1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/AsmParser/SlotMapping.h" 19 #include "llvm/IR/AutoUpgrade.h" 20 #include "llvm/IR/CallingConv.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DebugInfoMetadata.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InlineAsm.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/Dwarf.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/SaveAndRestore.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 static std::string getTypeString(Type *T) { 39 std::string Result; 40 raw_string_ostream Tmp(Result); 41 Tmp << *T; 42 return Tmp.str(); 43 } 44 45 /// Run: module ::= toplevelentity* 46 bool LLParser::Run() { 47 // Prime the lexer. 48 Lex.Lex(); 49 50 if (Context.shouldDiscardValueNames()) 51 return Error( 52 Lex.getLoc(), 53 "Can't read textual IR with a Context that discards named Values"); 54 55 return ParseTopLevelEntities() || 56 ValidateEndOfModule(); 57 } 58 59 bool LLParser::parseStandaloneConstantValue(Constant *&C, 60 const SlotMapping *Slots) { 61 restoreParsingState(Slots); 62 Lex.Lex(); 63 64 Type *Ty = nullptr; 65 if (ParseType(Ty) || parseConstantValue(Ty, C)) 66 return true; 67 if (Lex.getKind() != lltok::Eof) 68 return Error(Lex.getLoc(), "expected end of string"); 69 return false; 70 } 71 72 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 73 const SlotMapping *Slots) { 74 restoreParsingState(Slots); 75 Lex.Lex(); 76 77 Read = 0; 78 SMLoc Start = Lex.getLoc(); 79 Ty = nullptr; 80 if (ParseType(Ty)) 81 return true; 82 SMLoc End = Lex.getLoc(); 83 Read = End.getPointer() - Start.getPointer(); 84 85 return false; 86 } 87 88 void LLParser::restoreParsingState(const SlotMapping *Slots) { 89 if (!Slots) 90 return; 91 NumberedVals = Slots->GlobalValues; 92 NumberedMetadata = Slots->MetadataNodes; 93 for (const auto &I : Slots->NamedTypes) 94 NamedTypes.insert( 95 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 96 for (const auto &I : Slots->Types) 97 NumberedTypes.insert( 98 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 99 } 100 101 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 102 /// module. 103 bool LLParser::ValidateEndOfModule() { 104 // Handle any function attribute group forward references. 105 for (std::map<Value*, std::vector<unsigned> >::iterator 106 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 107 I != E; ++I) { 108 Value *V = I->first; 109 std::vector<unsigned> &Vec = I->second; 110 AttrBuilder B; 111 112 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 113 VI != VE; ++VI) 114 B.merge(NumberedAttrBuilders[*VI]); 115 116 if (Function *Fn = dyn_cast<Function>(V)) { 117 AttributeSet AS = Fn->getAttributes(); 118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 120 AS.getFnAttributes()); 121 122 FnAttrs.merge(B); 123 124 // If the alignment was parsed as an attribute, move to the alignment 125 // field. 126 if (FnAttrs.hasAlignmentAttr()) { 127 Fn->setAlignment(FnAttrs.getAlignment()); 128 FnAttrs.removeAttribute(Attribute::Alignment); 129 } 130 131 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 132 AttributeSet::get(Context, 133 AttributeSet::FunctionIndex, 134 FnAttrs)); 135 Fn->setAttributes(AS); 136 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 137 AttributeSet AS = CI->getAttributes(); 138 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 139 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 140 AS.getFnAttributes()); 141 FnAttrs.merge(B); 142 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 143 AttributeSet::get(Context, 144 AttributeSet::FunctionIndex, 145 FnAttrs)); 146 CI->setAttributes(AS); 147 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 148 AttributeSet AS = II->getAttributes(); 149 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 150 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 151 AS.getFnAttributes()); 152 FnAttrs.merge(B); 153 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 154 AttributeSet::get(Context, 155 AttributeSet::FunctionIndex, 156 FnAttrs)); 157 II->setAttributes(AS); 158 } else { 159 llvm_unreachable("invalid object with forward attribute group reference"); 160 } 161 } 162 163 // If there are entries in ForwardRefBlockAddresses at this point, the 164 // function was never defined. 165 if (!ForwardRefBlockAddresses.empty()) 166 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 167 "expected function name in blockaddress"); 168 169 for (const auto &NT : NumberedTypes) 170 if (NT.second.second.isValid()) 171 return Error(NT.second.second, 172 "use of undefined type '%" + Twine(NT.first) + "'"); 173 174 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 175 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 176 if (I->second.second.isValid()) 177 return Error(I->second.second, 178 "use of undefined type named '" + I->getKey() + "'"); 179 180 if (!ForwardRefComdats.empty()) 181 return Error(ForwardRefComdats.begin()->second, 182 "use of undefined comdat '$" + 183 ForwardRefComdats.begin()->first + "'"); 184 185 if (!ForwardRefVals.empty()) 186 return Error(ForwardRefVals.begin()->second.second, 187 "use of undefined value '@" + ForwardRefVals.begin()->first + 188 "'"); 189 190 if (!ForwardRefValIDs.empty()) 191 return Error(ForwardRefValIDs.begin()->second.second, 192 "use of undefined value '@" + 193 Twine(ForwardRefValIDs.begin()->first) + "'"); 194 195 if (!ForwardRefMDNodes.empty()) 196 return Error(ForwardRefMDNodes.begin()->second.second, 197 "use of undefined metadata '!" + 198 Twine(ForwardRefMDNodes.begin()->first) + "'"); 199 200 // Resolve metadata cycles. 201 for (auto &N : NumberedMetadata) { 202 if (N.second && !N.second->isResolved()) 203 N.second->resolveCycles(); 204 } 205 206 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 207 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 208 209 // Look for intrinsic functions and CallInst that need to be upgraded 210 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 211 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 212 213 UpgradeDebugInfo(*M); 214 215 UpgradeModuleFlags(*M); 216 217 if (!Slots) 218 return false; 219 // Initialize the slot mapping. 220 // Because by this point we've parsed and validated everything, we can "steal" 221 // the mapping from LLParser as it doesn't need it anymore. 222 Slots->GlobalValues = std::move(NumberedVals); 223 Slots->MetadataNodes = std::move(NumberedMetadata); 224 for (const auto &I : NamedTypes) 225 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 226 for (const auto &I : NumberedTypes) 227 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 228 229 return false; 230 } 231 232 //===----------------------------------------------------------------------===// 233 // Top-Level Entities 234 //===----------------------------------------------------------------------===// 235 236 bool LLParser::ParseTopLevelEntities() { 237 while (1) { 238 switch (Lex.getKind()) { 239 default: return TokError("expected top-level entity"); 240 case lltok::Eof: return false; 241 case lltok::kw_declare: if (ParseDeclare()) return true; break; 242 case lltok::kw_define: if (ParseDefine()) return true; break; 243 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 244 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 245 case lltok::kw_source_filename: 246 if (ParseSourceFileName()) 247 return true; 248 break; 249 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 250 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 251 case lltok::LocalVar: if (ParseNamedType()) return true; break; 252 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 253 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 254 case lltok::ComdatVar: if (parseComdat()) return true; break; 255 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 256 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 257 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 258 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 259 case lltok::kw_uselistorder_bb: 260 if (ParseUseListOrderBB()) return true; break; 261 } 262 } 263 } 264 265 266 /// toplevelentity 267 /// ::= 'module' 'asm' STRINGCONSTANT 268 bool LLParser::ParseModuleAsm() { 269 assert(Lex.getKind() == lltok::kw_module); 270 Lex.Lex(); 271 272 std::string AsmStr; 273 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 274 ParseStringConstant(AsmStr)) return true; 275 276 M->appendModuleInlineAsm(AsmStr); 277 return false; 278 } 279 280 /// toplevelentity 281 /// ::= 'target' 'triple' '=' STRINGCONSTANT 282 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 283 bool LLParser::ParseTargetDefinition() { 284 assert(Lex.getKind() == lltok::kw_target); 285 std::string Str; 286 switch (Lex.Lex()) { 287 default: return TokError("unknown target property"); 288 case lltok::kw_triple: 289 Lex.Lex(); 290 if (ParseToken(lltok::equal, "expected '=' after target triple") || 291 ParseStringConstant(Str)) 292 return true; 293 M->setTargetTriple(Str); 294 return false; 295 case lltok::kw_datalayout: 296 Lex.Lex(); 297 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 298 ParseStringConstant(Str)) 299 return true; 300 M->setDataLayout(Str); 301 return false; 302 } 303 } 304 305 /// toplevelentity 306 /// ::= 'source_filename' '=' STRINGCONSTANT 307 bool LLParser::ParseSourceFileName() { 308 assert(Lex.getKind() == lltok::kw_source_filename); 309 std::string Str; 310 Lex.Lex(); 311 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 312 ParseStringConstant(Str)) 313 return true; 314 M->setSourceFileName(Str); 315 return false; 316 } 317 318 /// toplevelentity 319 /// ::= 'deplibs' '=' '[' ']' 320 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 321 /// FIXME: Remove in 4.0. Currently parse, but ignore. 322 bool LLParser::ParseDepLibs() { 323 assert(Lex.getKind() == lltok::kw_deplibs); 324 Lex.Lex(); 325 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 326 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 327 return true; 328 329 if (EatIfPresent(lltok::rsquare)) 330 return false; 331 332 do { 333 std::string Str; 334 if (ParseStringConstant(Str)) return true; 335 } while (EatIfPresent(lltok::comma)); 336 337 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 338 } 339 340 /// ParseUnnamedType: 341 /// ::= LocalVarID '=' 'type' type 342 bool LLParser::ParseUnnamedType() { 343 LocTy TypeLoc = Lex.getLoc(); 344 unsigned TypeID = Lex.getUIntVal(); 345 Lex.Lex(); // eat LocalVarID; 346 347 if (ParseToken(lltok::equal, "expected '=' after name") || 348 ParseToken(lltok::kw_type, "expected 'type' after '='")) 349 return true; 350 351 Type *Result = nullptr; 352 if (ParseStructDefinition(TypeLoc, "", 353 NumberedTypes[TypeID], Result)) return true; 354 355 if (!isa<StructType>(Result)) { 356 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 357 if (Entry.first) 358 return Error(TypeLoc, "non-struct types may not be recursive"); 359 Entry.first = Result; 360 Entry.second = SMLoc(); 361 } 362 363 return false; 364 } 365 366 367 /// toplevelentity 368 /// ::= LocalVar '=' 'type' type 369 bool LLParser::ParseNamedType() { 370 std::string Name = Lex.getStrVal(); 371 LocTy NameLoc = Lex.getLoc(); 372 Lex.Lex(); // eat LocalVar. 373 374 if (ParseToken(lltok::equal, "expected '=' after name") || 375 ParseToken(lltok::kw_type, "expected 'type' after name")) 376 return true; 377 378 Type *Result = nullptr; 379 if (ParseStructDefinition(NameLoc, Name, 380 NamedTypes[Name], Result)) return true; 381 382 if (!isa<StructType>(Result)) { 383 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 384 if (Entry.first) 385 return Error(NameLoc, "non-struct types may not be recursive"); 386 Entry.first = Result; 387 Entry.second = SMLoc(); 388 } 389 390 return false; 391 } 392 393 394 /// toplevelentity 395 /// ::= 'declare' FunctionHeader 396 bool LLParser::ParseDeclare() { 397 assert(Lex.getKind() == lltok::kw_declare); 398 Lex.Lex(); 399 400 std::vector<std::pair<unsigned, MDNode *>> MDs; 401 while (Lex.getKind() == lltok::MetadataVar) { 402 unsigned MDK; 403 MDNode *N; 404 if (ParseMetadataAttachment(MDK, N)) 405 return true; 406 MDs.push_back({MDK, N}); 407 } 408 409 Function *F; 410 if (ParseFunctionHeader(F, false)) 411 return true; 412 for (auto &MD : MDs) 413 F->addMetadata(MD.first, *MD.second); 414 return false; 415 } 416 417 /// toplevelentity 418 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 419 bool LLParser::ParseDefine() { 420 assert(Lex.getKind() == lltok::kw_define); 421 Lex.Lex(); 422 423 Function *F; 424 return ParseFunctionHeader(F, true) || 425 ParseOptionalFunctionMetadata(*F) || 426 ParseFunctionBody(*F); 427 } 428 429 /// ParseGlobalType 430 /// ::= 'constant' 431 /// ::= 'global' 432 bool LLParser::ParseGlobalType(bool &IsConstant) { 433 if (Lex.getKind() == lltok::kw_constant) 434 IsConstant = true; 435 else if (Lex.getKind() == lltok::kw_global) 436 IsConstant = false; 437 else { 438 IsConstant = false; 439 return TokError("expected 'global' or 'constant'"); 440 } 441 Lex.Lex(); 442 return false; 443 } 444 445 bool LLParser::ParseOptionalUnnamedAddr( 446 GlobalVariable::UnnamedAddr &UnnamedAddr) { 447 if (EatIfPresent(lltok::kw_unnamed_addr)) 448 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 449 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 450 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 451 else 452 UnnamedAddr = GlobalValue::UnnamedAddr::None; 453 return false; 454 } 455 456 /// ParseUnnamedGlobal: 457 /// OptionalVisibility (ALIAS | IFUNC) ... 458 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 459 /// ... -> global variable 460 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 461 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 462 /// ... -> global variable 463 bool LLParser::ParseUnnamedGlobal() { 464 unsigned VarID = NumberedVals.size(); 465 std::string Name; 466 LocTy NameLoc = Lex.getLoc(); 467 468 // Handle the GlobalID form. 469 if (Lex.getKind() == lltok::GlobalID) { 470 if (Lex.getUIntVal() != VarID) 471 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 472 Twine(VarID) + "'"); 473 Lex.Lex(); // eat GlobalID; 474 475 if (ParseToken(lltok::equal, "expected '=' after name")) 476 return true; 477 } 478 479 bool HasLinkage; 480 unsigned Linkage, Visibility, DLLStorageClass; 481 GlobalVariable::ThreadLocalMode TLM; 482 GlobalVariable::UnnamedAddr UnnamedAddr; 483 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 484 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 485 return true; 486 487 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 488 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 489 DLLStorageClass, TLM, UnnamedAddr); 490 491 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 492 DLLStorageClass, TLM, UnnamedAddr); 493 } 494 495 /// ParseNamedGlobal: 496 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 497 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 498 /// ... -> global variable 499 bool LLParser::ParseNamedGlobal() { 500 assert(Lex.getKind() == lltok::GlobalVar); 501 LocTy NameLoc = Lex.getLoc(); 502 std::string Name = Lex.getStrVal(); 503 Lex.Lex(); 504 505 bool HasLinkage; 506 unsigned Linkage, Visibility, DLLStorageClass; 507 GlobalVariable::ThreadLocalMode TLM; 508 GlobalVariable::UnnamedAddr UnnamedAddr; 509 if (ParseToken(lltok::equal, "expected '=' in global variable") || 510 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 511 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 512 return true; 513 514 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 515 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 516 DLLStorageClass, TLM, UnnamedAddr); 517 518 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 519 DLLStorageClass, TLM, UnnamedAddr); 520 } 521 522 bool LLParser::parseComdat() { 523 assert(Lex.getKind() == lltok::ComdatVar); 524 std::string Name = Lex.getStrVal(); 525 LocTy NameLoc = Lex.getLoc(); 526 Lex.Lex(); 527 528 if (ParseToken(lltok::equal, "expected '=' here")) 529 return true; 530 531 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 532 return TokError("expected comdat type"); 533 534 Comdat::SelectionKind SK; 535 switch (Lex.getKind()) { 536 default: 537 return TokError("unknown selection kind"); 538 case lltok::kw_any: 539 SK = Comdat::Any; 540 break; 541 case lltok::kw_exactmatch: 542 SK = Comdat::ExactMatch; 543 break; 544 case lltok::kw_largest: 545 SK = Comdat::Largest; 546 break; 547 case lltok::kw_noduplicates: 548 SK = Comdat::NoDuplicates; 549 break; 550 case lltok::kw_samesize: 551 SK = Comdat::SameSize; 552 break; 553 } 554 Lex.Lex(); 555 556 // See if the comdat was forward referenced, if so, use the comdat. 557 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 558 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 559 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 560 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 561 562 Comdat *C; 563 if (I != ComdatSymTab.end()) 564 C = &I->second; 565 else 566 C = M->getOrInsertComdat(Name); 567 C->setSelectionKind(SK); 568 569 return false; 570 } 571 572 // MDString: 573 // ::= '!' STRINGCONSTANT 574 bool LLParser::ParseMDString(MDString *&Result) { 575 std::string Str; 576 if (ParseStringConstant(Str)) return true; 577 Result = MDString::get(Context, Str); 578 return false; 579 } 580 581 // MDNode: 582 // ::= '!' MDNodeNumber 583 bool LLParser::ParseMDNodeID(MDNode *&Result) { 584 // !{ ..., !42, ... } 585 LocTy IDLoc = Lex.getLoc(); 586 unsigned MID = 0; 587 if (ParseUInt32(MID)) 588 return true; 589 590 // If not a forward reference, just return it now. 591 if (NumberedMetadata.count(MID)) { 592 Result = NumberedMetadata[MID]; 593 return false; 594 } 595 596 // Otherwise, create MDNode forward reference. 597 auto &FwdRef = ForwardRefMDNodes[MID]; 598 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 599 600 Result = FwdRef.first.get(); 601 NumberedMetadata[MID].reset(Result); 602 return false; 603 } 604 605 /// ParseNamedMetadata: 606 /// !foo = !{ !1, !2 } 607 bool LLParser::ParseNamedMetadata() { 608 assert(Lex.getKind() == lltok::MetadataVar); 609 std::string Name = Lex.getStrVal(); 610 Lex.Lex(); 611 612 if (ParseToken(lltok::equal, "expected '=' here") || 613 ParseToken(lltok::exclaim, "Expected '!' here") || 614 ParseToken(lltok::lbrace, "Expected '{' here")) 615 return true; 616 617 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 618 if (Lex.getKind() != lltok::rbrace) 619 do { 620 if (ParseToken(lltok::exclaim, "Expected '!' here")) 621 return true; 622 623 MDNode *N = nullptr; 624 if (ParseMDNodeID(N)) return true; 625 NMD->addOperand(N); 626 } while (EatIfPresent(lltok::comma)); 627 628 return ParseToken(lltok::rbrace, "expected end of metadata node"); 629 } 630 631 /// ParseStandaloneMetadata: 632 /// !42 = !{...} 633 bool LLParser::ParseStandaloneMetadata() { 634 assert(Lex.getKind() == lltok::exclaim); 635 Lex.Lex(); 636 unsigned MetadataID = 0; 637 638 MDNode *Init; 639 if (ParseUInt32(MetadataID) || 640 ParseToken(lltok::equal, "expected '=' here")) 641 return true; 642 643 // Detect common error, from old metadata syntax. 644 if (Lex.getKind() == lltok::Type) 645 return TokError("unexpected type in metadata definition"); 646 647 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 648 if (Lex.getKind() == lltok::MetadataVar) { 649 if (ParseSpecializedMDNode(Init, IsDistinct)) 650 return true; 651 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 652 ParseMDTuple(Init, IsDistinct)) 653 return true; 654 655 // See if this was forward referenced, if so, handle it. 656 auto FI = ForwardRefMDNodes.find(MetadataID); 657 if (FI != ForwardRefMDNodes.end()) { 658 FI->second.first->replaceAllUsesWith(Init); 659 ForwardRefMDNodes.erase(FI); 660 661 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 662 } else { 663 if (NumberedMetadata.count(MetadataID)) 664 return TokError("Metadata id is already used"); 665 NumberedMetadata[MetadataID].reset(Init); 666 } 667 668 return false; 669 } 670 671 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 672 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 673 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 674 } 675 676 /// parseIndirectSymbol: 677 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 678 /// OptionalDLLStorageClass OptionalThreadLocal 679 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 680 /// 681 /// IndirectSymbol 682 /// ::= TypeAndValue 683 /// 684 /// Everything through OptionalUnnamedAddr has already been parsed. 685 /// 686 bool LLParser::parseIndirectSymbol( 687 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 688 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 689 GlobalVariable::UnnamedAddr UnnamedAddr) { 690 bool IsAlias; 691 if (Lex.getKind() == lltok::kw_alias) 692 IsAlias = true; 693 else if (Lex.getKind() == lltok::kw_ifunc) 694 IsAlias = false; 695 else 696 llvm_unreachable("Not an alias or ifunc!"); 697 Lex.Lex(); 698 699 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 700 701 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 702 return Error(NameLoc, "invalid linkage type for alias"); 703 704 if (!isValidVisibilityForLinkage(Visibility, L)) 705 return Error(NameLoc, 706 "symbol with local linkage must have default visibility"); 707 708 Type *Ty; 709 LocTy ExplicitTypeLoc = Lex.getLoc(); 710 if (ParseType(Ty) || 711 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 712 return true; 713 714 Constant *Aliasee; 715 LocTy AliaseeLoc = Lex.getLoc(); 716 if (Lex.getKind() != lltok::kw_bitcast && 717 Lex.getKind() != lltok::kw_getelementptr && 718 Lex.getKind() != lltok::kw_addrspacecast && 719 Lex.getKind() != lltok::kw_inttoptr) { 720 if (ParseGlobalTypeAndValue(Aliasee)) 721 return true; 722 } else { 723 // The bitcast dest type is not present, it is implied by the dest type. 724 ValID ID; 725 if (ParseValID(ID)) 726 return true; 727 if (ID.Kind != ValID::t_Constant) 728 return Error(AliaseeLoc, "invalid aliasee"); 729 Aliasee = ID.ConstantVal; 730 } 731 732 Type *AliaseeType = Aliasee->getType(); 733 auto *PTy = dyn_cast<PointerType>(AliaseeType); 734 if (!PTy) 735 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 736 unsigned AddrSpace = PTy->getAddressSpace(); 737 738 if (IsAlias && Ty != PTy->getElementType()) 739 return Error( 740 ExplicitTypeLoc, 741 "explicit pointee type doesn't match operand's pointee type"); 742 743 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 744 return Error( 745 ExplicitTypeLoc, 746 "explicit pointee type should be a function type"); 747 748 GlobalValue *GVal = nullptr; 749 750 // See if the alias was forward referenced, if so, prepare to replace the 751 // forward reference. 752 if (!Name.empty()) { 753 GVal = M->getNamedValue(Name); 754 if (GVal) { 755 if (!ForwardRefVals.erase(Name)) 756 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 757 } 758 } else { 759 auto I = ForwardRefValIDs.find(NumberedVals.size()); 760 if (I != ForwardRefValIDs.end()) { 761 GVal = I->second.first; 762 ForwardRefValIDs.erase(I); 763 } 764 } 765 766 // Okay, create the alias but do not insert it into the module yet. 767 std::unique_ptr<GlobalIndirectSymbol> GA; 768 if (IsAlias) 769 GA.reset(GlobalAlias::create(Ty, AddrSpace, 770 (GlobalValue::LinkageTypes)Linkage, Name, 771 Aliasee, /*Parent*/ nullptr)); 772 else 773 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 774 (GlobalValue::LinkageTypes)Linkage, Name, 775 Aliasee, /*Parent*/ nullptr)); 776 GA->setThreadLocalMode(TLM); 777 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 778 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 779 GA->setUnnamedAddr(UnnamedAddr); 780 781 if (Name.empty()) 782 NumberedVals.push_back(GA.get()); 783 784 if (GVal) { 785 // Verify that types agree. 786 if (GVal->getType() != GA->getType()) 787 return Error( 788 ExplicitTypeLoc, 789 "forward reference and definition of alias have different types"); 790 791 // If they agree, just RAUW the old value with the alias and remove the 792 // forward ref info. 793 GVal->replaceAllUsesWith(GA.get()); 794 GVal->eraseFromParent(); 795 } 796 797 // Insert into the module, we know its name won't collide now. 798 if (IsAlias) 799 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 800 else 801 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 802 assert(GA->getName() == Name && "Should not be a name conflict!"); 803 804 // The module owns this now 805 GA.release(); 806 807 return false; 808 } 809 810 /// ParseGlobal 811 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 812 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 813 /// OptionalExternallyInitialized GlobalType Type Const 814 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 815 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 816 /// OptionalExternallyInitialized GlobalType Type Const 817 /// 818 /// Everything up to and including OptionalUnnamedAddr has been parsed 819 /// already. 820 /// 821 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 822 unsigned Linkage, bool HasLinkage, 823 unsigned Visibility, unsigned DLLStorageClass, 824 GlobalVariable::ThreadLocalMode TLM, 825 GlobalVariable::UnnamedAddr UnnamedAddr) { 826 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 827 return Error(NameLoc, 828 "symbol with local linkage must have default visibility"); 829 830 unsigned AddrSpace; 831 bool IsConstant, IsExternallyInitialized; 832 LocTy IsExternallyInitializedLoc; 833 LocTy TyLoc; 834 835 Type *Ty = nullptr; 836 if (ParseOptionalAddrSpace(AddrSpace) || 837 ParseOptionalToken(lltok::kw_externally_initialized, 838 IsExternallyInitialized, 839 &IsExternallyInitializedLoc) || 840 ParseGlobalType(IsConstant) || 841 ParseType(Ty, TyLoc)) 842 return true; 843 844 // If the linkage is specified and is external, then no initializer is 845 // present. 846 Constant *Init = nullptr; 847 if (!HasLinkage || 848 !GlobalValue::isValidDeclarationLinkage( 849 (GlobalValue::LinkageTypes)Linkage)) { 850 if (ParseGlobalValue(Ty, Init)) 851 return true; 852 } 853 854 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 855 return Error(TyLoc, "invalid type for global variable"); 856 857 GlobalValue *GVal = nullptr; 858 859 // See if the global was forward referenced, if so, use the global. 860 if (!Name.empty()) { 861 GVal = M->getNamedValue(Name); 862 if (GVal) { 863 if (!ForwardRefVals.erase(Name)) 864 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 865 } 866 } else { 867 auto I = ForwardRefValIDs.find(NumberedVals.size()); 868 if (I != ForwardRefValIDs.end()) { 869 GVal = I->second.first; 870 ForwardRefValIDs.erase(I); 871 } 872 } 873 874 GlobalVariable *GV; 875 if (!GVal) { 876 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 877 Name, nullptr, GlobalVariable::NotThreadLocal, 878 AddrSpace); 879 } else { 880 if (GVal->getValueType() != Ty) 881 return Error(TyLoc, 882 "forward reference and definition of global have different types"); 883 884 GV = cast<GlobalVariable>(GVal); 885 886 // Move the forward-reference to the correct spot in the module. 