instruction::FCmp) {
3160       if (!Val0->getType()->isFPOrFPVectorTy())
3161         return Error(ID.Loc, "fcmp requires floating point operands");
3162       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3163     } else {
3164       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3165       if (!Val0->getType()->isIntOrIntVectorTy() &&
3166           !Val0->getType()->isPtrOrPtrVectorTy())
3167         return Error(ID.Loc, "icmp requires pointer or integer operands");
3168       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3169     }
3170     ID.Kind = ValID::t_Constant;
3171     return false;
3172   }
3173 
3174   // Binary Operators.
3175   case lltok::kw_add:
3176   case lltok::kw_fadd:
3177   case lltok::kw_sub:
3178   case lltok::kw_fsub:
3179   case lltok::kw_mul:
3180   case lltok::kw_fmul:
3181   case lltok::kw_udiv:
3182   case lltok::kw_sdiv:
3183   case lltok::kw_fdiv:
3184   case lltok::kw_urem:
3185   case lltok::kw_srem:
3186   case lltok::kw_frem:
3187   case lltok::kw_shl:
3188   case lltok::kw_lshr:
3189   case lltok::kw_ashr: {
3190     bool NUW = false;
3191     bool NSW = false;
3192     bool Exact = false;
3193     unsigned Opc = Lex.getUIntVal();
3194     Constant *Val0, *Val1;
3195     Lex.Lex();
3196     LocTy ModifierLoc = Lex.getLoc();
3197     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3198         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3199       if (EatIfPresent(lltok::kw_nuw))
3200         NUW = true;
3201       if (EatIfPresent(lltok::kw_nsw)) {
3202         NSW = true;
3203         if (EatIfPresent(lltok::kw_nuw))
3204           NUW = true;
3205       }
3206     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3207                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3208       if (EatIfPresent(lltok::kw_exact))
3209         Exact = true;
3210     }
3211     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3212         ParseGlobalTypeAndValue(Val0) ||
3213         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3214         ParseGlobalTypeAndValue(Val1) ||
3215         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3216       return true;
3217     if (Val0->getType() != Val1->getType())
3218       return Error(ID.Loc, "operands of constexpr must have same type");
3219     if (!Val0->getType()->isIntOrIntVectorTy()) {
3220       if (NUW)
3221         return Error(ModifierLoc, "nuw only applies to integer operations");
3222       if (NSW)
3223         return Error(ModifierLoc, "nsw only applies to integer operations");
3224     }
3225     // Check that the type is valid for the operator.
3226     switch (Opc) {
3227     case Instruction::Add:
3228     case Instruction::Sub:
3229     case Instruction::Mul:
3230     case Instruction::UDiv:
3231     case Instruction::SDiv:
3232     case Instruction::URem:
3233     case Instruction::SRem:
3234     case Instruction::Shl:
3235     case Instruction::AShr:
3236     case Instruction::LShr:
3237       if (!Val0->getType()->isIntOrIntVectorTy())
3238         return Error(ID.Loc, "constexpr requires integer operands");
3239       break;
3240     case Instruction::FAdd:
3241     case Instruction::FSub:
3242     case Instruction::FMul:
3243     case Instruction::FDiv:
3244     case Instruction::FRem:
3245       if (!Val0->getType()->isFPOrFPVectorTy())
3246         return Error(ID.Loc, "constexpr requires fp operands");
3247       break;
3248     default: llvm_unreachable("Unknown binary operator!");
3249     }
3250     unsigned Flags = 0;
3251     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3252     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3253     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3254     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3255     ID.ConstantVal = C;
3256     ID.Kind = ValID::t_Constant;
3257     return false;
3258   }
3259 
3260   // Logical Operations
3261   case lltok::kw_and:
3262   case lltok::kw_or:
3263   case lltok::kw_xor: {
3264     unsigned Opc = Lex.getUIntVal();
3265     Constant *Val0, *Val1;
3266     Lex.Lex();
3267     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3268         ParseGlobalTypeAndValue(Val0) ||
3269         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3270         ParseGlobalTypeAndValue(Val1) ||
3271         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3272       return true;
3273     if (Val0->getType() != Val1->getType())
3274       return Error(ID.Loc, "operands of constexpr must have same type");
3275     if (!Val0->getType()->isIntOrIntVectorTy())
3276       return Error(ID.Loc,
3277                    "constexpr requires integer or integer vector operands");
3278     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3279     ID.Kind = ValID::t_Constant;
3280     return false;
3281   }
3282 
3283   case lltok::kw_getelementptr:
3284   case lltok::kw_shufflevector:
3285   case lltok::kw_insertelement:
3286   case lltok::kw_extractelement:
3287   case lltok::kw_select: {
3288     unsigned Opc = Lex.getUIntVal();
3289     SmallVector<Constant*, 16> Elts;
3290     bool InBounds = false;
3291     Type *Ty;
3292     Lex.Lex();
3293 
3294     if (Opc == Instruction::GetElementPtr)
3295       InBounds = EatIfPresent(lltok::kw_inbounds);
3296 
3297     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3298       return true;
3299 
3300     LocTy ExplicitTypeLoc = Lex.getLoc();
3301     if (Opc == Instruction::GetElementPtr) {
3302       if (ParseType(Ty) ||
3303           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3304         return true;
3305     }
3306 
3307     Optional<unsigned> InRangeOp;
3308     if (ParseGlobalValueVector(
3309             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3310         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3311       return true;
3312 
3313     if (Opc == Instruction::GetElementPtr) {
3314       if (Elts.size() == 0 ||
3315           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3316         return Error(ID.Loc, "base of getelementptr must be a pointer");
3317 
3318       Type *BaseType = Elts[0]->getType();
3319       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3320       if (Ty != BasePointerType->getElementType())
3321         return Error(
3322             ExplicitTypeLoc,
3323             "explicit pointee type doesn't match operand's pointee type");
3324 
3325       unsigned GEPWidth =
3326           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3327 
3328       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3329       for (Constant *Val : Indices) {
3330         Type *ValTy = Val->getType();
3331         if (!ValTy->isIntOrIntVectorTy())
3332           return Error(ID.Loc, "getelementptr index must be an integer");
3333         if (ValTy->isVectorTy()) {
3334           unsigned ValNumEl = ValTy->getVectorNumElements();
3335           if (GEPWidth && (ValNumEl != GEPWidth))
3336             return Error(
3337                 ID.Loc,
3338                 "getelementptr vector index has a wrong number of elements");
3339           // GEPWidth may have been unknown because the base is a scalar,
3340           // but it is known now.
3341           GEPWidth = ValNumEl;
3342         }
3343       }
3344 
3345       SmallPtrSet<Type*, 4> Visited;
3346       if (!Indices.empty() && !Ty->isSized(&Visited))
3347         return Error(ID.Loc, "base element of getelementptr must be sized");
3348 
3349       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3350         return Error(ID.Loc, "invalid getelementptr indices");
3351 
3352       if (InRangeOp) {
3353         if (*InRangeOp == 0)
3354           return Error(ID.Loc,
3355                        "inrange keyword may not appear on pointer operand");
3356         --*InRangeOp;
3357       }
3358 
3359       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3360                                                       InBounds, InRangeOp);
3361     } else if (Opc == Instruction::Select) {
3362       if (Elts.size() != 3)
3363         return Error(ID.Loc, "expected three operands to select");
3364       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3365                                                               Elts[2]))
3366         return Error(ID.Loc, Reason);
3367       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3368     } else if (Opc == Instruction::ShuffleVector) {
3369       if (Elts.size() != 3)
3370         return Error(ID.Loc, "expected three operands to shufflevector");
3371       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3372         return Error(ID.Loc, "invalid operands to shufflevector");
3373       ID.ConstantVal =
3374                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3375     } else if (Opc == Instruction::ExtractElement) {
3376       if (Elts.size() != 2)
3377         return Error(ID.Loc, "expected two operands to extractelement");
3378       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3379         return Error(ID.Loc, "invalid extractelement operands");
3380       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3381     } else {
3382       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3383       if (Elts.size() != 3)
3384       return Error(ID.Loc, "expected three operands to insertelement");
3385       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3386         return Error(ID.Loc, "invalid insertelement operands");
3387       ID.ConstantVal =
3388                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3389     }
3390 
3391     ID.Kind = ValID::t_Constant;
3392     return false;
3393   }
3394   }
3395 
3396   Lex.Lex();
3397   return false;
3398 }
3399 
3400 /// ParseGlobalValue - Parse a global value with the specified type.
3401 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3402   C = nullptr;
3403   ValID ID;
3404   Value *V = nullptr;
3405   bool Parsed = ParseValID(ID) ||
3406                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3407   if (V && !(C = dyn_cast<Constant>(V)))
3408     return Error(ID.Loc, "global values must be constants");
3409   return Parsed;
3410 }
3411 
3412 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3413   Type *Ty = nullptr;
3414   return ParseType(Ty) ||
3415          ParseGlobalValue(Ty, V);
3416 }
3417 
3418 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3419   C = nullptr;
3420 
3421   LocTy KwLoc = Lex.getLoc();
3422   if (!EatIfPresent(lltok::kw_comdat))
3423     return false;
3424 
3425   if (EatIfPresent(lltok::lparen)) {
3426     if (Lex.getKind() != lltok::ComdatVar)
3427       return TokError("expected comdat variable");
3428     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3429     Lex.Lex();
3430     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3431       return true;
3432   } else {
3433     if (GlobalName.empty())
3434       return TokError("comdat cannot be unnamed");
3435     C = getComdat(GlobalName, KwLoc);
3436   }
3437 
3438   return false;
3439 }
3440 
3441 /// ParseGlobalValueVector
3442 ///   ::= /*empty*/
3443 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3444 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3445                                       Optional<unsigned> *InRangeOp) {
3446   // Empty list.
3447   if (Lex.getKind() == lltok::rbrace ||
3448       Lex.getKind() == lltok::rsquare ||
3449       Lex.getKind() == lltok::greater ||
3450       Lex.getKind() == lltok::rparen)
3451     return false;
3452 
3453   do {
3454     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3455       *InRangeOp = Elts.size();
3456 
3457     Constant *C;
3458     if (ParseGlobalTypeAndValue(C)) return true;
3459     Elts.push_back(C);
3460   } while (EatIfPresent(lltok::comma));
3461 
3462   return false;
3463 }
3464 
3465 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3466   SmallVector<Metadata *, 16> Elts;
3467   if (ParseMDNodeVector(Elts))
3468     return true;
3469 
3470   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3471   return false;
3472 }
3473 
3474 /// MDNode:
3475 ///  ::= !{ ... }
3476 ///  ::= !7
3477 ///  ::= !DILocation(...)
3478 bool LLParser::ParseMDNode(MDNode *&N) {
3479   if (Lex.getKind() == lltok::MetadataVar)
3480     return ParseSpecializedMDNode(N);
3481 
3482   return ParseToken(lltok::exclaim, "expected '!' here") ||
3483          ParseMDNodeTail(N);
3484 }
3485 
3486 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3487   // !{ ... }
3488   if (Lex.getKind() == lltok::lbrace)
3489     return ParseMDTuple(N);
3490 
3491   // !42
3492   return ParseMDNodeID(N);
3493 }
3494 
3495 namespace {
3496 
3497 /// Structure to represent an optional metadata field.
3498 template <class FieldTy> struct MDFieldImpl {
3499   typedef MDFieldImpl ImplTy;
3500   FieldTy Val;
3501   bool Seen;
3502 
3503   void assign(FieldTy Val) {
3504     Seen = true;
3505     this->Val = std::move(Val);
3506   }
3507 
3508   explicit MDFieldImpl(FieldTy Default)
3509       : Val(std::move(Default)), Seen(false) {}
3510 };
3511 
3512 /// Structure to represent an optional metadata field that
3513 /// can be of either type (A or B) and encapsulates the
3514 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3515 /// to reimplement the specifics for representing each Field.
