1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "LLToken.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (parseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::validateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::parseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (parseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (parseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::parseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (parseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (parseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: 345 return tokError("expected top-level entity"); 346 case lltok::Eof: return false; 347 case lltok::kw_declare: 348 if (parseDeclare()) 349 return true; 350 break; 351 case lltok::kw_define: 352 if (parseDefine()) 353 return true; 354 break; 355 case lltok::kw_module: 356 if (parseModuleAsm()) 357 return true; 358 break; 359 case lltok::kw_deplibs: 360 if (parseDepLibs()) 361 return true; 362 break; 363 case lltok::LocalVarID: 364 if (parseUnnamedType()) 365 return true; 366 break; 367 case lltok::LocalVar: 368 if (parseNamedType()) 369 return true; 370 break; 371 case lltok::GlobalID: 372 if (parseUnnamedGlobal()) 373 return true; 374 break; 375 case lltok::GlobalVar: 376 if (parseNamedGlobal()) 377 return true; 378 break; 379 case lltok::ComdatVar: if (parseComdat()) return true; break; 380 case lltok::exclaim: 381 if (parseStandaloneMetadata()) 382 return true; 383 break; 384 case lltok::SummaryID: 385 if (parseSummaryEntry()) 386 return true; 387 break; 388 case lltok::MetadataVar: 389 if (parseNamedMetadata()) 390 return true; 391 break; 392 case lltok::kw_attributes: 393 if (parseUnnamedAttrGrp()) 394 return true; 395 break; 396 case lltok::kw_uselistorder: 397 if (parseUseListOrder()) 398 return true; 399 break; 400 case lltok::kw_uselistorder_bb: 401 if (parseUseListOrderBB()) 402 return true; 403 break; 404 } 405 } 406 } 407 408 /// toplevelentity 409 /// ::= 'module' 'asm' STRINGCONSTANT 410 bool LLParser::parseModuleAsm() { 411 assert(Lex.getKind() == lltok::kw_module); 412 Lex.Lex(); 413 414 std::string AsmStr; 415 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 416 parseStringConstant(AsmStr)) 417 return true; 418 419 M->appendModuleInlineAsm(AsmStr); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'target' 'triple' '=' STRINGCONSTANT 425 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 426 bool LLParser::parseTargetDefinition() { 427 assert(Lex.getKind() == lltok::kw_target); 428 std::string Str; 429 switch (Lex.Lex()) { 430 default: 431 return tokError("unknown target property"); 432 case lltok::kw_triple: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target triple") || 435 parseStringConstant(Str)) 436 return true; 437 M->setTargetTriple(Str); 438 return false; 439 case lltok::kw_datalayout: 440 Lex.Lex(); 441 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 442 parseStringConstant(Str)) 443 return true; 444 M->setDataLayout(Str); 445 return false; 446 } 447 } 448 449 /// toplevelentity 450 /// ::= 'source_filename' '=' STRINGCONSTANT 451 bool LLParser::parseSourceFileName() { 452 assert(Lex.getKind() == lltok::kw_source_filename); 453 Lex.Lex(); 454 if (parseToken(lltok::equal, "expected '=' after source_filename") || 455 parseStringConstant(SourceFileName)) 456 return true; 457 if (M) 458 M->setSourceFileName(SourceFileName); 459 return false; 460 } 461 462 /// toplevelentity 463 /// ::= 'deplibs' '=' '[' ']' 464 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 465 /// FIXME: Remove in 4.0. Currently parse, but ignore. 466 bool LLParser::parseDepLibs() { 467 assert(Lex.getKind() == lltok::kw_deplibs); 468 Lex.Lex(); 469 if (parseToken(lltok::equal, "expected '=' after deplibs") || 470 parseToken(lltok::lsquare, "expected '=' after deplibs")) 471 return true; 472 473 if (EatIfPresent(lltok::rsquare)) 474 return false; 475 476 do { 477 std::string Str; 478 if (parseStringConstant(Str)) 479 return true; 480 } while (EatIfPresent(lltok::comma)); 481 482 return parseToken(lltok::rsquare, "expected ']' at end of list"); 483 } 484 485 /// parseUnnamedType: 486 /// ::= LocalVarID '=' 'type' type 487 bool LLParser::parseUnnamedType() { 488 LocTy TypeLoc = Lex.getLoc(); 489 unsigned TypeID = Lex.getUIntVal(); 490 Lex.Lex(); // eat LocalVarID; 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after '='")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 502 if (Entry.first) 503 return error(TypeLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= LocalVar '=' 'type' type 513 bool LLParser::parseNamedType() { 514 std::string Name = Lex.getStrVal(); 515 LocTy NameLoc = Lex.getLoc(); 516 Lex.Lex(); // eat LocalVar. 517 518 if (parseToken(lltok::equal, "expected '=' after name") || 519 parseToken(lltok::kw_type, "expected 'type' after name")) 520 return true; 521 522 Type *Result = nullptr; 523 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 524 return true; 525 526 if (!isa<StructType>(Result)) { 527 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 528 if (Entry.first) 529 return error(NameLoc, "non-struct types may not be recursive"); 530 Entry.first = Result; 531 Entry.second = SMLoc(); 532 } 533 534 return false; 535 } 536 537 /// toplevelentity 538 /// ::= 'declare' FunctionHeader 539 bool LLParser::parseDeclare() { 540 assert(Lex.getKind() == lltok::kw_declare); 541 Lex.Lex(); 542 543 std::vector<std::pair<unsigned, MDNode *>> MDs; 544 while (Lex.getKind() == lltok::MetadataVar) { 545 unsigned MDK; 546 MDNode *N; 547 if (parseMetadataAttachment(MDK, N)) 548 return true; 549 MDs.push_back({MDK, N}); 550 } 551 552 Function *F; 553 if (parseFunctionHeader(F, false)) 554 return true; 555 for (auto &MD : MDs) 556 F->addMetadata(MD.first, *MD.second); 557 return false; 558 } 559 560 /// toplevelentity 561 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 562 bool LLParser::parseDefine() { 563 assert(Lex.getKind() == lltok::kw_define); 564 Lex.Lex(); 565 566 Function *F; 567 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 568 parseFunctionBody(*F); 569 } 570 571 /// parseGlobalType 572 /// ::= 'constant' 573 /// ::= 'global' 574 bool LLParser::parseGlobalType(bool &IsConstant) { 575 if (Lex.getKind() == lltok::kw_constant) 576 IsConstant = true; 577 else if (Lex.getKind() == lltok::kw_global) 578 IsConstant = false; 579 else { 580 IsConstant = false; 581 return tokError("expected 'global' or 'constant'"); 582 } 583 Lex.Lex(); 584 return false; 585 } 586 587 bool LLParser::parseOptionalUnnamedAddr( 588 GlobalVariable::UnnamedAddr &UnnamedAddr) { 589 if (EatIfPresent(lltok::kw_unnamed_addr)) 590 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 591 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 592 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 593 else 594 UnnamedAddr = GlobalValue::UnnamedAddr::None; 595 return false; 596 } 597 598 /// parseUnnamedGlobal: 599 /// OptionalVisibility (ALIAS | IFUNC) ... 600 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility 606 /// OptionalDLLStorageClass 607 /// ... -> global variable 608 bool LLParser::parseUnnamedGlobal() { 609 unsigned VarID = NumberedVals.size(); 610 std::string Name; 611 LocTy NameLoc = Lex.getLoc(); 612 613 // Handle the GlobalID form. 614 if (Lex.getKind() == lltok::GlobalID) { 615 if (Lex.getUIntVal() != VarID) 616 return error(Lex.getLoc(), 617 "variable expected to be numbered '%" + Twine(VarID) + "'"); 618 Lex.Lex(); // eat GlobalID; 619 620 if (parseToken(lltok::equal, "expected '=' after name")) 621 return true; 622 } 623 624 bool HasLinkage; 625 unsigned Linkage, Visibility, DLLStorageClass; 626 bool DSOLocal; 627 GlobalVariable::ThreadLocalMode TLM; 628 GlobalVariable::UnnamedAddr UnnamedAddr; 629 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 630 DSOLocal) || 631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 632 return true; 633 634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 640 } 641 642 /// parseNamedGlobal: 643 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 644 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 645 /// OptionalVisibility OptionalDLLStorageClass 646 /// ... -> global variable 647 bool LLParser::parseNamedGlobal() { 648 assert(Lex.getKind() == lltok::GlobalVar); 649 LocTy NameLoc = Lex.getLoc(); 650 std::string Name = Lex.getStrVal(); 651 Lex.Lex(); 652 653 bool HasLinkage; 654 unsigned Linkage, Visibility, DLLStorageClass; 655 bool DSOLocal; 656 GlobalVariable::ThreadLocalMode TLM; 657 GlobalVariable::UnnamedAddr UnnamedAddr; 658 if (parseToken(lltok::equal, "expected '=' in global variable") || 659 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 660 DSOLocal) || 661 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 662 return true; 663 664 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 665 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 666 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 667 668 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 672 bool LLParser::parseComdat() { 673 assert(Lex.getKind() == lltok::ComdatVar); 674 std::string Name = Lex.getStrVal(); 675 LocTy NameLoc = Lex.getLoc(); 676 Lex.Lex(); 677 678 if (parseToken(lltok::equal, "expected '=' here")) 679 return true; 680 681 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 682 return tokError("expected comdat type"); 683 684 Comdat::SelectionKind SK; 685 switch (Lex.getKind()) { 686 default: 687 return tokError("unknown selection kind"); 688 case lltok::kw_any: 689 SK = Comdat::Any; 690 break; 691 case lltok::kw_exactmatch: 692 SK = Comdat::ExactMatch; 693 break; 694 case lltok::kw_largest: 695 SK = Comdat::Largest; 696 break; 697 case lltok::kw_noduplicates: 698 SK = Comdat::NoDuplicates; 699 break; 700 case lltok::kw_samesize: 701 SK = Comdat::SameSize; 702 break; 703 } 704 Lex.Lex(); 705 706 // See if the comdat was forward referenced, if so, use the comdat. 707 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 708 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 709 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 710 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 711 712 Comdat *C; 713 if (I != ComdatSymTab.end()) 714 C = &I->second; 715 else 716 C = M->getOrInsertComdat(Name); 717 C->setSelectionKind(SK); 718 719 return false; 720 } 721 722 // MDString: 723 // ::= '!' STRINGCONSTANT 724 bool LLParser::parseMDString(MDString *&Result) { 725 std::string Str; 726 if (parseStringConstant(Str)) 727 return true; 728 Result = MDString::get(Context, Str); 729 return false; 730 } 731 732 // MDNode: 733 // ::= '!' MDNodeNumber 734 bool LLParser::parseMDNodeID(MDNode *&Result) { 735 // !{ ..., !42, ... } 736 LocTy IDLoc = Lex.getLoc(); 737 unsigned MID = 0; 738 if (parseUInt32(MID)) 739 return true; 740 741 // If not a forward reference, just return it now. 742 if (NumberedMetadata.count(MID)) { 743 Result = NumberedMetadata[MID]; 744 return false; 745 } 746 747 // Otherwise, create MDNode forward reference. 748 auto &FwdRef = ForwardRefMDNodes[MID]; 749 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 750 751 Result = FwdRef.first.get(); 752 NumberedMetadata[MID].reset(Result); 753 return false; 754 } 755 756 /// parseNamedMetadata: 757 /// !foo = !{ !1, !2 } 758 bool LLParser::parseNamedMetadata() { 759 assert(Lex.getKind() == lltok::MetadataVar); 760 std::string Name = Lex.getStrVal(); 761 Lex.Lex(); 762 763 if (parseToken(lltok::equal, "expected '=' here") || 764 parseToken(lltok::exclaim, "Expected '!' here") || 765 parseToken(lltok::lbrace, "Expected '{' here")) 766 return true; 767 768 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 769 if (Lex.getKind() != lltok::rbrace) 770 do { 771 MDNode *N = nullptr; 772 // parse DIExpressions inline as a special case. They are still MDNodes, 773 // so they can still appear in named metadata. Remove this logic if they 774 // become plain Metadata. 775 if (Lex.getKind() == lltok::MetadataVar && 776 Lex.getStrVal() == "DIExpression") { 777 if (parseDIExpression(N, /*IsDistinct=*/false)) 778 return true; 779 // DIArgLists should only appear inline in a function, as they may 780 // contain LocalAsMetadata arguments which require a function context. 781 } else if (Lex.getKind() == lltok::MetadataVar && 782 Lex.getStrVal() == "DIArgList") { 783 return tokError("found DIArgList outside of function"); 784 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 785 parseMDNodeID(N)) { 786 return true; 787 } 788 NMD->addOperand(N); 789 } while (EatIfPresent(lltok::comma)); 790 791 return parseToken(lltok::rbrace, "expected end of metadata node"); 792 } 793 794 /// parseStandaloneMetadata: 795 /// !42 = !{...} 796 bool LLParser::parseStandaloneMetadata() { 797 assert(Lex.getKind() == lltok::exclaim); 798 Lex.Lex(); 799 unsigned MetadataID = 0; 800 801 MDNode *Init; 802 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 803 return true; 804 805 // Detect common error, from old metadata syntax. 806 if (Lex.getKind() == lltok::Type) 807 return tokError("unexpected type in metadata definition"); 808 809 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 810 if (Lex.getKind() == lltok::MetadataVar) { 811 if (parseSpecializedMDNode(Init, IsDistinct)) 812 return true; 813 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 814 parseMDTuple(Init, IsDistinct)) 815 return true; 816 817 // See if this was forward referenced, if so, handle it. 818 auto FI = ForwardRefMDNodes.find(MetadataID); 819 if (FI != ForwardRefMDNodes.end()) { 820 FI->second.first->replaceAllUsesWith(Init); 821 ForwardRefMDNodes.erase(FI); 822 823 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 824 } else { 825 if (NumberedMetadata.count(MetadataID)) 826 return tokError("Metadata id is already used"); 827 NumberedMetadata[MetadataID].reset(Init); 828 } 829 830 return false; 831 } 832 833 // Skips a single module summary entry. 834 bool LLParser::skipModuleSummaryEntry() { 835 // Each module summary entry consists of a tag for the entry 836 // type, followed by a colon, then the fields which may be surrounded by 837 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 838 // support is in place we will look for the tokens corresponding to the 839 // expected tags. 840 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 841 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 842 Lex.getKind() != lltok::kw_blockcount) 843 return tokError( 844 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 845 "start of summary entry"); 846 if (Lex.getKind() == lltok::kw_flags) 847 return parseSummaryIndexFlags(); 848 if (Lex.getKind() == lltok::kw_blockcount) 849 return parseBlockCount(); 850 Lex.Lex(); 851 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 852 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 853 return true; 854 // Now walk through the parenthesized entry, until the number of open 855 // parentheses goes back down to 0 (the first '(' was parsed above). 856 unsigned NumOpenParen = 1; 857 do { 858 switch (Lex.getKind()) { 859 case lltok::lparen: 860 NumOpenParen++; 861 break; 862 case lltok::rparen: 863 NumOpenParen--; 864 break; 865 case lltok::Eof: 866 return tokError("found end of file while parsing summary entry"); 867 default: 868 // Skip everything in between parentheses. 869 break; 870 } 871 Lex.Lex(); 872 } while (NumOpenParen > 0); 873 return false; 874 } 875 876 /// SummaryEntry 877 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 878 bool LLParser::parseSummaryEntry() { 879 assert(Lex.getKind() == lltok::SummaryID); 880 unsigned SummaryID = Lex.getUIntVal(); 881 882 // For summary entries, colons should be treated as distinct tokens, 883 // not an indication of the end of a label token. 884 Lex.setIgnoreColonInIdentifiers(true); 885 886 Lex.Lex(); 887 if (parseToken(lltok::equal, "expected '=' here")) 888 return true; 889 890 // If we don't have an index object, skip the summary entry. 891 if (!Index) 892 return skipModuleSummaryEntry(); 893 894 bool result = false; 895 switch (Lex.getKind()) { 896 case lltok::kw_gv: 897 result = parseGVEntry(SummaryID); 898 break; 899 case lltok::kw_module: 900 result = parseModuleEntry(SummaryID); 901 break; 902 case lltok::kw_typeid: 903 result = parseTypeIdEntry(SummaryID); 904 break; 905 case lltok::kw_typeidCompatibleVTable: 906 result = parseTypeIdCompatibleVtableEntry(SummaryID); 907 break; 908 case lltok::kw_flags: 909 result = parseSummaryIndexFlags(); 910 break; 911 case lltok::kw_blockcount: 912 result = parseBlockCount(); 913 break; 914 default: 915 result = error(Lex.getLoc(), "unexpected summary kind"); 916 break; 917 } 918 Lex.setIgnoreColonInIdentifiers(false); 919 return result; 920 } 921 922 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 923 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 924 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 925 } 926 927 // If there was an explicit dso_local, update GV. In the absence of an explicit 928 // dso_local we keep the default value. 929 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 930 if (DSOLocal) 931 GV.setDSOLocal(true); 932 } 933 934 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 935 Type *Ty2) { 936 std::string ErrString; 937 raw_string_ostream ErrOS(ErrString); 938 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 939 return ErrOS.str(); 940 } 941 942 /// parseIndirectSymbol: 943 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 944 /// OptionalVisibility OptionalDLLStorageClass 945 /// OptionalThreadLocal OptionalUnnamedAddr 946 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 947 /// 948 /// IndirectSymbol 949 /// ::= TypeAndValue 950 /// 951 /// IndirectSymbolAttr 952 /// ::= ',' 'partition' StringConstant 953 /// 954 /// Everything through OptionalUnnamedAddr has already been parsed. 955 /// 956 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 957 unsigned L, unsigned Visibility, 958 unsigned DLLStorageClass, bool DSOLocal, 959 GlobalVariable::ThreadLocalMode TLM, 960 GlobalVariable::UnnamedAddr UnnamedAddr) { 961 bool IsAlias; 962 if (Lex.getKind() == lltok::kw_alias) 963 IsAlias = true; 964 else if (Lex.getKind() == lltok::kw_ifunc) 965 IsAlias = false; 966 else 967 llvm_unreachable("Not an alias or ifunc!"); 968 Lex.Lex(); 969 970 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 971 972 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 973 return error(NameLoc, "invalid linkage type for alias"); 974 975 if (!isValidVisibilityForLinkage(Visibility, L)) 976 return error(NameLoc, 977 "symbol with local linkage must have default visibility"); 978 979 Type *Ty; 980 LocTy ExplicitTypeLoc = Lex.getLoc(); 981 if (parseType(Ty) || 982 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 983 return true; 984 985 Constant *Aliasee; 986 LocTy AliaseeLoc = Lex.getLoc(); 987 if (Lex.getKind() != lltok::kw_bitcast && 988 Lex.getKind() != lltok::kw_getelementptr && 989 Lex.getKind() != lltok::kw_addrspacecast && 990 Lex.getKind() != lltok::kw_inttoptr) { 991 if (parseGlobalTypeAndValue(Aliasee)) 992 return true; 993 } else { 994 // The bitcast dest type is not present, it is implied by the dest type. 995 ValID ID; 996 if (parseValID(ID)) 997 return true; 998 if (ID.Kind != ValID::t_Constant) 999 return error(AliaseeLoc, "invalid aliasee"); 1000 Aliasee = ID.ConstantVal; 1001 } 1002 1003 Type *AliaseeType = Aliasee->getType(); 1004 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1005 if (!PTy) 1006 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1007 unsigned AddrSpace = PTy->getAddressSpace(); 1008 1009 if (IsAlias && Ty != PTy->getElementType()) { 1010 return error( 1011 ExplicitTypeLoc, 1012 typeComparisonErrorMessage( 1013 "explicit pointee type doesn't match operand's pointee type", Ty, 1014 PTy->getElementType())); 1015 } 1016 1017 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 1018 return error(ExplicitTypeLoc, 1019 "explicit pointee type should be a function type"); 1020 } 1021 1022 GlobalValue *GVal = nullptr; 1023 1024 // See if the alias was forward referenced, if so, prepare to replace the 1025 // forward reference. 1026 if (!Name.empty()) { 1027 GVal = M->getNamedValue(Name); 1028 if (GVal) { 1029 if (!ForwardRefVals.erase(Name)) 1030 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1031 } 1032 } else { 1033 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1034 if (I != ForwardRefValIDs.end()) { 1035 GVal = I->second.first; 1036 ForwardRefValIDs.erase(I); 1037 } 1038 } 1039 1040 // Okay, create the alias but do not insert it into the module yet. 1041 std::unique_ptr<GlobalIndirectSymbol> GA; 1042 if (IsAlias) 1043 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1044 (GlobalValue::LinkageTypes)Linkage, Name, 1045 Aliasee, /*Parent*/ nullptr)); 1046 else 1047 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1048 (GlobalValue::LinkageTypes)Linkage, Name, 1049 Aliasee, /*Parent*/ nullptr)); 1050 GA->setThreadLocalMode(TLM); 1051 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1052 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1053 GA->setUnnamedAddr(UnnamedAddr); 1054 maybeSetDSOLocal(DSOLocal, *GA); 1055 1056 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1057 // Now parse them if there are any. 1058 while (Lex.getKind() == lltok::comma) { 1059 Lex.Lex(); 1060 1061 if (Lex.getKind() == lltok::kw_partition) { 1062 Lex.Lex(); 1063 GA->setPartition(Lex.getStrVal()); 1064 if (parseToken(lltok::StringConstant, "expected partition string")) 1065 return true; 1066 } else { 1067 return tokError("unknown alias or ifunc property!"); 1068 } 1069 } 1070 1071 if (Name.empty()) 1072 NumberedVals.push_back(GA.get()); 1073 1074 if (GVal) { 1075 // Verify that types agree. 