887 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 888 } 889 890 if (Name.empty()) 891 NumberedVals.push_back(GV); 892 893 // Set the parsed properties on the global. 894 if (Init) 895 GV->setInitializer(Init); 896 GV->setConstant(IsConstant); 897 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 898 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 899 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 900 GV->setExternallyInitialized(IsExternallyInitialized); 901 GV->setThreadLocalMode(TLM); 902 GV->setUnnamedAddr(UnnamedAddr); 903 904 // Parse attributes on the global. 905 while (Lex.getKind() == lltok::comma) { 906 Lex.Lex(); 907 908 if (Lex.getKind() == lltok::kw_section) { 909 Lex.Lex(); 910 GV->setSection(Lex.getStrVal()); 911 if (ParseToken(lltok::StringConstant, "expected global section string")) 912 return true; 913 } else if (Lex.getKind() == lltok::kw_align) { 914 unsigned Alignment; 915 if (ParseOptionalAlignment(Alignment)) return true; 916 GV->setAlignment(Alignment); 917 } else if (Lex.getKind() == lltok::MetadataVar) { 918 if (ParseGlobalObjectMetadataAttachment(*GV)) 919 return true; 920 } else { 921 Comdat *C; 922 if (parseOptionalComdat(Name, C)) 923 return true; 924 if (C) 925 GV->setComdat(C); 926 else 927 return TokError("unknown global variable property!"); 928 } 929 } 930 931 return false; 932 } 933 934 /// ParseUnnamedAttrGrp 935 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 936 bool LLParser::ParseUnnamedAttrGrp() { 937 assert(Lex.getKind() == lltok::kw_attributes); 938 LocTy AttrGrpLoc = Lex.getLoc(); 939 Lex.Lex(); 940 941 if (Lex.getKind() != lltok::AttrGrpID) 942 return TokError("expected attribute group id"); 943 944 unsigned VarID = Lex.getUIntVal(); 945 std::vector<unsigned> unused; 946 LocTy BuiltinLoc; 947 Lex.Lex(); 948 949 if (ParseToken(lltok::equal, "expected '=' here") || 950 ParseToken(lltok::lbrace, "expected '{' here") || 951 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 952 BuiltinLoc) || 953 ParseToken(lltok::rbrace, "expected end of attribute group")) 954 return true; 955 956 if (!NumberedAttrBuilders[VarID].hasAttributes()) 957 return Error(AttrGrpLoc, "attribute group has no attributes"); 958 959 return false; 960 } 961 962 /// ParseFnAttributeValuePairs 963 /// ::= <attr> | <attr> '=' <value> 964 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 965 std::vector<unsigned> &FwdRefAttrGrps, 966 bool inAttrGrp, LocTy &BuiltinLoc) { 967 bool HaveError = false; 968 969 B.clear(); 970 971 while (true) { 972 lltok::Kind Token = Lex.getKind(); 973 if (Token == lltok::kw_builtin) 974 BuiltinLoc = Lex.getLoc(); 975 switch (Token) { 976 default: 977 if (!inAttrGrp) return HaveError; 978 return Error(Lex.getLoc(), "unterminated attribute group"); 979 case lltok::rbrace: 980 // Finished. 981 return false; 982 983 case lltok::AttrGrpID: { 984 // Allow a function to reference an attribute group: 985 // 986 // define void @foo() #1 { ... } 987 if (inAttrGrp) 988 HaveError |= 989 Error(Lex.getLoc(), 990 "cannot have an attribute group reference in an attribute group"); 991 992 unsigned AttrGrpNum = Lex.getUIntVal(); 993 if (inAttrGrp) break; 994 995 // Save the reference to the attribute group. We'll fill it in later. 996 FwdRefAttrGrps.push_back(AttrGrpNum); 997 break; 998 } 999 // Target-dependent attributes: 1000 case lltok::StringConstant: { 1001 if (ParseStringAttribute(B)) 1002 return true; 1003 continue; 1004 } 1005 1006 // Target-independent attributes: 1007 case lltok::kw_align: { 1008 // As a hack, we allow function alignment to be initially parsed as an 1009 // attribute on a function declaration/definition or added to an attribute 1010 // group and later moved to the alignment field. 1011 unsigned Alignment; 1012 if (inAttrGrp) { 1013 Lex.Lex(); 1014 if (ParseToken(lltok::equal, "expected '=' here") || 1015 ParseUInt32(Alignment)) 1016 return true; 1017 } else { 1018 if (ParseOptionalAlignment(Alignment)) 1019 return true; 1020 } 1021 B.addAlignmentAttr(Alignment); 1022 continue; 1023 } 1024 case lltok::kw_alignstack: { 1025 unsigned Alignment; 1026 if (inAttrGrp) { 1027 Lex.Lex(); 1028 if (ParseToken(lltok::equal, "expected '=' here") || 1029 ParseUInt32(Alignment)) 1030 return true; 1031 } else { 1032 if (ParseOptionalStackAlignment(Alignment)) 1033 return true; 1034 } 1035 B.addStackAlignmentAttr(Alignment); 1036 continue; 1037 } 1038 case lltok::kw_allocsize: { 1039 unsigned ElemSizeArg; 1040 Optional<unsigned> NumElemsArg; 1041 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1042 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1043 return true; 1044 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1045 continue; 1046 } 1047 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1048 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1049 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1050 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1051 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1052 case lltok::kw_inaccessiblememonly: 1053 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1054 case lltok::kw_inaccessiblemem_or_argmemonly: 1055 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1056 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1057 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1058 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1059 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1060 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1061 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1062 case lltok::kw_noimplicitfloat: 1063 B.addAttribute(Attribute::NoImplicitFloat); break; 1064 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1065 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1066 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1067 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1068 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1069 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1070 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1071 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1072 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1073 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1074 case lltok::kw_returns_twice: 1075 B.addAttribute(Attribute::ReturnsTwice); break; 1076 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1077 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1078 case lltok::kw_sspstrong: 1079 B.addAttribute(Attribute::StackProtectStrong); break; 1080 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1081 case lltok::kw_sanitize_address: 1082 B.addAttribute(Attribute::SanitizeAddress); break; 1083 case lltok::kw_sanitize_thread: 1084 B.addAttribute(Attribute::SanitizeThread); break; 1085 case lltok::kw_sanitize_memory: 1086 B.addAttribute(Attribute::SanitizeMemory); break; 1087 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1088 1089 // Error handling. 1090 case lltok::kw_inreg: 1091 case lltok::kw_signext: 1092 case lltok::kw_zeroext: 1093 HaveError |= 1094 Error(Lex.getLoc(), 1095 "invalid use of attribute on a function"); 1096 break; 1097 case lltok::kw_byval: 1098 case lltok::kw_dereferenceable: 1099 case lltok::kw_dereferenceable_or_null: 1100 case lltok::kw_inalloca: 1101 case lltok::kw_nest: 1102 case lltok::kw_noalias: 1103 case lltok::kw_nocapture: 1104 case lltok::kw_nonnull: 1105 case lltok::kw_returned: 1106 case lltok::kw_sret: 1107 case lltok::kw_swifterror: 1108 case lltok::kw_swiftself: 1109 HaveError |= 1110 Error(Lex.getLoc(), 1111 "invalid use of parameter-only attribute on a function"); 1112 break; 1113 } 1114 1115 Lex.Lex(); 1116 } 1117 } 1118 1119 //===----------------------------------------------------------------------===// 1120 // GlobalValue Reference/Resolution Routines. 1121 //===----------------------------------------------------------------------===// 1122 1123 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1124 const std::string &Name) { 1125 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1126 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1127 else 1128 return new GlobalVariable(*M, PTy->getElementType(), false, 1129 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1130 nullptr, GlobalVariable::NotThreadLocal, 1131 PTy->getAddressSpace()); 1132 } 1133 1134 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1135 /// forward reference record if needed. This can return null if the value 1136 /// exists but does not have the right type. 1137 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1138 LocTy Loc) { 1139 PointerType *PTy = dyn_cast<PointerType>(Ty); 1140 if (!PTy) { 1141 Error(Loc, "global variable reference must have pointer type"); 1142 return nullptr; 1143 } 1144 1145 // Look this name up in the normal function symbol table. 1146 GlobalValue *Val = 1147 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1148 1149 // If this is a forward reference for the value, see if we already created a 1150 // forward ref record. 1151 if (!Val) { 1152 auto I = ForwardRefVals.find(Name); 1153 if (I != ForwardRefVals.end()) 1154 Val = I->second.first; 1155 } 1156 1157 // If we have the value in the symbol table or fwd-ref table, return it. 1158 if (Val) { 1159 if (Val->getType() == Ty) return Val; 1160 Error(Loc, "'@" + Name + "' defined with type '" + 1161 getTypeString(Val->getType()) + "'"); 1162 return nullptr; 1163 } 1164 1165 // Otherwise, create a new forward reference for this value and remember it. 1166 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1167 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1168 return FwdVal; 1169 } 1170 1171 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1172 PointerType *PTy = dyn_cast<PointerType>(Ty); 1173 if (!PTy) { 1174 Error(Loc, "global variable reference must have pointer type"); 1175 return nullptr; 1176 } 1177 1178 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1179 1180 // If this is a forward reference for the value, see if we already created a 1181 // forward ref record. 1182 if (!Val) { 1183 auto I = ForwardRefValIDs.find(ID); 1184 if (I != ForwardRefValIDs.end()) 1185 Val = I->second.first; 1186 } 1187 1188 // If we have the value in the symbol table or fwd-ref table, return it. 1189 if (Val) { 1190 if (Val->getType() == Ty) return Val; 1191 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1192 getTypeString(Val->getType()) + "'"); 1193 return nullptr; 1194 } 1195 1196 // Otherwise, create a new forward reference for this value and remember it. 1197 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1198 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1199 return FwdVal; 1200 } 1201 1202 1203 //===----------------------------------------------------------------------===// 1204 // Comdat Reference/Resolution Routines. 1205 //===----------------------------------------------------------------------===// 1206 1207 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1208 // Look this name up in the comdat symbol table. 1209 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1210 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1211 if (I != ComdatSymTab.end()) 1212 return &I->second; 1213 1214 // Otherwise, create a new forward reference for this value and remember it. 1215 Comdat *C = M->getOrInsertComdat(Name); 1216 ForwardRefComdats[Name] = Loc; 1217 return C; 1218 } 1219 1220 1221 //===----------------------------------------------------------------------===// 1222 // Helper Routines. 1223 //===----------------------------------------------------------------------===// 1224 1225 /// ParseToken - If the current token has the specified kind, eat it and return 1226 /// success. Otherwise, emit the specified error and return failure. 1227 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1228 if (Lex.getKind() != T) 1229 return TokError(ErrMsg); 1230 Lex.Lex(); 1231 return false; 1232 } 1233 1234 /// ParseStringConstant 1235 /// ::= StringConstant 1236 bool LLParser::ParseStringConstant(std::string &Result) { 1237 if (Lex.getKind() != lltok::StringConstant) 1238 return TokError("expected string constant"); 1239 Result = Lex.getStrVal(); 1240 Lex.Lex(); 1241 return false; 1242 } 1243 1244 /// ParseUInt32 1245 /// ::= uint32 1246 bool LLParser::ParseUInt32(unsigned &Val) { 1247 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1248 return TokError("expected integer"); 1249 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1250 if (Val64 != unsigned(Val64)) 1251 return TokError("expected 32-bit integer (too large)"); 1252 Val = Val64; 1253 Lex.Lex(); 1254 return false; 1255 } 1256 1257 /// ParseUInt64 1258 /// ::= uint64 1259 bool LLParser::ParseUInt64(uint64_t &Val) { 1260 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1261 return TokError("expected integer"); 1262 Val = Lex.getAPSIntVal().getLimitedValue(); 1263 Lex.Lex(); 1264 return false; 1265 } 1266 1267 /// ParseTLSModel 1268 /// := 'localdynamic' 1269 /// := 'initialexec' 1270 /// := 'localexec' 1271 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1272 switch (Lex.getKind()) { 1273 default: 1274 return TokError("expected localdynamic, initialexec or localexec"); 1275 case lltok::kw_localdynamic: 1276 TLM = GlobalVariable::LocalDynamicTLSModel; 1277 break; 1278 case lltok::kw_initialexec: 1279 TLM = GlobalVariable::InitialExecTLSModel; 1280 break; 1281 case lltok::kw_localexec: 1282 TLM = GlobalVariable::LocalExecTLSModel; 1283 break; 1284 } 1285 1286 Lex.Lex(); 1287 return false; 1288 } 1289 1290 /// ParseOptionalThreadLocal 1291 /// := /*empty*/ 1292 /// := 'thread_local' 1293 /// := 'thread_local' '(' tlsmodel ')' 1294 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1295 TLM = GlobalVariable::NotThreadLocal; 1296 if (!EatIfPresent(lltok::kw_thread_local)) 1297 return false; 1298 1299 TLM = GlobalVariable::GeneralDynamicTLSModel; 1300 if (Lex.getKind() == lltok::lparen) { 1301 Lex.Lex(); 1302 return ParseTLSModel(TLM) || 1303 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1304 } 1305 return false; 1306 } 1307 1308 /// ParseOptionalAddrSpace 1309 /// := /*empty*/ 1310 /// := 'addrspace' '(' uint32 ')' 1311 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1312 AddrSpace = 0; 1313 if (!EatIfPresent(lltok::kw_addrspace)) 1314 return false; 1315 return ParseToken(lltok::lparen, "expected '(' in address space") || 1316 ParseUInt32(AddrSpace) || 1317 ParseToken(lltok::rparen, "expected ')' in address space"); 1318 } 1319 1320 /// ParseStringAttribute 1321 /// := StringConstant 1322 /// := StringConstant '=' StringConstant 1323 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1324 std::string Attr = Lex.getStrVal(); 1325 Lex.Lex(); 1326 std::string Val; 1327 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1328 return true; 1329 B.addAttribute(Attr, Val); 1330 return false; 1331 } 1332 1333 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1334 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1335 bool HaveError = false; 1336 1337 B.clear(); 1338 1339 while (1) { 1340 lltok::Kind Token = Lex.getKind(); 1341 switch (Token) { 1342 default: // End of attributes. 1343 return HaveError; 1344 case lltok::StringConstant: { 1345 if (ParseStringAttribute(B)) 1346 return true; 1347 continue; 1348 } 1349 case lltok::kw_align: { 1350 unsigned Alignment; 1351 if (ParseOptionalAlignment(Alignment)) 1352 return true; 1353 B.addAlignmentAttr(Alignment); 1354 continue; 1355 } 1356 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1357 case lltok::kw_dereferenceable: { 1358 uint64_t Bytes; 1359 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1360 return true; 1361 B.addDereferenceableAttr(Bytes); 1362 continue; 1363 } 1364 case lltok::kw_dereferenceable_or_null: { 1365 uint64_t Bytes; 1366 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1367 return true; 1368 B.addDereferenceableOrNullAttr(Bytes); 1369 continue; 1370 } 1371 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1372 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1373 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1374 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1375 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1376 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1377 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1378 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1379 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1380 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1381 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1382 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1383 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1384 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1385 1386 case lltok::kw_alignstack: 1387 case lltok::kw_alwaysinline: 1388 case lltok::kw_argmemonly: 1389 case lltok::kw_builtin: 1390 case lltok::kw_inlinehint: 1391 case lltok::kw_jumptable: 1392 case lltok::kw_minsize: 1393 case lltok::kw_naked: 1394 case lltok::kw_nobuiltin: 1395 case lltok::kw_noduplicate: 1396 case lltok::kw_noimplicitfloat: 1397 case lltok::kw_noinline: 1398 case lltok::kw_nonlazybind: 1399 case lltok::kw_noredzone: 1400 case lltok::kw_noreturn: 1401 case lltok::kw_nounwind: 1402 case lltok::kw_optnone: 1403 case lltok::kw_optsize: 1404 case lltok::kw_returns_twice: 1405 case lltok::kw_sanitize_address: 1406 case lltok::kw_sanitize_memory: 1407 case lltok::kw_sanitize_thread: 1408 case lltok::kw_ssp: 1409 case lltok::kw_sspreq: 1410 case lltok::kw_sspstrong: 1411 case lltok::kw_safestack: 1412 case lltok::kw_uwtable: 1413 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1414 break; 1415 } 1416 1417 Lex.Lex(); 1418 } 1419 } 1420 1421 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1422 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1423 bool HaveError = false; 1424 1425 B.clear(); 1426 1427 while (1) { 1428 lltok::Kind Token = Lex.getKind(); 1429 switch (Token) { 1430 default: // End of attributes. 1431 return HaveError; 1432 case lltok::StringConstant: { 1433 if (ParseStringAttribute(B)) 1434 return true; 1435 continue; 1436 } 1437 case lltok::kw_dereferenceable: { 1438 uint64_t Bytes; 1439 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1440 return true; 1441 B.addDereferenceableAttr(Bytes); 1442 continue; 1443 } 1444 case lltok::kw_dereferenceable_or_null: { 1445 uint64_t Bytes; 1446 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1447 return true; 1448 B.addDereferenceableOrNullAttr(Bytes); 1449 continue; 1450 } 1451 case lltok::kw_align: { 1452 unsigned Alignment; 1453 if (ParseOptionalAlignment(Alignment)) 1454 return true; 1455 B.addAlignmentAttr(Alignment); 1456 continue; 1457 } 1458 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1459 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1460 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1461 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1462 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1463 1464 // Error handling. 1465 case lltok::kw_byval: 1466 case lltok::kw_inalloca: 1467 case lltok::kw_nest: 1468 case lltok::kw_nocapture: 1469 case lltok::kw_returned: 1470 case lltok::kw_sret: 1471 case lltok::kw_swifterror: 1472 case lltok::kw_swiftself: 1473 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1474 break; 1475 1476 case lltok::kw_alignstack: 1477 case lltok::kw_alwaysinline: 1478 case lltok::kw_argmemonly: 1479 case lltok::kw_builtin: 1480 case lltok::kw_cold: 1481 case lltok::kw_inlinehint: 1482 case lltok::kw_jumptable: 1483 case lltok::kw_minsize: 1484 case lltok::kw_naked: 1485 case lltok::kw_nobuiltin: 1486 case lltok::kw_noduplicate: 1487 case lltok::kw_noimplicitfloat: 1488 case lltok::kw_noinline: 1489 case lltok::kw_nonlazybind: 1490 case lltok::kw_noredzone: 1491 case lltok::kw_noreturn: 1492 case lltok::kw_nounwind: 1493 case lltok::kw_optnone: 1494 case lltok::kw_optsize: 1495 case lltok::kw_returns_twice: 1496 case lltok::kw_sanitize_address: 1497 case lltok::kw_sanitize_memory: 1498 case lltok::kw_sanitize_thread: 1499 case lltok::kw_ssp: 1500 case lltok::kw_sspreq: 1501 case lltok::kw_sspstrong: 1502 case lltok::kw_safestack: 1503 case lltok::kw_uwtable: 1504 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1505 break; 1506 1507 case lltok::kw_readnone: 1508 case lltok::kw_readonly: 1509 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1510 } 1511 1512 Lex.Lex(); 1513 } 1514 } 1515 1516 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1517 HasLinkage = true; 1518 switch (Kind) { 1519 default: 1520 HasLinkage = false; 1521 return GlobalValue::ExternalLinkage; 1522 case lltok::kw_private: 1523 return GlobalValue::PrivateLinkage; 1524 case lltok::kw_internal: 1525 return GlobalValue::InternalLinkage; 1526 case lltok::kw_weak: 1527 return GlobalValue::WeakAnyLinkage; 1528 case lltok::kw_weak_odr: 1529 return GlobalValue::WeakODRLinkage; 1530 case lltok::kw_linkonce: 1531 return GlobalValue::LinkOnceAnyLinkage; 1532 case lltok::kw_linkonce_odr: 1533 return GlobalValue::LinkOnceODRLinkage; 1534 case lltok::kw_available_externally: 1535 return GlobalValue::AvailableExternallyLinkage; 1536 case lltok::kw_appending: 1537 return GlobalValue::AppendingLinkage; 1538 case lltok::kw_common: 1539 return GlobalValue::CommonLinkage; 1540 case lltok::kw_extern_weak: 1541 return GlobalValue::ExternalWeakLinkage; 1542 case lltok::kw_external: 1543 return GlobalValue::ExternalLinkage; 1544 } 1545 } 1546 1547 /// ParseOptionalLinkage 1548 /// ::= /*empty*/ 1549 /// ::= 'private' 1550 /// ::= 'internal' 1551 /// ::= 'weak' 1552 /// ::= 'weak_odr' 1553 /// ::= 'linkonce' 1554 /// ::= 'linkonce_odr' 1555 /// ::= 'available_externally' 1556 /// ::= 'appending' 1557 /// ::= 'common' 1558 /// ::= 'extern_weak' 1559 /// ::= 'external' 1560 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1561 unsigned &Visibility, 1562 unsigned &DLLStorageClass) { 1563 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1564 if (HasLinkage) 1565 Lex.Lex(); 1566 ParseOptionalVisibility(Visibility); 1567 ParseOptionalDLLStorageClass(DLLStorageClass); 1568 return false; 1569 } 1570 1571 /// ParseOptionalVisibility 1572 /// ::= /*empty*/ 1573 /// ::= 'default' 1574 /// ::= 'hidden' 1575 /// ::= 'protected' 1576 /// 1577 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1578 switch (Lex.getKind()) { 1579 default: 1580 Res = GlobalValue::DefaultVisibility; 1581 return; 1582 case lltok::kw_default: 1583 Res = GlobalValue::DefaultVisibility; 1584 break; 1585 case lltok::kw_hidden: 1586 Res = GlobalValue::HiddenVisibility; 1587 break; 1588 case lltok::kw_protected: 1589 Res = GlobalValue::ProtectedVisibility; 1590 break; 1591 } 1592 Lex.Lex(); 1593 } 1594 1595 /// ParseOptionalDLLStorageClass 1596 /// ::= /*empty*/ 1597 /// ::= 'dllimport' 1598 /// ::= 'dllexport' 1599 /// 1600 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1601 switch (Lex.getKind()) { 1602 default: 1603 Res = GlobalValue::DefaultStorageClass; 1604 return; 1605 case lltok::kw_dllimport: 1606 Res = GlobalValue::DLLImportStorageClass; 1607 break; 1608 case lltok::kw_dllexport: 1609 Res = GlobalValue::DLLExportStorageClass; 1610 break; 1611 } 1612 Lex.Lex(); 1613 } 1614 1615 /// ParseOptionalCallingConv 1616 /// ::= /*empty*/ 1617 /// ::= 'ccc' 1618 /// ::= 'fastcc' 1619 /// ::= 'intel_ocl_bicc' 1620 /// ::= 'coldcc' 1621 /// ::= 'x86_stdcallcc' 1622 /// ::= 'x86_fastcallcc' 1623 /// ::= 'x86_thiscallcc' 1624 /// ::= 'x86_vectorcallcc' 1625 /// ::= 'arm_apcscc' 1626 /// ::= 'arm_aapcscc' 1627 /// ::= 'arm_aapcs_vfpcc' 1628 /// ::= 'msp430_intrcc' 1629 /// ::= 'avr_intrcc' 1630 /// ::= 'avr_signalcc' 1631 /// ::= 'ptx_kernel' 1632 /// ::= 'ptx_device' 1633 /// ::= 'spir_func' 1634 /// ::= 'spir_kernel' 1635 /// ::= 'x86_64_sysvcc' 1636 /// ::= 'x86_64_win64cc' 1637 /// ::= 'webkit_jscc' 1638 /// ::= 'anyregcc' 1639 /// ::= 'preserve_mostcc' 1640 /// ::= 'preserve_allcc' 1641 /// ::= 'ghccc' 1642 /// ::= 'swiftcc' 1643 /// ::= 'x86_intrcc' 1644 /// ::= 'hhvmcc' 1645 /// ::= 'hhvm_ccc' 1646 /// ::= 'cxx_fast_tlscc' 1647 /// ::= 'amdgpu_vs' 1648 /// ::= 'amdgpu_tcs' 1649 /// ::= 'amdgpu_tes' 1650 /// ::= 'amdgpu_gs' 1651 /// ::= 'amdgpu_ps' 1652 /// ::= 'amdgpu_cs' 1653 /// ::= 'amdgpu_kernel' 1654 /// ::= 'cc' UINT 1655 /// 1656 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1657 switch (Lex.getKind()) { 1658 default: CC = CallingConv::C; return false; 1659 case lltok::kw_ccc: CC = CallingConv::C; break; 1660 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1661 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1662 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1663 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1664 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1665 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1666 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1667 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1668 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1669 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1670 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1671 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1672 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1673 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1674 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1675 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1676 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1677 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1678 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1679 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1680 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1681 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1682 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1683 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1684 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1685 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1686 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1687 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1688 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1689 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1690 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1691 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1692 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1693 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1694 case lltok::kw_cc: { 1695 Lex.Lex(); 1696 return ParseUInt32(CC); 1697 } 1698 } 1699 1700 Lex.Lex(); 1701 