3516 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3517   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3518   FieldTypeA A;
3519   FieldTypeB B;
3520   bool Seen;
3521 
3522   enum {
3523     IsInvalid = 0,
3524     IsTypeA = 1,
3525     IsTypeB = 2
3526   } WhatIs;
3527 
3528   void assign(FieldTypeA A) {
3529     Seen = true;
3530     this->A = std::move(A);
3531     WhatIs = IsTypeA;
3532   }
3533 
3534   void assign(FieldTypeB B) {
3535     Seen = true;
3536     this->B = std::move(B);
3537     WhatIs = IsTypeB;
3538   }
3539 
3540   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3541       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3542         WhatIs(IsInvalid) {}
3543 };
3544 
3545 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3546   uint64_t Max;
3547 
3548   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3549       : ImplTy(Default), Max(Max) {}
3550 };
3551 
3552 struct LineField : public MDUnsignedField {
3553   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3554 };
3555 
3556 struct ColumnField : public MDUnsignedField {
3557   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3558 };
3559 
3560 struct DwarfTagField : public MDUnsignedField {
3561   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3562   DwarfTagField(dwarf::Tag DefaultTag)
3563       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3564 };
3565 
3566 struct DwarfMacinfoTypeField : public MDUnsignedField {
3567   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3568   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3569     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3570 };
3571 
3572 struct DwarfAttEncodingField : public MDUnsignedField {
3573   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3574 };
3575 
3576 struct DwarfVirtualityField : public MDUnsignedField {
3577   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3578 };
3579 
3580 struct DwarfLangField : public MDUnsignedField {
3581   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3582 };
3583 
3584 struct DwarfCCField : public MDUnsignedField {
3585   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3586 };
3587 
3588 struct EmissionKindField : public MDUnsignedField {
3589   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3590 };
3591 
3592 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3593   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3594 };
3595 
3596 struct MDSignedField : public MDFieldImpl<int64_t> {
3597   int64_t Min;
3598   int64_t Max;
3599 
3600   MDSignedField(int64_t Default = 0)
3601       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3602   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3603       : ImplTy(Default), Min(Min), Max(Max) {}
3604 };
3605 
3606 struct MDBoolField : public MDFieldImpl<bool> {
3607   MDBoolField(bool Default = false) : ImplTy(Default) {}
3608 };
3609 
3610 struct MDField : public MDFieldImpl<Metadata *> {
3611   bool AllowNull;
3612 
3613   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3614 };
3615 
3616 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3617   MDConstant() : ImplTy(nullptr) {}
3618 };
3619 
3620 struct MDStringField : public MDFieldImpl<MDString *> {
3621   bool AllowEmpty;
3622   MDStringField(bool AllowEmpty = true)
3623       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3624 };
3625 
3626 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3627   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3628 };
3629 
3630 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3631   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3632 };
3633 
3634 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3635   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3636       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3637 
3638   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3639                     bool AllowNull = true)
3640       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3641 
3642   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3643   bool isMDField() const { return WhatIs == IsTypeB; }
3644   int64_t getMDSignedValue() const {
3645     assert(isMDSignedField() && "Wrong field type");
3646     return A.Val;
3647   }
3648   Metadata *getMDFieldValue() const {
3649     assert(isMDField() && "Wrong field type");
3650     return B.Val;
3651   }
3652 };
3653 
3654 struct MDSignedOrUnsignedField
3655     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3656   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3657 
3658   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3659   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3660   int64_t getMDSignedValue() const {
3661     assert(isMDSignedField() && "Wrong field type");
3662     return A.Val;
3663   }
3664   uint64_t getMDUnsignedValue() const {
3665     assert(isMDUnsignedField() && "Wrong field type");
3666     return B.Val;
3667   }
3668 };
3669 
3670 } // end anonymous namespace
3671 
3672 namespace llvm {
3673 
3674 template <>
3675 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3676                             MDUnsignedField &Result) {
3677   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3678     return TokError("expected unsigned integer");
3679 
3680   auto &U = Lex.getAPSIntVal();
3681   if (U.ugt(Result.Max))
3682     return TokError("value for '" + Name + "' too large, limit is " +
3683                     Twine(Result.Max));
3684   Result.assign(U.getZExtValue());
3685   assert(Result.Val <= Result.Max && "Expected value in range");
3686   Lex.Lex();
3687   return false;
3688 }
3689 
3690 template <>
3691 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3692   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3693 }
3694 template <>
3695 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3696   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3697 }
3698 
3699 template <>
3700 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3701   if (Lex.getKind() == lltok::APSInt)
3702     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3703 
3704   if (Lex.getKind() != lltok::DwarfTag)
3705     return TokError("expected DWARF tag");
3706 
3707   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3708   if (Tag == dwarf::DW_TAG_invalid)
3709     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3710   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3711 
3712   Result.assign(Tag);
3713   Lex.Lex();
3714   return false;
3715 }
3716 
3717 template <>
3718 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3719                             DwarfMacinfoTypeField &Result) {
3720   if (Lex.getKind() == lltok::APSInt)
3721     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3722 
3723   if (Lex.getKind() != lltok::DwarfMacinfo)
3724     return TokError("expected DWARF macinfo type");
3725 
3726   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3727   if (Macinfo == dwarf::DW_MACINFO_invalid)
3728     return TokError(
3729         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3730   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3731 
3732   Result.assign(Macinfo);
3733   Lex.Lex();
3734   return false;
3735 }
3736 
3737 template <>
3738 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3739                             DwarfVirtualityField &Result) {
3740   if (Lex.getKind() == lltok::APSInt)
3741     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3742 
3743   if (Lex.getKind() != lltok::DwarfVirtuality)
3744     return TokError("expected DWARF virtuality code");
3745 
3746   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3747   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3748     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3749                     Lex.getStrVal() + "'");
3750   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3751   Result.assign(Virtuality);
3752   Lex.Lex();
3753   return false;
3754 }
3755 
3756 template <>
3757 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3758   if (Lex.getKind() == lltok::APSInt)
3759     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3760 
3761   if (Lex.getKind() != lltok::DwarfLang)
3762     return TokError("expected DWARF language");
3763 
3764   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3765   if (!Lang)
3766     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3767                     "'");
3768   assert(Lang <= Result.Max && "Expected valid DWARF language");
3769   Result.assign(Lang);
3770   Lex.Lex();
3771   return false;
3772 }
3773 
3774 template <>
3775 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3776   if (Lex.getKind() == lltok::APSInt)
3777     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3778 
3779   if (Lex.getKind() != lltok::DwarfCC)
3780     return TokError("expected DWARF calling convention");
3781 
3782   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3783   if (!CC)
3784     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3785                     "'");
3786   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3787   Result.assign(CC);
3788   Lex.Lex();
3789   return false;
3790 }
3791 
3792 template <>
3793 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3794   if (Lex.getKind() == lltok::APSInt)
3795     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3796 
3797   if (Lex.getKind() != lltok::EmissionKind)
3798     return TokError("expected emission kind");
3799 
3800   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3801   if (!Kind)
3802     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3803                     "'");
3804   assert(*Kind <= Result.Max && "Expected valid emission kind");
3805   Result.assign(*Kind);
3806   Lex.Lex();
3807   return false;
3808 }
3809 
3810 template <>
3811 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3812                             DwarfAttEncodingField &Result) {
3813   if (Lex.getKind() == lltok::APSInt)
3814     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3815 
3816   if (Lex.getKind() != lltok::DwarfAttEncoding)
3817     return TokError("expected DWARF type attribute encoding");
3818 
3819   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3820   if (!Encoding)
3821     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3822                     Lex.getStrVal() + "'");
3823   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3824   Result.assign(Encoding);
3825   Lex.Lex();
3826   return false;
3827 }
3828 
3829 /// DIFlagField
3830 ///  ::= uint32
3831 ///  ::= DIFlagVector
3832 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3833 template <>
3834 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3835 
3836   // Parser for a single flag.
3837   auto parseFlag = [&](DINode::DIFlags &Val) {
3838     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3839       uint32_t TempVal = static_cast<uint32_t>(Val);
3840       bool Res = ParseUInt32(TempVal);
3841       Val = static_cast<DINode::DIFlags>(TempVal);
3842       return Res;
3843     }
3844 
3845     if (Lex.getKind() != lltok::DIFlag)
3846       return TokError("expected debug info flag");
3847 
3848     Val = DINode::getFlag(Lex.getStrVal());
3849     if (!Val)
3850       return TokError(Twine("invalid debug info flag flag '") +
3851                       Lex.getStrVal() + "'");
3852     Lex.Lex();
3853     return false;
3854   };
3855 
3856   // Parse the flags and combine them together.
3857   DINode::DIFlags Combined = DINode::FlagZero;
3858   do {
3859     DINode::DIFlags Val;
3860     if (parseFlag(Val))
3861       return true;
3862     Combined |= Val;
3863   } while (EatIfPresent(lltok::bar));
3864 
3865   Result.assign(Combined);
3866   return false;
3867 }
3868 
3869 template <>
3870 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3871                             MDSignedField &Result) {
3872   if (Lex.getKind() != lltok::APSInt)
3873     return TokError("expected signed integer");
3874 
3875   auto &S = Lex.getAPSIntVal();
3876   if (S < Result.Min)
3877     return TokError("value for '" + Name + "' too small, limit is " +
3878                     Twine(Result.Min));
3879   if (S > Result.Max)
3880     return TokError("value for '" + Name + "' too large, limit is " +
3881                     Twine(Result.Max));
3882   Result.assign(S.getExtValue());
3883   assert(Result.Val >= Result.Min && "Expected value in range");
3884   assert(Result.Val <= Result.Max && "Expected value in range");
3885   Lex.Lex();
3886   return false;
3887 }
3888 
3889 template <>
3890 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3891   switch (Lex.getKind()) {
3892   default:
3893     return TokError("expected 'true' or 'false'");
3894   case lltok::kw_true:
3895     Result.assign(true);
3896     break;
3897   case lltok::kw_false:
3898     Result.assign(false);
3899     break;
3900   }
3901   Lex.Lex();
3902   return false;
3903 }
3904 
3905 template <>
3906 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3907   if (Lex.getKind() == lltok::kw_null) {
3908     if (!Result.AllowNull)
3909       return TokError("'" + Name + "' cannot be null");
3910     Lex.Lex();
3911     Result.assign(nullptr);
3912     return false;
3913   }
3914 
3915   Metadata *MD;
3916   if (ParseMetadata(MD, nullptr))
3917     return true;
3918 
3919   Result.assign(MD);
3920   return false;
3921 }
3922 
3923 template <>
3924 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3925                             MDSignedOrMDField &Result) {
3926   // Try to parse a signed int.
3927   if (Lex.getKind() == lltok::APSInt) {
3928     MDSignedField Res = Result.A;
3929     if (!ParseMDField(Loc, Name, Res)) {
3930       Result.assign(Res);
3931       return false;
3932     }
3933     return true;
3934   }
3935 
3936   // Otherwise, try to parse as an MDField.
3937   MDField Res = Result.B;
3938   if (!ParseMDField(Loc, Name, Res)) {
3939     Result.assign(Res);
3940     return false;
3941   }
3942 
3943   return true;
3944 }
3945 
3946 template <>
3947 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3948                             MDSignedOrUnsignedField &Result) {
3949   if (Lex.getKind() != lltok::APSInt)
3950     return false;
3951 
3952   if (Lex.getAPSIntVal().isSigned()) {
3953     MDSignedField Res = Result.A;
3954     if (ParseMDField(Loc, Name, Res))
3955       return true;
3956     Result.assign(Res);
3957     return false;
3958   }
3959 
3960   MDUnsignedField Res = Result.B;
3961   if (ParseMDField(Loc, Name, Res))
3962     return true;
3963   Result.assign(Res);
3964   return false;
3965 }
3966 
3967 template <>
3968 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3969   LocTy ValueLoc = Lex.getLoc();
3970   std::string S;
3971   if (ParseStringConstant(S))
3972     return true;
3973 
3974   if (!Result.AllowEmpty && S.empty())
3975     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3976 
3977   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3978   return false;
3979 }
3980 
3981 template <>
3982 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3983   SmallVector<Metadata *, 4> MDs;
3984   if (ParseMDNodeVector(MDs))
3985     return true;
3986 
3987   Result.assign(std::move(MDs));
3988   return false;
3989 }
3990 
3991 template <>
3992 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3993                             ChecksumKindField &Result) {
3994   Optional<DIFile::ChecksumKind> CSKind =
3995       DIFile::getChecksumKind(Lex.getStrVal());
3996 
3997   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
3998     return TokError(
3999         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4000 
4001   Result.assign(*CSKind);
4002   Lex.Lex();
4003   return false;
4004 }
4005 
4006 } // end namespace llvm
4007 
4008 template <class ParserTy>
4009 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4010   do {
4011     if (Lex.getKind() != lltok::LabelStr)
4012       return TokError("expected field label here");
4013 
4014     if (parseField())
4015       return true;
4016   } while (EatIfPresent(lltok::comma));
4017 
4018   return false;
4019 }
4020 
4021 template <class ParserTy>
4022 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4023   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4024   Lex.Lex();
4025 
4026   if (ParseToken(lltok::lparen, "expected '(' here"))
4027     return true;
4028   if (Lex.getKind() != lltok::rparen)
4029     if (ParseMDFieldsImplBody(parseField))
4030       return true;
4031 
4032   ClosingLoc = Lex.getLoc();
4033   return ParseToken(lltok::rparen, "expected ')' here");
4034 }
4035 
4036 template <class FieldTy>
4037 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4038   if (Result.Seen)
4039     return TokError("field '" + Name + "' cannot be specified more than once");
4040 
4041   LocTy Loc = Lex.getLoc();
4042   Lex.Lex();
4043   return ParseMDField(Loc, Name, Result);
4044 }
4045 
4046 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4047   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4048 
4049 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4050   if (Lex.getStrVal() == #CLASS)                                               \
4051     return Parse##CLASS(N, IsDistinct);
4052 #include "llvm/IR/Metadata.def"
4053 
4054   return TokError("expected metadata type");
4055 }
4056 
4057 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4058 #define NOP_FIELD(NAME, TYPE, INIT)
4059 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4060   if (!NAME.Seen)                                                              \
4061     return Error(ClosingLoc, "missing required field '" #NAME "'");
4062 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4063   if (Lex.getStrVal() == #NAME)                                                \
4064     return ParseMDField(#NAME, NAME);
4065 #define PARSE_MD_FIELDS()                                                      \
4066   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4067   do {                                                                         \
4068     LocTy ClosingLoc;                                                          \
4069     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4070       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4071       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4072     }, ClosingLoc))                                                            \
4073       return true;                                                             \
4074     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4075   } while (false)
4076 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4077   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4078 
4079 /// ParseDILocationFields:
4080 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
4081 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4082 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4083   OPTIONAL(line, LineField, );                                                 \
4084   OPTIONAL(column, ColumnField, );                                             \
4085   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4086   OPTIONAL(inlinedAt, MDField, );
4087   PARSE_MD_FIELDS();
4088 #undef VISIT_MD_FIELDS
4089 
4090   Result = GET_OR_DISTINCT(
4091       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
4092   return false;
4093 }
4094 
4095 /// ParseGenericDINode:
4096 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4097 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4098 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4099   REQUIRED(tag, DwarfTagField, );                                              \
4100   OPTIONAL(header, MDStringField, );                                           \
4101   OPTIONAL(operands, MDFieldList, );
4102   PARSE_MD_FIELDS();
4103 #undef VISIT_MD_FIELDS
4104 
4105   Result = GET_OR_DISTINCT(GenericDINode,
4106                            (Context, tag.Val, header.Val, operands.Val));
4107   return false;
4108 }
4109 
4110 /// ParseDISubrange:
4111 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4112 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4113 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4114 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4115   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4116   OPTIONAL(lowerBound, MDSignedField, );
4117   PARSE_MD_FIELDS();
4118 #undef VISIT_MD_FIELDS
4119 
4120   if (count.isMDSignedField())
4121     Result = GET_OR_DISTINCT(
4122         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4123   else if (count.isMDField())
4124     Result = GET_OR_DISTINCT(
4125         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4126   else
4127     return true;
4128 
4129   return false;
4130 }
4131 
4132 /// ParseDIEnumerator:
4133 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4134 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4135 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4136   REQUIRED(name, MDStringField, );                                             \
4137   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4138   OPTIONAL(isUnsigned, MDBoolField, (false));
4139   PARSE_MD_FIELDS();
4140 #undef VISIT_MD_FIELDS
4141 
4142   if (isUnsigned.Val && value.isMDSignedField())
4143     return TokError("unsigned enumerator with negative value");
4144 
4145   int64_t Value = value.isMDSignedField()
4146                       ? value.getMDSignedValue()
4147                       : static_cast<int64_t>(value.getMDUnsignedValue());
4148   Result =
4149       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4150 
4151   return false;
4152 }
4153 
4154 /// ParseDIBasicType:
4155 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
4156 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4157 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4158   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4159   OPTIONAL(name, MDStringField, );                                             \
4160   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4161   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4162   OPTIONAL(encoding, DwarfAttEncodingField, );
4163   PARSE_MD_FIELDS();
4164 #undef VISIT_MD_FIELDS
4165 
4166   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4167                                          align.Val, encoding.Val));
4168   return false;
4169 }
4170 
4171 /// ParseDIDerivedType:
4172 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4173 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4174 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4175 ///                      dwarfAddressSpace: 3)
4176 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4177 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4178   REQUIRED(tag, DwarfTagField, );                                              \
4179   OPTIONAL(name, MDStringField, );                                             \
4180   OPTIONAL(file, MDField, );                                                   \
4181   OPTIONAL(line, LineField, );                                                 \
4182   OPTIONAL(scope, MDField, );                                                  \
4183   REQUIRED(baseType, MDField, );                                               \
4184   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4185   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4186   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4187   OPTIONAL(flags, DIFlagField, );                                              \
4188   OPTIONAL(extraData, MDField, );                                              \
4189   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4190   PARSE_MD_FIELDS();
4191 #undef VISIT_MD_FIELDS
4192 
4193   Optional<unsigned> DWARFAddressSpace;
4194   if (dwarfAddressSpace.Val != UINT32_MAX)
4195     DWARFAddressSpace = dwarfAddressSpace.Val;
4196 
4197   Result = GET_OR_DISTINCT(DIDerivedType,
4198                            (Context, tag.Val, name.Val, file.Val, line.Val,
4199                             scope.Val, baseType.Val, size.Val, align.Val,
4200                             offset.Val, DWARFAddressSpace, flags.Val,
4201                             extraData.Val));
4202   return false;
4203 }
4204 
4205 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4206 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4207   REQUIRED(tag, DwarfTagField, );                                              \
4208   OPTIONAL(name, MDStringField, );                                             \
4209   OPTIONAL(file, MDField, );                                                   \
4210   OPTIONAL(line, LineField, );                                                 \
4211   OPTIONAL(scope, MDField, );                                                  \
4212   OPTIONAL(baseType, MDField, );                                               \
4213   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4214   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4215   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4216   OPTIONAL(flags, DIFlagField, );                                              \
4217   OPTIONAL(elements, MDField, );                                               \
4218   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4219   OPTIONAL(vtableHolder, MDField, );                                           \
4220   OPTIONAL(templateParams, MDField, );                                         \
4221   OPTIONAL(identifier, MDStringField, );                                       \
4222   OPTIONAL(discriminator, MDField, );
4223   PARSE_MD_FIELDS();
4224 #undef VISIT_MD_FIELDS
4225 
4226   // If this has an identifier try to build an ODR type.