1076 if (GVal->getType() != GA->getType()) 1077 return error( 1078 ExplicitTypeLoc, 1079 "forward reference and definition of alias have different types"); 1080 1081 // If they agree, just RAUW the old value with the alias and remove the 1082 // forward ref info. 1083 GVal->replaceAllUsesWith(GA.get()); 1084 GVal->eraseFromParent(); 1085 } 1086 1087 // Insert into the module, we know its name won't collide now. 1088 if (IsAlias) 1089 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1090 else 1091 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1092 assert(GA->getName() == Name && "Should not be a name conflict!"); 1093 1094 // The module owns this now 1095 GA.release(); 1096 1097 return false; 1098 } 1099 1100 /// parseGlobal 1101 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1102 /// OptionalVisibility OptionalDLLStorageClass 1103 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1104 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1105 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1106 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1107 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1108 /// Const OptionalAttrs 1109 /// 1110 /// Everything up to and including OptionalUnnamedAddr has been parsed 1111 /// already. 1112 /// 1113 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1114 unsigned Linkage, bool HasLinkage, 1115 unsigned Visibility, unsigned DLLStorageClass, 1116 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1117 GlobalVariable::UnnamedAddr UnnamedAddr) { 1118 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1119 return error(NameLoc, 1120 "symbol with local linkage must have default visibility"); 1121 1122 unsigned AddrSpace; 1123 bool IsConstant, IsExternallyInitialized; 1124 LocTy IsExternallyInitializedLoc; 1125 LocTy TyLoc; 1126 1127 Type *Ty = nullptr; 1128 if (parseOptionalAddrSpace(AddrSpace) || 1129 parseOptionalToken(lltok::kw_externally_initialized, 1130 IsExternallyInitialized, 1131 &IsExternallyInitializedLoc) || 1132 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1133 return true; 1134 1135 // If the linkage is specified and is external, then no initializer is 1136 // present. 1137 Constant *Init = nullptr; 1138 if (!HasLinkage || 1139 !GlobalValue::isValidDeclarationLinkage( 1140 (GlobalValue::LinkageTypes)Linkage)) { 1141 if (parseGlobalValue(Ty, Init)) 1142 return true; 1143 } 1144 1145 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1146 return error(TyLoc, "invalid type for global variable"); 1147 1148 GlobalValue *GVal = nullptr; 1149 1150 // See if the global was forward referenced, if so, use the global. 1151 if (!Name.empty()) { 1152 GVal = M->getNamedValue(Name); 1153 if (GVal) { 1154 if (!ForwardRefVals.erase(Name)) 1155 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1156 } 1157 } else { 1158 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1159 if (I != ForwardRefValIDs.end()) { 1160 GVal = I->second.first; 1161 ForwardRefValIDs.erase(I); 1162 } 1163 } 1164 1165 GlobalVariable *GV; 1166 if (!GVal) { 1167 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1168 Name, nullptr, GlobalVariable::NotThreadLocal, 1169 AddrSpace); 1170 } else { 1171 if (GVal->getValueType() != Ty) 1172 return error( 1173 TyLoc, 1174 "forward reference and definition of global have different types"); 1175 1176 GV = cast<GlobalVariable>(GVal); 1177 1178 // Move the forward-reference to the correct spot in the module. 1179 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1180 } 1181 1182 if (Name.empty()) 1183 NumberedVals.push_back(GV); 1184 1185 // Set the parsed properties on the global. 1186 if (Init) 1187 GV->setInitializer(Init); 1188 GV->setConstant(IsConstant); 1189 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1190 maybeSetDSOLocal(DSOLocal, *GV); 1191 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1192 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1193 GV->setExternallyInitialized(IsExternallyInitialized); 1194 GV->setThreadLocalMode(TLM); 1195 GV->setUnnamedAddr(UnnamedAddr); 1196 1197 // parse attributes on the global. 1198 while (Lex.getKind() == lltok::comma) { 1199 Lex.Lex(); 1200 1201 if (Lex.getKind() == lltok::kw_section) { 1202 Lex.Lex(); 1203 GV->setSection(Lex.getStrVal()); 1204 if (parseToken(lltok::StringConstant, "expected global section string")) 1205 return true; 1206 } else if (Lex.getKind() == lltok::kw_partition) { 1207 Lex.Lex(); 1208 GV->setPartition(Lex.getStrVal()); 1209 if (parseToken(lltok::StringConstant, "expected partition string")) 1210 return true; 1211 } else if (Lex.getKind() == lltok::kw_align) { 1212 MaybeAlign Alignment; 1213 if (parseOptionalAlignment(Alignment)) 1214 return true; 1215 GV->setAlignment(Alignment); 1216 } else if (Lex.getKind() == lltok::MetadataVar) { 1217 if (parseGlobalObjectMetadataAttachment(*GV)) 1218 return true; 1219 } else { 1220 Comdat *C; 1221 if (parseOptionalComdat(Name, C)) 1222 return true; 1223 if (C) 1224 GV->setComdat(C); 1225 else 1226 return tokError("unknown global variable property!"); 1227 } 1228 } 1229 1230 AttrBuilder Attrs; 1231 LocTy BuiltinLoc; 1232 std::vector<unsigned> FwdRefAttrGrps; 1233 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1234 return true; 1235 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1236 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1237 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1238 } 1239 1240 return false; 1241 } 1242 1243 /// parseUnnamedAttrGrp 1244 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1245 bool LLParser::parseUnnamedAttrGrp() { 1246 assert(Lex.getKind() == lltok::kw_attributes); 1247 LocTy AttrGrpLoc = Lex.getLoc(); 1248 Lex.Lex(); 1249 1250 if (Lex.getKind() != lltok::AttrGrpID) 1251 return tokError("expected attribute group id"); 1252 1253 unsigned VarID = Lex.getUIntVal(); 1254 std::vector<unsigned> unused; 1255 LocTy BuiltinLoc; 1256 Lex.Lex(); 1257 1258 if (parseToken(lltok::equal, "expected '=' here") || 1259 parseToken(lltok::lbrace, "expected '{' here") || 1260 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1261 BuiltinLoc) || 1262 parseToken(lltok::rbrace, "expected end of attribute group")) 1263 return true; 1264 1265 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1266 return error(AttrGrpLoc, "attribute group has no attributes"); 1267 1268 return false; 1269 } 1270 1271 /// parseFnAttributeValuePairs 1272 /// ::= <attr> | <attr> '=' <value> 1273 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1274 std::vector<unsigned> &FwdRefAttrGrps, 1275 bool inAttrGrp, LocTy &BuiltinLoc) { 1276 bool HaveError = false; 1277 1278 B.clear(); 1279 1280 while (true) { 1281 lltok::Kind Token = Lex.getKind(); 1282 if (Token == lltok::kw_builtin) 1283 BuiltinLoc = Lex.getLoc(); 1284 switch (Token) { 1285 default: 1286 if (!inAttrGrp) return HaveError; 1287 return error(Lex.getLoc(), "unterminated attribute group"); 1288 case lltok::rbrace: 1289 // Finished. 1290 return false; 1291 1292 case lltok::AttrGrpID: { 1293 // Allow a function to reference an attribute group: 1294 // 1295 // define void @foo() #1 { ... } 1296 if (inAttrGrp) 1297 HaveError |= error( 1298 Lex.getLoc(), 1299 "cannot have an attribute group reference in an attribute group"); 1300 1301 unsigned AttrGrpNum = Lex.getUIntVal(); 1302 if (inAttrGrp) break; 1303 1304 // Save the reference to the attribute group. We'll fill it in later. 1305 FwdRefAttrGrps.push_back(AttrGrpNum); 1306 break; 1307 } 1308 // Target-dependent attributes: 1309 case lltok::StringConstant: { 1310 if (parseStringAttribute(B)) 1311 return true; 1312 continue; 1313 } 1314 1315 // Target-independent attributes: 1316 case lltok::kw_align: { 1317 // As a hack, we allow function alignment to be initially parsed as an 1318 // attribute on a function declaration/definition or added to an attribute 1319 // group and later moved to the alignment field. 1320 MaybeAlign Alignment; 1321 if (inAttrGrp) { 1322 Lex.Lex(); 1323 uint32_t Value = 0; 1324 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1325 return true; 1326 Alignment = Align(Value); 1327 } else { 1328 if (parseOptionalAlignment(Alignment)) 1329 return true; 1330 } 1331 B.addAlignmentAttr(Alignment); 1332 continue; 1333 } 1334 case lltok::kw_alignstack: { 1335 unsigned Alignment; 1336 if (inAttrGrp) { 1337 Lex.Lex(); 1338 if (parseToken(lltok::equal, "expected '=' here") || 1339 parseUInt32(Alignment)) 1340 return true; 1341 } else { 1342 if (parseOptionalStackAlignment(Alignment)) 1343 return true; 1344 } 1345 B.addStackAlignmentAttr(Alignment); 1346 continue; 1347 } 1348 case lltok::kw_allocsize: { 1349 unsigned ElemSizeArg; 1350 Optional<unsigned> NumElemsArg; 1351 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1352 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1353 return true; 1354 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1355 continue; 1356 } 1357 case lltok::kw_vscale_range: { 1358 unsigned MinValue, MaxValue; 1359 // inAttrGrp doesn't matter; we only support vscale_range(a[, b]) 1360 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1361 return true; 1362 B.addVScaleRangeAttr(MinValue, MaxValue); 1363 continue; 1364 } 1365 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1366 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1367 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1368 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1369 case lltok::kw_hot: B.addAttribute(Attribute::Hot); break; 1370 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1371 case lltok::kw_inaccessiblememonly: 1372 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1373 case lltok::kw_inaccessiblemem_or_argmemonly: 1374 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1375 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1376 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1377 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1378 case lltok::kw_mustprogress: 1379 B.addAttribute(Attribute::MustProgress); 1380 break; 1381 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1382 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1383 case lltok::kw_nocallback: 1384 B.addAttribute(Attribute::NoCallback); 1385 break; 1386 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1387 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1388 case lltok::kw_noimplicitfloat: 1389 B.addAttribute(Attribute::NoImplicitFloat); break; 1390 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1391 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1392 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1393 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1394 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1395 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1396 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1397 case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break; 1398 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1399 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1400 case lltok::kw_null_pointer_is_valid: 1401 B.addAttribute(Attribute::NullPointerIsValid); break; 1402 case lltok::kw_optforfuzzing: 1403 B.addAttribute(Attribute::OptForFuzzing); break; 1404 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1405 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1406 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1407 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1408 case lltok::kw_returns_twice: 1409 B.addAttribute(Attribute::ReturnsTwice); break; 1410 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1411 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1412 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1413 case lltok::kw_sspstrong: 1414 B.addAttribute(Attribute::StackProtectStrong); break; 1415 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1416 case lltok::kw_shadowcallstack: 1417 B.addAttribute(Attribute::ShadowCallStack); break; 1418 case lltok::kw_sanitize_address: 1419 B.addAttribute(Attribute::SanitizeAddress); break; 1420 case lltok::kw_sanitize_hwaddress: 1421 B.addAttribute(Attribute::SanitizeHWAddress); break; 1422 case lltok::kw_sanitize_memtag: 1423 B.addAttribute(Attribute::SanitizeMemTag); break; 1424 case lltok::kw_sanitize_thread: 1425 B.addAttribute(Attribute::SanitizeThread); break; 1426 case lltok::kw_sanitize_memory: 1427 B.addAttribute(Attribute::SanitizeMemory); break; 1428 case lltok::kw_speculative_load_hardening: 1429 B.addAttribute(Attribute::SpeculativeLoadHardening); 1430 break; 1431 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1432 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1433 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1434 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1435 case lltok::kw_preallocated: { 1436 Type *Ty; 1437 if (parsePreallocated(Ty)) 1438 return true; 1439 B.addPreallocatedAttr(Ty); 1440 break; 1441 } 1442 1443 // error handling. 1444 case lltok::kw_inreg: 1445 case lltok::kw_signext: 1446 case lltok::kw_zeroext: 1447 HaveError |= 1448 error(Lex.getLoc(), "invalid use of attribute on a function"); 1449 break; 1450 case lltok::kw_byval: 1451 case lltok::kw_dereferenceable: 1452 case lltok::kw_dereferenceable_or_null: 1453 case lltok::kw_inalloca: 1454 case lltok::kw_nest: 1455 case lltok::kw_noalias: 1456 case lltok::kw_noundef: 1457 case lltok::kw_nocapture: 1458 case lltok::kw_nonnull: 1459 case lltok::kw_returned: 1460 case lltok::kw_sret: 1461 case lltok::kw_swifterror: 1462 case lltok::kw_swiftself: 1463 case lltok::kw_immarg: 1464 case lltok::kw_byref: 1465 HaveError |= 1466 error(Lex.getLoc(), 1467 "invalid use of parameter-only attribute on a function"); 1468 break; 1469 } 1470 1471 // parsePreallocated() consumes token 1472 if (Token != lltok::kw_preallocated) 1473 Lex.Lex(); 1474 } 1475 } 1476 1477 //===----------------------------------------------------------------------===// 1478 // GlobalValue Reference/Resolution Routines. 1479 //===----------------------------------------------------------------------===// 1480 1481 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1482 const std::string &Name) { 1483 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1484 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1485 PTy->getAddressSpace(), Name, M); 1486 else 1487 return new GlobalVariable(*M, PTy->getElementType(), false, 1488 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1489 nullptr, GlobalVariable::NotThreadLocal, 1490 PTy->getAddressSpace()); 1491 } 1492 1493 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1494 Value *Val, bool IsCall) { 1495 if (Val->getType() == Ty) 1496 return Val; 1497 // For calls we also accept variables in the program address space. 1498 Type *SuggestedTy = Ty; 1499 if (IsCall && isa<PointerType>(Ty)) { 1500 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1501 M->getDataLayout().getProgramAddressSpace()); 1502 SuggestedTy = TyInProgAS; 1503 if (Val->getType() == TyInProgAS) 1504 return Val; 1505 } 1506 if (Ty->isLabelTy()) 1507 error(Loc, "'" + Name + "' is not a basic block"); 1508 else 1509 error(Loc, "'" + Name + "' defined with type '" + 1510 getTypeString(Val->getType()) + "' but expected '" + 1511 getTypeString(SuggestedTy) + "'"); 1512 return nullptr; 1513 } 1514 1515 /// getGlobalVal - Get a value with the specified name or ID, creating a 1516 /// forward reference record if needed. This can return null if the value 1517 /// exists but does not have the right type. 1518 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1519 LocTy Loc, bool IsCall) { 1520 PointerType *PTy = dyn_cast<PointerType>(Ty); 1521 if (!PTy) { 1522 error(Loc, "global variable reference must have pointer type"); 1523 return nullptr; 1524 } 1525 1526 // Look this name up in the normal function symbol table. 1527 GlobalValue *Val = 1528 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1529 1530 // If this is a forward reference for the value, see if we already created a 1531 // forward ref record. 1532 if (!Val) { 1533 auto I = ForwardRefVals.find(Name); 1534 if (I != ForwardRefVals.end()) 1535 Val = I->second.first; 1536 } 1537 1538 // If we have the value in the symbol table or fwd-ref table, return it. 1539 if (Val) 1540 return cast_or_null<GlobalValue>( 1541 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1542 1543 // Otherwise, create a new forward reference for this value and remember it. 1544 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1545 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1546 return FwdVal; 1547 } 1548 1549 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1550 bool IsCall) { 1551 PointerType *PTy = dyn_cast<PointerType>(Ty); 1552 if (!PTy) { 1553 error(Loc, "global variable reference must have pointer type"); 1554 return nullptr; 1555 } 1556 1557 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1558 1559 // If this is a forward reference for the value, see if we already created a 1560 // forward ref record. 1561 if (!Val) { 1562 auto I = ForwardRefValIDs.find(ID); 1563 if (I != ForwardRefValIDs.end()) 1564 Val = I->second.first; 1565 } 1566 1567 // If we have the value in the symbol table or fwd-ref table, return it. 1568 if (Val) 1569 return cast_or_null<GlobalValue>( 1570 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1571 1572 // Otherwise, create a new forward reference for this value and remember it. 1573 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1574 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1575 return FwdVal; 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 // Comdat Reference/Resolution Routines. 1580 //===----------------------------------------------------------------------===// 1581 1582 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1583 // Look this name up in the comdat symbol table. 1584 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1585 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1586 if (I != ComdatSymTab.end()) 1587 return &I->second; 1588 1589 // Otherwise, create a new forward reference for this value and remember it. 1590 Comdat *C = M->getOrInsertComdat(Name); 1591 ForwardRefComdats[Name] = Loc; 1592 return C; 1593 } 1594 1595 //===----------------------------------------------------------------------===// 1596 // Helper Routines. 1597 //===----------------------------------------------------------------------===// 1598 1599 /// parseToken - If the current token has the specified kind, eat it and return 1600 /// success. Otherwise, emit the specified error and return failure. 1601 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1602 if (Lex.getKind() != T) 1603 return tokError(ErrMsg); 1604 Lex.Lex(); 1605 return false; 1606 } 1607 1608 /// parseStringConstant 1609 /// ::= StringConstant 1610 bool LLParser::parseStringConstant(std::string &Result) { 1611 if (Lex.getKind() != lltok::StringConstant) 1612 return tokError("expected string constant"); 1613 Result = Lex.getStrVal(); 1614 Lex.Lex(); 1615 return false; 1616 } 1617 1618 /// parseUInt32 1619 /// ::= uint32 1620 bool LLParser::parseUInt32(uint32_t &Val) { 1621 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1622 return tokError("expected integer"); 1623 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1624 if (Val64 != unsigned(Val64)) 1625 return tokError("expected 32-bit integer (too large)"); 1626 Val = Val64; 1627 Lex.Lex(); 1628 return false; 1629 } 1630 1631 /// parseUInt64 1632 /// ::= uint64 1633 bool LLParser::parseUInt64(uint64_t &Val) { 1634 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1635 return tokError("expected integer"); 1636 Val = Lex.getAPSIntVal().getLimitedValue(); 1637 Lex.Lex(); 1638 return false; 1639 } 1640 1641 /// parseTLSModel 1642 /// := 'localdynamic' 1643 /// := 'initialexec' 1644 /// := 'localexec' 1645 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1646 switch (Lex.getKind()) { 1647 default: 1648 return tokError("expected localdynamic, initialexec or localexec"); 1649 case lltok::kw_localdynamic: 1650 TLM = GlobalVariable::LocalDynamicTLSModel; 1651 break; 1652 case lltok::kw_initialexec: 1653 TLM = GlobalVariable::InitialExecTLSModel; 1654 break; 1655 case lltok::kw_localexec: 1656 TLM = GlobalVariable::LocalExecTLSModel; 1657 break; 1658 } 1659 1660 Lex.Lex(); 1661 return false; 1662 } 1663 1664 /// parseOptionalThreadLocal 1665 /// := /*empty*/ 1666 /// := 'thread_local' 1667 /// := 'thread_local' '(' tlsmodel ')' 1668 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1669 TLM = GlobalVariable::NotThreadLocal; 1670 if (!EatIfPresent(lltok::kw_thread_local)) 1671 return false; 1672 1673 TLM = GlobalVariable::GeneralDynamicTLSModel; 1674 if (Lex.getKind() == lltok::lparen) { 1675 Lex.Lex(); 1676 return parseTLSModel(TLM) || 1677 parseToken(lltok::rparen, "expected ')' after thread local model"); 1678 } 1679 return false; 1680 } 1681 1682 /// parseOptionalAddrSpace 1683 /// := /*empty*/ 1684 /// := 'addrspace' '(' uint32 ')' 1685 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1686 AddrSpace = DefaultAS; 1687 if (!EatIfPresent(lltok::kw_addrspace)) 1688 return false; 1689 return parseToken(lltok::lparen, "expected '(' in address space") || 1690 parseUInt32(AddrSpace) || 1691 parseToken(lltok::rparen, "expected ')' in address space"); 1692 } 1693 1694 /// parseStringAttribute 1695 /// := StringConstant 1696 /// := StringConstant '=' StringConstant 1697 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1698 std::string Attr = Lex.getStrVal(); 1699 Lex.Lex(); 1700 std::string Val; 1701 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1702 return true; 1703 B.addAttribute(Attr, Val); 1704 return false; 1705 } 1706 1707 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1708 /// attributes. 