return false; 1702 } 1703 1704 /// ParseMetadataAttachment 1705 /// ::= !dbg !42 1706 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1707 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1708 1709 std::string Name = Lex.getStrVal(); 1710 Kind = M->getMDKindID(Name); 1711 Lex.Lex(); 1712 1713 return ParseMDNode(MD); 1714 } 1715 1716 /// ParseInstructionMetadata 1717 /// ::= !dbg !42 (',' !dbg !57)* 1718 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1719 do { 1720 if (Lex.getKind() != lltok::MetadataVar) 1721 return TokError("expected metadata after comma"); 1722 1723 unsigned MDK; 1724 MDNode *N; 1725 if (ParseMetadataAttachment(MDK, N)) 1726 return true; 1727 1728 Inst.setMetadata(MDK, N); 1729 if (MDK == LLVMContext::MD_tbaa) 1730 InstsWithTBAATag.push_back(&Inst); 1731 1732 // If this is the end of the list, we're done. 1733 } while (EatIfPresent(lltok::comma)); 1734 return false; 1735 } 1736 1737 /// ParseGlobalObjectMetadataAttachment 1738 /// ::= !dbg !57 1739 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1740 unsigned MDK; 1741 MDNode *N; 1742 if (ParseMetadataAttachment(MDK, N)) 1743 return true; 1744 1745 GO.addMetadata(MDK, *N); 1746 return false; 1747 } 1748 1749 /// ParseOptionalFunctionMetadata 1750 /// ::= (!dbg !57)* 1751 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1752 while (Lex.getKind() == lltok::MetadataVar) 1753 if (ParseGlobalObjectMetadataAttachment(F)) 1754 return true; 1755 return false; 1756 } 1757 1758 /// ParseOptionalAlignment 1759 /// ::= /* empty */ 1760 /// ::= 'align' 4 1761 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1762 Alignment = 0; 1763 if (!EatIfPresent(lltok::kw_align)) 1764 return false; 1765 LocTy AlignLoc = Lex.getLoc(); 1766 if (ParseUInt32(Alignment)) return true; 1767 if (!isPowerOf2_32(Alignment)) 1768 return Error(AlignLoc, "alignment is not a power of two"); 1769 if (Alignment > Value::MaximumAlignment) 1770 return Error(AlignLoc, "huge alignments are not supported yet"); 1771 return false; 1772 } 1773 1774 /// ParseOptionalDerefAttrBytes 1775 /// ::= /* empty */ 1776 /// ::= AttrKind '(' 4 ')' 1777 /// 1778 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1779 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1780 uint64_t &Bytes) { 1781 assert((AttrKind == lltok::kw_dereferenceable || 1782 AttrKind == lltok::kw_dereferenceable_or_null) && 1783 "contract!"); 1784 1785 Bytes = 0; 1786 if (!EatIfPresent(AttrKind)) 1787 return false; 1788 LocTy ParenLoc = Lex.getLoc(); 1789 if (!EatIfPresent(lltok::lparen)) 1790 return Error(ParenLoc, "expected '('"); 1791 LocTy DerefLoc = Lex.getLoc(); 1792 if (ParseUInt64(Bytes)) return true; 1793 ParenLoc = Lex.getLoc(); 1794 if (!EatIfPresent(lltok::rparen)) 1795 return Error(ParenLoc, "expected ')'"); 1796 if (!Bytes) 1797 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1798 return false; 1799 } 1800 1801 /// ParseOptionalCommaAlign 1802 /// ::= 1803 /// ::= ',' align 4 1804 /// 1805 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1806 /// end. 1807 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1808 bool &AteExtraComma) { 1809 AteExtraComma = false; 1810 while (EatIfPresent(lltok::comma)) { 1811 // Metadata at the end is an early exit. 1812 if (Lex.getKind() == lltok::MetadataVar) { 1813 AteExtraComma = true; 1814 return false; 1815 } 1816 1817 if (Lex.getKind() != lltok::kw_align) 1818 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1819 1820 if (ParseOptionalAlignment(Alignment)) return true; 1821 } 1822 1823 return false; 1824 } 1825 1826 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1827 Optional<unsigned> &HowManyArg) { 1828 Lex.Lex(); 1829 1830 auto StartParen = Lex.getLoc(); 1831 if (!EatIfPresent(lltok::lparen)) 1832 return Error(StartParen, "expected '('"); 1833 1834 if (ParseUInt32(BaseSizeArg)) 1835 return true; 1836 1837 if (EatIfPresent(lltok::comma)) { 1838 auto HowManyAt = Lex.getLoc(); 1839 unsigned HowMany; 1840 if (ParseUInt32(HowMany)) 1841 return true; 1842 if (HowMany == BaseSizeArg) 1843 return Error(HowManyAt, 1844 "'allocsize' indices can't refer to the same parameter"); 1845 HowManyArg = HowMany; 1846 } else 1847 HowManyArg = None; 1848 1849 auto EndParen = Lex.getLoc(); 1850 if (!EatIfPresent(lltok::rparen)) 1851 return Error(EndParen, "expected ')'"); 1852 return false; 1853 } 1854 1855 /// ParseScopeAndOrdering 1856 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1857 /// else: ::= 1858 /// 1859 /// This sets Scope and Ordering to the parsed values. 1860 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1861 AtomicOrdering &Ordering) { 1862 if (!isAtomic) 1863 return false; 1864 1865 Scope = CrossThread; 1866 if (EatIfPresent(lltok::kw_singlethread)) 1867 Scope = SingleThread; 1868 1869 return ParseOrdering(Ordering); 1870 } 1871 1872 /// ParseOrdering 1873 /// ::= AtomicOrdering 1874 /// 1875 /// This sets Ordering to the parsed value. 1876 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1877 switch (Lex.getKind()) { 1878 default: return TokError("Expected ordering on atomic instruction"); 1879 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1880 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1881 // Not specified yet: 1882 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1883 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1884 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1885 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1886 case lltok::kw_seq_cst: 1887 Ordering = AtomicOrdering::SequentiallyConsistent; 1888 break; 1889 } 1890 Lex.Lex(); 1891 return false; 1892 } 1893 1894 /// ParseOptionalStackAlignment 1895 /// ::= /* empty */ 1896 /// ::= 'alignstack' '(' 4 ')' 1897 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1898 Alignment = 0; 1899 if (!EatIfPresent(lltok::kw_alignstack)) 1900 return false; 1901 LocTy ParenLoc = Lex.getLoc(); 1902 if (!EatIfPresent(lltok::lparen)) 1903 return Error(ParenLoc, "expected '('"); 1904 LocTy AlignLoc = Lex.getLoc(); 1905 if (ParseUInt32(Alignment)) return true; 1906 ParenLoc = Lex.getLoc(); 1907 if (!EatIfPresent(lltok::rparen)) 1908 return Error(ParenLoc, "expected ')'"); 1909 if (!isPowerOf2_32(Alignment)) 1910 return Error(AlignLoc, "stack alignment is not a power of two"); 1911 return false; 1912 } 1913 1914 /// ParseIndexList - This parses the index list for an insert/extractvalue 1915 /// instruction. This sets AteExtraComma in the case where we eat an extra 1916 /// comma at the end of the line and find that it is followed by metadata. 1917 /// Clients that don't allow metadata can call the version of this function that 1918 /// only takes one argument. 1919 /// 1920 /// ParseIndexList 1921 /// ::= (',' uint32)+ 1922 /// 1923 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1924 bool &AteExtraComma) { 1925 AteExtraComma = false; 1926 1927 if (Lex.getKind() != lltok::comma) 1928 return TokError("expected ',' as start of index list"); 1929 1930 while (EatIfPresent(lltok::comma)) { 1931 if (Lex.getKind() == lltok::MetadataVar) { 1932 if (Indices.empty()) return TokError("expected index"); 1933 AteExtraComma = true; 1934 return false; 1935 } 1936 unsigned Idx = 0; 1937 if (ParseUInt32(Idx)) return true; 1938 Indices.push_back(Idx); 1939 } 1940 1941 return false; 1942 } 1943 1944 //===----------------------------------------------------------------------===// 1945 // Type Parsing. 1946 //===----------------------------------------------------------------------===// 1947 1948 /// ParseType - Parse a type. 1949 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1950 SMLoc TypeLoc = Lex.getLoc(); 1951 switch (Lex.getKind()) { 1952 default: 1953 return TokError(Msg); 1954 case lltok::Type: 1955 // Type ::= 'float' | 'void' (etc) 1956 Result = Lex.getTyVal(); 1957 Lex.Lex(); 1958 break; 1959 case lltok::lbrace: 1960 // Type ::= StructType 1961 if (ParseAnonStructType(Result, false)) 1962 return true; 1963 break; 1964 case lltok::lsquare: 1965 // Type ::= '[' ... ']' 1966 Lex.Lex(); // eat the lsquare. 1967 if (ParseArrayVectorType(Result, false)) 1968 return true; 1969 break; 1970 case lltok::less: // Either vector or packed struct. 1971 // Type ::= '<' ... '>' 1972 Lex.Lex(); 1973 if (Lex.getKind() == lltok::lbrace) { 1974 if (ParseAnonStructType(Result, true) || 1975 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1976 return true; 1977 } else if (ParseArrayVectorType(Result, true)) 1978 return true; 1979 break; 1980 case lltok::LocalVar: { 1981 // Type ::= %foo 1982 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1983 1984 // If the type hasn't been defined yet, create a forward definition and 1985 // remember where that forward def'n was seen (in case it never is defined). 1986 if (!Entry.first) { 1987 Entry.first = StructType::create(Context, Lex.getStrVal()); 1988 Entry.second = Lex.getLoc(); 1989 } 1990 Result = Entry.first; 1991 Lex.Lex(); 1992 break; 1993 } 1994 1995 case lltok::LocalVarID: { 1996 // Type ::= %4 1997 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1998 1999 // If the type hasn't been defined yet, create a forward definition and 2000 // remember where that forward def'n was seen (in case it never is defined). 2001 if (!Entry.first) { 2002 Entry.first = StructType::create(Context); 2003 Entry.second = Lex.getLoc(); 2004 } 2005 Result = Entry.first; 2006 Lex.Lex(); 2007 break; 2008 } 2009 } 2010 2011 // Parse the type suffixes. 2012 while (1) { 2013 switch (Lex.getKind()) { 2014 // End of type. 2015 default: 2016 if (!AllowVoid && Result->isVoidTy()) 2017 return Error(TypeLoc, "void type only allowed for function results"); 2018 return false; 2019 2020 // Type ::= Type '*' 2021 case lltok::star: 2022 if (Result->isLabelTy()) 2023 return TokError("basic block pointers are invalid"); 2024 if (Result->isVoidTy()) 2025 return TokError("pointers to void are invalid - use i8* instead"); 2026 if (!PointerType::isValidElementType(Result)) 2027 return TokError("pointer to this type is invalid"); 2028 Result = PointerType::getUnqual(Result); 2029 Lex.Lex(); 2030 break; 2031 2032 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2033 case lltok::kw_addrspace: { 2034 if (Result->isLabelTy()) 2035 return TokError("basic block pointers are invalid"); 2036 if (Result->isVoidTy()) 2037 return TokError("pointers to void are invalid; use i8* instead"); 2038 if (!PointerType::isValidElementType(Result)) 2039 return TokError("pointer to this type is invalid"); 2040 unsigned AddrSpace; 2041 if (ParseOptionalAddrSpace(AddrSpace) || 2042 ParseToken(lltok::star, "expected '*' in address space")) 2043 return true; 2044 2045 Result = PointerType::get(Result, AddrSpace); 2046 break; 2047 } 2048 2049 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2050 case lltok::lparen: 2051 if (ParseFunctionType(Result)) 2052 return true; 2053 break; 2054 } 2055 } 2056 } 2057 2058 /// ParseParameterList 2059 /// ::= '(' ')' 2060 /// ::= '(' Arg (',' Arg)* ')' 2061 /// Arg 2062 /// ::= Type OptionalAttributes Value OptionalAttributes 2063 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2064 PerFunctionState &PFS, bool IsMustTailCall, 2065 bool InVarArgsFunc) { 2066 if (ParseToken(lltok::lparen, "expected '(' in call")) 2067 return true; 2068 2069 unsigned AttrIndex = 1; 2070 while (Lex.getKind() != lltok::rparen) { 2071 // If this isn't the first argument, we need a comma. 2072 if (!ArgList.empty() && 2073 ParseToken(lltok::comma, "expected ',' in argument list")) 2074 return true; 2075 2076 // Parse an ellipsis if this is a musttail call in a variadic function. 2077 if (Lex.getKind() == lltok::dotdotdot) { 2078 const char *Msg = "unexpected ellipsis in argument list for "; 2079 if (!IsMustTailCall) 2080 return TokError(Twine(Msg) + "non-musttail call"); 2081 if (!InVarArgsFunc) 2082 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2083 Lex.Lex(); // Lex the '...', it is purely for readability. 2084 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2085 } 2086 2087 // Parse the argument. 2088 LocTy ArgLoc; 2089 Type *ArgTy = nullptr; 2090 AttrBuilder ArgAttrs; 2091 Value *V; 2092 if (ParseType(ArgTy, ArgLoc)) 2093 return true; 2094 2095 if (ArgTy->isMetadataTy()) { 2096 if (ParseMetadataAsValue(V, PFS)) 2097 return true; 2098 } else { 2099 // Otherwise, handle normal operands. 2100 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2101 return true; 2102 } 2103 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 2104 AttrIndex++, 2105 ArgAttrs))); 2106 } 2107 2108 if (IsMustTailCall && InVarArgsFunc) 2109 return TokError("expected '...' at end of argument list for musttail call " 2110 "in varargs function"); 2111 2112 Lex.Lex(); // Lex the ')'. 2113 return false; 2114 } 2115 2116 /// ParseOptionalOperandBundles 2117 /// ::= /*empty*/ 2118 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2119 /// 2120 /// OperandBundle 2121 /// ::= bundle-tag '(' ')' 2122 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2123 /// 2124 /// bundle-tag ::= String Constant 2125 bool LLParser::ParseOptionalOperandBundles( 2126 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2127 LocTy BeginLoc = Lex.getLoc(); 2128 if (!EatIfPresent(lltok::lsquare)) 2129 return false; 2130 2131 while (Lex.getKind() != lltok::rsquare) { 2132 // If this isn't the first operand bundle, we need a comma. 2133 if (!BundleList.empty() && 2134 ParseToken(lltok::comma, "expected ',' in input list")) 2135 return true; 2136 2137 std::string Tag; 2138 if (ParseStringConstant(Tag)) 2139 return true; 2140 2141 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2142 return true; 2143 2144 std::vector<Value *> Inputs; 2145 while (Lex.getKind() != lltok::rparen) { 2146 // If this isn't the first input, we need a comma. 2147 if (!Inputs.empty() && 2148 ParseToken(lltok::comma, "expected ',' in input list")) 2149 return true; 2150 2151 Type *Ty = nullptr; 2152 Value *Input = nullptr; 2153 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2154 return true; 2155 Inputs.push_back(Input); 2156 } 2157 2158 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2159 2160 Lex.Lex(); // Lex the ')'. 2161 } 2162 2163 if (BundleList.empty()) 2164 return Error(BeginLoc, "operand bundle set must not be empty"); 2165 2166 Lex.Lex(); // Lex the ']'. 2167 return false; 2168 } 2169 2170 /// ParseArgumentList - Parse the argument list for a function type or function 2171 /// prototype. 2172 /// ::= '(' ArgTypeListI ')' 2173 /// ArgTypeListI 2174 /// ::= /*empty*/ 2175 /// ::= '...' 2176 /// ::= ArgTypeList ',' '...' 2177 /// ::= ArgType (',' ArgType)* 2178 /// 2179 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2180 bool &isVarArg){ 2181 isVarArg = false; 2182 assert(Lex.getKind() == lltok::lparen); 2183 Lex.Lex(); // eat the (. 2184 2185 if (Lex.getKind() == lltok::rparen) { 2186 // empty 2187 } else if (Lex.getKind() == lltok::dotdotdot) { 2188 isVarArg = true; 2189 Lex.Lex(); 2190 } else { 2191 LocTy TypeLoc = Lex.getLoc(); 2192 Type *ArgTy = nullptr; 2193 AttrBuilder Attrs; 2194 std::string Name; 2195 2196 if (ParseType(ArgTy) || 2197 ParseOptionalParamAttrs(Attrs)) return true; 2198 2199 if (ArgTy->isVoidTy()) 2200 return Error(TypeLoc, "argument can not have void type"); 2201 2202 if (Lex.getKind() == lltok::LocalVar) { 2203 Name = Lex.getStrVal(); 2204 Lex.Lex(); 2205 } 2206 2207 if (!FunctionType::isValidArgumentType(ArgTy)) 2208 return Error(TypeLoc, "invalid type for function argument"); 2209 2210 unsigned AttrIndex = 1; 2211 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2212 AttrIndex++, Attrs), 2213 std::move(Name)); 2214 2215 while (EatIfPresent(lltok::comma)) { 2216 // Handle ... at end of arg list. 2217 if (EatIfPresent(lltok::dotdotdot)) { 2218 isVarArg = true; 2219 break; 2220 } 2221 2222 // Otherwise must be an argument type. 2223 TypeLoc = Lex.getLoc(); 2224 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2225 2226 if (ArgTy->isVoidTy()) 2227 return Error(TypeLoc, "argument can not have void type"); 2228 2229 if (Lex.getKind() == lltok::LocalVar) { 2230 Name = Lex.getStrVal(); 2231 Lex.Lex(); 2232 } else { 2233 Name = ""; 2234 } 2235 2236 if (!ArgTy->isFirstClassType()) 2237 return Error(TypeLoc, "invalid type for function argument"); 2238 2239 ArgList.emplace_back( 2240 TypeLoc, ArgTy, 2241 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2242 std::move(Name)); 2243 } 2244 } 2245 2246 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2247 } 2248 2249 /// ParseFunctionType 2250 /// ::= Type ArgumentList OptionalAttrs 2251 bool LLParser::ParseFunctionType(Type *&Result) { 2252 assert(Lex.getKind() == lltok::lparen); 2253 2254 if (!FunctionType::isValidReturnType(Result)) 2255 return TokError("invalid function return type"); 2256 2257 SmallVector<ArgInfo, 8> ArgList; 2258 bool isVarArg; 2259 if (ParseArgumentList(ArgList, isVarArg)) 2260 return true; 2261 2262 // Reject names on the arguments lists. 2263 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2264 if (!ArgList[i].Name.empty()) 2265 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2266 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2267 return Error(ArgList[i].Loc, 2268 "argument attributes invalid in function type"); 2269 } 2270 2271 SmallVector<Type*, 16> ArgListTy; 2272 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2273 ArgListTy.push_back(ArgList[i].Ty); 2274 2275 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2276 return false; 2277 } 2278 2279 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2280 /// other structs. 2281 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2282 SmallVector<Type*, 8> Elts; 2283 if (ParseStructBody(Elts)) return true; 2284 2285 Result = StructType::get(Context, Elts, Packed); 2286 return false; 2287 } 2288 2289 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2290 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2291 std::pair<Type*, LocTy> &Entry, 2292 Type *&ResultTy) { 2293 // If the type was already defined, diagnose the redefinition. 2294 if (Entry.first && !Entry.second.isValid()) 2295 return Error(TypeLoc, "redefinition of type"); 2296 2297 // If we have opaque, just return without filling in the definition for the 2298 // struct. This counts as a definition as far as the .ll file goes. 2299 if (EatIfPresent(lltok::kw_opaque)) { 2300 // This type is being defined, so clear the location to indicate this. 2301 Entry.second = SMLoc(); 2302 2303 // If this type number has never been uttered, create it. 2304 if (!Entry.first) 2305 Entry.first = StructType::create(Context, Name); 2306 ResultTy = Entry.first; 2307 return false; 2308 } 2309 2310 // If the type starts with '<', then it is either a packed struct or a vector. 2311 bool isPacked = EatIfPresent(lltok::less); 2312 2313 // If we don't have a struct, then we have a random type alias, which we 2314 // accept for compatibility with old files. These types are not allowed to be 2315 // forward referenced and not allowed to be recursive. 2316 if (Lex.getKind() != lltok::lbrace) { 2317 if (Entry.first) 2318 return Error(TypeLoc, "forward references to non-struct type"); 2319 2320 ResultTy = nullptr; 2321 if (isPacked) 2322 return ParseArrayVectorType(ResultTy, true); 2323 return ParseType(ResultTy); 2324 } 2325 2326 // This type is being defined, so clear the location to indicate this. 2327 Entry.second = SMLoc(); 2328 2329 // If this type number has never been uttered, create it. 2330 if (!Entry.first) 2331 Entry.first = StructType::create(Context, Name); 2332 2333 StructType *STy = cast<StructType>(Entry.first); 2334 2335 SmallVector<Type*, 8> Body; 2336 if (ParseStructBody(Body) || 2337 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2338 return true; 2339 2340 STy->setBody(Body, isPacked); 2341 ResultTy = STy; 2342 return false; 2343 } 2344 2345 2346 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2347 /// StructType 2348 /// ::= '{' '}' 2349 /// ::= '{' Type (',' Type)* '}' 2350 /// ::= '<' '{' '}' '>' 2351 /// ::= '<' '{' Type (',' Type)* '}' '>' 2352 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2353 assert(Lex.getKind() == lltok::lbrace); 2354 Lex.Lex(); // Consume the '{' 2355 2356 // Handle the empty struct. 2357 if (EatIfPresent(lltok::rbrace)) 2358 return false; 2359 2360 LocTy EltTyLoc = Lex.getLoc(); 2361 Type *Ty = nullptr; 2362 if (ParseType(Ty)) return true; 2363 Body.push_back(Ty); 2364 2365 if (!StructType::isValidElementType(Ty)) 2366 return Error(EltTyLoc, "invalid element type for struct"); 2367 2368 while (EatIfPresent(lltok::comma)) { 2369 EltTyLoc = Lex.getLoc(); 2370 if (ParseType(Ty)) return true; 2371 2372 if (!StructType::isValidElementType(Ty)) 2373 return Error(EltTyLoc, "invalid element type for struct"); 2374 2375 Body.push_back(Ty); 2376 } 2377 2378 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2379 } 2380 2381 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2382 /// token has already been consumed. 2383 /// Type 2384 /// ::= '[' APSINTVAL 'x' Types ']' 2385 /// ::= '<' APSINTVAL 'x' Types '>' 2386 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2387 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2388 Lex.getAPSIntVal().getBitWidth() > 64) 2389 return TokError("expected number in address space"); 2390 2391 LocTy SizeLoc = Lex.getLoc(); 2392 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2393 Lex.Lex(); 2394 2395 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2396 return true; 2397 2398 LocTy TypeLoc = Lex.getLoc(); 2399 Type *EltTy = nullptr; 2400 if (ParseType(EltTy)) return true; 2401 2402 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2403 "expected end of sequential type")) 2404 return true; 2405 2406 if (isVector) { 2407 if (Size == 0) 2408 return Error(SizeLoc, "zero element vector is illegal"); 2409 if ((unsigned)Size != Size) 2410 return Error(SizeLoc, "size too large for vector"); 2411 if (!VectorType::isValidElementType(EltTy)) 2412 return Error(TypeLoc, "invalid vector element type"); 2413 Result = VectorType::get(EltTy, unsigned(Size)); 2414 } else { 2415 if (!ArrayType::isValidElementType(EltTy)) 2416 return Error(TypeLoc, "invalid array element type"); 2417 Result = ArrayType::get(EltTy, Size); 2418 } 2419 return false; 2420 } 2421 2422 //===----------------------------------------------------------------------===// 2423 // Function Semantic Analysis. 2424 //===----------------------------------------------------------------------===// 2425 2426 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2427 int functionNumber) 2428 : P(p), F(f), FunctionNumber(functionNumber) { 2429 2430 // Insert unnamed arguments into the NumberedVals list. 2431 for (Argument &A : F.args()) 2432 if (!A.hasName()) 2433 NumberedVals.push_back(&A); 2434 } 2435 2436 LLParser::PerFunctionState::~PerFunctionState() { 2437 // If there were any forward referenced non-basicblock values, delete them. 2438 2439 for (const auto &P : ForwardRefVals) { 2440 if (isa<BasicBlock>(P.second.first)) 2441 continue; 2442 P.second.first->replaceAllUsesWith( 2443 UndefValue::get(P.second.first->getType())); 2444 delete P.second.first; 2445 } 2446 2447 for (const auto &P : ForwardRefValIDs) { 2448 if (isa<BasicBlock>(P.second.first)) 2449 continue; 2450 P.second.first->replaceAllUsesWith( 2451 UndefValue::get(P.second.first->getType())); 2452 delete P.second.first; 2453 } 2454 } 2455 2456 bool LLParser::PerFunctionState::FinishFunction() { 2457 if (!ForwardRefVals.empty()) 2458 return P.Error(ForwardRefVals.begin()->second.second, 2459 "use of undefined value '%" + ForwardRefVals.begin()->first + 2460 "'"); 2461 if (!ForwardRefValIDs.empty()) 2462 return P.Error(ForwardRefValIDs.begin()->second.second, 2463 "use of undefined value '%" + 2464 Twine(ForwardRefValIDs.begin()->first) + "'"); 2465 return false; 2466 } 2467 2468 2469 /// GetVal - Get a value with the specified name or ID, creating a 2470 /// forward reference record if needed. This can return null if the value 2471 /// exists but does not have the right type. 2472 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2473 LocTy Loc) { 2474 // Look this name up in the normal function symbol table. 2475 Value *Val = F.getValueSymbolTable().lookup(Name); 2476 2477 // If this is a forward reference for the value, see if we already created a 2478 // forward ref record. 2479 if (!Val) { 2480 auto I = ForwardRefVals.find(Name); 2481 if (I != ForwardRefVals.end()) 2482 Val = I->second.first; 2483 } 2484 2485 // If we have the value in the symbol table or fwd-ref table, return it. 2486 if (Val) { 2487 if (Val->getType() == Ty) return Val; 2488 if (Ty->isLabelTy()) 2489 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2490 else 2491 P.Error(Loc, "'%" + Name + "' defined with type '" + 2492 getTypeString(Val->getType()) + "'"); 2493 return nullptr; 2494 } 2495 2496 // Don't make placeholders with invalid type. 2497 if (!Ty->isFirstClassType()) { 2498 P.Error(Loc, "invalid use of a non-first-class type"); 2499 return nullptr; 2500 } 2501 2502 // Otherwise, create a new forward reference for this value and remember it. 2503 Value *FwdVal; 2504 if (Ty->isLabelTy()) { 2505 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2506 } else { 2507 FwdVal = new Argument(Ty, Name); 2508 } 2509 2510 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2511 return FwdVal; 2512 } 2513 2514 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2515 // Look this name up in the normal function symbol table. 2516 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2517 2518 // If this is a forward reference for the value, see if we already created a 2519 // forward ref record. 2520 if (!Val) { 2521 auto I = ForwardRefValIDs.find(ID); 2522 if (I != ForwardRefValIDs.end()) 2523 Val = I->second.first; 2524 } 2525 2526 // If we have the value in the symbol table or fwd-ref table, return it. 2527 if (Val) { 2528 if (Val->getType() == Ty) return Val; 2529 if (Ty->isLabelTy()) 2530 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2531 else 2532 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2533 getTypeString(Val->getType()) + "'"); 2534 return nullptr; 2535 } 2536 2537 if (!Ty->isFirstClassType()) { 2538 P.Error(Loc, "invalid use of a non-first-class type"); 2539 return nullptr; 2540 } 2541 2542 // Otherwise, create a new forward reference for this value and remember it. 2543 Value *FwdVal; 2544 if (Ty->isLabelTy()) { 2545 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2546 } else { 2547 FwdVal = new Argument(Ty); 2548 } 2549 2550 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2551 return FwdVal; 2552 } 2553 2554 /// SetInstName - After an instruction is parsed and inserted into its 2555 /// basic block, this installs its name. 2556 bool LLParser::PerFunctionState::SetInstName(int NameID, 2557 const std::string &NameStr, 2558 LocTy NameLoc, Instruction *Inst) { 2559 // If this instruction has void type, it cannot have a name or ID specified. 