4227   if (identifier.Val)
4228     if (auto *CT = DICompositeType::buildODRType(
4229             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4230             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4231             elements.Val, runtimeLang.Val, vtableHolder.Val,
4232             templateParams.Val, discriminator.Val)) {
4233       Result = CT;
4234       return false;
4235     }
4236 
4237   // Create a new node, and save it in the context if it belongs in the type
4238   // map.
4239   Result = GET_OR_DISTINCT(
4240       DICompositeType,
4241       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4242        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4243        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4244        discriminator.Val));
4245   return false;
4246 }
4247 
4248 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4249 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4250   OPTIONAL(flags, DIFlagField, );                                              \
4251   OPTIONAL(cc, DwarfCCField, );                                                \
4252   REQUIRED(types, MDField, );
4253   PARSE_MD_FIELDS();
4254 #undef VISIT_MD_FIELDS
4255 
4256   Result = GET_OR_DISTINCT(DISubroutineType,
4257                            (Context, flags.Val, cc.Val, types.Val));
4258   return false;
4259 }
4260 
4261 /// ParseDIFileType:
4262 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4263 ///                   checksumkind: CSK_MD5,
4264 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4265 ///                   source: "source file contents")
4266 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4267   // The default constructed value for checksumkind is required, but will never
4268   // be used, as the parser checks if the field was actually Seen before using
4269   // the Val.
4270 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4271   REQUIRED(filename, MDStringField, );                                         \
4272   REQUIRED(directory, MDStringField, );                                        \
4273   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4274   OPTIONAL(checksum, MDStringField, );                                         \
4275   OPTIONAL(source, MDStringField, );
4276   PARSE_MD_FIELDS();
4277 #undef VISIT_MD_FIELDS
4278 
4279   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4280   if (checksumkind.Seen && checksum.Seen)
4281     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4282   else if (checksumkind.Seen || checksum.Seen)
4283     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4284 
4285   Optional<MDString *> OptSource;
4286   if (source.Seen)
4287     OptSource = source.Val;
4288   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4289                                     OptChecksum, OptSource));
4290   return false;
4291 }
4292 
4293 /// ParseDICompileUnit:
4294 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4295 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4296 ///                      splitDebugFilename: "abc.debug",
4297 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4298 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4299 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4300   if (!IsDistinct)
4301     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4302 
4303 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4304   REQUIRED(language, DwarfLangField, );                                        \
4305   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4306   OPTIONAL(producer, MDStringField, );                                         \
4307   OPTIONAL(isOptimized, MDBoolField, );                                        \
4308   OPTIONAL(flags, MDStringField, );                                            \
4309   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4310   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4311   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4312   OPTIONAL(enums, MDField, );                                                  \
4313   OPTIONAL(retainedTypes, MDField, );                                          \
4314   OPTIONAL(globals, MDField, );                                                \
4315   OPTIONAL(imports, MDField, );                                                \
4316   OPTIONAL(macros, MDField, );                                                 \
4317   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4318   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4319   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4320   OPTIONAL(gnuPubnames, MDBoolField, = false);
4321   PARSE_MD_FIELDS();
4322 #undef VISIT_MD_FIELDS
4323 
4324   Result = DICompileUnit::getDistinct(
4325       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4326       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4327       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4328       splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4329   return false;
4330 }
4331 
4332 /// ParseDISubprogram:
4333 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4334 ///                     file: !1, line: 7, type: !2, isLocal: false,
4335 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4336 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4337 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4338 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4339 ///                     variables: !6, thrownTypes: !7)
4340 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4341   auto Loc = Lex.getLoc();
4342 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4343   OPTIONAL(scope, MDField, );                                                  \
4344   OPTIONAL(name, MDStringField, );                                             \
4345   OPTIONAL(linkageName, MDStringField, );                                      \
4346   OPTIONAL(file, MDField, );                                                   \
4347   OPTIONAL(line, LineField, );                                                 \
4348   OPTIONAL(type, MDField, );                                                   \
4349   OPTIONAL(isLocal, MDBoolField, );                                            \
4350   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4351   OPTIONAL(scopeLine, LineField, );                                            \
4352   OPTIONAL(containingType, MDField, );                                         \
4353   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4354   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4355   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4356   OPTIONAL(flags, DIFlagField, );                                              \
4357   OPTIONAL(isOptimized, MDBoolField, );                                        \
4358   OPTIONAL(unit, MDField, );                                                   \
4359   OPTIONAL(templateParams, MDField, );                                         \
4360   OPTIONAL(declaration, MDField, );                                            \
4361   OPTIONAL(variables, MDField, );                                              \
4362   OPTIONAL(thrownTypes, MDField, );
4363   PARSE_MD_FIELDS();
4364 #undef VISIT_MD_FIELDS
4365 
4366   if (isDefinition.Val && !IsDistinct)
4367     return Lex.Error(
4368         Loc,
4369         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4370 
4371   Result = GET_OR_DISTINCT(
4372       DISubprogram,
4373       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4374        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4375        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4376        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4377        declaration.Val, variables.Val, thrownTypes.Val));
4378   return false;
4379 }
4380 
4381 /// ParseDILexicalBlock:
4382 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4383 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4384 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4385   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4386   OPTIONAL(file, MDField, );                                                   \
4387   OPTIONAL(line, LineField, );                                                 \
4388   OPTIONAL(column, ColumnField, );
4389   PARSE_MD_FIELDS();
4390 #undef VISIT_MD_FIELDS
4391 
4392   Result = GET_OR_DISTINCT(
4393       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4394   return false;
4395 }
4396 
4397 /// ParseDILexicalBlockFile:
4398 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4399 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4400 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4401   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4402   OPTIONAL(file, MDField, );                                                   \
4403   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4404   PARSE_MD_FIELDS();
4405 #undef VISIT_MD_FIELDS
4406 
4407   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4408                            (Context, scope.Val, file.Val, discriminator.Val));
4409   return false;
4410 }
4411 
4412 /// ParseDINamespace:
4413 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4414 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4415 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4416   REQUIRED(scope, MDField, );                                                  \
4417   OPTIONAL(name, MDStringField, );                                             \
4418   OPTIONAL(exportSymbols, MDBoolField, );
4419   PARSE_MD_FIELDS();
4420 #undef VISIT_MD_FIELDS
4421 
4422   Result = GET_OR_DISTINCT(DINamespace,
4423                            (Context, scope.Val, name.Val, exportSymbols.Val));
4424   return false;
4425 }
4426 
4427 /// ParseDIMacro:
4428 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4429 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4430 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4431   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4432   OPTIONAL(line, LineField, );                                                 \
4433   REQUIRED(name, MDStringField, );                                             \
4434   OPTIONAL(value, MDStringField, );
4435   PARSE_MD_FIELDS();
4436 #undef VISIT_MD_FIELDS
4437 
4438   Result = GET_OR_DISTINCT(DIMacro,
4439                            (Context, type.Val, line.Val, name.Val, value.Val));
4440   return false;
4441 }
4442 
4443 /// ParseDIMacroFile:
4444 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4445 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4446 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4447   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4448   OPTIONAL(line, LineField, );                                                 \
4449   REQUIRED(file, MDField, );                                                   \
4450   OPTIONAL(nodes, MDField, );
4451   PARSE_MD_FIELDS();
4452 #undef VISIT_MD_FIELDS
4453 
4454   Result = GET_OR_DISTINCT(DIMacroFile,
4455                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4456   return false;
4457 }
4458 
4459 /// ParseDIModule:
4460 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4461 ///                 includePath: "/usr/include", isysroot: "/")
4462 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4463 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4464   REQUIRED(scope, MDField, );                                                  \
4465   REQUIRED(name, MDStringField, );                                             \
4466   OPTIONAL(configMacros, MDStringField, );                                     \
4467   OPTIONAL(includePath, MDStringField, );                                      \
4468   OPTIONAL(isysroot, MDStringField, );
4469   PARSE_MD_FIELDS();
4470 #undef VISIT_MD_FIELDS
4471 
4472   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4473                            configMacros.Val, includePath.Val, isysroot.Val));
4474   return false;
4475 }
4476 
4477 /// ParseDITemplateTypeParameter:
4478 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4479 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4480 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4481   OPTIONAL(name, MDStringField, );                                             \
4482   REQUIRED(type, MDField, );
4483   PARSE_MD_FIELDS();
4484 #undef VISIT_MD_FIELDS
4485 
4486   Result =
4487       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4488   return false;
4489 }
4490 
4491 /// ParseDITemplateValueParameter:
4492 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4493 ///                                 name: "V", type: !1, value: i32 7)
4494 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4495 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4496   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4497   OPTIONAL(name, MDStringField, );                                             \
4498   OPTIONAL(type, MDField, );                                                   \
4499   REQUIRED(value, MDField, );
4500   PARSE_MD_FIELDS();
4501 #undef VISIT_MD_FIELDS
4502 
4503   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4504                            (Context, tag.Val, name.Val, type.Val, value.Val));
4505   return false;
4506 }
4507 
4508 /// ParseDIGlobalVariable:
4509 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4510 ///                         file: !1, line: 7, type: !2, isLocal: false,
4511 ///                         isDefinition: true, declaration: !3, align: 8)
4512 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4513 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4514   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4515   OPTIONAL(scope, MDField, );                                                  \
4516   OPTIONAL(linkageName, MDStringField, );                                      \
4517   OPTIONAL(file, MDField, );                                                   \
4518   OPTIONAL(line, LineField, );                                                 \
4519   OPTIONAL(type, MDField, );                                                   \
4520   OPTIONAL(isLocal, MDBoolField, );                                            \
4521   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4522   OPTIONAL(declaration, MDField, );                                            \
4523   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4524   PARSE_MD_FIELDS();
4525 #undef VISIT_MD_FIELDS
4526 
4527   Result = GET_OR_DISTINCT(DIGlobalVariable,
4528                            (Context, scope.Val, name.Val, linkageName.Val,
4529                             file.Val, line.Val, type.Val, isLocal.Val,
4530                             isDefinition.Val, declaration.Val, align.Val));
4531   return false;
4532 }
4533 
4534 /// ParseDILocalVariable:
4535 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4536 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4537 ///                        align: 8)
4538 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4539 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4540 ///                        align: 8)
4541 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4542 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4543   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4544   OPTIONAL(name, MDStringField, );                                             \
4545   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4546   OPTIONAL(file, MDField, );                                                   \
4547   OPTIONAL(line, LineField, );                                                 \
4548   OPTIONAL(type, MDField, );                                                   \
4549   OPTIONAL(flags, DIFlagField, );                                              \
4550   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4551   PARSE_MD_FIELDS();
4552 #undef VISIT_MD_FIELDS
4553 
4554   Result = GET_OR_DISTINCT(DILocalVariable,
4555                            (Context, scope.Val, name.Val, file.Val, line.Val,
4556                             type.Val, arg.Val, flags.Val, align.Val));
4557   return false;
4558 }
4559 
4560 /// ParseDIExpression:
4561 ///   ::= !DIExpression(0, 7, -1)
4562 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4563   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4564   Lex.Lex();
4565 
4566   if (ParseToken(lltok::lparen, "expected '(' here"))
4567     return true;
4568 
4569   SmallVector<uint64_t, 8> Elements;
4570   if (Lex.getKind() != lltok::rparen)
4571     do {
4572       if (Lex.getKind() == lltok::DwarfOp) {
4573         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4574           Lex.Lex();
4575           Elements.push_back(Op);
4576           continue;
4577         }
4578         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4579       }
4580 
4581       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4582         return TokError("expected unsigned integer");
4583 
4584       auto &U = Lex.getAPSIntVal();
4585       if (U.ugt(UINT64_MAX))
4586         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4587       Elements.push_back(U.getZExtValue());
4588       Lex.Lex();
4589     } while (EatIfPresent(lltok::comma));
4590 
4591   if (ParseToken(lltok::rparen, "expected ')' here"))
4592     return true;
4593 
4594   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4595   return false;
4596 }
4597 
4598 /// ParseDIGlobalVariableExpression:
4599 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4600 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4601                                                bool IsDistinct) {
4602 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4603   REQUIRED(var, MDField, );                                                    \
4604   REQUIRED(expr, MDField, );
4605   PARSE_MD_FIELDS();
4606 #undef VISIT_MD_FIELDS
4607 
4608   Result =
4609       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4610   return false;
4611 }
4612 
4613 /// ParseDIObjCProperty:
4614 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4615 ///                       getter: "getFoo", attributes: 7, type: !2)
4616 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4617 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4618   OPTIONAL(name, MDStringField, );                                             \
4619   OPTIONAL(file, MDField, );                                                   \
4620   OPTIONAL(line, LineField, );                                                 \
4621   OPTIONAL(setter, MDStringField, );                                           \
4622   OPTIONAL(getter, MDStringField, );                                           \
4623   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4624   OPTIONAL(type, MDField, );
4625   PARSE_MD_FIELDS();
4626 #undef VISIT_MD_FIELDS
4627 
4628   Result = GET_OR_DISTINCT(DIObjCProperty,
4629                            (Context, name.Val, file.Val, line.Val, setter.Val,
4630                             getter.Val, attributes.Val, type.Val));
4631   return false;
4632 }
4633 
4634 /// ParseDIImportedEntity:
4635 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4636 ///                         line: 7, name: "foo")
4637 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4638 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4639   REQUIRED(tag, DwarfTagField, );                                              \
4640   REQUIRED(scope, MDField, );                                                  \
4641   OPTIONAL(entity, MDField, );                                                 \
4642   OPTIONAL(file, MDField, );                                                   \
4643   OPTIONAL(line, LineField, );                                                 \
4644   OPTIONAL(name, MDStringField, );
4645   PARSE_MD_FIELDS();
4646 #undef VISIT_MD_FIELDS
4647 
4648   Result = GET_OR_DISTINCT(
4649       DIImportedEntity,
4650       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4651   return false;
4652 }
4653 
4654 #undef PARSE_MD_FIELD
4655 #undef NOP_FIELD
4656 #undef REQUIRE_FIELD
4657 #undef DECLARE_FIELD
4658 
4659 /// ParseMetadataAsValue
4660 ///  ::= metadata i32 %local
4661 ///  ::= metadata i32 @global
4662 ///  ::= metadata i32 7
4663 ///  ::= metadata !0
4664 ///  ::= metadata !{...}
4665 ///  ::= metadata !"string"
4666 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4667   // Note: the type 'metadata' has already been parsed.