1709 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1710 bool HaveError = false; 1711 1712 B.clear(); 1713 1714 while (true) { 1715 lltok::Kind Token = Lex.getKind(); 1716 switch (Token) { 1717 default: // End of attributes. 1718 return HaveError; 1719 case lltok::StringConstant: { 1720 if (parseStringAttribute(B)) 1721 return true; 1722 continue; 1723 } 1724 case lltok::kw_align: { 1725 MaybeAlign Alignment; 1726 if (parseOptionalAlignment(Alignment, true)) 1727 return true; 1728 B.addAlignmentAttr(Alignment); 1729 continue; 1730 } 1731 case lltok::kw_alignstack: { 1732 unsigned Alignment; 1733 if (parseOptionalStackAlignment(Alignment)) 1734 return true; 1735 B.addStackAlignmentAttr(Alignment); 1736 continue; 1737 } 1738 case lltok::kw_byval: { 1739 Type *Ty; 1740 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1741 return true; 1742 B.addByValAttr(Ty); 1743 continue; 1744 } 1745 case lltok::kw_sret: { 1746 Type *Ty; 1747 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1748 return true; 1749 B.addStructRetAttr(Ty); 1750 continue; 1751 } 1752 case lltok::kw_preallocated: { 1753 Type *Ty; 1754 if (parsePreallocated(Ty)) 1755 return true; 1756 B.addPreallocatedAttr(Ty); 1757 continue; 1758 } 1759 case lltok::kw_inalloca: { 1760 Type *Ty; 1761 if (parseInalloca(Ty)) 1762 return true; 1763 B.addInAllocaAttr(Ty); 1764 continue; 1765 } 1766 case lltok::kw_dereferenceable: { 1767 uint64_t Bytes; 1768 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1769 return true; 1770 B.addDereferenceableAttr(Bytes); 1771 continue; 1772 } 1773 case lltok::kw_dereferenceable_or_null: { 1774 uint64_t Bytes; 1775 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1776 return true; 1777 B.addDereferenceableOrNullAttr(Bytes); 1778 continue; 1779 } 1780 case lltok::kw_byref: { 1781 Type *Ty; 1782 if (parseByRef(Ty)) 1783 return true; 1784 B.addByRefAttr(Ty); 1785 continue; 1786 } 1787 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1788 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1789 case lltok::kw_noundef: 1790 B.addAttribute(Attribute::NoUndef); 1791 break; 1792 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1793 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1794 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1795 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1796 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1797 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1798 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1799 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1800 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1801 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1802 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1803 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1804 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1805 1806 case lltok::kw_alwaysinline: 1807 case lltok::kw_argmemonly: 1808 case lltok::kw_builtin: 1809 case lltok::kw_inlinehint: 1810 case lltok::kw_jumptable: 1811 case lltok::kw_minsize: 1812 case lltok::kw_mustprogress: 1813 case lltok::kw_naked: 1814 case lltok::kw_nobuiltin: 1815 case lltok::kw_noduplicate: 1816 case lltok::kw_noimplicitfloat: 1817 case lltok::kw_noinline: 1818 case lltok::kw_nonlazybind: 1819 case lltok::kw_nomerge: 1820 case lltok::kw_noprofile: 1821 case lltok::kw_noredzone: 1822 case lltok::kw_noreturn: 1823 case lltok::kw_nocf_check: 1824 case lltok::kw_nounwind: 1825 case lltok::kw_optforfuzzing: 1826 case lltok::kw_optnone: 1827 case lltok::kw_optsize: 1828 case lltok::kw_returns_twice: 1829 case lltok::kw_sanitize_address: 1830 case lltok::kw_sanitize_hwaddress: 1831 case lltok::kw_sanitize_memtag: 1832 case lltok::kw_sanitize_memory: 1833 case lltok::kw_sanitize_thread: 1834 case lltok::kw_speculative_load_hardening: 1835 case lltok::kw_ssp: 1836 case lltok::kw_sspreq: 1837 case lltok::kw_sspstrong: 1838 case lltok::kw_safestack: 1839 case lltok::kw_shadowcallstack: 1840 case lltok::kw_strictfp: 1841 case lltok::kw_uwtable: 1842 case lltok::kw_vscale_range: 1843 HaveError |= 1844 error(Lex.getLoc(), "invalid use of function-only attribute"); 1845 break; 1846 } 1847 1848 Lex.Lex(); 1849 } 1850 } 1851 1852 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1853 /// attributes. 1854 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1855 bool HaveError = false; 1856 1857 B.clear(); 1858 1859 while (true) { 1860 lltok::Kind Token = Lex.getKind(); 1861 switch (Token) { 1862 default: // End of attributes. 1863 return HaveError; 1864 case lltok::StringConstant: { 1865 if (parseStringAttribute(B)) 1866 return true; 1867 continue; 1868 } 1869 case lltok::kw_dereferenceable: { 1870 uint64_t Bytes; 1871 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1872 return true; 1873 B.addDereferenceableAttr(Bytes); 1874 continue; 1875 } 1876 case lltok::kw_dereferenceable_or_null: { 1877 uint64_t Bytes; 1878 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1879 return true; 1880 B.addDereferenceableOrNullAttr(Bytes); 1881 continue; 1882 } 1883 case lltok::kw_align: { 1884 MaybeAlign Alignment; 1885 if (parseOptionalAlignment(Alignment)) 1886 return true; 1887 B.addAlignmentAttr(Alignment); 1888 continue; 1889 } 1890 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1891 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1892 case lltok::kw_noundef: 1893 B.addAttribute(Attribute::NoUndef); 1894 break; 1895 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1896 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1897 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1898 1899 // error handling. 1900 case lltok::kw_byval: 1901 case lltok::kw_inalloca: 1902 case lltok::kw_nest: 1903 case lltok::kw_nocapture: 1904 case lltok::kw_returned: 1905 case lltok::kw_sret: 1906 case lltok::kw_swifterror: 1907 case lltok::kw_swiftself: 1908 case lltok::kw_immarg: 1909 case lltok::kw_byref: 1910 HaveError |= 1911 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1912 break; 1913 1914 case lltok::kw_alignstack: 1915 case lltok::kw_alwaysinline: 1916 case lltok::kw_argmemonly: 1917 case lltok::kw_builtin: 1918 case lltok::kw_cold: 1919 case lltok::kw_inlinehint: 1920 case lltok::kw_jumptable: 1921 case lltok::kw_minsize: 1922 case lltok::kw_mustprogress: 1923 case lltok::kw_naked: 1924 case lltok::kw_nobuiltin: 1925 case lltok::kw_noduplicate: 1926 case lltok::kw_noimplicitfloat: 1927 case lltok::kw_noinline: 1928 case lltok::kw_nonlazybind: 1929 case lltok::kw_nomerge: 1930 case lltok::kw_noprofile: 1931 case lltok::kw_noredzone: 1932 case lltok::kw_noreturn: 1933 case lltok::kw_nocf_check: 1934 case lltok::kw_nounwind: 1935 case lltok::kw_optforfuzzing: 1936 case lltok::kw_optnone: 1937 case lltok::kw_optsize: 1938 case lltok::kw_returns_twice: 1939 case lltok::kw_sanitize_address: 1940 case lltok::kw_sanitize_hwaddress: 1941 case lltok::kw_sanitize_memtag: 1942 case lltok::kw_sanitize_memory: 1943 case lltok::kw_sanitize_thread: 1944 case lltok::kw_speculative_load_hardening: 1945 case lltok::kw_ssp: 1946 case lltok::kw_sspreq: 1947 case lltok::kw_sspstrong: 1948 case lltok::kw_safestack: 1949 case lltok::kw_shadowcallstack: 1950 case lltok::kw_strictfp: 1951 case lltok::kw_uwtable: 1952 case lltok::kw_vscale_range: 1953 HaveError |= 1954 error(Lex.getLoc(), "invalid use of function-only attribute"); 1955 break; 1956 case lltok::kw_readnone: 1957 case lltok::kw_readonly: 1958 HaveError |= 1959 error(Lex.getLoc(), "invalid use of attribute on return type"); 1960 break; 1961 case lltok::kw_preallocated: 1962 HaveError |= 1963 error(Lex.getLoc(), 1964 "invalid use of parameter-only/call site-only attribute"); 1965 break; 1966 } 1967 1968 Lex.Lex(); 1969 } 1970 } 1971 1972 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1973 HasLinkage = true; 1974 switch (Kind) { 1975 default: 1976 HasLinkage = false; 1977 return GlobalValue::ExternalLinkage; 1978 case lltok::kw_private: 1979 return GlobalValue::PrivateLinkage; 1980 case lltok::kw_internal: 1981 return GlobalValue::InternalLinkage; 1982 case lltok::kw_weak: 1983 return GlobalValue::WeakAnyLinkage; 1984 case lltok::kw_weak_odr: 1985 return GlobalValue::WeakODRLinkage; 1986 case lltok::kw_linkonce: 1987 return GlobalValue::LinkOnceAnyLinkage; 1988 case lltok::kw_linkonce_odr: 1989 return GlobalValue::LinkOnceODRLinkage; 1990 case lltok::kw_available_externally: 1991 return GlobalValue::AvailableExternallyLinkage; 1992 case lltok::kw_appending: 1993 return GlobalValue::AppendingLinkage; 1994 case lltok::kw_common: 1995 return GlobalValue::CommonLinkage; 1996 case lltok::kw_extern_weak: 1997 return GlobalValue::ExternalWeakLinkage; 1998 case lltok::kw_external: 1999 return GlobalValue::ExternalLinkage; 2000 } 2001 } 2002 2003 /// parseOptionalLinkage 2004 /// ::= /*empty*/ 2005 /// ::= 'private' 2006 /// ::= 'internal' 2007 /// ::= 'weak' 2008 /// ::= 'weak_odr' 2009 /// ::= 'linkonce' 2010 /// ::= 'linkonce_odr' 2011 /// ::= 'available_externally' 2012 /// ::= 'appending' 2013 /// ::= 'common' 2014 /// ::= 'extern_weak' 2015 /// ::= 'external' 2016 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 2017 unsigned &Visibility, 2018 unsigned &DLLStorageClass, bool &DSOLocal) { 2019 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 2020 if (HasLinkage) 2021 Lex.Lex(); 2022 parseOptionalDSOLocal(DSOLocal); 2023 parseOptionalVisibility(Visibility); 2024 parseOptionalDLLStorageClass(DLLStorageClass); 2025 2026 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 2027 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 2028 } 2029 2030 return false; 2031 } 2032 2033 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 2034 switch (Lex.getKind()) { 2035 default: 2036 DSOLocal = false; 2037 break; 2038 case lltok::kw_dso_local: 2039 DSOLocal = true; 2040 Lex.Lex(); 2041 break; 2042 case lltok::kw_dso_preemptable: 2043 DSOLocal = false; 2044 Lex.Lex(); 2045 break; 2046 } 2047 } 2048 2049 /// parseOptionalVisibility 2050 /// ::= /*empty*/ 2051 /// ::= 'default' 2052 /// ::= 'hidden' 2053 /// ::= 'protected' 2054 /// 2055 void LLParser::parseOptionalVisibility(unsigned &Res) { 2056 switch (Lex.getKind()) { 2057 default: 2058 Res = GlobalValue::DefaultVisibility; 2059 return; 2060 case lltok::kw_default: 2061 Res = GlobalValue::DefaultVisibility; 2062 break; 2063 case lltok::kw_hidden: 2064 Res = GlobalValue::HiddenVisibility; 2065 break; 2066 case lltok::kw_protected: 2067 Res = GlobalValue::ProtectedVisibility; 2068 break; 2069 } 2070 Lex.Lex(); 2071 } 2072 2073 /// parseOptionalDLLStorageClass 2074 /// ::= /*empty*/ 2075 /// ::= 'dllimport' 2076 /// ::= 'dllexport' 2077 /// 2078 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2079 switch (Lex.getKind()) { 2080 default: 2081 Res = GlobalValue::DefaultStorageClass; 2082 return; 2083 case lltok::kw_dllimport: 2084 Res = GlobalValue::DLLImportStorageClass; 2085 break; 2086 case lltok::kw_dllexport: 2087 Res = GlobalValue::DLLExportStorageClass; 2088 break; 2089 } 2090 Lex.Lex(); 2091 } 2092 2093 /// parseOptionalCallingConv 2094 /// ::= /*empty*/ 2095 /// ::= 'ccc' 2096 /// ::= 'fastcc' 2097 /// ::= 'intel_ocl_bicc' 2098 /// ::= 'coldcc' 2099 /// ::= 'cfguard_checkcc' 2100 /// ::= 'x86_stdcallcc' 2101 /// ::= 'x86_fastcallcc' 2102 /// ::= 'x86_thiscallcc' 2103 /// ::= 'x86_vectorcallcc' 2104 /// ::= 'arm_apcscc' 2105 /// ::= 'arm_aapcscc' 2106 /// ::= 'arm_aapcs_vfpcc' 2107 /// ::= 'aarch64_vector_pcs' 2108 /// ::= 'aarch64_sve_vector_pcs' 2109 /// ::= 'msp430_intrcc' 2110 /// ::= 'avr_intrcc' 2111 /// ::= 'avr_signalcc' 2112 /// ::= 'ptx_kernel' 2113 /// ::= 'ptx_device' 2114 /// ::= 'spir_func' 2115 /// ::= 'spir_kernel' 2116 /// ::= 'x86_64_sysvcc' 2117 /// ::= 'win64cc' 2118 /// ::= 'webkit_jscc' 2119 /// ::= 'anyregcc' 2120 /// ::= 'preserve_mostcc' 2121 /// ::= 'preserve_allcc' 2122 /// ::= 'ghccc' 2123 /// ::= 'swiftcc' 2124 /// ::= 'x86_intrcc' 2125 /// ::= 'hhvmcc' 2126 /// ::= 'hhvm_ccc' 2127 /// ::= 'cxx_fast_tlscc' 2128 /// ::= 'amdgpu_vs' 2129 /// ::= 'amdgpu_ls' 2130 /// ::= 'amdgpu_hs' 2131 /// ::= 'amdgpu_es' 2132 /// ::= 'amdgpu_gs' 2133 /// ::= 'amdgpu_ps' 2134 /// ::= 'amdgpu_cs' 2135 /// ::= 'amdgpu_kernel' 2136 /// ::= 'tailcc' 2137 /// ::= 'cc' UINT 2138 /// 2139 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2140 switch (Lex.getKind()) { 2141 default: CC = CallingConv::C; return false; 2142 case lltok::kw_ccc: CC = CallingConv::C; break; 2143 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2144 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2145 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2146 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2147 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2148 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2149 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2150 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2151 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2152 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2153 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2154 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2155 case lltok::kw_aarch64_sve_vector_pcs: 2156 CC = CallingConv::AArch64_SVE_VectorCall; 2157 break; 2158 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2159 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2160 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2161 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2162 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2163 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2164 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2165 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2166 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2167 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2168 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2169 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2170 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2171 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2172 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2173 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2174 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2175 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2176 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2177 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2178 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2179 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2180 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2181 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2182 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2183 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2184 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2185 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2186 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2187 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2188 case lltok::kw_cc: { 2189 Lex.Lex(); 2190 return parseUInt32(CC); 2191 } 2192 } 2193 2194 Lex.Lex(); 2195 return false; 2196 } 2197 2198 /// parseMetadataAttachment 2199 /// ::= !dbg !42 2200 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2201 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2202 2203 std::string Name = Lex.getStrVal(); 2204 Kind = M->getMDKindID(Name); 2205 Lex.Lex(); 2206 2207 return parseMDNode(MD); 2208 } 2209 2210 /// parseInstructionMetadata 2211 /// ::= !dbg !42 (',' !dbg !57)* 2212 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2213 do { 2214 if (Lex.getKind() != lltok::MetadataVar) 2215 return tokError("expected metadata after comma"); 2216 2217 unsigned MDK; 2218 MDNode *N; 2219 if (parseMetadataAttachment(MDK, N)) 2220 return true; 2221 2222 Inst.setMetadata(MDK, N); 2223 if (MDK == LLVMContext::MD_tbaa) 2224 InstsWithTBAATag.push_back(&Inst); 2225 2226 // If this is the end of the list, we're done. 2227 } while (EatIfPresent(lltok::comma)); 2228 return false; 2229 } 2230 2231 /// parseGlobalObjectMetadataAttachment 2232 /// ::= !dbg !57 2233 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2234 unsigned MDK; 2235 MDNode *N; 2236 if (parseMetadataAttachment(MDK, N)) 2237 return true; 2238 2239 GO.addMetadata(MDK, *N); 2240 return false; 2241 } 2242 2243 /// parseOptionalFunctionMetadata 2244 /// ::= (!dbg !57)* 2245 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2246 while (Lex.getKind() == lltok::MetadataVar) 2247 if (parseGlobalObjectMetadataAttachment(F)) 2248 return true; 2249 return false; 2250 } 2251 2252 /// parseOptionalAlignment 2253 /// ::= /* empty */ 2254 /// ::= 'align' 4 2255 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2256 Alignment = None; 2257 if (!EatIfPresent(lltok::kw_align)) 2258 return false; 2259 LocTy AlignLoc = Lex.getLoc(); 2260 uint32_t Value = 0; 2261 2262 LocTy ParenLoc = Lex.getLoc(); 2263 bool HaveParens = false; 2264 if (AllowParens) { 2265 if (EatIfPresent(lltok::lparen)) 2266 HaveParens = true; 2267 } 2268 2269 if (parseUInt32(Value)) 2270 return true; 2271 2272 if (HaveParens && !EatIfPresent(lltok::rparen)) 2273 return error(ParenLoc, "expected ')'"); 2274 2275 if (!isPowerOf2_32(Value)) 2276 return error(AlignLoc, "alignment is not a power of two"); 2277 if (Value > Value::MaximumAlignment) 2278 return error(AlignLoc, "huge alignments are not supported yet"); 2279 Alignment = Align(Value); 2280 return false; 2281 } 2282 2283 /// parseOptionalDerefAttrBytes 2284 /// ::= /* empty */ 2285 /// ::= AttrKind '(' 4 ')' 2286 /// 2287 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2288 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2289 uint64_t &Bytes) { 2290 assert((AttrKind == lltok::kw_dereferenceable || 2291 AttrKind == lltok::kw_dereferenceable_or_null) && 2292 "contract!"); 2293 2294 Bytes = 0; 2295 if (!EatIfPresent(AttrKind)) 2296 return false; 2297 LocTy ParenLoc = Lex.getLoc(); 2298 if (!EatIfPresent(lltok::lparen)) 2299 return error(ParenLoc, "expected '('"); 2300 LocTy DerefLoc = Lex.getLoc(); 2301 if (parseUInt64(Bytes)) 2302 return true; 2303 ParenLoc = Lex.getLoc(); 2304 if (!EatIfPresent(lltok::rparen)) 2305 return error(ParenLoc, "expected ')'"); 2306 if (!Bytes) 2307 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2308 return false; 2309 } 2310 2311 /// parseOptionalCommaAlign 2312 /// ::= 2313 /// ::= ',' align 4 2314 /// 2315 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2316 /// end. 2317 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2318 bool &AteExtraComma) { 2319 AteExtraComma = false; 2320 while (EatIfPresent(lltok::comma)) { 2321 // Metadata at the end is an early exit. 2322 if (Lex.getKind() == lltok::MetadataVar) { 2323 AteExtraComma = true; 2324 return false; 2325 } 2326 2327 if (Lex.getKind() != lltok::kw_align) 2328 return error(Lex.getLoc(), "expected metadata or 'align'"); 2329 2330 if (parseOptionalAlignment(Alignment)) 2331 return true; 2332 } 2333 2334 return false; 2335 } 2336 2337 /// parseOptionalCommaAddrSpace 2338 /// ::= 2339 /// ::= ',' addrspace(1) 2340 /// 2341 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2342 /// end. 2343 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2344 bool &AteExtraComma) { 2345 AteExtraComma = false; 2346 while (EatIfPresent(lltok::comma)) { 2347 // Metadata at the end is an early exit. 2348 if (Lex.getKind() == lltok::MetadataVar) { 2349 AteExtraComma = true; 2350 return false; 2351 } 2352 2353 Loc = Lex.getLoc(); 2354 if (Lex.getKind() != lltok::kw_addrspace) 2355 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2356 2357 if (parseOptionalAddrSpace(AddrSpace)) 2358 return true; 2359 } 2360 2361 return false; 2362 } 2363 2364 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2365 Optional<unsigned> &HowManyArg) { 2366 Lex.Lex(); 2367 2368 auto StartParen = Lex.getLoc(); 2369 if (!EatIfPresent(lltok::lparen)) 2370 return error(StartParen, "expected '('"); 2371 2372 if (parseUInt32(BaseSizeArg)) 2373 return true; 2374 2375 if (EatIfPresent(lltok::comma)) { 2376 auto HowManyAt = Lex.getLoc(); 2377 unsigned HowMany; 2378 if (parseUInt32(HowMany)) 2379 return true; 2380 if (HowMany == BaseSizeArg) 2381 return error(HowManyAt, 2382 "'allocsize' indices can't refer to the same parameter"); 2383 HowManyArg = HowMany; 2384 } else 2385 HowManyArg = None; 2386 2387 auto EndParen = Lex.getLoc(); 2388 if (!EatIfPresent(lltok::rparen)) 2389 return error(EndParen, "expected ')'"); 2390 return false; 2391 } 2392 2393 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2394 unsigned &MaxValue) { 2395 Lex.Lex(); 2396 2397 auto StartParen = Lex.getLoc(); 2398 if (!EatIfPresent(lltok::lparen)) 2399 return error(StartParen, "expected '('"); 2400 2401 if (parseUInt32(MinValue)) 2402 return true; 2403 2404 if (EatIfPresent(lltok::comma)) { 2405 if (parseUInt32(MaxValue)) 2406 return true; 2407 } else 2408 MaxValue = MinValue; 2409 2410 auto EndParen = Lex.getLoc(); 2411 if (!EatIfPresent(lltok::rparen)) 2412 return error(EndParen, "expected ')'"); 2413 return false; 2414 } 2415 2416 /// parseScopeAndOrdering 2417 /// if isAtomic: ::= SyncScope? AtomicOrdering 2418 /// else: ::= 2419 /// 2420 /// This sets Scope and Ordering to the parsed values. 