2560 if (Inst->getType()->isVoidTy()) { 2561 if (NameID != -1 || !NameStr.empty()) 2562 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2563 return false; 2564 } 2565 2566 // If this was a numbered instruction, verify that the instruction is the 2567 // expected value and resolve any forward references. 2568 if (NameStr.empty()) { 2569 // If neither a name nor an ID was specified, just use the next ID. 2570 if (NameID == -1) 2571 NameID = NumberedVals.size(); 2572 2573 if (unsigned(NameID) != NumberedVals.size()) 2574 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2575 Twine(NumberedVals.size()) + "'"); 2576 2577 auto FI = ForwardRefValIDs.find(NameID); 2578 if (FI != ForwardRefValIDs.end()) { 2579 Value *Sentinel = FI->second.first; 2580 if (Sentinel->getType() != Inst->getType()) 2581 return P.Error(NameLoc, "instruction forward referenced with type '" + 2582 getTypeString(FI->second.first->getType()) + "'"); 2583 2584 Sentinel->replaceAllUsesWith(Inst); 2585 delete Sentinel; 2586 ForwardRefValIDs.erase(FI); 2587 } 2588 2589 NumberedVals.push_back(Inst); 2590 return false; 2591 } 2592 2593 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2594 auto FI = ForwardRefVals.find(NameStr); 2595 if (FI != ForwardRefVals.end()) { 2596 Value *Sentinel = FI->second.first; 2597 if (Sentinel->getType() != Inst->getType()) 2598 return P.Error(NameLoc, "instruction forward referenced with type '" + 2599 getTypeString(FI->second.first->getType()) + "'"); 2600 2601 Sentinel->replaceAllUsesWith(Inst); 2602 delete Sentinel; 2603 ForwardRefVals.erase(FI); 2604 } 2605 2606 // Set the name on the instruction. 2607 Inst->setName(NameStr); 2608 2609 if (Inst->getName() != NameStr) 2610 return P.Error(NameLoc, "multiple definition of local value named '" + 2611 NameStr + "'"); 2612 return false; 2613 } 2614 2615 /// GetBB - Get a basic block with the specified name or ID, creating a 2616 /// forward reference record if needed. 2617 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2618 LocTy Loc) { 2619 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2620 Type::getLabelTy(F.getContext()), Loc)); 2621 } 2622 2623 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2624 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2625 Type::getLabelTy(F.getContext()), Loc)); 2626 } 2627 2628 /// DefineBB - Define the specified basic block, which is either named or 2629 /// unnamed. If there is an error, this returns null otherwise it returns 2630 /// the block being defined. 2631 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2632 LocTy Loc) { 2633 BasicBlock *BB; 2634 if (Name.empty()) 2635 BB = GetBB(NumberedVals.size(), Loc); 2636 else 2637 BB = GetBB(Name, Loc); 2638 if (!BB) return nullptr; // Already diagnosed error. 2639 2640 // Move the block to the end of the function. Forward ref'd blocks are 2641 // inserted wherever they happen to be referenced. 2642 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2643 2644 // Remove the block from forward ref sets. 2645 if (Name.empty()) { 2646 ForwardRefValIDs.erase(NumberedVals.size()); 2647 NumberedVals.push_back(BB); 2648 } else { 2649 // BB forward references are already in the function symbol table. 2650 ForwardRefVals.erase(Name); 2651 } 2652 2653 return BB; 2654 } 2655 2656 //===----------------------------------------------------------------------===// 2657 // Constants. 2658 //===----------------------------------------------------------------------===// 2659 2660 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2661 /// type implied. For example, if we parse "4" we don't know what integer type 2662 /// it has. The value will later be combined with its type and checked for 2663 /// sanity. PFS is used to convert function-local operands of metadata (since 2664 /// metadata operands are not just parsed here but also converted to values). 2665 /// PFS can be null when we are not parsing metadata values inside a function. 2666 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2667 ID.Loc = Lex.getLoc(); 2668 switch (Lex.getKind()) { 2669 default: return TokError("expected value token"); 2670 case lltok::GlobalID: // @42 2671 ID.UIntVal = Lex.getUIntVal(); 2672 ID.Kind = ValID::t_GlobalID; 2673 break; 2674 case lltok::GlobalVar: // @foo 2675 ID.StrVal = Lex.getStrVal(); 2676 ID.Kind = ValID::t_GlobalName; 2677 break; 2678 case lltok::LocalVarID: // %42 2679 ID.UIntVal = Lex.getUIntVal(); 2680 ID.Kind = ValID::t_LocalID; 2681 break; 2682 case lltok::LocalVar: // %foo 2683 ID.StrVal = Lex.getStrVal(); 2684 ID.Kind = ValID::t_LocalName; 2685 break; 2686 case lltok::APSInt: 2687 ID.APSIntVal = Lex.getAPSIntVal(); 2688 ID.Kind = ValID::t_APSInt; 2689 break; 2690 case lltok::APFloat: 2691 ID.APFloatVal = Lex.getAPFloatVal(); 2692 ID.Kind = ValID::t_APFloat; 2693 break; 2694 case lltok::kw_true: 2695 ID.ConstantVal = ConstantInt::getTrue(Context); 2696 ID.Kind = ValID::t_Constant; 2697 break; 2698 case lltok::kw_false: 2699 ID.ConstantVal = ConstantInt::getFalse(Context); 2700 ID.Kind = ValID::t_Constant; 2701 break; 2702 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2703 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2704 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2705 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2706 2707 case lltok::lbrace: { 2708 // ValID ::= '{' ConstVector '}' 2709 Lex.Lex(); 2710 SmallVector<Constant*, 16> Elts; 2711 if (ParseGlobalValueVector(Elts) || 2712 ParseToken(lltok::rbrace, "expected end of struct constant")) 2713 return true; 2714 2715 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2716 ID.UIntVal = Elts.size(); 2717 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2718 Elts.size() * sizeof(Elts[0])); 2719 ID.Kind = ValID::t_ConstantStruct; 2720 return false; 2721 } 2722 case lltok::less: { 2723 // ValID ::= '<' ConstVector '>' --> Vector. 2724 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2725 Lex.Lex(); 2726 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2727 2728 SmallVector<Constant*, 16> Elts; 2729 LocTy FirstEltLoc = Lex.getLoc(); 2730 if (ParseGlobalValueVector(Elts) || 2731 (isPackedStruct && 2732 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2733 ParseToken(lltok::greater, "expected end of constant")) 2734 return true; 2735 2736 if (isPackedStruct) { 2737 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2738 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2739 Elts.size() * sizeof(Elts[0])); 2740 ID.UIntVal = Elts.size(); 2741 ID.Kind = ValID::t_PackedConstantStruct; 2742 return false; 2743 } 2744 2745 if (Elts.empty()) 2746 return Error(ID.Loc, "constant vector must not be empty"); 2747 2748 if (!Elts[0]->getType()->isIntegerTy() && 2749 !Elts[0]->getType()->isFloatingPointTy() && 2750 !Elts[0]->getType()->isPointerTy()) 2751 return Error(FirstEltLoc, 2752 "vector elements must have integer, pointer or floating point type"); 2753 2754 // Verify that all the vector elements have the same type. 2755 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2756 if (Elts[i]->getType() != Elts[0]->getType()) 2757 return Error(FirstEltLoc, 2758 "vector element #" + Twine(i) + 2759 " is not of type '" + getTypeString(Elts[0]->getType())); 2760 2761 ID.ConstantVal = ConstantVector::get(Elts); 2762 ID.Kind = ValID::t_Constant; 2763 return false; 2764 } 2765 case lltok::lsquare: { // Array Constant 2766 Lex.Lex(); 2767 SmallVector<Constant*, 16> Elts; 2768 LocTy FirstEltLoc = Lex.getLoc(); 2769 if (ParseGlobalValueVector(Elts) || 2770 ParseToken(lltok::rsquare, "expected end of array constant")) 2771 return true; 2772 2773 // Handle empty element. 2774 if (Elts.empty()) { 2775 // Use undef instead of an array because it's inconvenient to determine 2776 // the element type at this point, there being no elements to examine. 2777 ID.Kind = ValID::t_EmptyArray; 2778 return false; 2779 } 2780 2781 if (!Elts[0]->getType()->isFirstClassType()) 2782 return Error(FirstEltLoc, "invalid array element type: " + 2783 getTypeString(Elts[0]->getType())); 2784 2785 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2786 2787 // Verify all elements are correct type! 2788 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2789 if (Elts[i]->getType() != Elts[0]->getType()) 2790 return Error(FirstEltLoc, 2791 "array element #" + Twine(i) + 2792 " is not of type '" + getTypeString(Elts[0]->getType())); 2793 } 2794 2795 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2796 ID.Kind = ValID::t_Constant; 2797 return false; 2798 } 2799 case lltok::kw_c: // c "foo" 2800 Lex.Lex(); 2801 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2802 false); 2803 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2804 ID.Kind = ValID::t_Constant; 2805 return false; 2806 2807 case lltok::kw_asm: { 2808 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2809 // STRINGCONSTANT 2810 bool HasSideEffect, AlignStack, AsmDialect; 2811 Lex.Lex(); 2812 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2813 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2814 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2815 ParseStringConstant(ID.StrVal) || 2816 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2817 ParseToken(lltok::StringConstant, "expected constraint string")) 2818 return true; 2819 ID.StrVal2 = Lex.getStrVal(); 2820 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2821 (unsigned(AsmDialect)<<2); 2822 ID.Kind = ValID::t_InlineAsm; 2823 return false; 2824 } 2825 2826 case lltok::kw_blockaddress: { 2827 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2828 Lex.Lex(); 2829 2830 ValID Fn, Label; 2831 2832 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2833 ParseValID(Fn) || 2834 ParseToken(lltok::comma, "expected comma in block address expression")|| 2835 ParseValID(Label) || 2836 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2837 return true; 2838 2839 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2840 return Error(Fn.Loc, "expected function name in blockaddress"); 2841 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2842 return Error(Label.Loc, "expected basic block name in blockaddress"); 2843 2844 // Try to find the function (but skip it if it's forward-referenced). 2845 GlobalValue *GV = nullptr; 2846 if (Fn.Kind == ValID::t_GlobalID) { 2847 if (Fn.UIntVal < NumberedVals.size()) 2848 GV = NumberedVals[Fn.UIntVal]; 2849 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2850 GV = M->getNamedValue(Fn.StrVal); 2851 } 2852 Function *F = nullptr; 2853 if (GV) { 2854 // Confirm that it's actually a function with a definition. 2855 if (!isa<Function>(GV)) 2856 return Error(Fn.Loc, "expected function name in blockaddress"); 2857 F = cast<Function>(GV); 2858 if (F->isDeclaration()) 2859 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2860 } 2861 2862 if (!F) { 2863 // Make a global variable as a placeholder for this reference. 2864 GlobalValue *&FwdRef = 2865 ForwardRefBlockAddresses.insert(std::make_pair( 2866 std::move(Fn), 2867 std::map<ValID, GlobalValue *>())) 2868 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2869 .first->second; 2870 if (!FwdRef) 2871 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2872 GlobalValue::InternalLinkage, nullptr, ""); 2873 ID.ConstantVal = FwdRef; 2874 ID.Kind = ValID::t_Constant; 2875 return false; 2876 } 2877 2878 // We found the function; now find the basic block. Don't use PFS, since we 2879 // might be inside a constant expression. 2880 BasicBlock *BB; 2881 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2882 if (Label.Kind == ValID::t_LocalID) 2883 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2884 else 2885 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2886 if (!BB) 2887 return Error(Label.Loc, "referenced value is not a basic block"); 2888 } else { 2889 if (Label.Kind == ValID::t_LocalID) 2890 return Error(Label.Loc, "cannot take address of numeric label after " 2891 "the function is defined"); 2892 BB = dyn_cast_or_null<BasicBlock>( 2893 F->getValueSymbolTable().lookup(Label.StrVal)); 2894 if (!BB) 2895 return Error(Label.Loc, "referenced value is not a basic block"); 2896 } 2897 2898 ID.ConstantVal = BlockAddress::get(F, BB); 2899 ID.Kind = ValID::t_Constant; 2900 return false; 2901 } 2902 2903 case lltok::kw_trunc: 2904 case lltok::kw_zext: 2905 case lltok::kw_sext: 2906 case lltok::kw_fptrunc: 2907 case lltok::kw_fpext: 2908 case lltok::kw_bitcast: 2909 case lltok::kw_addrspacecast: 2910 case lltok::kw_uitofp: 2911 case lltok::kw_sitofp: 2912 case lltok::kw_fptoui: 2913 case lltok::kw_fptosi: 2914 case lltok::kw_inttoptr: 2915 case lltok::kw_ptrtoint: { 2916 unsigned Opc = Lex.getUIntVal(); 2917 Type *DestTy = nullptr; 2918 Constant *SrcVal; 2919 Lex.Lex(); 2920 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2921 ParseGlobalTypeAndValue(SrcVal) || 2922 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2923 ParseType(DestTy) || 2924 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2925 return true; 2926 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2927 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2928 getTypeString(SrcVal->getType()) + "' to '" + 2929 getTypeString(DestTy) + "'"); 2930 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2931 SrcVal, DestTy); 2932 ID.Kind = ValID::t_Constant; 2933 return false; 2934 } 2935 case lltok::kw_extractvalue: { 2936 Lex.Lex(); 2937 Constant *Val; 2938 SmallVector<unsigned, 4> Indices; 2939 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2940 ParseGlobalTypeAndValue(Val) || 2941 ParseIndexList(Indices) || 2942 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2943 return true; 2944 2945 if (!Val->getType()->isAggregateType()) 2946 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2947 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2948 return Error(ID.Loc, "invalid indices for extractvalue"); 2949 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2950 ID.Kind = ValID::t_Constant; 2951 return false; 2952 } 2953 case lltok::kw_insertvalue: { 2954 Lex.Lex(); 2955 Constant *Val0, *Val1; 2956 SmallVector<unsigned, 4> Indices; 2957 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2958 ParseGlobalTypeAndValue(Val0) || 2959 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2960 ParseGlobalTypeAndValue(Val1) || 2961 ParseIndexList(Indices) || 2962 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2963 return true; 2964 if (!Val0->getType()->isAggregateType()) 2965 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2966 Type *IndexedType = 2967 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2968 if (!IndexedType) 2969 return Error(ID.Loc, "invalid indices for insertvalue"); 2970 if (IndexedType != Val1->getType()) 2971 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2972 getTypeString(Val1->getType()) + 2973 "' instead of '" + getTypeString(IndexedType) + 2974 "'"); 2975 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2976 ID.Kind = ValID::t_Constant; 2977 return false; 2978 } 2979 case lltok::kw_icmp: 2980 case lltok::kw_fcmp: { 2981 unsigned PredVal, Opc = Lex.getUIntVal(); 2982 Constant *Val0, *Val1; 2983 Lex.Lex(); 2984 if (ParseCmpPredicate(PredVal, Opc) || 2985 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2986 ParseGlobalTypeAndValue(Val0) || 2987 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2988 ParseGlobalTypeAndValue(Val1) || 2989 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2990 return true; 2991 2992 if (Val0->getType() != Val1->getType()) 2993 return Error(ID.Loc, "compare operands must have the same type"); 2994 2995 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2996 2997 if (Opc == Instruction::FCmp) { 2998 if (!Val0->getType()->isFPOrFPVectorTy()) 2999 return Error(ID.Loc, "fcmp requires floating point operands"); 3000 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3001 } else { 3002 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3003 if (!Val0->getType()->isIntOrIntVectorTy() && 3004 !Val0->getType()->getScalarType()->isPointerTy()) 3005 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3006 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3007 } 3008 ID.Kind = ValID::t_Constant; 3009 return false; 3010 } 3011 3012 // Binary Operators. 3013 case lltok::kw_add: 3014 case lltok::kw_fadd: 3015 case lltok::kw_sub: 3016 case lltok::kw_fsub: 3017 case lltok::kw_mul: 3018 case lltok::kw_fmul: 3019 case lltok::kw_udiv: 3020 case lltok::kw_sdiv: 3021 case lltok::kw_fdiv: 3022 case lltok::kw_urem: 3023 case lltok::kw_srem: 3024 case lltok::kw_frem: 3025 case lltok::kw_shl: 3026 case lltok::kw_lshr: 3027 case lltok::kw_ashr: { 3028 bool NUW = false; 3029 bool NSW = false; 3030 bool Exact = false; 3031 unsigned Opc = Lex.getUIntVal(); 3032 Constant *Val0, *Val1; 3033 Lex.Lex(); 3034 LocTy ModifierLoc = Lex.getLoc(); 3035 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3036 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3037 if (EatIfPresent(lltok::kw_nuw)) 3038 NUW = true; 3039 if (EatIfPresent(lltok::kw_nsw)) { 3040 NSW = true; 3041 if (EatIfPresent(lltok::kw_nuw)) 3042 NUW = true; 3043 } 3044 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3045 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3046 if (EatIfPresent(lltok::kw_exact)) 3047 Exact = true; 3048 } 3049 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3050 ParseGlobalTypeAndValue(Val0) || 3051 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3052 ParseGlobalTypeAndValue(Val1) || 3053 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3054 return true; 3055 if (Val0->getType() != Val1->getType()) 3056 return Error(ID.Loc, "operands of constexpr must have same type"); 3057 if (!Val0->getType()->isIntOrIntVectorTy()) { 3058 if (NUW) 3059 return Error(ModifierLoc, "nuw only applies to integer operations"); 3060 if (NSW) 3061 return Error(ModifierLoc, "nsw only applies to integer operations"); 3062 } 3063 // Check that the type is valid for the operator. 3064 switch (Opc) { 3065 case Instruction::Add: 3066 case Instruction::Sub: 3067 case Instruction::Mul: 3068 case Instruction::UDiv: 3069 case Instruction::SDiv: 3070 case Instruction::URem: 3071 case Instruction::SRem: 3072 case Instruction::Shl: 3073 case Instruction::AShr: 3074 case Instruction::LShr: 3075 if (!Val0->getType()->isIntOrIntVectorTy()) 3076 return Error(ID.Loc, "constexpr requires integer operands"); 3077 break; 3078 case Instruction::FAdd: 3079 case Instruction::FSub: 3080 case Instruction::FMul: 3081 case Instruction::FDiv: 3082 case Instruction::FRem: 3083 if (!Val0->getType()->isFPOrFPVectorTy()) 3084 return Error(ID.Loc, "constexpr requires fp operands"); 3085 break; 3086 default: llvm_unreachable("Unknown binary operator!"); 3087 } 3088 unsigned Flags = 0; 3089 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3090 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3091 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3092 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3093 ID.ConstantVal = C; 3094 ID.Kind = ValID::t_Constant; 3095 return false; 3096 } 3097 3098 // Logical Operations 3099 case lltok::kw_and: 3100 case lltok::kw_or: 3101 case lltok::kw_xor: { 3102 unsigned Opc = Lex.getUIntVal(); 3103 Constant *Val0, *Val1; 3104 Lex.Lex(); 3105 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3106 ParseGlobalTypeAndValue(Val0) || 3107 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3108 ParseGlobalTypeAndValue(Val1) || 3109 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3110 return true; 3111 if (Val0->getType() != Val1->getType()) 3112 return Error(ID.Loc, "operands of constexpr must have same type"); 3113 if (!Val0->getType()->isIntOrIntVectorTy()) 3114 return Error(ID.Loc, 3115 "constexpr requires integer or integer vector operands"); 3116 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3117 ID.Kind = ValID::t_Constant; 3118 return false; 3119 } 3120 3121 case lltok::kw_getelementptr: 3122 case lltok::kw_shufflevector: 3123 case lltok::kw_insertelement: 3124 case lltok::kw_extractelement: 3125 case lltok::kw_select: { 3126 unsigned Opc = Lex.getUIntVal(); 3127 SmallVector<Constant*, 16> Elts; 3128 bool InBounds = false; 3129 Type *Ty; 3130 Lex.Lex(); 3131 3132 if (Opc == Instruction::GetElementPtr) 3133 InBounds = EatIfPresent(lltok::kw_inbounds); 3134 3135 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3136 return true; 3137 3138 LocTy ExplicitTypeLoc = Lex.getLoc(); 3139 if (Opc == Instruction::GetElementPtr) { 3140 if (ParseType(Ty) || 3141 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3142 return true; 3143 } 3144 3145 if (ParseGlobalValueVector(Elts) || 3146 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3147 return true; 3148 3149 if (Opc == Instruction::GetElementPtr) { 3150 if (Elts.size() == 0 || 3151 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3152 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3153 3154 Type *BaseType = Elts[0]->getType(); 3155 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3156 if (Ty != BasePointerType->getElementType()) 3157 return Error( 3158 ExplicitTypeLoc, 3159 "explicit pointee type doesn't match operand's pointee type"); 3160 3161 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3162 for (Constant *Val : Indices) { 3163 Type *ValTy = Val->getType(); 3164 if (!ValTy->getScalarType()->isIntegerTy()) 3165 return Error(ID.Loc, "getelementptr index must be an integer"); 3166 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3167 return Error(ID.Loc, "getelementptr index type missmatch"); 3168 if (ValTy->isVectorTy()) { 3169 unsigned ValNumEl = ValTy->getVectorNumElements(); 3170 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3171 if (ValNumEl != PtrNumEl) 3172 return Error( 3173 ID.Loc, 3174 "getelementptr vector index has a wrong number of elements"); 3175 } 3176 } 3177 3178 SmallPtrSet<Type*, 4> Visited; 3179 if (!Indices.empty() && !Ty->isSized(&Visited)) 3180 return Error(ID.Loc, "base element of getelementptr must be sized"); 3181 3182 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3183 return Error(ID.Loc, "invalid getelementptr indices"); 3184 ID.ConstantVal = 3185 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3186 } else if (Opc == Instruction::Select) { 3187 if (Elts.size() != 3) 3188 return Error(ID.Loc, "expected three operands to select"); 3189 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3190 Elts[2])) 3191 return Error(ID.Loc, Reason); 3192 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3193 } else if (Opc == Instruction::ShuffleVector) { 3194 if (Elts.size() != 3) 3195 return Error(ID.Loc, "expected three operands to shufflevector"); 3196 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3197 return Error(ID.Loc, "invalid operands to shufflevector"); 3198 ID.ConstantVal = 3199 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3200 } else if (Opc == Instruction::ExtractElement) { 3201 if (Elts.size() != 2) 3202 return Error(ID.Loc, "expected two operands to extractelement"); 3203 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3204 return Error(ID.Loc, "invalid extractelement operands"); 3205 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3206 } else { 3207 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3208 if (Elts.size() != 3) 3209 return Error(ID.Loc, "expected three operands to insertelement"); 3210 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3211 return Error(ID.Loc, "invalid insertelement operands"); 3212 ID.ConstantVal = 3213 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3214 } 3215 3216 ID.Kind = ValID::t_Constant; 3217 return false; 3218 } 3219 } 3220 3221 Lex.Lex(); 3222 return false; 3223 } 3224 3225 /// ParseGlobalValue - Parse a global value with the specified type. 3226 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3227 C = nullptr; 3228 ValID ID; 3229 Value *V = nullptr; 3230 bool Parsed = ParseValID(ID) || 3231 ConvertValIDToValue(Ty, ID, V, nullptr); 3232 if (V && !(C = dyn_cast<Constant>(V))) 3233 return Error(ID.Loc, "global values must be constants"); 3234 return Parsed; 3235 } 3236 3237 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3238 Type *Ty = nullptr; 3239 return ParseType(Ty) || 3240 ParseGlobalValue(Ty, V); 3241 } 3242 3243 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3244 C = nullptr; 3245 3246 LocTy KwLoc = Lex.getLoc(); 3247 if (!EatIfPresent(lltok::kw_comdat)) 3248 return false; 3249 3250 if (EatIfPresent(lltok::lparen)) { 3251 if (Lex.getKind() != lltok::ComdatVar) 3252 return TokError("expected comdat variable"); 3253 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3254 Lex.Lex(); 3255 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3256 return true; 3257 } else { 3258 if (GlobalName.empty()) 3259 return TokError("comdat cannot be unnamed"); 3260 C = getComdat(GlobalName, KwLoc); 3261 } 3262 3263 return false; 3264 } 3265 3266 /// ParseGlobalValueVector 3267 /// ::= /*empty*/ 3268 /// ::= TypeAndValue (',' TypeAndValue)* 3269 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3270 // Empty list. 3271 if (Lex.getKind() == lltok::rbrace || 3272 Lex.getKind() == lltok::rsquare || 3273 Lex.getKind() == lltok::greater || 3274 Lex.getKind() == lltok::rparen) 3275 return false; 3276 3277 Constant *C; 3278 if (ParseGlobalTypeAndValue(C)) return true; 3279 Elts.push_back(C); 3280 3281 while (EatIfPresent(lltok::comma)) { 3282 if (ParseGlobalTypeAndValue(C)) return true; 3283 Elts.push_back(C); 3284 } 3285 3286 return false; 3287 } 3288 3289 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3290 SmallVector<Metadata *, 16> Elts; 3291 if (ParseMDNodeVector(Elts)) 3292 return true; 3293 3294 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3295 return false; 3296 } 3297 3298 /// MDNode: 3299 /// ::= !{ ... } 3300 /// ::= !7 3301 /// ::= !DILocation(...) 3302 bool LLParser::ParseMDNode(MDNode *&N) { 3303 if (Lex.getKind() == lltok::MetadataVar) 3304 return ParseSpecializedMDNode(N); 3305 3306 return ParseToken(lltok::exclaim, "expected '!' here") || 3307 ParseMDNodeTail(N); 3308 } 3309 3310 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3311 // !{ ... } 3312 if (Lex.getKind() == lltok::lbrace) 3313 return ParseMDTuple(N); 3314 3315 // !42 3316 return ParseMDNodeID(N); 3317 } 3318 3319 namespace { 3320 3321 /// Structure to represent an optional metadata field. 