1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttrs());
144       AS = AS.removeFnAttributes(Context);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttrs());
160       AS = AS.removeFnAttributes(Context);
161       FnAttrs.merge(B);
162       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
163       CI->setAttributes(AS);
164     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
165       AttributeList AS = II->getAttributes();
166       AttrBuilder FnAttrs(AS.getFnAttrs());
167       AS = AS.removeFnAttributes(Context);
168       FnAttrs.merge(B);
169       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
170       II->setAttributes(AS);
171     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
172       AttributeList AS = CBI->getAttributes();
173       AttrBuilder FnAttrs(AS.getFnAttrs());
174       AS = AS.removeFnAttributes(Context);
175       FnAttrs.merge(B);
176       AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs));
177       CBI->setAttributes(AS);
178     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
179       AttrBuilder Attrs(GV->getAttributes());
180       Attrs.merge(B);
181       GV->setAttributes(AttributeSet::get(Context,Attrs));
182     } else {
183       llvm_unreachable("invalid object with forward attribute group reference");
184     }
185   }
186 
187   // If there are entries in ForwardRefBlockAddresses at this point, the
188   // function was never defined.
189   if (!ForwardRefBlockAddresses.empty())
190     return error(ForwardRefBlockAddresses.begin()->first.Loc,
191                  "expected function name in blockaddress");
192 
193   for (const auto &NT : NumberedTypes)
194     if (NT.second.second.isValid())
195       return error(NT.second.second,
196                    "use of undefined type '%" + Twine(NT.first) + "'");
197 
198   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
199        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
200     if (I->second.second.isValid())
201       return error(I->second.second,
202                    "use of undefined type named '" + I->getKey() + "'");
203 
204   if (!ForwardRefComdats.empty())
205     return error(ForwardRefComdats.begin()->second,
206                  "use of undefined comdat '$" +
207                      ForwardRefComdats.begin()->first + "'");
208 
209   if (!ForwardRefVals.empty())
210     return error(ForwardRefVals.begin()->second.second,
211                  "use of undefined value '@" + ForwardRefVals.begin()->first +
212                      "'");
213 
214   if (!ForwardRefValIDs.empty())
215     return error(ForwardRefValIDs.begin()->second.second,
216                  "use of undefined value '@" +
217                      Twine(ForwardRefValIDs.begin()->first) + "'");
218 
219   if (!ForwardRefMDNodes.empty())
220     return error(ForwardRefMDNodes.begin()->second.second,
221                  "use of undefined metadata '!" +
222                      Twine(ForwardRefMDNodes.begin()->first) + "'");
223 
224   // Resolve metadata cycles.
225   for (auto &N : NumberedMetadata) {
226     if (N.second && !N.second->isResolved())
227       N.second->resolveCycles();
228   }
229 
230   for (auto *Inst : InstsWithTBAATag) {
231     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
232     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
233     auto *UpgradedMD = UpgradeTBAANode(*MD);
234     if (MD != UpgradedMD)
235       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
236   }
237 
238   // Look for intrinsic functions and CallInst that need to be upgraded
239   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
240     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
241 
242   // Some types could be renamed during loading if several modules are
243   // loaded in the same LLVMContext (LTO scenario). In this case we should
244   // remangle intrinsics names as well.
245   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
246     Function *F = &*FI++;
247     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
248       F->replaceAllUsesWith(Remangled.getValue());
249       F->eraseFromParent();
250     }
251   }
252 
253   if (UpgradeDebugInfo)
254     llvm::UpgradeDebugInfo(*M);
255 
256   UpgradeModuleFlags(*M);
257   UpgradeSectionAttributes(*M);
258 
259   if (!Slots)
260     return false;
261   // Initialize the slot mapping.
262   // Because by this point we've parsed and validated everything, we can "steal"
263   // the mapping from LLParser as it doesn't need it anymore.
264   Slots->GlobalValues = std::move(NumberedVals);
265   Slots->MetadataNodes = std::move(NumberedMetadata);
266   for (const auto &I : NamedTypes)
267     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
268   for (const auto &I : NumberedTypes)
269     Slots->Types.insert(std::make_pair(I.first, I.second.first));
270 
271   return false;
272 }
273 
274 /// Do final validity and sanity checks at the end of the index.
275 bool LLParser::validateEndOfIndex() {
276   if (!Index)
277     return false;
278 
279   if (!ForwardRefValueInfos.empty())
280     return error(ForwardRefValueInfos.begin()->second.front().second,
281                  "use of undefined summary '^" +
282                      Twine(ForwardRefValueInfos.begin()->first) + "'");
283 
284   if (!ForwardRefAliasees.empty())
285     return error(ForwardRefAliasees.begin()->second.front().second,
286                  "use of undefined summary '^" +
287                      Twine(ForwardRefAliasees.begin()->first) + "'");
288 
289   if (!ForwardRefTypeIds.empty())
290     return error(ForwardRefTypeIds.begin()->second.front().second,
291                  "use of undefined type id summary '^" +
292                      Twine(ForwardRefTypeIds.begin()->first) + "'");
293 
294   return false;
295 }
296 
297 //===----------------------------------------------------------------------===//
298 // Top-Level Entities
299 //===----------------------------------------------------------------------===//
300 
301 bool LLParser::parseTargetDefinitions() {
302   while (true) {
303     switch (Lex.getKind()) {
304     case lltok::kw_target:
305       if (parseTargetDefinition())
306         return true;
307       break;
308     case lltok::kw_source_filename:
309       if (parseSourceFileName())
310         return true;
311       break;
312     default:
313       return false;
314     }
315   }
316 }
317 
318 bool LLParser::parseTopLevelEntities() {
319   // If there is no Module, then parse just the summary index entries.
320   if (!M) {
321     while (true) {
322       switch (Lex.getKind()) {
323       case lltok::Eof:
324         return false;
325       case lltok::SummaryID:
326         if (parseSummaryEntry())
327           return true;
328         break;
329       case lltok::kw_source_filename:
330         if (parseSourceFileName())
331           return true;
332         break;
333       default:
334         // Skip everything else
335         Lex.Lex();
336       }
337     }
338   }
339   while (true) {
340     switch (Lex.getKind()) {
341     default:
342       return tokError("expected top-level entity");
343     case lltok::Eof: return false;
344     case lltok::kw_declare:
345       if (parseDeclare())
346         return true;
347       break;
348     case lltok::kw_define:
349       if (parseDefine())
350         return true;
351       break;
352     case lltok::kw_module:
353       if (parseModuleAsm())
354         return true;
355       break;
356     case lltok::LocalVarID:
357       if (parseUnnamedType())
358         return true;
359       break;
360     case lltok::LocalVar:
361       if (parseNamedType())
362         return true;
363       break;
364     case lltok::GlobalID:
365       if (parseUnnamedGlobal())
366         return true;
367       break;
368     case lltok::GlobalVar:
369       if (parseNamedGlobal())
370         return true;
371       break;
372     case lltok::ComdatVar:  if (parseComdat()) return true; break;
373     case lltok::exclaim:
374       if (parseStandaloneMetadata())
375         return true;
376       break;
377     case lltok::SummaryID:
378       if (parseSummaryEntry())
379         return true;
380       break;
381     case lltok::MetadataVar:
382       if (parseNamedMetadata())
383         return true;
384       break;
385     case lltok::kw_attributes:
386       if (parseUnnamedAttrGrp())
387         return true;
388       break;
389     case lltok::kw_uselistorder:
390       if (parseUseListOrder())
391         return true;
392       break;
393     case lltok::kw_uselistorder_bb:
394       if (parseUseListOrderBB())
395         return true;
396       break;
397     }
398   }
399 }
400 
401 /// toplevelentity
402 ///   ::= 'module' 'asm' STRINGCONSTANT
403 bool LLParser::parseModuleAsm() {
404   assert(Lex.getKind() == lltok::kw_module);
405   Lex.Lex();
406 
407   std::string AsmStr;
408   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
409       parseStringConstant(AsmStr))
410     return true;
411 
412   M->appendModuleInlineAsm(AsmStr);
413   return false;
414 }
415 
416 /// toplevelentity
417 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
418 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
419 bool LLParser::parseTargetDefinition() {
420   assert(Lex.getKind() == lltok::kw_target);
421   std::string Str;
422   switch (Lex.Lex()) {
423   default:
424     return tokError("unknown target property");
425   case lltok::kw_triple:
426     Lex.Lex();
427     if (parseToken(lltok::equal, "expected '=' after target triple") ||
428         parseStringConstant(Str))
429       return true;
430     M->setTargetTriple(Str);
431     return false;
432   case lltok::kw_datalayout:
433     Lex.Lex();
434     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
435         parseStringConstant(Str))
436       return true;
437     M->setDataLayout(Str);
438     return false;
439   }
440 }
441 
442 /// toplevelentity
443 ///   ::= 'source_filename' '=' STRINGCONSTANT
444 bool LLParser::parseSourceFileName() {
445   assert(Lex.getKind() == lltok::kw_source_filename);
446   Lex.Lex();
447   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
448       parseStringConstant(SourceFileName))
449     return true;
450   if (M)
451     M->setSourceFileName(SourceFileName);
452   return false;
453 }
454 
455 /// parseUnnamedType:
456 ///   ::= LocalVarID '=' 'type' type
457 bool LLParser::parseUnnamedType() {
458   LocTy TypeLoc = Lex.getLoc();
459   unsigned TypeID = Lex.getUIntVal();
460   Lex.Lex(); // eat LocalVarID;
461 
462   if (parseToken(lltok::equal, "expected '=' after name") ||
463       parseToken(lltok::kw_type, "expected 'type' after '='"))
464     return true;
465 
466   Type *Result = nullptr;
467   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
468     return true;
469 
470   if (!isa<StructType>(Result)) {
471     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
472     if (Entry.first)
473       return error(TypeLoc, "non-struct types may not be recursive");
474     Entry.first = Result;
475     Entry.second = SMLoc();
476   }
477 
478   return false;
479 }
480 
481 /// toplevelentity
482 ///   ::= LocalVar '=' 'type' type
483 bool LLParser::parseNamedType() {
484   std::string Name = Lex.getStrVal();
485   LocTy NameLoc = Lex.getLoc();
486   Lex.Lex();  // eat LocalVar.
487 
488   if (parseToken(lltok::equal, "expected '=' after name") ||
489       parseToken(lltok::kw_type, "expected 'type' after name"))
490     return true;
491 
492   Type *Result = nullptr;
493   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
494     return true;
495 
496   if (!isa<StructType>(Result)) {
497     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
498     if (Entry.first)
499       return error(NameLoc, "non-struct types may not be recursive");
500     Entry.first = Result;
501     Entry.second = SMLoc();
502   }
503 
504   return false;
505 }
506 
507 /// toplevelentity
508 ///   ::= 'declare' FunctionHeader
509 bool LLParser::parseDeclare() {
510   assert(Lex.getKind() == lltok::kw_declare);
511   Lex.Lex();
512 
513   std::vector<std::pair<unsigned, MDNode *>> MDs;
514   while (Lex.getKind() == lltok::MetadataVar) {
515     unsigned MDK;
516     MDNode *N;
517     if (parseMetadataAttachment(MDK, N))
518       return true;
519     MDs.push_back({MDK, N});
520   }
521 
522   Function *F;
523   if (parseFunctionHeader(F, false))
524     return true;
525   for (auto &MD : MDs)
526     F->addMetadata(MD.first, *MD.second);
527   return false;
528 }
529 
530 /// toplevelentity
531 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
532 bool LLParser::parseDefine() {
533   assert(Lex.getKind() == lltok::kw_define);
534   Lex.Lex();
535 
536   Function *F;
537   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
538          parseFunctionBody(*F);
539 }
540 
541 /// parseGlobalType
542 ///   ::= 'constant'
543 ///   ::= 'global'
544 bool LLParser::parseGlobalType(bool &IsConstant) {
545   if (Lex.getKind() == lltok::kw_constant)
546     IsConstant = true;
547   else if (Lex.getKind() == lltok::kw_global)
548     IsConstant = false;
549   else {
550     IsConstant = false;
551     return tokError("expected 'global' or 'constant'");
552   }
553   Lex.Lex();
554   return false;
555 }
556 
557 bool LLParser::parseOptionalUnnamedAddr(
558     GlobalVariable::UnnamedAddr &UnnamedAddr) {
559   if (EatIfPresent(lltok::kw_unnamed_addr))
560     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
561   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
562     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
563   else
564     UnnamedAddr = GlobalValue::UnnamedAddr::None;
565   return false;
566 }
567 
568 /// parseUnnamedGlobal:
569 ///   OptionalVisibility (ALIAS | IFUNC) ...
570 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
571 ///   OptionalDLLStorageClass
572 ///                                                     ...   -> global variable
573 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
574 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
575 ///   OptionalVisibility
576 ///                OptionalDLLStorageClass
577 ///                                                     ...   -> global variable
578 bool LLParser::parseUnnamedGlobal() {
579   unsigned VarID = NumberedVals.size();
580   std::string Name;
581   LocTy NameLoc = Lex.getLoc();
582 
583   // Handle the GlobalID form.
584   if (Lex.getKind() == lltok::GlobalID) {
585     if (Lex.getUIntVal() != VarID)
586       return error(Lex.getLoc(),
587                    "variable expected to be numbered '%" + Twine(VarID) + "'");
588     Lex.Lex(); // eat GlobalID;
589 
590     if (parseToken(lltok::equal, "expected '=' after name"))
591       return true;
592   }
593 
594   bool HasLinkage;
595   unsigned Linkage, Visibility, DLLStorageClass;
596   bool DSOLocal;
597   GlobalVariable::ThreadLocalMode TLM;
598   GlobalVariable::UnnamedAddr UnnamedAddr;
599   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
600                            DSOLocal) ||
601       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
602     return true;
603 
604   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
605     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
606                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
607 
608   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
609                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
610 }
611 
612 /// parseNamedGlobal:
613 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
614 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
615 ///                 OptionalVisibility OptionalDLLStorageClass
616 ///                                                     ...   -> global variable
617 bool LLParser::parseNamedGlobal() {
618   assert(Lex.getKind() == lltok::GlobalVar);
619   LocTy NameLoc = Lex.getLoc();
620   std::string Name = Lex.getStrVal();
621   Lex.Lex();
622 
623   bool HasLinkage;
624   unsigned Linkage, Visibility, DLLStorageClass;
625   bool DSOLocal;
626   GlobalVariable::ThreadLocalMode TLM;
627   GlobalVariable::UnnamedAddr UnnamedAddr;
628   if (parseToken(lltok::equal, "expected '=' in global variable") ||
629       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630                            DSOLocal) ||
631       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632     return true;
633 
634   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
635     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
636                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637 
638   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
639                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
640 }
641 
642 bool LLParser::parseComdat() {
643   assert(Lex.getKind() == lltok::ComdatVar);
644   std::string Name = Lex.getStrVal();
645   LocTy NameLoc = Lex.getLoc();
646   Lex.Lex();
647 
648   if (parseToken(lltok::equal, "expected '=' here"))
649     return true;
650 
651   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
652     return tokError("expected comdat type");
653 
654   Comdat::SelectionKind SK;
655   switch (Lex.getKind()) {
656   default:
657     return tokError("unknown selection kind");
658   case lltok::kw_any:
659     SK = Comdat::Any;
660     break;
661   case lltok::kw_exactmatch:
662     SK = Comdat::ExactMatch;
663     break;
664   case lltok::kw_largest:
665     SK = Comdat::Largest;
666     break;
667   case lltok::kw_nodeduplicate:
668     SK = Comdat::NoDeduplicate;
669     break;
670   case lltok::kw_samesize:
671     SK = Comdat::SameSize;
672     break;
673   }
674   Lex.Lex();
675 
676   // See if the comdat was forward referenced, if so, use the comdat.
677   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
678   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
679   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
680     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
681 
682   Comdat *C;
683   if (I != ComdatSymTab.end())
684     C = &I->second;
685   else
686     C = M->getOrInsertComdat(Name);
687   C->setSelectionKind(SK);
688 
689   return false;
690 }
691 
692 // MDString:
693 //   ::= '!' STRINGCONSTANT
694 bool LLParser::parseMDString(MDString *&Result) {
695   std::string Str;
696   if (parseStringConstant(Str))
697     return true;
698   Result = MDString::get(Context, Str);
699   return false;
700 }
701 
702 // MDNode:
703 //   ::= '!' MDNodeNumber
704 bool LLParser::parseMDNodeID(MDNode *&Result) {
705   // !{ ..., !42, ... }
706   LocTy IDLoc = Lex.getLoc();
707   unsigned MID = 0;
708   if (parseUInt32(MID))
709     return true;
710 
711   // If not a forward reference, just return it now.
712   if (NumberedMetadata.count(MID)) {
713     Result = NumberedMetadata[MID];
714     return false;
715   }
716 
717   // Otherwise, create MDNode forward reference.
718   auto &FwdRef = ForwardRefMDNodes[MID];
719   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
720 
721   Result = FwdRef.first.get();
722   NumberedMetadata[MID].reset(Result);
723   return false;
724 }
725 
726 /// parseNamedMetadata:
727 ///   !foo = !{ !1, !2 }
728 bool LLParser::parseNamedMetadata() {
729   assert(Lex.getKind() == lltok::MetadataVar);
730   std::string Name = Lex.getStrVal();
731   Lex.Lex();
732 
733   if (parseToken(lltok::equal, "expected '=' here") ||
734       parseToken(lltok::exclaim, "Expected '!' here") ||
735       parseToken(lltok::lbrace, "Expected '{' here"))
736     return true;
737 
738   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
739   if (Lex.getKind() != lltok::rbrace)
740     do {
741       MDNode *N = nullptr;
742       // parse DIExpressions inline as a special case. They are still MDNodes,
743       // so they can still appear in named metadata. Remove this logic if they
744       // become plain Metadata.
745       if (Lex.getKind() == lltok::MetadataVar &&
746           Lex.getStrVal() == "DIExpression") {
747         if (parseDIExpression(N, /*IsDistinct=*/false))
748           return true;
749         // DIArgLists should only appear inline in a function, as they may
750         // contain LocalAsMetadata arguments which require a function context.
751       } else if (Lex.getKind() == lltok::MetadataVar &&
752                  Lex.getStrVal() == "DIArgList") {
753         return tokError("found DIArgList outside of function");
754       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
755                  parseMDNodeID(N)) {
756         return true;
757       }
758       NMD->addOperand(N);
759     } while (EatIfPresent(lltok::comma));
760 
761   return parseToken(lltok::rbrace, "expected end of metadata node");
762 }
763 
764 /// parseStandaloneMetadata:
765 ///   !42 = !{...}
766 bool LLParser::parseStandaloneMetadata() {
767   assert(Lex.getKind() == lltok::exclaim);
768   Lex.Lex();
769   unsigned MetadataID = 0;
770 
771   MDNode *Init;
772   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
773     return true;
774 
775   // Detect common error, from old metadata syntax.
776   if (Lex.getKind() == lltok::Type)
777     return tokError("unexpected type in metadata definition");
778 
779   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
780   if (Lex.getKind() == lltok::MetadataVar) {
781     if (parseSpecializedMDNode(Init, IsDistinct))
782       return true;
783   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
784              parseMDTuple(Init, IsDistinct))
785     return true;
786 
787   // See if this was forward referenced, if so, handle it.
788   auto FI = ForwardRefMDNodes.find(MetadataID);
789   if (FI != ForwardRefMDNodes.end()) {
790     FI->second.first->replaceAllUsesWith(Init);
791     ForwardRefMDNodes.erase(FI);
792 
793     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
794   } else {
795     if (NumberedMetadata.count(MetadataID))
796       return tokError("Metadata id is already used");
797     NumberedMetadata[MetadataID].reset(Init);
798   }
799 
800   return false;
801 }
802 
803 // Skips a single module summary entry.
804 bool LLParser::skipModuleSummaryEntry() {
805   // Each module summary entry consists of a tag for the entry
806   // type, followed by a colon, then the fields which may be surrounded by
807   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
808   // support is in place we will look for the tokens corresponding to the
809   // expected tags.
810   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
811       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
812       Lex.getKind() != lltok::kw_blockcount)
813     return tokError(
814         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
815         "start of summary entry");
816   if (Lex.getKind() == lltok::kw_flags)
817     return parseSummaryIndexFlags();
818   if (Lex.getKind() == lltok::kw_blockcount)
819     return parseBlockCount();
820   Lex.Lex();
821   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
822       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
823     return true;
824   // Now walk through the parenthesized entry, until the number of open
825   // parentheses goes back down to 0 (the first '(' was parsed above).
826   unsigned NumOpenParen = 1;
827   do {
828     switch (Lex.getKind()) {
829     case lltok::lparen:
830       NumOpenParen++;
831       break;
832     case lltok::rparen:
833       NumOpenParen--;
834       break;
835     case lltok::Eof:
836       return tokError("found end of file while parsing summary entry");
837     default:
838       // Skip everything in between parentheses.
839       break;
840     }
841     Lex.Lex();
842   } while (NumOpenParen > 0);
843   return false;
844 }
845 
846 /// SummaryEntry
847 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
848 bool LLParser::parseSummaryEntry() {
849   assert(Lex.getKind() == lltok::SummaryID);
850   unsigned SummaryID = Lex.getUIntVal();
851 
852   // For summary entries, colons should be treated as distinct tokens,
853   // not an indication of the end of a label token.
854   Lex.setIgnoreColonInIdentifiers(true);
855 
856   Lex.Lex();
857   if (parseToken(lltok::equal, "expected '=' here"))
858     return true;
859 
860   // If we don't have an index object, skip the summary entry.
861   if (!Index)
862     return skipModuleSummaryEntry();
863 
864   bool result = false;
865   switch (Lex.getKind()) {
866   case lltok::kw_gv:
867     result = parseGVEntry(SummaryID);
868     break;
869   case lltok::kw_module:
870     result = parseModuleEntry(SummaryID);
871     break;
872   case lltok::kw_typeid:
873     result = parseTypeIdEntry(SummaryID);
874     break;
875   case lltok::kw_typeidCompatibleVTable:
876     result = parseTypeIdCompatibleVtableEntry(SummaryID);
877     break;
878   case lltok::kw_flags:
879     result = parseSummaryIndexFlags();
880     break;
881   case lltok::kw_blockcount:
882     result = parseBlockCount();
883     break;
884   default:
885     result = error(Lex.getLoc(), "unexpected summary kind");
886     break;
887   }
888   Lex.setIgnoreColonInIdentifiers(false);
889   return result;
890 }
891 
892 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
893   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
894          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
895 }
896 
897 // If there was an explicit dso_local, update GV. In the absence of an explicit
898 // dso_local we keep the default value.
899 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
900   if (DSOLocal)
901     GV.setDSOLocal(true);
902 }
903 
904 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
905                                               Type *Ty2) {
906   std::string ErrString;
907   raw_string_ostream ErrOS(ErrString);
908   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
909   return ErrOS.str();
910 }
911 
912 /// parseIndirectSymbol:
913 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
914 ///                     OptionalVisibility OptionalDLLStorageClass
915 ///                     OptionalThreadLocal OptionalUnnamedAddr
916 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
917 ///
918 /// IndirectSymbol
919 ///   ::= TypeAndValue
920 ///
921 /// IndirectSymbolAttr
922 ///   ::= ',' 'partition' StringConstant
923 ///
924 /// Everything through OptionalUnnamedAddr has already been parsed.
925 ///
926 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
927                                    unsigned L, unsigned Visibility,
928                                    unsigned DLLStorageClass, bool DSOLocal,
929                                    GlobalVariable::ThreadLocalMode TLM,
930                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
931   bool IsAlias;
932   if (Lex.getKind() == lltok::kw_alias)
933     IsAlias = true;
934   else if (Lex.getKind() == lltok::kw_ifunc)
935     IsAlias = false;
936   else
937     llvm_unreachable("Not an alias or ifunc!");
938   Lex.Lex();
939 
940   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
941 
942   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
943     return error(NameLoc, "invalid linkage type for alias");
944 
945   if (!isValidVisibilityForLinkage(Visibility, L))
946     return error(NameLoc,
947                  "symbol with local linkage must have default visibility");
948 
949   Type *Ty;
950   LocTy ExplicitTypeLoc = Lex.getLoc();
951   if (parseType(Ty) ||
952       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
953     return true;
954 
955   Constant *Aliasee;
956   LocTy AliaseeLoc = Lex.getLoc();
957   if (Lex.getKind() != lltok::kw_bitcast &&
958       Lex.getKind() != lltok::kw_getelementptr &&
959       Lex.getKind() != lltok::kw_addrspacecast &&
960       Lex.getKind() != lltok::kw_inttoptr) {
961     if (parseGlobalTypeAndValue(Aliasee))
962       return true;
963   } else {
964     // The bitcast dest type is not present, it is implied by the dest type.
965     ValID ID;
966     if (parseValID(ID, /*PFS=*/nullptr))
967       return true;
968     if (ID.Kind != ValID::t_Constant)
969       return error(AliaseeLoc, "invalid aliasee");
970     Aliasee = ID.ConstantVal;
971   }
972 
973   Type *AliaseeType = Aliasee->getType();
974   auto *PTy = dyn_cast<PointerType>(AliaseeType);
975   if (!PTy)
976     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
977   unsigned AddrSpace = PTy->getAddressSpace();
978 
979   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
980     return error(
981         ExplicitTypeLoc,
982         typeComparisonErrorMessage(
983             "explicit pointee type doesn't match operand's pointee type", Ty,
984             PTy->getElementType()));
985   }
986 
987   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
988     return error(ExplicitTypeLoc,
989                  "explicit pointee type should be a function type");
990   }
991 
992   GlobalValue *GVal = nullptr;
993 
994   // See if the alias was forward referenced, if so, prepare to replace the
995   // forward reference.
996   if (!Name.empty()) {
997     auto I = ForwardRefVals.find(Name);
998     if (I != ForwardRefVals.end()) {
999       GVal = I->second.first;
1000       ForwardRefVals.erase(Name);
1001     } else if (M->getNamedValue(Name)) {
1002       return error(NameLoc, "redefinition of global '@" + Name + "'");
1003     }
1004   } else {
1005     auto I = ForwardRefValIDs.find(NumberedVals.size());
1006     if (I != ForwardRefValIDs.end()) {
1007       GVal = I->second.first;
1008       ForwardRefValIDs.erase(I);
1009     }
1010   }
1011 
1012   // Okay, create the alias but do not insert it into the module yet.
1013   std::unique_ptr<GlobalIndirectSymbol> GA;
1014   if (IsAlias)
1015     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1016                                  (GlobalValue::LinkageTypes)Linkage, Name,
1017                                  Aliasee, /*Parent*/ nullptr));
1018   else
1019     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1020                                  (GlobalValue::LinkageTypes)Linkage, Name,
1021                                  Aliasee, /*Parent*/ nullptr));
1022   GA->setThreadLocalMode(TLM);
1023   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1024   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1025   GA->setUnnamedAddr(UnnamedAddr);
1026   maybeSetDSOLocal(DSOLocal, *GA);
1027 
1028   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1029   // Now parse them if there are any.
1030   while (Lex.getKind() == lltok::comma) {
1031     Lex.Lex();
1032 
1033     if (Lex.getKind() == lltok::kw_partition) {
1034       Lex.Lex();
1035       GA->setPartition(Lex.getStrVal());
1036       if (parseToken(lltok::StringConstant, "expected partition string"))
1037         return true;
1038     } else {
1039       return tokError("unknown alias or ifunc property!");
1040     }
1041   }
1042 
1043   if (Name.empty())
1044     NumberedVals.push_back(GA.get());
1045 
1046   if (GVal) {
1047     // Verify that types agree.
1048     if (GVal->getType() != GA->getType())
1049       return error(
1050           ExplicitTypeLoc,
1051           "forward reference and definition of alias have different types");
1052 
1053     // If they agree, just RAUW the old value with the alias and remove the
1054     // forward ref info.
1055     GVal->replaceAllUsesWith(GA.get());
1056     GVal->eraseFromParent();
1057   }
1058 
1059   // Insert into the module, we know its name won't collide now.
1060   if (IsAlias)
1061     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1062   else
1063     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1064   assert(GA->getName() == Name && "Should not be a name conflict!");
1065 
1066   // The module owns this now
1067   GA.release();
1068 
1069   return false;
1070 }
1071 
1072 /// parseGlobal
1073 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1074 ///       OptionalVisibility OptionalDLLStorageClass
1075 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1076 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1077 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1078 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1079 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1080 ///       Const OptionalAttrs
1081 ///
1082 /// Everything up to and including OptionalUnnamedAddr has been parsed
1083 /// already.
1084 ///
1085 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1086                            unsigned Linkage, bool HasLinkage,
1087                            unsigned Visibility, unsigned DLLStorageClass,
1088                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1089                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1090   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1091     return error(NameLoc,
1092                  "symbol with local linkage must have default visibility");
1093 
1094   unsigned AddrSpace;
1095   bool IsConstant, IsExternallyInitialized;
1096   LocTy IsExternallyInitializedLoc;
1097   LocTy TyLoc;
1098 
1099   Type *Ty = nullptr;
1100   if (parseOptionalAddrSpace(AddrSpace) ||
1101       parseOptionalToken(lltok::kw_externally_initialized,
1102                          IsExternallyInitialized,
1103                          &IsExternallyInitializedLoc) ||
1104       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1105     return true;
1106 
1107   // If the linkage is specified and is external, then no initializer is
1108   // present.
1109   Constant *Init = nullptr;
1110   if (!HasLinkage ||
1111       !GlobalValue::isValidDeclarationLinkage(
1112           (GlobalValue::LinkageTypes)Linkage)) {
1113     if (parseGlobalValue(Ty, Init))
1114       return true;
1115   }
1116 
1117   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1118     return error(TyLoc, "invalid type for global variable");
1119 
1120   GlobalValue *GVal = nullptr;
1121 
1122   // See if the global was forward referenced, if so, use the global.
1123   if (!Name.empty()) {
1124     auto I = ForwardRefVals.find(Name);
1125     if (I != ForwardRefVals.end()) {
1126       GVal = I->second.first;
1127       ForwardRefVals.erase(I);
1128     } else if (M->getNamedValue(Name)) {
1129       return error(NameLoc, "redefinition of global '@" + Name + "'");
1130     }
1131   } else {
1132     auto I = ForwardRefValIDs.find(NumberedVals.size());
1133     if (I != ForwardRefValIDs.end()) {
1134       GVal = I->second.first;
1135       ForwardRefValIDs.erase(I);
1136     }
1137   }
1138 
1139   GlobalVariable *GV = new GlobalVariable(
1140       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1141       GlobalVariable::NotThreadLocal, AddrSpace);
1142 
1143   if (Name.empty())
1144     NumberedVals.push_back(GV);
1145 
1146   // Set the parsed properties on the global.
1147   if (Init)
1148     GV->setInitializer(Init);
1149   GV->setConstant(IsConstant);
1150   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1151   maybeSetDSOLocal(DSOLocal, *GV);
1152   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1153   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1154   GV->setExternallyInitialized(IsExternallyInitialized);
1155   GV->setThreadLocalMode(TLM);
1156   GV->setUnnamedAddr(UnnamedAddr);
1157 
1158   if (GVal) {
1159     if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1160       return error(
1161           TyLoc,
1162           "forward reference and definition of global have different types");
1163 
1164     GVal->replaceAllUsesWith(GV);
1165     GVal->eraseFromParent();
1166   }
1167 
1168   // parse attributes on the global.
1169   while (Lex.getKind() == lltok::comma) {
1170     Lex.Lex();
1171 
1172     if (Lex.getKind() == lltok::kw_section) {
1173       Lex.Lex();
1174       GV->setSection(Lex.getStrVal());
1175       if (parseToken(lltok::StringConstant, "expected global section string"))
1176         return true;
1177     } else if (Lex.getKind() == lltok::kw_partition) {
1178       Lex.Lex();
1179       GV->setPartition(Lex.getStrVal());
1180       if (parseToken(lltok::StringConstant, "expected partition string"))
1181         return true;
1182     } else if (Lex.getKind() == lltok::kw_align) {
1183       MaybeAlign Alignment;
1184       if (parseOptionalAlignment(Alignment))
1185         return true;
1186       GV->setAlignment(Alignment);
1187     } else if (Lex.getKind() == lltok::MetadataVar) {
1188       if (parseGlobalObjectMetadataAttachment(*GV))
1189         return true;
1190     } else {
1191       Comdat *C;
1192       if (parseOptionalComdat(Name, C))
1193         return true;
1194       if (C)
1195         GV->setComdat(C);
1196       else
1197         return tokError("unknown global variable property!");
1198     }
1199   }
1200 
1201   AttrBuilder Attrs;
1202   LocTy BuiltinLoc;
1203   std::vector<unsigned> FwdRefAttrGrps;
1204   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1205     return true;
1206   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1207     GV->setAttributes(AttributeSet::get(Context, Attrs));
1208     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1209   }
1210 
1211   return false;
1212 }
1213 
1214 /// parseUnnamedAttrGrp
1215 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1216 bool LLParser::parseUnnamedAttrGrp() {
1217   assert(Lex.getKind() == lltok::kw_attributes);
1218   LocTy AttrGrpLoc = Lex.getLoc();
1219   Lex.Lex();
1220 
1221   if (Lex.getKind() != lltok::AttrGrpID)
1222     return tokError("expected attribute group id");
1223 
1224   unsigned VarID = Lex.getUIntVal();
1225   std::vector<unsigned> unused;
1226   LocTy BuiltinLoc;
1227   Lex.Lex();
1228 
1229   if (parseToken(lltok::equal, "expected '=' here") ||
1230       parseToken(lltok::lbrace, "expected '{' here") ||
1231       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1232                                  BuiltinLoc) ||
1233       parseToken(lltok::rbrace, "expected end of attribute group"))
1234     return true;
1235 
1236   if (!NumberedAttrBuilders[VarID].hasAttributes())
1237     return error(AttrGrpLoc, "attribute group has no attributes");
1238 
1239   return false;
1240 }
1241 
1242 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1243   switch (Kind) {
1244 #define GET_ATTR_NAMES
1245 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1246   case lltok::kw_##DISPLAY_NAME: \
1247     return Attribute::ENUM_NAME;
1248 #include "llvm/IR/Attributes.inc"
1249   default:
1250     return Attribute::None;
1251   }
1252 }
1253 
1254 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1255                                   bool InAttrGroup) {
1256   if (Attribute::isTypeAttrKind(Attr))
1257     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1258 
1259   switch (Attr) {
1260   case Attribute::Alignment: {
1261     MaybeAlign Alignment;
1262     if (InAttrGroup) {
1263       uint32_t Value = 0;
1264       Lex.Lex();
1265       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1266         return true;
1267       Alignment = Align(Value);
1268     } else {
1269       if (parseOptionalAlignment(Alignment, true))
1270         return true;
1271     }
1272     B.addAlignmentAttr(Alignment);
1273     return false;
1274   }
1275   case Attribute::StackAlignment: {
1276     unsigned Alignment;
1277     if (InAttrGroup) {
1278       Lex.Lex();
1279       if (parseToken(lltok::equal, "expected '=' here") ||
1280           parseUInt32(Alignment))
1281         return true;
1282     } else {
1283       if (parseOptionalStackAlignment(Alignment))
1284         return true;
1285     }
1286     B.addStackAlignmentAttr(Alignment);
1287     return false;
1288   }
1289   case Attribute::AllocSize: {
1290     unsigned ElemSizeArg;
1291     Optional<unsigned> NumElemsArg;
1292     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1293       return true;
1294     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1295     return false;
1296   }
1297   case Attribute::VScaleRange: {
1298     unsigned MinValue, MaxValue;
1299     if (parseVScaleRangeArguments(MinValue, MaxValue))
1300       return true;
1301     B.addVScaleRangeAttr(MinValue, MaxValue);
1302     return false;
1303   }
1304   case Attribute::Dereferenceable: {
1305     uint64_t Bytes;
1306     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1307       return true;
1308     B.addDereferenceableAttr(Bytes);
1309     return false;
1310   }
1311   case Attribute::DereferenceableOrNull: {
1312     uint64_t Bytes;
1313     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1314       return true;
1315     B.addDereferenceableOrNullAttr(Bytes);
1316     return false;
1317   }
1318   default:
1319     B.addAttribute(Attr);
1320     Lex.Lex();
1321     return false;
1322   }
1323 }
1324 
1325 /// parseFnAttributeValuePairs
1326 ///   ::= <attr> | <attr> '=' <value>
1327 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1328                                           std::vector<unsigned> &FwdRefAttrGrps,
1329                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1330   bool HaveError = false;
1331 
1332   B.clear();
1333 
1334   while (true) {
1335     lltok::Kind Token = Lex.getKind();
1336     if (Token == lltok::rbrace)
1337       return HaveError; // Finished.