4668   Metadata *MD;
4669   if (ParseMetadata(MD, &PFS))
4670     return true;
4671 
4672   V = MetadataAsValue::get(Context, MD);
4673   return false;
4674 }
4675 
4676 /// ParseValueAsMetadata
4677 ///  ::= i32 %local
4678 ///  ::= i32 @global
4679 ///  ::= i32 7
4680 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4681                                     PerFunctionState *PFS) {
4682   Type *Ty;
4683   LocTy Loc;
4684   if (ParseType(Ty, TypeMsg, Loc))
4685     return true;
4686   if (Ty->isMetadataTy())
4687     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4688 
4689   Value *V;
4690   if (ParseValue(Ty, V, PFS))
4691     return true;
4692 
4693   MD = ValueAsMetadata::get(V);
4694   return false;
4695 }
4696 
4697 /// ParseMetadata
4698 ///  ::= i32 %local
4699 ///  ::= i32 @global
4700 ///  ::= i32 7
4701 ///  ::= !42
4702 ///  ::= !{...}
4703 ///  ::= !"string"
4704 ///  ::= !DILocation(...)
4705 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4706   if (Lex.getKind() == lltok::MetadataVar) {
4707     MDNode *N;
4708     if (ParseSpecializedMDNode(N))
4709       return true;
4710     MD = N;
4711     return false;
4712   }
4713 
4714   // ValueAsMetadata:
4715   // <type> <value>
4716   if (Lex.getKind() != lltok::exclaim)
4717     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4718 
4719   // '!'.
4720   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4721   Lex.Lex();
4722 
4723   // MDString:
4724   //   ::= '!' STRINGCONSTANT
4725   if (Lex.getKind() == lltok::StringConstant) {
4726     MDString *S;
4727     if (ParseMDString(S))
4728       return true;
4729     MD = S;
4730     return false;
4731   }
4732 
4733   // MDNode:
4734   // !{ ... }
4735   // !7
4736   MDNode *N;
4737   if (ParseMDNodeTail(N))
4738     return true;
4739   MD = N;
4740   return false;
4741 }
4742 
4743 //===----------------------------------------------------------------------===//
4744 // Function Parsing.
4745 //===----------------------------------------------------------------------===//
4746 
4747 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4748                                    PerFunctionState *PFS, bool IsCall) {
4749   if (Ty->isFunctionTy())
4750     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4751 
4752   switch (ID.Kind) {
4753   case ValID::t_LocalID:
4754     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4755     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
4756     return V == nullptr;
4757   case ValID::t_LocalName:
4758     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4759     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
4760     return V == nullptr;
4761   case ValID::t_InlineAsm: {
4762     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4763       return Error(ID.Loc, "invalid type for inline asm constraint string");
4764     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4765                        (ID.UIntVal >> 1) & 1,
4766                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4767     return false;
4768   }
4769   case ValID::t_GlobalName:
4770     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4771     return V == nullptr;
4772   case ValID::t_GlobalID:
4773     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4774     return V == nullptr;
4775   case ValID::t_APSInt:
4776     if (!Ty->isIntegerTy())
4777       return Error(ID.Loc, "integer constant must have integer type");
4778     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4779     V = ConstantInt::get(Context, ID.APSIntVal);
4780     return false;
4781   case ValID::t_APFloat:
4782     if (!Ty->isFloatingPointTy() ||
4783         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4784       return Error(ID.Loc, "floating point constant invalid for type");
4785 
4786     // The lexer has no type info, so builds all half, float, and double FP
4787     // constants as double.  Fix this here.  Long double does not need this.
4788     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4789       bool Ignored;
4790       if (Ty->isHalfTy())
4791         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4792                               &Ignored);
4793       else if (Ty->isFloatTy())
4794         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4795                               &Ignored);
4796     }
4797     V = ConstantFP::get(Context, ID.APFloatVal);
4798 
4799     if (V->getType() != Ty)
4800       return Error(ID.Loc, "floating point constant does not have type '" +
4801                    getTypeString(Ty) + "'");
4802 
4803     return false;
4804   case ValID::t_Null:
4805     if (!Ty->isPointerTy())
4806       return Error(ID.Loc, "null must be a pointer type");
4807     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4808     return false;
4809   case ValID::t_Undef:
4810     // FIXME: LabelTy should not be a first-class type.
4811     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4812       return Error(ID.Loc, "invalid type for undef constant");
4813     V = UndefValue::get(Ty);
4814     return false;
4815   case ValID::t_EmptyArray:
4816     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4817       return Error(ID.Loc, "invalid empty array initializer");
4818     V = UndefValue::get(Ty);
4819     return false;
4820   case ValID::t_Zero:
4821     // FIXME: LabelTy should not be a first-class type.
4822     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4823       return Error(ID.Loc, "invalid type for null constant");
4824     V = Constant::getNullValue(Ty);
4825     return false;
4826   case ValID::t_None:
4827     if (!Ty->isTokenTy())
4828       return Error(ID.Loc, "invalid type for none constant");
4829     V = Constant::getNullValue(Ty);
4830     return false;
4831   case ValID::t_Constant:
4832     if (ID.ConstantVal->getType() != Ty)
4833       return Error(ID.Loc, "constant expression type mismatch");
4834 
4835     V = ID.ConstantVal;
4836     return false;
4837   case ValID::t_ConstantStruct:
4838   case ValID::t_PackedConstantStruct:
4839     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4840       if (ST->getNumElements() != ID.UIntVal)
4841         return Error(ID.Loc,
4842                      "initializer with struct type has wrong # elements");
4843       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4844         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4845 
4846       // Verify that the elements are compatible with the structtype.
4847       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4848         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4849           return Error(ID.Loc, "element " + Twine(i) +
4850                     " of struct initializer doesn't match struct element type");
4851 
4852       V = ConstantStruct::get(
4853           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4854     } else
4855       return Error(ID.Loc, "constant expression type mismatch");
4856     return false;
4857   }
4858   llvm_unreachable("Invalid ValID");
4859 }
4860 
4861 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4862   C = nullptr;
4863   ValID ID;
4864   auto Loc = Lex.getLoc();
4865   if (ParseValID(ID, /*PFS=*/nullptr))
4866     return true;
4867   switch (ID.Kind) {
4868   case ValID::t_APSInt:
4869   case ValID::t_APFloat:
4870   case ValID::t_Undef:
4871   case ValID::t_Constant:
4872   case ValID::t_ConstantStruct:
4873   case ValID::t_PackedConstantStruct: {
4874     Value *V;
4875     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
4876       return true;
4877     assert(isa<Constant>(V) && "Expected a constant value");
4878     C = cast<Constant>(V);
4879     return false;
4880   }
4881   case ValID::t_Null:
4882     C = Constant::getNullValue(Ty);
4883     return false;
4884   default:
4885     return Error(Loc, "expected a constant value");
4886   }
4887 }
4888 
4889 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4890   V = nullptr;
4891   ValID ID;
4892   return ParseValID(ID, PFS) ||
4893          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
4894 }
4895 
4896 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4897   Type *Ty = nullptr;
4898   return ParseType(Ty) ||
4899          ParseValue(Ty, V, PFS);
4900 }
4901 
4902 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4903                                       PerFunctionState &PFS) {
4904   Value *V;
4905   Loc = Lex.getLoc();
4906   if (ParseTypeAndValue(V, PFS)) return true;
4907   if (!isa<BasicBlock>(V))
4908     return Error(Loc, "expected a basic block");
4909   BB = cast<BasicBlock>(V);
4910   return false;
4911 }
4912 
4913 /// FunctionHeader
4914 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
4915 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
4916 ///       '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC
4917 ///       OptionalPrefix OptionalPrologue OptPersonalityFn
4918 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4919   // Parse the linkage.
4920   LocTy LinkageLoc = Lex.getLoc();
4921   unsigned Linkage;
4922   unsigned Visibility;
4923   unsigned DLLStorageClass;
4924   bool DSOLocal;
4925   AttrBuilder RetAttrs;
4926   unsigned CC;
4927   bool HasLinkage;
4928   Type *RetType = nullptr;
4929   LocTy RetTypeLoc = Lex.getLoc();
4930   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
4931                            DSOLocal) ||
4932       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4933       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4934     return true;
4935 
4936   // Verify that the linkage is ok.
4937   switch ((GlobalValue::LinkageTypes)Linkage) {
4938   case GlobalValue::ExternalLinkage:
4939     break; // always ok.
4940   case GlobalValue::ExternalWeakLinkage:
4941     if (isDefine)
4942       return Error(LinkageLoc, "invalid linkage for function definition");
4943     break;
4944   case GlobalValue::PrivateLinkage:
4945   case GlobalValue::InternalLinkage:
4946   case GlobalValue::AvailableExternallyLinkage:
4947   case GlobalValue::LinkOnceAnyLinkage:
4948   case GlobalValue::LinkOnceODRLinkage:
4949   case GlobalValue::WeakAnyLinkage:
4950   case GlobalValue::WeakODRLinkage:
4951     if (!isDefine)
4952       return Error(LinkageLoc, "invalid linkage for function declaration");
4953     break;
4954   case GlobalValue::AppendingLinkage:
4955   case GlobalValue::CommonLinkage:
4956     return Error(LinkageLoc, "invalid function linkage type");
4957   }
4958 
4959   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4960     return Error(LinkageLoc,
4961                  "symbol with local linkage must have default visibility");
4962 
4963   if (!FunctionType::isValidReturnType(RetType))
4964     return Error(RetTypeLoc, "invalid function return type");
4965 
4966   LocTy NameLoc = Lex.getLoc();
4967 
4968   std::string FunctionName;
4969   if (Lex.getKind() == lltok::GlobalVar) {
4970     FunctionName = Lex.getStrVal();
4971   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4972     unsigned NameID = Lex.getUIntVal();
4973 
4974     if (NameID != NumberedVals.size())
4975       return TokError("function expected to be numbered '%" +
4976                       Twine(NumberedVals.size()) + "'");
4977   } else {
4978     return TokError("expected function name");
4979   }
4980 
4981   Lex.Lex();
4982 
4983   if (Lex.getKind() != lltok::lparen)
4984     return TokError("expected '(' in function argument list");
4985 
4986   SmallVector<ArgInfo, 8> ArgList;
4987   bool isVarArg;
4988   AttrBuilder FuncAttrs;
4989   std::vector<unsigned> FwdRefAttrGrps;
4990   LocTy BuiltinLoc;
4991   std::string Section;
4992   unsigned Alignment;
4993   std::string GC;
4994   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4995   Constant *Prefix = nullptr;
4996   Constant *Prologue = nullptr;
4997   Constant *PersonalityFn = nullptr;
4998   Comdat *C;
4999 
5000   if (ParseArgumentList(ArgList, isVarArg) ||
5001       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5002       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5003                                  BuiltinLoc) ||
5004       (EatIfPresent(lltok::kw_section) &&
5005        ParseStringConstant(Section)) ||
5006       parseOptionalComdat(FunctionName, C) ||
5007       ParseOptionalAlignment(Alignment) ||
5008       (EatIfPresent(lltok::kw_gc) &&
5009        ParseStringConstant(GC)) ||
5010       (EatIfPresent(lltok::kw_prefix) &&
5011        ParseGlobalTypeAndValue(Prefix)) ||
5012       (EatIfPresent(lltok::kw_prologue) &&
5013        ParseGlobalTypeAndValue(Prologue)) ||
5014       (EatIfPresent(lltok::kw_personality) &&
5015        ParseGlobalTypeAndValue(PersonalityFn)))
5016     return true;
5017 
5018   if (FuncAttrs.contains(Attribute::Builtin))
5019     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5020 
5021   // If the alignment was parsed as an attribute, move to the alignment field.