3322 template <class FieldTy> struct MDFieldImpl { 3323 typedef MDFieldImpl ImplTy; 3324 FieldTy Val; 3325 bool Seen; 3326 3327 void assign(FieldTy Val) { 3328 Seen = true; 3329 this->Val = std::move(Val); 3330 } 3331 3332 explicit MDFieldImpl(FieldTy Default) 3333 : Val(std::move(Default)), Seen(false) {} 3334 }; 3335 3336 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3337 uint64_t Max; 3338 3339 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3340 : ImplTy(Default), Max(Max) {} 3341 }; 3342 struct LineField : public MDUnsignedField { 3343 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3344 }; 3345 struct ColumnField : public MDUnsignedField { 3346 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3347 }; 3348 struct DwarfTagField : public MDUnsignedField { 3349 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3350 DwarfTagField(dwarf::Tag DefaultTag) 3351 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3352 }; 3353 struct DwarfMacinfoTypeField : public MDUnsignedField { 3354 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3355 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3356 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3357 }; 3358 struct DwarfAttEncodingField : public MDUnsignedField { 3359 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3360 }; 3361 struct DwarfVirtualityField : public MDUnsignedField { 3362 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3363 }; 3364 struct DwarfLangField : public MDUnsignedField { 3365 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3366 }; 3367 struct DwarfCCField : public MDUnsignedField { 3368 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3369 }; 3370 struct EmissionKindField : public MDUnsignedField { 3371 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3372 }; 3373 3374 struct DIFlagField : public MDUnsignedField { 3375 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3376 }; 3377 3378 struct MDSignedField : public MDFieldImpl<int64_t> { 3379 int64_t Min; 3380 int64_t Max; 3381 3382 MDSignedField(int64_t Default = 0) 3383 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3384 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3385 : ImplTy(Default), Min(Min), Max(Max) {} 3386 }; 3387 3388 struct MDBoolField : public MDFieldImpl<bool> { 3389 MDBoolField(bool Default = false) : ImplTy(Default) {} 3390 }; 3391 struct MDField : public MDFieldImpl<Metadata *> { 3392 bool AllowNull; 3393 3394 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3395 }; 3396 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3397 MDConstant() : ImplTy(nullptr) {} 3398 }; 3399 struct MDStringField : public MDFieldImpl<MDString *> { 3400 bool AllowEmpty; 3401 MDStringField(bool AllowEmpty = true) 3402 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3403 }; 3404 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3405 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3406 }; 3407 3408 } // end namespace 3409 3410 namespace llvm { 3411 3412 template <> 3413 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3414 MDUnsignedField &Result) { 3415 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3416 return TokError("expected unsigned integer"); 3417 3418 auto &U = Lex.getAPSIntVal(); 3419 if (U.ugt(Result.Max)) 3420 return TokError("value for '" + Name + "' too large, limit is " + 3421 Twine(Result.Max)); 3422 Result.assign(U.getZExtValue()); 3423 assert(Result.Val <= Result.Max && "Expected value in range"); 3424 Lex.Lex(); 3425 return false; 3426 } 3427 3428 template <> 3429 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3430 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3431 } 3432 template <> 3433 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3434 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3435 } 3436 3437 template <> 3438 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3439 if (Lex.getKind() == lltok::APSInt) 3440 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3441 3442 if (Lex.getKind() != lltok::DwarfTag) 3443 return TokError("expected DWARF tag"); 3444 3445 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3446 if (Tag == dwarf::DW_TAG_invalid) 3447 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3448 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3449 3450 Result.assign(Tag); 3451 Lex.Lex(); 3452 return false; 3453 } 3454 3455 template <> 3456 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3457 DwarfMacinfoTypeField &Result) { 3458 if (Lex.getKind() == lltok::APSInt) 3459 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3460 3461 if (Lex.getKind() != lltok::DwarfMacinfo) 3462 return TokError("expected DWARF macinfo type"); 3463 3464 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3465 if (Macinfo == dwarf::DW_MACINFO_invalid) 3466 return TokError( 3467 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3468 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3469 3470 Result.assign(Macinfo); 3471 Lex.Lex(); 3472 return false; 3473 } 3474 3475 template <> 3476 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3477 DwarfVirtualityField &Result) { 3478 if (Lex.getKind() == lltok::APSInt) 3479 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3480 3481 if (Lex.getKind() != lltok::DwarfVirtuality) 3482 return TokError("expected DWARF virtuality code"); 3483 3484 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3485 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3486 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3487 Lex.getStrVal() + "'"); 3488 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3489 Result.assign(Virtuality); 3490 Lex.Lex(); 3491 return false; 3492 } 3493 3494 template <> 3495 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3496 if (Lex.getKind() == lltok::APSInt) 3497 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3498 3499 if (Lex.getKind() != lltok::DwarfLang) 3500 return TokError("expected DWARF language"); 3501 3502 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3503 if (!Lang) 3504 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3505 "'"); 3506 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3507 Result.assign(Lang); 3508 Lex.Lex(); 3509 return false; 3510 } 3511 3512 template <> 3513 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3514 if (Lex.getKind() == lltok::APSInt) 3515 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3516 3517 if (Lex.getKind() != lltok::DwarfCC) 3518 return TokError("expected DWARF calling convention"); 3519 3520 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3521 if (!CC) 3522 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3523 "'"); 3524 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3525 Result.assign(CC); 3526 Lex.Lex(); 3527 return false; 3528 } 3529 3530 template <> 3531 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3532 if (Lex.getKind() == lltok::APSInt) 3533 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3534 3535 if (Lex.getKind() != lltok::EmissionKind) 3536 return TokError("expected emission kind"); 3537 3538 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3539 if (!Kind) 3540 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3541 "'"); 3542 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3543 Result.assign(*Kind); 3544 Lex.Lex(); 3545 return false; 3546 } 3547 3548 template <> 3549 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3550 DwarfAttEncodingField &Result) { 3551 if (Lex.getKind() == lltok::APSInt) 3552 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3553 3554 if (Lex.getKind() != lltok::DwarfAttEncoding) 3555 return TokError("expected DWARF type attribute encoding"); 3556 3557 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3558 if (!Encoding) 3559 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3560 Lex.getStrVal() + "'"); 3561 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3562 Result.assign(Encoding); 3563 Lex.Lex(); 3564 return false; 3565 } 3566 3567 /// DIFlagField 3568 /// ::= uint32 3569 /// ::= DIFlagVector 3570 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3571 template <> 3572 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3573 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3574 3575 // Parser for a single flag. 3576 auto parseFlag = [&](unsigned &Val) { 3577 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3578 return ParseUInt32(Val); 3579 3580 if (Lex.getKind() != lltok::DIFlag) 3581 return TokError("expected debug info flag"); 3582 3583 Val = DINode::getFlag(Lex.getStrVal()); 3584 if (!Val) 3585 return TokError(Twine("invalid debug info flag flag '") + 3586 Lex.getStrVal() + "'"); 3587 Lex.Lex(); 3588 return false; 3589 }; 3590 3591 // Parse the flags and combine them together. 3592 unsigned Combined = 0; 3593 do { 3594 unsigned Val; 3595 if (parseFlag(Val)) 3596 return true; 3597 Combined |= Val; 3598 } while (EatIfPresent(lltok::bar)); 3599 3600 Result.assign(Combined); 3601 return false; 3602 } 3603 3604 template <> 3605 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3606 MDSignedField &Result) { 3607 if (Lex.getKind() != lltok::APSInt) 3608 return TokError("expected signed integer"); 3609 3610 auto &S = Lex.getAPSIntVal(); 3611 if (S < Result.Min) 3612 return TokError("value for '" + Name + "' too small, limit is " + 3613 Twine(Result.Min)); 3614 if (S > Result.Max) 3615 return TokError("value for '" + Name + "' too large, limit is " + 3616 Twine(Result.Max)); 3617 Result.assign(S.getExtValue()); 3618 assert(Result.Val >= Result.Min && "Expected value in range"); 3619 assert(Result.Val <= Result.Max && "Expected value in range"); 3620 Lex.Lex(); 3621 return false; 3622 } 3623 3624 template <> 3625 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3626 switch (Lex.getKind()) { 3627 default: 3628 return TokError("expected 'true' or 'false'"); 3629 case lltok::kw_true: 3630 Result.assign(true); 3631 break; 3632 case lltok::kw_false: 3633 Result.assign(false); 3634 break; 3635 } 3636 Lex.Lex(); 3637 return false; 3638 } 3639 3640 template <> 3641 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3642 if (Lex.getKind() == lltok::kw_null) { 3643 if (!Result.AllowNull) 3644 return TokError("'" + Name + "' cannot be null"); 3645 Lex.Lex(); 3646 Result.assign(nullptr); 3647 return false; 3648 } 3649 3650 Metadata *MD; 3651 if (ParseMetadata(MD, nullptr)) 3652 return true; 3653 3654 Result.assign(MD); 3655 return false; 3656 } 3657 3658 template <> 3659 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3660 Metadata *MD; 3661 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3662 return true; 3663 3664 Result.assign(cast<ConstantAsMetadata>(MD)); 3665 return false; 3666 } 3667 3668 template <> 3669 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3670 LocTy ValueLoc = Lex.getLoc(); 3671 std::string S; 3672 if (ParseStringConstant(S)) 3673 return true; 3674 3675 if (!Result.AllowEmpty && S.empty()) 3676 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3677 3678 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3679 return false; 3680 } 3681 3682 template <> 3683 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3684 SmallVector<Metadata *, 4> MDs; 3685 if (ParseMDNodeVector(MDs)) 3686 return true; 3687 3688 Result.assign(std::move(MDs)); 3689 return false; 3690 } 3691 3692 } // end namespace llvm 3693 3694 template <class ParserTy> 3695 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3696 do { 3697 if (Lex.getKind() != lltok::LabelStr) 3698 return TokError("expected field label here"); 3699 3700 if (parseField()) 3701 return true; 3702 } while (EatIfPresent(lltok::comma)); 3703 3704 return false; 3705 } 3706 3707 template <class ParserTy> 3708 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3709 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3710 Lex.Lex(); 3711 3712 if (ParseToken(lltok::lparen, "expected '(' here")) 3713 return true; 3714 if (Lex.getKind() != lltok::rparen) 3715 if (ParseMDFieldsImplBody(parseField)) 3716 return true; 3717 3718 ClosingLoc = Lex.getLoc(); 3719 return ParseToken(lltok::rparen, "expected ')' here"); 3720 } 3721 3722 template <class FieldTy> 3723 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3724 if (Result.Seen) 3725 return TokError("field '" + Name + "' cannot be specified more than once"); 3726 3727 LocTy Loc = Lex.getLoc(); 3728 Lex.Lex(); 3729 return ParseMDField(Loc, Name, Result); 3730 } 3731 3732 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3733 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3734 3735 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3736 if (Lex.getStrVal() == #CLASS) \ 3737 return Parse##CLASS(N, IsDistinct); 3738 #include "llvm/IR/Metadata.def" 3739 3740 return TokError("expected metadata type"); 3741 } 3742 3743 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3744 #define NOP_FIELD(NAME, TYPE, INIT) 3745 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3746 if (!NAME.Seen) \ 3747 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3748 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3749 if (Lex.getStrVal() == #NAME) \ 3750 return ParseMDField(#NAME, NAME); 3751 #define PARSE_MD_FIELDS() \ 3752 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3753 do { \ 3754 LocTy ClosingLoc; \ 3755 if (ParseMDFieldsImpl([&]() -> bool { \ 3756 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3757 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3758 }, ClosingLoc)) \ 3759 return true; \ 3760 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3761 } while (false) 3762 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3763 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3764 3765 /// ParseDILocationFields: 3766 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3767 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3768 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3769 OPTIONAL(line, LineField, ); \ 3770 OPTIONAL(column, ColumnField, ); \ 3771 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3772 OPTIONAL(inlinedAt, MDField, ); 3773 PARSE_MD_FIELDS(); 3774 #undef VISIT_MD_FIELDS 3775 3776 Result = GET_OR_DISTINCT( 3777 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3778 return false; 3779 } 3780 3781 /// ParseGenericDINode: 3782 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3783 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3784 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3785 REQUIRED(tag, DwarfTagField, ); \ 3786 OPTIONAL(header, MDStringField, ); \ 3787 OPTIONAL(operands, MDFieldList, ); 3788 PARSE_MD_FIELDS(); 3789 #undef VISIT_MD_FIELDS 3790 3791 Result = GET_OR_DISTINCT(GenericDINode, 3792 (Context, tag.Val, header.Val, operands.Val)); 3793 return false; 3794 } 3795 3796 /// ParseDISubrange: 3797 /// ::= !DISubrange(count: 30, lowerBound: 2) 3798 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3800 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3801 OPTIONAL(lowerBound, MDSignedField, ); 3802 PARSE_MD_FIELDS(); 3803 #undef VISIT_MD_FIELDS 3804 3805 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3806 return false; 3807 } 3808 3809 /// ParseDIEnumerator: 3810 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3811 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3813 REQUIRED(name, MDStringField, ); \ 3814 REQUIRED(value, MDSignedField, ); 3815 PARSE_MD_FIELDS(); 3816 #undef VISIT_MD_FIELDS 3817 3818 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3819 return false; 3820 } 3821 3822 /// ParseDIBasicType: 3823 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3824 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3825 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3826 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3827 OPTIONAL(name, MDStringField, ); \ 3828 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3829 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3830 OPTIONAL(encoding, DwarfAttEncodingField, ); 3831 PARSE_MD_FIELDS(); 3832 #undef VISIT_MD_FIELDS 3833 3834 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3835 align.Val, encoding.Val)); 3836 return false; 3837 } 3838 3839 /// ParseDIDerivedType: 3840 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3841 /// line: 7, scope: !1, baseType: !2, size: 32, 3842 /// align: 32, offset: 0, flags: 0, extraData: !3) 3843 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3844 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3845 REQUIRED(tag, DwarfTagField, ); \ 3846 OPTIONAL(name, MDStringField, ); \ 3847 OPTIONAL(file, MDField, ); \ 3848 OPTIONAL(line, LineField, ); \ 3849 OPTIONAL(scope, MDField, ); \ 3850 REQUIRED(baseType, MDField, ); \ 3851 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3852 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3853 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3854 OPTIONAL(flags, DIFlagField, ); \ 3855 OPTIONAL(extraData, MDField, ); 3856 PARSE_MD_FIELDS(); 3857 #undef VISIT_MD_FIELDS 3858 3859 Result = GET_OR_DISTINCT(DIDerivedType, 3860 (Context, tag.Val, name.Val, file.Val, line.Val, 3861 scope.Val, baseType.Val, size.Val, align.Val, 3862 offset.Val, flags.Val, extraData.Val)); 3863 return false; 3864 } 3865 3866 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3868 REQUIRED(tag, DwarfTagField, ); \ 3869 OPTIONAL(name, MDStringField, ); \ 3870 OPTIONAL(file, MDField, ); \ 3871 OPTIONAL(line, LineField, ); \ 3872 OPTIONAL(scope, MDField, ); \ 3873 OPTIONAL(baseType, MDField, ); \ 3874 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3875 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3876 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3877 OPTIONAL(flags, DIFlagField, ); \ 3878 OPTIONAL(elements, MDField, ); \ 3879 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3880 OPTIONAL(vtableHolder, MDField, ); \ 3881 OPTIONAL(templateParams, MDField, ); \ 3882 OPTIONAL(identifier, MDStringField, ); 3883 PARSE_MD_FIELDS(); 3884 #undef VISIT_MD_FIELDS 3885 3886 // If this has an identifier try to build an ODR type. 3887 if (identifier.Val) 3888 if (auto *CT = DICompositeType::buildODRType( 3889 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3890 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3891 elements.Val, runtimeLang.Val, vtableHolder.Val, 3892 templateParams.Val)) { 3893 Result = CT; 3894 return false; 3895 } 3896 3897 // Create a new node, and save it in the context if it belongs in the type 3898 // map. 3899 Result = GET_OR_DISTINCT( 3900 DICompositeType, 3901 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3902 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3903 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3904 return false; 3905 } 3906 3907 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3908 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3909 OPTIONAL(flags, DIFlagField, ); \ 3910 OPTIONAL(cc, DwarfCCField, ); \ 3911 REQUIRED(types, MDField, ); 3912 PARSE_MD_FIELDS(); 3913 #undef VISIT_MD_FIELDS 3914 3915 Result = GET_OR_DISTINCT(DISubroutineType, 3916 (Context, flags.Val, cc.Val, types.Val)); 3917 return false; 3918 } 3919 3920 /// ParseDIFileType: 3921 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3922 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3923 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3924 REQUIRED(filename, MDStringField, ); \ 3925 REQUIRED(directory, MDStringField, ); 3926 PARSE_MD_FIELDS(); 3927 #undef VISIT_MD_FIELDS 3928 3929 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3930 return false; 3931 } 3932 3933 /// ParseDICompileUnit: 3934 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3935 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3936 /// splitDebugFilename: "abc.debug", 3937 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 3938 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3939 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3940 if (!IsDistinct) 3941 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3942 3943 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3944 REQUIRED(language, DwarfLangField, ); \ 3945 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3946 OPTIONAL(producer, MDStringField, ); \ 3947 OPTIONAL(isOptimized, MDBoolField, ); \ 3948 OPTIONAL(flags, MDStringField, ); \ 3949 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3950 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3951 OPTIONAL(emissionKind, EmissionKindField, ); \ 3952 OPTIONAL(enums, MDField, ); \ 3953 OPTIONAL(retainedTypes, MDField, ); \ 3954 OPTIONAL(globals, MDField, ); \ 3955 OPTIONAL(imports, MDField, ); \ 3956 OPTIONAL(macros, MDField, ); \ 3957 OPTIONAL(dwoId, MDUnsignedField, ); 3958 PARSE_MD_FIELDS(); 3959 #undef VISIT_MD_FIELDS 3960 3961 Result = DICompileUnit::getDistinct( 3962 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3963 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3964 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val); 3965 return false; 3966 } 3967 3968 /// ParseDISubprogram: 3969 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3970 /// file: !1, line: 7, type: !2, isLocal: false, 3971 /// isDefinition: true, scopeLine: 8, containingType: !3, 3972 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3973 /// virtualIndex: 10, flags: 11, 3974 /// isOptimized: false, templateParams: !4, declaration: !5, 3975 /// variables: !6) 3976 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3977 auto Loc = Lex.getLoc(); 3978 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3979 OPTIONAL(scope, MDField, ); \ 3980 OPTIONAL(name, MDStringField, ); \ 3981 OPTIONAL(linkageName, MDStringField, ); \ 3982 OPTIONAL(file, MDField, ); \ 3983 OPTIONAL(line, LineField, ); \ 3984 OPTIONAL(type, MDField, ); \ 3985 OPTIONAL(isLocal, MDBoolField, ); \ 3986 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3987 OPTIONAL(scopeLine, LineField, ); \ 3988 OPTIONAL(containingType, MDField, ); \ 3989 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3990 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3991 OPTIONAL(flags, DIFlagField, ); \ 3992 OPTIONAL(isOptimized, MDBoolField, ); \ 3993 OPTIONAL(unit, MDField, ); \ 3994 OPTIONAL(templateParams, MDField, ); \ 3995 OPTIONAL(declaration, MDField, ); \ 3996 OPTIONAL(variables, MDField, ); 3997 PARSE_MD_FIELDS(); 3998 #undef VISIT_MD_FIELDS 3999 4000 if (isDefinition.Val && !IsDistinct) 4001 return Lex.Error( 4002 Loc, 4003 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4004 4005 Result = GET_OR_DISTINCT( 4006 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4007 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4008 scopeLine.Val, containingType.Val, virtuality.Val, 4009 virtualIndex.Val, flags.Val, isOptimized.Val, unit.Val, 4010 templateParams.Val, declaration.Val, variables.Val)); 4011 return false; 4012 } 4013 4014 /// ParseDILexicalBlock: 4015 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4016 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4017 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4018 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4019 OPTIONAL(file, MDField, ); \ 4020 OPTIONAL(line, LineField, ); \ 4021 OPTIONAL(column, ColumnField, ); 4022 PARSE_MD_FIELDS(); 4023 #undef VISIT_MD_FIELDS 4024 4025 Result = GET_OR_DISTINCT( 4026 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4027 return false; 4028 } 4029 4030 /// ParseDILexicalBlockFile: 4031 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4032 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4033 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4034 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4035 OPTIONAL(file, MDField, ); \ 4036 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4037 PARSE_MD_FIELDS(); 4038 #undef VISIT_MD_FIELDS 4039 4040 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4041 (Context, scope.Val, file.Val, discriminator.Val)); 4042 return false; 4043 } 4044 4045 /// ParseDINamespace: 4046 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4047 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4048 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4049 REQUIRED(scope, MDField, ); \ 4050 OPTIONAL(file, MDField, ); \ 4051 OPTIONAL(name, MDStringField, ); \ 4052 OPTIONAL(line, LineField, ); 4053 PARSE_MD_FIELDS(); 4054 #undef VISIT_MD_FIELDS 4055 4056 Result = GET_OR_DISTINCT(DINamespace, 4057 (Context, scope.Val, file.Val, name.Val, line.Val)); 4058 return false; 4059 } 4060 4061 /// ParseDIMacro: 4062 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4063 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4064 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4065 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4066 REQUIRED(line, LineField, ); \ 4067 REQUIRED(name, MDStringField, ); \ 4068 OPTIONAL(value, MDStringField, ); 4069 PARSE_MD_FIELDS(); 4070 #undef VISIT_MD_FIELDS 4071 4072 Result = GET_OR_DISTINCT(DIMacro, 4073 (Context, type.Val, line.Val, name.Val, value.Val)); 4074 return false; 4075 } 4076 4077 /// ParseDIMacroFile: 4078 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4079 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4080 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4081 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4082 REQUIRED(line, LineField, ); \ 4083 REQUIRED(file, MDField, ); \ 4084 OPTIONAL(nodes, MDField, ); 4085 PARSE_MD_FIELDS(); 4086 #undef VISIT_MD_FIELDS 4087 4088 Result = GET_OR_DISTINCT(DIMacroFile, 4089 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4090 return false; 4091 } 4092 4093 4094 /// ParseDIModule: 4095 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4096 /// includePath: "/usr/include", isysroot: "/") 4097 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4098 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4099 REQUIRED(scope, MDField, ); \ 4100 REQUIRED(name, MDStringField, ); \ 4101 OPTIONAL(configMacros, MDStringField, ); \ 4102 OPTIONAL(includePath, MDStringField, ); \ 4103 OPTIONAL(isysroot, MDStringField, ); 4104 PARSE_MD_FIELDS(); 4105 #undef VISIT_MD_FIELDS 4106 4107 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4108 configMacros.Val, includePath.Val, isysroot.Val)); 4109 return false; 4110 } 4111 4112 /// ParseDITemplateTypeParameter: 4113 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4114 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4115 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4116 OPTIONAL(name, MDStringField, ); \ 4117 REQUIRED(type, MDField, ); 4118 PARSE_MD_FIELDS(); 4119 #undef VISIT_MD_FIELDS 4120 4121 Result = 4122 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4123 return false; 4124 } 4125 4126 /// ParseDITemplateValueParameter: 4127 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4128 /// name: "V", type: !1, value: i32 7) 4129 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4130 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4131 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4132 