1338 
1339     if (Token == lltok::StringConstant) {
1340       if (parseStringAttribute(B))
1341         return true;
1342       continue;
1343     }
1344 
1345     if (Token == lltok::AttrGrpID) {
1346       // Allow a function to reference an attribute group:
1347       //
1348       //   define void @foo() #1 { ... }
1349       if (InAttrGrp) {
1350         HaveError |= error(
1351             Lex.getLoc(),
1352             "cannot have an attribute group reference in an attribute group");
1353       } else {
1354         // Save the reference to the attribute group. We'll fill it in later.
1355         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1356       }
1357       Lex.Lex();
1358       continue;
1359     }
1360 
1361     SMLoc Loc = Lex.getLoc();
1362     if (Token == lltok::kw_builtin)
1363       BuiltinLoc = Loc;
1364 
1365     Attribute::AttrKind Attr = tokenToAttribute(Token);
1366     if (Attr == Attribute::None) {
1367       if (!InAttrGrp)
1368         return HaveError;
1369       return error(Lex.getLoc(), "unterminated attribute group");
1370     }
1371 
1372     if (parseEnumAttribute(Attr, B, InAttrGrp))
1373       return true;
1374 
1375     // As a hack, we allow function alignment to be initially parsed as an
1376     // attribute on a function declaration/definition or added to an attribute
1377     // group and later moved to the alignment field.
1378     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1379       HaveError |= error(Loc, "this attribute does not apply to functions");
1380   }
1381 }
1382 
1383 //===----------------------------------------------------------------------===//
1384 // GlobalValue Reference/Resolution Routines.
1385 //===----------------------------------------------------------------------===//
1386 
1387 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1388   // For opaque pointers, the used global type does not matter. We will later
1389   // RAUW it with a global/function of the correct type.
1390   if (PTy->isOpaque())
1391     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1392                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1393                               nullptr, GlobalVariable::NotThreadLocal,
1394                               PTy->getAddressSpace());
1395 
1396   if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
1397     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1398                             PTy->getAddressSpace(), "", M);
1399   else
1400     return new GlobalVariable(*M, PTy->getPointerElementType(), false,
1401                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1402                               nullptr, GlobalVariable::NotThreadLocal,
1403                               PTy->getAddressSpace());
1404 }
1405 
1406 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1407                                         Value *Val, bool IsCall) {
1408   Type *ValTy = Val->getType();
1409   if (ValTy == Ty)
1410     return Val;
1411   // For calls, we also allow opaque pointers.
1412   if (IsCall && ValTy == PointerType::get(Ty->getContext(),
1413                                           Ty->getPointerAddressSpace()))
1414     return Val;
1415   if (Ty->isLabelTy())
1416     error(Loc, "'" + Name + "' is not a basic block");
1417   else
1418     error(Loc, "'" + Name + "' defined with type '" +
1419                    getTypeString(Val->getType()) + "' but expected '" +
1420                    getTypeString(Ty) + "'");
1421   return nullptr;
1422 }
1423 
1424 /// getGlobalVal - Get a value with the specified name or ID, creating a
1425 /// forward reference record if needed.  This can return null if the value
1426 /// exists but does not have the right type.
1427 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1428                                     LocTy Loc, bool IsCall) {
1429   PointerType *PTy = dyn_cast<PointerType>(Ty);
1430   if (!PTy) {
1431     error(Loc, "global variable reference must have pointer type");
1432     return nullptr;
1433   }
1434 
1435   // Look this name up in the normal function symbol table.
1436   GlobalValue *Val =
1437     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1438 
1439   // If this is a forward reference for the value, see if we already created a
1440   // forward ref record.
1441   if (!Val) {
1442     auto I = ForwardRefVals.find(Name);
1443     if (I != ForwardRefVals.end())
1444       Val = I->second.first;
1445   }
1446 
1447   // If we have the value in the symbol table or fwd-ref table, return it.
1448   if (Val)
1449     return cast_or_null<GlobalValue>(
1450         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1451 
1452   // Otherwise, create a new forward reference for this value and remember it.
1453   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1454   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1455   return FwdVal;
1456 }
1457 
1458 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1459                                     bool IsCall) {
1460   PointerType *PTy = dyn_cast<PointerType>(Ty);
1461   if (!PTy) {
1462     error(Loc, "global variable reference must have pointer type");
1463     return nullptr;
1464   }
1465 
1466   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1467 
1468   // If this is a forward reference for the value, see if we already created a
1469   // forward ref record.
1470   if (!Val) {
1471     auto I = ForwardRefValIDs.find(ID);
1472     if (I != ForwardRefValIDs.end())
1473       Val = I->second.first;
1474   }
1475 
1476   // If we have the value in the symbol table or fwd-ref table, return it.
1477   if (Val)
1478     return cast_or_null<GlobalValue>(
1479         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1480 
1481   // Otherwise, create a new forward reference for this value and remember it.
1482   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1483   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1484   return FwdVal;
1485 }
1486 
1487 //===----------------------------------------------------------------------===//
1488 // Comdat Reference/Resolution Routines.
1489 //===----------------------------------------------------------------------===//
1490 
1491 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1492   // Look this name up in the comdat symbol table.
1493   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1494   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1495   if (I != ComdatSymTab.end())
1496     return &I->second;
1497 
1498   // Otherwise, create a new forward reference for this value and remember it.
1499   Comdat *C = M->getOrInsertComdat(Name);
1500   ForwardRefComdats[Name] = Loc;
1501   return C;
1502 }
1503 
1504 //===----------------------------------------------------------------------===//
1505 // Helper Routines.
1506 //===----------------------------------------------------------------------===//
1507 
1508 /// parseToken - If the current token has the specified kind, eat it and return
1509 /// success.  Otherwise, emit the specified error and return failure.
1510 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1511   if (Lex.getKind() != T)
1512     return tokError(ErrMsg);
1513   Lex.Lex();
1514   return false;
1515 }
1516 
1517 /// parseStringConstant
1518 ///   ::= StringConstant
1519 bool LLParser::parseStringConstant(std::string &Result) {
1520   if (Lex.getKind() != lltok::StringConstant)
1521     return tokError("expected string constant");
1522   Result = Lex.getStrVal();
1523   Lex.Lex();
1524   return false;
1525 }
1526 
1527 /// parseUInt32
1528 ///   ::= uint32
1529 bool LLParser::parseUInt32(uint32_t &Val) {
1530   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1531     return tokError("expected integer");
1532   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1533   if (Val64 != unsigned(Val64))
1534     return tokError("expected 32-bit integer (too large)");
1535   Val = Val64;
1536   Lex.Lex();
1537   return false;
1538 }
1539 
1540 /// parseUInt64
1541 ///   ::= uint64
1542 bool LLParser::parseUInt64(uint64_t &Val) {
1543   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1544     return tokError("expected integer");
1545   Val = Lex.getAPSIntVal().getLimitedValue();
1546   Lex.Lex();
1547   return false;
1548 }
1549 
1550 /// parseTLSModel
1551 ///   := 'localdynamic'
1552 ///   := 'initialexec'
1553 ///   := 'localexec'
1554 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1555   switch (Lex.getKind()) {
1556     default:
1557       return tokError("expected localdynamic, initialexec or localexec");
1558     case lltok::kw_localdynamic:
1559       TLM = GlobalVariable::LocalDynamicTLSModel;
1560       break;
1561     case lltok::kw_initialexec:
1562       TLM = GlobalVariable::InitialExecTLSModel;
1563       break;
1564     case lltok::kw_localexec:
1565       TLM = GlobalVariable::LocalExecTLSModel;
1566       break;
1567   }
1568 
1569   Lex.Lex();
1570   return false;
1571 }
1572 
1573 /// parseOptionalThreadLocal
1574 ///   := /*empty*/
1575 ///   := 'thread_local'
1576 ///   := 'thread_local' '(' tlsmodel ')'
1577 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1578   TLM = GlobalVariable::NotThreadLocal;
1579   if (!EatIfPresent(lltok::kw_thread_local))
1580     return false;
1581 
1582   TLM = GlobalVariable::GeneralDynamicTLSModel;
1583   if (Lex.getKind() == lltok::lparen) {
1584     Lex.Lex();
1585     return parseTLSModel(TLM) ||
1586            parseToken(lltok::rparen, "expected ')' after thread local model");
1587   }
1588   return false;
1589 }
1590 
1591 /// parseOptionalAddrSpace
1592 ///   := /*empty*/
1593 ///   := 'addrspace' '(' uint32 ')'
1594 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1595   AddrSpace = DefaultAS;
1596   if (!EatIfPresent(lltok::kw_addrspace))
1597     return false;
1598   return parseToken(lltok::lparen, "expected '(' in address space") ||
1599          parseUInt32(AddrSpace) ||
1600          parseToken(lltok::rparen, "expected ')' in address space");
1601 }
1602 
1603 /// parseStringAttribute
1604 ///   := StringConstant
1605 ///   := StringConstant '=' StringConstant
1606 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1607   std::string Attr = Lex.getStrVal();
1608   Lex.Lex();
1609   std::string Val;
1610   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1611     return true;
1612   B.addAttribute(Attr, Val);
1613   return false;
1614 }
1615 
1616 /// Parse a potentially empty list of parameter or return attributes.
1617 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1618   bool HaveError = false;
1619 
1620   B.clear();
1621 
1622   while (true) {
1623     lltok::Kind Token = Lex.getKind();
1624     if (Token == lltok::StringConstant) {
1625       if (parseStringAttribute(B))
1626         return true;
1627       continue;
1628     }
1629 
1630     SMLoc Loc = Lex.getLoc();
1631     Attribute::AttrKind Attr = tokenToAttribute(Token);
1632     if (Attr == Attribute::None)
1633       return HaveError;
1634 
1635     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1636       return true;
1637 
1638     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1639       HaveError |= error(Loc, "this attribute does not apply to parameters");
1640     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1641       HaveError |= error(Loc, "this attribute does not apply to return values");
1642   }
1643 }
1644 
1645 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1646   HasLinkage = true;
1647   switch (Kind) {
1648   default:
1649     HasLinkage = false;
1650     return GlobalValue::ExternalLinkage;
1651   case lltok::kw_private:
1652     return GlobalValue::PrivateLinkage;
1653   case lltok::kw_internal:
1654     return GlobalValue::InternalLinkage;
1655   case lltok::kw_weak:
1656     return GlobalValue::WeakAnyLinkage;
1657   case lltok::kw_weak_odr:
1658     return GlobalValue::WeakODRLinkage;
1659   case lltok::kw_linkonce:
1660     return GlobalValue::LinkOnceAnyLinkage;
1661   case lltok::kw_linkonce_odr:
1662     return GlobalValue::LinkOnceODRLinkage;
1663   case lltok::kw_available_externally:
1664     return GlobalValue::AvailableExternallyLinkage;
1665   case lltok::kw_appending:
1666     return GlobalValue::AppendingLinkage;
1667   case lltok::kw_common:
1668     return GlobalValue::CommonLinkage;
1669   case lltok::kw_extern_weak:
1670     return GlobalValue::ExternalWeakLinkage;
1671   case lltok::kw_external:
1672     return GlobalValue::ExternalLinkage;
1673   }
1674 }
1675 
1676 /// parseOptionalLinkage
1677 ///   ::= /*empty*/
1678 ///   ::= 'private'
1679 ///   ::= 'internal'
1680 ///   ::= 'weak'
1681 ///   ::= 'weak_odr'
1682 ///   ::= 'linkonce'
1683 ///   ::= 'linkonce_odr'
1684 ///   ::= 'available_externally'
1685 ///   ::= 'appending'
1686 ///   ::= 'common'
1687 ///   ::= 'extern_weak'
1688 ///   ::= 'external'
1689 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1690                                     unsigned &Visibility,
1691                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1692   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1693   if (HasLinkage)
1694     Lex.Lex();
1695   parseOptionalDSOLocal(DSOLocal);
1696   parseOptionalVisibility(Visibility);
1697   parseOptionalDLLStorageClass(DLLStorageClass);
1698 
1699   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1700     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1701   }
1702 
1703   return false;
1704 }
1705 
1706 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1707   switch (Lex.getKind()) {
1708   default:
1709     DSOLocal = false;
1710     break;
1711   case lltok::kw_dso_local:
1712     DSOLocal = true;
1713     Lex.Lex();
1714     break;
1715   case lltok::kw_dso_preemptable:
1716     DSOLocal = false;
1717     Lex.Lex();
1718     break;
1719   }
1720 }
1721 
1722 /// parseOptionalVisibility
1723 ///   ::= /*empty*/
1724 ///   ::= 'default'
1725 ///   ::= 'hidden'
1726 ///   ::= 'protected'
1727 ///
1728 void LLParser::parseOptionalVisibility(unsigned &Res) {
1729   switch (Lex.getKind()) {
1730   default:
1731     Res = GlobalValue::DefaultVisibility;
1732     return;
1733   case lltok::kw_default:
1734     Res = GlobalValue::DefaultVisibility;
1735     break;
1736   case lltok::kw_hidden:
1737     Res = GlobalValue::HiddenVisibility;
1738     break;
1739   case lltok::kw_protected:
1740     Res = GlobalValue::ProtectedVisibility;
1741     break;
1742   }
1743   Lex.Lex();
1744 }
1745 
1746 /// parseOptionalDLLStorageClass
1747 ///   ::= /*empty*/
1748 ///   ::= 'dllimport'
1749 ///   ::= 'dllexport'
1750 ///
1751 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1752   switch (Lex.getKind()) {
1753   default:
1754     Res = GlobalValue::DefaultStorageClass;
1755     return;
1756   case lltok::kw_dllimport:
1757     Res = GlobalValue::DLLImportStorageClass;
1758     break;
1759   case lltok::kw_dllexport:
1760     Res = GlobalValue::DLLExportStorageClass;
1761     break;
1762   }
1763   Lex.Lex();
1764 }
1765 
1766 /// parseOptionalCallingConv
1767 ///   ::= /*empty*/
1768 ///   ::= 'ccc'
1769 ///   ::= 'fastcc'
1770 ///   ::= 'intel_ocl_bicc'
1771 ///   ::= 'coldcc'
1772 ///   ::= 'cfguard_checkcc'
1773 ///   ::= 'x86_stdcallcc'
1774 ///   ::= 'x86_fastcallcc'
1775 ///   ::= 'x86_thiscallcc'
1776 ///   ::= 'x86_vectorcallcc'
1777 ///   ::= 'arm_apcscc'
1778 ///   ::= 'arm_aapcscc'
1779 ///   ::= 'arm_aapcs_vfpcc'
1780 ///   ::= 'aarch64_vector_pcs'
1781 ///   ::= 'aarch64_sve_vector_pcs'
1782 ///   ::= 'msp430_intrcc'
1783 ///   ::= 'avr_intrcc'
1784 ///   ::= 'avr_signalcc'
1785 ///   ::= 'ptx_kernel'
1786 ///   ::= 'ptx_device'
1787 ///   ::= 'spir_func'
1788 ///   ::= 'spir_kernel'
1789 ///   ::= 'x86_64_sysvcc'
1790 ///   ::= 'win64cc'
1791 ///   ::= 'webkit_jscc'
1792 ///   ::= 'anyregcc'
1793 ///   ::= 'preserve_mostcc'
1794 ///   ::= 'preserve_allcc'
1795 ///   ::= 'ghccc'
1796 ///   ::= 'swiftcc'
1797 ///   ::= 'swifttailcc'
1798 ///   ::= 'x86_intrcc'
1799 ///   ::= 'hhvmcc'
1800 ///   ::= 'hhvm_ccc'
1801 ///   ::= 'cxx_fast_tlscc'
1802 ///   ::= 'amdgpu_vs'
1803 ///   ::= 'amdgpu_ls'
1804 ///   ::= 'amdgpu_hs'
1805 ///   ::= 'amdgpu_es'
1806 ///   ::= 'amdgpu_gs'
1807 ///   ::= 'amdgpu_ps'
1808 ///   ::= 'amdgpu_cs'
1809 ///   ::= 'amdgpu_kernel'
1810 ///   ::= 'tailcc'
1811 ///   ::= 'cc' UINT
1812 ///
1813 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1814   switch (Lex.getKind()) {
1815   default:                       CC = CallingConv::C; return false;
1816   case lltok::kw_ccc:            CC = CallingConv::C; break;
1817   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1818   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1819   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1820   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1821   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1822   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1823   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1824   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1825   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1826   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1827   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1828   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1829   case lltok::kw_aarch64_sve_vector_pcs:
1830     CC = CallingConv::AArch64_SVE_VectorCall;
1831     break;
1832   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1833   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1834   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1835   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1836   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1837   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1838   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1839   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1840   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1841   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1842   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1843   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1844   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1845   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1846   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1847   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1848   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1849   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1850   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1851   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1852   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1853   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1854   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1855   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1856   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1857   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1858   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1859   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1860   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1861   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1862   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1863   case lltok::kw_cc: {
1864       Lex.Lex();
1865       return parseUInt32(CC);
1866     }
1867   }
1868 
1869   Lex.Lex();
1870   return false;
1871 }
1872 
1873 /// parseMetadataAttachment
1874 ///   ::= !dbg !42
1875 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1876   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1877 
1878   std::string Name = Lex.getStrVal();
1879   Kind = M->getMDKindID(Name);
1880   Lex.Lex();
1881 
1882   return parseMDNode(MD);
1883 }
1884 
1885 /// parseInstructionMetadata
1886 ///   ::= !dbg !42 (',' !dbg !57)*
1887 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1888   do {
1889     if (Lex.getKind() != lltok::MetadataVar)
1890       return tokError("expected metadata after comma");
1891 
1892     unsigned MDK;
1893     MDNode *N;
1894     if (parseMetadataAttachment(MDK, N))
1895       return true;
1896 
1897     Inst.setMetadata(MDK, N);
1898     if (MDK == LLVMContext::MD_tbaa)
1899       InstsWithTBAATag.push_back(&Inst);
1900 
1901     // If this is the end of the list, we're done.
1902   } while (EatIfPresent(lltok::comma));
1903   return false;
1904 }
1905 
1906 /// parseGlobalObjectMetadataAttachment
1907 ///   ::= !dbg !57
1908 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1909   unsigned MDK;
1910   MDNode *N;
1911   if (parseMetadataAttachment(MDK, N))
1912     return true;
1913 
1914   GO.addMetadata(MDK, *N);
1915   return false;
1916 }
1917 
1918 /// parseOptionalFunctionMetadata
1919 ///   ::= (!dbg !57)*
1920 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1921   while (Lex.getKind() == lltok::MetadataVar)
1922     if (parseGlobalObjectMetadataAttachment(F))
1923       return true;
1924   return false;
1925 }
1926 
1927 /// parseOptionalAlignment
1928 ///   ::= /* empty */
1929 ///   ::= 'align' 4
1930 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1931   Alignment = None;
1932   if (!EatIfPresent(lltok::kw_align))
1933     return false;
1934   LocTy AlignLoc = Lex.getLoc();
1935   uint32_t Value = 0;
1936 
1937   LocTy ParenLoc = Lex.getLoc();
1938   bool HaveParens = false;
1939   if (AllowParens) {
1940     if (EatIfPresent(lltok::lparen))
1941       HaveParens = true;
1942   }
1943 
1944   if (parseUInt32(Value))
1945     return true;
1946 
1947   if (HaveParens && !EatIfPresent(lltok::rparen))
1948     return error(ParenLoc, "expected ')'");
1949 
1950   if (!isPowerOf2_32(Value))
1951     return error(AlignLoc, "alignment is not a power of two");
1952   if (Value > Value::MaximumAlignment)
1953     return error(AlignLoc, "huge alignments are not supported yet");
1954   Alignment = Align(Value);
1955   return false;
1956 }
1957 
1958 /// parseOptionalDerefAttrBytes
1959 ///   ::= /* empty */
1960 ///   ::= AttrKind '(' 4 ')'
1961 ///
1962 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1963 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1964                                            uint64_t &Bytes) {
1965   assert((AttrKind == lltok::kw_dereferenceable ||
1966           AttrKind == lltok::kw_dereferenceable_or_null) &&
1967          "contract!");
1968 
1969   Bytes = 0;
1970   if (!EatIfPresent(AttrKind))
1971     return false;
1972   LocTy ParenLoc = Lex.getLoc();
1973   if (!EatIfPresent(lltok::lparen))
1974     return error(ParenLoc, "expected '('");
1975   LocTy DerefLoc = Lex.getLoc();
1976   if (parseUInt64(Bytes))
1977     return true;
1978   ParenLoc = Lex.getLoc();
1979   if (!EatIfPresent(lltok::rparen))
1980     return error(ParenLoc, "expected ')'");
1981   if (!Bytes)
1982     return error(DerefLoc, "dereferenceable bytes must be non-zero");
1983   return false;
1984 }
1985 
1986 /// parseOptionalCommaAlign
1987 ///   ::=
1988 ///   ::= ',' align 4
1989 ///
1990 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1991 /// end.
1992 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
1993                                        bool &AteExtraComma) {
1994   AteExtraComma = false;
1995   while (EatIfPresent(lltok::comma)) {
1996     // Metadata at the end is an early exit.
1997     if (Lex.getKind() == lltok::MetadataVar) {
1998       AteExtraComma = true;
1999       return false;
2000     }
2001 
2002     if (Lex.getKind() != lltok::kw_align)
2003       return error(Lex.getLoc(), "expected metadata or 'align'");
2004 
2005     if (parseOptionalAlignment(Alignment))
2006       return true;
2007   }
2008 
2009   return false;
2010 }
2011 
2012 /// parseOptionalCommaAddrSpace
2013 ///   ::=
2014 ///   ::= ',' addrspace(1)
2015 ///
2016 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2017 /// end.
2018 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2019                                            bool &AteExtraComma) {
2020   AteExtraComma = false;
2021   while (EatIfPresent(lltok::comma)) {
2022     // Metadata at the end is an early exit.
2023     if (Lex.getKind() == lltok::MetadataVar) {
2024       AteExtraComma = true;
2025       return false;
2026     }
2027 
2028     Loc = Lex.getLoc();
2029     if (Lex.getKind() != lltok::kw_addrspace)
2030       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2031 
2032     if (parseOptionalAddrSpace(AddrSpace))
2033       return true;
2034   }
2035 
2036   return false;
2037 }
2038 
2039 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2040                                        Optional<unsigned> &HowManyArg) {
2041   Lex.Lex();
2042 
2043   auto StartParen = Lex.getLoc();
2044   if (!EatIfPresent(lltok::lparen))
2045     return error(StartParen, "expected '('");
2046 
2047   if (parseUInt32(BaseSizeArg))
2048     return true;
2049 
2050   if (EatIfPresent(lltok::comma)) {
2051     auto HowManyAt = Lex.getLoc();
2052     unsigned HowMany;
2053     if (parseUInt32(HowMany))
2054       return true;
2055     if (HowMany == BaseSizeArg)
2056       return error(HowManyAt,
2057                    "'allocsize' indices can't refer to the same parameter");
2058     HowManyArg = HowMany;
2059   } else
2060     HowManyArg = None;
2061 
2062   auto EndParen = Lex.getLoc();
2063   if (!EatIfPresent(lltok::rparen))
2064     return error(EndParen, "expected ')'");
2065   return false;
2066 }
2067 
2068 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2069                                          unsigned &MaxValue) {
2070   Lex.Lex();
2071 
2072   auto StartParen = Lex.getLoc();
2073   if (!EatIfPresent(lltok::lparen))
2074     return error(StartParen, "expected '('");
2075 
2076   if (parseUInt32(MinValue))
2077     return true;
2078 
2079   if (EatIfPresent(lltok::comma)) {
2080     if (parseUInt32(MaxValue))
2081       return true;
2082   } else
2083     MaxValue = MinValue;
2084 
2085   auto EndParen = Lex.getLoc();
2086   if (!EatIfPresent(lltok::rparen))
2087     return error(EndParen, "expected ')'");
2088   return false;
2089 }
2090 
2091 /// parseScopeAndOrdering
2092 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2093 ///   else: ::=
2094 ///
2095 /// This sets Scope and Ordering to the parsed values.
2096 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2097                                      AtomicOrdering &Ordering) {
2098   if (!IsAtomic)
2099     return false;
2100 
2101   return parseScope(SSID) || parseOrdering(Ordering);
2102 }
2103 
2104 /// parseScope
2105 ///   ::= syncscope("singlethread" | "<target scope>")?
2106 ///
2107 /// This sets synchronization scope ID to the ID of the parsed value.
2108 bool LLParser::parseScope(SyncScope::ID &SSID) {
2109   SSID = SyncScope::System;
2110   if (EatIfPresent(lltok::kw_syncscope)) {
2111     auto StartParenAt = Lex.getLoc();
2112     if (!EatIfPresent(lltok::lparen))
2113       return error(StartParenAt, "Expected '(' in syncscope");
2114 
2115     std::string SSN;
2116     auto SSNAt = Lex.getLoc();
2117     if (parseStringConstant(SSN))
2118       return error(SSNAt, "Expected synchronization scope name");
2119 
2120     auto EndParenAt = Lex.getLoc();
2121     if (!EatIfPresent(lltok::rparen))
2122       return error(EndParenAt, "Expected ')' in syncscope");
2123 
2124     SSID = Context.getOrInsertSyncScopeID(SSN);
2125   }
2126 
2127   return false;
2128 }
2129 
2130 /// parseOrdering
2131 ///   ::= AtomicOrdering
2132 ///
2133 /// This sets Ordering to the parsed value.
2134 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2135   switch (Lex.getKind()) {
2136   default:
2137     return tokError("Expected ordering on atomic instruction");
2138   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2139   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2140   // Not specified yet:
2141   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2142   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2143   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2144   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2145   case lltok::kw_seq_cst:
2146     Ordering = AtomicOrdering::SequentiallyConsistent;
2147     break;
2148   }
2149   Lex.Lex();
2150   return false;
2151 }
2152 
2153 /// parseOptionalStackAlignment
2154 ///   ::= /* empty */
2155 ///   ::= 'alignstack' '(' 4 ')'
2156 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2157   Alignment = 0;
2158   if (!EatIfPresent(lltok::kw_alignstack))
2159     return false;
2160   LocTy ParenLoc = Lex.getLoc();
2161   if (!EatIfPresent(lltok::lparen))
2162     return error(ParenLoc, "expected '('");
2163   LocTy AlignLoc = Lex.getLoc();
2164   if (parseUInt32(Alignment))
2165     return true;
2166   ParenLoc = Lex.getLoc();
2167   if (!EatIfPresent(lltok::rparen))
2168     return error(ParenLoc, "expected ')'");
2169   if (!isPowerOf2_32(Alignment))
2170     return error(AlignLoc, "stack alignment is not a power of two");
2171   return false;
2172 }
2173 
2174 /// parseIndexList - This parses the index list for an insert/extractvalue
2175 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2176 /// comma at the end of the line and find that it is followed by metadata.
2177 /// Clients that don't allow metadata can call the version of this function that
2178 /// only takes one argument.
2179 ///
2180 /// parseIndexList
2181 ///    ::=  (',' uint32)+
2182 ///
2183 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2184                               bool &AteExtraComma) {
2185   AteExtraComma = false;
2186 
2187   if (Lex.getKind() != lltok::comma)
2188     return tokError("expected ',' as start of index list");
2189 
2190   while (EatIfPresent(lltok::comma)) {
2191     if (Lex.getKind() == lltok::MetadataVar) {
2192       if (Indices.empty())
2193         return tokError("expected index");
2194       AteExtraComma = true;
2195       return false;
2196     }
2197     unsigned Idx = 0;
2198     if (parseUInt32(Idx))
2199       return true;
2200     Indices.push_back(Idx);
2201   }
2202 
2203   return false;
2204 }
2205 
2206 //===----------------------------------------------------------------------===//
2207 // Type Parsing.
2208 //===----------------------------------------------------------------------===//
2209 
2210 /// parseType - parse a type.
2211 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2212   SMLoc TypeLoc = Lex.getLoc();
2213   switch (Lex.getKind()) {
2214   default:
2215     return tokError(Msg);
2216   case lltok::Type:
2217     // Type ::= 'float' | 'void' (etc)
2218     Result = Lex.getTyVal();
2219     Lex.Lex();
2220     break;
2221   case lltok::lbrace:
2222     // Type ::= StructType
2223     if (parseAnonStructType(Result, false))
2224       return true;
2225     break;
2226   case lltok::lsquare:
2227     // Type ::= '[' ... ']'
2228     Lex.Lex(); // eat the lsquare.
2229     if (parseArrayVectorType(Result, false))
2230       return true;
2231     break;
2232   case lltok::less: // Either vector or packed struct.
2233     // Type ::= '<' ... '>'
2234     Lex.Lex();
2235     if (Lex.getKind() == lltok::lbrace) {
2236       if (parseAnonStructType(Result, true) ||
2237           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2238         return true;
2239     } else if (parseArrayVectorType(Result, true))
2240       return true;
2241     break;
2242   case lltok::LocalVar: {
2243     // Type ::= %foo
2244     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2245 
2246     // If the type hasn't been defined yet, create a forward definition and
2247     // remember where that forward def'n was seen (in case it never is defined).
2248     if (!Entry.first) {
2249       Entry.first = StructType::create(Context, Lex.getStrVal());
2250       Entry.second = Lex.getLoc();
2251     }
2252     Result = Entry.first;
2253     Lex.Lex();
2254     break;
2255   }
2256 
2257   case lltok::LocalVarID: {
2258     // Type ::= %4
2259     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2260 
2261     // If the type hasn't been defined yet, create a forward definition and
2262     // remember where that forward def'n was seen (in case it never is defined).
2263     if (!Entry.first) {
2264       Entry.first = StructType::create(Context);
2265       Entry.second = Lex.getLoc();
2266     }
2267     Result = Entry.first;
2268     Lex.Lex();
2269     break;
2270   }
2271   }
2272 
2273   // Handle (explicit) opaque pointer types (not --force-opaque-pointers).
2274   //
2275   // Type ::= ptr ('addrspace' '(' uint32 ')')?
2276   if (Result->isOpaquePointerTy()) {
2277     unsigned AddrSpace;
2278     if (parseOptionalAddrSpace(AddrSpace))
2279       return true;
2280     Result = PointerType::get(getContext(), AddrSpace);
2281 
2282     // Give a nice error for 'ptr*'.
2283     if (Lex.getKind() == lltok::star)
2284       return tokError("ptr* is invalid - use ptr instead");
2285 
2286     // Fall through to parsing the type suffixes only if this 'ptr' is a
2287     // function return. Otherwise, return success, implicitly rejecting other
2288     // suffixes.
2289     if (Lex.getKind() != lltok::lparen)
2290       return false;
2291   }
2292 
2293   // parse the type suffixes.
2294   while (true) {
2295     switch (Lex.getKind()) {
2296     // End of type.
2297     default:
2298       if (!AllowVoid && Result->isVoidTy())
2299         return error(TypeLoc, "void type only allowed for function results");
2300       return false;
2301 
2302     // Type ::= Type '*'
2303     case lltok::star:
2304       if (Result->isLabelTy())
2305         return tokError("basic block pointers are invalid");
2306       if (Result->isVoidTy())
2307         return tokError("pointers to void are invalid - use i8* instead");
2308       if (!PointerType::isValidElementType(Result))
2309         return tokError("pointer to this type is invalid");
2310       Result = PointerType::getUnqual(Result);
2311       Lex.Lex();
2312       break;
2313 
2314     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2315     case lltok::kw_addrspace: {
2316       if (Result->isLabelTy())
2317         return tokError("basic block pointers are invalid");
2318       if (Result->isVoidTy())
2319         return tokError("pointers to void are invalid; use i8* instead");
2320       if (!PointerType::isValidElementType(Result))
2321         return tokError("pointer to this type is invalid");
2322       unsigned AddrSpace;
2323       if (parseOptionalAddrSpace(AddrSpace) ||
2324           parseToken(lltok::star, "expected '*' in address space"))
2325         return true;
2326 
2327       Result = PointerType::get(Result, AddrSpace);
2328       break;
2329     }
2330 
2331     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2332     case lltok::lparen:
2333       if (parseFunctionType(Result))
2334         return true;
2335       break;
2336     }
2337   }
2338 }
2339 
2340 /// parseParameterList
2341 ///    ::= '(' ')'
2342 ///    ::= '(' Arg (',' Arg)* ')'
2343 ///  Arg
2344 ///    ::= Type OptionalAttributes Value OptionalAttributes
2345 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2346                                   PerFunctionState &PFS, bool IsMustTailCall,
2347                                   bool InVarArgsFunc) {
2348   if (parseToken(lltok::lparen, "expected '(' in call"))
2349     return true;
2350 
2351   while (Lex.getKind() != lltok::rparen) {
2352     // If this isn't the first argument, we need a comma.
2353     if (!ArgList.empty() &&
2354         parseToken(lltok::comma, "expected ',' in argument list"))
2355       return true;
2356 
2357     // parse an ellipsis if this is a musttail call in a variadic function.
2358     if (Lex.getKind() == lltok::dotdotdot) {
2359       const char *Msg = "unexpected ellipsis in argument list for ";
2360       if (!IsMustTailCall)
2361         return tokError(Twine(Msg) + "non-musttail call");
2362       if (!InVarArgsFunc)
2363         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2364       Lex.Lex();  // Lex the '...', it is purely for readability.
2365       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2366     }
2367 
2368     // parse the argument.
2369     LocTy ArgLoc;
2370     Type *ArgTy = nullptr;
2371     AttrBuilder ArgAttrs;
2372     Value *V;
2373     if (parseType(ArgTy, ArgLoc))
2374       return true;
2375 
2376     if (ArgTy->isMetadataTy()) {
2377       if (parseMetadataAsValue(V, PFS))
2378         return true;
2379     } else {
2380       // Otherwise, handle normal operands.
2381       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2382         return true;
2383     }
2384     ArgList.push_back(ParamInfo(
2385         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2386   }
2387 
2388   if (IsMustTailCall && InVarArgsFunc)
2389     return tokError("expected '...' at end of argument list for musttail call "
2390                     "in varargs function");
2391 
2392   Lex.Lex();  // Lex the ')'.
2393   return false;
2394 }
2395 
2396 /// parseRequiredTypeAttr
2397 ///   ::= attrname(<ty>)
2398 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2399                                      Attribute::AttrKind AttrKind) {
2400   Type *Ty = nullptr;
2401   if (!EatIfPresent(AttrToken))
2402     return true;
2403   if (!EatIfPresent(lltok::lparen))
2404     return error(Lex.getLoc(), "expected '('");
2405   if (parseType(Ty))
2406     return true;
2407   if (!EatIfPresent(lltok::rparen))
2408     return error(Lex.getLoc(), "expected ')'");
2409 
2410   B.addTypeAttr(AttrKind, Ty);
2411   return false;
2412 }
2413 
2414 /// parseOptionalOperandBundles
2415 ///    ::= /*empty*/
2416 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2417 ///
2418 /// OperandBundle
2419 ///    ::= bundle-tag '(' ')'
2420 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2421 ///
2422 /// bundle-tag ::= String Constant
2423 bool LLParser::parseOptionalOperandBundles(
2424     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2425   LocTy BeginLoc = Lex.getLoc();
2426   if (!EatIfPresent(lltok::lsquare))
2427     return false;
2428 
2429   while (Lex.getKind() != lltok::rsquare) {
2430     // If this isn't the first operand bundle, we need a comma.