5022   if (FuncAttrs.hasAlignmentAttr()) {
5023     Alignment = FuncAttrs.getAlignment();
5024     FuncAttrs.removeAttribute(Attribute::Alignment);
5025   }
5026 
5027   // Okay, if we got here, the function is syntactically valid.  Convert types
5028   // and do semantic checks.
5029   std::vector<Type*> ParamTypeList;
5030   SmallVector<AttributeSet, 8> Attrs;
5031 
5032   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5033     ParamTypeList.push_back(ArgList[i].Ty);
5034     Attrs.push_back(ArgList[i].Attrs);
5035   }
5036 
5037   AttributeList PAL =
5038       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5039                          AttributeSet::get(Context, RetAttrs), Attrs);
5040 
5041   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5042     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5043 
5044   FunctionType *FT =
5045     FunctionType::get(RetType, ParamTypeList, isVarArg);
5046   PointerType *PFT = PointerType::getUnqual(FT);
5047 
5048   Fn = nullptr;
5049   if (!FunctionName.empty()) {
5050     // If this was a definition of a forward reference, remove the definition
5051     // from the forward reference table and fill in the forward ref.
5052     auto FRVI = ForwardRefVals.find(FunctionName);
5053     if (FRVI != ForwardRefVals.end()) {
5054       Fn = M->getFunction(FunctionName);
5055       if (!Fn)
5056         return Error(FRVI->second.second, "invalid forward reference to "
5057                      "function as global value!");
5058       if (Fn->getType() != PFT)
5059         return Error(FRVI->second.second, "invalid forward reference to "
5060                      "function '" + FunctionName + "' with wrong type!");
5061 
5062       ForwardRefVals.erase(FRVI);
5063     } else if ((Fn = M->getFunction(FunctionName))) {
5064       // Reject redefinitions.
5065       return Error(NameLoc, "invalid redefinition of function '" +
5066                    FunctionName + "'");
5067     } else if (M->getNamedValue(FunctionName)) {
5068       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5069     }
5070 
5071   } else {
5072     // If this is a definition of a forward referenced function, make sure the
5073     // types agree.
5074     auto I = ForwardRefValIDs.find(NumberedVals.size());
5075     if (I != ForwardRefValIDs.end()) {
5076       Fn = cast<Function>(I->second.first);
5077       if (Fn->getType() != PFT)
5078         return Error(NameLoc, "type of definition and forward reference of '@" +
5079                      Twine(NumberedVals.size()) + "' disagree");
5080       ForwardRefValIDs.erase(I);
5081     }
5082   }
5083 
5084   if (!Fn)
5085     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
5086   else // Move the forward-reference to the correct spot in the module.
5087     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5088 
5089   if (FunctionName.empty())
5090     NumberedVals.push_back(Fn);
5091 
5092   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5093   maybeSetDSOLocal(DSOLocal, *Fn);
5094   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5095   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5096   Fn->setCallingConv(CC);
5097   Fn->setAttributes(PAL);
5098   Fn->setUnnamedAddr(UnnamedAddr);
5099   Fn->setAlignment(Alignment);
5100   Fn->setSection(Section);
5101   Fn->setComdat(C);
5102   Fn->setPersonalityFn(PersonalityFn);
5103   if (!GC.empty()) Fn->setGC(GC);
5104   Fn->setPrefixData(Prefix);
5105   Fn->setPrologueData(Prologue);
5106   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5107 
5108   // Add all of the arguments we parsed to the function.
5109   Function::arg_iterator ArgIt = Fn->arg_begin();
5110   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5111     // If the argument has a name, insert it into the argument symbol table.
5112     if (ArgList[i].Name.empty()) continue;
5113 
5114     // Set the name, if it conflicted, it will be auto-renamed.
5115     ArgIt->setName(ArgList[i].Name);
5116 
5117     if (ArgIt->getName() != ArgList[i].Name)
5118       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5119                    ArgList[i].Name + "'");
5120   }
5121 
5122   if (isDefine)
5123     return false;
5124 
5125   // Check the declaration has no block address forward references.
5126   ValID ID;
5127   if (FunctionName.empty()) {
5128     ID.Kind = ValID::t_GlobalID;
5129     ID.UIntVal = NumberedVals.size() - 1;
5130   } else {
5131     ID.Kind = ValID::t_GlobalName;
5132     ID.StrVal = FunctionName;
5133   }
5134   auto Blocks = ForwardRefBlockAddresses.find(ID);
5135   if (Blocks != ForwardRefBlockAddresses.end())
5136     return Error(Blocks->first.Loc,
5137                  "cannot take blockaddress inside a declaration");
5138   return false;
5139 }
5140 
5141 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5142   ValID ID;
5143   if (FunctionNumber == -1) {
5144     ID.Kind = ValID::t_GlobalName;
5145     ID.StrVal = F.getName();
5146   } else {
5147     ID.Kind = ValID::t_GlobalID;
5148     ID.UIntVal = FunctionNumber;
5149   }
5150 
5151   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5152   if (Blocks == P.ForwardRefBlockAddresses.end())
5153     return false;
5154 
5155   for (const auto &I : Blocks->second) {
5156     const ValID &BBID = I.first;
5157     GlobalValue *GV = I.second;
5158 
5159     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5160            "Expected local id or name");
5161     BasicBlock *BB;
5162     if (BBID.Kind == ValID::t_LocalName)
5163       BB = GetBB(BBID.StrVal, BBID.Loc);
5164     else
5165       BB = GetBB(BBID.UIntVal, BBID.Loc);
5166     if (!BB)
5167       return P.Error(BBID.Loc, "referenced value is not a basic block");
5168 
5169     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5170     GV->eraseFromParent();
5171   }
5172 
5173   P.ForwardRefBlockAddresses.erase(Blocks);
5174   return false;
5175 }
5176 
5177 /// ParseFunctionBody
5178 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5179 bool LLParser::ParseFunctionBody(Function &Fn) {
5180   if (Lex.getKind() != lltok::lbrace)
5181     return TokError("expected '{' in function body");
5182   Lex.Lex();  // eat the {.
5183 
5184   int FunctionNumber = -1;
5185   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5186 
5187   PerFunctionState PFS(*this, Fn, FunctionNumber);
5188 
5189   // Resolve block addresses and allow basic blocks to be forward-declared
5190   // within this function.
5191   if (PFS.resolveForwardRefBlockAddresses())
5192     return true;
5193   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5194 
5195   // We need at least one basic block.
5196   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5197     return TokError("function body requires at least one basic block");
5198 
5199   while (Lex.getKind() != lltok::rbrace &&
5200          Lex.getKind() != lltok::kw_uselistorder)
5201     if (ParseBasicBlock(PFS)) return true;
5202 
5203   while (Lex.getKind() != lltok::rbrace)
5204     if (ParseUseListOrder(&PFS))
5205       return true;
5206 
5207   // Eat the }.
5208   Lex.Lex();
5209 
5210   // Verify function is ok.
5211   return PFS.FinishFunction();
5212 }
5213 
5214 /// ParseBasicBlock
5215 ///   ::= LabelStr? Instruction*
5216 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5217   // If this basic block starts out with a name, remember it.
5218   std::string Name;
5219   LocTy NameLoc = Lex.getLoc();
5220   if (Lex.getKind() == lltok::LabelStr) {
5221     Name = Lex.getStrVal();
5222     Lex.Lex();
5223   }
5224 
5225   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5226   if (!BB)
5227     return Error(NameLoc,
5228                  "unable to create block named '" + Name + "'");
5229 
5230   std::string NameStr;
5231 
5232   // Parse the instructions in this block until we get a terminator.
5233   Instruction *Inst;
5234   do {
5235     // This instruction may have three possibilities for a name: a) none
5236     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5237     LocTy NameLoc = Lex.getLoc();
5238     int NameID = -1;
5239     NameStr = "";
5240 
5241     if (Lex.getKind() == lltok::LocalVarID) {
5242       NameID = Lex.getUIntVal();
5243       Lex.Lex();
5244       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5245         return true;
5246     } else if (Lex.getKind() == lltok::LocalVar) {
5247       NameStr = Lex.getStrVal();
5248       Lex.Lex();
5249       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5250         return true;
5251     }
5252 
5253     switch (ParseInstruction(Inst, BB, PFS)) {
5254     default: llvm_unreachable("Unknown ParseInstruction result!");
5255     case InstError: return true;
5256     case InstNormal:
5257       BB->getInstList().push_back(Inst);
5258 
5259       // With a normal result, we check to see if the instruction is followed by
5260       // a comma and metadata.
5261       if (EatIfPresent(lltok::comma))
5262         if (ParseInstructionMetadata(*Inst))
5263           return true;
5264       break;
5265     case InstExtraComma:
5266       BB->getInstList().push_back(Inst);
5267 
5268       // If the instruction parser ate an extra comma at the end of it, it
5269       // *must* be followed by metadata.
5270       if (ParseInstructionMetadata(*Inst))
5271         return true;
5272       break;
5273     }
5274 
5275     // Set the name on the instruction.
5276     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5277   } while (!isa<TerminatorInst>(Inst));
5278 
5279   return false;
5280 }
5281 
5282 //===----------------------------------------------------------------------===//
5283 // Instruction Parsing.
5284 //===----------------------------------------------------------------------===//
5285 
5286 /// ParseInstruction - Parse one of the many different instructions.
5287 ///
5288 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5289                                PerFunctionState &PFS) {
5290   lltok::Kind Token = Lex.getKind();
5291   if (Token == lltok::Eof)
5292     return TokError("found end of file when expecting more instructions");
5293   LocTy Loc = Lex.getLoc();
5294   unsigned KeywordVal = Lex.getUIntVal();
5295   Lex.Lex();  // Eat the keyword.
5296 
5297   switch (Token) {
5298   default:                    return Error(Loc, "expected instruction opcode");
5299   // Terminator Instructions.
5300   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5301   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5302   case lltok::kw_br:          return ParseBr(Inst, PFS);
5303   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5304   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5305   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5306   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5307   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5308   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5309   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5310   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5311   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5312   // Binary Operators.
5313   case lltok::kw_add:
5314   case lltok::kw_sub:
5315   case lltok::kw_mul:
5316   case lltok::kw_shl: {
5317     bool NUW = EatIfPresent(lltok::kw_nuw);
5318     bool NSW = EatIfPresent(lltok::kw_nsw);
5319     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5320 
5321     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5322 
5323     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5324     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5325     return false;
5326   }
5327   case lltok::kw_fadd:
5328   case lltok::kw_fsub:
5329   case lltok::kw_fmul:
5330   case lltok::kw_fdiv:
5331   case lltok::kw_frem: {
5332     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5333     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5334     if (Res != 0)
5335       return Res;
5336     if (FMF.any())
5337       Inst->setFastMathFlags(FMF);
5338     return 0;
5339   }
5340 
5341   case lltok::kw_sdiv:
5342   case lltok::kw_udiv:
5343   case lltok::kw_lshr:
5344   case lltok::kw_ashr: {
5345     bool Exact = EatIfPresent(lltok::kw_exact);
5346 
5347     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5348     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5349     return false;
5350   }
5351 
5352   case lltok::kw_urem:
5353   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5354   case lltok::kw_and:
5355   case lltok::kw_or:
5356   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5357   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5358   case lltok::kw_fcmp: {
5359     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5360     int Res = ParseCompare(Inst, PFS, KeywordVal);
5361     if (Res != 0)
5362       return Res;
5363     if (FMF.any())
5364       Inst->setFastMathFlags(FMF);
5365     return 0;
5366   }
5367 
5368   // Casts.
5369   case lltok::kw_trunc:
5370   case lltok::kw_zext:
5371   case lltok::kw_sext:
5372   case lltok::kw_fptrunc:
5373   case lltok::kw_fpext:
5374   case lltok::kw_bitcast:
5375   case lltok::kw_addrspacecast:
5376   case lltok::kw_uitofp:
5377   case lltok::kw_sitofp:
5378   case lltok::kw_fptoui:
5379   case lltok::kw_fptosi:
5380   case lltok::kw_inttoptr:
5381   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5382   // Other.
5383   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5384   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5385   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5386   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5387   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5388   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5389   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5390   // Call.
5391   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5392   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5393   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5394   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5395   // Memory.
5396   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5397   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5398   case lltok::kw_store:          return ParseStore(Inst, PFS);
5399   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5400   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5401   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5402   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5403   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5404   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5405   }
5406 }
5407 
5408 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5409 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5410   if (Opc == Instruction::FCmp) {
5411     switch (Lex.getKind()) {
5412     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5413     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5414     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5415     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5416     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5417     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5418     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5419     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5420     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5421     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5422     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5423     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5424     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5425     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5426     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5427     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5428     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5429     }
5430   } else {
5431     switch (Lex.getKind()) {
5432     default: return TokError("expected icmp predicate (e.g. 'eq')");
5433     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5434     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5435     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5436     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5437     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5438     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5439     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5440     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5441     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5442     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5443     }
5444   }
5445   Lex.Lex();
5446   return false;
5447 }
5448 
5449 //===----------------------------------------------------------------------===//
5450 // Terminator Instructions.