OPTIONAL(name, MDStringField, ); \ 4133 OPTIONAL(type, MDField, ); \ 4134 REQUIRED(value, MDField, ); 4135 PARSE_MD_FIELDS(); 4136 #undef VISIT_MD_FIELDS 4137 4138 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4139 (Context, tag.Val, name.Val, type.Val, value.Val)); 4140 return false; 4141 } 4142 4143 /// ParseDIGlobalVariable: 4144 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4145 /// file: !1, line: 7, type: !2, isLocal: false, 4146 /// isDefinition: true, variable: i32* @foo, 4147 /// declaration: !3) 4148 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4149 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4150 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4151 OPTIONAL(scope, MDField, ); \ 4152 OPTIONAL(linkageName, MDStringField, ); \ 4153 OPTIONAL(file, MDField, ); \ 4154 OPTIONAL(line, LineField, ); \ 4155 OPTIONAL(type, MDField, ); \ 4156 OPTIONAL(isLocal, MDBoolField, ); \ 4157 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4158 OPTIONAL(variable, MDConstant, ); \ 4159 OPTIONAL(declaration, MDField, ); 4160 PARSE_MD_FIELDS(); 4161 #undef VISIT_MD_FIELDS 4162 4163 Result = GET_OR_DISTINCT(DIGlobalVariable, 4164 (Context, scope.Val, name.Val, linkageName.Val, 4165 file.Val, line.Val, type.Val, isLocal.Val, 4166 isDefinition.Val, variable.Val, declaration.Val)); 4167 return false; 4168 } 4169 4170 /// ParseDILocalVariable: 4171 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4172 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4173 /// ::= !DILocalVariable(scope: !0, name: "foo", 4174 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4175 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4176 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4177 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4178 OPTIONAL(name, MDStringField, ); \ 4179 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4180 OPTIONAL(file, MDField, ); \ 4181 OPTIONAL(line, LineField, ); \ 4182 OPTIONAL(type, MDField, ); \ 4183 OPTIONAL(flags, DIFlagField, ); 4184 PARSE_MD_FIELDS(); 4185 #undef VISIT_MD_FIELDS 4186 4187 Result = GET_OR_DISTINCT(DILocalVariable, 4188 (Context, scope.Val, name.Val, file.Val, line.Val, 4189 type.Val, arg.Val, flags.Val)); 4190 return false; 4191 } 4192 4193 /// ParseDIExpression: 4194 /// ::= !DIExpression(0, 7, -1) 4195 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4196 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4197 Lex.Lex(); 4198 4199 if (ParseToken(lltok::lparen, "expected '(' here")) 4200 return true; 4201 4202 SmallVector<uint64_t, 8> Elements; 4203 if (Lex.getKind() != lltok::rparen) 4204 do { 4205 if (Lex.getKind() == lltok::DwarfOp) { 4206 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4207 Lex.Lex(); 4208 Elements.push_back(Op); 4209 continue; 4210 } 4211 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4212 } 4213 4214 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4215 return TokError("expected unsigned integer"); 4216 4217 auto &U = Lex.getAPSIntVal(); 4218 if (U.ugt(UINT64_MAX)) 4219 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4220 Elements.push_back(U.getZExtValue()); 4221 Lex.Lex(); 4222 } while (EatIfPresent(lltok::comma)); 4223 4224 if (ParseToken(lltok::rparen, "expected ')' here")) 4225 return true; 4226 4227 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4228 return false; 4229 } 4230 4231 /// ParseDIObjCProperty: 4232 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4233 /// getter: "getFoo", attributes: 7, type: !2) 4234 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4235 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4236 OPTIONAL(name, MDStringField, ); \ 4237 OPTIONAL(file, MDField, ); \ 4238 OPTIONAL(line, LineField, ); \ 4239 OPTIONAL(setter, MDStringField, ); \ 4240 OPTIONAL(getter, MDStringField, ); \ 4241 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4242 OPTIONAL(type, MDField, ); 4243 PARSE_MD_FIELDS(); 4244 #undef VISIT_MD_FIELDS 4245 4246 Result = GET_OR_DISTINCT(DIObjCProperty, 4247 (Context, name.Val, file.Val, line.Val, setter.Val, 4248 getter.Val, attributes.Val, type.Val)); 4249 return false; 4250 } 4251 4252 /// ParseDIImportedEntity: 4253 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4254 /// line: 7, name: "foo") 4255 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4256 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4257 REQUIRED(tag, DwarfTagField, ); \ 4258 REQUIRED(scope, MDField, ); \ 4259 OPTIONAL(entity, MDField, ); \ 4260 OPTIONAL(line, LineField, ); \ 4261 OPTIONAL(name, MDStringField, ); 4262 PARSE_MD_FIELDS(); 4263 #undef VISIT_MD_FIELDS 4264 4265 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4266 entity.Val, line.Val, name.Val)); 4267 return false; 4268 } 4269 4270 #undef PARSE_MD_FIELD 4271 #undef NOP_FIELD 4272 #undef REQUIRE_FIELD 4273 #undef DECLARE_FIELD 4274 4275 /// ParseMetadataAsValue 4276 /// ::= metadata i32 %local 4277 /// ::= metadata i32 @global 4278 /// ::= metadata i32 7 4279 /// ::= metadata !0 4280 /// ::= metadata !{...} 4281 /// ::= metadata !"string" 4282 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4283 // Note: the type 'metadata' has already been parsed. 4284 Metadata *MD; 4285 if (ParseMetadata(MD, &PFS)) 4286 return true; 4287 4288 V = MetadataAsValue::get(Context, MD); 4289 return false; 4290 } 4291 4292 /// ParseValueAsMetadata 4293 /// ::= i32 %local 4294 /// ::= i32 @global 4295 /// ::= i32 7 4296 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4297 PerFunctionState *PFS) { 4298 Type *Ty; 4299 LocTy Loc; 4300 if (ParseType(Ty, TypeMsg, Loc)) 4301 return true; 4302 if (Ty->isMetadataTy()) 4303 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4304 4305 Value *V; 4306 if (ParseValue(Ty, V, PFS)) 4307 return true; 4308 4309 MD = ValueAsMetadata::get(V); 4310 return false; 4311 } 4312 4313 /// ParseMetadata 4314 /// ::= i32 %local 4315 /// ::= i32 @global 4316 /// ::= i32 7 4317 /// ::= !42 4318 /// ::= !{...} 4319 /// ::= !"string" 4320 /// ::= !DILocation(...) 4321 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4322 if (Lex.getKind() == lltok::MetadataVar) { 4323 MDNode *N; 4324 if (ParseSpecializedMDNode(N)) 4325 return true; 4326 MD = N; 4327 return false; 4328 } 4329 4330 // ValueAsMetadata: 4331 // <type> <value> 4332 if (Lex.getKind() != lltok::exclaim) 4333 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4334 4335 // '!'. 4336 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4337 Lex.Lex(); 4338 4339 // MDString: 4340 // ::= '!' STRINGCONSTANT 4341 if (Lex.getKind() == lltok::StringConstant) { 4342 MDString *S; 4343 if (ParseMDString(S)) 4344 return true; 4345 MD = S; 4346 return false; 4347 } 4348 4349 // MDNode: 4350 // !{ ... } 4351 // !7 4352 MDNode *N; 4353 if (ParseMDNodeTail(N)) 4354 return true; 4355 MD = N; 4356 return false; 4357 } 4358 4359 4360 //===----------------------------------------------------------------------===// 4361 // Function Parsing. 4362 //===----------------------------------------------------------------------===// 4363 4364 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4365 PerFunctionState *PFS) { 4366 if (Ty->isFunctionTy()) 4367 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4368 4369 switch (ID.Kind) { 4370 case ValID::t_LocalID: 4371 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4372 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4373 return V == nullptr; 4374 case ValID::t_LocalName: 4375 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4376 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4377 return V == nullptr; 4378 case ValID::t_InlineAsm: { 4379 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4380 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4381 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4382 (ID.UIntVal >> 1) & 1, 4383 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4384 return false; 4385 } 4386 case ValID::t_GlobalName: 4387 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4388 return V == nullptr; 4389 case ValID::t_GlobalID: 4390 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4391 return V == nullptr; 4392 case ValID::t_APSInt: 4393 if (!Ty->isIntegerTy()) 4394 return Error(ID.Loc, "integer constant must have integer type"); 4395 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4396 V = ConstantInt::get(Context, ID.APSIntVal); 4397 return false; 4398 case ValID::t_APFloat: 4399 if (!Ty->isFloatingPointTy() || 4400 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4401 return Error(ID.Loc, "floating point constant invalid for type"); 4402 4403 // The lexer has no type info, so builds all half, float, and double FP 4404 // constants as double. Fix this here. Long double does not need this. 4405 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4406 bool Ignored; 4407 if (Ty->isHalfTy()) 4408 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4409 &Ignored); 4410 else if (Ty->isFloatTy()) 4411 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4412 &Ignored); 4413 } 4414 V = ConstantFP::get(Context, ID.APFloatVal); 4415 4416 if (V->getType() != Ty) 4417 return Error(ID.Loc, "floating point constant does not have type '" + 4418 getTypeString(Ty) + "'"); 4419 4420 return false; 4421 case ValID::t_Null: 4422 if (!Ty->isPointerTy()) 4423 return Error(ID.Loc, "null must be a pointer type"); 4424 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4425 return false; 4426 case ValID::t_Undef: 4427 // FIXME: LabelTy should not be a first-class type. 4428 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4429 return Error(ID.Loc, "invalid type for undef constant"); 4430 V = UndefValue::get(Ty); 4431 return false; 4432 case ValID::t_EmptyArray: 4433 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4434 return Error(ID.Loc, "invalid empty array initializer"); 4435 V = UndefValue::get(Ty); 4436 return false; 4437 case ValID::t_Zero: 4438 // FIXME: LabelTy should not be a first-class type. 4439 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4440 return Error(ID.Loc, "invalid type for null constant"); 4441 V = Constant::getNullValue(Ty); 4442 return false; 4443 case ValID::t_None: 4444 if (!Ty->isTokenTy()) 4445 return Error(ID.Loc, "invalid type for none constant"); 4446 V = Constant::getNullValue(Ty); 4447 return false; 4448 case ValID::t_Constant: 4449 if (ID.ConstantVal->getType() != Ty) 4450 return Error(ID.Loc, "constant expression type mismatch"); 4451 4452 V = ID.ConstantVal; 4453 return false; 4454 case ValID::t_ConstantStruct: 4455 case ValID::t_PackedConstantStruct: 4456 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4457 if (ST->getNumElements() != ID.UIntVal) 4458 return Error(ID.Loc, 4459 "initializer with struct type has wrong # elements"); 4460 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4461 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4462 4463 // Verify that the elements are compatible with the structtype. 4464 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4465 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4466 return Error(ID.Loc, "element " + Twine(i) + 4467 " of struct initializer doesn't match struct element type"); 4468 4469 V = ConstantStruct::get( 4470 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4471 } else 4472 return Error(ID.Loc, "constant expression type mismatch"); 4473 return false; 4474 } 4475 llvm_unreachable("Invalid ValID"); 4476 } 4477 4478 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4479 C = nullptr; 4480 ValID ID; 4481 auto Loc = Lex.getLoc(); 4482 if (ParseValID(ID, /*PFS=*/nullptr)) 4483 return true; 4484 switch (ID.Kind) { 4485 case ValID::t_APSInt: 4486 case ValID::t_APFloat: 4487 case ValID::t_Undef: 4488 case ValID::t_Constant: 4489 case ValID::t_ConstantStruct: 4490 case ValID::t_PackedConstantStruct: { 4491 Value *V; 4492 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4493 return true; 4494 assert(isa<Constant>(V) && "Expected a constant value"); 4495 C = cast<Constant>(V); 4496 return false; 4497 } 4498 default: 4499 return Error(Loc, "expected a constant value"); 4500 } 4501 } 4502 4503 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4504 V = nullptr; 4505 ValID ID; 4506 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4507 } 4508 4509 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4510 Type *Ty = nullptr; 4511 return ParseType(Ty) || 4512 ParseValue(Ty, V, PFS); 4513 } 4514 4515 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4516 PerFunctionState &PFS) { 4517 Value *V; 4518 Loc = Lex.getLoc(); 4519 if (ParseTypeAndValue(V, PFS)) return true; 4520 if (!isa<BasicBlock>(V)) 4521 return Error(Loc, "expected a basic block"); 4522 BB = cast<BasicBlock>(V); 4523 return false; 4524 } 4525 4526 4527 /// FunctionHeader 4528 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4529 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4530 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4531 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4532 // Parse the linkage. 4533 LocTy LinkageLoc = Lex.getLoc(); 4534 unsigned Linkage; 4535 4536 unsigned Visibility; 4537 unsigned DLLStorageClass; 4538 AttrBuilder RetAttrs; 4539 unsigned CC; 4540 bool HasLinkage; 4541 Type *RetType = nullptr; 4542 LocTy RetTypeLoc = Lex.getLoc(); 4543 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4544 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4545 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4546 return true; 4547 4548 // Verify that the linkage is ok. 4549 switch ((GlobalValue::LinkageTypes)Linkage) { 4550 case GlobalValue::ExternalLinkage: 4551 break; // always ok. 4552 case GlobalValue::ExternalWeakLinkage: 4553 if (isDefine) 4554 return Error(LinkageLoc, "invalid linkage for function definition"); 4555 break; 4556 case GlobalValue::PrivateLinkage: 4557 case GlobalValue::InternalLinkage: 4558 case GlobalValue::AvailableExternallyLinkage: 4559 case GlobalValue::LinkOnceAnyLinkage: 4560 case GlobalValue::LinkOnceODRLinkage: 4561 case GlobalValue::WeakAnyLinkage: 4562 case GlobalValue::WeakODRLinkage: 4563 if (!isDefine) 4564 return Error(LinkageLoc, "invalid linkage for function declaration"); 4565 break; 4566 case GlobalValue::AppendingLinkage: 4567 case GlobalValue::CommonLinkage: 4568 return Error(LinkageLoc, "invalid function linkage type"); 4569 } 4570 4571 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4572 return Error(LinkageLoc, 4573 "symbol with local linkage must have default visibility"); 4574 4575 if (!FunctionType::isValidReturnType(RetType)) 4576 return Error(RetTypeLoc, "invalid function return type"); 4577 4578 LocTy NameLoc = Lex.getLoc(); 4579 4580 std::string FunctionName; 4581 if (Lex.getKind() == lltok::GlobalVar) { 4582 FunctionName = Lex.getStrVal(); 4583 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4584 unsigned NameID = Lex.getUIntVal(); 4585 4586 if (NameID != NumberedVals.size()) 4587 return TokError("function expected to be numbered '%" + 4588 Twine(NumberedVals.size()) + "'"); 4589 } else { 4590 return TokError("expected function name"); 4591 } 4592 4593 Lex.Lex(); 4594 4595 if (Lex.getKind() != lltok::lparen) 4596 return TokError("expected '(' in function argument list"); 4597 4598 SmallVector<ArgInfo, 8> ArgList; 4599 bool isVarArg; 4600 AttrBuilder FuncAttrs; 4601 std::vector<unsigned> FwdRefAttrGrps; 4602 LocTy BuiltinLoc; 4603 std::string Section; 4604 unsigned Alignment; 4605 std::string GC; 4606 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4607 LocTy UnnamedAddrLoc; 4608 Constant *Prefix = nullptr; 4609 Constant *Prologue = nullptr; 4610 Constant *PersonalityFn = nullptr; 4611 Comdat *C; 4612 4613 if (ParseArgumentList(ArgList, isVarArg) || 4614 ParseOptionalUnnamedAddr(UnnamedAddr) || 4615 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4616 BuiltinLoc) || 4617 (EatIfPresent(lltok::kw_section) && 4618 ParseStringConstant(Section)) || 4619 parseOptionalComdat(FunctionName, C) || 4620 ParseOptionalAlignment(Alignment) || 4621 (EatIfPresent(lltok::kw_gc) && 4622 ParseStringConstant(GC)) || 4623 (EatIfPresent(lltok::kw_prefix) && 4624 ParseGlobalTypeAndValue(Prefix)) || 4625 (EatIfPresent(lltok::kw_prologue) && 4626 ParseGlobalTypeAndValue(Prologue)) || 4627 (EatIfPresent(lltok::kw_personality) && 4628 ParseGlobalTypeAndValue(PersonalityFn))) 4629 return true; 4630 4631 if (FuncAttrs.contains(Attribute::Builtin)) 4632 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4633 4634 // If the alignment was parsed as an attribute, move to the alignment field. 4635 if (FuncAttrs.hasAlignmentAttr()) { 4636 Alignment = FuncAttrs.getAlignment(); 4637 FuncAttrs.removeAttribute(Attribute::Alignment); 4638 } 4639 4640 // Okay, if we got here, the function is syntactically valid. Convert types 4641 // and do semantic checks. 4642 std::vector<Type*> ParamTypeList; 4643 SmallVector<AttributeSet, 8> Attrs; 4644 4645 if (RetAttrs.hasAttributes()) 4646 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4647 AttributeSet::ReturnIndex, 4648 RetAttrs)); 4649 4650 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4651 ParamTypeList.push_back(ArgList[i].Ty); 4652 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4653 AttrBuilder B(ArgList[i].Attrs, i + 1); 4654 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4655 } 4656 } 4657 4658 if (FuncAttrs.hasAttributes()) 4659 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4660 AttributeSet::FunctionIndex, 4661 FuncAttrs)); 4662 4663 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4664 4665 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4666 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4667 4668 FunctionType *FT = 4669 FunctionType::get(RetType, ParamTypeList, isVarArg); 4670 PointerType *PFT = PointerType::getUnqual(FT); 4671 4672 Fn = nullptr; 4673 if (!FunctionName.empty()) { 4674 // If this was a definition of a forward reference, remove the definition 4675 // from the forward reference table and fill in the forward ref. 4676 auto FRVI = ForwardRefVals.find(FunctionName); 4677 if (FRVI != ForwardRefVals.end()) { 4678 Fn = M->getFunction(FunctionName); 4679 if (!Fn) 4680 return Error(FRVI->second.second, "invalid forward reference to " 4681 "function as global value!"); 4682 if (Fn->getType() != PFT) 4683 return Error(FRVI->second.second, "invalid forward reference to " 4684 "function '" + FunctionName + "' with wrong type!"); 4685 4686 ForwardRefVals.erase(FRVI); 4687 } else if ((Fn = M->getFunction(FunctionName))) { 4688 // Reject redefinitions. 4689 return Error(NameLoc, "invalid redefinition of function '" + 4690 FunctionName + "'"); 4691 } else if (M->getNamedValue(FunctionName)) { 4692 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4693 } 4694 4695 } else { 4696 // If this is a definition of a forward referenced function, make sure the 4697 // types agree. 4698 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4699 if (I != ForwardRefValIDs.end()) { 4700 Fn = cast<Function>(I->second.first); 4701 if (Fn->getType() != PFT) 4702 return Error(NameLoc, "type of definition and forward reference of '@" + 4703 Twine(NumberedVals.size()) + "' disagree"); 4704 ForwardRefValIDs.erase(I); 4705 } 4706 } 4707 4708 if (!Fn) 4709 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4710 else // Move the forward-reference to the correct spot in the module. 4711 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4712 4713 if (FunctionName.empty()) 4714 NumberedVals.push_back(Fn); 4715 4716 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4717 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4718 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4719 Fn->setCallingConv(CC); 4720 Fn->setAttributes(PAL); 4721 Fn->setUnnamedAddr(UnnamedAddr); 4722 Fn->setAlignment(Alignment); 4723 Fn->setSection(Section); 4724 Fn->setComdat(C); 4725 Fn->setPersonalityFn(PersonalityFn); 4726 if (!GC.empty()) Fn->setGC(GC); 4727 Fn->setPrefixData(Prefix); 4728 Fn->setPrologueData(Prologue); 4729 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4730 4731 // Add all of the arguments we parsed to the function. 4732 Function::arg_iterator ArgIt = Fn->arg_begin(); 4733 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4734 // If the argument has a name, insert it into the argument symbol table. 4735 if (ArgList[i].Name.empty()) continue; 4736 4737 // Set the name, if it conflicted, it will be auto-renamed. 4738 ArgIt->setName(ArgList[i].Name); 4739 4740 if (ArgIt->getName() != ArgList[i].Name) 4741 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4742 ArgList[i].Name + "'"); 4743 } 4744 4745 if (isDefine) 4746 return false; 4747 4748 // Check the declaration has no block address forward references. 4749 ValID ID; 4750 if (FunctionName.empty()) { 4751 ID.Kind = ValID::t_GlobalID; 4752 ID.UIntVal = NumberedVals.size() - 1; 4753 } else { 4754 ID.Kind = ValID::t_GlobalName; 4755 ID.StrVal = FunctionName; 4756 } 4757 auto Blocks = ForwardRefBlockAddresses.find(ID); 4758 if (Blocks != ForwardRefBlockAddresses.end()) 4759 return Error(Blocks->first.Loc, 4760 "cannot take blockaddress inside a declaration"); 4761 return false; 4762 } 4763 4764 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4765 ValID ID; 4766 if (FunctionNumber == -1) { 4767 ID.Kind = ValID::t_GlobalName; 4768 ID.StrVal = F.getName(); 4769 } else { 4770 ID.Kind = ValID::t_GlobalID; 4771 ID.UIntVal = FunctionNumber; 4772 } 4773 4774 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4775 if (Blocks == P.ForwardRefBlockAddresses.end()) 4776 return false; 4777 4778 for (const auto &I : Blocks->second) { 4779 const ValID &BBID = I.first; 4780 GlobalValue *GV = I.second; 4781 4782 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4783 "Expected local id or name"); 4784 BasicBlock *BB; 4785 if (BBID.Kind == ValID::t_LocalName) 4786 BB = GetBB(BBID.StrVal, BBID.Loc); 4787 else 4788 BB = GetBB(BBID.UIntVal, BBID.Loc); 4789 if (!BB) 4790 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4791 4792 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4793 GV->eraseFromParent(); 4794 } 4795 4796 P.ForwardRefBlockAddresses.erase(Blocks); 4797 return false; 4798 } 4799 4800 /// ParseFunctionBody 4801 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4802 bool LLParser::ParseFunctionBody(Function &Fn) { 4803 if (Lex.getKind() != lltok::lbrace) 4804 return TokError("expected '{' in function body"); 4805 Lex.Lex(); // eat the {. 4806 4807 int FunctionNumber = -1; 4808 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4809 4810 PerFunctionState PFS(*this, Fn, FunctionNumber); 4811 4812 // Resolve block addresses and allow basic blocks to be forward-declared 4813 // within this function. 4814 if (PFS.resolveForwardRefBlockAddresses()) 4815 return true; 4816 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4817 4818 // We need at least one basic block. 4819 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4820 return TokError("function body requires at least one basic block"); 4821 4822 while (Lex.getKind() != lltok::rbrace && 4823 Lex.getKind() != lltok::kw_uselistorder) 4824 if (ParseBasicBlock(PFS)) return true; 4825 4826 while (Lex.getKind() != lltok::rbrace) 4827 if (ParseUseListOrder(&PFS)) 4828 return true; 4829 4830 // Eat the }. 4831 Lex.Lex(); 4832 4833 // Verify function is ok. 4834 return PFS.FinishFunction(); 4835 } 4836 4837 /// ParseBasicBlock 4838 /// ::= LabelStr? Instruction* 4839 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4840 // If this basic block starts out with a name, remember it. 4841 std::string Name; 4842 LocTy NameLoc = Lex.getLoc(); 4843 if (Lex.getKind() == lltok::LabelStr) { 4844 Name = Lex.getStrVal(); 4845 Lex.Lex(); 4846 } 4847 4848 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4849 if (!BB) 4850 return Error(NameLoc, 4851 "unable to create block named '" + Name + "'"); 4852 4853 std::string NameStr; 4854 4855 // Parse the instructions in this block until we get a terminator. 4856 Instruction *Inst; 4857 do { 4858 // This instruction may have three possibilities for a name: a) none 4859 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4860 LocTy NameLoc = Lex.getLoc(); 4861 int NameID = -1; 4862 NameStr = ""; 4863 4864 if (Lex.getKind() == lltok::LocalVarID) { 4865 NameID = Lex.getUIntVal(); 4866 Lex.Lex(); 4867 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4868 return true; 4869 } else if (Lex.getKind() == lltok::LocalVar) { 4870 NameStr = Lex.getStrVal(); 4871 Lex.Lex(); 4872 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4873 return true; 4874 } 4875 4876 switch (ParseInstruction(Inst, BB, PFS)) { 4877 default: llvm_unreachable("Unknown ParseInstruction result!"); 4878 case InstError: return true; 4879 case InstNormal: 4880 BB->getInstList().push_back(Inst); 4881 4882 // With a normal result, we check to see if the instruction is followed by 4883 // a comma and metadata. 4884 if (EatIfPresent(lltok::comma)) 4885 if (ParseInstructionMetadata(*Inst)) 4886 return true; 4887 break; 4888 case InstExtraComma: 4889 BB->getInstList().push_back(Inst); 4890 4891 // If the instruction parser ate an extra comma at the end of it, it 4892 // *must* be followed by metadata. 4893 if (ParseInstructionMetadata(*Inst)) 4894 return true; 4895 break; 4896 } 4897 4898 // Set the name on the instruction. 4899 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4900 } while (!isa<TerminatorInst>(Inst)); 4901 4902 return false; 4903 } 4904 4905 //===----------------------------------------------------------------------===// 4906 // Instruction Parsing. 4907 //===----------------------------------------------------------------------===// 4908 4909 /// ParseInstruction - Parse one of the many different instructions. 4910 /// 4911 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4912 PerFunctionState &PFS) { 4913 lltok::Kind Token = Lex.getKind(); 4914 if (Token == lltok::Eof) 4915 return TokError("found end of file when expecting more instructions"); 4916 LocTy Loc = Lex.getLoc(); 4917 unsigned KeywordVal = Lex.getUIntVal(); 4918 Lex.Lex(); // Eat the keyword. 4919 4920 switch (Token) { 4921 default: return Error(Loc, "expected instruction opcode"); 4922 // Terminator Instructions. 4923 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4924 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4925 case lltok::kw_br: return ParseBr(Inst, PFS); 4926 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4927 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4928 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4929 case lltok::kw_resume: return ParseResume(Inst, PFS); 4930 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4931 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4932 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4933 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4934 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4935 // Binary Operators. 