2421 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2422 AtomicOrdering &Ordering) { 2423 if (!IsAtomic) 2424 return false; 2425 2426 return parseScope(SSID) || parseOrdering(Ordering); 2427 } 2428 2429 /// parseScope 2430 /// ::= syncscope("singlethread" | "<target scope>")? 2431 /// 2432 /// This sets synchronization scope ID to the ID of the parsed value. 2433 bool LLParser::parseScope(SyncScope::ID &SSID) { 2434 SSID = SyncScope::System; 2435 if (EatIfPresent(lltok::kw_syncscope)) { 2436 auto StartParenAt = Lex.getLoc(); 2437 if (!EatIfPresent(lltok::lparen)) 2438 return error(StartParenAt, "Expected '(' in syncscope"); 2439 2440 std::string SSN; 2441 auto SSNAt = Lex.getLoc(); 2442 if (parseStringConstant(SSN)) 2443 return error(SSNAt, "Expected synchronization scope name"); 2444 2445 auto EndParenAt = Lex.getLoc(); 2446 if (!EatIfPresent(lltok::rparen)) 2447 return error(EndParenAt, "Expected ')' in syncscope"); 2448 2449 SSID = Context.getOrInsertSyncScopeID(SSN); 2450 } 2451 2452 return false; 2453 } 2454 2455 /// parseOrdering 2456 /// ::= AtomicOrdering 2457 /// 2458 /// This sets Ordering to the parsed value. 2459 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2460 switch (Lex.getKind()) { 2461 default: 2462 return tokError("Expected ordering on atomic instruction"); 2463 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2464 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2465 // Not specified yet: 2466 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2467 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2468 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2469 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2470 case lltok::kw_seq_cst: 2471 Ordering = AtomicOrdering::SequentiallyConsistent; 2472 break; 2473 } 2474 Lex.Lex(); 2475 return false; 2476 } 2477 2478 /// parseOptionalStackAlignment 2479 /// ::= /* empty */ 2480 /// ::= 'alignstack' '(' 4 ')' 2481 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2482 Alignment = 0; 2483 if (!EatIfPresent(lltok::kw_alignstack)) 2484 return false; 2485 LocTy ParenLoc = Lex.getLoc(); 2486 if (!EatIfPresent(lltok::lparen)) 2487 return error(ParenLoc, "expected '('"); 2488 LocTy AlignLoc = Lex.getLoc(); 2489 if (parseUInt32(Alignment)) 2490 return true; 2491 ParenLoc = Lex.getLoc(); 2492 if (!EatIfPresent(lltok::rparen)) 2493 return error(ParenLoc, "expected ')'"); 2494 if (!isPowerOf2_32(Alignment)) 2495 return error(AlignLoc, "stack alignment is not a power of two"); 2496 return false; 2497 } 2498 2499 /// parseIndexList - This parses the index list for an insert/extractvalue 2500 /// instruction. This sets AteExtraComma in the case where we eat an extra 2501 /// comma at the end of the line and find that it is followed by metadata. 2502 /// Clients that don't allow metadata can call the version of this function that 2503 /// only takes one argument. 2504 /// 2505 /// parseIndexList 2506 /// ::= (',' uint32)+ 2507 /// 2508 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2509 bool &AteExtraComma) { 2510 AteExtraComma = false; 2511 2512 if (Lex.getKind() != lltok::comma) 2513 return tokError("expected ',' as start of index list"); 2514 2515 while (EatIfPresent(lltok::comma)) { 2516 if (Lex.getKind() == lltok::MetadataVar) { 2517 if (Indices.empty()) 2518 return tokError("expected index"); 2519 AteExtraComma = true; 2520 return false; 2521 } 2522 unsigned Idx = 0; 2523 if (parseUInt32(Idx)) 2524 return true; 2525 Indices.push_back(Idx); 2526 } 2527 2528 return false; 2529 } 2530 2531 //===----------------------------------------------------------------------===// 2532 // Type Parsing. 2533 //===----------------------------------------------------------------------===// 2534 2535 /// parseType - parse a type. 2536 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2537 SMLoc TypeLoc = Lex.getLoc(); 2538 switch (Lex.getKind()) { 2539 default: 2540 return tokError(Msg); 2541 case lltok::Type: 2542 // Type ::= 'float' | 'void' (etc) 2543 Result = Lex.getTyVal(); 2544 Lex.Lex(); 2545 break; 2546 case lltok::lbrace: 2547 // Type ::= StructType 2548 if (parseAnonStructType(Result, false)) 2549 return true; 2550 break; 2551 case lltok::lsquare: 2552 // Type ::= '[' ... ']' 2553 Lex.Lex(); // eat the lsquare. 2554 if (parseArrayVectorType(Result, false)) 2555 return true; 2556 break; 2557 case lltok::less: // Either vector or packed struct. 2558 // Type ::= '<' ... '>' 2559 Lex.Lex(); 2560 if (Lex.getKind() == lltok::lbrace) { 2561 if (parseAnonStructType(Result, true) || 2562 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2563 return true; 2564 } else if (parseArrayVectorType(Result, true)) 2565 return true; 2566 break; 2567 case lltok::LocalVar: { 2568 // Type ::= %foo 2569 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2570 2571 // If the type hasn't been defined yet, create a forward definition and 2572 // remember where that forward def'n was seen (in case it never is defined). 2573 if (!Entry.first) { 2574 Entry.first = StructType::create(Context, Lex.getStrVal()); 2575 Entry.second = Lex.getLoc(); 2576 } 2577 Result = Entry.first; 2578 Lex.Lex(); 2579 break; 2580 } 2581 2582 case lltok::LocalVarID: { 2583 // Type ::= %4 2584 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2585 2586 // If the type hasn't been defined yet, create a forward definition and 2587 // remember where that forward def'n was seen (in case it never is defined). 2588 if (!Entry.first) { 2589 Entry.first = StructType::create(Context); 2590 Entry.second = Lex.getLoc(); 2591 } 2592 Result = Entry.first; 2593 Lex.Lex(); 2594 break; 2595 } 2596 } 2597 2598 // parse the type suffixes. 2599 while (true) { 2600 switch (Lex.getKind()) { 2601 // End of type. 2602 default: 2603 if (!AllowVoid && Result->isVoidTy()) 2604 return error(TypeLoc, "void type only allowed for function results"); 2605 return false; 2606 2607 // Type ::= Type '*' 2608 case lltok::star: 2609 if (Result->isLabelTy()) 2610 return tokError("basic block pointers are invalid"); 2611 if (Result->isVoidTy()) 2612 return tokError("pointers to void are invalid - use i8* instead"); 2613 if (!PointerType::isValidElementType(Result)) 2614 return tokError("pointer to this type is invalid"); 2615 Result = PointerType::getUnqual(Result); 2616 Lex.Lex(); 2617 break; 2618 2619 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2620 case lltok::kw_addrspace: { 2621 if (Result->isLabelTy()) 2622 return tokError("basic block pointers are invalid"); 2623 if (Result->isVoidTy()) 2624 return tokError("pointers to void are invalid; use i8* instead"); 2625 if (!PointerType::isValidElementType(Result)) 2626 return tokError("pointer to this type is invalid"); 2627 unsigned AddrSpace; 2628 if (parseOptionalAddrSpace(AddrSpace) || 2629 parseToken(lltok::star, "expected '*' in address space")) 2630 return true; 2631 2632 Result = PointerType::get(Result, AddrSpace); 2633 break; 2634 } 2635 2636 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2637 case lltok::lparen: 2638 if (parseFunctionType(Result)) 2639 return true; 2640 break; 2641 } 2642 } 2643 } 2644 2645 /// parseParameterList 2646 /// ::= '(' ')' 2647 /// ::= '(' Arg (',' Arg)* ')' 2648 /// Arg 2649 /// ::= Type OptionalAttributes Value OptionalAttributes 2650 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2651 PerFunctionState &PFS, bool IsMustTailCall, 2652 bool InVarArgsFunc) { 2653 if (parseToken(lltok::lparen, "expected '(' in call")) 2654 return true; 2655 2656 while (Lex.getKind() != lltok::rparen) { 2657 // If this isn't the first argument, we need a comma. 2658 if (!ArgList.empty() && 2659 parseToken(lltok::comma, "expected ',' in argument list")) 2660 return true; 2661 2662 // parse an ellipsis if this is a musttail call in a variadic function. 2663 if (Lex.getKind() == lltok::dotdotdot) { 2664 const char *Msg = "unexpected ellipsis in argument list for "; 2665 if (!IsMustTailCall) 2666 return tokError(Twine(Msg) + "non-musttail call"); 2667 if (!InVarArgsFunc) 2668 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2669 Lex.Lex(); // Lex the '...', it is purely for readability. 2670 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2671 } 2672 2673 // parse the argument. 2674 LocTy ArgLoc; 2675 Type *ArgTy = nullptr; 2676 AttrBuilder ArgAttrs; 2677 Value *V; 2678 if (parseType(ArgTy, ArgLoc)) 2679 return true; 2680 2681 if (ArgTy->isMetadataTy()) { 2682 if (parseMetadataAsValue(V, PFS)) 2683 return true; 2684 } else { 2685 // Otherwise, handle normal operands. 2686 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2687 return true; 2688 } 2689 ArgList.push_back(ParamInfo( 2690 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2691 } 2692 2693 if (IsMustTailCall && InVarArgsFunc) 2694 return tokError("expected '...' at end of argument list for musttail call " 2695 "in varargs function"); 2696 2697 Lex.Lex(); // Lex the ')'. 2698 return false; 2699 } 2700 2701 /// parseRequiredTypeAttr 2702 /// ::= attrname(<ty>) 2703 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2704 Result = nullptr; 2705 if (!EatIfPresent(AttrName)) 2706 return true; 2707 if (!EatIfPresent(lltok::lparen)) 2708 return error(Lex.getLoc(), "expected '('"); 2709 if (parseType(Result)) 2710 return true; 2711 if (!EatIfPresent(lltok::rparen)) 2712 return error(Lex.getLoc(), "expected ')'"); 2713 return false; 2714 } 2715 2716 /// parsePreallocated 2717 /// ::= preallocated(<ty>) 2718 bool LLParser::parsePreallocated(Type *&Result) { 2719 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2720 } 2721 2722 /// parseInalloca 2723 /// ::= inalloca(<ty>) 2724 bool LLParser::parseInalloca(Type *&Result) { 2725 return parseRequiredTypeAttr(Result, lltok::kw_inalloca); 2726 } 2727 2728 /// parseByRef 2729 /// ::= byref(<type>) 2730 bool LLParser::parseByRef(Type *&Result) { 2731 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2732 } 2733 2734 /// parseOptionalOperandBundles 2735 /// ::= /*empty*/ 2736 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2737 /// 2738 /// OperandBundle 2739 /// ::= bundle-tag '(' ')' 2740 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2741 /// 2742 /// bundle-tag ::= String Constant 2743 bool LLParser::parseOptionalOperandBundles( 2744 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2745 LocTy BeginLoc = Lex.getLoc(); 2746 if (!EatIfPresent(lltok::lsquare)) 2747 return false; 2748 2749 while (Lex.getKind() != lltok::rsquare) { 2750 // If this isn't the first operand bundle, we need a comma. 2751 if (!BundleList.empty() && 2752 parseToken(lltok::comma, "expected ',' in input list")) 2753 return true; 2754 2755 std::string Tag; 2756 if (parseStringConstant(Tag)) 2757 return true; 2758 2759 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2760 return true; 2761 2762 std::vector<Value *> Inputs; 2763 while (Lex.getKind() != lltok::rparen) { 2764 // If this isn't the first input, we need a comma. 2765 if (!Inputs.empty() && 2766 parseToken(lltok::comma, "expected ',' in input list")) 2767 return true; 2768 2769 Type *Ty = nullptr; 2770 Value *Input = nullptr; 2771 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2772 return true; 2773 Inputs.push_back(Input); 2774 } 2775 2776 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2777 2778 Lex.Lex(); // Lex the ')'. 2779 } 2780 2781 if (BundleList.empty()) 2782 return error(BeginLoc, "operand bundle set must not be empty"); 2783 2784 Lex.Lex(); // Lex the ']'. 2785 return false; 2786 } 2787 2788 /// parseArgumentList - parse the argument list for a function type or function 2789 /// prototype. 2790 /// ::= '(' ArgTypeListI ')' 2791 /// ArgTypeListI 2792 /// ::= /*empty*/ 2793 /// ::= '...' 2794 /// ::= ArgTypeList ',' '...' 2795 /// ::= ArgType (',' ArgType)* 2796 /// 2797 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2798 bool &IsVarArg) { 2799 unsigned CurValID = 0; 2800 IsVarArg = false; 2801 assert(Lex.getKind() == lltok::lparen); 2802 Lex.Lex(); // eat the (. 2803 2804 if (Lex.getKind() == lltok::rparen) { 2805 // empty 2806 } else if (Lex.getKind() == lltok::dotdotdot) { 2807 IsVarArg = true; 2808 Lex.Lex(); 2809 } else { 2810 LocTy TypeLoc = Lex.getLoc(); 2811 Type *ArgTy = nullptr; 2812 AttrBuilder Attrs; 2813 std::string Name; 2814 2815 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2816 return true; 2817 2818 if (ArgTy->isVoidTy()) 2819 return error(TypeLoc, "argument can not have void type"); 2820 2821 if (Lex.getKind() == lltok::LocalVar) { 2822 Name = Lex.getStrVal(); 2823 Lex.Lex(); 2824 } else if (Lex.getKind() == lltok::LocalVarID) { 2825 if (Lex.getUIntVal() != CurValID) 2826 return error(TypeLoc, "argument expected to be numbered '%" + 2827 Twine(CurValID) + "'"); 2828 ++CurValID; 2829 Lex.Lex(); 2830 } 2831 2832 if (!FunctionType::isValidArgumentType(ArgTy)) 2833 return error(TypeLoc, "invalid type for function argument"); 2834 2835 ArgList.emplace_back(TypeLoc, ArgTy, 2836 AttributeSet::get(ArgTy->getContext(), Attrs), 2837 std::move(Name)); 2838 2839 while (EatIfPresent(lltok::comma)) { 2840 // Handle ... at end of arg list. 2841 if (EatIfPresent(lltok::dotdotdot)) { 2842 IsVarArg = true; 2843 break; 2844 } 2845 2846 // Otherwise must be an argument type. 2847 TypeLoc = Lex.getLoc(); 2848 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2849 return true; 2850 2851 if (ArgTy->isVoidTy()) 2852 return error(TypeLoc, "argument can not have void type"); 2853 2854 if (Lex.getKind() == lltok::LocalVar) { 2855 Name = Lex.getStrVal(); 2856 Lex.Lex(); 2857 } else { 2858 if (Lex.getKind() == lltok::LocalVarID) { 2859 if (Lex.getUIntVal() != CurValID) 2860 return error(TypeLoc, "argument expected to be numbered '%" + 2861 Twine(CurValID) + "'"); 2862 Lex.Lex(); 2863 } 2864 ++CurValID; 2865 Name = ""; 2866 } 2867 2868 if (!ArgTy->isFirstClassType()) 2869 return error(TypeLoc, "invalid type for function argument"); 2870 2871 ArgList.emplace_back(TypeLoc, ArgTy, 2872 AttributeSet::get(ArgTy->getContext(), Attrs), 2873 std::move(Name)); 2874 } 2875 } 2876 2877 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2878 } 2879 2880 /// parseFunctionType 2881 /// ::= Type ArgumentList OptionalAttrs 2882 bool LLParser::parseFunctionType(Type *&Result) { 2883 assert(Lex.getKind() == lltok::lparen); 2884 2885 if (!FunctionType::isValidReturnType(Result)) 2886 return tokError("invalid function return type"); 2887 2888 SmallVector<ArgInfo, 8> ArgList; 2889 bool IsVarArg; 2890 if (parseArgumentList(ArgList, IsVarArg)) 2891 return true; 2892 2893 // Reject names on the arguments lists. 2894 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2895 if (!ArgList[i].Name.empty()) 2896 return error(ArgList[i].Loc, "argument name invalid in function type"); 2897 if (ArgList[i].Attrs.hasAttributes()) 2898 return error(ArgList[i].Loc, 2899 "argument attributes invalid in function type"); 2900 } 2901 2902 SmallVector<Type*, 16> ArgListTy; 2903 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2904 ArgListTy.push_back(ArgList[i].Ty); 2905 2906 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2907 return false; 2908 } 2909 2910 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2911 /// other structs. 2912 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2913 SmallVector<Type*, 8> Elts; 2914 if (parseStructBody(Elts)) 2915 return true; 2916 2917 Result = StructType::get(Context, Elts, Packed); 2918 return false; 2919 } 2920 2921 /// parseStructDefinition - parse a struct in a 'type' definition. 2922 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2923 std::pair<Type *, LocTy> &Entry, 2924 Type *&ResultTy) { 2925 // If the type was already defined, diagnose the redefinition. 2926 if (Entry.first && !Entry.second.isValid()) 2927 return error(TypeLoc, "redefinition of type"); 2928 2929 // If we have opaque, just return without filling in the definition for the 2930 // struct. This counts as a definition as far as the .ll file goes. 2931 if (EatIfPresent(lltok::kw_opaque)) { 2932 // This type is being defined, so clear the location to indicate this. 2933 Entry.second = SMLoc(); 2934 2935 // If this type number has never been uttered, create it. 2936 if (!Entry.first) 2937 Entry.first = StructType::create(Context, Name); 2938 ResultTy = Entry.first; 2939 return false; 2940 } 2941 2942 // If the type starts with '<', then it is either a packed struct or a vector. 2943 bool isPacked = EatIfPresent(lltok::less); 2944 2945 // If we don't have a struct, then we have a random type alias, which we 2946 // accept for compatibility with old files. These types are not allowed to be 2947 // forward referenced and not allowed to be recursive. 2948 if (Lex.getKind() != lltok::lbrace) { 2949 if (Entry.first) 2950 return error(TypeLoc, "forward references to non-struct type"); 2951 2952 ResultTy = nullptr; 2953 if (isPacked) 2954 return parseArrayVectorType(ResultTy, true); 2955 return parseType(ResultTy); 2956 } 2957 2958 // This type is being defined, so clear the location to indicate this. 2959 Entry.second = SMLoc(); 2960 2961 // If this type number has never been uttered, create it. 2962 if (!Entry.first) 2963 Entry.first = StructType::create(Context, Name); 2964 2965 StructType *STy = cast<StructType>(Entry.first); 2966 2967 SmallVector<Type*, 8> Body; 2968 if (parseStructBody(Body) || 2969 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2970 return true; 2971 2972 STy->setBody(Body, isPacked); 2973 ResultTy = STy; 2974 return false; 2975 } 2976 2977 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2978 /// StructType 2979 /// ::= '{' '}' 2980 /// ::= '{' Type (',' Type)* '}' 2981 /// ::= '<' '{' '}' '>' 2982 /// ::= '<' '{' Type (',' Type)* '}' '>' 2983 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2984 assert(Lex.getKind() == lltok::lbrace); 2985 Lex.Lex(); // Consume the '{' 2986 2987 // Handle the empty struct. 2988 if (EatIfPresent(lltok::rbrace)) 2989 return false; 2990 2991 LocTy EltTyLoc = Lex.getLoc(); 2992 Type *Ty = nullptr; 2993 if (parseType(Ty)) 2994 return true; 2995 Body.push_back(Ty); 2996 2997 if (!StructType::isValidElementType(Ty)) 2998 return error(EltTyLoc, "invalid element type for struct"); 2999 3000 while (EatIfPresent(lltok::comma)) { 3001 EltTyLoc = Lex.getLoc(); 3002 if (parseType(Ty)) 3003 return true; 3004 3005 if (!StructType::isValidElementType(Ty)) 3006 return error(EltTyLoc, "invalid element type for struct"); 3007 3008 Body.push_back(Ty); 3009 } 3010 3011 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3012 } 3013 3014 /// parseArrayVectorType - parse an array or vector type, assuming the first 3015 /// token has already been consumed. 3016 /// Type 3017 /// ::= '[' APSINTVAL 'x' Types ']' 3018 /// ::= '<' APSINTVAL 'x' Types '>' 3019 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3020 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3021 bool Scalable = false; 3022 3023 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3024 Lex.Lex(); // consume the 'vscale' 3025 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3026 return true; 3027 3028 Scalable = true; 3029 } 3030 3031 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3032 Lex.getAPSIntVal().getBitWidth() > 64) 3033 return tokError("expected number in address space"); 3034 3035 LocTy SizeLoc = Lex.getLoc(); 3036 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3037 Lex.Lex(); 3038 3039 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3040 return true; 3041 3042 LocTy TypeLoc = Lex.getLoc(); 3043 Type *EltTy = nullptr; 3044 if (parseType(EltTy)) 3045 return true; 3046 3047 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3048 "expected end of sequential type")) 3049 return true; 3050 3051 if (IsVector) { 3052 if (Size == 0) 3053 return error(SizeLoc, "zero element vector is illegal"); 3054 if ((unsigned)Size != Size) 3055 return error(SizeLoc, "size too large for vector"); 3056 if (!VectorType::isValidElementType(EltTy)) 3057 return error(TypeLoc, "invalid vector element type"); 3058 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3059 } else { 3060 if (!ArrayType::isValidElementType(EltTy)) 3061 return error(TypeLoc, "invalid array element type"); 3062 Result = ArrayType::get(EltTy, Size); 3063 } 3064 return false; 3065 } 3066 3067 //===----------------------------------------------------------------------===// 3068 // Function Semantic Analysis. 