2431     if (!BundleList.empty() &&
2432         parseToken(lltok::comma, "expected ',' in input list"))
2433       return true;
2434 
2435     std::string Tag;
2436     if (parseStringConstant(Tag))
2437       return true;
2438 
2439     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2440       return true;
2441 
2442     std::vector<Value *> Inputs;
2443     while (Lex.getKind() != lltok::rparen) {
2444       // If this isn't the first input, we need a comma.
2445       if (!Inputs.empty() &&
2446           parseToken(lltok::comma, "expected ',' in input list"))
2447         return true;
2448 
2449       Type *Ty = nullptr;
2450       Value *Input = nullptr;
2451       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2452         return true;
2453       Inputs.push_back(Input);
2454     }
2455 
2456     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2457 
2458     Lex.Lex(); // Lex the ')'.
2459   }
2460 
2461   if (BundleList.empty())
2462     return error(BeginLoc, "operand bundle set must not be empty");
2463 
2464   Lex.Lex(); // Lex the ']'.
2465   return false;
2466 }
2467 
2468 /// parseArgumentList - parse the argument list for a function type or function
2469 /// prototype.
2470 ///   ::= '(' ArgTypeListI ')'
2471 /// ArgTypeListI
2472 ///   ::= /*empty*/
2473 ///   ::= '...'
2474 ///   ::= ArgTypeList ',' '...'
2475 ///   ::= ArgType (',' ArgType)*
2476 ///
2477 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2478                                  bool &IsVarArg) {
2479   unsigned CurValID = 0;
2480   IsVarArg = false;
2481   assert(Lex.getKind() == lltok::lparen);
2482   Lex.Lex(); // eat the (.
2483 
2484   if (Lex.getKind() == lltok::rparen) {
2485     // empty
2486   } else if (Lex.getKind() == lltok::dotdotdot) {
2487     IsVarArg = true;
2488     Lex.Lex();
2489   } else {
2490     LocTy TypeLoc = Lex.getLoc();
2491     Type *ArgTy = nullptr;
2492     AttrBuilder Attrs;
2493     std::string Name;
2494 
2495     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2496       return true;
2497 
2498     if (ArgTy->isVoidTy())
2499       return error(TypeLoc, "argument can not have void type");
2500 
2501     if (Lex.getKind() == lltok::LocalVar) {
2502       Name = Lex.getStrVal();
2503       Lex.Lex();
2504     } else if (Lex.getKind() == lltok::LocalVarID) {
2505       if (Lex.getUIntVal() != CurValID)
2506         return error(TypeLoc, "argument expected to be numbered '%" +
2507                                   Twine(CurValID) + "'");
2508       ++CurValID;
2509       Lex.Lex();
2510     }
2511 
2512     if (!FunctionType::isValidArgumentType(ArgTy))
2513       return error(TypeLoc, "invalid type for function argument");
2514 
2515     ArgList.emplace_back(TypeLoc, ArgTy,
2516                          AttributeSet::get(ArgTy->getContext(), Attrs),
2517                          std::move(Name));
2518 
2519     while (EatIfPresent(lltok::comma)) {
2520       // Handle ... at end of arg list.
2521       if (EatIfPresent(lltok::dotdotdot)) {
2522         IsVarArg = true;
2523         break;
2524       }
2525 
2526       // Otherwise must be an argument type.
2527       TypeLoc = Lex.getLoc();
2528       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2529         return true;
2530 
2531       if (ArgTy->isVoidTy())
2532         return error(TypeLoc, "argument can not have void type");
2533 
2534       if (Lex.getKind() == lltok::LocalVar) {
2535         Name = Lex.getStrVal();
2536         Lex.Lex();
2537       } else {
2538         if (Lex.getKind() == lltok::LocalVarID) {
2539           if (Lex.getUIntVal() != CurValID)
2540             return error(TypeLoc, "argument expected to be numbered '%" +
2541                                       Twine(CurValID) + "'");
2542           Lex.Lex();
2543         }
2544         ++CurValID;
2545         Name = "";
2546       }
2547 
2548       if (!ArgTy->isFirstClassType())
2549         return error(TypeLoc, "invalid type for function argument");
2550 
2551       ArgList.emplace_back(TypeLoc, ArgTy,
2552                            AttributeSet::get(ArgTy->getContext(), Attrs),
2553                            std::move(Name));
2554     }
2555   }
2556 
2557   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2558 }
2559 
2560 /// parseFunctionType
2561 ///  ::= Type ArgumentList OptionalAttrs
2562 bool LLParser::parseFunctionType(Type *&Result) {
2563   assert(Lex.getKind() == lltok::lparen);
2564 
2565   if (!FunctionType::isValidReturnType(Result))
2566     return tokError("invalid function return type");
2567 
2568   SmallVector<ArgInfo, 8> ArgList;
2569   bool IsVarArg;
2570   if (parseArgumentList(ArgList, IsVarArg))
2571     return true;
2572 
2573   // Reject names on the arguments lists.
2574   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2575     if (!ArgList[i].Name.empty())
2576       return error(ArgList[i].Loc, "argument name invalid in function type");
2577     if (ArgList[i].Attrs.hasAttributes())
2578       return error(ArgList[i].Loc,
2579                    "argument attributes invalid in function type");
2580   }
2581 
2582   SmallVector<Type*, 16> ArgListTy;
2583   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2584     ArgListTy.push_back(ArgList[i].Ty);
2585 
2586   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2587   return false;
2588 }
2589 
2590 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2591 /// other structs.
2592 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2593   SmallVector<Type*, 8> Elts;
2594   if (parseStructBody(Elts))
2595     return true;
2596 
2597   Result = StructType::get(Context, Elts, Packed);
2598   return false;
2599 }
2600 
2601 /// parseStructDefinition - parse a struct in a 'type' definition.
2602 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2603                                      std::pair<Type *, LocTy> &Entry,
2604                                      Type *&ResultTy) {
2605   // If the type was already defined, diagnose the redefinition.
2606   if (Entry.first && !Entry.second.isValid())
2607     return error(TypeLoc, "redefinition of type");
2608 
2609   // If we have opaque, just return without filling in the definition for the
2610   // struct.  This counts as a definition as far as the .ll file goes.
2611   if (EatIfPresent(lltok::kw_opaque)) {
2612     // This type is being defined, so clear the location to indicate this.
2613     Entry.second = SMLoc();
2614 
2615     // If this type number has never been uttered, create it.
2616     if (!Entry.first)
2617       Entry.first = StructType::create(Context, Name);
2618     ResultTy = Entry.first;
2619     return false;
2620   }
2621 
2622   // If the type starts with '<', then it is either a packed struct or a vector.
2623   bool isPacked = EatIfPresent(lltok::less);
2624 
2625   // If we don't have a struct, then we have a random type alias, which we
2626   // accept for compatibility with old files.  These types are not allowed to be
2627   // forward referenced and not allowed to be recursive.
2628   if (Lex.getKind() != lltok::lbrace) {
2629     if (Entry.first)
2630       return error(TypeLoc, "forward references to non-struct type");
2631 
2632     ResultTy = nullptr;
2633     if (isPacked)
2634       return parseArrayVectorType(ResultTy, true);
2635     return parseType(ResultTy);
2636   }
2637 
2638   // This type is being defined, so clear the location to indicate this.
2639   Entry.second = SMLoc();
2640 
2641   // If this type number has never been uttered, create it.
2642   if (!Entry.first)
2643     Entry.first = StructType::create(Context, Name);
2644 
2645   StructType *STy = cast<StructType>(Entry.first);
2646 
2647   SmallVector<Type*, 8> Body;
2648   if (parseStructBody(Body) ||
2649       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2650     return true;
2651 
2652   STy->setBody(Body, isPacked);
2653   ResultTy = STy;
2654   return false;
2655 }
2656 
2657 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2658 ///   StructType
2659 ///     ::= '{' '}'
2660 ///     ::= '{' Type (',' Type)* '}'
2661 ///     ::= '<' '{' '}' '>'
2662 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2663 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2664   assert(Lex.getKind() == lltok::lbrace);
2665   Lex.Lex(); // Consume the '{'
2666 
2667   // Handle the empty struct.
2668   if (EatIfPresent(lltok::rbrace))
2669     return false;
2670 
2671   LocTy EltTyLoc = Lex.getLoc();
2672   Type *Ty = nullptr;
2673   if (parseType(Ty))
2674     return true;
2675   Body.push_back(Ty);
2676 
2677   if (!StructType::isValidElementType(Ty))
2678     return error(EltTyLoc, "invalid element type for struct");
2679 
2680   while (EatIfPresent(lltok::comma)) {
2681     EltTyLoc = Lex.getLoc();
2682     if (parseType(Ty))
2683       return true;
2684 
2685     if (!StructType::isValidElementType(Ty))
2686       return error(EltTyLoc, "invalid element type for struct");
2687 
2688     Body.push_back(Ty);
2689   }
2690 
2691   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2692 }
2693 
2694 /// parseArrayVectorType - parse an array or vector type, assuming the first
2695 /// token has already been consumed.
2696 ///   Type
2697 ///     ::= '[' APSINTVAL 'x' Types ']'
2698 ///     ::= '<' APSINTVAL 'x' Types '>'
2699 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2700 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2701   bool Scalable = false;
2702 
2703   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2704     Lex.Lex(); // consume the 'vscale'
2705     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2706       return true;
2707 
2708     Scalable = true;
2709   }
2710 
2711   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2712       Lex.getAPSIntVal().getBitWidth() > 64)
2713     return tokError("expected number in address space");
2714 
2715   LocTy SizeLoc = Lex.getLoc();
2716   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2717   Lex.Lex();
2718 
2719   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2720     return true;
2721 
2722   LocTy TypeLoc = Lex.getLoc();
2723   Type *EltTy = nullptr;
2724   if (parseType(EltTy))
2725     return true;
2726 
2727   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2728                  "expected end of sequential type"))
2729     return true;
2730 
2731   if (IsVector) {
2732     if (Size == 0)
2733       return error(SizeLoc, "zero element vector is illegal");
2734     if ((unsigned)Size != Size)
2735       return error(SizeLoc, "size too large for vector");
2736     if (!VectorType::isValidElementType(EltTy))
2737       return error(TypeLoc, "invalid vector element type");
2738     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2739   } else {
2740     if (!ArrayType::isValidElementType(EltTy))
2741       return error(TypeLoc, "invalid array element type");
2742     Result = ArrayType::get(EltTy, Size);
2743   }
2744   return false;
2745 }
2746 
2747 //===----------------------------------------------------------------------===//
2748 // Function Semantic Analysis.
2749 //===----------------------------------------------------------------------===//
2750 
2751 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2752                                              int functionNumber)
2753   : P(p), F(f), FunctionNumber(functionNumber) {
2754 
2755   // Insert unnamed arguments into the NumberedVals list.
2756   for (Argument &A : F.args())
2757     if (!A.hasName())
2758       NumberedVals.push_back(&A);
2759 }
2760 
2761 LLParser::PerFunctionState::~PerFunctionState() {
2762   // If there were any forward referenced non-basicblock values, delete them.
2763 
2764   for (const auto &P : ForwardRefVals) {
2765     if (isa<BasicBlock>(P.second.first))
2766       continue;
2767     P.second.first->replaceAllUsesWith(
2768         UndefValue::get(P.second.first->getType()));
2769     P.second.first->deleteValue();
2770   }
2771 
2772   for (const auto &P : ForwardRefValIDs) {
2773     if (isa<BasicBlock>(P.second.first))
2774       continue;
2775     P.second.first->replaceAllUsesWith(
2776         UndefValue::get(P.second.first->getType()));
2777     P.second.first->deleteValue();
2778   }
2779 }
2780 
2781 bool LLParser::PerFunctionState::finishFunction() {
2782   if (!ForwardRefVals.empty())
2783     return P.error(ForwardRefVals.begin()->second.second,
2784                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2785                        "'");
2786   if (!ForwardRefValIDs.empty())
2787     return P.error(ForwardRefValIDs.begin()->second.second,
2788                    "use of undefined value '%" +
2789                        Twine(ForwardRefValIDs.begin()->first) + "'");
2790   return false;
2791 }
2792 
2793 /// getVal - Get a value with the specified name or ID, creating a
2794 /// forward reference record if needed.  This can return null if the value
2795 /// exists but does not have the right type.
2796 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2797                                           LocTy Loc, bool IsCall) {
2798   // Look this name up in the normal function symbol table.
2799   Value *Val = F.getValueSymbolTable()->lookup(Name);
2800 
2801   // If this is a forward reference for the value, see if we already created a
2802   // forward ref record.
2803   if (!Val) {
2804     auto I = ForwardRefVals.find(Name);
2805     if (I != ForwardRefVals.end())
2806       Val = I->second.first;
2807   }
2808 
2809   // If we have the value in the symbol table or fwd-ref table, return it.
2810   if (Val)
2811     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2812 
2813   // Don't make placeholders with invalid type.
2814   if (!Ty->isFirstClassType()) {
2815     P.error(Loc, "invalid use of a non-first-class type");
2816     return nullptr;
2817   }
2818 
2819   // Otherwise, create a new forward reference for this value and remember it.
2820   Value *FwdVal;
2821   if (Ty->isLabelTy()) {
2822     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2823   } else {
2824     FwdVal = new Argument(Ty, Name);
2825   }
2826 
2827   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2828   return FwdVal;
2829 }
2830 
2831 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
2832                                           bool IsCall) {
2833   // Look this name up in the normal function symbol table.
2834   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2835 
2836   // If this is a forward reference for the value, see if we already created a
2837   // forward ref record.
2838   if (!Val) {
2839     auto I = ForwardRefValIDs.find(ID);
2840     if (I != ForwardRefValIDs.end())
2841       Val = I->second.first;
2842   }
2843 
2844   // If we have the value in the symbol table or fwd-ref table, return it.
2845   if (Val)
2846     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2847 
2848   if (!Ty->isFirstClassType()) {
2849     P.error(Loc, "invalid use of a non-first-class type");
2850     return nullptr;
2851   }
2852 
2853   // Otherwise, create a new forward reference for this value and remember it.
2854   Value *FwdVal;
2855   if (Ty->isLabelTy()) {
2856     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2857   } else {
2858     FwdVal = new Argument(Ty);
2859   }
2860 
2861   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2862   return FwdVal;
2863 }
2864 
2865 /// setInstName - After an instruction is parsed and inserted into its
2866 /// basic block, this installs its name.
2867 bool LLParser::PerFunctionState::setInstName(int NameID,
2868                                              const std::string &NameStr,
2869                                              LocTy NameLoc, Instruction *Inst) {
2870   // If this instruction has void type, it cannot have a name or ID specified.
2871   if (Inst->getType()->isVoidTy()) {
2872     if (NameID != -1 || !NameStr.empty())
2873       return P.error(NameLoc, "instructions returning void cannot have a name");
2874     return false;
2875   }
2876 
2877   // If this was a numbered instruction, verify that the instruction is the
2878   // expected value and resolve any forward references.
2879   if (NameStr.empty()) {
2880     // If neither a name nor an ID was specified, just use the next ID.
2881     if (NameID == -1)
2882       NameID = NumberedVals.size();
2883 
2884     if (unsigned(NameID) != NumberedVals.size())
2885       return P.error(NameLoc, "instruction expected to be numbered '%" +
2886                                   Twine(NumberedVals.size()) + "'");
2887 
2888     auto FI = ForwardRefValIDs.find(NameID);
2889     if (FI != ForwardRefValIDs.end()) {
2890       Value *Sentinel = FI->second.first;
2891       if (Sentinel->getType() != Inst->getType())
2892         return P.error(NameLoc, "instruction forward referenced with type '" +
2893                                     getTypeString(FI->second.first->getType()) +
2894                                     "'");
2895 
2896       Sentinel->replaceAllUsesWith(Inst);
2897       Sentinel->deleteValue();
2898       ForwardRefValIDs.erase(FI);
2899     }
2900 
2901     NumberedVals.push_back(Inst);
2902     return false;
2903   }
2904 
2905   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2906   auto FI = ForwardRefVals.find(NameStr);
2907   if (FI != ForwardRefVals.end()) {
2908     Value *Sentinel = FI->second.first;
2909     if (Sentinel->getType() != Inst->getType())
2910       return P.error(NameLoc, "instruction forward referenced with type '" +
2911                                   getTypeString(FI->second.first->getType()) +
2912                                   "'");
2913 
2914     Sentinel->replaceAllUsesWith(Inst);
2915     Sentinel->deleteValue();
2916     ForwardRefVals.erase(FI);
2917   }
2918 
2919   // Set the name on the instruction.
2920   Inst->setName(NameStr);
2921 
2922   if (Inst->getName() != NameStr)
2923     return P.error(NameLoc, "multiple definition of local value named '" +
2924                                 NameStr + "'");
2925   return false;
2926 }
2927 
2928 /// getBB - Get a basic block with the specified name or ID, creating a
2929 /// forward reference record if needed.
2930 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2931                                               LocTy Loc) {
2932   return dyn_cast_or_null<BasicBlock>(
2933       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2934 }
2935 
2936 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2937   return dyn_cast_or_null<BasicBlock>(
2938       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2939 }
2940 
2941 /// defineBB - Define the specified basic block, which is either named or
2942 /// unnamed.  If there is an error, this returns null otherwise it returns
2943 /// the block being defined.
2944 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
2945                                                  int NameID, LocTy Loc) {
2946   BasicBlock *BB;
2947   if (Name.empty()) {
2948     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2949       P.error(Loc, "label expected to be numbered '" +
2950                        Twine(NumberedVals.size()) + "'");
2951       return nullptr;
2952     }
2953     BB = getBB(NumberedVals.size(), Loc);
2954     if (!BB) {
2955       P.error(Loc, "unable to create block numbered '" +
2956                        Twine(NumberedVals.size()) + "'");
2957       return nullptr;
2958     }
2959   } else {
2960     BB = getBB(Name, Loc);
2961     if (!BB) {
2962       P.error(Loc, "unable to create block named '" + Name + "'");
2963       return nullptr;
2964     }
2965   }
2966 
2967   // Move the block to the end of the function.  Forward ref'd blocks are
2968   // inserted wherever they happen to be referenced.
2969   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2970 
2971   // Remove the block from forward ref sets.
2972   if (Name.empty()) {
2973     ForwardRefValIDs.erase(NumberedVals.size());
2974     NumberedVals.push_back(BB);
2975   } else {
2976     // BB forward references are already in the function symbol table.
2977     ForwardRefVals.erase(Name);
2978   }
2979 
2980   return BB;
2981 }
2982 
2983 //===----------------------------------------------------------------------===//
2984 // Constants.
2985 //===----------------------------------------------------------------------===//
2986 
2987 /// parseValID - parse an abstract value that doesn't necessarily have a
2988 /// type implied.  For example, if we parse "4" we don't know what integer type
2989 /// it has.  The value will later be combined with its type and checked for
2990 /// sanity.  PFS is used to convert function-local operands of metadata (since
2991 /// metadata operands are not just parsed here but also converted to values).
2992 /// PFS can be null when we are not parsing metadata values inside a function.
2993 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
2994   ID.Loc = Lex.getLoc();
2995   switch (Lex.getKind()) {
2996   default:
2997     return tokError("expected value token");
2998   case lltok::GlobalID:  // @42
2999     ID.UIntVal = Lex.getUIntVal();
3000     ID.Kind = ValID::t_GlobalID;
3001     break;
3002   case lltok::GlobalVar:  // @foo
3003     ID.StrVal = Lex.getStrVal();
3004     ID.Kind = ValID::t_GlobalName;
3005     break;
3006   case lltok::LocalVarID:  // %42
3007     ID.UIntVal = Lex.getUIntVal();
3008     ID.Kind = ValID::t_LocalID;
3009     break;
3010   case lltok::LocalVar:  // %foo
3011     ID.StrVal = Lex.getStrVal();
3012     ID.Kind = ValID::t_LocalName;
3013     break;
3014   case lltok::APSInt:
3015     ID.APSIntVal = Lex.getAPSIntVal();
3016     ID.Kind = ValID::t_APSInt;
3017     break;
3018   case lltok::APFloat:
3019     ID.APFloatVal = Lex.getAPFloatVal();
3020     ID.Kind = ValID::t_APFloat;
3021     break;
3022   case lltok::kw_true:
3023     ID.ConstantVal = ConstantInt::getTrue(Context);
3024     ID.Kind = ValID::t_Constant;
3025     break;
3026   case lltok::kw_false:
3027     ID.ConstantVal = ConstantInt::getFalse(Context);
3028     ID.Kind = ValID::t_Constant;
3029     break;
3030   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3031   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3032   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3033   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3034   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3035 
3036   case lltok::lbrace: {
3037     // ValID ::= '{' ConstVector '}'
3038     Lex.Lex();
3039     SmallVector<Constant*, 16> Elts;
3040     if (parseGlobalValueVector(Elts) ||
3041         parseToken(lltok::rbrace, "expected end of struct constant"))
3042       return true;
3043 
3044     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3045     ID.UIntVal = Elts.size();
3046     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3047            Elts.size() * sizeof(Elts[0]));
3048     ID.Kind = ValID::t_ConstantStruct;
3049     return false;
3050   }
3051   case lltok::less: {
3052     // ValID ::= '<' ConstVector '>'         --> Vector.
3053     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3054     Lex.Lex();
3055     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3056 
3057     SmallVector<Constant*, 16> Elts;
3058     LocTy FirstEltLoc = Lex.getLoc();
3059     if (parseGlobalValueVector(Elts) ||
3060         (isPackedStruct &&
3061          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3062         parseToken(lltok::greater, "expected end of constant"))
3063       return true;
3064 
3065     if (isPackedStruct) {
3066       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3067       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3068              Elts.size() * sizeof(Elts[0]));
3069       ID.UIntVal = Elts.size();
3070       ID.Kind = ValID::t_PackedConstantStruct;
3071       return false;
3072     }
3073 
3074     if (Elts.empty())
3075       return error(ID.Loc, "constant vector must not be empty");
3076 
3077     if (!Elts[0]->getType()->isIntegerTy() &&
3078         !Elts[0]->getType()->isFloatingPointTy() &&
3079         !Elts[0]->getType()->isPointerTy())
3080       return error(
3081           FirstEltLoc,
3082           "vector elements must have integer, pointer or floating point type");
3083 
3084     // Verify that all the vector elements have the same type.
3085     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3086       if (Elts[i]->getType() != Elts[0]->getType())
3087         return error(FirstEltLoc, "vector element #" + Twine(i) +
3088                                       " is not of type '" +
3089                                       getTypeString(Elts[0]->getType()));
3090 
3091     ID.ConstantVal = ConstantVector::get(Elts);
3092     ID.Kind = ValID::t_Constant;
3093     return false;
3094   }
3095   case lltok::lsquare: {   // Array Constant
3096     Lex.Lex();
3097     SmallVector<Constant*, 16> Elts;
3098     LocTy FirstEltLoc = Lex.getLoc();
3099     if (parseGlobalValueVector(Elts) ||
3100         parseToken(lltok::rsquare, "expected end of array constant"))
3101       return true;
3102 
3103     // Handle empty element.
3104     if (Elts.empty()) {
3105       // Use undef instead of an array because it's inconvenient to determine
3106       // the element type at this point, there being no elements to examine.
3107       ID.Kind = ValID::t_EmptyArray;
3108       return false;
3109     }
3110 
3111     if (!Elts[0]->getType()->isFirstClassType())
3112       return error(FirstEltLoc, "invalid array element type: " +
3113                                     getTypeString(Elts[0]->getType()));
3114 
3115     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3116 
3117     // Verify all elements are correct type!
3118     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3119       if (Elts[i]->getType() != Elts[0]->getType())
3120         return error(FirstEltLoc, "array element #" + Twine(i) +
3121                                       " is not of type '" +
3122                                       getTypeString(Elts[0]->getType()));
3123     }
3124 
3125     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3126     ID.Kind = ValID::t_Constant;
3127     return false;
3128   }
3129   case lltok::kw_c:  // c "foo"
3130     Lex.Lex();
3131     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3132                                                   false);
3133     if (parseToken(lltok::StringConstant, "expected string"))
3134       return true;
3135     ID.Kind = ValID::t_Constant;
3136     return false;
3137 
3138   case lltok::kw_asm: {
3139     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3140     //             STRINGCONSTANT
3141     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3142     Lex.Lex();
3143     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3144         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3145         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3146         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3147         parseStringConstant(ID.StrVal) ||
3148         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3149         parseToken(lltok::StringConstant, "expected constraint string"))
3150       return true;
3151     ID.StrVal2 = Lex.getStrVal();
3152     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3153                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3154     ID.Kind = ValID::t_InlineAsm;
3155     return false;
3156   }
3157 
3158   case lltok::kw_blockaddress: {
3159     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3160     Lex.Lex();
3161 
3162     ValID Fn, Label;
3163 
3164     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3165         parseValID(Fn, PFS) ||
3166         parseToken(lltok::comma,
3167                    "expected comma in block address expression") ||
3168         parseValID(Label, PFS) ||
3169         parseToken(lltok::rparen, "expected ')' in block address expression"))
3170       return true;
3171 
3172     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3173       return error(Fn.Loc, "expected function name in blockaddress");
3174     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3175       return error(Label.Loc, "expected basic block name in blockaddress");
3176 
3177     // Try to find the function (but skip it if it's forward-referenced).
3178     GlobalValue *GV = nullptr;
3179     if (Fn.Kind == ValID::t_GlobalID) {
3180       if (Fn.UIntVal < NumberedVals.size())
3181         GV = NumberedVals[Fn.UIntVal];
3182     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3183       GV = M->getNamedValue(Fn.StrVal);
3184     }
3185     Function *F = nullptr;
3186     if (GV) {
3187       // Confirm that it's actually a function with a definition.
3188       if (!isa<Function>(GV))
3189         return error(Fn.Loc, "expected function name in blockaddress");
3190       F = cast<Function>(GV);
3191       if (F->isDeclaration())
3192         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3193     }
3194 
3195     if (!F) {
3196       // Make a global variable as a placeholder for this reference.
3197       GlobalValue *&FwdRef =
3198           ForwardRefBlockAddresses.insert(std::make_pair(
3199                                               std::move(Fn),
3200                                               std::map<ValID, GlobalValue *>()))
3201               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3202               .first->second;
3203       if (!FwdRef) {
3204         unsigned FwdDeclAS;
3205         if (ExpectedTy) {
3206           // If we know the type that the blockaddress is being assigned to,
3207           // we can use the address space of that type.
3208           if (!ExpectedTy->isPointerTy())
3209             return error(ID.Loc,
3210                          "type of blockaddress must be a pointer and not '" +
3211                              getTypeString(ExpectedTy) + "'");
3212           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3213         } else if (PFS) {
3214           // Otherwise, we default the address space of the current function.
3215           FwdDeclAS = PFS->getFunction().getAddressSpace();
3216         } else {
3217           llvm_unreachable("Unknown address space for blockaddress");
3218         }
3219         FwdRef = new GlobalVariable(
3220             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3221             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3222       }
3223 
3224       ID.ConstantVal = FwdRef;
3225       ID.Kind = ValID::t_Constant;
3226       return false;
3227     }
3228 
3229     // We found the function; now find the basic block.  Don't use PFS, since we
3230     // might be inside a constant expression.
3231     BasicBlock *BB;
3232     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3233       if (Label.Kind == ValID::t_LocalID)
3234         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3235       else
3236         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3237       if (!BB)
3238         return error(Label.Loc, "referenced value is not a basic block");
3239     } else {
3240       if (Label.Kind == ValID::t_LocalID)
3241         return error(Label.Loc, "cannot take address of numeric label after "
3242                                 "the function is defined");
3243       BB = dyn_cast_or_null<BasicBlock>(
3244           F->getValueSymbolTable()->lookup(Label.StrVal));
3245       if (!BB)
3246         return error(Label.Loc, "referenced value is not a basic block");
3247     }
3248 
3249     ID.ConstantVal = BlockAddress::get(F, BB);
3250     ID.Kind = ValID::t_Constant;
3251     return false;
3252   }
3253 
3254   case lltok::kw_dso_local_equivalent: {
3255     // ValID ::= 'dso_local_equivalent' @foo
3256     Lex.Lex();
3257 
3258     ValID Fn;
3259 
3260     if (parseValID(Fn, PFS))
3261       return true;
3262 
3263     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3264       return error(Fn.Loc,
3265                    "expected global value name in dso_local_equivalent");
3266 
3267     // Try to find the function (but skip it if it's forward-referenced).
3268     GlobalValue *GV = nullptr;
3269     if (Fn.Kind == ValID::t_GlobalID) {
3270       if (Fn.UIntVal < NumberedVals.size())
3271         GV = NumberedVals[Fn.UIntVal];
3272     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3273       GV = M->getNamedValue(Fn.StrVal);
3274     }
3275 
3276     assert(GV && "Could not find a corresponding global variable");
3277 
3278     if (!GV->getValueType()->isFunctionTy())
3279       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3280                            "in dso_local_equivalent");
3281 
3282     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3283     ID.Kind = ValID::t_Constant;
3284     return false;
3285   }
3286 
3287   case lltok::kw_trunc:
3288   case lltok::kw_zext:
3289   case lltok::kw_sext:
3290   case lltok::kw_fptrunc:
3291   case lltok::kw_fpext:
3292   case lltok::kw_bitcast:
3293   case lltok::kw_addrspacecast:
3294   case lltok::kw_uitofp:
3295   case lltok::kw_sitofp:
3296   case lltok::kw_fptoui:
3297   case lltok::kw_fptosi:
3298   case lltok::kw_inttoptr:
3299   case lltok::kw_ptrtoint: {
3300     unsigned Opc = Lex.getUIntVal();
3301     Type *DestTy = nullptr;
3302     Constant *SrcVal;
3303     Lex.Lex();
3304     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3305         parseGlobalTypeAndValue(SrcVal) ||
3306         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3307         parseType(DestTy) ||
3308         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3309       return true;
3310     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3311       return error(ID.Loc, "invalid cast opcode for cast from '" +
3312                                getTypeString(SrcVal->getType()) + "' to '" +
3313                                getTypeString(DestTy) + "'");
3314     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3315                                                  SrcVal, DestTy);
3316     ID.Kind = ValID::t_Constant;
3317     return false;
3318   }
3319   case lltok::kw_extractvalue: {
3320     Lex.Lex();
3321     Constant *Val;
3322     SmallVector<unsigned, 4> Indices;
3323     if (parseToken(lltok::lparen,
3324                    "expected '(' in extractvalue constantexpr") ||
3325         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3326         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3327       return true;
3328 
3329     if (!Val->getType()->isAggregateType())
3330       return error(ID.Loc, "extractvalue operand must be aggregate type");
3331     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3332       return error(ID.Loc, "invalid indices for extractvalue");
3333     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3334     ID.Kind = ValID::t_Constant;
3335     return false;
3336   }
3337   case lltok::kw_insertvalue: {
3338     Lex.Lex();
3339     Constant *Val0, *Val1;
3340     SmallVector<unsigned, 4> Indices;
3341     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3342         parseGlobalTypeAndValue(Val0) ||
3343         parseToken(lltok::comma,
3344                    "expected comma in insertvalue constantexpr") ||
3345         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3346         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3347       return true;
3348     if (!Val0->getType()->isAggregateType())
3349       return error(ID.Loc, "insertvalue operand must be aggregate type");
3350     Type *IndexedType =
3351         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3352     if (!IndexedType)
3353       return error(ID.Loc, "invalid indices for insertvalue");
3354     if (IndexedType != Val1->getType())
3355       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3356                                getTypeString(Val1->getType()) +
3357                                "' instead of '" + getTypeString(IndexedType) +
3358                                "'");
3359     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3360     ID.Kind = ValID::t_Constant;
3361     return false;
3362   }
3363   case lltok::kw_icmp:
3364   case lltok::kw_fcmp: {
3365     unsigned PredVal, Opc = Lex.getUIntVal();
3366     Constant *Val0, *Val1;
3367     Lex.Lex();
3368     if (parseCmpPredicate(PredVal, Opc) ||
3369         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3370         parseGlobalTypeAndValue(Val0) ||
3371         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3372         parseGlobalTypeAndValue(Val1) ||
3373         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3374       return true;
3375 
3376     if (Val0->getType() != Val1->getType())
3377       return error(ID.Loc, "compare operands must have the same type");
3378 
3379     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3380 
3381     if (Opc == Instruction::FCmp) {
3382       if (!Val0->getType()->isFPOrFPVectorTy())
3383         return error(ID.Loc, "fcmp requires floating point operands");
3384       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3385     } else {
3386       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3387       if (!Val0->getType()->isIntOrIntVectorTy() &&
3388           !Val0->getType()->isPtrOrPtrVectorTy())
3389         return error(ID.Loc, "icmp requires pointer or integer operands");
3390       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3391     }
3392     ID.Kind = ValID::t_Constant;
3393     return false;
3394   }
3395 
3396   // Unary Operators.
3397   case lltok::kw_fneg: {
3398     unsigned Opc = Lex.getUIntVal();
3399     Constant *Val;
3400     Lex.Lex();
3401     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3402         parseGlobalTypeAndValue(Val) ||
3403         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3404       return true;
3405 
3406     // Check that the type is valid for the operator.
3407     switch (Opc) {
3408     case Instruction::FNeg:
3409       if (!Val->getType()->isFPOrFPVectorTy())
3410         return error(ID.Loc, "constexpr requires fp operands");
3411       break;
3412     default: llvm_unreachable("Unknown unary operator!");
3413     }
3414     unsigned Flags = 0;
3415     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3416     ID.ConstantVal = C;
3417     ID.Kind = ValID::t_Constant;
3418     return false;
3419   }
3420   // Binary Operators.
3421   case lltok::kw_add:
3422   case lltok::kw_fadd:
3423   case lltok::kw_sub:
3424   case lltok::kw_fsub:
3425   case lltok::kw_mul:
3426   case lltok::kw_fmul:
3427   case lltok::kw_udiv:
3428   case lltok::kw_sdiv:
3429   case lltok::kw_fdiv:
3430   case lltok::kw_urem:
3431   case lltok::kw_srem:
3432   case lltok::kw_frem:
3433   case lltok::kw_shl:
3434   case lltok::kw_lshr:
3435   case lltok::kw_ashr: {
3436     bool NUW = false;
3437     bool NSW = false;
3438     bool Exact = false;
3439     unsigned Opc = Lex.getUIntVal();
3440     Constant *Val0, *Val1;
3441     Lex.Lex();
3442     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3443         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3444       if (EatIfPresent(lltok::kw_nuw))
3445         NUW = true;
3446       if (EatIfPresent(lltok::kw_nsw)) {
3447         NSW = true;
3448         if (EatIfPresent(lltok::kw_nuw))
3449           NUW = true;
3450       }
3451     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3452                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3453       if (EatIfPresent(lltok::kw_exact))
3454         Exact = true;
3455     }
3456     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3457         parseGlobalTypeAndValue(Val0) ||
3458         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3459         parseGlobalTypeAndValue(Val1) ||
3460         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3461       return true;
3462     if (Val0->getType() != Val1->getType())
3463       return error(ID.Loc, "operands of constexpr must have same type");
3464     // Check that the type is valid for the operator.