4936 case lltok::kw_add: 4937 case lltok::kw_sub: 4938 case lltok::kw_mul: 4939 case lltok::kw_shl: { 4940 bool NUW = EatIfPresent(lltok::kw_nuw); 4941 bool NSW = EatIfPresent(lltok::kw_nsw); 4942 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4943 4944 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4945 4946 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4947 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4948 return false; 4949 } 4950 case lltok::kw_fadd: 4951 case lltok::kw_fsub: 4952 case lltok::kw_fmul: 4953 case lltok::kw_fdiv: 4954 case lltok::kw_frem: { 4955 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4956 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4957 if (Res != 0) 4958 return Res; 4959 if (FMF.any()) 4960 Inst->setFastMathFlags(FMF); 4961 return 0; 4962 } 4963 4964 case lltok::kw_sdiv: 4965 case lltok::kw_udiv: 4966 case lltok::kw_lshr: 4967 case lltok::kw_ashr: { 4968 bool Exact = EatIfPresent(lltok::kw_exact); 4969 4970 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4971 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4972 return false; 4973 } 4974 4975 case lltok::kw_urem: 4976 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4977 case lltok::kw_and: 4978 case lltok::kw_or: 4979 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4980 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4981 case lltok::kw_fcmp: { 4982 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4983 int Res = ParseCompare(Inst, PFS, KeywordVal); 4984 if (Res != 0) 4985 return Res; 4986 if (FMF.any()) 4987 Inst->setFastMathFlags(FMF); 4988 return 0; 4989 } 4990 4991 // Casts. 4992 case lltok::kw_trunc: 4993 case lltok::kw_zext: 4994 case lltok::kw_sext: 4995 case lltok::kw_fptrunc: 4996 case lltok::kw_fpext: 4997 case lltok::kw_bitcast: 4998 case lltok::kw_addrspacecast: 4999 case lltok::kw_uitofp: 5000 case lltok::kw_sitofp: 5001 case lltok::kw_fptoui: 5002 case lltok::kw_fptosi: 5003 case lltok::kw_inttoptr: 5004 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5005 // Other. 5006 case lltok::kw_select: return ParseSelect(Inst, PFS); 5007 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5008 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5009 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5010 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5011 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5012 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5013 // Call. 5014 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5015 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5016 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5017 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5018 // Memory. 5019 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5020 case lltok::kw_load: return ParseLoad(Inst, PFS); 5021 case lltok::kw_store: return ParseStore(Inst, PFS); 5022 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5023 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5024 case lltok::kw_fence: return ParseFence(Inst, PFS); 5025 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5026 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5027 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5028 } 5029 } 5030 5031 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5032 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5033 if (Opc == Instruction::FCmp) { 5034 switch (Lex.getKind()) { 5035 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5036 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5037 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5038 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5039 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5040 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5041 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5042 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5043 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5044 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5045 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5046 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5047 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5048 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5049 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5050 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5051 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5052 } 5053 } else { 5054 switch (Lex.getKind()) { 5055 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5056 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5057 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5058 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5059 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5060 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5061 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5062 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5063 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5064 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5065 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5066 } 5067 } 5068 Lex.Lex(); 5069 return false; 5070 } 5071 5072 //===----------------------------------------------------------------------===// 5073 // Terminator Instructions. 5074 //===----------------------------------------------------------------------===// 5075 5076 /// ParseRet - Parse a return instruction. 5077 /// ::= 'ret' void (',' !dbg, !1)* 5078 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5079 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5080 PerFunctionState &PFS) { 5081 SMLoc TypeLoc = Lex.getLoc(); 5082 Type *Ty = nullptr; 5083 if (ParseType(Ty, true /*void allowed*/)) return true; 5084 5085 Type *ResType = PFS.getFunction().getReturnType(); 5086 5087 if (Ty->isVoidTy()) { 5088 if (!ResType->isVoidTy()) 5089 return Error(TypeLoc, "value doesn't match function result type '" + 5090 getTypeString(ResType) + "'"); 5091 5092 Inst = ReturnInst::Create(Context); 5093 return false; 5094 } 5095 5096 Value *RV; 5097 if (ParseValue(Ty, RV, PFS)) return true; 5098 5099 if (ResType != RV->getType()) 5100 return Error(TypeLoc, "value doesn't match function result type '" + 5101 getTypeString(ResType) + "'"); 5102 5103 Inst = ReturnInst::Create(Context, RV); 5104 return false; 5105 } 5106 5107 5108 /// ParseBr 5109 /// ::= 'br' TypeAndValue 5110 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5111 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5112 LocTy Loc, Loc2; 5113 Value *Op0; 5114 BasicBlock *Op1, *Op2; 5115 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5116 5117 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5118 Inst = BranchInst::Create(BB); 5119 return false; 5120 } 5121 5122 if (Op0->getType() != Type::getInt1Ty(Context)) 5123 return Error(Loc, "branch condition must have 'i1' type"); 5124 5125 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5126 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5127 ParseToken(lltok::comma, "expected ',' after true destination") || 5128 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5129 return true; 5130 5131 Inst = BranchInst::Create(Op1, Op2, Op0); 5132 return false; 5133 } 5134 5135 /// ParseSwitch 5136 /// Instruction 5137 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5138 /// JumpTable 5139 /// ::= (TypeAndValue ',' TypeAndValue)* 5140 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5141 LocTy CondLoc, BBLoc; 5142 Value *Cond; 5143 BasicBlock *DefaultBB; 5144 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5145 ParseToken(lltok::comma, "expected ',' after switch condition") || 5146 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5147 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5148 return true; 5149 5150 if (!Cond->getType()->isIntegerTy()) 5151 return Error(CondLoc, "switch condition must have integer type"); 5152 5153 // Parse the jump table pairs. 5154 SmallPtrSet<Value*, 32> SeenCases; 5155 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5156 while (Lex.getKind() != lltok::rsquare) { 5157 Value *Constant; 5158 BasicBlock *DestBB; 5159 5160 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5161 ParseToken(lltok::comma, "expected ',' after case value") || 5162 ParseTypeAndBasicBlock(DestBB, PFS)) 5163 return true; 5164 5165 if (!SeenCases.insert(Constant).second) 5166 return Error(CondLoc, "duplicate case value in switch"); 5167 if (!isa<ConstantInt>(Constant)) 5168 return Error(CondLoc, "case value is not a constant integer"); 5169 5170 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5171 } 5172 5173 Lex.Lex(); // Eat the ']'. 5174 5175 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5176 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5177 SI->addCase(Table[i].first, Table[i].second); 5178 Inst = SI; 5179 return false; 5180 } 5181 5182 /// ParseIndirectBr 5183 /// Instruction 5184 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5185 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5186 LocTy AddrLoc; 5187 Value *Address; 5188 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5189 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5190 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5191 return true; 5192 5193 if (!Address->getType()->isPointerTy()) 5194 return Error(AddrLoc, "indirectbr address must have pointer type"); 5195 5196 // Parse the destination list. 5197 SmallVector<BasicBlock*, 16> DestList; 5198 5199 if (Lex.getKind() != lltok::rsquare) { 5200 BasicBlock *DestBB; 5201 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5202 return true; 5203 DestList.push_back(DestBB); 5204 5205 while (EatIfPresent(lltok::comma)) { 5206 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5207 return true; 5208 DestList.push_back(DestBB); 5209 } 5210 } 5211 5212 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5213 return true; 5214 5215 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5216 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5217 IBI->addDestination(DestList[i]); 5218 Inst = IBI; 5219 return false; 5220 } 5221 5222 5223 /// ParseInvoke 5224 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5225 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5226 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5227 LocTy CallLoc = Lex.getLoc(); 5228 AttrBuilder RetAttrs, FnAttrs; 5229 std::vector<unsigned> FwdRefAttrGrps; 5230 LocTy NoBuiltinLoc; 5231 unsigned CC; 5232 Type *RetType = nullptr; 5233 LocTy RetTypeLoc; 5234 ValID CalleeID; 5235 SmallVector<ParamInfo, 16> ArgList; 5236 SmallVector<OperandBundleDef, 2> BundleList; 5237 5238 BasicBlock *NormalBB, *UnwindBB; 5239 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5240 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5241 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5242 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5243 NoBuiltinLoc) || 5244 ParseOptionalOperandBundles(BundleList, PFS) || 5245 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5246 ParseTypeAndBasicBlock(NormalBB, PFS) || 5247 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5248 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5249 return true; 5250 5251 // If RetType is a non-function pointer type, then this is the short syntax 5252 // for the call, which means that RetType is just the return type. Infer the 5253 // rest of the function argument types from the arguments that are present. 5254 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5255 if (!Ty) { 5256 // Pull out the types of all of the arguments... 5257 std::vector<Type*> ParamTypes; 5258 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5259 ParamTypes.push_back(ArgList[i].V->getType()); 5260 5261 if (!FunctionType::isValidReturnType(RetType)) 5262 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5263 5264 Ty = FunctionType::get(RetType, ParamTypes, false); 5265 } 5266 5267 CalleeID.FTy = Ty; 5268 5269 // Look up the callee. 5270 Value *Callee; 5271 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5272 return true; 5273 5274 // Set up the Attribute for the function. 5275 SmallVector<AttributeSet, 8> Attrs; 5276 if (RetAttrs.hasAttributes()) 5277 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5278 AttributeSet::ReturnIndex, 5279 RetAttrs)); 5280 5281 SmallVector<Value*, 8> Args; 5282 5283 // Loop through FunctionType's arguments and ensure they are specified 5284 // correctly. Also, gather any parameter attributes. 5285 FunctionType::param_iterator I = Ty->param_begin(); 5286 FunctionType::param_iterator E = Ty->param_end(); 5287 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5288 Type *ExpectedTy = nullptr; 5289 if (I != E) { 5290 ExpectedTy = *I++; 5291 } else if (!Ty->isVarArg()) { 5292 return Error(ArgList[i].Loc, "too many arguments specified"); 5293 } 5294 5295 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5296 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5297 getTypeString(ExpectedTy) + "'"); 5298 Args.push_back(ArgList[i].V); 5299 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5300 AttrBuilder B(ArgList[i].Attrs, i + 1); 5301 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5302 } 5303 } 5304 5305 if (I != E) 5306 return Error(CallLoc, "not enough parameters specified for call"); 5307 5308 if (FnAttrs.hasAttributes()) { 5309 if (FnAttrs.hasAlignmentAttr()) 5310 return Error(CallLoc, "invoke instructions may not have an alignment"); 5311 5312 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5313 AttributeSet::FunctionIndex, 5314 FnAttrs)); 5315 } 5316 5317 // Finish off the Attribute and check them 5318 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5319 5320 InvokeInst *II = 5321 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5322 II->setCallingConv(CC); 5323 II->setAttributes(PAL); 5324 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5325 Inst = II; 5326 return false; 5327 } 5328 5329 /// ParseResume 5330 /// ::= 'resume' TypeAndValue 5331 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5332 Value *Exn; LocTy ExnLoc; 5333 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5334 return true; 5335 5336 ResumeInst *RI = ResumeInst::Create(Exn); 5337 Inst = RI; 5338 return false; 5339 } 5340 5341 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5342 PerFunctionState &PFS) { 5343 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5344 return true; 5345 5346 while (Lex.getKind() != lltok::rsquare) { 5347 // If this isn't the first argument, we need a comma. 5348 if (!Args.empty() && 5349 ParseToken(lltok::comma, "expected ',' in argument list")) 5350 return true; 5351 5352 // Parse the argument. 5353 LocTy ArgLoc; 5354 Type *ArgTy = nullptr; 5355 if (ParseType(ArgTy, ArgLoc)) 5356 return true; 5357 5358 Value *V; 5359 if (ArgTy->isMetadataTy()) { 5360 if (ParseMetadataAsValue(V, PFS)) 5361 return true; 5362 } else { 5363 if (ParseValue(ArgTy, V, PFS)) 5364 return true; 5365 } 5366 Args.push_back(V); 5367 } 5368 5369 Lex.Lex(); // Lex the ']'. 5370 return false; 5371 } 5372 5373 /// ParseCleanupRet 5374 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5375 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5376 Value *CleanupPad = nullptr; 5377 5378 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5379 return true; 5380 5381 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5382 return true; 5383 5384 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5385 return true; 5386 5387 BasicBlock *UnwindBB = nullptr; 5388 if (Lex.getKind() == lltok::kw_to) { 5389 Lex.Lex(); 5390 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5391 return true; 5392 } else { 5393 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5394 return true; 5395 } 5396 } 5397 5398 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5399 return false; 5400 } 5401 5402 /// ParseCatchRet 5403 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5404 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5405 Value *CatchPad = nullptr; 5406 5407 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5408 return true; 5409 5410 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5411 return true; 5412 5413 BasicBlock *BB; 5414 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5415 ParseTypeAndBasicBlock(BB, PFS)) 5416 return true; 5417 5418 Inst = CatchReturnInst::Create(CatchPad, BB); 5419 return false; 5420 } 5421 5422 /// ParseCatchSwitch 5423 /// ::= 'catchswitch' within Parent 5424 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5425 Value *ParentPad; 5426 LocTy BBLoc; 5427 5428 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5429 return true; 5430 5431 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5432 Lex.getKind() != lltok::LocalVarID) 5433 return TokError("expected scope value for catchswitch"); 5434 5435 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5436 return true; 5437 5438 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5439 return true; 5440 5441 SmallVector<BasicBlock *, 32> Table; 5442 do { 5443 BasicBlock *DestBB; 5444 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5445 return true; 5446 Table.push_back(DestBB); 5447 } while (EatIfPresent(lltok::comma)); 5448 5449 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5450 return true; 5451 5452 if (ParseToken(lltok::kw_unwind, 5453 "expected 'unwind' after catchswitch scope")) 5454 return true; 5455 5456 BasicBlock *UnwindBB = nullptr; 5457 if (EatIfPresent(lltok::kw_to)) { 5458 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5459 return true; 5460 } else { 5461 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5462 return true; 5463 } 5464 5465 auto *CatchSwitch = 5466 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5467 for (BasicBlock *DestBB : Table) 5468 CatchSwitch->addHandler(DestBB); 5469 Inst = CatchSwitch; 5470 return false; 5471 } 5472 5473 /// ParseCatchPad 5474 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5475 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5476 Value *CatchSwitch = nullptr; 5477 5478 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5479 return true; 5480 5481 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5482 return TokError("expected scope value for catchpad"); 5483 5484 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5485 return true; 5486 5487 SmallVector<Value *, 8> Args; 5488 if (ParseExceptionArgs(Args, PFS)) 5489 return true; 5490 5491 Inst = CatchPadInst::Create(CatchSwitch, Args); 5492 return false; 5493 } 5494 5495 /// ParseCleanupPad 5496 /// ::= 'cleanuppad' within Parent ParamList 5497 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5498 Value *ParentPad = nullptr; 5499 5500 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5501 return true; 5502 5503 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5504 Lex.getKind() != lltok::LocalVarID) 5505 return TokError("expected scope value for cleanuppad"); 5506 5507 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5508 return true; 5509 5510 SmallVector<Value *, 8> Args; 5511 if (ParseExceptionArgs(Args, PFS)) 5512 return true; 5513 5514 Inst = CleanupPadInst::Create(ParentPad, Args); 5515 return false; 5516 } 5517 5518 //===----------------------------------------------------------------------===// 5519 // Binary Operators. 5520 //===----------------------------------------------------------------------===// 5521 5522 /// ParseArithmetic 5523 /// ::= ArithmeticOps TypeAndValue ',' Value 5524 /// 5525 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5526 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5527 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5528 unsigned Opc, unsigned OperandType) { 5529 LocTy Loc; Value *LHS, *RHS; 5530 if (ParseTypeAndValue(LHS, Loc, PFS) || 5531 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5532 ParseValue(LHS->getType(), RHS, PFS)) 5533 return true; 5534 5535 bool Valid; 5536 switch (OperandType) { 5537 default: llvm_unreachable("Unknown operand type!"); 5538 case 0: // int or FP. 5539 Valid = LHS->getType()->isIntOrIntVectorTy() || 5540 LHS->getType()->isFPOrFPVectorTy(); 5541 break; 5542 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5543 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5544 } 5545 5546 if (!Valid) 5547 return Error(Loc, "invalid operand type for instruction"); 5548 5549 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5550 return false; 5551 } 5552 5553 /// ParseLogical 5554 /// ::= ArithmeticOps TypeAndValue ',' Value { 5555 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5556 unsigned Opc) { 5557 LocTy Loc; Value *LHS, *RHS; 5558 if (ParseTypeAndValue(LHS, Loc, PFS) || 5559 ParseToken(lltok::comma, "expected ',' in logical operation") || 5560 ParseValue(LHS->getType(), RHS, PFS)) 5561 return true; 5562 5563 if (!LHS->getType()->isIntOrIntVectorTy()) 5564 return Error(Loc,"instruction requires integer or integer vector operands"); 5565 5566 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5567 return false; 5568 } 5569 5570 5571 /// ParseCompare 5572 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5573 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5574 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5575 unsigned Opc) { 5576 // Parse the integer/fp comparison predicate. 5577 LocTy Loc; 5578 unsigned Pred; 5579 Value *LHS, *RHS; 5580 if (ParseCmpPredicate(Pred, Opc) || 5581 ParseTypeAndValue(LHS, Loc, PFS) || 5582 ParseToken(lltok::comma, "expected ',' after compare value") || 5583 ParseValue(LHS->getType(), RHS, PFS)) 5584 return true; 5585 5586 if (Opc == Instruction::FCmp) { 5587 if (!LHS->getType()->isFPOrFPVectorTy()) 5588 return Error(Loc, "fcmp requires floating point operands"); 5589 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5590 } else { 5591 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5592 if (!LHS->getType()->isIntOrIntVectorTy() && 5593 !LHS->getType()->getScalarType()->isPointerTy()) 5594 return Error(Loc, "icmp requires integer operands"); 5595 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5596 } 5597 return false; 5598 } 5599 5600 //===----------------------------------------------------------------------===// 5601 // Other Instructions. 5602 //===----------------------------------------------------------------------===// 5603 5604 5605 /// ParseCast 5606 /// ::= CastOpc TypeAndValue 'to' Type 5607 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5608 unsigned Opc) { 5609 LocTy Loc; 5610 Value *Op; 5611 Type *DestTy = nullptr; 5612 if (ParseTypeAndValue(Op, Loc, PFS) || 5613 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5614 ParseType(DestTy)) 5615 return true; 5616 5617 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5618 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5619 return Error(Loc, "invalid cast opcode for cast from '" + 5620 getTypeString(Op->getType()) + "' to '" + 5621 getTypeString(DestTy) + "'"); 5622 } 5623 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5624 return false; 5625 } 5626 5627 /// ParseSelect 5628 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5629 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5630 LocTy Loc; 5631 Value *Op0, *Op1, *Op2; 5632 if (ParseTypeAndValue(Op0, Loc, PFS) || 5633 ParseToken(lltok::comma, "expected ',' after select condition") || 5634 ParseTypeAndValue(Op1, PFS) || 5635 ParseToken(lltok::comma, "expected ',' after select value") || 5636 ParseTypeAndValue(Op2, PFS)) 5637 return true; 5638 5639 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5640 return Error(Loc, Reason); 5641 5642 Inst = SelectInst::Create(Op0, Op1, Op2); 5643 return false; 5644 } 5645 5646 /// ParseVA_Arg 5647 /// ::= 'va_arg' TypeAndValue ',' Type 5648 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5649 Value *Op; 5650 Type *EltTy = nullptr; 5651 LocTy TypeLoc; 5652 if (ParseTypeAndValue(Op, PFS) || 5653 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5654 ParseType(EltTy, TypeLoc)) 5655 return true; 5656 5657 if (!EltTy->isFirstClassType()) 5658 return Error(TypeLoc, "va_arg requires operand with first class type"); 5659 5660 Inst = new VAArgInst(Op, EltTy); 5661 return false; 5662 } 5663 5664 /// ParseExtractElement 5665 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5666 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5667 LocTy Loc; 5668 Value *Op0, *Op1; 5669 if (ParseTypeAndValue(Op0, Loc, PFS) || 5670 ParseToken(lltok::comma, "expected ',' after extract value") || 5671 ParseTypeAndValue(Op1, PFS)) 5672 return true; 5673 5674 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5675 return Error(Loc, "invalid extractelement operands"); 5676 5677 Inst = ExtractElementInst::Create(Op0, Op1); 5678 return false; 5679 } 5680 5681 /// ParseInsertElement 5682 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5683 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5684 LocTy Loc; 5685 Value *Op0, *Op1, *Op2; 5686 if (ParseTypeAndValue(Op0, Loc, PFS) || 5687 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5688 ParseTypeAndValue(Op1, PFS) || 5689 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5690 ParseTypeAndValue(Op2, PFS)) 5691 return true; 5692 5693 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5694 return Error(Loc, "invalid insertelement operands"); 5695 5696 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5697 return false; 5698 } 5699 5700 /// ParseShuffleVector 5701 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5702 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5703 LocTy Loc; 5704 Value *Op0, *Op1, *Op2; 5705 if (ParseTypeAndValue(Op0, Loc, PFS) || 5706 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5707 ParseTypeAndValue(Op1, PFS) || 5708 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5709 ParseTypeAndValue(Op2, PFS)) 5710 return true; 5711 5712 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5713 return Error(Loc, "invalid shufflevector operands"); 5714 5715 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5716 return false; 5717 } 5718 5719 /// ParsePHI 5720 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5721 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5722 Type *Ty = nullptr; LocTy TypeLoc; 5723 Value *Op0, *Op1; 5724 5725 if (ParseType(Ty, TypeLoc) || 5726 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5727 ParseValue(Ty, Op0, PFS) || 5728 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5729 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5730 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5731 return true; 5732 5733 bool AteExtraComma = false; 5734 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5735 while (1) { 5736 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5737 5738 if (!EatIfPresent(lltok::comma)) 5739 break; 5740 5741 if (Lex.getKind() == lltok::MetadataVar) { 5742 AteExtraComma = true; 5743 break; 5744 } 5745 5746 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5747 ParseValue(Ty, Op0, PFS) || 5748 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5749 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5750 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5751 return true; 5752 } 5753 5754 if (!Ty->isFirstClassType()) 5755 return Error(TypeLoc, "phi node must have first class type"); 5756 5757 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5758 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5759 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5760 Inst = PN; 5761 return AteExtraComma ? InstExtraComma : InstNormal; 5762 } 5763 5764 /// ParseLandingPad 5765 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5766 /// Clause 5767 /// ::= 'catch' TypeAndValue 5768 /// ::= 'filter' 5769 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5770 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5771 Type *Ty = nullptr; LocTy TyLoc; 5772 5773 if (ParseType(Ty, TyLoc)) 5774 return true; 5775 5776 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5777 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5778 5779 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5780 LandingPadInst::ClauseType CT; 5781 if (EatIfPresent(lltok::kw_catch)) 5782 CT = LandingPadInst::Catch; 5783 else if (EatIfPresent(lltok::kw_filter)) 5784 CT = LandingPadInst::Filter; 5785 else 5786 return TokError("expected 'catch' or 'filter' clause type"); 5787 5788 Value *V; 5789 LocTy VLoc; 5790 if (ParseTypeAndValue(V, VLoc, PFS)) 5791 return true; 5792 5793 // A 'catch' type expects a non-array constant. A filter clause expects an 5794 // array constant. 