3069 //===----------------------------------------------------------------------===// 3070 3071 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3072 int functionNumber) 3073 : P(p), F(f), FunctionNumber(functionNumber) { 3074 3075 // Insert unnamed arguments into the NumberedVals list. 3076 for (Argument &A : F.args()) 3077 if (!A.hasName()) 3078 NumberedVals.push_back(&A); 3079 } 3080 3081 LLParser::PerFunctionState::~PerFunctionState() { 3082 // If there were any forward referenced non-basicblock values, delete them. 3083 3084 for (const auto &P : ForwardRefVals) { 3085 if (isa<BasicBlock>(P.second.first)) 3086 continue; 3087 P.second.first->replaceAllUsesWith( 3088 UndefValue::get(P.second.first->getType())); 3089 P.second.first->deleteValue(); 3090 } 3091 3092 for (const auto &P : ForwardRefValIDs) { 3093 if (isa<BasicBlock>(P.second.first)) 3094 continue; 3095 P.second.first->replaceAllUsesWith( 3096 UndefValue::get(P.second.first->getType())); 3097 P.second.first->deleteValue(); 3098 } 3099 } 3100 3101 bool LLParser::PerFunctionState::finishFunction() { 3102 if (!ForwardRefVals.empty()) 3103 return P.error(ForwardRefVals.begin()->second.second, 3104 "use of undefined value '%" + ForwardRefVals.begin()->first + 3105 "'"); 3106 if (!ForwardRefValIDs.empty()) 3107 return P.error(ForwardRefValIDs.begin()->second.second, 3108 "use of undefined value '%" + 3109 Twine(ForwardRefValIDs.begin()->first) + "'"); 3110 return false; 3111 } 3112 3113 /// getVal - Get a value with the specified name or ID, creating a 3114 /// forward reference record if needed. This can return null if the value 3115 /// exists but does not have the right type. 3116 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3117 LocTy Loc, bool IsCall) { 3118 // Look this name up in the normal function symbol table. 3119 Value *Val = F.getValueSymbolTable()->lookup(Name); 3120 3121 // If this is a forward reference for the value, see if we already created a 3122 // forward ref record. 3123 if (!Val) { 3124 auto I = ForwardRefVals.find(Name); 3125 if (I != ForwardRefVals.end()) 3126 Val = I->second.first; 3127 } 3128 3129 // If we have the value in the symbol table or fwd-ref table, return it. 3130 if (Val) 3131 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3132 3133 // Don't make placeholders with invalid type. 3134 if (!Ty->isFirstClassType()) { 3135 P.error(Loc, "invalid use of a non-first-class type"); 3136 return nullptr; 3137 } 3138 3139 // Otherwise, create a new forward reference for this value and remember it. 3140 Value *FwdVal; 3141 if (Ty->isLabelTy()) { 3142 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3143 } else { 3144 FwdVal = new Argument(Ty, Name); 3145 } 3146 3147 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3148 return FwdVal; 3149 } 3150 3151 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3152 bool IsCall) { 3153 // Look this name up in the normal function symbol table. 3154 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3155 3156 // If this is a forward reference for the value, see if we already created a 3157 // forward ref record. 3158 if (!Val) { 3159 auto I = ForwardRefValIDs.find(ID); 3160 if (I != ForwardRefValIDs.end()) 3161 Val = I->second.first; 3162 } 3163 3164 // If we have the value in the symbol table or fwd-ref table, return it. 3165 if (Val) 3166 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3167 3168 if (!Ty->isFirstClassType()) { 3169 P.error(Loc, "invalid use of a non-first-class type"); 3170 return nullptr; 3171 } 3172 3173 // Otherwise, create a new forward reference for this value and remember it. 3174 Value *FwdVal; 3175 if (Ty->isLabelTy()) { 3176 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3177 } else { 3178 FwdVal = new Argument(Ty); 3179 } 3180 3181 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3182 return FwdVal; 3183 } 3184 3185 /// setInstName - After an instruction is parsed and inserted into its 3186 /// basic block, this installs its name. 3187 bool LLParser::PerFunctionState::setInstName(int NameID, 3188 const std::string &NameStr, 3189 LocTy NameLoc, Instruction *Inst) { 3190 // If this instruction has void type, it cannot have a name or ID specified. 3191 if (Inst->getType()->isVoidTy()) { 3192 if (NameID != -1 || !NameStr.empty()) 3193 return P.error(NameLoc, "instructions returning void cannot have a name"); 3194 return false; 3195 } 3196 3197 // If this was a numbered instruction, verify that the instruction is the 3198 // expected value and resolve any forward references. 3199 if (NameStr.empty()) { 3200 // If neither a name nor an ID was specified, just use the next ID. 3201 if (NameID == -1) 3202 NameID = NumberedVals.size(); 3203 3204 if (unsigned(NameID) != NumberedVals.size()) 3205 return P.error(NameLoc, "instruction expected to be numbered '%" + 3206 Twine(NumberedVals.size()) + "'"); 3207 3208 auto FI = ForwardRefValIDs.find(NameID); 3209 if (FI != ForwardRefValIDs.end()) { 3210 Value *Sentinel = FI->second.first; 3211 if (Sentinel->getType() != Inst->getType()) 3212 return P.error(NameLoc, "instruction forward referenced with type '" + 3213 getTypeString(FI->second.first->getType()) + 3214 "'"); 3215 3216 Sentinel->replaceAllUsesWith(Inst); 3217 Sentinel->deleteValue(); 3218 ForwardRefValIDs.erase(FI); 3219 } 3220 3221 NumberedVals.push_back(Inst); 3222 return false; 3223 } 3224 3225 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3226 auto FI = ForwardRefVals.find(NameStr); 3227 if (FI != ForwardRefVals.end()) { 3228 Value *Sentinel = FI->second.first; 3229 if (Sentinel->getType() != Inst->getType()) 3230 return P.error(NameLoc, "instruction forward referenced with type '" + 3231 getTypeString(FI->second.first->getType()) + 3232 "'"); 3233 3234 Sentinel->replaceAllUsesWith(Inst); 3235 Sentinel->deleteValue(); 3236 ForwardRefVals.erase(FI); 3237 } 3238 3239 // Set the name on the instruction. 3240 Inst->setName(NameStr); 3241 3242 if (Inst->getName() != NameStr) 3243 return P.error(NameLoc, "multiple definition of local value named '" + 3244 NameStr + "'"); 3245 return false; 3246 } 3247 3248 /// getBB - Get a basic block with the specified name or ID, creating a 3249 /// forward reference record if needed. 3250 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3251 LocTy Loc) { 3252 return dyn_cast_or_null<BasicBlock>( 3253 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3254 } 3255 3256 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3257 return dyn_cast_or_null<BasicBlock>( 3258 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3259 } 3260 3261 /// defineBB - Define the specified basic block, which is either named or 3262 /// unnamed. If there is an error, this returns null otherwise it returns 3263 /// the block being defined. 3264 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3265 int NameID, LocTy Loc) { 3266 BasicBlock *BB; 3267 if (Name.empty()) { 3268 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3269 P.error(Loc, "label expected to be numbered '" + 3270 Twine(NumberedVals.size()) + "'"); 3271 return nullptr; 3272 } 3273 BB = getBB(NumberedVals.size(), Loc); 3274 if (!BB) { 3275 P.error(Loc, "unable to create block numbered '" + 3276 Twine(NumberedVals.size()) + "'"); 3277 return nullptr; 3278 } 3279 } else { 3280 BB = getBB(Name, Loc); 3281 if (!BB) { 3282 P.error(Loc, "unable to create block named '" + Name + "'"); 3283 return nullptr; 3284 } 3285 } 3286 3287 // Move the block to the end of the function. Forward ref'd blocks are 3288 // inserted wherever they happen to be referenced. 3289 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3290 3291 // Remove the block from forward ref sets. 3292 if (Name.empty()) { 3293 ForwardRefValIDs.erase(NumberedVals.size()); 3294 NumberedVals.push_back(BB); 3295 } else { 3296 // BB forward references are already in the function symbol table. 3297 ForwardRefVals.erase(Name); 3298 } 3299 3300 return BB; 3301 } 3302 3303 //===----------------------------------------------------------------------===// 3304 // Constants. 3305 //===----------------------------------------------------------------------===// 3306 3307 /// parseValID - parse an abstract value that doesn't necessarily have a 3308 /// type implied. For example, if we parse "4" we don't know what integer type 3309 /// it has. The value will later be combined with its type and checked for 3310 /// sanity. PFS is used to convert function-local operands of metadata (since 3311 /// metadata operands are not just parsed here but also converted to values). 3312 /// PFS can be null when we are not parsing metadata values inside a function. 3313 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3314 ID.Loc = Lex.getLoc(); 3315 switch (Lex.getKind()) { 3316 default: 3317 return tokError("expected value token"); 3318 case lltok::GlobalID: // @42 3319 ID.UIntVal = Lex.getUIntVal(); 3320 ID.Kind = ValID::t_GlobalID; 3321 break; 3322 case lltok::GlobalVar: // @foo 3323 ID.StrVal = Lex.getStrVal(); 3324 ID.Kind = ValID::t_GlobalName; 3325 break; 3326 case lltok::LocalVarID: // %42 3327 ID.UIntVal = Lex.getUIntVal(); 3328 ID.Kind = ValID::t_LocalID; 3329 break; 3330 case lltok::LocalVar: // %foo 3331 ID.StrVal = Lex.getStrVal(); 3332 ID.Kind = ValID::t_LocalName; 3333 break; 3334 case lltok::APSInt: 3335 ID.APSIntVal = Lex.getAPSIntVal(); 3336 ID.Kind = ValID::t_APSInt; 3337 break; 3338 case lltok::APFloat: 3339 ID.APFloatVal = Lex.getAPFloatVal(); 3340 ID.Kind = ValID::t_APFloat; 3341 break; 3342 case lltok::kw_true: 3343 ID.ConstantVal = ConstantInt::getTrue(Context); 3344 ID.Kind = ValID::t_Constant; 3345 break; 3346 case lltok::kw_false: 3347 ID.ConstantVal = ConstantInt::getFalse(Context); 3348 ID.Kind = ValID::t_Constant; 3349 break; 3350 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3351 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3352 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3353 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3354 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3355 3356 case lltok::lbrace: { 3357 // ValID ::= '{' ConstVector '}' 3358 Lex.Lex(); 3359 SmallVector<Constant*, 16> Elts; 3360 if (parseGlobalValueVector(Elts) || 3361 parseToken(lltok::rbrace, "expected end of struct constant")) 3362 return true; 3363 3364 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3365 ID.UIntVal = Elts.size(); 3366 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3367 Elts.size() * sizeof(Elts[0])); 3368 ID.Kind = ValID::t_ConstantStruct; 3369 return false; 3370 } 3371 case lltok::less: { 3372 // ValID ::= '<' ConstVector '>' --> Vector. 3373 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3374 Lex.Lex(); 3375 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3376 3377 SmallVector<Constant*, 16> Elts; 3378 LocTy FirstEltLoc = Lex.getLoc(); 3379 if (parseGlobalValueVector(Elts) || 3380 (isPackedStruct && 3381 parseToken(lltok::rbrace, "expected end of packed struct")) || 3382 parseToken(lltok::greater, "expected end of constant")) 3383 return true; 3384 3385 if (isPackedStruct) { 3386 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3387 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3388 Elts.size() * sizeof(Elts[0])); 3389 ID.UIntVal = Elts.size(); 3390 ID.Kind = ValID::t_PackedConstantStruct; 3391 return false; 3392 } 3393 3394 if (Elts.empty()) 3395 return error(ID.Loc, "constant vector must not be empty"); 3396 3397 if (!Elts[0]->getType()->isIntegerTy() && 3398 !Elts[0]->getType()->isFloatingPointTy() && 3399 !Elts[0]->getType()->isPointerTy()) 3400 return error( 3401 FirstEltLoc, 3402 "vector elements must have integer, pointer or floating point type"); 3403 3404 // Verify that all the vector elements have the same type. 3405 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3406 if (Elts[i]->getType() != Elts[0]->getType()) 3407 return error(FirstEltLoc, "vector element #" + Twine(i) + 3408 " is not of type '" + 3409 getTypeString(Elts[0]->getType())); 3410 3411 ID.ConstantVal = ConstantVector::get(Elts); 3412 ID.Kind = ValID::t_Constant; 3413 return false; 3414 } 3415 case lltok::lsquare: { // Array Constant 3416 Lex.Lex(); 3417 SmallVector<Constant*, 16> Elts; 3418 LocTy FirstEltLoc = Lex.getLoc(); 3419 if (parseGlobalValueVector(Elts) || 3420 parseToken(lltok::rsquare, "expected end of array constant")) 3421 return true; 3422 3423 // Handle empty element. 3424 if (Elts.empty()) { 3425 // Use undef instead of an array because it's inconvenient to determine 3426 // the element type at this point, there being no elements to examine. 3427 ID.Kind = ValID::t_EmptyArray; 3428 return false; 3429 } 3430 3431 if (!Elts[0]->getType()->isFirstClassType()) 3432 return error(FirstEltLoc, "invalid array element type: " + 3433 getTypeString(Elts[0]->getType())); 3434 3435 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3436 3437 // Verify all elements are correct type! 3438 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3439 if (Elts[i]->getType() != Elts[0]->getType()) 3440 return error(FirstEltLoc, "array element #" + Twine(i) + 3441 " is not of type '" + 3442 getTypeString(Elts[0]->getType())); 3443 } 3444 3445 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3446 ID.Kind = ValID::t_Constant; 3447 return false; 3448 } 3449 case lltok::kw_c: // c "foo" 3450 Lex.Lex(); 3451 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3452 false); 3453 if (parseToken(lltok::StringConstant, "expected string")) 3454 return true; 3455 ID.Kind = ValID::t_Constant; 3456 return false; 3457 3458 case lltok::kw_asm: { 3459 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3460 // STRINGCONSTANT 3461 bool HasSideEffect, AlignStack, AsmDialect; 3462 Lex.Lex(); 3463 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3464 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3465 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3466 parseStringConstant(ID.StrVal) || 3467 parseToken(lltok::comma, "expected comma in inline asm expression") || 3468 parseToken(lltok::StringConstant, "expected constraint string")) 3469 return true; 3470 ID.StrVal2 = Lex.getStrVal(); 3471 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3472 (unsigned(AsmDialect)<<2); 3473 ID.Kind = ValID::t_InlineAsm; 3474 return false; 3475 } 3476 3477 case lltok::kw_blockaddress: { 3478 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3479 Lex.Lex(); 3480 3481 ValID Fn, Label; 3482 3483 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3484 parseValID(Fn) || 3485 parseToken(lltok::comma, 3486 "expected comma in block address expression") || 3487 parseValID(Label) || 3488 parseToken(lltok::rparen, "expected ')' in block address expression")) 3489 return true; 3490 3491 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3492 return error(Fn.Loc, "expected function name in blockaddress"); 3493 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3494 return error(Label.Loc, "expected basic block name in blockaddress"); 3495 3496 // Try to find the function (but skip it if it's forward-referenced). 3497 GlobalValue *GV = nullptr; 3498 if (Fn.Kind == ValID::t_GlobalID) { 3499 if (Fn.UIntVal < NumberedVals.size()) 3500 GV = NumberedVals[Fn.UIntVal]; 3501 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3502 GV = M->getNamedValue(Fn.StrVal); 3503 } 3504 Function *F = nullptr; 3505 if (GV) { 3506 // Confirm that it's actually a function with a definition. 3507 if (!isa<Function>(GV)) 3508 return error(Fn.Loc, "expected function name in blockaddress"); 3509 F = cast<Function>(GV); 3510 if (F->isDeclaration()) 3511 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3512 } 3513 3514 if (!F) { 3515 // Make a global variable as a placeholder for this reference. 3516 GlobalValue *&FwdRef = 3517 ForwardRefBlockAddresses.insert(std::make_pair( 3518 std::move(Fn), 3519 std::map<ValID, GlobalValue *>())) 3520 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3521 .first->second; 3522 if (!FwdRef) 3523 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3524 GlobalValue::InternalLinkage, nullptr, ""); 3525 ID.ConstantVal = FwdRef; 3526 ID.Kind = ValID::t_Constant; 3527 return false; 3528 } 3529 3530 // We found the function; now find the basic block. Don't use PFS, since we 3531 // might be inside a constant expression. 3532 BasicBlock *BB; 3533 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3534 if (Label.Kind == ValID::t_LocalID) 3535 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3536 else 3537 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3538 if (!BB) 3539 return error(Label.Loc, "referenced value is not a basic block"); 3540 } else { 3541 if (Label.Kind == ValID::t_LocalID) 3542 return error(Label.Loc, "cannot take address of numeric label after " 3543 "the function is defined"); 3544 BB = dyn_cast_or_null<BasicBlock>( 3545 F->getValueSymbolTable()->lookup(Label.StrVal)); 3546 if (!BB) 3547 return error(Label.Loc, "referenced value is not a basic block"); 3548 } 3549 3550 ID.ConstantVal = BlockAddress::get(F, BB); 3551 ID.Kind = ValID::t_Constant; 3552 return false; 3553 } 3554 3555 case lltok::kw_dso_local_equivalent: { 3556 // ValID ::= 'dso_local_equivalent' @foo 3557 Lex.Lex(); 3558 3559 ValID Fn; 3560 3561 if (parseValID(Fn)) 3562 return true; 3563 3564 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3565 return error(Fn.Loc, 3566 "expected global value name in dso_local_equivalent"); 3567 3568 // Try to find the function (but skip it if it's forward-referenced). 3569 GlobalValue *GV = nullptr; 3570 if (Fn.Kind == ValID::t_GlobalID) { 3571 if (Fn.UIntVal < NumberedVals.size()) 3572 GV = NumberedVals[Fn.UIntVal]; 3573 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3574 GV = M->getNamedValue(Fn.StrVal); 3575 } 3576 3577 assert(GV && "Could not find a corresponding global variable"); 3578 3579 if (!GV->getValueType()->isFunctionTy()) 3580 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3581 "in dso_local_equivalent"); 3582 3583 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3584 ID.Kind = ValID::t_Constant; 3585 return false; 3586 } 3587 3588 case lltok::kw_trunc: 3589 case lltok::kw_zext: 3590 case lltok::kw_sext: 3591 case lltok::kw_fptrunc: 3592 case lltok::kw_fpext: 3593 case lltok::kw_bitcast: 3594 case lltok::kw_addrspacecast: 3595 case lltok::kw_uitofp: 3596 case lltok::kw_sitofp: 3597 case lltok::kw_fptoui: 3598 case lltok::kw_fptosi: 3599 case lltok::kw_inttoptr: 3600 case lltok::kw_ptrtoint: { 3601 unsigned Opc = Lex.getUIntVal(); 3602 Type *DestTy = nullptr; 3603 Constant *SrcVal; 3604 Lex.Lex(); 3605 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3606 parseGlobalTypeAndValue(SrcVal) || 3607 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3608 parseType(DestTy) || 3609 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3610 return true; 3611 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3612 return error(ID.Loc, "invalid cast opcode for cast from '" + 3613 getTypeString(SrcVal->getType()) + "' to '" + 3614 getTypeString(DestTy) + "'"); 3615 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3616 SrcVal, DestTy); 3617 ID.Kind = ValID::t_Constant; 3618 return false; 3619 } 3620 case lltok::kw_extractvalue: { 3621 Lex.Lex(); 3622 Constant *Val; 3623 SmallVector<unsigned, 4> Indices; 3624 if (parseToken(lltok::lparen, 3625 "expected '(' in extractvalue constantexpr") || 3626 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3627 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3628 return true; 3629 3630 if (!Val->getType()->isAggregateType()) 3631 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3632 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3633 return error(ID.Loc, "invalid indices for extractvalue"); 3634 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3635 ID.Kind = ValID::t_Constant; 3636 return false; 3637 } 3638 case lltok::kw_insertvalue: { 3639 Lex.Lex(); 3640 Constant *Val0, *Val1; 3641 SmallVector<unsigned, 4> Indices; 3642 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3643 parseGlobalTypeAndValue(Val0) || 3644 parseToken(lltok::comma, 3645 "expected comma in insertvalue constantexpr") || 3646 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3647 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3648 return true; 3649 if (!Val0->getType()->isAggregateType()) 3650 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3651 Type *IndexedType = 3652 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3653 if (!IndexedType) 3654 return error(ID.Loc, "invalid indices for insertvalue"); 3655 if (IndexedType != Val1->getType()) 3656 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3657 getTypeString(Val1->getType()) + 3658 "' instead of '" + getTypeString(IndexedType) + 3659 "'"); 3660 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3661 ID.Kind = ValID::t_Constant; 3662 return false; 3663 } 3664 case lltok::kw_icmp: 3665 case lltok::kw_fcmp: { 3666 unsigned PredVal, Opc = Lex.getUIntVal(); 3667 Constant *Val0, *Val1; 3668 Lex.Lex(); 3669 if (parseCmpPredicate(PredVal, Opc) || 3670 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3671 parseGlobalTypeAndValue(Val0) || 3672 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3673 parseGlobalTypeAndValue(Val1) || 3674 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3675 return true; 3676 3677 if (Val0->getType() != Val1->getType()) 3678 return error(ID.Loc, "compare operands must have the same type"); 3679 3680 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3681 3682 if (Opc == Instruction::FCmp) { 3683 if (!Val0->getType()->isFPOrFPVectorTy()) 3684 return error(ID.Loc, "fcmp requires floating point operands"); 3685 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3686 } else { 3687 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3688 if (!Val0->getType()->isIntOrIntVectorTy() && 3689 !Val0->getType()->isPtrOrPtrVectorTy()) 3690 return error(ID.Loc, "icmp requires pointer or integer operands"); 3691 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3692 } 3693 ID.Kind = ValID::t_Constant; 3694 return false; 3695 } 3696 3697 // Unary Operators. 3698 case lltok::kw_fneg: { 3699 unsigned Opc = Lex.getUIntVal(); 3700 Constant *Val; 3701 Lex.Lex(); 3702 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3703 parseGlobalTypeAndValue(Val) || 3704 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3705 return true; 3706 3707 // Check that the type is valid for the operator. 