5451 //===----------------------------------------------------------------------===//
5452 
5453 /// ParseRet - Parse a return instruction.
5454 ///   ::= 'ret' void (',' !dbg, !1)*
5455 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5456 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5457                         PerFunctionState &PFS) {
5458   SMLoc TypeLoc = Lex.getLoc();
5459   Type *Ty = nullptr;
5460   if (ParseType(Ty, true /*void allowed*/)) return true;
5461 
5462   Type *ResType = PFS.getFunction().getReturnType();
5463 
5464   if (Ty->isVoidTy()) {
5465     if (!ResType->isVoidTy())
5466       return Error(TypeLoc, "value doesn't match function result type '" +
5467                    getTypeString(ResType) + "'");
5468 
5469     Inst = ReturnInst::Create(Context);
5470     return false;
5471   }
5472 
5473   Value *RV;
5474   if (ParseValue(Ty, RV, PFS)) return true;
5475 
5476   if (ResType != RV->getType())
5477     return Error(TypeLoc, "value doesn't match function result type '" +
5478                  getTypeString(ResType) + "'");
5479 
5480   Inst = ReturnInst::Create(Context, RV);
5481   return false;
5482 }
5483 
5484 /// ParseBr
5485 ///   ::= 'br' TypeAndValue
5486 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5487 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5488   LocTy Loc, Loc2;
5489   Value *Op0;
5490   BasicBlock *Op1, *Op2;
5491   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5492 
5493   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5494     Inst = BranchInst::Create(BB);
5495     return false;
5496   }
5497 
5498   if (Op0->getType() != Type::getInt1Ty(Context))
5499     return Error(Loc, "branch condition must have 'i1' type");
5500 
5501   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5502       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5503       ParseToken(lltok::comma, "expected ',' after true destination") ||
5504       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5505     return true;
5506 
5507   Inst = BranchInst::Create(Op1, Op2, Op0);
5508   return false;
5509 }
5510 
5511 /// ParseSwitch
5512 ///  Instruction
5513 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5514 ///  JumpTable
5515 ///    ::= (TypeAndValue ',' TypeAndValue)*
5516 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5517   LocTy CondLoc, BBLoc;
5518   Value *Cond;
5519   BasicBlock *DefaultBB;
5520   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5521       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5522       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5523       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5524     return true;
5525 
5526   if (!Cond->getType()->isIntegerTy())
5527     return Error(CondLoc, "switch condition must have integer type");
5528 
5529   // Parse the jump table pairs.
5530   SmallPtrSet<Value*, 32> SeenCases;
5531   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5532   while (Lex.getKind() != lltok::rsquare) {
5533     Value *Constant;
5534     BasicBlock *DestBB;
5535 
5536     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5537         ParseToken(lltok::comma, "expected ',' after case value") ||
5538         ParseTypeAndBasicBlock(DestBB, PFS))
5539       return true;
5540 
5541     if (!SeenCases.insert(Constant).second)
5542       return Error(CondLoc, "duplicate case value in switch");
5543     if (!isa<ConstantInt>(Constant))
5544       return Error(CondLoc, "case value is not a constant integer");
5545 
5546     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5547   }
5548 
5549   Lex.Lex();  // Eat the ']'.
5550 
5551   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5552   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5553     SI->addCase(Table[i].first, Table[i].second);
5554   Inst = SI;
5555   return false;
5556 }
5557 
5558 /// ParseIndirectBr
5559 ///  Instruction
5560 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5561 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5562   LocTy AddrLoc;
5563   Value *Address;
5564   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5565       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5566       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5567     return true;
5568 
5569   if (!Address->getType()->isPointerTy())
5570     return Error(AddrLoc, "indirectbr address must have pointer type");
5571 
5572   // Parse the destination list.
5573   SmallVector<BasicBlock*, 16> DestList;
5574 
5575   if (Lex.getKind() != lltok::rsquare) {
5576     BasicBlock *DestBB;
5577     if (ParseTypeAndBasicBlock(DestBB, PFS))
5578       return true;
5579     DestList.push_back(DestBB);
5580 
5581     while (EatIfPresent(lltok::comma)) {
5582       if (ParseTypeAndBasicBlock(DestBB, PFS))
5583         return true;
5584       DestList.push_back(DestBB);
5585     }
5586   }
5587 
5588   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5589     return true;
5590 
5591   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5592   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5593     IBI->addDestination(DestList[i]);
5594   Inst = IBI;
5595   return false;
5596 }
5597 
5598 /// ParseInvoke
5599 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5600 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5601 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5602   LocTy CallLoc = Lex.getLoc();
5603   AttrBuilder RetAttrs, FnAttrs;
5604   std::vector<unsigned> FwdRefAttrGrps;
5605   LocTy NoBuiltinLoc;
5606   unsigned CC;
5607   Type *RetType = nullptr;
5608   LocTy RetTypeLoc;
5609   ValID CalleeID;
5610   SmallVector<ParamInfo, 16> ArgList;
5611   SmallVector<OperandBundleDef, 2> BundleList;
5612 
5613   BasicBlock *NormalBB, *UnwindBB;
5614   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5615       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5616       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5617       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5618                                  NoBuiltinLoc) ||
5619       ParseOptionalOperandBundles(BundleList, PFS) ||
5620       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5621       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5622       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5623       ParseTypeAndBasicBlock(UnwindBB, PFS))
5624     return true;
5625 
5626   // If RetType is a non-function pointer type, then this is the short syntax
5627   // for the call, which means that RetType is just the return type.  Infer the
5628   // rest of the function argument types from the arguments that are present.
5629   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5630   if (!Ty) {
5631     // Pull out the types of all of the arguments...
5632     std::vector<Type*> ParamTypes;
5633     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5634       ParamTypes.push_back(ArgList[i].V->getType());
5635 
5636     if (!FunctionType::isValidReturnType(RetType))
5637       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5638 
5639     Ty = FunctionType::get(RetType, ParamTypes, false);
5640   }
5641 
5642   CalleeID.FTy = Ty;
5643 
5644   // Look up the callee.
5645   Value *Callee;
5646   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
5647                           /*IsCall=*/true))
5648     return true;
5649 
5650   // Set up the Attribute for the function.
5651   SmallVector<Value *, 8> Args;
5652   SmallVector<AttributeSet, 8> ArgAttrs;
5653 
5654   // Loop through FunctionType's arguments and ensure they are specified
5655   // correctly.  Also, gather any parameter attributes.
5656   FunctionType::param_iterator I = Ty->param_begin();
5657   FunctionType::param_iterator E = Ty->param_end();
5658   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5659     Type *ExpectedTy = nullptr;
5660     if (I != E) {
5661       ExpectedTy = *I++;
5662     } else if (!Ty->isVarArg()) {
5663       return Error(ArgList[i].Loc, "too many arguments specified");
5664     }
5665 
5666     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5667       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5668                    getTypeString(ExpectedTy) + "'");
5669     Args.push_back(ArgList[i].V);
5670     ArgAttrs.push_back(ArgList[i].Attrs);
5671   }
5672 
5673   if (I != E)
5674     return Error(CallLoc, "not enough parameters specified for call");
5675 
5676   if (FnAttrs.hasAlignmentAttr())
5677     return Error(CallLoc, "invoke instructions may not have an alignment");
5678 
5679   // Finish off the Attribute and check them
5680   AttributeList PAL =
5681       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5682                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5683 
5684   InvokeInst *II =
5685       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5686   II->setCallingConv(CC);
5687   II->setAttributes(PAL);
5688   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5689   Inst = II;
5690   return false;
5691 }
5692 
5693 /// ParseResume
5694 ///   ::= 'resume' TypeAndValue
5695 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5696   Value *Exn; LocTy ExnLoc;
5697   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5698     return true;
5699 
5700   ResumeInst *RI = ResumeInst::Create(Exn);
5701   Inst = RI;
5702   return false;
5703 }
5704 
5705 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5706                                   PerFunctionState &PFS) {
5707   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5708     return true;
5709 
5710   while (Lex.getKind() != lltok::rsquare) {
5711     // If this isn't the first argument, we need a comma.
5712     if (!Args.empty() &&
5713         ParseToken(lltok::comma, "expected ',' in argument list"))
5714       return true;
5715 
5716     // Parse the argument.
5717     LocTy ArgLoc;
5718     Type *ArgTy = nullptr;
5719     if (ParseType(ArgTy, ArgLoc))
5720       return true;
5721 
5722     Value *V;
5723     if (ArgTy->isMetadataTy()) {
5724       if (ParseMetadataAsValue(V, PFS))
5725         return true;
5726     } else {
5727       if (ParseValue(ArgTy, V, PFS))
5728         return true;
5729     }
5730     Args.push_back(V);
5731   }
5732 
5733   Lex.Lex();  // Lex the ']'.
5734   return false;
5735 }
5736 
5737 /// ParseCleanupRet
5738 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5739 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5740   Value *CleanupPad = nullptr;
5741 
5742   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5743     return true;
5744 
5745   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5746     return true;
5747 
5748   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5749     return true;
5750 
5751   BasicBlock *UnwindBB = nullptr;
5752   if (Lex.getKind() == lltok::kw_to) {
5753     Lex.Lex();
5754     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5755       return true;
5756   } else {
5757     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5758       return true;
5759     }
5760   }
5761 
5762   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5763   return false;
5764 }
5765 
5766 /// ParseCatchRet
5767 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5768 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5769   Value *CatchPad = nullptr;
5770 
5771   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5772     return true;
5773 
5774   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5775     return true;
5776 
5777   BasicBlock *BB;
5778   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5779       ParseTypeAndBasicBlock(BB, PFS))
5780       return true;
5781 
5782   Inst = CatchReturnInst::Create(CatchPad, BB);
5783   return false;
5784 }
5785 
5786 /// ParseCatchSwitch
5787 ///   ::= 'catchswitch' within Parent
5788 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5789   Value *ParentPad;
5790 
5791   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5792     return true;
5793 
5794   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5795       Lex.getKind() != lltok::LocalVarID)
5796     return TokError("expected scope value for catchswitch");
5797 
5798   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5799     return true;
5800 
5801   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5802     return true;
5803 
5804   SmallVector<BasicBlock *, 32> Table;
5805   do {
5806     BasicBlock *DestBB;
5807     if (ParseTypeAndBasicBlock(DestBB, PFS))
5808       return true;
5809     Table.push_back(DestBB);
5810   } while (EatIfPresent(lltok::comma));
5811 
5812   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5813     return true;
5814 
5815   if (ParseToken(lltok::kw_unwind,
5816                  "expected 'unwind' after catchswitch scope"))
5817     return true;
5818 
5819   BasicBlock *UnwindBB = nullptr;
5820   if (EatIfPresent(lltok::kw_to)) {
5821     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5822       return true;
5823   } else {
5824     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5825       return true;
5826   }
5827 
5828   auto *CatchSwitch =
5829       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5830   for (BasicBlock *DestBB : Table)
5831     CatchSwitch->addHandler(DestBB);
5832   Inst = CatchSwitch;
5833   return false;
5834 }
5835 
5836 /// ParseCatchPad
5837 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5838 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5839   Value *CatchSwitch = nullptr;
5840 
5841   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5842     return true;
5843 
5844   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5845     return TokError("expected scope value for catchpad");
5846 
5847   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5848     return true;
5849 
5850   SmallVector<Value *, 8> Args;
5851   if (ParseExceptionArgs(Args, PFS))
5852     return true;
5853 
5854   Inst = CatchPadInst::Create(CatchSwitch, Args);
5855   return false;
5856 }
5857 
5858 /// ParseCleanupPad
5859 ///   ::= 'cleanuppad' within Parent ParamList
5860 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5861   Value *ParentPad = nullptr;
5862 
5863   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5864     return true;
5865 
5866   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5867       Lex.getKind() != lltok::LocalVarID)
5868     return TokError("expected scope value for cleanuppad");
5869 
5870   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5871     return true;
5872 
5873   SmallVector<Value *, 8> Args;
5874   if (ParseExceptionArgs(Args, PFS))
5875     return true;
5876 
5877   Inst = CleanupPadInst::Create(ParentPad, Args);
5878   return false;
5879 }
5880 
5881 //===----------------------------------------------------------------------===//
5882 // Binary Operators.
5883 //===----------------------------------------------------------------------===//
5884 
5885 /// ParseArithmetic
5886 ///  ::= ArithmeticOps TypeAndValue ',' Value
5887 ///
5888 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5889 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5890 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5891                                unsigned Opc, unsigned OperandType) {
5892   LocTy Loc; Value *LHS, *RHS;
5893   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5894       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5895       ParseValue(LHS->getType(), RHS, PFS))
5896     return true;
5897 
5898   bool Valid;
5899   switch (OperandType) {
5900   default: llvm_unreachable("Unknown operand type!");
5901   case 0: // int or FP.
5902     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5903             LHS->getType()->isFPOrFPVectorTy();
5904     break;
5905   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5906   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5907   }
5908 
5909   if (!Valid)
5910     return Error(Loc, "invalid operand type for instruction");
5911 
5912   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5913   return false;
5914 }
5915 
5916 /// ParseLogical
5917 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5918 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5919                             unsigned Opc) {
5920   LocTy Loc; Value *LHS, *RHS;
5921   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5922       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5923       ParseValue(LHS->getType(), RHS, PFS))
5924     return true;
5925 
5926   if (!LHS->getType()->isIntOrIntVectorTy())
5927     return Error(Loc,"instruction requires integer or integer vector operands");
5928 
5929   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5930   return false;
5931 }
5932 
5933 /// ParseCompare
5934 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5935 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5936 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5937                             unsigned Opc) {
5938   // Parse the integer/fp comparison predicate.