5795 if (CT == LandingPadInst::Catch) { 5796 if (isa<ArrayType>(V->getType())) 5797 Error(VLoc, "'catch' clause has an invalid type"); 5798 } else { 5799 if (!isa<ArrayType>(V->getType())) 5800 Error(VLoc, "'filter' clause has an invalid type"); 5801 } 5802 5803 Constant *CV = dyn_cast<Constant>(V); 5804 if (!CV) 5805 return Error(VLoc, "clause argument must be a constant"); 5806 LP->addClause(CV); 5807 } 5808 5809 Inst = LP.release(); 5810 return false; 5811 } 5812 5813 /// ParseCall 5814 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5815 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5816 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5817 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5818 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5819 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5820 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5821 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5822 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5823 CallInst::TailCallKind TCK) { 5824 AttrBuilder RetAttrs, FnAttrs; 5825 std::vector<unsigned> FwdRefAttrGrps; 5826 LocTy BuiltinLoc; 5827 unsigned CC; 5828 Type *RetType = nullptr; 5829 LocTy RetTypeLoc; 5830 ValID CalleeID; 5831 SmallVector<ParamInfo, 16> ArgList; 5832 SmallVector<OperandBundleDef, 2> BundleList; 5833 LocTy CallLoc = Lex.getLoc(); 5834 5835 if (TCK != CallInst::TCK_None && 5836 ParseToken(lltok::kw_call, 5837 "expected 'tail call', 'musttail call', or 'notail call'")) 5838 return true; 5839 5840 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5841 5842 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5843 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5844 ParseValID(CalleeID) || 5845 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5846 PFS.getFunction().isVarArg()) || 5847 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5848 ParseOptionalOperandBundles(BundleList, PFS)) 5849 return true; 5850 5851 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5852 return Error(CallLoc, "fast-math-flags specified for call without " 5853 "floating-point scalar or vector return type"); 5854 5855 // If RetType is a non-function pointer type, then this is the short syntax 5856 // for the call, which means that RetType is just the return type. Infer the 5857 // rest of the function argument types from the arguments that are present. 5858 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5859 if (!Ty) { 5860 // Pull out the types of all of the arguments... 5861 std::vector<Type*> ParamTypes; 5862 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5863 ParamTypes.push_back(ArgList[i].V->getType()); 5864 5865 if (!FunctionType::isValidReturnType(RetType)) 5866 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5867 5868 Ty = FunctionType::get(RetType, ParamTypes, false); 5869 } 5870 5871 CalleeID.FTy = Ty; 5872 5873 // Look up the callee. 5874 Value *Callee; 5875 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5876 return true; 5877 5878 // Set up the Attribute for the function. 5879 SmallVector<AttributeSet, 8> Attrs; 5880 if (RetAttrs.hasAttributes()) 5881 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5882 AttributeSet::ReturnIndex, 5883 RetAttrs)); 5884 5885 SmallVector<Value*, 8> Args; 5886 5887 // Loop through FunctionType's arguments and ensure they are specified 5888 // correctly. Also, gather any parameter attributes. 5889 FunctionType::param_iterator I = Ty->param_begin(); 5890 FunctionType::param_iterator E = Ty->param_end(); 5891 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5892 Type *ExpectedTy = nullptr; 5893 if (I != E) { 5894 ExpectedTy = *I++; 5895 } else if (!Ty->isVarArg()) { 5896 return Error(ArgList[i].Loc, "too many arguments specified"); 5897 } 5898 5899 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5900 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5901 getTypeString(ExpectedTy) + "'"); 5902 Args.push_back(ArgList[i].V); 5903 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5904 AttrBuilder B(ArgList[i].Attrs, i + 1); 5905 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5906 } 5907 } 5908 5909 if (I != E) 5910 return Error(CallLoc, "not enough parameters specified for call"); 5911 5912 if (FnAttrs.hasAttributes()) { 5913 if (FnAttrs.hasAlignmentAttr()) 5914 return Error(CallLoc, "call instructions may not have an alignment"); 5915 5916 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5917 AttributeSet::FunctionIndex, 5918 FnAttrs)); 5919 } 5920 5921 // Finish off the Attribute and check them 5922 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5923 5924 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5925 CI->setTailCallKind(TCK); 5926 CI->setCallingConv(CC); 5927 if (FMF.any()) 5928 CI->setFastMathFlags(FMF); 5929 CI->setAttributes(PAL); 5930 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5931 Inst = CI; 5932 return false; 5933 } 5934 5935 //===----------------------------------------------------------------------===// 5936 // Memory Instructions. 5937 //===----------------------------------------------------------------------===// 5938 5939 /// ParseAlloc 5940 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 5941 /// (',' 'align' i32)? 5942 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5943 Value *Size = nullptr; 5944 LocTy SizeLoc, TyLoc; 5945 unsigned Alignment = 0; 5946 Type *Ty = nullptr; 5947 5948 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5949 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 5950 5951 if (ParseType(Ty, TyLoc)) return true; 5952 5953 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5954 return Error(TyLoc, "invalid type for alloca"); 5955 5956 bool AteExtraComma = false; 5957 if (EatIfPresent(lltok::comma)) { 5958 if (Lex.getKind() == lltok::kw_align) { 5959 if (ParseOptionalAlignment(Alignment)) return true; 5960 } else if (Lex.getKind() == lltok::MetadataVar) { 5961 AteExtraComma = true; 5962 } else { 5963 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5964 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5965 return true; 5966 } 5967 } 5968 5969 if (Size && !Size->getType()->isIntegerTy()) 5970 return Error(SizeLoc, "element count must have integer type"); 5971 5972 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5973 AI->setUsedWithInAlloca(IsInAlloca); 5974 AI->setSwiftError(IsSwiftError); 5975 Inst = AI; 5976 return AteExtraComma ? InstExtraComma : InstNormal; 5977 } 5978 5979 /// ParseLoad 5980 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5981 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5982 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5983 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5984 Value *Val; LocTy Loc; 5985 unsigned Alignment = 0; 5986 bool AteExtraComma = false; 5987 bool isAtomic = false; 5988 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 5989 SynchronizationScope Scope = CrossThread; 5990 5991 if (Lex.getKind() == lltok::kw_atomic) { 5992 isAtomic = true; 5993 Lex.Lex(); 5994 } 5995 5996 bool isVolatile = false; 5997 if (Lex.getKind() == lltok::kw_volatile) { 5998 isVolatile = true; 5999 Lex.Lex(); 6000 } 6001 6002 Type *Ty; 6003 LocTy ExplicitTypeLoc = Lex.getLoc(); 6004 if (ParseType(Ty) || 6005 ParseToken(lltok::comma, "expected comma after load's type") || 6006 ParseTypeAndValue(Val, Loc, PFS) || 6007 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6008 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6009 return true; 6010 6011 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6012 return Error(Loc, "load operand must be a pointer to a first class type"); 6013 if (isAtomic && !Alignment) 6014 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6015 if (Ordering == AtomicOrdering::Release || 6016 Ordering == AtomicOrdering::AcquireRelease) 6017 return Error(Loc, "atomic load cannot use Release ordering"); 6018 6019 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6020 return Error(ExplicitTypeLoc, 6021 "explicit pointee type doesn't match operand's pointee type"); 6022 6023 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 6024 return AteExtraComma ? InstExtraComma : InstNormal; 6025 } 6026 6027 /// ParseStore 6028 6029 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6030 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6031 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6032 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6033 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6034 unsigned Alignment = 0; 6035 bool AteExtraComma = false; 6036 bool isAtomic = false; 6037 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6038 SynchronizationScope Scope = CrossThread; 6039 6040 if (Lex.getKind() == lltok::kw_atomic) { 6041 isAtomic = true; 6042 Lex.Lex(); 6043 } 6044 6045 bool isVolatile = false; 6046 if (Lex.getKind() == lltok::kw_volatile) { 6047 isVolatile = true; 6048 Lex.Lex(); 6049 } 6050 6051 if (ParseTypeAndValue(Val, Loc, PFS) || 6052 ParseToken(lltok::comma, "expected ',' after store operand") || 6053 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6054 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6055 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6056 return true; 6057 6058 if (!Ptr->getType()->isPointerTy()) 6059 return Error(PtrLoc, "store operand must be a pointer"); 6060 if (!Val->getType()->isFirstClassType()) 6061 return Error(Loc, "store operand must be a first class value"); 6062 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6063 return Error(Loc, "stored value and pointer type do not match"); 6064 if (isAtomic && !Alignment) 6065 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6066 if (Ordering == AtomicOrdering::Acquire || 6067 Ordering == AtomicOrdering::AcquireRelease) 6068 return Error(Loc, "atomic store cannot use Acquire ordering"); 6069 6070 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6071 return AteExtraComma ? InstExtraComma : InstNormal; 6072 } 6073 6074 /// ParseCmpXchg 6075 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6076 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6077 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6078 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6079 bool AteExtraComma = false; 6080 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6081 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6082 SynchronizationScope Scope = CrossThread; 6083 bool isVolatile = false; 6084 bool isWeak = false; 6085 6086 if (EatIfPresent(lltok::kw_weak)) 6087 isWeak = true; 6088 6089 if (EatIfPresent(lltok::kw_volatile)) 6090 isVolatile = true; 6091 6092 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6093 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6094 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6095 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6096 ParseTypeAndValue(New, NewLoc, PFS) || 6097 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6098 ParseOrdering(FailureOrdering)) 6099 return true; 6100 6101 if (SuccessOrdering == AtomicOrdering::Unordered || 6102 FailureOrdering == AtomicOrdering::Unordered) 6103 return TokError("cmpxchg cannot be unordered"); 6104 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6105 return TokError("cmpxchg failure argument shall be no stronger than the " 6106 "success argument"); 6107 if (FailureOrdering == AtomicOrdering::Release || 6108 FailureOrdering == AtomicOrdering::AcquireRelease) 6109 return TokError( 6110 "cmpxchg failure ordering cannot include release semantics"); 6111 if (!Ptr->getType()->isPointerTy()) 6112 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6113 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6114 return Error(CmpLoc, "compare value and pointer type do not match"); 6115 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6116 return Error(NewLoc, "new value and pointer type do not match"); 6117 if (!New->getType()->isFirstClassType()) 6118 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6119 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6120 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6121 CXI->setVolatile(isVolatile); 6122 CXI->setWeak(isWeak); 6123 Inst = CXI; 6124 return AteExtraComma ? InstExtraComma : InstNormal; 6125 } 6126 6127 /// ParseAtomicRMW 6128 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6129 /// 'singlethread'? AtomicOrdering 6130 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6131 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6132 bool AteExtraComma = false; 6133 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6134 SynchronizationScope Scope = CrossThread; 6135 bool isVolatile = false; 6136 AtomicRMWInst::BinOp Operation; 6137 6138 if (EatIfPresent(lltok::kw_volatile)) 6139 isVolatile = true; 6140 6141 switch (Lex.getKind()) { 6142 default: return TokError("expected binary operation in atomicrmw"); 6143 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6144 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6145 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6146 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6147 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6148 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6149 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6150 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6151 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6152 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6153 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6154 } 6155 Lex.Lex(); // Eat the operation. 6156 6157 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6158 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6159 ParseTypeAndValue(Val, ValLoc, PFS) || 6160 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6161 return true; 6162 6163 if (Ordering == AtomicOrdering::Unordered) 6164 return TokError("atomicrmw cannot be unordered"); 6165 if (!Ptr->getType()->isPointerTy()) 6166 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6167 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6168 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6169 if (!Val->getType()->isIntegerTy()) 6170 return Error(ValLoc, "atomicrmw operand must be an integer"); 6171 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6172 if (Size < 8 || (Size & (Size - 1))) 6173 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6174 " integer"); 6175 6176 AtomicRMWInst *RMWI = 6177 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6178 RMWI->setVolatile(isVolatile); 6179 Inst = RMWI; 6180 return AteExtraComma ? InstExtraComma : InstNormal; 6181 } 6182 6183 /// ParseFence 6184 /// ::= 'fence' 'singlethread'? AtomicOrdering 6185 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6186 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6187 SynchronizationScope Scope = CrossThread; 6188 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6189 return true; 6190 6191 if (Ordering == AtomicOrdering::Unordered) 6192 return TokError("fence cannot be unordered"); 6193 if (Ordering == AtomicOrdering::Monotonic) 6194 return TokError("fence cannot be monotonic"); 6195 6196 Inst = new FenceInst(Context, Ordering, Scope); 6197 return InstNormal; 6198 } 6199 6200 /// ParseGetElementPtr 6201 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6202 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6203 Value *Ptr = nullptr; 6204 Value *Val = nullptr; 6205 LocTy Loc, EltLoc; 6206 6207 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6208 6209 Type *Ty = nullptr; 6210 LocTy ExplicitTypeLoc = Lex.getLoc(); 6211 if (ParseType(Ty) || 6212 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6213 ParseTypeAndValue(Ptr, Loc, PFS)) 6214 return true; 6215 6216 Type *BaseType = Ptr->getType(); 6217 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6218 if (!BasePointerType) 6219 return Error(Loc, "base of getelementptr must be a pointer"); 6220 6221 if (Ty != BasePointerType->getElementType()) 6222 return Error(ExplicitTypeLoc, 6223 "explicit pointee type doesn't match operand's pointee type"); 6224 6225 SmallVector<Value*, 16> Indices; 6226 bool AteExtraComma = false; 6227 // GEP returns a vector of pointers if at least one of parameters is a vector. 6228 // All vector parameters should have the same vector width. 6229 unsigned GEPWidth = BaseType->isVectorTy() ? 6230 BaseType->getVectorNumElements() : 0; 6231 6232 while (EatIfPresent(lltok::comma)) { 6233 if (Lex.getKind() == lltok::MetadataVar) { 6234 AteExtraComma = true; 6235 break; 6236 } 6237 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6238 if (!Val->getType()->getScalarType()->isIntegerTy()) 6239 return Error(EltLoc, "getelementptr index must be an integer"); 6240 6241 if (Val->getType()->isVectorTy()) { 6242 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6243 if (GEPWidth && GEPWidth != ValNumEl) 6244 return Error(EltLoc, 6245 "getelementptr vector index has a wrong number of elements"); 6246 GEPWidth = ValNumEl; 6247 } 6248 Indices.push_back(Val); 6249 } 6250 6251 SmallPtrSet<Type*, 4> Visited; 6252 if (!Indices.empty() && !Ty->isSized(&Visited)) 6253 return Error(Loc, "base element of getelementptr must be sized"); 6254 6255 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6256 return Error(Loc, "invalid getelementptr indices"); 6257 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6258 if (InBounds) 6259 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6260 return AteExtraComma ? InstExtraComma : InstNormal; 6261 } 6262 6263 /// ParseExtractValue 6264 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6265 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6266 Value *Val; LocTy Loc; 6267 SmallVector<unsigned, 4> Indices; 6268 bool AteExtraComma; 6269 if (ParseTypeAndValue(Val, Loc, PFS) || 6270 ParseIndexList(Indices, AteExtraComma)) 6271 return true; 6272 6273 if (!Val->getType()->isAggregateType()) 6274 return Error(Loc, "extractvalue operand must be aggregate type"); 6275 6276 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6277 return Error(Loc, "invalid indices for extractvalue"); 6278 Inst = ExtractValueInst::Create(Val, Indices); 6279 return AteExtraComma ? InstExtraComma : InstNormal; 6280 } 6281 6282 /// ParseInsertValue 6283 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6284 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6285 Value *Val0, *Val1; LocTy Loc0, Loc1; 6286 SmallVector<unsigned, 4> Indices; 6287 bool AteExtraComma; 6288 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6289 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6290 ParseTypeAndValue(Val1, Loc1, PFS) || 6291 ParseIndexList(Indices, AteExtraComma)) 6292 return true; 6293 6294 if (!Val0->getType()->isAggregateType()) 6295 return Error(Loc0, "insertvalue operand must be aggregate type"); 6296 6297 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6298 if (!IndexedType) 6299 return Error(Loc0, "invalid indices for insertvalue"); 6300 if (IndexedType != Val1->getType()) 6301 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6302 getTypeString(Val1->getType()) + "' instead of '" + 6303 getTypeString(IndexedType) + "'"); 6304 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6305 return AteExtraComma ? InstExtraComma : InstNormal; 6306 } 6307 6308 //===----------------------------------------------------------------------===// 6309 // Embedded metadata. 6310 //===----------------------------------------------------------------------===// 6311 6312 /// ParseMDNodeVector 6313 /// ::= { Element (',' Element)* } 6314 /// Element 6315 /// ::= 'null' | TypeAndValue 6316 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6317 if (ParseToken(lltok::lbrace, "expected '{' here")) 6318 return true; 6319 6320 // Check for an empty list. 6321 if (EatIfPresent(lltok::rbrace)) 6322 return false; 6323 6324 do { 6325 // Null is a special case since it is typeless. 6326 if (EatIfPresent(lltok::kw_null)) { 6327 Elts.push_back(nullptr); 6328 continue; 6329 } 6330 6331 Metadata *MD; 6332 if (ParseMetadata(MD, nullptr)) 6333 return true; 6334 Elts.push_back(MD); 6335 } while (EatIfPresent(lltok::comma)); 6336 6337 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6338 } 6339 6340 //===----------------------------------------------------------------------===// 6341 // Use-list order directives. 6342 //===----------------------------------------------------------------------===// 6343 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6344 SMLoc Loc) { 6345 if (V->use_empty()) 6346 return Error(Loc, "value has no uses"); 6347 6348 unsigned NumUses = 0; 6349 SmallDenseMap<const Use *, unsigned, 16> Order; 6350 for (const Use &U : V->uses()) { 6351 if (++NumUses > Indexes.size()) 6352 break; 6353 Order[&U] = Indexes[NumUses - 1]; 6354 } 6355 if (NumUses < 2) 6356 return Error(Loc, "value only has one use"); 6357 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6358 return Error(Loc, "wrong number of indexes, expected " + 6359 Twine(std::distance(V->use_begin(), V->use_end()))); 6360 6361 V->sortUseList([&](const Use &L, const Use &R) { 6362 return Order.lookup(&L) < Order.lookup(&R); 6363 }); 6364 return false; 6365 } 6366 6367 /// ParseUseListOrderIndexes 6368 /// ::= '{' uint32 (',' uint32)+ '}' 6369 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6370 SMLoc Loc = Lex.getLoc(); 6371 if (ParseToken(lltok::lbrace, "expected '{' here")) 6372 return true; 6373 if (Lex.getKind() == lltok::rbrace) 6374 return Lex.Error("expected non-empty list of uselistorder indexes"); 6375 6376 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6377 // indexes should be distinct numbers in the range [0, size-1], and should 6378 // not be in order. 6379 unsigned Offset = 0; 6380 unsigned Max = 0; 6381 bool IsOrdered = true; 6382 assert(Indexes.empty() && "Expected empty order vector"); 6383 do { 6384 unsigned Index; 6385 if (ParseUInt32(Index)) 6386 return true; 6387 6388 // Update consistency checks. 6389 Offset += Index - Indexes.size(); 6390 Max = std::max(Max, Index); 6391 IsOrdered &= Index == Indexes.size(); 6392 6393 Indexes.push_back(Index); 6394 } while (EatIfPresent(lltok::comma)); 6395 6396 if (ParseToken(lltok::rbrace, "expected '}' here")) 6397 return true; 6398 6399 if (Indexes.size() < 2) 6400 return Error(Loc, "expected >= 2 uselistorder indexes"); 6401 if (Offset != 0 || Max >= Indexes.size()) 6402 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6403 if (IsOrdered) 6404 return Error(Loc, "expected uselistorder indexes to change the order"); 6405 6406 return false; 6407 } 6408 6409 /// ParseUseListOrder 6410 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6411 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6412 SMLoc Loc = Lex.getLoc(); 6413 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6414 return true; 6415 6416 Value *V; 6417 SmallVector<unsigned, 16> Indexes; 6418 if (ParseTypeAndValue(V, PFS) || 6419 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6420 ParseUseListOrderIndexes(Indexes)) 6421 return true; 6422 6423 return sortUseListOrder(V, Indexes, Loc); 6424 } 6425 6426 /// ParseUseListOrderBB 6427 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6428 bool LLParser::ParseUseListOrderBB() { 6429 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6430 SMLoc Loc = Lex.getLoc(); 6431 Lex.Lex(); 6432 6433 ValID Fn, Label; 6434 SmallVector<unsigned, 16> Indexes; 6435 if (ParseValID(Fn) || 6436 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6437 ParseValID(Label) || 6438 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6439 ParseUseListOrderIndexes(Indexes)) 6440 return true; 6441 6442 // Check the function. 6443 GlobalValue *GV; 6444 if (Fn.Kind == ValID::t_GlobalName) 6445 GV = M->getNamedValue(Fn.StrVal); 6446 else if (Fn.Kind == ValID::t_GlobalID) 6447 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6448 else 6449 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6450 if (!GV) 6451 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6452 auto *F = dyn_cast<Function>(GV); 6453 if (!F) 6454 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6455 if (F->isDeclaration()) 6456 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6457 6458 // Check the basic block. 6459 if (Label.Kind == ValID::t_LocalID) 6460 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6461 if (Label.Kind != ValID::t_LocalName) 6462 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6463 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6464 if (!V) 6465 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6466 if (!isa<BasicBlock>(V)) 6467 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6468 6469 return sortUseListOrder(V, Indexes, Loc); 6470 } 6471