3708 switch (Opc) { 3709 case Instruction::FNeg: 3710 if (!Val->getType()->isFPOrFPVectorTy()) 3711 return error(ID.Loc, "constexpr requires fp operands"); 3712 break; 3713 default: llvm_unreachable("Unknown unary operator!"); 3714 } 3715 unsigned Flags = 0; 3716 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3717 ID.ConstantVal = C; 3718 ID.Kind = ValID::t_Constant; 3719 return false; 3720 } 3721 // Binary Operators. 3722 case lltok::kw_add: 3723 case lltok::kw_fadd: 3724 case lltok::kw_sub: 3725 case lltok::kw_fsub: 3726 case lltok::kw_mul: 3727 case lltok::kw_fmul: 3728 case lltok::kw_udiv: 3729 case lltok::kw_sdiv: 3730 case lltok::kw_fdiv: 3731 case lltok::kw_urem: 3732 case lltok::kw_srem: 3733 case lltok::kw_frem: 3734 case lltok::kw_shl: 3735 case lltok::kw_lshr: 3736 case lltok::kw_ashr: { 3737 bool NUW = false; 3738 bool NSW = false; 3739 bool Exact = false; 3740 unsigned Opc = Lex.getUIntVal(); 3741 Constant *Val0, *Val1; 3742 Lex.Lex(); 3743 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3744 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3745 if (EatIfPresent(lltok::kw_nuw)) 3746 NUW = true; 3747 if (EatIfPresent(lltok::kw_nsw)) { 3748 NSW = true; 3749 if (EatIfPresent(lltok::kw_nuw)) 3750 NUW = true; 3751 } 3752 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3753 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3754 if (EatIfPresent(lltok::kw_exact)) 3755 Exact = true; 3756 } 3757 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3758 parseGlobalTypeAndValue(Val0) || 3759 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3760 parseGlobalTypeAndValue(Val1) || 3761 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3762 return true; 3763 if (Val0->getType() != Val1->getType()) 3764 return error(ID.Loc, "operands of constexpr must have same type"); 3765 // Check that the type is valid for the operator. 3766 switch (Opc) { 3767 case Instruction::Add: 3768 case Instruction::Sub: 3769 case Instruction::Mul: 3770 case Instruction::UDiv: 3771 case Instruction::SDiv: 3772 case Instruction::URem: 3773 case Instruction::SRem: 3774 case Instruction::Shl: 3775 case Instruction::AShr: 3776 case Instruction::LShr: 3777 if (!Val0->getType()->isIntOrIntVectorTy()) 3778 return error(ID.Loc, "constexpr requires integer operands"); 3779 break; 3780 case Instruction::FAdd: 3781 case Instruction::FSub: 3782 case Instruction::FMul: 3783 case Instruction::FDiv: 3784 case Instruction::FRem: 3785 if (!Val0->getType()->isFPOrFPVectorTy()) 3786 return error(ID.Loc, "constexpr requires fp operands"); 3787 break; 3788 default: llvm_unreachable("Unknown binary operator!"); 3789 } 3790 unsigned Flags = 0; 3791 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3792 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3793 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3794 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3795 ID.ConstantVal = C; 3796 ID.Kind = ValID::t_Constant; 3797 return false; 3798 } 3799 3800 // Logical Operations 3801 case lltok::kw_and: 3802 case lltok::kw_or: 3803 case lltok::kw_xor: { 3804 unsigned Opc = Lex.getUIntVal(); 3805 Constant *Val0, *Val1; 3806 Lex.Lex(); 3807 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3808 parseGlobalTypeAndValue(Val0) || 3809 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3810 parseGlobalTypeAndValue(Val1) || 3811 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3812 return true; 3813 if (Val0->getType() != Val1->getType()) 3814 return error(ID.Loc, "operands of constexpr must have same type"); 3815 if (!Val0->getType()->isIntOrIntVectorTy()) 3816 return error(ID.Loc, 3817 "constexpr requires integer or integer vector operands"); 3818 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3819 ID.Kind = ValID::t_Constant; 3820 return false; 3821 } 3822 3823 case lltok::kw_getelementptr: 3824 case lltok::kw_shufflevector: 3825 case lltok::kw_insertelement: 3826 case lltok::kw_extractelement: 3827 case lltok::kw_select: { 3828 unsigned Opc = Lex.getUIntVal(); 3829 SmallVector<Constant*, 16> Elts; 3830 bool InBounds = false; 3831 Type *Ty; 3832 Lex.Lex(); 3833 3834 if (Opc == Instruction::GetElementPtr) 3835 InBounds = EatIfPresent(lltok::kw_inbounds); 3836 3837 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3838 return true; 3839 3840 LocTy ExplicitTypeLoc = Lex.getLoc(); 3841 if (Opc == Instruction::GetElementPtr) { 3842 if (parseType(Ty) || 3843 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3844 return true; 3845 } 3846 3847 Optional<unsigned> InRangeOp; 3848 if (parseGlobalValueVector( 3849 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3850 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3851 return true; 3852 3853 if (Opc == Instruction::GetElementPtr) { 3854 if (Elts.size() == 0 || 3855 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3856 return error(ID.Loc, "base of getelementptr must be a pointer"); 3857 3858 Type *BaseType = Elts[0]->getType(); 3859 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3860 if (Ty != BasePointerType->getElementType()) { 3861 return error( 3862 ExplicitTypeLoc, 3863 typeComparisonErrorMessage( 3864 "explicit pointee type doesn't match operand's pointee type", 3865 Ty, BasePointerType->getElementType())); 3866 } 3867 3868 unsigned GEPWidth = 3869 BaseType->isVectorTy() 3870 ? cast<FixedVectorType>(BaseType)->getNumElements() 3871 : 0; 3872 3873 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3874 for (Constant *Val : Indices) { 3875 Type *ValTy = Val->getType(); 3876 if (!ValTy->isIntOrIntVectorTy()) 3877 return error(ID.Loc, "getelementptr index must be an integer"); 3878 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3879 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3880 if (GEPWidth && (ValNumEl != GEPWidth)) 3881 return error( 3882 ID.Loc, 3883 "getelementptr vector index has a wrong number of elements"); 3884 // GEPWidth may have been unknown because the base is a scalar, 3885 // but it is known now. 3886 GEPWidth = ValNumEl; 3887 } 3888 } 3889 3890 SmallPtrSet<Type*, 4> Visited; 3891 if (!Indices.empty() && !Ty->isSized(&Visited)) 3892 return error(ID.Loc, "base element of getelementptr must be sized"); 3893 3894 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3895 return error(ID.Loc, "invalid getelementptr indices"); 3896 3897 if (InRangeOp) { 3898 if (*InRangeOp == 0) 3899 return error(ID.Loc, 3900 "inrange keyword may not appear on pointer operand"); 3901 --*InRangeOp; 3902 } 3903 3904 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3905 InBounds, InRangeOp); 3906 } else if (Opc == Instruction::Select) { 3907 if (Elts.size() != 3) 3908 return error(ID.Loc, "expected three operands to select"); 3909 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3910 Elts[2])) 3911 return error(ID.Loc, Reason); 3912 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3913 } else if (Opc == Instruction::ShuffleVector) { 3914 if (Elts.size() != 3) 3915 return error(ID.Loc, "expected three operands to shufflevector"); 3916 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3917 return error(ID.Loc, "invalid operands to shufflevector"); 3918 SmallVector<int, 16> Mask; 3919 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3920 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3921 } else if (Opc == Instruction::ExtractElement) { 3922 if (Elts.size() != 2) 3923 return error(ID.Loc, "expected two operands to extractelement"); 3924 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3925 return error(ID.Loc, "invalid extractelement operands"); 3926 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3927 } else { 3928 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3929 if (Elts.size() != 3) 3930 return error(ID.Loc, "expected three operands to insertelement"); 3931 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3932 return error(ID.Loc, "invalid insertelement operands"); 3933 ID.ConstantVal = 3934 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3935 } 3936 3937 ID.Kind = ValID::t_Constant; 3938 return false; 3939 } 3940 } 3941 3942 Lex.Lex(); 3943 return false; 3944 } 3945 3946 /// parseGlobalValue - parse a global value with the specified type. 3947 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3948 C = nullptr; 3949 ValID ID; 3950 Value *V = nullptr; 3951 bool Parsed = parseValID(ID) || 3952 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3953 if (V && !(C = dyn_cast<Constant>(V))) 3954 return error(ID.Loc, "global values must be constants"); 3955 return Parsed; 3956 } 3957 3958 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3959 Type *Ty = nullptr; 3960 return parseType(Ty) || parseGlobalValue(Ty, V); 3961 } 3962 3963 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3964 C = nullptr; 3965 3966 LocTy KwLoc = Lex.getLoc(); 3967 if (!EatIfPresent(lltok::kw_comdat)) 3968 return false; 3969 3970 if (EatIfPresent(lltok::lparen)) { 3971 if (Lex.getKind() != lltok::ComdatVar) 3972 return tokError("expected comdat variable"); 3973 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3974 Lex.Lex(); 3975 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3976 return true; 3977 } else { 3978 if (GlobalName.empty()) 3979 return tokError("comdat cannot be unnamed"); 3980 C = getComdat(std::string(GlobalName), KwLoc); 3981 } 3982 3983 return false; 3984 } 3985 3986 /// parseGlobalValueVector 3987 /// ::= /*empty*/ 3988 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3989 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3990 Optional<unsigned> *InRangeOp) { 3991 // Empty list. 3992 if (Lex.getKind() == lltok::rbrace || 3993 Lex.getKind() == lltok::rsquare || 3994 Lex.getKind() == lltok::greater || 3995 Lex.getKind() == lltok::rparen) 3996 return false; 3997 3998 do { 3999 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 4000 *InRangeOp = Elts.size(); 4001 4002 Constant *C; 4003 if (parseGlobalTypeAndValue(C)) 4004 return true; 4005 Elts.push_back(C); 4006 } while (EatIfPresent(lltok::comma)); 4007 4008 return false; 4009 } 4010 4011 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4012 SmallVector<Metadata *, 16> Elts; 4013 if (parseMDNodeVector(Elts)) 4014 return true; 4015 4016 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4017 return false; 4018 } 4019 4020 /// MDNode: 4021 /// ::= !{ ... } 4022 /// ::= !7 4023 /// ::= !DILocation(...) 4024 bool LLParser::parseMDNode(MDNode *&N) { 4025 if (Lex.getKind() == lltok::MetadataVar) 4026 return parseSpecializedMDNode(N); 4027 4028 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4029 } 4030 4031 bool LLParser::parseMDNodeTail(MDNode *&N) { 4032 // !{ ... } 4033 if (Lex.getKind() == lltok::lbrace) 4034 return parseMDTuple(N); 4035 4036 // !42 4037 return parseMDNodeID(N); 4038 } 4039 4040 namespace { 4041 4042 /// Structure to represent an optional metadata field. 4043 template <class FieldTy> struct MDFieldImpl { 4044 typedef MDFieldImpl ImplTy; 4045 FieldTy Val; 4046 bool Seen; 4047 4048 void assign(FieldTy Val) { 4049 Seen = true; 4050 this->Val = std::move(Val); 4051 } 4052 4053 explicit MDFieldImpl(FieldTy Default) 4054 : Val(std::move(Default)), Seen(false) {} 4055 }; 4056 4057 /// Structure to represent an optional metadata field that 4058 /// can be of either type (A or B) and encapsulates the 4059 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4060 /// to reimplement the specifics for representing each Field. 4061 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4062 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4063 FieldTypeA A; 4064 FieldTypeB B; 4065 bool Seen; 4066 4067 enum { 4068 IsInvalid = 0, 4069 IsTypeA = 1, 4070 IsTypeB = 2 4071 } WhatIs; 4072 4073 void assign(FieldTypeA A) { 4074 Seen = true; 4075 this->A = std::move(A); 4076 WhatIs = IsTypeA; 4077 } 4078 4079 void assign(FieldTypeB B) { 4080 Seen = true; 4081 this->B = std::move(B); 4082 WhatIs = IsTypeB; 4083 } 4084 4085 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4086 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4087 WhatIs(IsInvalid) {} 4088 }; 4089 4090 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4091 uint64_t Max; 4092 4093 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4094 : ImplTy(Default), Max(Max) {} 4095 }; 4096 4097 struct LineField : public MDUnsignedField { 4098 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4099 }; 4100 4101 struct ColumnField : public MDUnsignedField { 4102 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4103 }; 4104 4105 struct DwarfTagField : public MDUnsignedField { 4106 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4107 DwarfTagField(dwarf::Tag DefaultTag) 4108 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4109 }; 4110 4111 struct DwarfMacinfoTypeField : public MDUnsignedField { 4112 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4113 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4114 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4115 }; 4116 4117 struct DwarfAttEncodingField : public MDUnsignedField { 4118 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4119 }; 4120 4121 struct DwarfVirtualityField : public MDUnsignedField { 4122 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4123 }; 4124 4125 struct DwarfLangField : public MDUnsignedField { 4126 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4127 }; 4128 4129 struct DwarfCCField : public MDUnsignedField { 4130 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4131 }; 4132 4133 struct EmissionKindField : public MDUnsignedField { 4134 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4135 }; 4136 4137 struct NameTableKindField : public MDUnsignedField { 4138 NameTableKindField() 4139 : MDUnsignedField( 4140 0, (unsigned) 4141 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4142 }; 4143 4144 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4145 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4146 }; 4147 4148 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4149 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4150 }; 4151 4152 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4153 MDAPSIntField() : ImplTy(APSInt()) {} 4154 }; 4155 4156 struct MDSignedField : public MDFieldImpl<int64_t> { 4157 int64_t Min; 4158 int64_t Max; 4159 4160 MDSignedField(int64_t Default = 0) 4161 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4162 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4163 : ImplTy(Default), Min(Min), Max(Max) {} 4164 }; 4165 4166 struct MDBoolField : public MDFieldImpl<bool> { 4167 MDBoolField(bool Default = false) : ImplTy(Default) {} 4168 }; 4169 4170 struct MDField : public MDFieldImpl<Metadata *> { 4171 bool AllowNull; 4172 4173 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4174 }; 4175 4176 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4177 MDConstant() : ImplTy(nullptr) {} 4178 }; 4179 4180 struct MDStringField : public MDFieldImpl<MDString *> { 4181 bool AllowEmpty; 4182 MDStringField(bool AllowEmpty = true) 4183 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4184 }; 4185 4186 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4187 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4188 }; 4189 4190 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4191 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4192 }; 4193 4194 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4195 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4196 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4197 4198 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4199 bool AllowNull = true) 4200 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4201 4202 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4203 bool isMDField() const { return WhatIs == IsTypeB; } 4204 int64_t getMDSignedValue() const { 4205 assert(isMDSignedField() && "Wrong field type"); 4206 return A.Val; 4207 } 4208 Metadata *getMDFieldValue() const { 4209 assert(isMDField() && "Wrong field type"); 4210 return B.Val; 4211 } 4212 }; 4213 4214 struct MDSignedOrUnsignedField 4215 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4216 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4217 4218 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4219 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4220 int64_t getMDSignedValue() const { 4221 assert(isMDSignedField() && "Wrong field type"); 4222 return A.Val; 4223 } 4224 uint64_t getMDUnsignedValue() const { 4225 assert(isMDUnsignedField() && "Wrong field type"); 4226 return B.Val; 4227 } 4228 }; 4229 4230 } // end anonymous namespace 4231 4232 namespace llvm { 4233 4234 template <> 4235 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4236 if (Lex.getKind() != lltok::APSInt) 4237 return tokError("expected integer"); 4238 4239 Result.assign(Lex.getAPSIntVal()); 4240 Lex.Lex(); 4241 return false; 4242 } 4243 4244 template <> 4245 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4246 MDUnsignedField &Result) { 4247 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4248 return tokError("expected unsigned integer"); 4249 4250 auto &U = Lex.getAPSIntVal(); 4251 if (U.ugt(Result.Max)) 4252 return tokError("value for '" + Name + "' too large, limit is " + 4253 Twine(Result.Max)); 4254 Result.assign(U.getZExtValue()); 4255 assert(Result.Val <= Result.Max && "Expected value in range"); 4256 Lex.Lex(); 4257 return false; 4258 } 4259 4260 template <> 4261 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4262 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4263 } 4264 template <> 4265 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4266 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4267 } 4268 4269 template <> 4270 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4271 if (Lex.getKind() == lltok::APSInt) 4272 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4273 4274 if (Lex.getKind() != lltok::DwarfTag) 4275 return tokError("expected DWARF tag"); 4276 4277 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4278 if (Tag == dwarf::DW_TAG_invalid) 4279 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4280 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4281 4282 Result.assign(Tag); 4283 Lex.Lex(); 4284 return false; 4285 } 4286 4287 template <> 4288 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4289 DwarfMacinfoTypeField &Result) { 4290 if (Lex.getKind() == lltok::APSInt) 4291 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4292 4293 if (Lex.getKind() != lltok::DwarfMacinfo) 4294 return tokError("expected DWARF macinfo type"); 4295 4296 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4297 if (Macinfo == dwarf::DW_MACINFO_invalid) 4298 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4299 Lex.getStrVal() + "'"); 4300 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4301 4302 Result.assign(Macinfo); 4303 Lex.Lex(); 4304 return false; 4305 } 4306 4307 template <> 4308 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4309 DwarfVirtualityField &Result) { 4310 if (Lex.getKind() == lltok::APSInt) 4311 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4312 4313 if (Lex.getKind() != lltok::DwarfVirtuality) 4314 return tokError("expected DWARF virtuality code"); 4315 4316 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4317 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4318 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4319 Lex.getStrVal() + "'"); 4320 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4321 Result.assign(Virtuality); 4322 Lex.Lex(); 4323 return false; 4324 } 4325 4326 template <> 4327 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4328 if (Lex.getKind() == lltok::APSInt) 4329 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4330 4331 if (Lex.getKind() != lltok::DwarfLang) 4332 return tokError("expected DWARF language"); 4333 4334 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4335 if (!Lang) 4336 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4337 "'"); 4338 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4339 Result.assign(Lang); 4340 Lex.Lex(); 4341 return false; 4342 } 4343 4344 template <> 4345 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4346 if (Lex.getKind() == lltok::APSInt) 4347 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4348 4349 if (Lex.getKind() != lltok::DwarfCC) 4350 return tokError("expected DWARF calling convention"); 4351 4352 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4353 if (!CC) 4354 return tokError("invalid DWARF calling convention" + Twine(" '") + 4355 Lex.getStrVal() + "'"); 4356 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4357 Result.assign(CC); 4358 Lex.Lex(); 4359 return false; 4360 } 4361 4362 template <> 4363 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4364 EmissionKindField &Result) { 4365 if (Lex.getKind() == lltok::APSInt) 4366 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4367 4368 if (Lex.getKind() != lltok::EmissionKind) 4369 return tokError("expected emission kind"); 4370 4371 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4372 if (!Kind) 4373 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4374 "'"); 4375 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4376 Result.assign(*Kind); 4377 Lex.Lex(); 4378 return false; 4379 } 4380 4381 template <> 4382 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4383 NameTableKindField &Result) { 4384 if (Lex.getKind() == lltok::APSInt) 4385 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4386 4387 if (Lex.getKind() != lltok::NameTableKind) 4388 return tokError("expected nameTable kind"); 4389 4390 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4391 if (!Kind) 4392 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4393 "'"); 4394 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4395 Result.assign((unsigned)*Kind); 4396 Lex.Lex(); 4397 return false; 4398 } 4399 4400 template <> 4401 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4402 DwarfAttEncodingField &Result) { 4403 if (Lex.getKind() == lltok::APSInt) 4404 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4405 4406 if (Lex.getKind() != lltok::DwarfAttEncoding) 4407 return tokError("expected DWARF type attribute encoding"); 4408 4409 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4410 if (!Encoding) 4411 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4412 Lex.getStrVal() + "'"); 4413 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4414 Result.assign(Encoding); 4415 Lex.Lex(); 4416 return false; 4417 } 4418 4419 /// DIFlagField 4420 /// ::= uint32 4421 /// ::= DIFlagVector 4422 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4423 template <> 4424 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4425 4426 // parser for a single flag. 4427 auto parseFlag = [&](DINode::DIFlags &Val) { 4428 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4429 uint32_t TempVal = static_cast<uint32_t>(Val); 4430 bool Res = parseUInt32(TempVal); 4431 Val = static_cast<DINode::DIFlags>(TempVal); 4432 return Res; 4433 } 4434 4435 if (Lex.getKind() != lltok::DIFlag) 4436 return tokError("expected debug info flag"); 4437 4438 Val = DINode::getFlag(Lex.getStrVal()); 4439 if (!Val) 4440 return tokError(Twine("invalid debug info flag flag '") + 4441 Lex.getStrVal() + "'"); 4442 Lex.Lex(); 4443 return false; 4444 }; 4445 4446 // parse the flags and combine them together. 