3465     switch (Opc) {
3466     case Instruction::Add:
3467     case Instruction::Sub:
3468     case Instruction::Mul:
3469     case Instruction::UDiv:
3470     case Instruction::SDiv:
3471     case Instruction::URem:
3472     case Instruction::SRem:
3473     case Instruction::Shl:
3474     case Instruction::AShr:
3475     case Instruction::LShr:
3476       if (!Val0->getType()->isIntOrIntVectorTy())
3477         return error(ID.Loc, "constexpr requires integer operands");
3478       break;
3479     case Instruction::FAdd:
3480     case Instruction::FSub:
3481     case Instruction::FMul:
3482     case Instruction::FDiv:
3483     case Instruction::FRem:
3484       if (!Val0->getType()->isFPOrFPVectorTy())
3485         return error(ID.Loc, "constexpr requires fp operands");
3486       break;
3487     default: llvm_unreachable("Unknown binary operator!");
3488     }
3489     unsigned Flags = 0;
3490     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3491     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3492     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3493     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3494     ID.ConstantVal = C;
3495     ID.Kind = ValID::t_Constant;
3496     return false;
3497   }
3498 
3499   // Logical Operations
3500   case lltok::kw_and:
3501   case lltok::kw_or:
3502   case lltok::kw_xor: {
3503     unsigned Opc = Lex.getUIntVal();
3504     Constant *Val0, *Val1;
3505     Lex.Lex();
3506     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3507         parseGlobalTypeAndValue(Val0) ||
3508         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3509         parseGlobalTypeAndValue(Val1) ||
3510         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3511       return true;
3512     if (Val0->getType() != Val1->getType())
3513       return error(ID.Loc, "operands of constexpr must have same type");
3514     if (!Val0->getType()->isIntOrIntVectorTy())
3515       return error(ID.Loc,
3516                    "constexpr requires integer or integer vector operands");
3517     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3518     ID.Kind = ValID::t_Constant;
3519     return false;
3520   }
3521 
3522   case lltok::kw_getelementptr:
3523   case lltok::kw_shufflevector:
3524   case lltok::kw_insertelement:
3525   case lltok::kw_extractelement:
3526   case lltok::kw_select: {
3527     unsigned Opc = Lex.getUIntVal();
3528     SmallVector<Constant*, 16> Elts;
3529     bool InBounds = false;
3530     Type *Ty;
3531     Lex.Lex();
3532 
3533     if (Opc == Instruction::GetElementPtr)
3534       InBounds = EatIfPresent(lltok::kw_inbounds);
3535 
3536     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3537       return true;
3538 
3539     LocTy ExplicitTypeLoc = Lex.getLoc();
3540     if (Opc == Instruction::GetElementPtr) {
3541       if (parseType(Ty) ||
3542           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3543         return true;
3544     }
3545 
3546     Optional<unsigned> InRangeOp;
3547     if (parseGlobalValueVector(
3548             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3549         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3550       return true;
3551 
3552     if (Opc == Instruction::GetElementPtr) {
3553       if (Elts.size() == 0 ||
3554           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3555         return error(ID.Loc, "base of getelementptr must be a pointer");
3556 
3557       Type *BaseType = Elts[0]->getType();
3558       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3559       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3560         return error(
3561             ExplicitTypeLoc,
3562             typeComparisonErrorMessage(
3563                 "explicit pointee type doesn't match operand's pointee type",
3564                 Ty, BasePointerType->getElementType()));
3565       }
3566 
3567       unsigned GEPWidth =
3568           BaseType->isVectorTy()
3569               ? cast<FixedVectorType>(BaseType)->getNumElements()
3570               : 0;
3571 
3572       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3573       for (Constant *Val : Indices) {
3574         Type *ValTy = Val->getType();
3575         if (!ValTy->isIntOrIntVectorTy())
3576           return error(ID.Loc, "getelementptr index must be an integer");
3577         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3578           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3579           if (GEPWidth && (ValNumEl != GEPWidth))
3580             return error(
3581                 ID.Loc,
3582                 "getelementptr vector index has a wrong number of elements");
3583           // GEPWidth may have been unknown because the base is a scalar,
3584           // but it is known now.
3585           GEPWidth = ValNumEl;
3586         }
3587       }
3588 
3589       SmallPtrSet<Type*, 4> Visited;
3590       if (!Indices.empty() && !Ty->isSized(&Visited))
3591         return error(ID.Loc, "base element of getelementptr must be sized");
3592 
3593       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3594         return error(ID.Loc, "invalid getelementptr indices");
3595 
3596       if (InRangeOp) {
3597         if (*InRangeOp == 0)
3598           return error(ID.Loc,
3599                        "inrange keyword may not appear on pointer operand");
3600         --*InRangeOp;
3601       }
3602 
3603       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3604                                                       InBounds, InRangeOp);
3605     } else if (Opc == Instruction::Select) {
3606       if (Elts.size() != 3)
3607         return error(ID.Loc, "expected three operands to select");
3608       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3609                                                               Elts[2]))
3610         return error(ID.Loc, Reason);
3611       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3612     } else if (Opc == Instruction::ShuffleVector) {
3613       if (Elts.size() != 3)
3614         return error(ID.Loc, "expected three operands to shufflevector");
3615       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3616         return error(ID.Loc, "invalid operands to shufflevector");
3617       SmallVector<int, 16> Mask;
3618       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3619       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3620     } else if (Opc == Instruction::ExtractElement) {
3621       if (Elts.size() != 2)
3622         return error(ID.Loc, "expected two operands to extractelement");
3623       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3624         return error(ID.Loc, "invalid extractelement operands");
3625       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3626     } else {
3627       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3628       if (Elts.size() != 3)
3629         return error(ID.Loc, "expected three operands to insertelement");
3630       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3631         return error(ID.Loc, "invalid insertelement operands");
3632       ID.ConstantVal =
3633                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3634     }
3635 
3636     ID.Kind = ValID::t_Constant;
3637     return false;
3638   }
3639   }
3640 
3641   Lex.Lex();
3642   return false;
3643 }
3644 
3645 /// parseGlobalValue - parse a global value with the specified type.
3646 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3647   C = nullptr;
3648   ValID ID;
3649   Value *V = nullptr;
3650   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3651                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3652   if (V && !(C = dyn_cast<Constant>(V)))
3653     return error(ID.Loc, "global values must be constants");
3654   return Parsed;
3655 }
3656 
3657 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3658   Type *Ty = nullptr;
3659   return parseType(Ty) || parseGlobalValue(Ty, V);
3660 }
3661 
3662 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3663   C = nullptr;
3664 
3665   LocTy KwLoc = Lex.getLoc();
3666   if (!EatIfPresent(lltok::kw_comdat))
3667     return false;
3668 
3669   if (EatIfPresent(lltok::lparen)) {
3670     if (Lex.getKind() != lltok::ComdatVar)
3671       return tokError("expected comdat variable");
3672     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3673     Lex.Lex();
3674     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3675       return true;
3676   } else {
3677     if (GlobalName.empty())
3678       return tokError("comdat cannot be unnamed");
3679     C = getComdat(std::string(GlobalName), KwLoc);
3680   }
3681 
3682   return false;
3683 }
3684 
3685 /// parseGlobalValueVector
3686 ///   ::= /*empty*/
3687 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3688 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3689                                       Optional<unsigned> *InRangeOp) {
3690   // Empty list.
3691   if (Lex.getKind() == lltok::rbrace ||
3692       Lex.getKind() == lltok::rsquare ||
3693       Lex.getKind() == lltok::greater ||
3694       Lex.getKind() == lltok::rparen)
3695     return false;
3696 
3697   do {
3698     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3699       *InRangeOp = Elts.size();
3700 
3701     Constant *C;
3702     if (parseGlobalTypeAndValue(C))
3703       return true;
3704     Elts.push_back(C);
3705   } while (EatIfPresent(lltok::comma));
3706 
3707   return false;
3708 }
3709 
3710 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3711   SmallVector<Metadata *, 16> Elts;
3712   if (parseMDNodeVector(Elts))
3713     return true;
3714 
3715   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3716   return false;
3717 }
3718 
3719 /// MDNode:
3720 ///  ::= !{ ... }
3721 ///  ::= !7
3722 ///  ::= !DILocation(...)
3723 bool LLParser::parseMDNode(MDNode *&N) {
3724   if (Lex.getKind() == lltok::MetadataVar)
3725     return parseSpecializedMDNode(N);
3726 
3727   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3728 }
3729 
3730 bool LLParser::parseMDNodeTail(MDNode *&N) {
3731   // !{ ... }
3732   if (Lex.getKind() == lltok::lbrace)
3733     return parseMDTuple(N);
3734 
3735   // !42
3736   return parseMDNodeID(N);
3737 }
3738 
3739 namespace {
3740 
3741 /// Structure to represent an optional metadata field.
3742 template <class FieldTy> struct MDFieldImpl {
3743   typedef MDFieldImpl ImplTy;
3744   FieldTy Val;
3745   bool Seen;
3746 
3747   void assign(FieldTy Val) {
3748     Seen = true;
3749     this->Val = std::move(Val);
3750   }
3751 
3752   explicit MDFieldImpl(FieldTy Default)
3753       : Val(std::move(Default)), Seen(false) {}
3754 };
3755 
3756 /// Structure to represent an optional metadata field that
3757 /// can be of either type (A or B) and encapsulates the
3758 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3759 /// to reimplement the specifics for representing each Field.
3760 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3761   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3762   FieldTypeA A;
3763   FieldTypeB B;
3764   bool Seen;
3765 
3766   enum {
3767     IsInvalid = 0,
3768     IsTypeA = 1,
3769     IsTypeB = 2
3770   } WhatIs;
3771 
3772   void assign(FieldTypeA A) {
3773     Seen = true;
3774     this->A = std::move(A);
3775     WhatIs = IsTypeA;
3776   }
3777 
3778   void assign(FieldTypeB B) {
3779     Seen = true;
3780     this->B = std::move(B);
3781     WhatIs = IsTypeB;
3782   }
3783 
3784   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3785       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3786         WhatIs(IsInvalid) {}
3787 };
3788 
3789 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3790   uint64_t Max;
3791 
3792   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3793       : ImplTy(Default), Max(Max) {}
3794 };
3795 
3796 struct LineField : public MDUnsignedField {
3797   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3798 };
3799 
3800 struct ColumnField : public MDUnsignedField {
3801   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3802 };
3803 
3804 struct DwarfTagField : public MDUnsignedField {
3805   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3806   DwarfTagField(dwarf::Tag DefaultTag)
3807       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3808 };
3809 
3810 struct DwarfMacinfoTypeField : public MDUnsignedField {
3811   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3812   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3813     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3814 };
3815 
3816 struct DwarfAttEncodingField : public MDUnsignedField {
3817   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3818 };
3819 
3820 struct DwarfVirtualityField : public MDUnsignedField {
3821   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3822 };
3823 
3824 struct DwarfLangField : public MDUnsignedField {
3825   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3826 };
3827 
3828 struct DwarfCCField : public MDUnsignedField {
3829   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3830 };
3831 
3832 struct EmissionKindField : public MDUnsignedField {
3833   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3834 };
3835 
3836 struct NameTableKindField : public MDUnsignedField {
3837   NameTableKindField()
3838       : MDUnsignedField(
3839             0, (unsigned)
3840                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3841 };
3842 
3843 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3844   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3845 };
3846 
3847 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3848   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3849 };
3850 
3851 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3852   MDAPSIntField() : ImplTy(APSInt()) {}
3853 };
3854 
3855 struct MDSignedField : public MDFieldImpl<int64_t> {
3856   int64_t Min;
3857   int64_t Max;
3858 
3859   MDSignedField(int64_t Default = 0)
3860       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3861   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3862       : ImplTy(Default), Min(Min), Max(Max) {}
3863 };
3864 
3865 struct MDBoolField : public MDFieldImpl<bool> {
3866   MDBoolField(bool Default = false) : ImplTy(Default) {}
3867 };
3868 
3869 struct MDField : public MDFieldImpl<Metadata *> {
3870   bool AllowNull;
3871 
3872   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3873 };
3874 
3875 struct MDStringField : public MDFieldImpl<MDString *> {
3876   bool AllowEmpty;
3877   MDStringField(bool AllowEmpty = true)
3878       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3879 };
3880 
3881 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3882   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3883 };
3884 
3885 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3886   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3887 };
3888 
3889 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3890   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3891       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3892 
3893   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3894                     bool AllowNull = true)
3895       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3896 
3897   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3898   bool isMDField() const { return WhatIs == IsTypeB; }
3899   int64_t getMDSignedValue() const {
3900     assert(isMDSignedField() && "Wrong field type");
3901     return A.Val;
3902   }
3903   Metadata *getMDFieldValue() const {
3904     assert(isMDField() && "Wrong field type");
3905     return B.Val;
3906   }
3907 };
3908 
3909 } // end anonymous namespace
3910 
3911 namespace llvm {
3912 
3913 template <>
3914 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3915   if (Lex.getKind() != lltok::APSInt)
3916     return tokError("expected integer");
3917 
3918   Result.assign(Lex.getAPSIntVal());
3919   Lex.Lex();
3920   return false;
3921 }
3922 
3923 template <>
3924 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3925                             MDUnsignedField &Result) {
3926   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3927     return tokError("expected unsigned integer");
3928 
3929   auto &U = Lex.getAPSIntVal();
3930   if (U.ugt(Result.Max))
3931     return tokError("value for '" + Name + "' too large, limit is " +
3932                     Twine(Result.Max));
3933   Result.assign(U.getZExtValue());
3934   assert(Result.Val <= Result.Max && "Expected value in range");
3935   Lex.Lex();
3936   return false;
3937 }
3938 
3939 template <>
3940 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3941   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3942 }
3943 template <>
3944 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3945   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3946 }
3947 
3948 template <>
3949 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3950   if (Lex.getKind() == lltok::APSInt)
3951     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3952 
3953   if (Lex.getKind() != lltok::DwarfTag)
3954     return tokError("expected DWARF tag");
3955 
3956   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3957   if (Tag == dwarf::DW_TAG_invalid)
3958     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3959   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3960 
3961   Result.assign(Tag);
3962   Lex.Lex();
3963   return false;
3964 }
3965 
3966 template <>
3967 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3968                             DwarfMacinfoTypeField &Result) {
3969   if (Lex.getKind() == lltok::APSInt)
3970     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3971 
3972   if (Lex.getKind() != lltok::DwarfMacinfo)
3973     return tokError("expected DWARF macinfo type");
3974 
3975   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3976   if (Macinfo == dwarf::DW_MACINFO_invalid)
3977     return tokError("invalid DWARF macinfo type" + Twine(" '") +
3978                     Lex.getStrVal() + "'");
3979   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3980 
3981   Result.assign(Macinfo);
3982   Lex.Lex();
3983   return false;
3984 }
3985 
3986 template <>
3987 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3988                             DwarfVirtualityField &Result) {
3989   if (Lex.getKind() == lltok::APSInt)
3990     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3991 
3992   if (Lex.getKind() != lltok::DwarfVirtuality)
3993     return tokError("expected DWARF virtuality code");
3994 
3995   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3996   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3997     return tokError("invalid DWARF virtuality code" + Twine(" '") +
3998                     Lex.getStrVal() + "'");
3999   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4000   Result.assign(Virtuality);
4001   Lex.Lex();
4002   return false;
4003 }
4004 
4005 template <>
4006 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4007   if (Lex.getKind() == lltok::APSInt)
4008     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4009 
4010   if (Lex.getKind() != lltok::DwarfLang)
4011     return tokError("expected DWARF language");
4012 
4013   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4014   if (!Lang)
4015     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4016                     "'");
4017   assert(Lang <= Result.Max && "Expected valid DWARF language");
4018   Result.assign(Lang);
4019   Lex.Lex();
4020   return false;
4021 }
4022 
4023 template <>
4024 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4025   if (Lex.getKind() == lltok::APSInt)
4026     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4027 
4028   if (Lex.getKind() != lltok::DwarfCC)
4029     return tokError("expected DWARF calling convention");
4030 
4031   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4032   if (!CC)
4033     return tokError("invalid DWARF calling convention" + Twine(" '") +
4034                     Lex.getStrVal() + "'");
4035   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4036   Result.assign(CC);
4037   Lex.Lex();
4038   return false;
4039 }
4040 
4041 template <>
4042 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4043                             EmissionKindField &Result) {
4044   if (Lex.getKind() == lltok::APSInt)
4045     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4046 
4047   if (Lex.getKind() != lltok::EmissionKind)
4048     return tokError("expected emission kind");
4049 
4050   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4051   if (!Kind)
4052     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4053                     "'");
4054   assert(*Kind <= Result.Max && "Expected valid emission kind");
4055   Result.assign(*Kind);
4056   Lex.Lex();
4057   return false;
4058 }
4059 
4060 template <>
4061 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4062                             NameTableKindField &Result) {
4063   if (Lex.getKind() == lltok::APSInt)
4064     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4065 
4066   if (Lex.getKind() != lltok::NameTableKind)
4067     return tokError("expected nameTable kind");
4068 
4069   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4070   if (!Kind)
4071     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4072                     "'");
4073   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4074   Result.assign((unsigned)*Kind);
4075   Lex.Lex();
4076   return false;
4077 }
4078 
4079 template <>
4080 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4081                             DwarfAttEncodingField &Result) {
4082   if (Lex.getKind() == lltok::APSInt)
4083     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4084 
4085   if (Lex.getKind() != lltok::DwarfAttEncoding)
4086     return tokError("expected DWARF type attribute encoding");
4087 
4088   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4089   if (!Encoding)
4090     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4091                     Lex.getStrVal() + "'");
4092   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4093   Result.assign(Encoding);
4094   Lex.Lex();
4095   return false;
4096 }
4097 
4098 /// DIFlagField
4099 ///  ::= uint32
4100 ///  ::= DIFlagVector
4101 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4102 template <>
4103 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4104 
4105   // parser for a single flag.
4106   auto parseFlag = [&](DINode::DIFlags &Val) {
4107     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4108       uint32_t TempVal = static_cast<uint32_t>(Val);
4109       bool Res = parseUInt32(TempVal);
4110       Val = static_cast<DINode::DIFlags>(TempVal);
4111       return Res;
4112     }
4113 
4114     if (Lex.getKind() != lltok::DIFlag)
4115       return tokError("expected debug info flag");
4116 
4117     Val = DINode::getFlag(Lex.getStrVal());
4118     if (!Val)
4119       return tokError(Twine("invalid debug info flag flag '") +
4120                       Lex.getStrVal() + "'");
4121     Lex.Lex();
4122     return false;
4123   };
4124 
4125   // parse the flags and combine them together.
4126   DINode::DIFlags Combined = DINode::FlagZero;
4127   do {
4128     DINode::DIFlags Val;
4129     if (parseFlag(Val))
4130       return true;
4131     Combined |= Val;
4132   } while (EatIfPresent(lltok::bar));
4133 
4134   Result.assign(Combined);
4135   return false;
4136 }
4137 
4138 /// DISPFlagField
4139 ///  ::= uint32
4140 ///  ::= DISPFlagVector
4141 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4142 template <>
4143 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4144 
4145   // parser for a single flag.
4146   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4147     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4148       uint32_t TempVal = static_cast<uint32_t>(Val);
4149       bool Res = parseUInt32(TempVal);
4150       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4151       return Res;
4152     }
4153 
4154     if (Lex.getKind() != lltok::DISPFlag)
4155       return tokError("expected debug info flag");
4156 
4157     Val = DISubprogram::getFlag(Lex.getStrVal());
4158     if (!Val)
4159       return tokError(Twine("invalid subprogram debug info flag '") +
4160                       Lex.getStrVal() + "'");
4161     Lex.Lex();
4162     return false;
4163   };
4164 
4165   // parse the flags and combine them together.
4166   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4167   do {
4168     DISubprogram::DISPFlags Val;
4169     if (parseFlag(Val))
4170       return true;
4171     Combined |= Val;
4172   } while (EatIfPresent(lltok::bar));
4173 
4174   Result.assign(Combined);
4175   return false;
4176 }
4177 
4178 template <>
4179 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4180   if (Lex.getKind() != lltok::APSInt)
4181     return tokError("expected signed integer");
4182 
4183   auto &S = Lex.getAPSIntVal();
4184   if (S < Result.Min)
4185     return tokError("value for '" + Name + "' too small, limit is " +
4186                     Twine(Result.Min));
4187   if (S > Result.Max)
4188     return tokError("value for '" + Name + "' too large, limit is " +
4189                     Twine(Result.Max));
4190   Result.assign(S.getExtValue());
4191   assert(Result.Val >= Result.Min && "Expected value in range");
4192   assert(Result.Val <= Result.Max && "Expected value in range");
4193   Lex.Lex();
4194   return false;
4195 }
4196 
4197 template <>
4198 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4199   switch (Lex.getKind()) {
4200   default:
4201     return tokError("expected 'true' or 'false'");
4202   case lltok::kw_true:
4203     Result.assign(true);
4204     break;
4205   case lltok::kw_false:
4206     Result.assign(false);
4207     break;
4208   }
4209   Lex.Lex();
4210   return false;
4211 }
4212 
4213 template <>
4214 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4215   if (Lex.getKind() == lltok::kw_null) {
4216     if (!Result.AllowNull)
4217       return tokError("'" + Name + "' cannot be null");
4218     Lex.Lex();
4219     Result.assign(nullptr);
4220     return false;
4221   }
4222 
4223   Metadata *MD;
4224   if (parseMetadata(MD, nullptr))
4225     return true;
4226 
4227   Result.assign(MD);
4228   return false;
4229 }
4230 
4231 template <>
4232 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4233                             MDSignedOrMDField &Result) {
4234   // Try to parse a signed int.
4235   if (Lex.getKind() == lltok::APSInt) {
4236     MDSignedField Res = Result.A;
4237     if (!parseMDField(Loc, Name, Res)) {
4238       Result.assign(Res);
4239       return false;
4240     }
4241     return true;
4242   }
4243 
4244   // Otherwise, try to parse as an MDField.
4245   MDField Res = Result.B;
4246   if (!parseMDField(Loc, Name, Res)) {
4247     Result.assign(Res);
4248     return false;
4249   }
4250 
4251   return true;
4252 }
4253 
4254 template <>
4255 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4256   LocTy ValueLoc = Lex.getLoc();
4257   std::string S;
4258   if (parseStringConstant(S))
4259     return true;
4260 
4261   if (!Result.AllowEmpty && S.empty())
4262     return error(ValueLoc, "'" + Name + "' cannot be empty");
4263 
4264   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4265   return false;
4266 }
4267 
4268 template <>
4269 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4270   SmallVector<Metadata *, 4> MDs;
4271   if (parseMDNodeVector(MDs))
4272     return true;
4273 
4274   Result.assign(std::move(MDs));
4275   return false;
4276 }
4277 
4278 template <>
4279 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4280                             ChecksumKindField &Result) {
4281   Optional<DIFile::ChecksumKind> CSKind =
4282       DIFile::getChecksumKind(Lex.getStrVal());
4283 
4284   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4285     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4286                     "'");
4287 
4288   Result.assign(*CSKind);
4289   Lex.Lex();
4290   return false;
4291 }
4292 
4293 } // end namespace llvm
4294 
4295 template <class ParserTy>
4296 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4297   do {
4298     if (Lex.getKind() != lltok::LabelStr)
4299       return tokError("expected field label here");
4300 
4301     if (ParseField())
4302       return true;
4303   } while (EatIfPresent(lltok::comma));
4304 
4305   return false;
4306 }
4307 
4308 template <class ParserTy>
4309 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4310   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4311   Lex.Lex();
4312 
4313   if (parseToken(lltok::lparen, "expected '(' here"))
4314     return true;
4315   if (Lex.getKind() != lltok::rparen)
4316     if (parseMDFieldsImplBody(ParseField))
4317       return true;
4318 
4319   ClosingLoc = Lex.getLoc();
4320   return parseToken(lltok::rparen, "expected ')' here");
4321 }
4322 
4323 template <class FieldTy>
4324 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4325   if (Result.Seen)
4326     return tokError("field '" + Name + "' cannot be specified more than once");
4327 
4328   LocTy Loc = Lex.getLoc();
4329   Lex.Lex();
4330   return parseMDField(Loc, Name, Result);
4331 }
4332 
4333 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4334   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4335 
4336 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4337   if (Lex.getStrVal() == #CLASS)                                               \
4338     return parse##CLASS(N, IsDistinct);
4339 #include "llvm/IR/Metadata.def"
4340 
4341   return tokError("expected metadata type");
4342 }
4343 
4344 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4345 #define NOP_FIELD(NAME, TYPE, INIT)
4346 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4347   if (!NAME.Seen)                                                              \
4348     return error(ClosingLoc, "missing required field '" #NAME "'");
4349 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4350   if (Lex.getStrVal() == #NAME)                                                \
4351     return parseMDField(#NAME, NAME);
4352 #define PARSE_MD_FIELDS()                                                      \
4353   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4354   do {                                                                         \
4355     LocTy ClosingLoc;                                                          \
4356     if (parseMDFieldsImpl(                                                     \
4357             [&]() -> bool {                                                    \
4358               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4359               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4360                               "'");                                            \
4361             },                                                                 \
4362             ClosingLoc))                                                       \
4363       return true;                                                             \
4364     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4365   } while (false)
4366 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4367   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4368 
4369 /// parseDILocationFields:
4370 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4371 ///   isImplicitCode: true)
4372 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4373 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4374   OPTIONAL(line, LineField, );                                                 \
4375   OPTIONAL(column, ColumnField, );                                             \
4376   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4377   OPTIONAL(inlinedAt, MDField, );                                              \
4378   OPTIONAL(isImplicitCode, MDBoolField, (false));
4379   PARSE_MD_FIELDS();
4380 #undef VISIT_MD_FIELDS
4381 
4382   Result =
4383       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4384                                    inlinedAt.Val, isImplicitCode.Val));
4385   return false;
4386 }
4387 
4388 /// parseGenericDINode:
4389 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4390 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4392   REQUIRED(tag, DwarfTagField, );                                              \
4393   OPTIONAL(header, MDStringField, );                                           \
4394   OPTIONAL(operands, MDFieldList, );
4395   PARSE_MD_FIELDS();
4396 #undef VISIT_MD_FIELDS
4397 
4398   Result = GET_OR_DISTINCT(GenericDINode,
4399                            (Context, tag.Val, header.Val, operands.Val));
4400   return false;
4401 }
4402 
4403 /// parseDISubrange:
4404 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4405 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4406 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4407 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4408 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4409   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4410   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4411   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4412   OPTIONAL(stride, MDSignedOrMDField, );
4413   PARSE_MD_FIELDS();
4414 #undef VISIT_MD_FIELDS
4415 
4416   Metadata *Count = nullptr;
4417   Metadata *LowerBound = nullptr;
4418   Metadata *UpperBound = nullptr;
4419   Metadata *Stride = nullptr;
4420 
4421   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4422     if (Bound.isMDSignedField())
4423       return ConstantAsMetadata::get(ConstantInt::getSigned(
4424           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4425     if (Bound.isMDField())
4426       return Bound.getMDFieldValue();
4427     return nullptr;
4428   };
4429 
4430   Count = convToMetadata(count);
4431   LowerBound = convToMetadata(lowerBound);
4432   UpperBound = convToMetadata(upperBound);
4433   Stride = convToMetadata(stride);
4434 
4435   Result = GET_OR_DISTINCT(DISubrange,
4436                            (Context, Count, LowerBound, UpperBound, Stride));
4437 
4438   return false;
4439 }
4440 
4441 /// parseDIGenericSubrange:
4442 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4443 ///   !node3)
4444 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4445 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4446   OPTIONAL(count, MDSignedOrMDField, );                                        \
4447   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4448   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4449   OPTIONAL(stride, MDSignedOrMDField, );
4450   PARSE_MD_FIELDS();
4451 #undef VISIT_MD_FIELDS
4452 
4453   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4454     if (Bound.isMDSignedField())
4455       return DIExpression::get(
4456           Context, {dwarf::DW_OP_consts,
4457                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4458     if (Bound.isMDField())
4459       return Bound.getMDFieldValue();
4460     return nullptr;
4461   };
4462 
4463   Metadata *Count = ConvToMetadata(count);
4464   Metadata *LowerBound = ConvToMetadata(lowerBound);
4465   Metadata *UpperBound = ConvToMetadata(upperBound);
4466   Metadata *Stride = ConvToMetadata(stride);
4467 
4468   Result = GET_OR_DISTINCT(DIGenericSubrange,
4469                            (Context, Count, LowerBound, UpperBound, Stride));
4470 
4471   return false;
4472 }
4473 
4474 /// parseDIEnumerator:
4475 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4476 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4477 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4478   REQUIRED(name, MDStringField, );                                             \
4479   REQUIRED(value, MDAPSIntField, );                                            \
4480   OPTIONAL(isUnsigned, MDBoolField, (false));
4481   PARSE_MD_FIELDS();
4482 #undef VISIT_MD_FIELDS
4483 
4484   if (isUnsigned.Val && value.Val.isNegative())
4485     return tokError("unsigned enumerator with negative value");
4486 
4487   APSInt Value(value.Val);
4488   // Add a leading zero so that unsigned values with the msb set are not
4489   // mistaken for negative values when used for signed enumerators.
4490   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4491     Value = Value.zext(Value.getBitWidth() + 1);
4492 
4493   Result =
4494       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4495 
4496   return false;
4497 }
4498 
4499 /// parseDIBasicType:
4500 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4501 ///                    encoding: DW_ATE_encoding, flags: 0)
4502 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4503 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4504   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4505   OPTIONAL(name, MDStringField, );                                             \
4506   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4507   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4508   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4509   OPTIONAL(flags, DIFlagField, );
4510   PARSE_MD_FIELDS();
4511 #undef VISIT_MD_FIELDS
4512 
4513   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4514                                          align.Val, encoding.Val, flags.Val));
4515   return false;
4516 }
4517 
4518 /// parseDIStringType:
4519 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4520 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4521 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4522   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4523   OPTIONAL(name, MDStringField, );                                             \
4524   OPTIONAL(stringLength, MDField, );                                           \
4525   OPTIONAL(stringLengthExpression, MDField, );                                 \
4526   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4527   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4528   OPTIONAL(encoding, DwarfAttEncodingField, );
4529   PARSE_MD_FIELDS();
4530 #undef VISIT_MD_FIELDS
4531 
4532   Result = GET_OR_DISTINCT(DIStringType,
4533                            (Context, tag.Val, name.Val, stringLength.Val,
4534                             stringLengthExpression.Val, size.Val, align.Val,
4535                             encoding.Val));
4536   return false;
4537 }
4538 
4539 /// parseDIDerivedType:
4540 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4541 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4542 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4543 ///                      dwarfAddressSpace: 3)
4544 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4545 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4546   REQUIRED(tag, DwarfTagField, );                                              \
4547   OPTIONAL(name, MDStringField, );                                             \
4548   OPTIONAL(file, MDField, );                                                   \
4549   OPTIONAL(line, LineField, );                                                 \
4550   OPTIONAL(scope, MDField, );                                                  \
4551   REQUIRED(baseType, MDField, );                                               \
4552   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4553   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4554   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4555   OPTIONAL(flags, DIFlagField, );                                              \
4556   OPTIONAL(extraData, MDField, );                                              \
4557   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4558   OPTIONAL(annotations, MDField, );
4559   PARSE_MD_FIELDS();
4560 #undef VISIT_MD_FIELDS
4561 
4562   Optional<unsigned> DWARFAddressSpace;
4563   if (dwarfAddressSpace.Val != UINT32_MAX)
4564     DWARFAddressSpace = dwarfAddressSpace.Val;
4565 
4566   Result = GET_OR_DISTINCT(DIDerivedType,
4567                            (Context, tag.Val, name.Val, file.Val, line.Val,
4568                             scope.Val, baseType.Val, size.Val, align.Val,
4569                             offset.Val, DWARFAddressSpace, flags.Val,
4570                             extraData.Val, annotations.Val));
4571   return false;
4572 }
4573 
4574 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4575 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4576   REQUIRED(tag, DwarfTagField, );                                              \
4577   OPTIONAL(name, MDStringField, );                                             \
4578   OPTIONAL(file, MDField, );                                                   \
4579   OPTIONAL(line, LineField, );                                                 \
4580   OPTIONAL(scope, MDField, );                                                  \
4581   OPTIONAL(baseType, MDField, );                                               \
4582   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4583   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4584   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4585   OPTIONAL(flags, DIFlagField, );                                              \
4586   OPTIONAL(elements, MDField, );                                               \
4587   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4588   OPTIONAL(vtableHolder, MDField, );                                           \
4589   OPTIONAL(templateParams, MDField, );                                         \
4590   OPTIONAL(identifier, MDStringField, );                                       \
4591   OPTIONAL(discriminator, MDField, );                                          \
4592   OPTIONAL(dataLocation, MDField, );                                           \
4593   OPTIONAL(associated, MDField, );                                             \
4594   OPTIONAL(allocated, MDField, );                                              \
4595   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4596   OPTIONAL(annotations, MDField, );
4597   PARSE_MD_FIELDS();
4598 #undef VISIT_MD_FIELDS
4599 
4600   Metadata *Rank = nullptr;
4601   if (rank.isMDSignedField())
4602     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4603         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4604   else if (rank.isMDField())
4605     Rank = rank.getMDFieldValue();
4606 
4607   // If this has an identifier try to build an ODR type.
4608   if (identifier.Val)
4609     if (auto *CT = DICompositeType::buildODRType(
4610             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4611             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4612             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4613             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4614             Rank, annotations.Val)) {
4615       Result = CT;
4616       return false;
4617     }
4618 
4619   // Create a new node, and save it in the context if it belongs in the type
4620   // map.
4621   Result = GET_OR_DISTINCT(
4622       DICompositeType,
4623       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4624        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4625        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4626        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4627        annotations.Val));
4628   return false;
4629 }
4630 
4631 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4632 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4633   OPTIONAL(flags, DIFlagField, );                                              \
4634   OPTIONAL(cc, DwarfCCField, );                                                \
4635   REQUIRED(types, MDField, );
4636   PARSE_MD_FIELDS();
4637 #undef VISIT_MD_FIELDS
4638 
4639   Result = GET_OR_DISTINCT(DISubroutineType,
4640                            (Context, flags.Val, cc.Val, types.Val));
4641   return false;
4642 }
4643 
4644 /// parseDIFileType:
4645 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4646 ///                   checksumkind: CSK_MD5,
4647 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4648 ///                   source: "source file contents")
4649 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4650   // The default constructed value for checksumkind is required, but will never
4651   // be used, as the parser checks if the field was actually Seen before using
4652   // the Val.
4653 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4654   REQUIRED(filename, MDStringField, );                                         \
4655   REQUIRED(directory, MDStringField, );                                        \
4656   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4657   OPTIONAL(checksum, MDStringField, );                                         \
4658   OPTIONAL(source, MDStringField, );
4659   PARSE_MD_FIELDS();
4660 #undef VISIT_MD_FIELDS
4661 
4662   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4663   if (checksumkind.Seen && checksum.Seen)
4664     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4665   else if (checksumkind.Seen || checksum.Seen)
4666     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4667 
4668   Optional<MDString *> OptSource;
4669   if (source.Seen)
4670     OptSource = source.Val;
4671   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4672                                     OptChecksum, OptSource));
4673   return false;
4674 }
4675 
4676 /// parseDICompileUnit:
4677 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4678 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4679 ///                      splitDebugFilename: "abc.debug",
4680 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4681 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4682 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4683 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4684   if (!IsDistinct)
4685     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4686 
4687 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4688   REQUIRED(language, DwarfLangField, );                                        \
4689   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4690   OPTIONAL(producer, MDStringField, );                                         \
4691   OPTIONAL(isOptimized, MDBoolField, );                                        \
4692   OPTIONAL(flags, MDStringField, );                                            \
4693   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4694   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4695   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4696   OPTIONAL(enums, MDField, );                                                  \
4697   OPTIONAL(retainedTypes, MDField, );                                          \
4698   OPTIONAL(globals, MDField, );                                                \
4699   OPTIONAL(imports, MDField, );                                                \
4700   OPTIONAL(macros, MDField, );                                                 \
4701   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4702   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4703   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4704   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4705   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4706   OPTIONAL(sysroot, MDStringField, );                                          \
4707   OPTIONAL(sdk, MDStringField, );
4708   PARSE_MD_FIELDS();
4709 #undef VISIT_MD_FIELDS
4710 
4711   Result = DICompileUnit::getDistinct(
4712       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4713       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4714       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4715       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4716       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4717   return false;
4718 }
4719 
4720 /// parseDISubprogram:
4721 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4722 ///                     file: !1, line: 7, type: !2, isLocal: false,
4723 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4724 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4725 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4726 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4727 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4728 ///                     annotations: !8)
4729 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4730   auto Loc = Lex.getLoc();
4731 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4732   OPTIONAL(scope, MDField, );                                                  \
4733   OPTIONAL(name, MDStringField, );                                             \
4734   OPTIONAL(linkageName, MDStringField, );                                      \
4735   OPTIONAL(file, MDField, );                                                   \
4736   OPTIONAL(line, LineField, );                                                 \
4737   OPTIONAL(type, MDField, );                                                   \
4738   OPTIONAL(isLocal, MDBoolField, );                                            \
4739   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4740   OPTIONAL(scopeLine, LineField, );                                            \
4741   OPTIONAL(containingType, MDField, );                                         \
4742   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4743   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4744   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4745   OPTIONAL(flags, DIFlagField, );                                              \
4746   OPTIONAL(spFlags, DISPFlagField, );                                          \
4747   OPTIONAL(isOptimized, MDBoolField, );                                        \
4748   OPTIONAL(unit, MDField, );                                                   \
4749   OPTIONAL(templateParams, MDField, );                                         \
4750   OPTIONAL(declaration, MDField, );                                            \
4751   OPTIONAL(retainedNodes, MDField, );                                          \
4752   OPTIONAL(thrownTypes, MDField, );                                            \
4753   OPTIONAL(annotations, MDField, );
4754   PARSE_MD_FIELDS();
4755 #undef VISIT_MD_FIELDS
4756 
4757   // An explicit spFlags field takes precedence over individual fields in
4758   // older IR versions.