5939   LocTy Loc;
5940   unsigned Pred;
5941   Value *LHS, *RHS;
5942   if (ParseCmpPredicate(Pred, Opc) ||
5943       ParseTypeAndValue(LHS, Loc, PFS) ||
5944       ParseToken(lltok::comma, "expected ',' after compare value") ||
5945       ParseValue(LHS->getType(), RHS, PFS))
5946     return true;
5947 
5948   if (Opc == Instruction::FCmp) {
5949     if (!LHS->getType()->isFPOrFPVectorTy())
5950       return Error(Loc, "fcmp requires floating point operands");
5951     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5952   } else {
5953     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5954     if (!LHS->getType()->isIntOrIntVectorTy() &&
5955         !LHS->getType()->isPtrOrPtrVectorTy())
5956       return Error(Loc, "icmp requires integer operands");
5957     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5958   }
5959   return false;
5960 }
5961 
5962 //===----------------------------------------------------------------------===//
5963 // Other Instructions.
5964 //===----------------------------------------------------------------------===//
5965 
5966 
5967 /// ParseCast
5968 ///   ::= CastOpc TypeAndValue 'to' Type
5969 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5970                          unsigned Opc) {
5971   LocTy Loc;
5972   Value *Op;
5973   Type *DestTy = nullptr;
5974   if (ParseTypeAndValue(Op, Loc, PFS) ||
5975       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5976       ParseType(DestTy))
5977     return true;
5978 
5979   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5980     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5981     return Error(Loc, "invalid cast opcode for cast from '" +
5982                  getTypeString(Op->getType()) + "' to '" +
5983                  getTypeString(DestTy) + "'");
5984   }
5985   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5986   return false;
5987 }
5988 
5989 /// ParseSelect
5990 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5991 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5992   LocTy Loc;
5993   Value *Op0, *Op1, *Op2;
5994   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5995       ParseToken(lltok::comma, "expected ',' after select condition") ||
5996       ParseTypeAndValue(Op1, PFS) ||
5997       ParseToken(lltok::comma, "expected ',' after select value") ||
5998       ParseTypeAndValue(Op2, PFS))
5999     return true;
6000 
6001   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6002     return Error(Loc, Reason);
6003 
6004   Inst = SelectInst::Create(Op0, Op1, Op2);
6005   return false;
6006 }
6007 
6008 /// ParseVA_Arg
6009 ///   ::= 'va_arg' TypeAndValue ',' Type
6010 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6011   Value *Op;
6012   Type *EltTy = nullptr;
6013   LocTy TypeLoc;
6014   if (ParseTypeAndValue(Op, PFS) ||
6015       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6016       ParseType(EltTy, TypeLoc))
6017     return true;
6018 
6019   if (!EltTy->isFirstClassType())
6020     return Error(TypeLoc, "va_arg requires operand with first class type");
6021 
6022   Inst = new VAArgInst(Op, EltTy);
6023   return false;
6024 }
6025 
6026 /// ParseExtractElement
6027 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6028 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6029   LocTy Loc;
6030   Value *Op0, *Op1;
6031   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6032       ParseToken(lltok::comma, "expected ',' after extract value") ||
6033       ParseTypeAndValue(Op1, PFS))
6034     return true;
6035 
6036   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6037     return Error(Loc, "invalid extractelement operands");
6038 
6039   Inst = ExtractElementInst::Create(Op0, Op1);
6040   return false;
6041 }
6042 
6043 /// ParseInsertElement
6044 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6045 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6046   LocTy Loc;
6047   Value *Op0, *Op1, *Op2;
6048   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6049       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6050       ParseTypeAndValue(Op1, PFS) ||
6051       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6052       ParseTypeAndValue(Op2, PFS))
6053     return true;
6054 
6055   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6056     return Error(Loc, "invalid insertelement operands");
6057 
6058   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6059   return false;
6060 }
6061 
6062 /// ParseShuffleVector
6063 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6064 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6065   LocTy Loc;
6066   Value *Op0, *Op1, *Op2;
6067   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6068       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6069       ParseTypeAndValue(Op1, PFS) ||
6070       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6071       ParseTypeAndValue(Op2, PFS))
6072     return true;
6073 
6074   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6075     return Error(Loc, "invalid shufflevector operands");
6076 
6077   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6078   return false;
6079 }
6080 
6081 /// ParsePHI
6082 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6083 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6084   Type *Ty = nullptr;  LocTy TypeLoc;
6085   Value *Op0, *Op1;
6086 
6087   if (ParseType(Ty, TypeLoc) ||
6088       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6089       ParseValue(Ty, Op0, PFS) ||
6090       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6091       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6092       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6093     return true;
6094 
6095   bool AteExtraComma = false;
6096   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6097 
6098   while (true) {
6099     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6100 
6101     if (!EatIfPresent(lltok::comma))
6102       break;
6103 
6104     if (Lex.getKind() == lltok::MetadataVar) {
6105       AteExtraComma = true;
6106       break;
6107     }
6108 
6109     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6110         ParseValue(Ty, Op0, PFS) ||
6111         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6112         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6113         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6114       return true;
6115   }
6116 
6117   if (!Ty->isFirstClassType())
6118     return Error(TypeLoc, "phi node must have first class type");
6119 
6120   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6121   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6122     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6123   Inst = PN;
6124   return AteExtraComma ? InstExtraComma : InstNormal;
6125 }
6126 
6127 /// ParseLandingPad
6128 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6129 /// Clause
6130 ///   ::= 'catch' TypeAndValue
6131 ///   ::= 'filter'
6132 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6133 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6134   Type *Ty = nullptr; LocTy TyLoc;
6135 
6136   if (ParseType(Ty, TyLoc))
6137     return true;
6138 
6139   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6140   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6141 
6142   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6143     LandingPadInst::ClauseType CT;
6144     if (EatIfPresent(lltok::kw_catch))
6145       CT = LandingPadInst::Catch;
6146     else if (EatIfPresent(lltok::kw_filter))
6147       CT = LandingPadInst::Filter;
6148     else
6149       return TokError("expected 'catch' or 'filter' clause type");
6150 
6151     Value *V;
6152     LocTy VLoc;
6153     if (ParseTypeAndValue(V, VLoc, PFS))
6154       return true;
6155 
6156     // A 'catch' type expects a non-array constant. A filter clause expects an
6157     // array constant.
6158     if (CT == LandingPadInst::Catch) {
6159       if (isa<ArrayType>(V->getType()))
6160         Error(VLoc, "'catch' clause has an invalid type");
6161     } else {
6162       if (!isa<ArrayType>(V->getType()))
6163         Error(VLoc, "'filter' clause has an invalid type");
6164     }
6165 
6166     Constant *CV = dyn_cast<Constant>(V);
6167     if (!CV)
6168       return Error(VLoc, "clause argument must be a constant");
6169     LP->addClause(CV);
6170   }
6171 
6172   Inst = LP.release();
6173   return false;
6174 }
6175 
6176 /// ParseCall
6177 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6178 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6179 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6180 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6181 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6182 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6183 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6184 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6185 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6186                          CallInst::TailCallKind TCK) {
6187   AttrBuilder RetAttrs, FnAttrs;
6188   std::vector<unsigned> FwdRefAttrGrps;
6189   LocTy BuiltinLoc;
6190   unsigned CC;
6191   Type *RetType = nullptr;
6192   LocTy RetTypeLoc;
6193   ValID CalleeID;
6194   SmallVector<ParamInfo, 16> ArgList;
6195   SmallVector<OperandBundleDef, 2> BundleList;
6196   LocTy CallLoc = Lex.getLoc();
6197 
6198   if (TCK != CallInst::TCK_None &&
6199       ParseToken(lltok::kw_call,
6200                  "expected 'tail call', 'musttail call', or 'notail call'"))
6201     return true;
6202 
6203   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6204 
6205   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6206       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6207       ParseValID(CalleeID) ||
6208       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6209                          PFS.getFunction().isVarArg()) ||
6210       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6211       ParseOptionalOperandBundles(BundleList, PFS))
6212     return true;
6213 
6214   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6215     return Error(CallLoc, "fast-math-flags specified for call without "
6216                           "floating-point scalar or vector return type");
6217 
6218   // If RetType is a non-function pointer type, then this is the short syntax
6219   // for the call, which means that RetType is just the return type.  Infer the
6220   // rest of the function argument types from the arguments that are present.
6221   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6222   if (!Ty) {
6223     // Pull out the types of all of the arguments...
6224     std::vector<Type*> ParamTypes;
6225     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6226       ParamTypes.push_back(ArgList[i].V->getType());
6227 
6228     if (!FunctionType::isValidReturnType(RetType))
6229       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6230 
6231     Ty = FunctionType::get(RetType, ParamTypes, false);
6232   }
6233 
6234   CalleeID.FTy = Ty;
6235 
6236   // Look up the callee.
6237   Value *Callee;
6238   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6239                           /*IsCall=*/true))
6240     return true;
6241 
6242   // Set up the Attribute for the function.
6243   SmallVector<AttributeSet, 8> Attrs;
6244 
6245   SmallVector<Value*, 8> Args;
6246 
6247   // Loop through FunctionType's arguments and ensure they are specified
6248   // correctly.  Also, gather any parameter attributes.
6249   FunctionType::param_iterator I = Ty->param_begin();
6250   FunctionType::param_iterator E = Ty->param_end();
6251   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6252     Type *ExpectedTy = nullptr;
6253     if (I != E) {
6254       ExpectedTy = *I++;
6255     } else if (!Ty->isVarArg()) {
6256       return Error(ArgList[i].Loc, "too many arguments specified");
6257     }
6258 
6259     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6260       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6261                    getTypeString(ExpectedTy) + "'");
6262     Args.push_back(ArgList[i].V);
6263     Attrs.push_back(ArgList[i].Attrs);
6264   }
6265 
6266   if (I != E)
6267     return Error(CallLoc, "not enough parameters specified for call");
6268 
6269   if (FnAttrs.hasAlignmentAttr())
6270     return Error(CallLoc, "call instructions may not have an alignment");
6271 
6272   // Finish off the Attribute and check them
6273   AttributeList PAL =
6274       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6275                          AttributeSet::get(Context, RetAttrs), Attrs);
6276 
6277   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6278   CI->setTailCallKind(TCK);
6279   CI->setCallingConv(CC);
6280   if (FMF.any())
6281     CI->setFastMathFlags(FMF);
6282   CI->setAttributes(PAL);
6283   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6284   Inst = CI;
6285   return false;
6286 }
6287 
6288 //===----------------------------------------------------------------------===//
6289 // Memory Instructions.
6290 //===----------------------------------------------------------------------===//
6291 
6292 /// ParseAlloc
6293 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6294 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6295 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6296   Value *Size = nullptr;
6297   LocTy SizeLoc, TyLoc, ASLoc;
6298   unsigned Alignment = 0;
6299   unsigned AddrSpace = 0;
6300   Type *Ty = nullptr;
6301 
6302   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6303   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6304 
6305   if (ParseType(Ty, TyLoc)) return true;
6306 
6307   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6308     return Error(TyLoc, "invalid type for alloca");
6309 
6310   bool AteExtraComma = false;
6311   if (EatIfPresent(lltok::comma)) {
6312     if (Lex.getKind() == lltok::kw_align) {
6313       if (ParseOptionalAlignment(Alignment))
6314         return true;
6315       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6316         return true;
6317     } else if (Lex.getKind() == lltok::kw_addrspace) {
6318       ASLoc = Lex.getLoc();
6319       if (ParseOptionalAddrSpace(AddrSpace))
6320         return true;
6321     } else if (Lex.getKind() == lltok::MetadataVar) {
6322       AteExtraComma = true;
6323     } else {
6324       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6325         return true;
6326       if (EatIfPresent(lltok::comma)) {
6327         if (Lex.getKind() == lltok::kw_align) {
6328           if (ParseOptionalAlignment(Alignment))
6329             return true;
6330           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6331             return true;
6332         } else if (Lex.getKind() == lltok::kw_addrspace) {
6333           ASLoc = Lex.getLoc();
6334           if (ParseOptionalAddrSpace(AddrSpace))
6335             return true;
6336         } else if (Lex.getKind() == lltok::MetadataVar) {
6337           AteExtraComma = true;
6338         }
6339       }
6340     }
6341   }
6342 
6343   if (Size && !Size->getType()->isIntegerTy())
6344     return Error(SizeLoc, "element count must have integer type");
6345 
6346   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6347   AI->setUsedWithInAlloca(IsInAlloca);
6348   AI->setSwiftError(IsSwiftError);
6349   Inst = AI;
6350   return AteExtraComma ? InstExtraComma : InstNormal;
6351 }
6352 
6353 /// ParseLoad
6354 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6355 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6356 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6357 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6358   Value *Val; LocTy Loc;
6359   unsigned Alignment = 0;
6360   bool AteExtraComma = false;
6361   bool isAtomic = false;
6362   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6363   SyncScope::ID SSID = SyncScope::System;
6364 
6365   if (Lex.getKind() == lltok::kw_atomic) {
6366     isAtomic = true;
6367     Lex.Lex();
6368   }
6369 
6370   bool isVolatile = false;
6371   if (Lex.getKind() == lltok::kw_volatile) {
6372     isVolatile = true;
6373     Lex.Lex();
6374   }
6375 
6376   Type *Ty;
6377   LocTy ExplicitTypeLoc = Lex.getLoc();
6378   if (ParseType(Ty) ||
6379       ParseToken(lltok::comma, "expected comma after load's type") ||
6380       ParseTypeAndValue(Val, Loc, PFS) ||
6381       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6382       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6383     return true;
6384 
6385   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6386     return Error(Loc, "load operand must be a pointer to a first class type");
6387   if (isAtomic && !Alignment)
6388     return Error(Loc, "atomic load must have explicit non-zero alignment");
6389   if (Ordering == AtomicOrdering::Release ||
6390       Ordering == AtomicOrdering::AcquireRelease)
6391     return Error(Loc, "atomic load cannot use Release ordering");
6392 
6393   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6394     return Error(ExplicitTypeLoc,
6395                  "explicit pointee type doesn't match operand's pointee type");
6396 
6397   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6398   return AteExtraComma ? InstExtraComma : InstNormal;
6399 }
6400 
6401 /// ParseStore
6402 
6403 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6404 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6405 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6406 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6407   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6408   unsigned Alignment = 0;
6409   bool AteExtraComma = false;
6410   bool isAtomic = false;
6411   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6412   SyncScope::ID SSID = SyncScope::System;
6413 
6414   if (Lex.getKind() == lltok::kw_atomic) {
6415     isAtomic = true;
6416     Lex.Lex();
6417   }
6418 
6419   bool isVolatile = false;
6420   if (Lex.getKind() == lltok::kw_volatile) {
6421     isVolatile = true;
6422     Lex.Lex();
6423   }
6424 
6425   if (ParseTypeAndValue(Val, Loc, PFS) ||
6426       ParseToken(lltok::comma, "expected ',' after store operand") ||
6427       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6428       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6429       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6430     return true;
6431 
6432   if (!Ptr->getType()->isPointerTy())
6433     return Error(PtrLoc, "store operand must be a pointer");
6434   if (!Val->getType()->isFirstClassType())
6435     return Error(Loc, "store operand must be a first class value");
6436   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6437     return Error(Loc, "stored value and pointer type do not match");
6438   if (isAtomic && !Alignment)
6439     return Error(Loc, "atomic store must have explicit non-zero alignment");
6440   if (Ordering == AtomicOrdering::Acquire ||
6441       Ordering == AtomicOrdering::AcquireRelease)
6442     return Error(Loc, "atomic store cannot use Acquire ordering");
6443 
6444   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6445   return AteExtraComma ? InstExtraComma : InstNormal;
6446 }
6447 
6448 /// ParseCmpXchg
6449 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6450 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6451 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6452   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6453   bool AteExtraComma = false;
6454   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6455   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6456   SyncScope::ID SSID = SyncScope::System;
6457   bool isVolatile = false;
6458   bool isWeak = false;
6459 
6460   if (EatIfPresent(lltok::kw_weak))
6461     isWeak = true;
6462 
6463   if (EatIfPresent(lltok::kw_volatile))
6464     isVolatile = true;
6465 
6466   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6467       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6468       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6469       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6470       ParseTypeAndValue(New, NewLoc, PFS) ||
6471       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6472       ParseOrdering(FailureOrdering))
6473     return true;
6474 
6475   if (SuccessOrdering == AtomicOrdering::Unordered ||
6476       FailureOrdering == AtomicOrdering::Unordered)
6477     return TokError("cmpxchg cannot be unordered");
6478   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6479     return TokError("cmpxchg failure argument shall be no stronger than the "
6480                     "success argument");
6481   if (FailureOrdering == AtomicOrdering::Release ||
6482       FailureOrdering == AtomicOrdering::AcquireRelease)
6483     return TokError(
6484         "cmpxchg failure ordering cannot include release semantics");
6485   if (!Ptr->getType()->isPointerTy())
6486     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6487   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6488     return Error(CmpLoc, "compare value and pointer type do not match");
6489   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6490     return Error(NewLoc, "new value and pointer type do not match");
6491   if (!New->getType()->isFirstClassType())
6492     return Error(NewLoc, "cmpxchg operand must be a first class value");
6493   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6494       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6495   CXI->setVolatile(isVolatile);
6496   CXI->setWeak(isWeak);
6497   Inst = CXI;
6498   return AteExtraComma ? InstExtraComma : InstNormal;
6499 }
6500 
6501 /// ParseAtomicRMW
6502 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6503 ///       'singlethread'? AtomicOrdering
6504 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6505   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6506   bool AteExtraComma = false;
6507   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6508   SyncScope::ID SSID = SyncScope::System;
6509   bool isVolatile = false;
6510   AtomicRMWInst::BinOp Operation;
6511 
6512   if (EatIfPresent(lltok::kw_volatile))
6513     isVolatile = true;
6514 
6515   switch (Lex.getKind()) {
6516   default: return TokError("expected binary operation in atomicrmw");
6517   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6518   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6519   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6520   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6521   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6522   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6523   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6524   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6525   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6526   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6527   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6528   }