4447 DINode::DIFlags Combined = DINode::FlagZero; 4448 do { 4449 DINode::DIFlags Val; 4450 if (parseFlag(Val)) 4451 return true; 4452 Combined |= Val; 4453 } while (EatIfPresent(lltok::bar)); 4454 4455 Result.assign(Combined); 4456 return false; 4457 } 4458 4459 /// DISPFlagField 4460 /// ::= uint32 4461 /// ::= DISPFlagVector 4462 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4463 template <> 4464 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4465 4466 // parser for a single flag. 4467 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4468 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4469 uint32_t TempVal = static_cast<uint32_t>(Val); 4470 bool Res = parseUInt32(TempVal); 4471 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4472 return Res; 4473 } 4474 4475 if (Lex.getKind() != lltok::DISPFlag) 4476 return tokError("expected debug info flag"); 4477 4478 Val = DISubprogram::getFlag(Lex.getStrVal()); 4479 if (!Val) 4480 return tokError(Twine("invalid subprogram debug info flag '") + 4481 Lex.getStrVal() + "'"); 4482 Lex.Lex(); 4483 return false; 4484 }; 4485 4486 // parse the flags and combine them together. 4487 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4488 do { 4489 DISubprogram::DISPFlags Val; 4490 if (parseFlag(Val)) 4491 return true; 4492 Combined |= Val; 4493 } while (EatIfPresent(lltok::bar)); 4494 4495 Result.assign(Combined); 4496 return false; 4497 } 4498 4499 template <> 4500 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4501 if (Lex.getKind() != lltok::APSInt) 4502 return tokError("expected signed integer"); 4503 4504 auto &S = Lex.getAPSIntVal(); 4505 if (S < Result.Min) 4506 return tokError("value for '" + Name + "' too small, limit is " + 4507 Twine(Result.Min)); 4508 if (S > Result.Max) 4509 return tokError("value for '" + Name + "' too large, limit is " + 4510 Twine(Result.Max)); 4511 Result.assign(S.getExtValue()); 4512 assert(Result.Val >= Result.Min && "Expected value in range"); 4513 assert(Result.Val <= Result.Max && "Expected value in range"); 4514 Lex.Lex(); 4515 return false; 4516 } 4517 4518 template <> 4519 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4520 switch (Lex.getKind()) { 4521 default: 4522 return tokError("expected 'true' or 'false'"); 4523 case lltok::kw_true: 4524 Result.assign(true); 4525 break; 4526 case lltok::kw_false: 4527 Result.assign(false); 4528 break; 4529 } 4530 Lex.Lex(); 4531 return false; 4532 } 4533 4534 template <> 4535 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4536 if (Lex.getKind() == lltok::kw_null) { 4537 if (!Result.AllowNull) 4538 return tokError("'" + Name + "' cannot be null"); 4539 Lex.Lex(); 4540 Result.assign(nullptr); 4541 return false; 4542 } 4543 4544 Metadata *MD; 4545 if (parseMetadata(MD, nullptr)) 4546 return true; 4547 4548 Result.assign(MD); 4549 return false; 4550 } 4551 4552 template <> 4553 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4554 MDSignedOrMDField &Result) { 4555 // Try to parse a signed int. 4556 if (Lex.getKind() == lltok::APSInt) { 4557 MDSignedField Res = Result.A; 4558 if (!parseMDField(Loc, Name, Res)) { 4559 Result.assign(Res); 4560 return false; 4561 } 4562 return true; 4563 } 4564 4565 // Otherwise, try to parse as an MDField. 4566 MDField Res = Result.B; 4567 if (!parseMDField(Loc, Name, Res)) { 4568 Result.assign(Res); 4569 return false; 4570 } 4571 4572 return true; 4573 } 4574 4575 template <> 4576 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4577 LocTy ValueLoc = Lex.getLoc(); 4578 std::string S; 4579 if (parseStringConstant(S)) 4580 return true; 4581 4582 if (!Result.AllowEmpty && S.empty()) 4583 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4584 4585 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4586 return false; 4587 } 4588 4589 template <> 4590 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4591 SmallVector<Metadata *, 4> MDs; 4592 if (parseMDNodeVector(MDs)) 4593 return true; 4594 4595 Result.assign(std::move(MDs)); 4596 return false; 4597 } 4598 4599 template <> 4600 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4601 ChecksumKindField &Result) { 4602 Optional<DIFile::ChecksumKind> CSKind = 4603 DIFile::getChecksumKind(Lex.getStrVal()); 4604 4605 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4606 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4607 "'"); 4608 4609 Result.assign(*CSKind); 4610 Lex.Lex(); 4611 return false; 4612 } 4613 4614 } // end namespace llvm 4615 4616 template <class ParserTy> 4617 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4618 do { 4619 if (Lex.getKind() != lltok::LabelStr) 4620 return tokError("expected field label here"); 4621 4622 if (ParseField()) 4623 return true; 4624 } while (EatIfPresent(lltok::comma)); 4625 4626 return false; 4627 } 4628 4629 template <class ParserTy> 4630 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4631 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4632 Lex.Lex(); 4633 4634 if (parseToken(lltok::lparen, "expected '(' here")) 4635 return true; 4636 if (Lex.getKind() != lltok::rparen) 4637 if (parseMDFieldsImplBody(ParseField)) 4638 return true; 4639 4640 ClosingLoc = Lex.getLoc(); 4641 return parseToken(lltok::rparen, "expected ')' here"); 4642 } 4643 4644 template <class FieldTy> 4645 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4646 if (Result.Seen) 4647 return tokError("field '" + Name + "' cannot be specified more than once"); 4648 4649 LocTy Loc = Lex.getLoc(); 4650 Lex.Lex(); 4651 return parseMDField(Loc, Name, Result); 4652 } 4653 4654 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4655 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4656 4657 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4658 if (Lex.getStrVal() == #CLASS) \ 4659 return parse##CLASS(N, IsDistinct); 4660 #include "llvm/IR/Metadata.def" 4661 4662 return tokError("expected metadata type"); 4663 } 4664 4665 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4666 #define NOP_FIELD(NAME, TYPE, INIT) 4667 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4668 if (!NAME.Seen) \ 4669 return error(ClosingLoc, "missing required field '" #NAME "'"); 4670 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4671 if (Lex.getStrVal() == #NAME) \ 4672 return parseMDField(#NAME, NAME); 4673 #define PARSE_MD_FIELDS() \ 4674 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4675 do { \ 4676 LocTy ClosingLoc; \ 4677 if (parseMDFieldsImpl( \ 4678 [&]() -> bool { \ 4679 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4680 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4681 "'"); \ 4682 }, \ 4683 ClosingLoc)) \ 4684 return true; \ 4685 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4686 } while (false) 4687 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4688 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4689 4690 /// parseDILocationFields: 4691 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4692 /// isImplicitCode: true) 4693 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4694 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4695 OPTIONAL(line, LineField, ); \ 4696 OPTIONAL(column, ColumnField, ); \ 4697 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4698 OPTIONAL(inlinedAt, MDField, ); \ 4699 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4700 PARSE_MD_FIELDS(); 4701 #undef VISIT_MD_FIELDS 4702 4703 Result = 4704 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4705 inlinedAt.Val, isImplicitCode.Val)); 4706 return false; 4707 } 4708 4709 /// parseGenericDINode: 4710 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4711 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4712 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4713 REQUIRED(tag, DwarfTagField, ); \ 4714 OPTIONAL(header, MDStringField, ); \ 4715 OPTIONAL(operands, MDFieldList, ); 4716 PARSE_MD_FIELDS(); 4717 #undef VISIT_MD_FIELDS 4718 4719 Result = GET_OR_DISTINCT(GenericDINode, 4720 (Context, tag.Val, header.Val, operands.Val)); 4721 return false; 4722 } 4723 4724 /// parseDISubrange: 4725 /// ::= !DISubrange(count: 30, lowerBound: 2) 4726 /// ::= !DISubrange(count: !node, lowerBound: 2) 4727 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4728 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4729 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4730 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4731 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4732 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4733 OPTIONAL(stride, MDSignedOrMDField, ); 4734 PARSE_MD_FIELDS(); 4735 #undef VISIT_MD_FIELDS 4736 4737 Metadata *Count = nullptr; 4738 Metadata *LowerBound = nullptr; 4739 Metadata *UpperBound = nullptr; 4740 Metadata *Stride = nullptr; 4741 4742 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4743 if (Bound.isMDSignedField()) 4744 return ConstantAsMetadata::get(ConstantInt::getSigned( 4745 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4746 if (Bound.isMDField()) 4747 return Bound.getMDFieldValue(); 4748 return nullptr; 4749 }; 4750 4751 Count = convToMetadata(count); 4752 LowerBound = convToMetadata(lowerBound); 4753 UpperBound = convToMetadata(upperBound); 4754 Stride = convToMetadata(stride); 4755 4756 Result = GET_OR_DISTINCT(DISubrange, 4757 (Context, Count, LowerBound, UpperBound, Stride)); 4758 4759 return false; 4760 } 4761 4762 /// parseDIGenericSubrange: 4763 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4764 /// !node3) 4765 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4766 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4767 OPTIONAL(count, MDSignedOrMDField, ); \ 4768 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4769 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4770 OPTIONAL(stride, MDSignedOrMDField, ); 4771 PARSE_MD_FIELDS(); 4772 #undef VISIT_MD_FIELDS 4773 4774 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4775 if (Bound.isMDSignedField()) 4776 return DIExpression::get( 4777 Context, {dwarf::DW_OP_consts, 4778 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4779 if (Bound.isMDField()) 4780 return Bound.getMDFieldValue(); 4781 return nullptr; 4782 }; 4783 4784 Metadata *Count = ConvToMetadata(count); 4785 Metadata *LowerBound = ConvToMetadata(lowerBound); 4786 Metadata *UpperBound = ConvToMetadata(upperBound); 4787 Metadata *Stride = ConvToMetadata(stride); 4788 4789 Result = GET_OR_DISTINCT(DIGenericSubrange, 4790 (Context, Count, LowerBound, UpperBound, Stride)); 4791 4792 return false; 4793 } 4794 4795 /// parseDIEnumerator: 4796 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4797 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4798 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4799 REQUIRED(name, MDStringField, ); \ 4800 REQUIRED(value, MDAPSIntField, ); \ 4801 OPTIONAL(isUnsigned, MDBoolField, (false)); 4802 PARSE_MD_FIELDS(); 4803 #undef VISIT_MD_FIELDS 4804 4805 if (isUnsigned.Val && value.Val.isNegative()) 4806 return tokError("unsigned enumerator with negative value"); 4807 4808 APSInt Value(value.Val); 4809 // Add a leading zero so that unsigned values with the msb set are not 4810 // mistaken for negative values when used for signed enumerators. 4811 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4812 Value = Value.zext(Value.getBitWidth() + 1); 4813 4814 Result = 4815 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4816 4817 return false; 4818 } 4819 4820 /// parseDIBasicType: 4821 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4822 /// encoding: DW_ATE_encoding, flags: 0) 4823 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4824 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4825 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4826 OPTIONAL(name, MDStringField, ); \ 4827 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4828 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4829 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4830 OPTIONAL(flags, DIFlagField, ); 4831 PARSE_MD_FIELDS(); 4832 #undef VISIT_MD_FIELDS 4833 4834 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4835 align.Val, encoding.Val, flags.Val)); 4836 return false; 4837 } 4838 4839 /// parseDIStringType: 4840 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4841 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4842 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4843 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4844 OPTIONAL(name, MDStringField, ); \ 4845 OPTIONAL(stringLength, MDField, ); \ 4846 OPTIONAL(stringLengthExpression, MDField, ); \ 4847 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4848 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4849 OPTIONAL(encoding, DwarfAttEncodingField, ); 4850 PARSE_MD_FIELDS(); 4851 #undef VISIT_MD_FIELDS 4852 4853 Result = GET_OR_DISTINCT(DIStringType, 4854 (Context, tag.Val, name.Val, stringLength.Val, 4855 stringLengthExpression.Val, size.Val, align.Val, 4856 encoding.Val)); 4857 return false; 4858 } 4859 4860 /// parseDIDerivedType: 4861 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4862 /// line: 7, scope: !1, baseType: !2, size: 32, 4863 /// align: 32, offset: 0, flags: 0, extraData: !3, 4864 /// dwarfAddressSpace: 3) 4865 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4866 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4867 REQUIRED(tag, DwarfTagField, ); \ 4868 OPTIONAL(name, MDStringField, ); \ 4869 OPTIONAL(file, MDField, ); \ 4870 OPTIONAL(line, LineField, ); \ 4871 OPTIONAL(scope, MDField, ); \ 4872 REQUIRED(baseType, MDField, ); \ 4873 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4874 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4875 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4876 OPTIONAL(flags, DIFlagField, ); \ 4877 OPTIONAL(extraData, MDField, ); \ 4878 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4879 PARSE_MD_FIELDS(); 4880 #undef VISIT_MD_FIELDS 4881 4882 Optional<unsigned> DWARFAddressSpace; 4883 if (dwarfAddressSpace.Val != UINT32_MAX) 4884 DWARFAddressSpace = dwarfAddressSpace.Val; 4885 4886 Result = GET_OR_DISTINCT(DIDerivedType, 4887 (Context, tag.Val, name.Val, file.Val, line.Val, 4888 scope.Val, baseType.Val, size.Val, align.Val, 4889 offset.Val, DWARFAddressSpace, flags.Val, 4890 extraData.Val)); 4891 return false; 4892 } 4893 4894 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4895 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4896 REQUIRED(tag, DwarfTagField, ); \ 4897 OPTIONAL(name, MDStringField, ); \ 4898 OPTIONAL(file, MDField, ); \ 4899 OPTIONAL(line, LineField, ); \ 4900 OPTIONAL(scope, MDField, ); \ 4901 OPTIONAL(baseType, MDField, ); \ 4902 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4903 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4904 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4905 OPTIONAL(flags, DIFlagField, ); \ 4906 OPTIONAL(elements, MDField, ); \ 4907 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4908 OPTIONAL(vtableHolder, MDField, ); \ 4909 OPTIONAL(templateParams, MDField, ); \ 4910 OPTIONAL(identifier, MDStringField, ); \ 4911 OPTIONAL(discriminator, MDField, ); \ 4912 OPTIONAL(dataLocation, MDField, ); \ 4913 OPTIONAL(associated, MDField, ); \ 4914 OPTIONAL(allocated, MDField, ); \ 4915 OPTIONAL(rank, MDSignedOrMDField, ); 4916 PARSE_MD_FIELDS(); 4917 #undef VISIT_MD_FIELDS 4918 4919 Metadata *Rank = nullptr; 4920 if (rank.isMDSignedField()) 4921 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4922 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4923 else if (rank.isMDField()) 4924 Rank = rank.getMDFieldValue(); 4925 4926 // If this has an identifier try to build an ODR type. 4927 if (identifier.Val) 4928 if (auto *CT = DICompositeType::buildODRType( 4929 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4930 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4931 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4932 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4933 Rank)) { 4934 Result = CT; 4935 return false; 4936 } 4937 4938 // Create a new node, and save it in the context if it belongs in the type 4939 // map. 4940 Result = GET_OR_DISTINCT( 4941 DICompositeType, 4942 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4943 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4944 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4945 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4946 Rank)); 4947 return false; 4948 } 4949 4950 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4952 OPTIONAL(flags, DIFlagField, ); \ 4953 OPTIONAL(cc, DwarfCCField, ); \ 4954 REQUIRED(types, MDField, ); 4955 PARSE_MD_FIELDS(); 4956 #undef VISIT_MD_FIELDS 4957 4958 Result = GET_OR_DISTINCT(DISubroutineType, 4959 (Context, flags.Val, cc.Val, types.Val)); 4960 return false; 4961 } 4962 4963 /// parseDIFileType: 4964 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4965 /// checksumkind: CSK_MD5, 4966 /// checksum: "000102030405060708090a0b0c0d0e0f", 4967 /// source: "source file contents") 4968 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4969 // The default constructed value for checksumkind is required, but will never 4970 // be used, as the parser checks if the field was actually Seen before using 4971 // the Val. 4972 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4973 REQUIRED(filename, MDStringField, ); \ 4974 REQUIRED(directory, MDStringField, ); \ 4975 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4976 OPTIONAL(checksum, MDStringField, ); \ 4977 OPTIONAL(source, MDStringField, ); 4978 PARSE_MD_FIELDS(); 4979 #undef VISIT_MD_FIELDS 4980 4981 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4982 if (checksumkind.Seen && checksum.Seen) 4983 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4984 else if (checksumkind.Seen || checksum.Seen) 4985 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4986 4987 Optional<MDString *> OptSource; 4988 if (source.Seen) 4989 OptSource = source.Val; 4990 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4991 OptChecksum, OptSource)); 4992 return false; 4993 } 4994 4995 /// parseDICompileUnit: 4996 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4997 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4998 /// splitDebugFilename: "abc.debug", 4999 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5000 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5001 /// sysroot: "/", sdk: "MacOSX.sdk") 5002 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5003 if (!IsDistinct) 5004 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 5005 5006 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5007 REQUIRED(language, DwarfLangField, ); \ 5008 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5009 OPTIONAL(producer, MDStringField, ); \ 5010 OPTIONAL(isOptimized, MDBoolField, ); \ 5011 OPTIONAL(flags, MDStringField, ); \ 5012 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5013 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5014 OPTIONAL(emissionKind, EmissionKindField, ); \ 5015 OPTIONAL(enums, MDField, ); \ 5016 OPTIONAL(retainedTypes, MDField, ); \ 5017 OPTIONAL(globals, MDField, ); \ 5018 OPTIONAL(imports, MDField, ); \ 5019 OPTIONAL(macros, MDField, ); \ 5020 OPTIONAL(dwoId, MDUnsignedField, ); \ 5021 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5022 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5023 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5024 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5025 OPTIONAL(sysroot, MDStringField, ); \ 5026 OPTIONAL(sdk, MDStringField, ); 5027 PARSE_MD_FIELDS(); 5028 #undef VISIT_MD_FIELDS 5029 5030 Result = DICompileUnit::getDistinct( 5031 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5032 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5033 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5034 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5035 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5036 return false; 5037 } 5038 5039 /// parseDISubprogram: 5040 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5041 /// file: !1, line: 7, type: !2, isLocal: false, 5042 /// isDefinition: true, scopeLine: 8, containingType: !3, 5043 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5044 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5045 /// spFlags: 10, isOptimized: false, templateParams: !4, 5046 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 5047 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5048 auto Loc = Lex.getLoc(); 5049 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5050 OPTIONAL(scope, MDField, ); \ 5051 OPTIONAL(name, MDStringField, ); \ 5052 OPTIONAL(linkageName, MDStringField, ); \ 5053 OPTIONAL(file, MDField, ); \ 5054 OPTIONAL(line, LineField, ); \ 5055 OPTIONAL(type, MDField, ); \ 5056 OPTIONAL(isLocal, MDBoolField, ); \ 5057 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5058 OPTIONAL(scopeLine, LineField, ); \ 5059 OPTIONAL(containingType, MDField, ); \ 5060 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5061 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5062 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5063 OPTIONAL(flags, DIFlagField, ); \ 5064 OPTIONAL(spFlags, DISPFlagField, ); \ 5065 OPTIONAL(isOptimized, MDBoolField, ); \ 5066 OPTIONAL(unit, MDField, ); \ 5067 OPTIONAL(templateParams, MDField, ); \ 5068 OPTIONAL(declaration, MDField, ); \ 5069 OPTIONAL(retainedNodes, MDField, ); \ 5070 OPTIONAL(thrownTypes, MDField, ); 5071 PARSE_MD_FIELDS(); 5072 #undef VISIT_MD_FIELDS 5073 5074 // An explicit spFlags field takes precedence over individual fields in 5075 // older IR versions. 