4759   DISubprogram::DISPFlags SPFlags =
4760       spFlags.Seen ? spFlags.Val
4761                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4762                                              isOptimized.Val, virtuality.Val);
4763   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4764     return Lex.Error(
4765         Loc,
4766         "missing 'distinct', required for !DISubprogram that is a Definition");
4767   Result = GET_OR_DISTINCT(
4768       DISubprogram,
4769       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4770        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4771        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4772        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val));
4773   return false;
4774 }
4775 
4776 /// parseDILexicalBlock:
4777 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4778 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4779 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4780   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4781   OPTIONAL(file, MDField, );                                                   \
4782   OPTIONAL(line, LineField, );                                                 \
4783   OPTIONAL(column, ColumnField, );
4784   PARSE_MD_FIELDS();
4785 #undef VISIT_MD_FIELDS
4786 
4787   Result = GET_OR_DISTINCT(
4788       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4789   return false;
4790 }
4791 
4792 /// parseDILexicalBlockFile:
4793 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4794 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4795 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4796   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4797   OPTIONAL(file, MDField, );                                                   \
4798   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4799   PARSE_MD_FIELDS();
4800 #undef VISIT_MD_FIELDS
4801 
4802   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4803                            (Context, scope.Val, file.Val, discriminator.Val));
4804   return false;
4805 }
4806 
4807 /// parseDICommonBlock:
4808 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4809 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4810 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4811   REQUIRED(scope, MDField, );                                                  \
4812   OPTIONAL(declaration, MDField, );                                            \
4813   OPTIONAL(name, MDStringField, );                                             \
4814   OPTIONAL(file, MDField, );                                                   \
4815   OPTIONAL(line, LineField, );
4816   PARSE_MD_FIELDS();
4817 #undef VISIT_MD_FIELDS
4818 
4819   Result = GET_OR_DISTINCT(DICommonBlock,
4820                            (Context, scope.Val, declaration.Val, name.Val,
4821                             file.Val, line.Val));
4822   return false;
4823 }
4824 
4825 /// parseDINamespace:
4826 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4827 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4828 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4829   REQUIRED(scope, MDField, );                                                  \
4830   OPTIONAL(name, MDStringField, );                                             \
4831   OPTIONAL(exportSymbols, MDBoolField, );
4832   PARSE_MD_FIELDS();
4833 #undef VISIT_MD_FIELDS
4834 
4835   Result = GET_OR_DISTINCT(DINamespace,
4836                            (Context, scope.Val, name.Val, exportSymbols.Val));
4837   return false;
4838 }
4839 
4840 /// parseDIMacro:
4841 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4842 ///   "SomeValue")
4843 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4844 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4845   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4846   OPTIONAL(line, LineField, );                                                 \
4847   REQUIRED(name, MDStringField, );                                             \
4848   OPTIONAL(value, MDStringField, );
4849   PARSE_MD_FIELDS();
4850 #undef VISIT_MD_FIELDS
4851 
4852   Result = GET_OR_DISTINCT(DIMacro,
4853                            (Context, type.Val, line.Val, name.Val, value.Val));
4854   return false;
4855 }
4856 
4857 /// parseDIMacroFile:
4858 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4859 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4860 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4861   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4862   OPTIONAL(line, LineField, );                                                 \
4863   REQUIRED(file, MDField, );                                                   \
4864   OPTIONAL(nodes, MDField, );
4865   PARSE_MD_FIELDS();
4866 #undef VISIT_MD_FIELDS
4867 
4868   Result = GET_OR_DISTINCT(DIMacroFile,
4869                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4870   return false;
4871 }
4872 
4873 /// parseDIModule:
4874 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4875 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4876 ///   file: !1, line: 4, isDecl: false)
4877 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4878 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4879   REQUIRED(scope, MDField, );                                                  \
4880   REQUIRED(name, MDStringField, );                                             \
4881   OPTIONAL(configMacros, MDStringField, );                                     \
4882   OPTIONAL(includePath, MDStringField, );                                      \
4883   OPTIONAL(apinotes, MDStringField, );                                         \
4884   OPTIONAL(file, MDField, );                                                   \
4885   OPTIONAL(line, LineField, );                                                 \
4886   OPTIONAL(isDecl, MDBoolField, );
4887   PARSE_MD_FIELDS();
4888 #undef VISIT_MD_FIELDS
4889 
4890   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4891                                       configMacros.Val, includePath.Val,
4892                                       apinotes.Val, line.Val, isDecl.Val));
4893   return false;
4894 }
4895 
4896 /// parseDITemplateTypeParameter:
4897 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4898 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4899 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4900   OPTIONAL(name, MDStringField, );                                             \
4901   REQUIRED(type, MDField, );                                                   \
4902   OPTIONAL(defaulted, MDBoolField, );
4903   PARSE_MD_FIELDS();
4904 #undef VISIT_MD_FIELDS
4905 
4906   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4907                            (Context, name.Val, type.Val, defaulted.Val));
4908   return false;
4909 }
4910 
4911 /// parseDITemplateValueParameter:
4912 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4913 ///                                 name: "V", type: !1, defaulted: false,
4914 ///                                 value: i32 7)
4915 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4916 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4917   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4918   OPTIONAL(name, MDStringField, );                                             \
4919   OPTIONAL(type, MDField, );                                                   \
4920   OPTIONAL(defaulted, MDBoolField, );                                          \
4921   REQUIRED(value, MDField, );
4922 
4923   PARSE_MD_FIELDS();
4924 #undef VISIT_MD_FIELDS
4925 
4926   Result = GET_OR_DISTINCT(
4927       DITemplateValueParameter,
4928       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4929   return false;
4930 }
4931 
4932 /// parseDIGlobalVariable:
4933 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4934 ///                         file: !1, line: 7, type: !2, isLocal: false,
4935 ///                         isDefinition: true, templateParams: !3,
4936 ///                         declaration: !4, align: 8)
4937 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4938 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4939   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4940   OPTIONAL(scope, MDField, );                                                  \
4941   OPTIONAL(linkageName, MDStringField, );                                      \
4942   OPTIONAL(file, MDField, );                                                   \
4943   OPTIONAL(line, LineField, );                                                 \
4944   OPTIONAL(type, MDField, );                                                   \
4945   OPTIONAL(isLocal, MDBoolField, );                                            \
4946   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4947   OPTIONAL(templateParams, MDField, );                                         \
4948   OPTIONAL(declaration, MDField, );                                            \
4949   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4950   OPTIONAL(annotations, MDField, );
4951   PARSE_MD_FIELDS();
4952 #undef VISIT_MD_FIELDS
4953 
4954   Result =
4955       GET_OR_DISTINCT(DIGlobalVariable,
4956                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4957                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4958                        declaration.Val, templateParams.Val, align.Val,
4959                        annotations.Val));
4960   return false;
4961 }
4962 
4963 /// parseDILocalVariable:
4964 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4965 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4966 ///                        align: 8)
4967 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4968 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4969 ///                        align: 8)
4970 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4972   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4973   OPTIONAL(name, MDStringField, );                                             \
4974   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4975   OPTIONAL(file, MDField, );                                                   \
4976   OPTIONAL(line, LineField, );                                                 \
4977   OPTIONAL(type, MDField, );                                                   \
4978   OPTIONAL(flags, DIFlagField, );                                              \
4979   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4980   PARSE_MD_FIELDS();
4981 #undef VISIT_MD_FIELDS
4982 
4983   Result = GET_OR_DISTINCT(DILocalVariable,
4984                            (Context, scope.Val, name.Val, file.Val, line.Val,
4985                             type.Val, arg.Val, flags.Val, align.Val));
4986   return false;
4987 }
4988 
4989 /// parseDILabel:
4990 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4991 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
4992 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4993   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4994   REQUIRED(name, MDStringField, );                                             \
4995   REQUIRED(file, MDField, );                                                   \
4996   REQUIRED(line, LineField, );
4997   PARSE_MD_FIELDS();
4998 #undef VISIT_MD_FIELDS
4999 
5000   Result = GET_OR_DISTINCT(DILabel,
5001                            (Context, scope.Val, name.Val, file.Val, line.Val));
5002   return false;
5003 }
5004 
5005 /// parseDIExpression:
5006 ///   ::= !DIExpression(0, 7, -1)
5007 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5008   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5009   Lex.Lex();
5010 
5011   if (parseToken(lltok::lparen, "expected '(' here"))
5012     return true;
5013 
5014   SmallVector<uint64_t, 8> Elements;
5015   if (Lex.getKind() != lltok::rparen)
5016     do {
5017       if (Lex.getKind() == lltok::DwarfOp) {
5018         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5019           Lex.Lex();
5020           Elements.push_back(Op);
5021           continue;
5022         }
5023         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5024       }
5025 
5026       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5027         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5028           Lex.Lex();
5029           Elements.push_back(Op);
5030           continue;
5031         }
5032         return tokError(Twine("invalid DWARF attribute encoding '") +
5033                         Lex.getStrVal() + "'");
5034       }
5035 
5036       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5037         return tokError("expected unsigned integer");
5038 
5039       auto &U = Lex.getAPSIntVal();
5040       if (U.ugt(UINT64_MAX))
5041         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5042       Elements.push_back(U.getZExtValue());
5043       Lex.Lex();
5044     } while (EatIfPresent(lltok::comma));
5045 
5046   if (parseToken(lltok::rparen, "expected ')' here"))
5047     return true;
5048 
5049   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5050   return false;
5051 }
5052 
5053 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5054   return parseDIArgList(Result, IsDistinct, nullptr);
5055 }
5056 /// ParseDIArgList:
5057 ///   ::= !DIArgList(i32 7, i64 %0)
5058 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5059                               PerFunctionState *PFS) {
5060   assert(PFS && "Expected valid function state");
5061   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5062   Lex.Lex();
5063 
5064   if (parseToken(lltok::lparen, "expected '(' here"))
5065     return true;
5066 
5067   SmallVector<ValueAsMetadata *, 4> Args;
5068   if (Lex.getKind() != lltok::rparen)
5069     do {
5070       Metadata *MD;
5071       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5072         return true;
5073       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5074     } while (EatIfPresent(lltok::comma));
5075 
5076   if (parseToken(lltok::rparen, "expected ')' here"))
5077     return true;
5078 
5079   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5080   return false;
5081 }
5082 
5083 /// parseDIGlobalVariableExpression:
5084 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5085 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5086                                                bool IsDistinct) {
5087 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5088   REQUIRED(var, MDField, );                                                    \
5089   REQUIRED(expr, MDField, );
5090   PARSE_MD_FIELDS();
5091 #undef VISIT_MD_FIELDS
5092 
5093   Result =
5094       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5095   return false;
5096 }
5097 
5098 /// parseDIObjCProperty:
5099 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5100 ///                       getter: "getFoo", attributes: 7, type: !2)
5101 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5102 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5103   OPTIONAL(name, MDStringField, );                                             \
5104   OPTIONAL(file, MDField, );                                                   \
5105   OPTIONAL(line, LineField, );                                                 \
5106   OPTIONAL(setter, MDStringField, );                                           \
5107   OPTIONAL(getter, MDStringField, );                                           \
5108   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5109   OPTIONAL(type, MDField, );
5110   PARSE_MD_FIELDS();
5111 #undef VISIT_MD_FIELDS
5112 
5113   Result = GET_OR_DISTINCT(DIObjCProperty,
5114                            (Context, name.Val, file.Val, line.Val, setter.Val,
5115                             getter.Val, attributes.Val, type.Val));
5116   return false;
5117 }
5118 
5119 /// parseDIImportedEntity:
5120 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5121 ///                         line: 7, name: "foo")
5122 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5123 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5124   REQUIRED(tag, DwarfTagField, );                                              \
5125   REQUIRED(scope, MDField, );                                                  \
5126   OPTIONAL(entity, MDField, );                                                 \
5127   OPTIONAL(file, MDField, );                                                   \
5128   OPTIONAL(line, LineField, );                                                 \
5129   OPTIONAL(name, MDStringField, );
5130   PARSE_MD_FIELDS();
5131 #undef VISIT_MD_FIELDS
5132 
5133   Result = GET_OR_DISTINCT(
5134       DIImportedEntity,
5135       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5136   return false;
5137 }
5138 
5139 #undef PARSE_MD_FIELD
5140 #undef NOP_FIELD
5141 #undef REQUIRE_FIELD
5142 #undef DECLARE_FIELD
5143 
5144 /// parseMetadataAsValue
5145 ///  ::= metadata i32 %local
5146 ///  ::= metadata i32 @global
5147 ///  ::= metadata i32 7
5148 ///  ::= metadata !0
5149 ///  ::= metadata !{...}
5150 ///  ::= metadata !"string"
5151 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5152   // Note: the type 'metadata' has already been parsed.
5153   Metadata *MD;
5154   if (parseMetadata(MD, &PFS))
5155     return true;
5156 
5157   V = MetadataAsValue::get(Context, MD);
5158   return false;
5159 }
5160 
5161 /// parseValueAsMetadata
5162 ///  ::= i32 %local
5163 ///  ::= i32 @global
5164 ///  ::= i32 7
5165 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5166                                     PerFunctionState *PFS) {
5167   Type *Ty;
5168   LocTy Loc;
5169   if (parseType(Ty, TypeMsg, Loc))
5170     return true;
5171   if (Ty->isMetadataTy())
5172     return error(Loc, "invalid metadata-value-metadata roundtrip");
5173 
5174   Value *V;
5175   if (parseValue(Ty, V, PFS))
5176     return true;
5177 
5178   MD = ValueAsMetadata::get(V);
5179   return false;
5180 }
5181 
5182 /// parseMetadata
5183 ///  ::= i32 %local
5184 ///  ::= i32 @global
5185 ///  ::= i32 7
5186 ///  ::= !42
5187 ///  ::= !{...}
5188 ///  ::= !"string"
5189 ///  ::= !DILocation(...)
5190 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5191   if (Lex.getKind() == lltok::MetadataVar) {
5192     MDNode *N;
5193     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5194     // so parsing this requires a Function State.
5195     if (Lex.getStrVal() == "DIArgList") {
5196       if (parseDIArgList(N, false, PFS))
5197         return true;
5198     } else if (parseSpecializedMDNode(N)) {
5199       return true;
5200     }
5201     MD = N;
5202     return false;
5203   }
5204 
5205   // ValueAsMetadata:
5206   // <type> <value>
5207   if (Lex.getKind() != lltok::exclaim)
5208     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5209 
5210   // '!'.
5211   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5212   Lex.Lex();
5213 
5214   // MDString:
5215   //   ::= '!' STRINGCONSTANT
5216   if (Lex.getKind() == lltok::StringConstant) {
5217     MDString *S;
5218     if (parseMDString(S))
5219       return true;
5220     MD = S;
5221     return false;
5222   }
5223 
5224   // MDNode:
5225   // !{ ... }
5226   // !7
5227   MDNode *N;
5228   if (parseMDNodeTail(N))
5229     return true;
5230   MD = N;
5231   return false;
5232 }
5233 
5234 //===----------------------------------------------------------------------===//
5235 // Function Parsing.
5236 //===----------------------------------------------------------------------===//
5237 
5238 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5239                                    PerFunctionState *PFS, bool IsCall) {
5240   if (Ty->isFunctionTy())
5241     return error(ID.Loc, "functions are not values, refer to them as pointers");
5242 
5243   switch (ID.Kind) {
5244   case ValID::t_LocalID:
5245     if (!PFS)
5246       return error(ID.Loc, "invalid use of function-local name");
5247     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5248     return V == nullptr;
5249   case ValID::t_LocalName:
5250     if (!PFS)
5251       return error(ID.Loc, "invalid use of function-local name");
5252     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5253     return V == nullptr;
5254   case ValID::t_InlineAsm: {
5255     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5256       return error(ID.Loc, "invalid type for inline asm constraint string");
5257     V = InlineAsm::get(
5258         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5259         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5260     return false;
5261   }
5262   case ValID::t_GlobalName:
5263     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5264     return V == nullptr;
5265   case ValID::t_GlobalID:
5266     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5267     return V == nullptr;
5268   case ValID::t_APSInt:
5269     if (!Ty->isIntegerTy())
5270       return error(ID.Loc, "integer constant must have integer type");
5271     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5272     V = ConstantInt::get(Context, ID.APSIntVal);
5273     return false;
5274   case ValID::t_APFloat:
5275     if (!Ty->isFloatingPointTy() ||
5276         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5277       return error(ID.Loc, "floating point constant invalid for type");
5278 
5279     // The lexer has no type info, so builds all half, bfloat, float, and double
5280     // FP constants as double.  Fix this here.  Long double does not need this.
5281     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5282       // Check for signaling before potentially converting and losing that info.
5283       bool IsSNAN = ID.APFloatVal.isSignaling();
5284       bool Ignored;
5285       if (Ty->isHalfTy())
5286         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5287                               &Ignored);
5288       else if (Ty->isBFloatTy())
5289         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5290                               &Ignored);
5291       else if (Ty->isFloatTy())
5292         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5293                               &Ignored);
5294       if (IsSNAN) {
5295         // The convert call above may quiet an SNaN, so manufacture another
5296         // SNaN. The bitcast works because the payload (significand) parameter
5297         // is truncated to fit.
5298         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5299         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5300                                          ID.APFloatVal.isNegative(), &Payload);
5301       }
5302     }
5303     V = ConstantFP::get(Context, ID.APFloatVal);
5304 
5305     if (V->getType() != Ty)
5306       return error(ID.Loc, "floating point constant does not have type '" +
5307                                getTypeString(Ty) + "'");
5308 
5309     return false;
5310   case ValID::t_Null:
5311     if (!Ty->isPointerTy())
5312       return error(ID.Loc, "null must be a pointer type");
5313     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5314     return false;
5315   case ValID::t_Undef:
5316     // FIXME: LabelTy should not be a first-class type.
5317     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5318       return error(ID.Loc, "invalid type for undef constant");
5319     V = UndefValue::get(Ty);
5320     return false;
5321   case ValID::t_EmptyArray:
5322     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5323       return error(ID.Loc, "invalid empty array initializer");
5324     V = UndefValue::get(Ty);
5325     return false;
5326   case ValID::t_Zero:
5327     // FIXME: LabelTy should not be a first-class type.
5328     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5329       return error(ID.Loc, "invalid type for null constant");
5330     V = Constant::getNullValue(Ty);
5331     return false;
5332   case ValID::t_None:
5333     if (!Ty->isTokenTy())
5334       return error(ID.Loc, "invalid type for none constant");
5335     V = Constant::getNullValue(Ty);
5336     return false;
5337   case ValID::t_Poison:
5338     // FIXME: LabelTy should not be a first-class type.
5339     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5340       return error(ID.Loc, "invalid type for poison constant");
5341     V = PoisonValue::get(Ty);
5342     return false;
5343   case ValID::t_Constant:
5344     if (ID.ConstantVal->getType() != Ty)
5345       return error(ID.Loc, "constant expression type mismatch: got type '" +
5346                                getTypeString(ID.ConstantVal->getType()) +
5347                                "' but expected '" + getTypeString(Ty) + "'");
5348     V = ID.ConstantVal;
5349     return false;
5350   case ValID::t_ConstantStruct:
5351   case ValID::t_PackedConstantStruct:
5352     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5353       if (ST->getNumElements() != ID.UIntVal)
5354         return error(ID.Loc,
5355                      "initializer with struct type has wrong # elements");
5356       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5357         return error(ID.Loc, "packed'ness of initializer and type don't match");
5358 
5359       // Verify that the elements are compatible with the structtype.
5360       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5361         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5362           return error(
5363               ID.Loc,
5364               "element " + Twine(i) +
5365                   " of struct initializer doesn't match struct element type");
5366 
5367       V = ConstantStruct::get(
5368           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5369     } else
5370       return error(ID.Loc, "constant expression type mismatch");
5371     return false;
5372   }
5373   llvm_unreachable("Invalid ValID");
5374 }
5375 
5376 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5377   C = nullptr;
5378   ValID ID;
5379   auto Loc = Lex.getLoc();
5380   if (parseValID(ID, /*PFS=*/nullptr))
5381     return true;
5382   switch (ID.Kind) {
5383   case ValID::t_APSInt:
5384   case ValID::t_APFloat:
5385   case ValID::t_Undef:
5386   case ValID::t_Constant:
5387   case ValID::t_ConstantStruct:
5388   case ValID::t_PackedConstantStruct: {
5389     Value *V;
5390     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5391       return true;
5392     assert(isa<Constant>(V) && "Expected a constant value");
5393     C = cast<Constant>(V);
5394     return false;
5395   }
5396   case ValID::t_Null:
5397     C = Constant::getNullValue(Ty);
5398     return false;
5399   default:
5400     return error(Loc, "expected a constant value");
5401   }
5402 }
5403 
5404 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5405   V = nullptr;
5406   ValID ID;
5407   return parseValID(ID, PFS, Ty) ||
5408          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5409 }
5410 
5411 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5412   Type *Ty = nullptr;
5413   return parseType(Ty) || parseValue(Ty, V, PFS);
5414 }
5415 
5416 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5417                                       PerFunctionState &PFS) {
5418   Value *V;
5419   Loc = Lex.getLoc();
5420   if (parseTypeAndValue(V, PFS))
5421     return true;
5422   if (!isa<BasicBlock>(V))
5423     return error(Loc, "expected a basic block");
5424   BB = cast<BasicBlock>(V);
5425   return false;
5426 }
5427 
5428 /// FunctionHeader
5429 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5430 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5431 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5432 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5433 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5434   // parse the linkage.
5435   LocTy LinkageLoc = Lex.getLoc();
5436   unsigned Linkage;
5437   unsigned Visibility;
5438   unsigned DLLStorageClass;
5439   bool DSOLocal;
5440   AttrBuilder RetAttrs;
5441   unsigned CC;
5442   bool HasLinkage;
5443   Type *RetType = nullptr;
5444   LocTy RetTypeLoc = Lex.getLoc();
5445   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5446                            DSOLocal) ||
5447       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5448       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5449     return true;
5450 
5451   // Verify that the linkage is ok.
5452   switch ((GlobalValue::LinkageTypes)Linkage) {
5453   case GlobalValue::ExternalLinkage:
5454     break; // always ok.
5455   case GlobalValue::ExternalWeakLinkage:
5456     if (IsDefine)
5457       return error(LinkageLoc, "invalid linkage for function definition");
5458     break;
5459   case GlobalValue::PrivateLinkage:
5460   case GlobalValue::InternalLinkage:
5461   case GlobalValue::AvailableExternallyLinkage:
5462   case GlobalValue::LinkOnceAnyLinkage:
5463   case GlobalValue::LinkOnceODRLinkage:
5464   case GlobalValue::WeakAnyLinkage:
5465   case GlobalValue::WeakODRLinkage:
5466     if (!IsDefine)
5467       return error(LinkageLoc, "invalid linkage for function declaration");
5468     break;
5469   case GlobalValue::AppendingLinkage:
5470   case GlobalValue::CommonLinkage:
5471     return error(LinkageLoc, "invalid function linkage type");
5472   }
5473 
5474   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5475     return error(LinkageLoc,
5476                  "symbol with local linkage must have default visibility");
5477 
5478   if (!FunctionType::isValidReturnType(RetType))
5479     return error(RetTypeLoc, "invalid function return type");
5480 
5481   LocTy NameLoc = Lex.getLoc();
5482 
5483   std::string FunctionName;
5484   if (Lex.getKind() == lltok::GlobalVar) {
5485     FunctionName = Lex.getStrVal();
5486   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5487     unsigned NameID = Lex.getUIntVal();
5488 
5489     if (NameID != NumberedVals.size())
5490       return tokError("function expected to be numbered '%" +
5491                       Twine(NumberedVals.size()) + "'");
5492   } else {
5493     return tokError("expected function name");
5494   }
5495 
5496   Lex.Lex();
5497 
5498   if (Lex.getKind() != lltok::lparen)
5499     return tokError("expected '(' in function argument list");
5500 
5501   SmallVector<ArgInfo, 8> ArgList;
5502   bool IsVarArg;
5503   AttrBuilder FuncAttrs;
5504   std::vector<unsigned> FwdRefAttrGrps;
5505   LocTy BuiltinLoc;
5506   std::string Section;
5507   std::string Partition;
5508   MaybeAlign Alignment;
5509   std::string GC;
5510   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5511   unsigned AddrSpace = 0;
5512   Constant *Prefix = nullptr;
5513   Constant *Prologue = nullptr;
5514   Constant *PersonalityFn = nullptr;
5515   Comdat *C;
5516 
5517   if (parseArgumentList(ArgList, IsVarArg) ||
5518       parseOptionalUnnamedAddr(UnnamedAddr) ||
5519       parseOptionalProgramAddrSpace(AddrSpace) ||
5520       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5521                                  BuiltinLoc) ||
5522       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5523       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5524       parseOptionalComdat(FunctionName, C) ||
5525       parseOptionalAlignment(Alignment) ||
5526       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5527       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5528       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5529       (EatIfPresent(lltok::kw_personality) &&
5530        parseGlobalTypeAndValue(PersonalityFn)))
5531     return true;
5532 
5533   if (FuncAttrs.contains(Attribute::Builtin))
5534     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5535 
5536   // If the alignment was parsed as an attribute, move to the alignment field.
5537   if (FuncAttrs.hasAlignmentAttr()) {
5538     Alignment = FuncAttrs.getAlignment();
5539     FuncAttrs.removeAttribute(Attribute::Alignment);
5540   }
5541 
5542   // Okay, if we got here, the function is syntactically valid.  Convert types
5543   // and do semantic checks.
5544   std::vector<Type*> ParamTypeList;
5545   SmallVector<AttributeSet, 8> Attrs;
5546 
5547   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5548     ParamTypeList.push_back(ArgList[i].Ty);
5549     Attrs.push_back(ArgList[i].Attrs);
5550   }
5551 
5552   AttributeList PAL =
5553       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5554                          AttributeSet::get(Context, RetAttrs), Attrs);
5555 
5556   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5557     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5558 
5559   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5560   PointerType *PFT = PointerType::get(FT, AddrSpace);
5561 
5562   Fn = nullptr;
5563   GlobalValue *FwdFn = nullptr;
5564   if (!FunctionName.empty()) {
5565     // If this was a definition of a forward reference, remove the definition
5566     // from the forward reference table and fill in the forward ref.
5567     auto FRVI = ForwardRefVals.find(FunctionName);
5568     if (FRVI != ForwardRefVals.end()) {
5569       FwdFn = FRVI->second.first;
5570       if (!FwdFn->getType()->isOpaque()) {
5571         if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
5572           return error(FRVI->second.second, "invalid forward reference to "
5573                                             "function as global value!");
5574         if (FwdFn->getType() != PFT)
5575           return error(FRVI->second.second,
5576                        "invalid forward reference to "
5577                        "function '" +
5578                            FunctionName +
5579                            "' with wrong type: "
5580                            "expected '" +
5581                            getTypeString(PFT) + "' but was '" +
5582                            getTypeString(FwdFn->getType()) + "'");
5583       }
5584       ForwardRefVals.erase(FRVI);
5585     } else if ((Fn = M->getFunction(FunctionName))) {
5586       // Reject redefinitions.
5587       return error(NameLoc,
5588                    "invalid redefinition of function '" + FunctionName + "'");
5589     } else if (M->getNamedValue(FunctionName)) {
5590       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5591     }
5592 
5593   } else {
5594     // If this is a definition of a forward referenced function, make sure the
5595     // types agree.
5596     auto I = ForwardRefValIDs.find(NumberedVals.size());
5597     if (I != ForwardRefValIDs.end()) {
5598       FwdFn = cast<Function>(I->second.first);
5599       if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5600         return error(NameLoc, "type of definition and forward reference of '@" +
5601                                   Twine(NumberedVals.size()) +
5602                                   "' disagree: "
5603                                   "expected '" +
5604                                   getTypeString(PFT) + "' but was '" +
5605                                   getTypeString(FwdFn->getType()) + "'");
5606       ForwardRefValIDs.erase(I);
5607     }
5608   }
5609 
5610   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5611                         FunctionName, M);
5612 
5613   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5614 
5615   if (FunctionName.empty())
5616     NumberedVals.push_back(Fn);
5617 
5618   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5619   maybeSetDSOLocal(DSOLocal, *Fn);
5620   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5621   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5622   Fn->setCallingConv(CC);
5623   Fn->setAttributes(PAL);
5624   Fn->setUnnamedAddr(UnnamedAddr);
5625   Fn->setAlignment(MaybeAlign(Alignment));
5626   Fn->setSection(Section);
5627   Fn->setPartition(Partition);
5628   Fn->setComdat(C);
5629   Fn->setPersonalityFn(PersonalityFn);
5630   if (!GC.empty()) Fn->setGC(GC);
5631   Fn->setPrefixData(Prefix);
5632   Fn->setPrologueData(Prologue);
5633   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5634 
5635   // Add all of the arguments we parsed to the function.
5636   Function::arg_iterator ArgIt = Fn->arg_begin();
5637   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5638     // If the argument has a name, insert it into the argument symbol table.
5639     if (ArgList[i].Name.empty()) continue;
5640 
5641     // Set the name, if it conflicted, it will be auto-renamed.
5642     ArgIt->setName(ArgList[i].Name);
5643 
5644     if (ArgIt->getName() != ArgList[i].Name)
5645       return error(ArgList[i].Loc,
5646                    "redefinition of argument '%" + ArgList[i].Name + "'");
5647   }
5648 
5649   if (FwdFn) {
5650     FwdFn->replaceAllUsesWith(Fn);
5651     FwdFn->eraseFromParent();
5652   }
5653 
5654   if (IsDefine)
5655     return false;
5656 
5657   // Check the declaration has no block address forward references.
5658   ValID ID;
5659   if (FunctionName.empty()) {
5660     ID.Kind = ValID::t_GlobalID;
5661     ID.UIntVal = NumberedVals.size() - 1;
5662   } else {
5663     ID.Kind = ValID::t_GlobalName;
5664     ID.StrVal = FunctionName;
5665   }
5666   auto Blocks = ForwardRefBlockAddresses.find(ID);
5667   if (Blocks != ForwardRefBlockAddresses.end())
5668     return error(Blocks->first.Loc,
5669                  "cannot take blockaddress inside a declaration");
5670   return false;
5671 }
5672 
5673 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5674   ValID ID;
5675   if (FunctionNumber == -1) {
5676     ID.Kind = ValID::t_GlobalName;
5677     ID.StrVal = std::string(F.getName());
5678   } else {
5679     ID.Kind = ValID::t_GlobalID;
5680     ID.UIntVal = FunctionNumber;
5681   }
5682 
5683   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5684   if (Blocks == P.ForwardRefBlockAddresses.end())
5685     return false;
5686 
5687   for (const auto &I : Blocks->second) {
5688     const ValID &BBID = I.first;
5689     GlobalValue *GV = I.second;
5690 
5691     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5692            "Expected local id or name");
5693     BasicBlock *BB;
5694     if (BBID.Kind == ValID::t_LocalName)
5695       BB = getBB(BBID.StrVal, BBID.Loc);
5696     else
5697       BB = getBB(BBID.UIntVal, BBID.Loc);
5698     if (!BB)
5699       return P.error(BBID.Loc, "referenced value is not a basic block");
5700 
5701     Value *ResolvedVal = BlockAddress::get(&F, BB);
5702     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5703                                            ResolvedVal, false);
5704     if (!ResolvedVal)
5705       return true;
5706     GV->replaceAllUsesWith(ResolvedVal);
5707     GV->eraseFromParent();
5708   }
5709 
5710   P.ForwardRefBlockAddresses.erase(Blocks);
5711   return false;
5712 }
5713 
5714 /// parseFunctionBody
5715 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5716 bool LLParser::parseFunctionBody(Function &Fn) {
5717   if (Lex.getKind() != lltok::lbrace)
5718     return tokError("expected '{' in function body");
5719   Lex.Lex();  // eat the {.
5720 
5721   int FunctionNumber = -1;
5722   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5723 
5724   PerFunctionState PFS(*this, Fn, FunctionNumber);
5725 
5726   // Resolve block addresses and allow basic blocks to be forward-declared
5727   // within this function.
5728   if (PFS.resolveForwardRefBlockAddresses())
5729     return true;
5730   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5731 
5732   // We need at least one basic block.
5733   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5734     return tokError("function body requires at least one basic block");
5735 
5736   while (Lex.getKind() != lltok::rbrace &&
5737          Lex.getKind() != lltok::kw_uselistorder)
5738     if (parseBasicBlock(PFS))
5739       return true;
5740 
5741   while (Lex.getKind() != lltok::rbrace)
5742     if (parseUseListOrder(&PFS))
5743       return true;
5744 
5745   // Eat the }.
5746   Lex.Lex();
5747 
5748   // Verify function is ok.
5749   return PFS.finishFunction();
5750 }
5751 
5752 /// parseBasicBlock
5753 ///   ::= (LabelStr|LabelID)? Instruction*
5754 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5755   // If this basic block starts out with a name, remember it.
5756   std::string Name;
5757   int NameID = -1;
5758   LocTy NameLoc = Lex.getLoc();
5759   if (Lex.getKind() == lltok::LabelStr) {
5760     Name = Lex.getStrVal();
5761     Lex.Lex();
5762   } else if (Lex.getKind() == lltok::LabelID) {
5763     NameID = Lex.getUIntVal();
5764     Lex.Lex();
5765   }
5766 
5767   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5768   if (!BB)
5769     return true;
5770 
5771   std::string NameStr;
5772 
5773   // parse the instructions in this block until we get a terminator.
5774   Instruction *Inst;
5775   do {
5776     // This instruction may have three possibilities for a name: a) none
5777     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5778     LocTy NameLoc = Lex.getLoc();
5779     int NameID = -1;
5780     NameStr = "";
5781 
5782     if (Lex.getKind() == lltok::LocalVarID) {
5783       NameID = Lex.getUIntVal();
5784       Lex.Lex();
5785       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5786         return true;
5787     } else if (Lex.getKind() == lltok::LocalVar) {
5788       NameStr = Lex.getStrVal();
5789       Lex.Lex();
5790       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5791         return true;
5792     }
5793 
5794     switch (parseInstruction(Inst, BB, PFS)) {
5795     default:
5796       llvm_unreachable("Unknown parseInstruction result!");
5797     case InstError: return true;
5798     case InstNormal:
5799       BB->getInstList().push_back(Inst);
5800 
5801       // With a normal result, we check to see if the instruction is followed by
5802       // a comma and metadata.
5803       if (EatIfPresent(lltok::comma))
5804         if (parseInstructionMetadata(*Inst))
5805           return true;
5806       break;
5807     case InstExtraComma:
5808       BB->getInstList().push_back(Inst);
5809 
5810       // If the instruction parser ate an extra comma at the end of it, it
5811       // *must* be followed by metadata.
5812       if (parseInstructionMetadata(*Inst))
5813         return true;
5814       break;
5815     }
5816 
5817     // Set the name on the instruction.
5818     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5819       return true;
5820   } while (!Inst->isTerminator());
5821 
5822   return false;
5823 }
5824 
5825 //===----------------------------------------------------------------------===//
5826 // Instruction Parsing.
5827 //===----------------------------------------------------------------------===//
5828 
5829 /// parseInstruction - parse one of the many different instructions.