6529   Lex.Lex();  // Eat the operation.
6530 
6531   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6532       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6533       ParseTypeAndValue(Val, ValLoc, PFS) ||
6534       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6535     return true;
6536 
6537   if (Ordering == AtomicOrdering::Unordered)
6538     return TokError("atomicrmw cannot be unordered");
6539   if (!Ptr->getType()->isPointerTy())
6540     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6541   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6542     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6543   if (!Val->getType()->isIntegerTy())
6544     return Error(ValLoc, "atomicrmw operand must be an integer");
6545   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6546   if (Size < 8 || (Size & (Size - 1)))
6547     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6548                          " integer");
6549 
6550   AtomicRMWInst *RMWI =
6551     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6552   RMWI->setVolatile(isVolatile);
6553   Inst = RMWI;
6554   return AteExtraComma ? InstExtraComma : InstNormal;
6555 }
6556 
6557 /// ParseFence
6558 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6559 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6560   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6561   SyncScope::ID SSID = SyncScope::System;
6562   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6563     return true;
6564 
6565   if (Ordering == AtomicOrdering::Unordered)
6566     return TokError("fence cannot be unordered");
6567   if (Ordering == AtomicOrdering::Monotonic)
6568     return TokError("fence cannot be monotonic");
6569 
6570   Inst = new FenceInst(Context, Ordering, SSID);
6571   return InstNormal;
6572 }
6573 
6574 /// ParseGetElementPtr
6575 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6576 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6577   Value *Ptr = nullptr;
6578   Value *Val = nullptr;
6579   LocTy Loc, EltLoc;
6580 
6581   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6582 
6583   Type *Ty = nullptr;
6584   LocTy ExplicitTypeLoc = Lex.getLoc();
6585   if (ParseType(Ty) ||
6586       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6587       ParseTypeAndValue(Ptr, Loc, PFS))
6588     return true;
6589 
6590   Type *BaseType = Ptr->getType();
6591   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6592   if (!BasePointerType)
6593     return Error(Loc, "base of getelementptr must be a pointer");
6594 
6595   if (Ty != BasePointerType->getElementType())
6596     return Error(ExplicitTypeLoc,
6597                  "explicit pointee type doesn't match operand's pointee type");
6598 
6599   SmallVector<Value*, 16> Indices;
6600   bool AteExtraComma = false;
6601   // GEP returns a vector of pointers if at least one of parameters is a vector.
6602   // All vector parameters should have the same vector width.
6603   unsigned GEPWidth = BaseType->isVectorTy() ?
6604     BaseType->getVectorNumElements() : 0;
6605 
6606   while (EatIfPresent(lltok::comma)) {
6607     if (Lex.getKind() == lltok::MetadataVar) {
6608       AteExtraComma = true;
6609       break;
6610     }
6611     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6612     if (!Val->getType()->isIntOrIntVectorTy())
6613       return Error(EltLoc, "getelementptr index must be an integer");
6614 
6615     if (Val->getType()->isVectorTy()) {
6616       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6617       if (GEPWidth && GEPWidth != ValNumEl)
6618         return Error(EltLoc,
6619           "getelementptr vector index has a wrong number of elements");
6620       GEPWidth = ValNumEl;
6621     }
6622     Indices.push_back(Val);
6623   }
6624 
6625   SmallPtrSet<Type*, 4> Visited;
6626   if (!Indices.empty() && !Ty->isSized(&Visited))
6627     return Error(Loc, "base element of getelementptr must be sized");
6628 
6629   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6630     return Error(Loc, "invalid getelementptr indices");
6631   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6632   if (InBounds)
6633     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6634   return AteExtraComma ? InstExtraComma : InstNormal;
6635 }
6636 
6637 /// ParseExtractValue
6638 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6639 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6640   Value *Val; LocTy Loc;
6641   SmallVector<unsigned, 4> Indices;
6642   bool AteExtraComma;
6643   if (ParseTypeAndValue(Val, Loc, PFS) ||
6644       ParseIndexList(Indices, AteExtraComma))
6645     return true;
6646 
6647   if (!Val->getType()->isAggregateType())
6648     return Error(Loc, "extractvalue operand must be aggregate type");
6649 
6650   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6651     return Error(Loc, "invalid indices for extractvalue");
6652   Inst = ExtractValueInst::Create(Val, Indices);
6653   return AteExtraComma ? InstExtraComma : InstNormal;
6654 }
6655 
6656 /// ParseInsertValue
6657 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6658 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6659   Value *Val0, *Val1; LocTy Loc0, Loc1;
6660   SmallVector<unsigned, 4> Indices;
6661   bool AteExtraComma;
6662   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6663       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6664       ParseTypeAndValue(Val1, Loc1, PFS) ||
6665       ParseIndexList(Indices, AteExtraComma))
6666     return true;
6667 
6668   if (!Val0->getType()->isAggregateType())
6669     return Error(Loc0, "insertvalue operand must be aggregate type");
6670 
6671   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6672   if (!IndexedType)
6673     return Error(Loc0, "invalid indices for insertvalue");
6674   if (IndexedType != Val1->getType())
6675     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6676                            getTypeString(Val1->getType()) + "' instead of '" +
6677                            getTypeString(IndexedType) + "'");
6678   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6679   return AteExtraComma ? InstExtraComma : InstNormal;
6680 }
6681 
6682 //===----------------------------------------------------------------------===//
6683 // Embedded metadata.
6684 //===----------------------------------------------------------------------===//
6685 
6686 /// ParseMDNodeVector
6687 ///   ::= { Element (',' Element)* }
6688 /// Element
6689 ///   ::= 'null' | TypeAndValue
6690 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6691   if (ParseToken(lltok::lbrace, "expected '{' here"))
6692     return true;
6693 
6694   // Check for an empty list.
6695   if (EatIfPresent(lltok::rbrace))
6696     return false;
6697 
6698   do {
6699     // Null is a special case since it is typeless.
6700     if (EatIfPresent(lltok::kw_null)) {
6701       Elts.push_back(nullptr);
6702       continue;
6703     }
6704 
6705     Metadata *MD;
6706     if (ParseMetadata(MD, nullptr))
6707       return true;
6708     Elts.push_back(MD);
6709   } while (EatIfPresent(lltok::comma));
6710 
6711   return ParseToken(lltok::rbrace, "expected end of metadata node");
6712 }
6713 
6714 //===----------------------------------------------------------------------===//
6715 // Use-list order directives.
6716 //===----------------------------------------------------------------------===//
6717 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6718                                 SMLoc Loc) {
6719   if (V->use_empty())
6720     return Error(Loc, "value has no uses");
6721 
6722   unsigned NumUses = 0;
6723   SmallDenseMap<const Use *, unsigned, 16> Order;
6724   for (const Use &U : V->uses()) {
6725     if (++NumUses > Indexes.size())
6726       break;
6727     Order[&U] = Indexes[NumUses - 1];
6728   }
6729   if (NumUses < 2)
6730     return Error(Loc, "value only has one use");
6731   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6732     return Error(Loc, "wrong number of indexes, expected " +
6733                           Twine(std::distance(V->use_begin(), V->use_end())));
6734 
6735   V->sortUseList([&](const Use &L, const Use &R) {
6736     return Order.lookup(&L) < Order.lookup(&R);
6737   });
6738   return false;
6739 }
6740 
6741 /// ParseUseListOrderIndexes
6742 ///   ::= '{' uint32 (',' uint32)+ '}'
6743 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6744   SMLoc Loc = Lex.getLoc();
6745   if (ParseToken(lltok::lbrace, "expected '{' here"))
6746     return true;
6747   if (Lex.getKind() == lltok::rbrace)
6748     return Lex.Error("expected non-empty list of uselistorder indexes");
6749 
6750   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6751   // indexes should be distinct numbers in the range [0, size-1], and should
6752   // not be in order.
6753   unsigned Offset = 0;
6754   unsigned Max = 0;
6755   bool IsOrdered = true;
6756   assert(Indexes.empty() && "Expected empty order vector");
6757   do {
6758     unsigned Index;
6759     if (ParseUInt32(Index))
6760       return true;
6761 
6762     // Update consistency checks.
6763     Offset += Index - Indexes.size();
6764     Max = std::max(Max, Index);
6765     IsOrdered &= Index == Indexes.size();
6766 
6767     Indexes.push_back(Index);
6768   } while (EatIfPresent(lltok::comma));
6769 
6770   if (ParseToken(lltok::rbrace, "expected '}' here"))
6771     return true;
6772 
6773   if (Indexes.size() < 2)
6774     return Error(Loc, "expected >= 2 uselistorder indexes");
6775   if (Offset != 0 || Max >= Indexes.size())
6776     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6777   if (IsOrdered)
6778     return Error(Loc, "expected uselistorder indexes to change the order");
6779 
6780   return false;
6781 }
6782 
6783 /// ParseUseListOrder
6784 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6785 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6786   SMLoc Loc = Lex.getLoc();
6787   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6788     return true;
6789 
6790   Value *V;
6791   SmallVector<unsigned, 16> Indexes;
6792   if (ParseTypeAndValue(V, PFS) ||
6793       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6794       ParseUseListOrderIndexes(Indexes))
6795     return true;
6796 
6797   return sortUseListOrder(V, Indexes, Loc);
6798 }
6799 
6800 /// ParseUseListOrderBB
6801 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6802 bool LLParser::ParseUseListOrderBB() {
6803   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6804   SMLoc Loc = Lex.getLoc();
6805   Lex.Lex();
6806 
6807   ValID Fn, Label;
6808   SmallVector<unsigned, 16> Indexes;
6809   if (ParseValID(Fn) ||
6810       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6811       ParseValID(Label) ||
6812       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6813       ParseUseListOrderIndexes(Indexes))
6814     return true;
6815 
6816   // Check the function.
6817   GlobalValue *GV;
6818   if (Fn.Kind == ValID::t_GlobalName)
6819     GV = M->getNamedValue(Fn.StrVal);
6820   else if (Fn.Kind == ValID::t_GlobalID)
6821     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6822   else
6823     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6824   if (!GV)
6825     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6826   auto *F = dyn_cast<Function>(GV);
6827   if (!F)
6828     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6829   if (F->isDeclaration())
6830     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6831 
6832   // Check the basic block.
6833   if (Label.Kind == ValID::t_LocalID)
6834     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6835   if (Label.Kind != ValID::t_LocalName)
6836     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6837   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6838   if (!V)
6839     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6840   if (!isa<BasicBlock>(V))
6841     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6842 
6843   return sortUseListOrder(V, Indexes, Loc);
6844 }
6845