5830 ///
5831 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5832                                PerFunctionState &PFS) {
5833   lltok::Kind Token = Lex.getKind();
5834   if (Token == lltok::Eof)
5835     return tokError("found end of file when expecting more instructions");
5836   LocTy Loc = Lex.getLoc();
5837   unsigned KeywordVal = Lex.getUIntVal();
5838   Lex.Lex();  // Eat the keyword.
5839 
5840   switch (Token) {
5841   default:
5842     return error(Loc, "expected instruction opcode");
5843   // Terminator Instructions.
5844   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5845   case lltok::kw_ret:
5846     return parseRet(Inst, BB, PFS);
5847   case lltok::kw_br:
5848     return parseBr(Inst, PFS);
5849   case lltok::kw_switch:
5850     return parseSwitch(Inst, PFS);
5851   case lltok::kw_indirectbr:
5852     return parseIndirectBr(Inst, PFS);
5853   case lltok::kw_invoke:
5854     return parseInvoke(Inst, PFS);
5855   case lltok::kw_resume:
5856     return parseResume(Inst, PFS);
5857   case lltok::kw_cleanupret:
5858     return parseCleanupRet(Inst, PFS);
5859   case lltok::kw_catchret:
5860     return parseCatchRet(Inst, PFS);
5861   case lltok::kw_catchswitch:
5862     return parseCatchSwitch(Inst, PFS);
5863   case lltok::kw_catchpad:
5864     return parseCatchPad(Inst, PFS);
5865   case lltok::kw_cleanuppad:
5866     return parseCleanupPad(Inst, PFS);
5867   case lltok::kw_callbr:
5868     return parseCallBr(Inst, PFS);
5869   // Unary Operators.
5870   case lltok::kw_fneg: {
5871     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5872     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5873     if (Res != 0)
5874       return Res;
5875     if (FMF.any())
5876       Inst->setFastMathFlags(FMF);
5877     return false;
5878   }
5879   // Binary Operators.
5880   case lltok::kw_add:
5881   case lltok::kw_sub:
5882   case lltok::kw_mul:
5883   case lltok::kw_shl: {
5884     bool NUW = EatIfPresent(lltok::kw_nuw);
5885     bool NSW = EatIfPresent(lltok::kw_nsw);
5886     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5887 
5888     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5889       return true;
5890 
5891     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5892     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5893     return false;
5894   }
5895   case lltok::kw_fadd:
5896   case lltok::kw_fsub:
5897   case lltok::kw_fmul:
5898   case lltok::kw_fdiv:
5899   case lltok::kw_frem: {
5900     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5901     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5902     if (Res != 0)
5903       return Res;
5904     if (FMF.any())
5905       Inst->setFastMathFlags(FMF);
5906     return 0;
5907   }
5908 
5909   case lltok::kw_sdiv:
5910   case lltok::kw_udiv:
5911   case lltok::kw_lshr:
5912   case lltok::kw_ashr: {
5913     bool Exact = EatIfPresent(lltok::kw_exact);
5914 
5915     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5916       return true;
5917     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5918     return false;
5919   }
5920 
5921   case lltok::kw_urem:
5922   case lltok::kw_srem:
5923     return parseArithmetic(Inst, PFS, KeywordVal,
5924                            /*IsFP*/ false);
5925   case lltok::kw_and:
5926   case lltok::kw_or:
5927   case lltok::kw_xor:
5928     return parseLogical(Inst, PFS, KeywordVal);
5929   case lltok::kw_icmp:
5930     return parseCompare(Inst, PFS, KeywordVal);
5931   case lltok::kw_fcmp: {
5932     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5933     int Res = parseCompare(Inst, PFS, KeywordVal);
5934     if (Res != 0)
5935       return Res;
5936     if (FMF.any())
5937       Inst->setFastMathFlags(FMF);
5938     return 0;
5939   }
5940 
5941   // Casts.
5942   case lltok::kw_trunc:
5943   case lltok::kw_zext:
5944   case lltok::kw_sext:
5945   case lltok::kw_fptrunc:
5946   case lltok::kw_fpext:
5947   case lltok::kw_bitcast:
5948   case lltok::kw_addrspacecast:
5949   case lltok::kw_uitofp:
5950   case lltok::kw_sitofp:
5951   case lltok::kw_fptoui:
5952   case lltok::kw_fptosi:
5953   case lltok::kw_inttoptr:
5954   case lltok::kw_ptrtoint:
5955     return parseCast(Inst, PFS, KeywordVal);
5956   // Other.
5957   case lltok::kw_select: {
5958     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5959     int Res = parseSelect(Inst, PFS);
5960     if (Res != 0)
5961       return Res;
5962     if (FMF.any()) {
5963       if (!isa<FPMathOperator>(Inst))
5964         return error(Loc, "fast-math-flags specified for select without "
5965                           "floating-point scalar or vector return type");
5966       Inst->setFastMathFlags(FMF);
5967     }
5968     return 0;
5969   }
5970   case lltok::kw_va_arg:
5971     return parseVAArg(Inst, PFS);
5972   case lltok::kw_extractelement:
5973     return parseExtractElement(Inst, PFS);
5974   case lltok::kw_insertelement:
5975     return parseInsertElement(Inst, PFS);
5976   case lltok::kw_shufflevector:
5977     return parseShuffleVector(Inst, PFS);
5978   case lltok::kw_phi: {
5979     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5980     int Res = parsePHI(Inst, PFS);
5981     if (Res != 0)
5982       return Res;
5983     if (FMF.any()) {
5984       if (!isa<FPMathOperator>(Inst))
5985         return error(Loc, "fast-math-flags specified for phi without "
5986                           "floating-point scalar or vector return type");
5987       Inst->setFastMathFlags(FMF);
5988     }
5989     return 0;
5990   }
5991   case lltok::kw_landingpad:
5992     return parseLandingPad(Inst, PFS);
5993   case lltok::kw_freeze:
5994     return parseFreeze(Inst, PFS);
5995   // Call.
5996   case lltok::kw_call:
5997     return parseCall(Inst, PFS, CallInst::TCK_None);
5998   case lltok::kw_tail:
5999     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6000   case lltok::kw_musttail:
6001     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6002   case lltok::kw_notail:
6003     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6004   // Memory.
6005   case lltok::kw_alloca:
6006     return parseAlloc(Inst, PFS);
6007   case lltok::kw_load:
6008     return parseLoad(Inst, PFS);
6009   case lltok::kw_store:
6010     return parseStore(Inst, PFS);
6011   case lltok::kw_cmpxchg:
6012     return parseCmpXchg(Inst, PFS);
6013   case lltok::kw_atomicrmw:
6014     return parseAtomicRMW(Inst, PFS);
6015   case lltok::kw_fence:
6016     return parseFence(Inst, PFS);
6017   case lltok::kw_getelementptr:
6018     return parseGetElementPtr(Inst, PFS);
6019   case lltok::kw_extractvalue:
6020     return parseExtractValue(Inst, PFS);
6021   case lltok::kw_insertvalue:
6022     return parseInsertValue(Inst, PFS);
6023   }
6024 }
6025 
6026 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6027 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6028   if (Opc == Instruction::FCmp) {
6029     switch (Lex.getKind()) {
6030     default:
6031       return tokError("expected fcmp predicate (e.g. 'oeq')");
6032     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6033     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6034     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6035     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6036     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6037     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6038     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6039     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6040     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6041     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6042     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6043     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6044     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6045     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6046     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6047     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6048     }
6049   } else {
6050     switch (Lex.getKind()) {
6051     default:
6052       return tokError("expected icmp predicate (e.g. 'eq')");
6053     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6054     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6055     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6056     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6057     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6058     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6059     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6060     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6061     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6062     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6063     }
6064   }
6065   Lex.Lex();
6066   return false;
6067 }
6068 
6069 //===----------------------------------------------------------------------===//
6070 // Terminator Instructions.
6071 //===----------------------------------------------------------------------===//
6072 
6073 /// parseRet - parse a return instruction.
6074 ///   ::= 'ret' void (',' !dbg, !1)*
6075 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6076 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6077                         PerFunctionState &PFS) {
6078   SMLoc TypeLoc = Lex.getLoc();
6079   Type *Ty = nullptr;
6080   if (parseType(Ty, true /*void allowed*/))
6081     return true;
6082 
6083   Type *ResType = PFS.getFunction().getReturnType();
6084 
6085   if (Ty->isVoidTy()) {
6086     if (!ResType->isVoidTy())
6087       return error(TypeLoc, "value doesn't match function result type '" +
6088                                 getTypeString(ResType) + "'");
6089 
6090     Inst = ReturnInst::Create(Context);
6091     return false;
6092   }
6093 
6094   Value *RV;
6095   if (parseValue(Ty, RV, PFS))
6096     return true;
6097 
6098   if (ResType != RV->getType())
6099     return error(TypeLoc, "value doesn't match function result type '" +
6100                               getTypeString(ResType) + "'");
6101 
6102   Inst = ReturnInst::Create(Context, RV);
6103   return false;
6104 }
6105 
6106 /// parseBr
6107 ///   ::= 'br' TypeAndValue
6108 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6109 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6110   LocTy Loc, Loc2;
6111   Value *Op0;
6112   BasicBlock *Op1, *Op2;
6113   if (parseTypeAndValue(Op0, Loc, PFS))
6114     return true;
6115 
6116   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6117     Inst = BranchInst::Create(BB);
6118     return false;
6119   }
6120 
6121   if (Op0->getType() != Type::getInt1Ty(Context))
6122     return error(Loc, "branch condition must have 'i1' type");
6123 
6124   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6125       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6126       parseToken(lltok::comma, "expected ',' after true destination") ||
6127       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6128     return true;
6129 
6130   Inst = BranchInst::Create(Op1, Op2, Op0);
6131   return false;
6132 }
6133 
6134 /// parseSwitch
6135 ///  Instruction
6136 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6137 ///  JumpTable
6138 ///    ::= (TypeAndValue ',' TypeAndValue)*
6139 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6140   LocTy CondLoc, BBLoc;
6141   Value *Cond;
6142   BasicBlock *DefaultBB;
6143   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6144       parseToken(lltok::comma, "expected ',' after switch condition") ||
6145       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6146       parseToken(lltok::lsquare, "expected '[' with switch table"))
6147     return true;
6148 
6149   if (!Cond->getType()->isIntegerTy())
6150     return error(CondLoc, "switch condition must have integer type");
6151 
6152   // parse the jump table pairs.
6153   SmallPtrSet<Value*, 32> SeenCases;
6154   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6155   while (Lex.getKind() != lltok::rsquare) {
6156     Value *Constant;
6157     BasicBlock *DestBB;
6158 
6159     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6160         parseToken(lltok::comma, "expected ',' after case value") ||
6161         parseTypeAndBasicBlock(DestBB, PFS))
6162       return true;
6163 
6164     if (!SeenCases.insert(Constant).second)
6165       return error(CondLoc, "duplicate case value in switch");
6166     if (!isa<ConstantInt>(Constant))
6167       return error(CondLoc, "case value is not a constant integer");
6168 
6169     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6170   }
6171 
6172   Lex.Lex();  // Eat the ']'.
6173 
6174   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6175   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6176     SI->addCase(Table[i].first, Table[i].second);
6177   Inst = SI;
6178   return false;
6179 }
6180 
6181 /// parseIndirectBr
6182 ///  Instruction
6183 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6184 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6185   LocTy AddrLoc;
6186   Value *Address;
6187   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6188       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6189       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6190     return true;
6191 
6192   if (!Address->getType()->isPointerTy())
6193     return error(AddrLoc, "indirectbr address must have pointer type");
6194 
6195   // parse the destination list.
6196   SmallVector<BasicBlock*, 16> DestList;
6197 
6198   if (Lex.getKind() != lltok::rsquare) {
6199     BasicBlock *DestBB;
6200     if (parseTypeAndBasicBlock(DestBB, PFS))
6201       return true;
6202     DestList.push_back(DestBB);
6203 
6204     while (EatIfPresent(lltok::comma)) {
6205       if (parseTypeAndBasicBlock(DestBB, PFS))
6206         return true;
6207       DestList.push_back(DestBB);
6208     }
6209   }
6210 
6211   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6212     return true;
6213 
6214   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6215   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6216     IBI->addDestination(DestList[i]);
6217   Inst = IBI;
6218   return false;
6219 }
6220 
6221 /// parseInvoke
6222 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6223 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6224 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6225   LocTy CallLoc = Lex.getLoc();
6226   AttrBuilder RetAttrs, FnAttrs;
6227   std::vector<unsigned> FwdRefAttrGrps;
6228   LocTy NoBuiltinLoc;
6229   unsigned CC;
6230   unsigned InvokeAddrSpace;
6231   Type *RetType = nullptr;
6232   LocTy RetTypeLoc;
6233   ValID CalleeID;
6234   SmallVector<ParamInfo, 16> ArgList;
6235   SmallVector<OperandBundleDef, 2> BundleList;
6236 
6237   BasicBlock *NormalBB, *UnwindBB;
6238   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6239       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6240       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6241       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6242       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6243                                  NoBuiltinLoc) ||
6244       parseOptionalOperandBundles(BundleList, PFS) ||
6245       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6246       parseTypeAndBasicBlock(NormalBB, PFS) ||
6247       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6248       parseTypeAndBasicBlock(UnwindBB, PFS))
6249     return true;
6250 
6251   // If RetType is a non-function pointer type, then this is the short syntax
6252   // for the call, which means that RetType is just the return type.  Infer the
6253   // rest of the function argument types from the arguments that are present.
6254   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6255   if (!Ty) {
6256     // Pull out the types of all of the arguments...
6257     std::vector<Type*> ParamTypes;
6258     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6259       ParamTypes.push_back(ArgList[i].V->getType());
6260 
6261     if (!FunctionType::isValidReturnType(RetType))
6262       return error(RetTypeLoc, "Invalid result type for LLVM function");
6263 
6264     Ty = FunctionType::get(RetType, ParamTypes, false);
6265   }
6266 
6267   CalleeID.FTy = Ty;
6268 
6269   // Look up the callee.
6270   Value *Callee;
6271   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6272                           Callee, &PFS, /*IsCall=*/true))
6273     return true;
6274 
6275   // Set up the Attribute for the function.
6276   SmallVector<Value *, 8> Args;
6277   SmallVector<AttributeSet, 8> ArgAttrs;
6278 
6279   // Loop through FunctionType's arguments and ensure they are specified
6280   // correctly.  Also, gather any parameter attributes.
6281   FunctionType::param_iterator I = Ty->param_begin();
6282   FunctionType::param_iterator E = Ty->param_end();
6283   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6284     Type *ExpectedTy = nullptr;
6285     if (I != E) {
6286       ExpectedTy = *I++;
6287     } else if (!Ty->isVarArg()) {
6288       return error(ArgList[i].Loc, "too many arguments specified");
6289     }
6290 
6291     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6292       return error(ArgList[i].Loc, "argument is not of expected type '" +
6293                                        getTypeString(ExpectedTy) + "'");
6294     Args.push_back(ArgList[i].V);
6295     ArgAttrs.push_back(ArgList[i].Attrs);
6296   }
6297 
6298   if (I != E)
6299     return error(CallLoc, "not enough parameters specified for call");
6300 
6301   if (FnAttrs.hasAlignmentAttr())
6302     return error(CallLoc, "invoke instructions may not have an alignment");
6303 
6304   // Finish off the Attribute and check them
6305   AttributeList PAL =
6306       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6307                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6308 
6309   InvokeInst *II =
6310       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6311   II->setCallingConv(CC);
6312   II->setAttributes(PAL);
6313   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6314   Inst = II;
6315   return false;
6316 }
6317 
6318 /// parseResume
6319 ///   ::= 'resume' TypeAndValue
6320 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6321   Value *Exn; LocTy ExnLoc;
6322   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6323     return true;
6324 
6325   ResumeInst *RI = ResumeInst::Create(Exn);
6326   Inst = RI;
6327   return false;
6328 }
6329 
6330 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6331                                   PerFunctionState &PFS) {
6332   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6333     return true;
6334 
6335   while (Lex.getKind() != lltok::rsquare) {
6336     // If this isn't the first argument, we need a comma.
6337     if (!Args.empty() &&
6338         parseToken(lltok::comma, "expected ',' in argument list"))
6339       return true;
6340 
6341     // parse the argument.
6342     LocTy ArgLoc;
6343     Type *ArgTy = nullptr;
6344     if (parseType(ArgTy, ArgLoc))
6345       return true;
6346 
6347     Value *V;
6348     if (ArgTy->isMetadataTy()) {
6349       if (parseMetadataAsValue(V, PFS))
6350         return true;
6351     } else {
6352       if (parseValue(ArgTy, V, PFS))
6353         return true;
6354     }
6355     Args.push_back(V);
6356   }
6357 
6358   Lex.Lex();  // Lex the ']'.
6359   return false;
6360 }
6361 
6362 /// parseCleanupRet
6363 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6364 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6365   Value *CleanupPad = nullptr;
6366 
6367   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6368     return true;
6369 
6370   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6371     return true;
6372 
6373   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6374     return true;
6375 
6376   BasicBlock *UnwindBB = nullptr;
6377   if (Lex.getKind() == lltok::kw_to) {
6378     Lex.Lex();
6379     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6380       return true;
6381   } else {
6382     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6383       return true;
6384     }
6385   }
6386 
6387   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6388   return false;
6389 }
6390 
6391 /// parseCatchRet
6392 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6393 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6394   Value *CatchPad = nullptr;
6395 
6396   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6397     return true;
6398 
6399   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6400     return true;
6401 
6402   BasicBlock *BB;
6403   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6404       parseTypeAndBasicBlock(BB, PFS))
6405     return true;
6406 
6407   Inst = CatchReturnInst::Create(CatchPad, BB);
6408   return false;
6409 }
6410 
6411 /// parseCatchSwitch
6412 ///   ::= 'catchswitch' within Parent
6413 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6414   Value *ParentPad;
6415 
6416   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6417     return true;
6418 
6419   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6420       Lex.getKind() != lltok::LocalVarID)
6421     return tokError("expected scope value for catchswitch");
6422 
6423   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6424     return true;
6425 
6426   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6427     return true;
6428 
6429   SmallVector<BasicBlock *, 32> Table;
6430   do {
6431     BasicBlock *DestBB;
6432     if (parseTypeAndBasicBlock(DestBB, PFS))
6433       return true;
6434     Table.push_back(DestBB);
6435   } while (EatIfPresent(lltok::comma));
6436 
6437   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6438     return true;
6439 
6440   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6441     return true;
6442 
6443   BasicBlock *UnwindBB = nullptr;
6444   if (EatIfPresent(lltok::kw_to)) {
6445     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6446       return true;
6447   } else {
6448     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6449       return true;
6450   }
6451 
6452   auto *CatchSwitch =
6453       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6454   for (BasicBlock *DestBB : Table)
6455     CatchSwitch->addHandler(DestBB);
6456   Inst = CatchSwitch;
6457   return false;
6458 }
6459 
6460 /// parseCatchPad
6461 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6462 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6463   Value *CatchSwitch = nullptr;
6464 
6465   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6466     return true;
6467 
6468   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6469     return tokError("expected scope value for catchpad");
6470 
6471   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6472     return true;
6473 
6474   SmallVector<Value *, 8> Args;
6475   if (parseExceptionArgs(Args, PFS))
6476     return true;
6477 
6478   Inst = CatchPadInst::Create(CatchSwitch, Args);
6479   return false;
6480 }
6481 
6482 /// parseCleanupPad
6483 ///   ::= 'cleanuppad' within Parent ParamList
6484 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6485   Value *ParentPad = nullptr;
6486 
6487   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6488     return true;
6489 
6490   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6491       Lex.getKind() != lltok::LocalVarID)
6492     return tokError("expected scope value for cleanuppad");
6493 
6494   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6495     return true;
6496 
6497   SmallVector<Value *, 8> Args;
6498   if (parseExceptionArgs(Args, PFS))
6499     return true;
6500 
6501   Inst = CleanupPadInst::Create(ParentPad, Args);
6502   return false;
6503 }
6504 
6505 //===----------------------------------------------------------------------===//
6506 // Unary Operators.
6507 //===----------------------------------------------------------------------===//
6508 
6509 /// parseUnaryOp
6510 ///  ::= UnaryOp TypeAndValue ',' Value
6511 ///
6512 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6513 /// operand is allowed.
6514 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6515                             unsigned Opc, bool IsFP) {
6516   LocTy Loc; Value *LHS;
6517   if (parseTypeAndValue(LHS, Loc, PFS))
6518     return true;
6519 
6520   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6521                     : LHS->getType()->isIntOrIntVectorTy();
6522 
6523   if (!Valid)
6524     return error(Loc, "invalid operand type for instruction");
6525 
6526   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6527   return false;
6528 }
6529 
6530 /// parseCallBr
6531 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6532 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6533 ///       '[' LabelList ']'
6534 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6535   LocTy CallLoc = Lex.getLoc();
6536   AttrBuilder RetAttrs, FnAttrs;
6537   std::vector<unsigned> FwdRefAttrGrps;
6538   LocTy NoBuiltinLoc;
6539   unsigned CC;
6540   Type *RetType = nullptr;
6541   LocTy RetTypeLoc;
6542   ValID CalleeID;
6543   SmallVector<ParamInfo, 16> ArgList;
6544   SmallVector<OperandBundleDef, 2> BundleList;
6545 
6546   BasicBlock *DefaultDest;
6547   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6548       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6549       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6550       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6551                                  NoBuiltinLoc) ||
6552       parseOptionalOperandBundles(BundleList, PFS) ||
6553       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6554       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6555       parseToken(lltok::lsquare, "expected '[' in callbr"))
6556     return true;
6557 
6558   // parse the destination list.
6559   SmallVector<BasicBlock *, 16> IndirectDests;
6560 
6561   if (Lex.getKind() != lltok::rsquare) {
6562     BasicBlock *DestBB;
6563     if (parseTypeAndBasicBlock(DestBB, PFS))
6564       return true;
6565     IndirectDests.push_back(DestBB);
6566 
6567     while (EatIfPresent(lltok::comma)) {
6568       if (parseTypeAndBasicBlock(DestBB, PFS))
6569         return true;
6570       IndirectDests.push_back(DestBB);
6571     }
6572   }
6573 
6574   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6575     return true;
6576 
6577   // If RetType is a non-function pointer type, then this is the short syntax
6578   // for the call, which means that RetType is just the return type.  Infer the
6579   // rest of the function argument types from the arguments that are present.
6580   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6581   if (!Ty) {
6582     // Pull out the types of all of the arguments...
6583     std::vector<Type *> ParamTypes;
6584     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6585       ParamTypes.push_back(ArgList[i].V->getType());
6586 
6587     if (!FunctionType::isValidReturnType(RetType))
6588       return error(RetTypeLoc, "Invalid result type for LLVM function");
6589 
6590     Ty = FunctionType::get(RetType, ParamTypes, false);
6591   }
6592 
6593   CalleeID.FTy = Ty;
6594 
6595   // Look up the callee.
6596   Value *Callee;
6597   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6598                           /*IsCall=*/true))
6599     return true;
6600 
6601   // Set up the Attribute for the function.
6602   SmallVector<Value *, 8> Args;
6603   SmallVector<AttributeSet, 8> ArgAttrs;
6604 
6605   // Loop through FunctionType's arguments and ensure they are specified
6606   // correctly.  Also, gather any parameter attributes.
6607   FunctionType::param_iterator I = Ty->param_begin();
6608   FunctionType::param_iterator E = Ty->param_end();
6609   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6610     Type *ExpectedTy = nullptr;
6611     if (I != E) {
6612       ExpectedTy = *I++;
6613     } else if (!Ty->isVarArg()) {
6614       return error(ArgList[i].Loc, "too many arguments specified");
6615     }
6616 
6617     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6618       return error(ArgList[i].Loc, "argument is not of expected type '" +
6619                                        getTypeString(ExpectedTy) + "'");
6620     Args.push_back(ArgList[i].V);
6621     ArgAttrs.push_back(ArgList[i].Attrs);
6622   }
6623 
6624   if (I != E)
6625     return error(CallLoc, "not enough parameters specified for call");
6626 
6627   if (FnAttrs.hasAlignmentAttr())
6628     return error(CallLoc, "callbr instructions may not have an alignment");
6629 
6630   // Finish off the Attribute and check them
6631   AttributeList PAL =
6632       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6633                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6634 
6635   CallBrInst *CBI =
6636       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6637                          BundleList);
6638   CBI->setCallingConv(CC);
6639   CBI->setAttributes(PAL);
6640   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6641   Inst = CBI;
6642   return false;
6643 }
6644 
6645 //===----------------------------------------------------------------------===//
6646 // Binary Operators.
6647 //===----------------------------------------------------------------------===//
6648 
6649 /// parseArithmetic
6650 ///  ::= ArithmeticOps TypeAndValue ',' Value
6651 ///
6652 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6653 /// operand is allowed.
6654 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6655                                unsigned Opc, bool IsFP) {
6656   LocTy Loc; Value *LHS, *RHS;
6657   if (parseTypeAndValue(LHS, Loc, PFS) ||
6658       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6659       parseValue(LHS->getType(), RHS, PFS))
6660     return true;
6661 
6662   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6663                     : LHS->getType()->isIntOrIntVectorTy();
6664 
6665   if (!Valid)
6666     return error(Loc, "invalid operand type for instruction");
6667 
6668   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6669   return false;
6670 }
6671 
6672 /// parseLogical
6673 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6674 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6675                             unsigned Opc) {
6676   LocTy Loc; Value *LHS, *RHS;
6677   if (parseTypeAndValue(LHS, Loc, PFS) ||
6678       parseToken(lltok::comma, "expected ',' in logical operation") ||
6679       parseValue(LHS->getType(), RHS, PFS))
6680     return true;
6681 
6682   if (!LHS->getType()->isIntOrIntVectorTy())
6683     return error(Loc,
6684                  "instruction requires integer or integer vector operands");
6685 
6686   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6687   return false;
6688 }
6689 
6690 /// parseCompare
6691 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6692 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6693 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6694                             unsigned Opc) {
6695   // parse the integer/fp comparison predicate.
6696   LocTy Loc;
6697   unsigned Pred;
6698   Value *LHS, *RHS;
6699   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6700       parseToken(lltok::comma, "expected ',' after compare value") ||
6701       parseValue(LHS->getType(), RHS, PFS))
6702     return true;
6703 
6704   if (Opc == Instruction::FCmp) {
6705     if (!LHS->getType()->isFPOrFPVectorTy())
6706       return error(Loc, "fcmp requires floating point operands");
6707     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6708   } else {
6709     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6710     if (!LHS->getType()->isIntOrIntVectorTy() &&
6711         !LHS->getType()->isPtrOrPtrVectorTy())
6712       return error(Loc, "icmp requires integer operands");
6713     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6714   }
6715   return false;
6716 }
6717 
6718 //===----------------------------------------------------------------------===//
6719 // Other Instructions.
6720 //===----------------------------------------------------------------------===//
6721 
6722 /// parseCast
6723 ///   ::= CastOpc TypeAndValue 'to' Type
6724 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6725                          unsigned Opc) {
6726   LocTy Loc;
6727   Value *Op;
6728   Type *DestTy = nullptr;
6729   if (parseTypeAndValue(Op, Loc, PFS) ||
6730       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6731       parseType(DestTy))
6732     return true;
6733 
6734   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6735     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6736     return error(Loc, "invalid cast opcode for cast from '" +
6737                           getTypeString(Op->getType()) + "' to '" +
6738                           getTypeString(DestTy) + "'");
6739   }
6740   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6741   return false;
6742 }
6743 
6744 /// parseSelect
6745 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6746 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6747   LocTy Loc;
6748   Value *Op0, *Op1, *Op2;
6749   if (parseTypeAndValue(Op0, Loc, PFS) ||
6750       parseToken(lltok::comma, "expected ',' after select condition") ||
6751       parseTypeAndValue(Op1, PFS) ||
6752       parseToken(lltok::comma, "expected ',' after select value") ||
6753       parseTypeAndValue(Op2, PFS))
6754     return true;
6755 
6756   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6757     return error(Loc, Reason);
6758 
6759   Inst = SelectInst::Create(Op0, Op1, Op2);
6760   return false;
6761 }
6762 
6763 /// parseVAArg
6764 ///   ::= 'va_arg' TypeAndValue ',' Type
6765 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6766   Value *Op;
6767   Type *EltTy = nullptr;
6768   LocTy TypeLoc;
6769   if (parseTypeAndValue(Op, PFS) ||
6770       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6771       parseType(EltTy, TypeLoc))
6772     return true;
6773 
6774   if (!EltTy->isFirstClassType())
6775     return error(TypeLoc, "va_arg requires operand with first class type");
6776 
6777   Inst = new VAArgInst(Op, EltTy);
6778   return false;
6779 }
6780 
6781 /// parseExtractElement
6782 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6783 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6784   LocTy Loc;
6785   Value *Op0, *Op1;
6786   if (parseTypeAndValue(Op0, Loc, PFS) ||
6787       parseToken(lltok::comma, "expected ',' after extract value") ||
6788       parseTypeAndValue(Op1, PFS))
6789     return true;
6790 
6791   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6792     return error(Loc, "invalid extractelement operands");
6793 
6794   Inst = ExtractElementInst::Create(Op0, Op1);
6795   return false;
6796 }
6797 
6798 /// parseInsertElement
6799 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6800 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6801   LocTy Loc;
6802   Value *Op0, *Op1, *Op2;
6803   if (parseTypeAndValue(Op0, Loc, PFS) ||
6804       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6805       parseTypeAndValue(Op1, PFS) ||
6806       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6807       parseTypeAndValue(Op2, PFS))
6808     return true;
6809 
6810   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6811     return error(Loc, "invalid insertelement operands");
6812 
6813   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6814   return false;
6815 }
6816 
6817 /// parseShuffleVector
6818 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6819 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6820   LocTy Loc;
6821   Value *Op0, *Op1, *Op2;
6822   if (parseTypeAndValue(Op0, Loc, PFS) ||
6823       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6824       parseTypeAndValue(Op1, PFS) ||
6825       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6826       parseTypeAndValue(Op2, PFS))
6827     return true;
6828 
6829   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6830     return error(Loc, "invalid shufflevector operands");
6831 
6832   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6833   return false;
6834 }
6835 
6836 /// parsePHI
6837 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6838 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6839   Type *Ty = nullptr;  LocTy TypeLoc;
6840   Value *Op0, *Op1;
6841 
6842   if (parseType(Ty, TypeLoc) ||
6843       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6844       parseValue(Ty, Op0, PFS) ||
6845       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6846       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6847       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6848     return true;
6849 
6850   bool AteExtraComma = false;
6851   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6852 
6853   while (true) {
6854     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6855 
6856     if (!EatIfPresent(lltok::comma))
6857       break;
6858 
6859     if (Lex.getKind() == lltok::MetadataVar) {
6860       AteExtraComma = true;
6861       break;
6862     }
6863 
6864     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6865         parseValue(Ty, Op0, PFS) ||
6866         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6867         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6868         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6869       return true;
6870   }
6871 
6872   if (!Ty->isFirstClassType())
6873     return error(TypeLoc, "phi node must have first class type");
6874 
6875   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6876   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6877     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6878   Inst = PN;
6879   return AteExtraComma ? InstExtraComma : InstNormal;
6880 }
6881 
6882 /// parseLandingPad
6883 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6884 /// Clause
6885 ///   ::= 'catch' TypeAndValue
6886 ///   ::= 'filter'
6887 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6888 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6889   Type *Ty = nullptr; LocTy TyLoc;
6890 
6891   if (parseType(Ty, TyLoc))
6892     return true;
6893 
6894   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6895   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6896 
6897   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6898     LandingPadInst::ClauseType CT;
6899     if (EatIfPresent(lltok::kw_catch))
6900       CT = LandingPadInst::Catch;
6901     else if (EatIfPresent(lltok::kw_filter))
6902       CT = LandingPadInst::Filter;
6903     else
6904       return tokError("expected 'catch' or 'filter' clause type");
6905 
6906     Value *V;
6907     LocTy VLoc;
6908     if (parseTypeAndValue(V, VLoc, PFS))
6909       return true;
6910 
6911     // A 'catch' type expects a non-array constant. A filter clause expects an
6912     // array constant.
6913     if (CT == LandingPadInst::Catch) {
6914       if (isa<ArrayType>(V->getType()))
6915         error(VLoc, "'catch' clause has an invalid type");
6916     } else {
6917       if (!isa<ArrayType>(V->getType()))
6918         error(VLoc, "'filter' clause has an invalid type");
6919     }
6920 
6921     Constant *CV = dyn_cast<Constant>(V);
6922     if (!CV)
6923       return error(VLoc, "clause argument must be a constant");
6924     LP->addClause(CV);
6925   }
6926 
6927   Inst = LP.release();
6928   return false;
6929 }
6930 
6931 /// parseFreeze
6932 ///   ::= 'freeze' Type Value
6933 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6934   LocTy Loc;
6935   Value *Op;
6936   if (parseTypeAndValue(Op, Loc, PFS))
6937     return true;
6938 
6939   Inst = new FreezeInst(Op);
6940   return false;
6941 }
6942 
6943 /// parseCall
6944 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6945 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6946 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6947 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6948 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6949 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6950 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6951 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6952 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
6953                          CallInst::TailCallKind TCK) {
6954   AttrBuilder RetAttrs, FnAttrs;
6955   std::vector<unsigned> FwdRefAttrGrps;
6956   LocTy BuiltinLoc;
6957   unsigned CallAddrSpace;
6958   unsigned CC;
6959   Type *RetType = nullptr;
6960   LocTy RetTypeLoc;
6961   ValID CalleeID;
6962   SmallVector<ParamInfo, 16> ArgList;
6963   SmallVector<OperandBundleDef, 2> BundleList;
6964   LocTy CallLoc = Lex.getLoc();
6965 
6966   if (TCK != CallInst::TCK_None &&
6967       parseToken(lltok::kw_call,
6968                  "expected 'tail call', 'musttail call', or 'notail call'"))
6969     return true;
6970 
6971   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6972 
6973   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6974       parseOptionalProgramAddrSpace(CallAddrSpace) ||
6975       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6976       parseValID(CalleeID, &PFS) ||
6977       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6978                          PFS.getFunction().isVarArg()) ||
6979       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6980       parseOptionalOperandBundles(BundleList, PFS))
6981     return true;
6982 
6983   // If RetType is a non-function pointer type, then this is the short syntax
6984   // for the call, which means that RetType is just the return type.  Infer the
6985   // rest of the function argument types from the arguments that are present.
6986   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6987   if (!Ty) {
6988     // Pull out the types of all of the arguments...
6989     std::vector<Type*> ParamTypes;
6990     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6991       ParamTypes.push_back(ArgList[i].V->getType());
6992 
6993     if (!FunctionType::isValidReturnType(RetType))
6994       return error(RetTypeLoc, "Invalid result type for LLVM function");
6995 
6996     Ty = FunctionType::get(RetType, ParamTypes, false);
6997   }
6998 
6999   CalleeID.FTy = Ty;
7000 
7001   // Look up the callee.
7002   Value *Callee;
7003   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7004                           &PFS, /*IsCall=*/true))
7005     return true;
7006 
7007   // Set up the Attribute for the function.
7008   SmallVector<AttributeSet, 8> Attrs;
7009 
7010   SmallVector<Value*, 8> Args;
7011 
7012   // Loop through FunctionType's arguments and ensure they are specified
7013   // correctly.  Also, gather any parameter attributes.
7014   FunctionType::param_iterator I = Ty->param_begin();
7015   FunctionType::param_iterator E = Ty->param_end();
7016   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7017     Type *ExpectedTy = nullptr;
7018     if (I != E) {
7019       ExpectedTy = *I++;
7020     } else if (!Ty->isVarArg()) {
7021       return error(ArgList[i].Loc, "too many arguments specified");
7022     }
7023 
7024     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7025       return error(ArgList[i].Loc, "argument is not of expected type '" +
7026                                        getTypeString(ExpectedTy) + "'");
7027     Args.push_back(ArgList[i].V);
7028     Attrs.push_back(ArgList[i].Attrs);
7029   }
7030 
7031   if (I != E)
7032     return error(CallLoc, "not enough parameters specified for call");
7033 
7034   if (FnAttrs.hasAlignmentAttr())
7035     return error(CallLoc, "call instructions may not have an alignment");
7036 
7037   // Finish off the Attribute and check them
7038   AttributeList PAL =
7039       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7040                          AttributeSet::get(Context, RetAttrs), Attrs);
7041 
7042   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7043   CI->setTailCallKind(TCK);
7044   CI->setCallingConv(CC);
7045   if (FMF.any()) {
7046     if (!isa<FPMathOperator>(CI)) {
7047       CI->deleteValue();
7048       return error(CallLoc, "fast-math-flags specified for call without "
7049                             "floating-point scalar or vector return type");
7050     }
7051     CI->setFastMathFlags(FMF);
7052   }
7053   CI->setAttributes(PAL);
7054   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7055   Inst = CI;
7056   return false;
7057 }
7058 
7059 //===----------------------------------------------------------------------===//
7060 // Memory Instructions.
7061 //===----------------------------------------------------------------------===//
7062 
7063 /// parseAlloc
7064 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7065 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7066 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7067   Value *Size = nullptr;
7068   LocTy SizeLoc, TyLoc, ASLoc;
7069   MaybeAlign Alignment;
7070   unsigned AddrSpace = 0;
7071   Type *Ty = nullptr;
7072 
7073   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7074   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7075 
7076   if (parseType(Ty, TyLoc))
7077     return true;
7078 
7079   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7080     return error(TyLoc, "invalid type for alloca");
7081 
7082   bool AteExtraComma = false;
7083   if (EatIfPresent(lltok::comma)) {
7084     if (Lex.getKind() == lltok::kw_align) {
7085       if (parseOptionalAlignment(Alignment))
7086         return true;
7087       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7088         return true;
7089     } else if (Lex.getKind() == lltok::kw_addrspace) {
7090       ASLoc = Lex.getLoc();
7091       if (parseOptionalAddrSpace(AddrSpace))
7092         return true;
7093     } else if (Lex.getKind() == lltok::MetadataVar) {
7094       AteExtraComma = true;
7095     } else {
7096       if (parseTypeAndValue(Size, SizeLoc, PFS))
7097         return true;
7098       if (EatIfPresent(lltok::comma)) {
7099         if (Lex.getKind() == lltok::kw_align) {
7100           if (parseOptionalAlignment(Alignment))
7101             return true;
7102           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7103             return true;
7104         } else if (Lex.getKind() == lltok::kw_addrspace) {
7105           ASLoc = Lex.getLoc();
7106           if (parseOptionalAddrSpace(AddrSpace))
7107             return true;
7108         } else if (Lex.getKind() == lltok::MetadataVar) {
7109           AteExtraComma = true;
7110         }
7111       }
7112     }
7113   }
7114 
7115   if (Size && !Size->getType()->isIntegerTy())
7116     return error(SizeLoc, "element count must have integer type");
7117 
7118   SmallPtrSet<Type *, 4> Visited;
7119   if (!Alignment && !Ty->isSized(&Visited))
7120     return error(TyLoc, "Cannot allocate unsized type");
7121   if (!Alignment)
7122     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7123   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7124   AI->setUsedWithInAlloca(IsInAlloca);
7125   AI->setSwiftError(IsSwiftError);
7126   Inst = AI;
7127   return AteExtraComma ? InstExtraComma : InstNormal;
7128 }
7129 
7130 /// parseLoad
7131 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7132 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7133 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7134 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7135   Value *Val; LocTy Loc;
7136   MaybeAlign Alignment;
7137   bool AteExtraComma = false;
7138   bool isAtomic = false;
7139   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7140   SyncScope::ID SSID = SyncScope::System;
7141 
7142   if (Lex.getKind() == lltok::kw_atomic) {
7143     isAtomic = true;
7144     Lex.Lex();
7145   }
7146 
7147   bool isVolatile = false;
7148   if (Lex.getKind() == lltok::kw_volatile) {
7149     isVolatile = true;
7150     Lex.Lex();
7151   }
7152 
7153   Type *Ty;
7154   LocTy ExplicitTypeLoc = Lex.getLoc();
7155   if (parseType(Ty) ||
7156       parseToken(lltok::comma, "expected comma after load's type") ||
7157       parseTypeAndValue(Val, Loc, PFS) ||
7158       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7159       parseOptionalCommaAlign(Alignment, AteExtraComma))
7160     return true;
7161 
7162   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7163     return error(Loc, "load operand must be a pointer to a first class type");
7164   if (isAtomic && !Alignment)
7165     return error(Loc, "atomic load must have explicit non-zero alignment");
7166   if (Ordering == AtomicOrdering::Release ||
7167       Ordering == AtomicOrdering::AcquireRelease)
7168     return error(Loc, "atomic load cannot use Release ordering");
7169 
7170   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7171     return error(
7172         ExplicitTypeLoc,
7173         typeComparisonErrorMessage(
7174             "explicit pointee type doesn't match operand's pointee type", Ty,
7175             cast<PointerType>(Val->getType())->getElementType()));
7176   }
7177   SmallPtrSet<Type *, 4> Visited;
7178   if (!Alignment && !Ty->isSized(&Visited))
7179     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7180   if (!Alignment)
7181     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7182   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7183   return AteExtraComma ? InstExtraComma : InstNormal;
7184 }
7185 
7186 /// parseStore
7187 
7188 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7189 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7190 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7191 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7192   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7193   MaybeAlign Alignment;
7194   bool AteExtraComma = false;
7195   bool isAtomic = false;
7196   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7197   SyncScope::ID SSID = SyncScope::System;
7198 
7199   if (Lex.getKind() == lltok::kw_atomic) {
7200     isAtomic = true;
7201     Lex.Lex();
7202   }
7203 
7204   bool isVolatile = false;
7205   if (Lex.getKind() == lltok::kw_volatile) {
7206     isVolatile = true;
7207     Lex.Lex();
7208   }
7209 
7210   if (parseTypeAndValue(Val, Loc, PFS) ||
7211       parseToken(lltok::comma, "expected ',' after store operand") ||
7212       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7213       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7214       parseOptionalCommaAlign(Alignment, AteExtraComma))
7215     return true;
7216 
7217   if (!Ptr->getType()->isPointerTy())
7218     return error(PtrLoc, "store operand must be a pointer");
7219   if (!Val->getType()->isFirstClassType())
7220     return error(Loc, "store operand must be a first class value");
7221   if (!cast<PointerType>(Ptr->getType())
7222            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7223     return error(Loc, "stored value and pointer type do not match");
7224   if (isAtomic && !Alignment)
7225     return error(Loc, "atomic store must have explicit non-zero alignment");
7226   if (Ordering == AtomicOrdering::Acquire ||
7227       Ordering == AtomicOrdering::AcquireRelease)
7228     return error(Loc, "atomic store cannot use Acquire ordering");
7229   SmallPtrSet<Type *, 4> Visited;
7230   if (!Alignment && !Val->getType()->isSized(&Visited))
7231     return error(Loc, "storing unsized types is not allowed");
7232   if (!Alignment)
7233     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7234 
7235   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7236   return AteExtraComma ? InstExtraComma : InstNormal;
7237 }
7238 
7239 /// parseCmpXchg
7240 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7241 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7242 ///       'Align'?
7243 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7244   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7245   bool AteExtraComma = false;
7246   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7247   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7248   SyncScope::ID SSID = SyncScope::System;
7249   bool isVolatile = false;
7250   bool isWeak = false;
7251   MaybeAlign Alignment;
7252 
7253   if (EatIfPresent(lltok::kw_weak))
7254     isWeak = true;
7255 
7256   if (EatIfPresent(lltok::kw_volatile))
7257     isVolatile = true;
7258 
7259   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7260       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7261       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7262       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7263       parseTypeAndValue(New, NewLoc, PFS) ||
7264       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7265       parseOrdering(FailureOrdering) ||
7266       parseOptionalCommaAlign(Alignment, AteExtraComma))
7267     return true;
7268 
7269   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7270     return tokError("invalid cmpxchg success ordering");
7271   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7272     return tokError("invalid cmpxchg failure ordering");
7273   if (!Ptr->getType()->isPointerTy())
7274     return error(PtrLoc, "cmpxchg operand must be a pointer");
7275   if (!cast<PointerType>(Ptr->getType())
7276            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7277     return error(CmpLoc, "compare value and pointer type do not match");
7278   if (!cast<PointerType>(Ptr->getType())
7279            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7280     return error(NewLoc, "new value and pointer type do not match");
7281   if (Cmp->getType() != New->getType())
7282     return error(NewLoc, "compare value and new value type do not match");
7283   if (!New->getType()->isFirstClassType())
7284     return error(NewLoc, "cmpxchg operand must be a first class value");
7285 
7286   const Align DefaultAlignment(
7287       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7288           Cmp->getType()));
7289 
7290   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7291       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7292       FailureOrdering, SSID);
7293   CXI->setVolatile(isVolatile);
7294   CXI->setWeak(isWeak);
7295 
7296   Inst = CXI;
7297   return AteExtraComma ? InstExtraComma : InstNormal;
7298 }
7299 
7300 /// parseAtomicRMW
7301 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7302 ///       'singlethread'? AtomicOrdering
7303 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7304   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7305   bool AteExtraComma = false;
7306   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7307   SyncScope::ID SSID = SyncScope::System;
7308   bool isVolatile = false;
7309   bool IsFP = false;
7310   AtomicRMWInst::BinOp Operation;
7311   MaybeAlign Alignment;
7312 
7313   if (EatIfPresent(lltok::kw_volatile))
7314     isVolatile = true;
7315 
7316   switch (Lex.getKind()) {
7317   default:
7318     return tokError("expected binary operation in atomicrmw");
7319   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7320   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7321   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7322   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7323   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7324   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7325   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7326   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7327   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7328   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7329   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7330   case lltok::kw_fadd:
7331     Operation = AtomicRMWInst::FAdd;
7332     IsFP = true;
7333     break;
7334   case lltok::kw_fsub:
7335     Operation = AtomicRMWInst::FSub;
7336     IsFP = true;
7337     break;
7338   }
7339   Lex.Lex();  // Eat the operation.
7340 
7341   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7342       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7343       parseTypeAndValue(Val, ValLoc, PFS) ||
7344       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7345       parseOptionalCommaAlign(Alignment, AteExtraComma))
7346     return true;
7347 
7348   if (Ordering == AtomicOrdering::Unordered)
7349     return tokError("atomicrmw cannot be unordered");
7350   if (!Ptr->getType()->isPointerTy())
7351     return error(PtrLoc, "atomicrmw operand must be a pointer");
7352   if (!cast<PointerType>(Ptr->getType())
7353            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7354     return error(ValLoc, "atomicrmw value and pointer type do not match");
7355 
7356   if (Operation == AtomicRMWInst::Xchg) {
7357     if (!Val->getType()->isIntegerTy() &&
7358         !Val->getType()->isFloatingPointTy()) {
7359       return error(ValLoc,
7360                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7361                        " operand must be an integer or floating point type");
7362     }
7363   } else if (IsFP) {
7364     if (!Val->getType()->isFloatingPointTy()) {
7365       return error(ValLoc, "atomicrmw " +
7366                                AtomicRMWInst::getOperationName(Operation) +
7367                                " operand must be a floating point type");
7368     }
7369   } else {
7370     if (!Val->getType()->isIntegerTy()) {
7371       return error(ValLoc, "atomicrmw " +
7372                                AtomicRMWInst::getOperationName(Operation) +
7373                                " operand must be an integer");
7374     }
7375   }
7376 
7377   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7378   if (Size < 8 || (Size & (Size - 1)))
7379     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7380                          " integer");
7381   const Align DefaultAlignment(
7382       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7383           Val->getType()));
7384   AtomicRMWInst *RMWI =
7385       new AtomicRMWInst(Operation, Ptr, Val,
7386                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7387   RMWI->setVolatile(isVolatile);
7388   Inst = RMWI;
7389   return AteExtraComma ? InstExtraComma : InstNormal;
7390 }
7391 
7392 /// parseFence
7393 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7394 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7395   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7396   SyncScope::ID SSID = SyncScope::System;
7397   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7398     return true;
7399 
7400   if (Ordering == AtomicOrdering::Unordered)
7401     return tokError("fence cannot be unordered");
7402   if (Ordering == AtomicOrdering::Monotonic)
7403     return tokError("fence cannot be monotonic");
7404 
7405   Inst = new FenceInst(Context, Ordering, SSID);
7406   return InstNormal;
7407 }
7408 
7409 /// parseGetElementPtr
7410 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7411 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7412   Value *Ptr = nullptr;
7413   Value *Val = nullptr;
7414   LocTy Loc, EltLoc;
7415 
7416   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7417 
7418   Type *Ty = nullptr;
7419   LocTy ExplicitTypeLoc = Lex.getLoc();
7420   if (parseType(Ty) ||
7421       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7422       parseTypeAndValue(Ptr, Loc, PFS))
7423     return true;
7424 
7425   Type *BaseType = Ptr->getType();
7426   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7427   if (!BasePointerType)
7428     return error(Loc, "base of getelementptr must be a pointer");
7429 
7430   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7431     return error(
7432         ExplicitTypeLoc,
7433         typeComparisonErrorMessage(
7434             "explicit pointee type doesn't match operand's pointee type", Ty,
7435             BasePointerType->getElementType()));
7436   }
7437 
7438   SmallVector<Value*, 16> Indices;
7439   bool AteExtraComma = false;
7440   // GEP returns a vector of pointers if at least one of parameters is a vector.
7441   // All vector parameters should have the same vector width.
7442   ElementCount GEPWidth = BaseType->isVectorTy()
7443                               ? cast<VectorType>(BaseType)->getElementCount()
7444                               : ElementCount::getFixed(0);
7445 
7446   while (EatIfPresent(lltok::comma)) {
7447     if (Lex.getKind() == lltok::MetadataVar) {
7448       AteExtraComma = true;
7449       break;
7450     }
7451     if (parseTypeAndValue(Val, EltLoc, PFS))
7452       return true;
7453     if (!Val->getType()->isIntOrIntVectorTy())
7454       return error(EltLoc, "getelementptr index must be an integer");
7455 
7456     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7457       ElementCount ValNumEl = ValVTy->getElementCount();
7458       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7459         return error(
7460             EltLoc,
7461             "getelementptr vector index has a wrong number of elements");
7462       GEPWidth = ValNumEl;
7463     }
7464     Indices.push_back(Val);
7465   }
7466 
7467   SmallPtrSet<Type*, 4> Visited;
7468   if (!Indices.empty() && !Ty->isSized(&Visited))
7469     return error(Loc, "base element of getelementptr must be sized");
7470 
7471   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7472     return error(Loc, "invalid getelementptr indices");
7473   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7474   if (InBounds)
7475     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7476   return AteExtraComma ? InstExtraComma : InstNormal;
7477 }
7478 
7479 /// parseExtractValue
7480 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7481 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7482   Value *Val; LocTy Loc;
7483   SmallVector<unsigned, 4> Indices;
7484   bool AteExtraComma;
7485   if (parseTypeAndValue(Val, Loc, PFS) ||
7486       parseIndexList(Indices, AteExtraComma))
7487     return true;
7488 
7489   if (!Val->getType()->isAggregateType())
7490     return error(Loc, "extractvalue operand must be aggregate type");
7491 
7492   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7493     return error(Loc, "invalid indices for extractvalue");
7494   Inst = ExtractValueInst::Create(Val, Indices);
7495   return AteExtraComma ? InstExtraComma : InstNormal;
7496 }
7497 
7498 /// parseInsertValue
7499 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7500 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7501   Value *Val0, *Val1; LocTy Loc0, Loc1;
7502   SmallVector<unsigned, 4> Indices;
7503   bool AteExtraComma;
7504   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7505       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7506       parseTypeAndValue(Val1, Loc1, PFS) ||
7507       parseIndexList(Indices, AteExtraComma))
7508     return true;
7509 
7510   if (!Val0->getType()->isAggregateType())
7511     return error(Loc0, "insertvalue operand must be aggregate type");
7512 
7513   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7514   if (!IndexedType)
7515     return error(Loc0, "invalid indices for insertvalue");
7516   if (IndexedType != Val1->getType())
7517     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7518                            getTypeString(Val1->getType()) + "' instead of '" +
7519                            getTypeString(IndexedType) + "'");
7520   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7521   return AteExtraComma ? InstExtraComma : InstNormal;
7522 }
7523 
7524 //===----------------------------------------------------------------------===//
7525 // Embedded metadata.
7526 //===----------------------------------------------------------------------===//
7527 
7528 /// parseMDNodeVector
7529 ///   ::= { Element (',' Element)* }
7530 /// Element
7531 ///   ::= 'null' | TypeAndValue
7532 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7533   if (parseToken(lltok::lbrace, "expected '{' here"))
7534     return true;
7535 
7536   // Check for an empty list.
7537   if (EatIfPresent(lltok::rbrace))
7538     return false;
7539 
7540   do {
7541     // Null is a special case since it is typeless.
7542     if (EatIfPresent(lltok::kw_null)) {
7543       Elts.push_back(nullptr);
7544       continue;
7545     }
7546 
7547     Metadata *MD;
7548     if (parseMetadata(MD, nullptr))
7549       return true;
7550     Elts.push_back(MD);
7551   } while (EatIfPresent(lltok::comma));
7552 
7553   return parseToken(lltok::rbrace, "expected end of metadata node");
7554 }
7555 
7556 //===----------------------------------------------------------------------===//
7557 // Use-list order directives.
7558 //===----------------------------------------------------------------------===//
7559 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7560                                 SMLoc Loc) {
7561   if (V->use_empty())
7562     return error(Loc, "value has no uses");
7563 
7564   unsigned NumUses = 0;
7565   SmallDenseMap<const Use *, unsigned, 16> Order;
7566   for (const Use &U : V->uses()) {
7567     if (++NumUses > Indexes.size())
7568       break;
7569     Order[&U] = Indexes[NumUses - 1];
7570   }
7571   if (NumUses < 2)
7572     return error(Loc, "value only has one use");
7573   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7574     return error(Loc,
7575                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7576 
7577   V->sortUseList([&](const Use &L, const Use &R) {
7578     return Order.lookup(&L) < Order.lookup(&R);
7579   });
7580   return false;
7581 }
7582 
7583 /// parseUseListOrderIndexes
7584 ///   ::= '{' uint32 (',' uint32)+ '}'
7585 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7586   SMLoc Loc = Lex.getLoc();
7587   if (parseToken(lltok::lbrace, "expected '{' here"))
7588     return true;
7589   if (Lex.getKind() == lltok::rbrace)
7590     return Lex.Error("expected non-empty list of uselistorder indexes");
7591 
7592   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7593   // indexes should be distinct numbers in the range [0, size-1], and should
7594   // not be in order.
7595   unsigned Offset = 0;
7596   unsigned Max = 0;
7597   bool IsOrdered = true;
7598   assert(Indexes.empty() && "Expected empty order vector");
7599   do {
7600     unsigned Index;
7601     if (parseUInt32(Index))
7602       return true;
7603 
7604     // Update consistency checks.
7605     Offset += Index - Indexes.size();
7606     Max = std::max(Max, Index);
7607     IsOrdered &= Index == Indexes.size();
7608 
7609     Indexes.push_back(Index);
7610   } while (EatIfPresent(lltok::comma));
7611 
7612   if (parseToken(lltok::rbrace, "expected '}' here"))
7613     return true;
7614 
7615   if (Indexes.size() < 2)
7616     return error(Loc, "expected >= 2 uselistorder indexes");
7617   if (Offset != 0 || Max >= Indexes.size())
7618     return error(Loc,
7619                  "expected distinct uselistorder indexes in range [0, size)");
7620   if (IsOrdered)
7621     return error(Loc, "expected uselistorder indexes to change the order");
7622 
7623   return false;
7624 }
7625 
7626 /// parseUseListOrder
7627 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7628 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7629   SMLoc Loc = Lex.getLoc();
7630   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7631     return true;
7632 
7633   Value *V;
7634   SmallVector<unsigned, 16> Indexes;
7635   if (parseTypeAndValue(V, PFS) ||
7636       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7637       parseUseListOrderIndexes(Indexes))
7638     return true;
7639 
7640   return sortUseListOrder(V, Indexes, Loc);
7641 }
7642 
7643 /// parseUseListOrderBB
7644 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7645 bool LLParser::parseUseListOrderBB() {
7646   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7647   SMLoc Loc = Lex.getLoc();
7648   Lex.Lex();
7649 
7650   ValID Fn, Label;
7651   SmallVector<unsigned, 16> Indexes;
7652   if (parseValID(Fn, /*PFS=*/nullptr) ||
7653       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7654       parseValID(Label, /*PFS=*/nullptr) ||
7655       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7656       parseUseListOrderIndexes(Indexes))
7657     return true;
7658 
7659   // Check the function.
7660   GlobalValue *GV;
7661   if (Fn.Kind == ValID::t_GlobalName)
7662     GV = M->getNamedValue(Fn.StrVal);
7663   else if (Fn.Kind == ValID::t_GlobalID)
7664     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7665   else
7666     return error(Fn.Loc, "expected function name in uselistorder_bb");
7667   if (!GV)
7668     return error(Fn.Loc,
7669                  "invalid function forward reference in uselistorder_bb");
7670   auto *F = dyn_cast<Function>(GV);
7671   if (!F)
7672     return error(Fn.Loc, "expected function name in uselistorder_bb");
7673   if (F->isDeclaration())
7674     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7675 
7676   // Check the basic block.
7677   if (Label.Kind == ValID::t_LocalID)
7678     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7679   if (Label.Kind != ValID::t_LocalName)
7680     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7681   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7682   if (!V)
7683     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7684   if (!isa<BasicBlock>(V))
7685     return error(Label.Loc, "expected basic block in uselistorder_bb");
7686 
7687   return sortUseListOrder(V, Indexes, Loc);
7688 }
7689 
7690 /// ModuleEntry
7691 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7692 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7693 bool LLParser::parseModuleEntry(unsigned ID) {
7694   assert(Lex.getKind() == lltok::kw_module);
7695   Lex.Lex();
7696 
7697   std::string Path;
7698   if (parseToken(lltok::colon, "expected ':' here") ||
7699       parseToken(lltok::lparen, "expected '(' here") ||
7700       parseToken(lltok::kw_path, "expected 'path' here") ||
7701       parseToken(lltok::colon, "expected ':' here") ||
7702       parseStringConstant(Path) ||
7703       parseToken(lltok::comma, "expected ',' here") ||
7704       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7705       parseToken(lltok::colon, "expected ':' here") ||
7706       parseToken(lltok::lparen, "expected '(' here"))
7707     return true;
7708 
7709   ModuleHash Hash;
7710   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7711       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7712       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7713       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7714       parseUInt32(Hash[4]))
7715     return true;
7716 
7717   if (parseToken(lltok::rparen, "expected ')' here") ||
7718       parseToken(lltok::rparen, "expected ')' here"))
7719     return true;
7720 
7721   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7722   ModuleIdMap[ID] = ModuleEntry->first();
7723 
7724   return false;
7725 }
7726 
7727 /// TypeIdEntry
7728 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7729 bool LLParser::parseTypeIdEntry(unsigned ID) {
7730   assert(Lex.getKind() == lltok::kw_typeid);
7731   Lex.Lex();
7732 
7733   std::string Name;
7734   if (parseToken(lltok::colon, "expected ':' here") ||
7735       parseToken(lltok::lparen, "expected '(' here") ||
7736       parseToken(lltok::kw_name, "expected 'name' here") ||
7737       parseToken(lltok::colon, "expected ':' here") ||
7738       parseStringConstant(Name))
7739     return true;
7740 
7741   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7742   if (parseToken(lltok::comma, "expected ',' here") ||
7743       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7744     return true;
7745 
7746   // Check if this ID was forward referenced, and if so, update the
7747   // corresponding GUIDs.
7748   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7749   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7750     for (auto TIDRef : FwdRefTIDs->second) {
7751       assert(!*TIDRef.first &&
7752              "Forward referenced type id GUID expected to be 0");
7753       *TIDRef.first = GlobalValue::getGUID(Name);
7754     }
7755     ForwardRefTypeIds.erase(FwdRefTIDs);
7756   }
7757 
7758   return false;
7759 }
7760 
7761 /// TypeIdSummary
7762 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7763 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7764   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7765       parseToken(lltok::colon, "expected ':' here") ||
7766       parseToken(lltok::lparen, "expected '(' here") ||
7767       parseTypeTestResolution(TIS.TTRes))
7768     return true;
7769 
7770   if (EatIfPresent(lltok::comma)) {
7771     // Expect optional wpdResolutions field
7772     if (parseOptionalWpdResolutions(TIS.WPDRes))
7773       return true;
7774   }
7775 
7776   if (parseToken(lltok::rparen, "expected ')' here"))
7777     return true;
7778 
7779   return false;
7780 }
7781 
7782 static ValueInfo EmptyVI =
7783     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7784 
7785 /// TypeIdCompatibleVtableEntry
7786 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7787 ///   TypeIdCompatibleVtableInfo
7788 ///   ')'
7789 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7790   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7791   Lex.Lex();
7792 
7793   std::string Name;
7794   if (parseToken(lltok::colon, "expected ':' here") ||
7795       parseToken(lltok::lparen, "expected '(' here") ||
7796       parseToken(lltok::kw_name, "expected 'name' here") ||
7797       parseToken(lltok::colon, "expected ':' here") ||
7798       parseStringConstant(Name))
7799     return true;
7800 
7801   TypeIdCompatibleVtableInfo &TI =
7802       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7803   if (parseToken(lltok::comma, "expected ',' here") ||
7804       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7805       parseToken(lltok::colon, "expected ':' here") ||
7806       parseToken(lltok::lparen, "expected '(' here"))
7807     return true;
7808 
7809   IdToIndexMapType IdToIndexMap;
7810   // parse each call edge
7811   do {
7812     uint64_t Offset;
7813     if (parseToken(lltok::lparen, "expected '(' here") ||
7814         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7815         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7816         parseToken(lltok::comma, "expected ',' here"))
7817       return true;
7818 
7819     LocTy Loc = Lex.getLoc();
7820     unsigned GVId;
7821     ValueInfo VI;
7822     if (parseGVReference(VI, GVId))
7823       return true;
7824 
7825     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7826     // forward reference. We will save the location of the ValueInfo needing an
7827     // update, but can only do so once the std::vector is finalized.
7828     if (VI == EmptyVI)
7829       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7830     TI.push_back({Offset, VI});
7831 
7832     if (parseToken(lltok::rparen, "expected ')' in call"))
7833       return true;
7834   } while (EatIfPresent(lltok::comma));
7835 
7836   // Now that the TI vector is finalized, it is safe to save the locations
7837   // of any forward GV references that need updating later.
7838   for (auto I : IdToIndexMap) {
7839     auto &Infos = ForwardRefValueInfos[I.first];
7840     for (auto P : I.second) {
7841       assert(TI[P.first].VTableVI == EmptyVI &&
7842              "Forward referenced ValueInfo expected to be empty");
7843       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7844     }
7845   }
7846 
7847   if (parseToken(lltok::rparen, "expected ')' here") ||
7848       parseToken(lltok::rparen, "expected ')' here"))
7849     return true;
7850 
7851   // Check if this ID was forward referenced, and if so, update the
7852   // corresponding GUIDs.
7853   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7854   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7855     for (auto TIDRef : FwdRefTIDs->second) {
7856       assert(!*TIDRef.first &&
7857              "Forward referenced type id GUID expected to be 0");
7858       *TIDRef.first = GlobalValue::getGUID(Name);
7859     }
7860     ForwardRefTypeIds.erase(FwdRefTIDs);
7861   }
7862 
7863   return false;
7864 }
7865 
7866 /// TypeTestResolution
7867 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7868 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7869 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7870 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7871 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7872 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7873   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7874       parseToken(lltok::colon, "expected ':' here") ||
7875       parseToken(lltok::lparen, "expected '(' here") ||
7876       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7877       parseToken(lltok::colon, "expected ':' here"))
7878     return true;
7879 
7880   switch (Lex.getKind()) {
7881   case lltok::kw_unknown:
7882     TTRes.TheKind = TypeTestResolution::Unknown;
7883     break;
7884   case lltok::kw_unsat:
7885     TTRes.TheKind = TypeTestResolution::Unsat;
7886     break;
7887   case lltok::kw_byteArray:
7888     TTRes.TheKind = TypeTestResolution::ByteArray;
7889     break;
7890   case lltok::kw_inline:
7891     TTRes.TheKind = TypeTestResolution::Inline;
7892     break;
7893   case lltok::kw_single:
7894     TTRes.TheKind = TypeTestResolution::Single;
7895     break;
7896   case lltok::kw_allOnes:
7897     TTRes.TheKind = TypeTestResolution::AllOnes;
7898     break;
7899   default:
7900     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7901   }
7902   Lex.Lex();
7903 
7904   if (parseToken(lltok::comma, "expected ',' here") ||
7905       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7906       parseToken(lltok::colon, "expected ':' here") ||
7907       parseUInt32(TTRes.SizeM1BitWidth))
7908     return true;
7909 
7910   // parse optional fields
7911   while (EatIfPresent(lltok::comma)) {
7912     switch (Lex.getKind()) {
7913     case lltok::kw_alignLog2:
7914       Lex.Lex();
7915       if (parseToken(lltok::colon, "expected ':'") ||
7916           parseUInt64(TTRes.AlignLog2))
7917         return true;
7918       break;
7919     case lltok::kw_sizeM1:
7920       Lex.Lex();
7921       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
7922         return true;
7923       break;
7924     case lltok::kw_bitMask: {
7925       unsigned Val;
7926       Lex.Lex();
7927       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
7928         return true;
7929       assert(Val <= 0xff);
7930       TTRes.BitMask = (uint8_t)Val;
7931       break;
7932     }
7933     case lltok::kw_inlineBits:
7934       Lex.Lex();
7935       if (parseToken(lltok::colon, "expected ':'") ||
7936           parseUInt64(TTRes.InlineBits))
7937         return true;
7938       break;
7939     default:
7940       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
7941     }
7942   }
7943 
7944   if (parseToken(lltok::rparen, "expected ')' here"))
7945     return true;
7946 
7947   return false;
7948 }
7949 
7950 /// OptionalWpdResolutions
7951 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7952 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7953 bool LLParser::parseOptionalWpdResolutions(
7954     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7955   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7956       parseToken(lltok::colon, "expected ':' here") ||
7957       parseToken(lltok::lparen, "expected '(' here"))
7958     return true;
7959 
7960   do {
7961     uint64_t Offset;
7962     WholeProgramDevirtResolution WPDRes;
7963     if (parseToken(lltok::lparen, "expected '(' here") ||
7964         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7965         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7966         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
7967         parseToken(lltok::rparen, "expected ')' here"))
7968       return true;
7969     WPDResMap[Offset] = WPDRes;
7970   } while (EatIfPresent(lltok::comma));
7971 
7972   if (parseToken(lltok::rparen, "expected ')' here"))
7973     return true;
7974 
7975   return false;
7976 }
7977 
7978 /// WpdRes
7979 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7980 ///         [',' OptionalResByArg]? ')'
7981 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7982 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7983 ///         [',' OptionalResByArg]? ')'
7984 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7985 ///         [',' OptionalResByArg]? ')'
7986 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7987   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7988       parseToken(lltok::colon, "expected ':' here") ||
7989       parseToken(lltok::lparen, "expected '(' here") ||
7990       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7991       parseToken(lltok::colon, "expected ':' here"))
7992     return true;
7993 
7994   switch (Lex.getKind()) {
7995   case lltok::kw_indir:
7996     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7997     break;
7998   case lltok::kw_singleImpl:
7999     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8000     break;
8001   case lltok::kw_branchFunnel:
8002     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8003     break;
8004   default:
8005     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8006   }
8007   Lex.Lex();
8008 
8009   // parse optional fields
8010   while (EatIfPresent(lltok::comma)) {
8011     switch (Lex.getKind()) {
8012     case lltok::kw_singleImplName:
8013       Lex.Lex();
8014       if (parseToken(lltok::colon, "expected ':' here") ||
8015           parseStringConstant(WPDRes.SingleImplName))
8016         return true;
8017       break;
8018     case lltok::kw_resByArg:
8019       if (parseOptionalResByArg(WPDRes.ResByArg))
8020         return true;
8021       break;
8022     default:
8023       return error(Lex.getLoc(),
8024                    "expected optional WholeProgramDevirtResolution field");
8025     }
8026   }
8027 
8028   if (parseToken(lltok::rparen, "expected ')' here"))
8029     return true;
8030 
8031   return false;
8032 }
8033 
8034 /// OptionalResByArg
8035 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8036 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8037 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8038 ///                  'virtualConstProp' )
8039 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8040 ///                [',' 'bit' ':' UInt32]? ')'
8041 bool LLParser::parseOptionalResByArg(
8042     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8043         &ResByArg) {
8044   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8045       parseToken(lltok::colon, "expected ':' here") ||
8046       parseToken(lltok::lparen, "expected '(' here"))
8047     return true;
8048 
8049   do {
8050     std::vector<uint64_t> Args;
8051     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8052         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8053         parseToken(lltok::colon, "expected ':' here") ||
8054         parseToken(lltok::lparen, "expected '(' here") ||
8055         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8056         parseToken(lltok::colon, "expected ':' here"))
8057       return true;
8058 
8059     WholeProgramDevirtResolution::ByArg ByArg;
8060     switch (Lex.getKind()) {
8061     case lltok::kw_indir:
8062       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8063       break;
8064     case lltok::kw_uniformRetVal:
8065       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8066       break;
8067     case lltok::kw_uniqueRetVal:
8068       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8069       break;
8070     case lltok::kw_virtualConstProp:
8071       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8072       break;
8073     default:
8074       return error(Lex.getLoc(),
8075                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8076     }
8077     Lex.Lex();
8078 
8079     // parse optional fields
8080     while (EatIfPresent(lltok::comma)) {
8081       switch (Lex.getKind()) {
8082       case lltok::kw_info:
8083         Lex.Lex();
8084         if (parseToken(lltok::colon, "expected ':' here") ||
8085             parseUInt64(ByArg.Info))
8086           return true;
8087         break;
8088       case lltok::kw_byte:
8089         Lex.Lex();
8090         if (parseToken(lltok::colon, "expected ':' here") ||
8091             parseUInt32(ByArg.Byte))
8092           return true;
8093         break;
8094       case lltok::kw_bit:
8095         Lex.Lex();
8096         if (parseToken(lltok::colon, "expected ':' here") ||
8097             parseUInt32(ByArg.Bit))
8098           return true;
8099         break;
8100       default:
8101         return error(Lex.getLoc(),
8102                      "expected optional whole program devirt field");
8103       }
8104     }
8105 
8106     if (parseToken(lltok::rparen, "expected ')' here"))
8107       return true;
8108 
8109     ResByArg[Args] = ByArg;
8110   } while (EatIfPresent(lltok::comma));
8111 
8112   if (parseToken(lltok::rparen, "expected ')' here"))
8113     return true;
8114 
8115   return false;
8116 }
8117 
8118 /// OptionalResByArg
8119 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8120 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8121   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8122       parseToken(lltok::colon, "expected ':' here") ||
8123       parseToken(lltok::lparen, "expected '(' here"))
8124     return true;
8125 
8126   do {
8127     uint64_t Val;
8128     if (parseUInt64(Val))
8129       return true;
8130     Args.push_back(Val);
8131   } while (EatIfPresent(lltok::comma));
8132 
8133   if (parseToken(lltok::rparen, "expected ')' here"))
8134     return true;
8135 
8136   return false;
8137 }
8138 
8139 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8140 
8141 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8142   bool ReadOnly = Fwd->isReadOnly();
8143   bool WriteOnly = Fwd->isWriteOnly();
8144   assert(!(ReadOnly && WriteOnly));
8145   *Fwd = Resolved;
8146   if (ReadOnly)
8147     Fwd->setReadOnly();
8148   if (WriteOnly)
8149     Fwd->setWriteOnly();
8150 }
8151 
8152 /// Stores the given Name/GUID and associated summary into the Index.
8153 /// Also updates any forward references to the associated entry ID.
8154 void LLParser::addGlobalValueToIndex(
8155     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8156     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8157   // First create the ValueInfo utilizing the Name or GUID.
8158   ValueInfo VI;
8159   if (GUID != 0) {
8160     assert(Name.empty());
8161     VI = Index->getOrInsertValueInfo(GUID);
8162   } else {
8163     assert(!Name.empty());
8164     if (M) {
8165       auto *GV = M->getNamedValue(Name);
8166       assert(GV);
8167       VI = Index->getOrInsertValueInfo(GV);
8168     } else {
8169       assert(
8170           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8171           "Need a source_filename to compute GUID for local");
8172       GUID = GlobalValue::getGUID(
8173           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8174       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8175     }
8176   }
8177 
8178   // Resolve forward references from calls/refs
8179   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8180   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8181     for (auto VIRef : FwdRefVIs->second) {
8182       assert(VIRef.first->getRef() == FwdVIRef &&
8183              "Forward referenced ValueInfo expected to be empty");
8184       resolveFwdRef(VIRef.first, VI);
8185     }
8186     ForwardRefValueInfos.erase(FwdRefVIs);
8187   }
8188 
8189   // Resolve forward references from aliases
8190   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8191   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8192     for (auto AliaseeRef : FwdRefAliasees->second) {
8193       assert(!AliaseeRef.first->hasAliasee() &&
8194              "Forward referencing alias already has aliasee");
8195       assert(Summary && "Aliasee must be a definition");
8196       AliaseeRef.first->setAliasee(VI, Summary.get());
8197     }
8198     ForwardRefAliasees.erase(FwdRefAliasees);
8199   }
8200 
8201   // Add the summary if one was provided.
8202   if (Summary)
8203     Index->addGlobalValueSummary(VI, std::move(Summary));
8204 
8205   // Save the associated ValueInfo for use in later references by ID.
8206   if (ID == NumberedValueInfos.size())
8207     NumberedValueInfos.push_back(VI);
8208   else {
8209     // Handle non-continuous numbers (to make test simplification easier).
8210     if (ID > NumberedValueInfos.size())
8211       NumberedValueInfos.resize(ID + 1);
8212     NumberedValueInfos[ID] = VI;
8213   }
8214 }
8215 
8216 /// parseSummaryIndexFlags
8217 ///   ::= 'flags' ':' UInt64
8218 bool LLParser::parseSummaryIndexFlags() {
8219   assert(Lex.getKind() == lltok::kw_flags);
8220   Lex.Lex();
8221 
8222   if (parseToken(lltok::colon, "expected ':' here"))
8223     return true;
8224   uint64_t Flags;
8225   if (parseUInt64(Flags))
8226     return true;
8227   if (Index)
8228     Index->setFlags(Flags);
8229   return false;
8230 }
8231 
8232 /// parseBlockCount
8233 ///   ::= 'blockcount' ':' UInt64
8234 bool LLParser::parseBlockCount() {
8235   assert(Lex.getKind() == lltok::kw_blockcount);
8236   Lex.Lex();
8237 
8238   if (parseToken(lltok::colon, "expected ':' here"))
8239     return true;
8240   uint64_t BlockCount;
8241   if (parseUInt64(BlockCount))
8242     return true;
8243   if (Index)
8244     Index->setBlockCount(BlockCount);
8245   return false;
8246 }
8247 
8248 /// parseGVEntry
8249 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8250 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8251 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8252 bool LLParser::parseGVEntry(unsigned ID) {
8253   assert(Lex.getKind() == lltok::kw_gv);
8254   Lex.Lex();
8255 
8256   if (parseToken(lltok::colon, "expected ':' here") ||
8257       parseToken(lltok::lparen, "expected '(' here"))
8258     return true;
8259 
8260   std::string Name;
8261   GlobalValue::GUID GUID = 0;
8262   switch (Lex.getKind()) {
8263   case lltok::kw_name:
8264     Lex.Lex();
8265     if (parseToken(lltok::colon, "expected ':' here") ||
8266         parseStringConstant(Name))
8267       return true;
8268     // Can't create GUID/ValueInfo until we have the linkage.
8269     break;
8270   case lltok::kw_guid:
8271     Lex.Lex();
8272     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8273       return true;
8274     break;
8275   default:
8276     return error(Lex.getLoc(), "expected name or guid tag");
8277   }
8278 
8279   if (!EatIfPresent(lltok::comma)) {
8280     // No summaries. Wrap up.
8281     if (parseToken(lltok::rparen, "expected ')' here"))
8282       return true;
8283     // This was created for a call to an external or indirect target.
8284     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8285     // created for indirect calls with VP. A Name with no GUID came from
8286     // an external definition. We pass ExternalLinkage since that is only
8287     // used when the GUID must be computed from Name, and in that case
8288     // the symbol must have external linkage.
8289     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8290                           nullptr);
8291     return false;
8292   }
8293 
8294   // Have a list of summaries
8295   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8296       parseToken(lltok::colon, "expected ':' here") ||
8297       parseToken(lltok::lparen, "expected '(' here"))
8298     return true;
8299   do {
8300     switch (Lex.getKind()) {
8301     case lltok::kw_function:
8302       if (parseFunctionSummary(Name, GUID, ID))
8303         return true;
8304       break;
8305     case lltok::kw_variable:
8306       if (parseVariableSummary(Name, GUID, ID))
8307         return true;
8308       break;
8309     case lltok::kw_alias:
8310       if (parseAliasSummary(Name, GUID, ID))
8311         return true;
8312       break;
8313     default:
8314       return error(Lex.getLoc(), "expected summary type");
8315     }
8316   } while (EatIfPresent(lltok::comma));
8317 
8318   if (parseToken(lltok::rparen, "expected ')' here") ||
8319       parseToken(lltok::rparen, "expected ')' here"))
8320     return true;
8321 
8322   return false;
8323 }
8324 
8325 /// FunctionSummary
8326 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8327 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8328 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8329 ///         [',' OptionalRefs]? ')'
8330 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8331                                     unsigned ID) {
8332   assert(Lex.getKind() == lltok::kw_function);
8333   Lex.Lex();
8334 
8335   StringRef ModulePath;
8336   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8337       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8338       /*NotEligibleToImport=*/false,
8339       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8340   unsigned InstCount;
8341   std::vector<FunctionSummary::EdgeTy> Calls;
8342   FunctionSummary::TypeIdInfo TypeIdInfo;
8343   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8344   std::vector<ValueInfo> Refs;
8345   // Default is all-zeros (conservative values).
8346   FunctionSummary::FFlags FFlags = {};
8347   if (parseToken(lltok::colon, "expected ':' here") ||
8348       parseToken(lltok::lparen, "expected '(' here") ||
8349       parseModuleReference(ModulePath) ||
8350       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8351       parseToken(lltok::comma, "expected ',' here") ||
8352       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8353       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8354     return true;
8355 
8356   // parse optional fields
8357   while (EatIfPresent(lltok::comma)) {
8358     switch (Lex.getKind()) {
8359     case lltok::kw_funcFlags:
8360       if (parseOptionalFFlags(FFlags))
8361         return true;
8362       break;
8363     case lltok::kw_calls:
8364       if (parseOptionalCalls(Calls))
8365         return true;
8366       break;
8367     case lltok::kw_typeIdInfo:
8368       if (parseOptionalTypeIdInfo(TypeIdInfo))
8369         return true;
8370       break;
8371     case lltok::kw_refs:
8372       if (parseOptionalRefs(Refs))
8373         return true;
8374       break;
8375     case lltok::kw_params:
8376       if (parseOptionalParamAccesses(ParamAccesses))
8377         return true;
8378       break;
8379     default:
8380       return error(Lex.getLoc(), "expected optional function summary field");
8381     }
8382   }
8383 
8384   if (parseToken(lltok::rparen, "expected ')' here"))
8385     return true;
8386 
8387   auto FS = std::make_unique<FunctionSummary>(
8388       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8389       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8390       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8391       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8392       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8393       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8394       std::move(ParamAccesses));
8395 
8396   FS->setModulePath(ModulePath);
8397 
8398   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8399                         ID, std::move(FS));
8400 
8401   return false;
8402 }
8403 
8404 /// VariableSummary
8405 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8406 ///         [',' OptionalRefs]? ')'
8407 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8408                                     unsigned ID) {
8409   assert(Lex.getKind() == lltok::kw_variable);
8410   Lex.Lex();
8411 
8412   StringRef ModulePath;
8413   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8414       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8415       /*NotEligibleToImport=*/false,
8416       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8417   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8418                                         /* WriteOnly */ false,
8419                                         /* Constant */ false,
8420                                         GlobalObject::VCallVisibilityPublic);
8421   std::vector<ValueInfo> Refs;
8422   VTableFuncList VTableFuncs;
8423   if (parseToken(lltok::colon, "expected ':' here") ||
8424       parseToken(lltok::lparen, "expected '(' here") ||
8425       parseModuleReference(ModulePath) ||
8426       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8427       parseToken(lltok::comma, "expected ',' here") ||
8428       parseGVarFlags(GVarFlags))
8429     return true;
8430 
8431   // parse optional fields
8432   while (EatIfPresent(lltok::comma)) {
8433     switch (Lex.getKind()) {
8434     case lltok::kw_vTableFuncs:
8435       if (parseOptionalVTableFuncs(VTableFuncs))
8436         return true;
8437       break;
8438     case lltok::kw_refs:
8439       if (parseOptionalRefs(Refs))
8440         return true;
8441       break;
8442     default:
8443       return error(Lex.getLoc(), "expected optional variable summary field");
8444     }
8445   }
8446 
8447   if (parseToken(lltok::rparen, "expected ')' here"))
8448     return true;
8449 
8450   auto GS =
8451       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8452 
8453   GS->setModulePath(ModulePath);
8454   GS->setVTableFuncs(std::move(VTableFuncs));
8455 
8456   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8457                         ID, std::move(GS));
8458 
8459   return false;
8460 }
8461 
8462 /// AliasSummary
8463 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8464 ///         'aliasee' ':' GVReference ')'
8465 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8466                                  unsigned ID) {
8467   assert(Lex.getKind() == lltok::kw_alias);
8468   LocTy Loc = Lex.getLoc();
8469   Lex.Lex();
8470 
8471   StringRef ModulePath;
8472   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8473       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8474       /*NotEligibleToImport=*/false,
8475       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8476   if (parseToken(lltok::colon, "expected ':' here") ||
8477       parseToken(lltok::lparen, "expected '(' here") ||
8478       parseModuleReference(ModulePath) ||
8479       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8480       parseToken(lltok::comma, "expected ',' here") ||
8481       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8482       parseToken(lltok::colon, "expected ':' here"))
8483     return true;
8484 
8485   ValueInfo AliaseeVI;
8486   unsigned GVId;
8487   if (parseGVReference(AliaseeVI, GVId))
8488     return true;
8489 
8490   if (parseToken(lltok::rparen, "expected ')' here"))
8491     return true;
8492 
8493   auto AS = std::make_unique<AliasSummary>(GVFlags);
8494 
8495   AS->setModulePath(ModulePath);
8496 
8497   // Record forward reference if the aliasee is not parsed yet.
8498   if (AliaseeVI.getRef() == FwdVIRef) {
8499     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8500   } else {
8501     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8502     assert(Summary && "Aliasee must be a definition");
8503     AS->setAliasee(AliaseeVI, Summary);
8504   }
8505 
8506   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8507                         ID, std::move(AS));
8508 
8509   return false;
8510 }
8511 
8512 /// Flag
8513 ///   ::= [0|1]
8514 bool LLParser::parseFlag(unsigned &Val) {
8515   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8516     return tokError("expected integer");
8517   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8518   Lex.Lex();
8519   return false;
8520 }
8521 
8522 /// OptionalFFlags
8523 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8524 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8525 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8526 ///        [',' 'noInline' ':' Flag]? ')'
8527 ///        [',' 'alwaysInline' ':' Flag]? ')'
8528 
8529 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8530   assert(Lex.getKind() == lltok::kw_funcFlags);
8531   Lex.Lex();
8532 
8533   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8534       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8535     return true;
8536 
8537   do {
8538     unsigned Val = 0;
8539     switch (Lex.getKind()) {
8540     case lltok::kw_readNone:
8541       Lex.Lex();
8542       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8543         return true;
8544       FFlags.ReadNone = Val;
8545       break;
8546     case lltok::kw_readOnly:
8547       Lex.Lex();
8548       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8549         return true;
8550       FFlags.ReadOnly = Val;
8551       break;
8552     case lltok::kw_noRecurse:
8553       Lex.Lex();
8554       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8555         return true;
8556       FFlags.NoRecurse = Val;
8557       break;
8558     case lltok::kw_returnDoesNotAlias:
8559       Lex.Lex();
8560       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8561         return true;
8562       FFlags.ReturnDoesNotAlias = Val;
8563       break;
8564     case lltok::kw_noInline:
8565       Lex.Lex();
8566       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8567         return true;
8568       FFlags.NoInline = Val;
8569       break;
8570     case lltok::kw_alwaysInline:
8571       Lex.Lex();
8572       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8573         return true;
8574       FFlags.AlwaysInline = Val;
8575       break;
8576     default:
8577       return error(Lex.getLoc(), "expected function flag type");
8578     }
8579   } while (EatIfPresent(lltok::comma));
8580 
8581   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8582     return true;
8583 
8584   return false;
8585 }
8586 
8587 /// OptionalCalls
8588 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8589 /// Call ::= '(' 'callee' ':' GVReference
8590 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8591 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8592   assert(Lex.getKind() == lltok::kw_calls);
8593   Lex.Lex();
8594 
8595   if (parseToken(lltok::colon, "expected ':' in calls") |
8596       parseToken(lltok::lparen, "expected '(' in calls"))
8597     return true;
8598 
8599   IdToIndexMapType IdToIndexMap;
8600   // parse each call edge
8601   do {
8602     ValueInfo VI;
8603     if (parseToken(lltok::lparen, "expected '(' in call") ||
8604         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8605         parseToken(lltok::colon, "expected ':'"))
8606       return true;
8607 
8608     LocTy Loc = Lex.getLoc();
8609     unsigned GVId;
8610     if (parseGVReference(VI, GVId))
8611       return true;
8612 
8613     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8614     unsigned RelBF = 0;
8615     if (EatIfPresent(lltok::comma)) {
8616       // Expect either hotness or relbf
8617       if (EatIfPresent(lltok::kw_hotness)) {
8618         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8619           return true;
8620       } else {
8621         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8622             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8623           return true;
8624       }
8625     }
8626     // Keep track of the Call array index needing a forward reference.
8627     // We will save the location of the ValueInfo needing an update, but
8628     // can only do so once the std::vector is finalized.
8629     if (VI.getRef() == FwdVIRef)
8630       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8631     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8632 
8633     if (parseToken(lltok::rparen, "expected ')' in call"))
8634       return true;
8635   } while (EatIfPresent(lltok::comma));
8636 
8637   // Now that the Calls vector is finalized, it is safe to save the locations
8638   // of any forward GV references that need updating later.
8639   for (auto I : IdToIndexMap) {
8640     auto &Infos = ForwardRefValueInfos[I.first];
8641     for (auto P : I.second) {
8642       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8643              "Forward referenced ValueInfo expected to be empty");
8644       Infos.emplace_back(&Calls[P.first].first, P.second);
8645     }
8646   }
8647 
8648   if (parseToken(lltok::rparen, "expected ')' in calls"))
8649     return true;
8650 
8651   return false;
8652 }
8653 
8654 /// Hotness
8655 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8656 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8657   switch (Lex.getKind()) {
8658   case lltok::kw_unknown:
8659     Hotness = CalleeInfo::HotnessType::Unknown;
8660     break;
8661   case lltok::kw_cold:
8662     Hotness = CalleeInfo::HotnessType::Cold;
8663     break;
8664   case lltok::kw_none:
8665     Hotness = CalleeInfo::HotnessType::None;
8666     break;
8667   case lltok::kw_hot:
8668     Hotness = CalleeInfo::HotnessType::Hot;
8669     break;
8670   case lltok::kw_critical:
8671     Hotness = CalleeInfo::HotnessType::Critical;
8672     break;
8673   default:
8674     return error(Lex.getLoc(), "invalid call edge hotness");
8675   }
8676   Lex.Lex();
8677   return false;
8678 }
8679 
8680 /// OptionalVTableFuncs
8681 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8682 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8683 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8684   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8685   Lex.Lex();
8686 
8687   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8688       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8689     return true;
8690 
8691   IdToIndexMapType IdToIndexMap;
8692   // parse each virtual function pair
8693   do {
8694     ValueInfo VI;
8695     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8696         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8697         parseToken(lltok::colon, "expected ':'"))
8698       return true;
8699 
8700     LocTy Loc = Lex.getLoc();
8701     unsigned GVId;
8702     if (parseGVReference(VI, GVId))
8703       return true;
8704 
8705     uint64_t Offset;
8706     if (parseToken(lltok::comma, "expected comma") ||
8707         parseToken(lltok::kw_offset, "expected offset") ||
8708         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8709       return true;
8710 
8711     // Keep track of the VTableFuncs array index needing a forward reference.
8712     // We will save the location of the ValueInfo needing an update, but
8713     // can only do so once the std::vector is finalized.
8714     if (VI == EmptyVI)
8715       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8716     VTableFuncs.push_back({VI, Offset});
8717 
8718     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8719       return true;
8720   } while (EatIfPresent(lltok::comma));
8721 
8722   // Now that the VTableFuncs vector is finalized, it is safe to save the
8723   // locations of any forward GV references that need updating later.
8724   for (auto I : IdToIndexMap) {
8725     auto &Infos = ForwardRefValueInfos[I.first];
8726     for (auto P : I.second) {
8727       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8728              "Forward referenced ValueInfo expected to be empty");
8729       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8730     }
8731   }
8732 
8733   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8734     return true;
8735 
8736   return false;
8737 }
8738 
8739 /// ParamNo := 'param' ':' UInt64
8740 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8741   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8742       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8743     return true;
8744   return false;
8745 }
8746 
8747 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8748 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8749   APSInt Lower;
8750   APSInt Upper;
8751   auto ParseAPSInt = [&](APSInt &Val) {
8752     if (Lex.getKind() != lltok::APSInt)
8753       return tokError("expected integer");
8754     Val = Lex.getAPSIntVal();
8755     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8756     Val.setIsSigned(true);
8757     Lex.Lex();
8758     return false;
8759   };
8760   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8761       parseToken(lltok::colon, "expected ':' here") ||
8762       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8763       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8764       parseToken(lltok::rsquare, "expected ']' here"))
8765     return true;
8766 
8767   ++Upper;
8768   Range =
8769       (Lower == Upper && !Lower.isMaxValue())
8770           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8771           : ConstantRange(Lower, Upper);
8772 
8773   return false;
8774 }
8775 
8776 /// ParamAccessCall
8777 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8778 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8779                                     IdLocListType &IdLocList) {
8780   if (parseToken(lltok::lparen, "expected '(' here") ||
8781       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8782       parseToken(lltok::colon, "expected ':' here"))
8783     return true;
8784 
8785   unsigned GVId;
8786   ValueInfo VI;
8787   LocTy Loc = Lex.getLoc();
8788   if (parseGVReference(VI, GVId))
8789     return true;
8790 
8791   Call.Callee = VI;
8792   IdLocList.emplace_back(GVId, Loc);
8793 
8794   if (parseToken(lltok::comma, "expected ',' here") ||
8795       parseParamNo(Call.ParamNo) ||
8796       parseToken(lltok::comma, "expected ',' here") ||
8797       parseParamAccessOffset(Call.Offsets))
8798     return true;
8799 
8800   if (parseToken(lltok::rparen, "expected ')' here"))
8801     return true;
8802 
8803   return false;
8804 }
8805 
8806 /// ParamAccess
8807 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8808 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8809 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8810                                 IdLocListType &IdLocList) {
8811   if (parseToken(lltok::lparen, "expected '(' here") ||
8812       parseParamNo(Param.ParamNo) ||
8813       parseToken(lltok::comma, "expected ',' here") ||
8814       parseParamAccessOffset(Param.Use))
8815     return true;
8816 
8817   if (EatIfPresent(lltok::comma)) {
8818     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8819         parseToken(lltok::colon, "expected ':' here") ||
8820         parseToken(lltok::lparen, "expected '(' here"))
8821       return true;
8822     do {
8823       FunctionSummary::ParamAccess::Call Call;
8824       if (parseParamAccessCall(Call, IdLocList))
8825         return true;
8826       Param.Calls.push_back(Call);
8827     } while (EatIfPresent(lltok::comma));
8828 
8829     if (parseToken(lltok::rparen, "expected ')' here"))
8830       return true;
8831   }
8832 
8833   if (parseToken(lltok::rparen, "expected ')' here"))
8834     return true;
8835 
8836   return false;
8837 }
8838 
8839 /// OptionalParamAccesses
8840 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8841 bool LLParser::parseOptionalParamAccesses(
8842     std::vector<FunctionSummary::ParamAccess> &Params) {
8843   assert(Lex.getKind() == lltok::kw_params);
8844   Lex.Lex();
8845 
8846   if (parseToken(lltok::colon, "expected ':' here") ||
8847       parseToken(lltok::lparen, "expected '(' here"))
8848     return true;
8849 
8850   IdLocListType VContexts;
8851   size_t CallsNum = 0;
8852   do {
8853     FunctionSummary::ParamAccess ParamAccess;
8854     if (parseParamAccess(ParamAccess, VContexts))
8855       return true;
8856     CallsNum += ParamAccess.Calls.size();
8857     assert(VContexts.size() == CallsNum);
8858     (void)CallsNum;
8859     Params.emplace_back(std::move(ParamAccess));
8860   } while (EatIfPresent(lltok::comma));
8861 
8862   if (parseToken(lltok::rparen, "expected ')' here"))
8863     return true;
8864 
8865   // Now that the Params is finalized, it is safe to save the locations
8866   // of any forward GV references that need updating later.
8867   IdLocListType::const_iterator ItContext = VContexts.begin();
8868   for (auto &PA : Params) {
8869     for (auto &C : PA.Calls) {
8870       if (C.Callee.getRef() == FwdVIRef)
8871         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8872                                                             ItContext->second);
8873       ++ItContext;
8874     }
8875   }
8876   assert(ItContext == VContexts.end());
8877 
8878   return false;
8879 }
8880 
8881 /// OptionalRefs
8882 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8883 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8884   assert(Lex.getKind() == lltok::kw_refs);
8885   Lex.Lex();
8886 
8887   if (parseToken(lltok::colon, "expected ':' in refs") ||
8888       parseToken(lltok::lparen, "expected '(' in refs"))
8889     return true;
8890 
8891   struct ValueContext {
8892     ValueInfo VI;
8893     unsigned GVId;
8894     LocTy Loc;
8895   };
8896   std::vector<ValueContext> VContexts;
8897   // parse each ref edge
8898   do {
8899     ValueContext VC;
8900     VC.Loc = Lex.getLoc();
8901     if (parseGVReference(VC.VI, VC.GVId))
8902       return true;
8903     VContexts.push_back(VC);
8904   } while (EatIfPresent(lltok::comma));
8905 
8906   // Sort value contexts so that ones with writeonly
8907   // and readonly ValueInfo  are at the end of VContexts vector.
8908   // See FunctionSummary::specialRefCounts()
8909   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8910     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8911   });
8912 
8913   IdToIndexMapType IdToIndexMap;
8914   for (auto &VC : VContexts) {
8915     // Keep track of the Refs array index needing a forward reference.
8916     // We will save the location of the ValueInfo needing an update, but
8917     // can only do so once the std::vector is finalized.
8918     if (VC.VI.getRef() == FwdVIRef)
8919       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8920     Refs.push_back(VC.VI);
8921   }
8922 
8923   // Now that the Refs vector is finalized, it is safe to save the locations
8924   // of any forward GV references that need updating later.
8925   for (auto I : IdToIndexMap) {
8926     auto &Infos = ForwardRefValueInfos[I.first];
8927     for (auto P : I.second) {
8928       assert(Refs[P.first].getRef() == FwdVIRef &&
8929              "Forward referenced ValueInfo expected to be empty");
8930       Infos.emplace_back(&Refs[P.first], P.second);
8931     }
8932   }
8933 
8934   if (parseToken(lltok::rparen, "expected ')' in refs"))
8935     return true;
8936 
8937   return false;
8938 }
8939 
8940 /// OptionalTypeIdInfo
8941 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8942 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8943 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8944 bool LLParser::parseOptionalTypeIdInfo(
8945     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8946   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8947   Lex.Lex();
8948 
8949   if (parseToken(lltok::colon, "expected ':' here") ||
8950       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8951     return true;
8952 
8953   do {
8954     switch (Lex.getKind()) {
8955     case lltok::kw_typeTests:
8956       if (parseTypeTests(TypeIdInfo.TypeTests))
8957         return true;
8958       break;
8959     case lltok::kw_typeTestAssumeVCalls:
8960       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8961                            TypeIdInfo.TypeTestAssumeVCalls))
8962         return true;
8963       break;
8964     case lltok::kw_typeCheckedLoadVCalls:
8965       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8966                            TypeIdInfo.TypeCheckedLoadVCalls))
8967         return true;
8968       break;
8969     case lltok::kw_typeTestAssumeConstVCalls:
8970       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8971                               TypeIdInfo.TypeTestAssumeConstVCalls))
8972         return true;
8973       break;
8974     case lltok::kw_typeCheckedLoadConstVCalls:
8975       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8976                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8977         return true;
8978       break;
8979     default:
8980       return error(Lex.getLoc(), "invalid typeIdInfo list type");
8981     }
8982   } while (EatIfPresent(lltok::comma));
8983 
8984   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8985     return true;
8986 
8987   return false;
8988 }
8989 
8990 /// TypeTests
8991 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8992 ///         [',' (SummaryID | UInt64)]* ')'
8993 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8994   assert(Lex.getKind() == lltok::kw_typeTests);
8995   Lex.Lex();
8996 
8997   if (parseToken(lltok::colon, "expected ':' here") ||
8998       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8999     return true;
9000 
9001   IdToIndexMapType IdToIndexMap;
9002   do {
9003     GlobalValue::GUID GUID = 0;
9004     if (Lex.getKind() == lltok::SummaryID) {
9005       unsigned ID = Lex.getUIntVal();
9006       LocTy Loc = Lex.getLoc();
9007       // Keep track of the TypeTests array index needing a forward reference.
9008       // We will save the location of the GUID needing an update, but
9009       // can only do so once the std::vector is finalized.
9010       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9011       Lex.Lex();
9012     } else if (parseUInt64(GUID))
9013       return true;
9014     TypeTests.push_back(GUID);
9015   } while (EatIfPresent(lltok::comma));
9016 
9017   // Now that the TypeTests vector is finalized, it is safe to save the
9018   // locations of any forward GV references that need updating later.
9019   for (auto I : IdToIndexMap) {
9020     auto &Ids = ForwardRefTypeIds[I.first];
9021     for (auto P : I.second) {
9022       assert(TypeTests[P.first] == 0 &&
9023              "Forward referenced type id GUID expected to be 0");
9024       Ids.emplace_back(&TypeTests[P.first], P.second);
9025     }
9026   }
9027 
9028   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9029     return true;
9030 
9031   return false;
9032 }
9033 
9034 /// VFuncIdList
9035 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9036 bool LLParser::parseVFuncIdList(
9037     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9038   assert(Lex.getKind() == Kind);
9039   Lex.Lex();
9040 
9041   if (parseToken(lltok::colon, "expected ':' here") ||
9042       parseToken(lltok::lparen, "expected '(' here"))
9043     return true;
9044 
9045   IdToIndexMapType IdToIndexMap;
9046   do {
9047     FunctionSummary::VFuncId VFuncId;
9048     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9049       return true;
9050     VFuncIdList.push_back(VFuncId);
9051   } while (EatIfPresent(lltok::comma));
9052 
9053   if (parseToken(lltok::rparen, "expected ')' here"))
9054     return true;
9055 
9056   // Now that the VFuncIdList vector is finalized, it is safe to save the
9057   // locations of any forward GV references that need updating later.
9058   for (auto I : IdToIndexMap) {
9059     auto &Ids = ForwardRefTypeIds[I.first];
9060     for (auto P : I.second) {
9061       assert(VFuncIdList[P.first].GUID == 0 &&
9062              "Forward referenced type id GUID expected to be 0");
9063       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9064     }
9065   }
9066 
9067   return false;
9068 }
9069 
9070 /// ConstVCallList
9071 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9072 bool LLParser::parseConstVCallList(
9073     lltok::Kind Kind,
9074     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9075   assert(Lex.getKind() == Kind);
9076   Lex.Lex();
9077 
9078   if (parseToken(lltok::colon, "expected ':' here") ||
9079       parseToken(lltok::lparen, "expected '(' here"))
9080     return true;
9081 
9082   IdToIndexMapType IdToIndexMap;
9083   do {
9084     FunctionSummary::ConstVCall ConstVCall;
9085     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9086       return true;
9087     ConstVCallList.push_back(ConstVCall);
9088   } while (EatIfPresent(lltok::comma));
9089 
9090   if (parseToken(lltok::rparen, "expected ')' here"))
9091     return true;
9092 
9093   // Now that the ConstVCallList vector is finalized, it is safe to save the
9094   // locations of any forward GV references that need updating later.
9095   for (auto I : IdToIndexMap) {
9096     auto &Ids = ForwardRefTypeIds[I.first];
9097     for (auto P : I.second) {
9098       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9099              "Forward referenced type id GUID expected to be 0");
9100       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9101     }
9102   }
9103 
9104   return false;
9105 }
9106 
9107 /// ConstVCall
9108 ///   ::= '(' VFuncId ',' Args ')'
9109 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9110                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9111   if (parseToken(lltok::lparen, "expected '(' here") ||
9112       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9113     return true;
9114 
9115   if (EatIfPresent(lltok::comma))
9116     if (parseArgs(ConstVCall.Args))
9117       return true;
9118 
9119   if (parseToken(lltok::rparen, "expected ')' here"))
9120     return true;
9121 
9122   return false;
9123 }
9124 
9125 /// VFuncId
9126 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9127 ///         'offset' ':' UInt64 ')'
9128 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9129                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9130   assert(Lex.getKind() == lltok::kw_vFuncId);
9131   Lex.Lex();
9132 
9133   if (parseToken(lltok::colon, "expected ':' here") ||
9134       parseToken(lltok::lparen, "expected '(' here"))
9135     return true;
9136 
9137   if (Lex.getKind() == lltok::SummaryID) {
9138     VFuncId.GUID = 0;
9139     unsigned ID = Lex.getUIntVal();
9140     LocTy Loc = Lex.getLoc();
9141     // Keep track of the array index needing a forward reference.
9142     // We will save the location of the GUID needing an update, but
9143     // can only do so once the caller's std::vector is finalized.
9144     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9145     Lex.Lex();
9146   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9147              parseToken(lltok::colon, "expected ':' here") ||
9148              parseUInt64(VFuncId.GUID))
9149     return true;
9150 
9151   if (parseToken(lltok::comma, "expected ',' here") ||
9152       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9153       parseToken(lltok::colon, "expected ':' here") ||
9154       parseUInt64(VFuncId.Offset) ||
9155       parseToken(lltok::rparen, "expected ')' here"))
9156     return true;
9157 
9158   return false;
9159 }
9160 
9161 /// GVFlags
9162 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9163 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9164 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9165 ///         'canAutoHide' ':' Flag ',' ')'
9166 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9167   assert(Lex.getKind() == lltok::kw_flags);
9168   Lex.Lex();
9169 
9170   if (parseToken(lltok::colon, "expected ':' here") ||
9171       parseToken(lltok::lparen, "expected '(' here"))
9172     return true;
9173 
9174   do {
9175     unsigned Flag = 0;
9176     switch (Lex.getKind()) {
9177     case lltok::kw_linkage:
9178       Lex.Lex();
9179       if (parseToken(lltok::colon, "expected ':'"))
9180         return true;
9181       bool HasLinkage;
9182       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9183       assert(HasLinkage && "Linkage not optional in summary entry");
9184       Lex.Lex();
9185       break;
9186     case lltok::kw_visibility:
9187       Lex.Lex();
9188       if (parseToken(lltok::colon, "expected ':'"))
9189         return true;
9190       parseOptionalVisibility(Flag);
9191       GVFlags.Visibility = Flag;
9192       break;
9193     case lltok::kw_notEligibleToImport:
9194       Lex.Lex();
9195       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9196         return true;
9197       GVFlags.NotEligibleToImport = Flag;
9198       break;
9199     case lltok::kw_live:
9200       Lex.Lex();
9201       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9202         return true;
9203       GVFlags.Live = Flag;
9204       break;
9205     case lltok::kw_dsoLocal:
9206       Lex.Lex();
9207       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9208         return true;
9209       GVFlags.DSOLocal = Flag;
9210       break;
9211     case lltok::kw_canAutoHide:
9212       Lex.Lex();
9213       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9214         return true;
9215       GVFlags.CanAutoHide = Flag;
9216       break;
9217     default:
9218       return error(Lex.getLoc(), "expected gv flag type");
9219     }
9220   } while (EatIfPresent(lltok::comma));
9221 
9222   if (parseToken(lltok::rparen, "expected ')' here"))
9223     return true;
9224 
9225   return false;
9226 }
9227 
9228 /// GVarFlags
9229 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9230 ///                      ',' 'writeonly' ':' Flag
9231 ///                      ',' 'constant' ':' Flag ')'
9232 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9233   assert(Lex.getKind() == lltok::kw_varFlags);
9234   Lex.Lex();
9235 
9236   if (parseToken(lltok::colon, "expected ':' here") ||
9237       parseToken(lltok::lparen, "expected '(' here"))
9238     return true;
9239 
9240   auto ParseRest = [this](unsigned int &Val) {
9241     Lex.Lex();
9242     if (parseToken(lltok::colon, "expected ':'"))
9243       return true;
9244     return parseFlag(Val);
9245   };
9246 
9247   do {
9248     unsigned Flag = 0;
9249     switch (Lex.getKind()) {
9250     case lltok::kw_readonly:
9251       if (ParseRest(Flag))
9252         return true;
9253       GVarFlags.MaybeReadOnly = Flag;
9254       break;
9255     case lltok::kw_writeonly:
9256       if (ParseRest(Flag))
9257         return true;
9258       GVarFlags.MaybeWriteOnly = Flag;
9259       break;
9260     case lltok::kw_constant:
9261       if (ParseRest(Flag))
9262         return true;
9263       GVarFlags.Constant = Flag;
9264       break;
9265     case lltok::kw_vcall_visibility:
9266       if (ParseRest(Flag))
9267         return true;
9268       GVarFlags.VCallVisibility = Flag;
9269       break;
9270     default:
9271       return error(Lex.getLoc(), "expected gvar flag type");
9272     }
9273   } while (EatIfPresent(lltok::comma));
9274   return parseToken(lltok::rparen, "expected ')' here");
9275 }
9276 
9277 /// ModuleReference
9278 ///   ::= 'module' ':' UInt
9279 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9280   // parse module id.
9281   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9282       parseToken(lltok::colon, "expected ':' here") ||
9283       parseToken(lltok::SummaryID, "expected module ID"))
9284     return true;
9285 
9286   unsigned ModuleID = Lex.getUIntVal();
9287   auto I = ModuleIdMap.find(ModuleID);
9288   // We should have already parsed all module IDs
9289   assert(I != ModuleIdMap.end());
9290   ModulePath = I->second;
9291   return false;
9292 }
9293 
9294 /// GVReference
9295 ///   ::= SummaryID
9296 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9297   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9298   if (!ReadOnly)
9299     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9300   if (parseToken(lltok::SummaryID, "expected GV ID"))
9301     return true;
9302 
9303   GVId = Lex.getUIntVal();
9304   // Check if we already have a VI for this GV
9305   if (GVId < NumberedValueInfos.size()) {
9306     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9307     VI = NumberedValueInfos[GVId];
9308   } else
9309     // We will create a forward reference to the stored location.
9310     VI = ValueInfo(false, FwdVIRef);
9311 
9312   if (ReadOnly)
9313     VI.setReadOnly();
9314   if (WriteOnly)
9315     VI.setWriteOnly();
9316   return false;
9317 }
9318