5076 DISubprogram::DISPFlags SPFlags = 5077 spFlags.Seen ? spFlags.Val 5078 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5079 isOptimized.Val, virtuality.Val); 5080 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5081 return Lex.Error( 5082 Loc, 5083 "missing 'distinct', required for !DISubprogram that is a Definition"); 5084 Result = GET_OR_DISTINCT( 5085 DISubprogram, 5086 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5087 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5088 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5089 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5090 return false; 5091 } 5092 5093 /// parseDILexicalBlock: 5094 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5095 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5096 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5097 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5098 OPTIONAL(file, MDField, ); \ 5099 OPTIONAL(line, LineField, ); \ 5100 OPTIONAL(column, ColumnField, ); 5101 PARSE_MD_FIELDS(); 5102 #undef VISIT_MD_FIELDS 5103 5104 Result = GET_OR_DISTINCT( 5105 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5106 return false; 5107 } 5108 5109 /// parseDILexicalBlockFile: 5110 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5111 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5112 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5113 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5114 OPTIONAL(file, MDField, ); \ 5115 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5116 PARSE_MD_FIELDS(); 5117 #undef VISIT_MD_FIELDS 5118 5119 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5120 (Context, scope.Val, file.Val, discriminator.Val)); 5121 return false; 5122 } 5123 5124 /// parseDICommonBlock: 5125 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5126 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5127 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5128 REQUIRED(scope, MDField, ); \ 5129 OPTIONAL(declaration, MDField, ); \ 5130 OPTIONAL(name, MDStringField, ); \ 5131 OPTIONAL(file, MDField, ); \ 5132 OPTIONAL(line, LineField, ); 5133 PARSE_MD_FIELDS(); 5134 #undef VISIT_MD_FIELDS 5135 5136 Result = GET_OR_DISTINCT(DICommonBlock, 5137 (Context, scope.Val, declaration.Val, name.Val, 5138 file.Val, line.Val)); 5139 return false; 5140 } 5141 5142 /// parseDINamespace: 5143 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5144 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5145 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5146 REQUIRED(scope, MDField, ); \ 5147 OPTIONAL(name, MDStringField, ); \ 5148 OPTIONAL(exportSymbols, MDBoolField, ); 5149 PARSE_MD_FIELDS(); 5150 #undef VISIT_MD_FIELDS 5151 5152 Result = GET_OR_DISTINCT(DINamespace, 5153 (Context, scope.Val, name.Val, exportSymbols.Val)); 5154 return false; 5155 } 5156 5157 /// parseDIMacro: 5158 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5159 /// "SomeValue") 5160 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5161 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5162 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5163 OPTIONAL(line, LineField, ); \ 5164 REQUIRED(name, MDStringField, ); \ 5165 OPTIONAL(value, MDStringField, ); 5166 PARSE_MD_FIELDS(); 5167 #undef VISIT_MD_FIELDS 5168 5169 Result = GET_OR_DISTINCT(DIMacro, 5170 (Context, type.Val, line.Val, name.Val, value.Val)); 5171 return false; 5172 } 5173 5174 /// parseDIMacroFile: 5175 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5176 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5177 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5178 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5179 OPTIONAL(line, LineField, ); \ 5180 REQUIRED(file, MDField, ); \ 5181 OPTIONAL(nodes, MDField, ); 5182 PARSE_MD_FIELDS(); 5183 #undef VISIT_MD_FIELDS 5184 5185 Result = GET_OR_DISTINCT(DIMacroFile, 5186 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5187 return false; 5188 } 5189 5190 /// parseDIModule: 5191 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5192 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5193 /// file: !1, line: 4, isDecl: false) 5194 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5195 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5196 REQUIRED(scope, MDField, ); \ 5197 REQUIRED(name, MDStringField, ); \ 5198 OPTIONAL(configMacros, MDStringField, ); \ 5199 OPTIONAL(includePath, MDStringField, ); \ 5200 OPTIONAL(apinotes, MDStringField, ); \ 5201 OPTIONAL(file, MDField, ); \ 5202 OPTIONAL(line, LineField, ); \ 5203 OPTIONAL(isDecl, MDBoolField, ); 5204 PARSE_MD_FIELDS(); 5205 #undef VISIT_MD_FIELDS 5206 5207 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5208 configMacros.Val, includePath.Val, 5209 apinotes.Val, line.Val, isDecl.Val)); 5210 return false; 5211 } 5212 5213 /// parseDITemplateTypeParameter: 5214 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5215 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5216 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5217 OPTIONAL(name, MDStringField, ); \ 5218 REQUIRED(type, MDField, ); \ 5219 OPTIONAL(defaulted, MDBoolField, ); 5220 PARSE_MD_FIELDS(); 5221 #undef VISIT_MD_FIELDS 5222 5223 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5224 (Context, name.Val, type.Val, defaulted.Val)); 5225 return false; 5226 } 5227 5228 /// parseDITemplateValueParameter: 5229 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5230 /// name: "V", type: !1, defaulted: false, 5231 /// value: i32 7) 5232 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5233 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5234 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5235 OPTIONAL(name, MDStringField, ); \ 5236 OPTIONAL(type, MDField, ); \ 5237 OPTIONAL(defaulted, MDBoolField, ); \ 5238 REQUIRED(value, MDField, ); 5239 5240 PARSE_MD_FIELDS(); 5241 #undef VISIT_MD_FIELDS 5242 5243 Result = GET_OR_DISTINCT( 5244 DITemplateValueParameter, 5245 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5246 return false; 5247 } 5248 5249 /// parseDIGlobalVariable: 5250 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5251 /// file: !1, line: 7, type: !2, isLocal: false, 5252 /// isDefinition: true, templateParams: !3, 5253 /// declaration: !4, align: 8) 5254 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5255 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5256 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5257 OPTIONAL(scope, MDField, ); \ 5258 OPTIONAL(linkageName, MDStringField, ); \ 5259 OPTIONAL(file, MDField, ); \ 5260 OPTIONAL(line, LineField, ); \ 5261 OPTIONAL(type, MDField, ); \ 5262 OPTIONAL(isLocal, MDBoolField, ); \ 5263 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5264 OPTIONAL(templateParams, MDField, ); \ 5265 OPTIONAL(declaration, MDField, ); \ 5266 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5267 PARSE_MD_FIELDS(); 5268 #undef VISIT_MD_FIELDS 5269 5270 Result = 5271 GET_OR_DISTINCT(DIGlobalVariable, 5272 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5273 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5274 declaration.Val, templateParams.Val, align.Val)); 5275 return false; 5276 } 5277 5278 /// parseDILocalVariable: 5279 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5280 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5281 /// align: 8) 5282 /// ::= !DILocalVariable(scope: !0, name: "foo", 5283 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5284 /// align: 8) 5285 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5286 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5287 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5288 OPTIONAL(name, MDStringField, ); \ 5289 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5290 OPTIONAL(file, MDField, ); \ 5291 OPTIONAL(line, LineField, ); \ 5292 OPTIONAL(type, MDField, ); \ 5293 OPTIONAL(flags, DIFlagField, ); \ 5294 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5295 PARSE_MD_FIELDS(); 5296 #undef VISIT_MD_FIELDS 5297 5298 Result = GET_OR_DISTINCT(DILocalVariable, 5299 (Context, scope.Val, name.Val, file.Val, line.Val, 5300 type.Val, arg.Val, flags.Val, align.Val)); 5301 return false; 5302 } 5303 5304 /// parseDILabel: 5305 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5306 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5307 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5308 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5309 REQUIRED(name, MDStringField, ); \ 5310 REQUIRED(file, MDField, ); \ 5311 REQUIRED(line, LineField, ); 5312 PARSE_MD_FIELDS(); 5313 #undef VISIT_MD_FIELDS 5314 5315 Result = GET_OR_DISTINCT(DILabel, 5316 (Context, scope.Val, name.Val, file.Val, line.Val)); 5317 return false; 5318 } 5319 5320 /// parseDIExpression: 5321 /// ::= !DIExpression(0, 7, -1) 5322 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5323 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5324 Lex.Lex(); 5325 5326 if (parseToken(lltok::lparen, "expected '(' here")) 5327 return true; 5328 5329 SmallVector<uint64_t, 8> Elements; 5330 if (Lex.getKind() != lltok::rparen) 5331 do { 5332 if (Lex.getKind() == lltok::DwarfOp) { 5333 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5334 Lex.Lex(); 5335 Elements.push_back(Op); 5336 continue; 5337 } 5338 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5339 } 5340 5341 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5342 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5343 Lex.Lex(); 5344 Elements.push_back(Op); 5345 continue; 5346 } 5347 return tokError(Twine("invalid DWARF attribute encoding '") + 5348 Lex.getStrVal() + "'"); 5349 } 5350 5351 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5352 return tokError("expected unsigned integer"); 5353 5354 auto &U = Lex.getAPSIntVal(); 5355 if (U.ugt(UINT64_MAX)) 5356 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5357 Elements.push_back(U.getZExtValue()); 5358 Lex.Lex(); 5359 } while (EatIfPresent(lltok::comma)); 5360 5361 if (parseToken(lltok::rparen, "expected ')' here")) 5362 return true; 5363 5364 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5365 return false; 5366 } 5367 5368 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5369 return parseDIArgList(Result, IsDistinct, nullptr); 5370 } 5371 /// ParseDIArgList: 5372 /// ::= !DIArgList(i32 7, i64 %0) 5373 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5374 PerFunctionState *PFS) { 5375 assert(PFS && "Expected valid function state"); 5376 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5377 Lex.Lex(); 5378 5379 if (parseToken(lltok::lparen, "expected '(' here")) 5380 return true; 5381 5382 SmallVector<ValueAsMetadata *, 4> Args; 5383 if (Lex.getKind() != lltok::rparen) 5384 do { 5385 Metadata *MD; 5386 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5387 return true; 5388 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5389 } while (EatIfPresent(lltok::comma)); 5390 5391 if (parseToken(lltok::rparen, "expected ')' here")) 5392 return true; 5393 5394 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5395 return false; 5396 } 5397 5398 /// parseDIGlobalVariableExpression: 5399 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5400 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5401 bool IsDistinct) { 5402 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5403 REQUIRED(var, MDField, ); \ 5404 REQUIRED(expr, MDField, ); 5405 PARSE_MD_FIELDS(); 5406 #undef VISIT_MD_FIELDS 5407 5408 Result = 5409 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5410 return false; 5411 } 5412 5413 /// parseDIObjCProperty: 5414 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5415 /// getter: "getFoo", attributes: 7, type: !2) 5416 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5417 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5418 OPTIONAL(name, MDStringField, ); \ 5419 OPTIONAL(file, MDField, ); \ 5420 OPTIONAL(line, LineField, ); \ 5421 OPTIONAL(setter, MDStringField, ); \ 5422 OPTIONAL(getter, MDStringField, ); \ 5423 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5424 OPTIONAL(type, MDField, ); 5425 PARSE_MD_FIELDS(); 5426 #undef VISIT_MD_FIELDS 5427 5428 Result = GET_OR_DISTINCT(DIObjCProperty, 5429 (Context, name.Val, file.Val, line.Val, setter.Val, 5430 getter.Val, attributes.Val, type.Val)); 5431 return false; 5432 } 5433 5434 /// parseDIImportedEntity: 5435 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5436 /// line: 7, name: "foo") 5437 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5438 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5439 REQUIRED(tag, DwarfTagField, ); \ 5440 REQUIRED(scope, MDField, ); \ 5441 OPTIONAL(entity, MDField, ); \ 5442 OPTIONAL(file, MDField, ); \ 5443 OPTIONAL(line, LineField, ); \ 5444 OPTIONAL(name, MDStringField, ); 5445 PARSE_MD_FIELDS(); 5446 #undef VISIT_MD_FIELDS 5447 5448 Result = GET_OR_DISTINCT( 5449 DIImportedEntity, 5450 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5451 return false; 5452 } 5453 5454 #undef PARSE_MD_FIELD 5455 #undef NOP_FIELD 5456 #undef REQUIRE_FIELD 5457 #undef DECLARE_FIELD 5458 5459 /// parseMetadataAsValue 5460 /// ::= metadata i32 %local 5461 /// ::= metadata i32 @global 5462 /// ::= metadata i32 7 5463 /// ::= metadata !0 5464 /// ::= metadata !{...} 5465 /// ::= metadata !"string" 5466 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5467 // Note: the type 'metadata' has already been parsed. 5468 Metadata *MD; 5469 if (parseMetadata(MD, &PFS)) 5470 return true; 5471 5472 V = MetadataAsValue::get(Context, MD); 5473 return false; 5474 } 5475 5476 /// parseValueAsMetadata 5477 /// ::= i32 %local 5478 /// ::= i32 @global 5479 /// ::= i32 7 5480 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5481 PerFunctionState *PFS) { 5482 Type *Ty; 5483 LocTy Loc; 5484 if (parseType(Ty, TypeMsg, Loc)) 5485 return true; 5486 if (Ty->isMetadataTy()) 5487 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5488 5489 Value *V; 5490 if (parseValue(Ty, V, PFS)) 5491 return true; 5492 5493 MD = ValueAsMetadata::get(V); 5494 return false; 5495 } 5496 5497 /// parseMetadata 5498 /// ::= i32 %local 5499 /// ::= i32 @global 5500 /// ::= i32 7 5501 /// ::= !42 5502 /// ::= !{...} 5503 /// ::= !"string" 5504 /// ::= !DILocation(...) 5505 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5506 if (Lex.getKind() == lltok::MetadataVar) { 5507 MDNode *N; 5508 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5509 // so parsing this requires a Function State. 5510 if (Lex.getStrVal() == "DIArgList") { 5511 if (parseDIArgList(N, false, PFS)) 5512 return true; 5513 } else if (parseSpecializedMDNode(N)) { 5514 return true; 5515 } 5516 MD = N; 5517 return false; 5518 } 5519 5520 // ValueAsMetadata: 5521 // <type> <value> 5522 if (Lex.getKind() != lltok::exclaim) 5523 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5524 5525 // '!'. 5526 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5527 Lex.Lex(); 5528 5529 // MDString: 5530 // ::= '!' STRINGCONSTANT 5531 if (Lex.getKind() == lltok::StringConstant) { 5532 MDString *S; 5533 if (parseMDString(S)) 5534 return true; 5535 MD = S; 5536 return false; 5537 } 5538 5539 // MDNode: 5540 // !{ ... } 5541 // !7 5542 MDNode *N; 5543 if (parseMDNodeTail(N)) 5544 return true; 5545 MD = N; 5546 return false; 5547 } 5548 5549 //===----------------------------------------------------------------------===// 5550 // Function Parsing. 5551 //===----------------------------------------------------------------------===// 5552 5553 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5554 PerFunctionState *PFS, bool IsCall) { 5555 if (Ty->isFunctionTy()) 5556 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5557 5558 switch (ID.Kind) { 5559 case ValID::t_LocalID: 5560 if (!PFS) 5561 return error(ID.Loc, "invalid use of function-local name"); 5562 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5563 return V == nullptr; 5564 case ValID::t_LocalName: 5565 if (!PFS) 5566 return error(ID.Loc, "invalid use of function-local name"); 5567 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5568 return V == nullptr; 5569 case ValID::t_InlineAsm: { 5570 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5571 return error(ID.Loc, "invalid type for inline asm constraint string"); 5572 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5573 (ID.UIntVal >> 1) & 1, 5574 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5575 return false; 5576 } 5577 case ValID::t_GlobalName: 5578 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5579 return V == nullptr; 5580 case ValID::t_GlobalID: 5581 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5582 return V == nullptr; 5583 case ValID::t_APSInt: 5584 if (!Ty->isIntegerTy()) 5585 return error(ID.Loc, "integer constant must have integer type"); 5586 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5587 V = ConstantInt::get(Context, ID.APSIntVal); 5588 return false; 5589 case ValID::t_APFloat: 5590 if (!Ty->isFloatingPointTy() || 5591 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5592 return error(ID.Loc, "floating point constant invalid for type"); 5593 5594 // The lexer has no type info, so builds all half, bfloat, float, and double 5595 // FP constants as double. Fix this here. Long double does not need this. 5596 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5597 // Check for signaling before potentially converting and losing that info. 5598 bool IsSNAN = ID.APFloatVal.isSignaling(); 5599 bool Ignored; 5600 if (Ty->isHalfTy()) 5601 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5602 &Ignored); 5603 else if (Ty->isBFloatTy()) 5604 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5605 &Ignored); 5606 else if (Ty->isFloatTy()) 5607 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5608 &Ignored); 5609 if (IsSNAN) { 5610 // The convert call above may quiet an SNaN, so manufacture another 5611 // SNaN. The bitcast works because the payload (significand) parameter 5612 // is truncated to fit. 5613 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5614 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5615 ID.APFloatVal.isNegative(), &Payload); 5616 } 5617 } 5618 V = ConstantFP::get(Context, ID.APFloatVal); 5619 5620 if (V->getType() != Ty) 5621 return error(ID.Loc, "floating point constant does not have type '" + 5622 getTypeString(Ty) + "'"); 5623 5624 return false; 5625 case ValID::t_Null: 5626 if (!Ty->isPointerTy()) 5627 return error(ID.Loc, "null must be a pointer type"); 5628 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5629 return false; 5630 case ValID::t_Undef: 5631 // FIXME: LabelTy should not be a first-class type. 5632 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5633 return error(ID.Loc, "invalid type for undef constant"); 5634 V = UndefValue::get(Ty); 5635 return false; 5636 case ValID::t_EmptyArray: 5637 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5638 return error(ID.Loc, "invalid empty array initializer"); 5639 V = UndefValue::get(Ty); 5640 return false; 5641 case ValID::t_Zero: 5642 // FIXME: LabelTy should not be a first-class type. 5643 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5644 return error(ID.Loc, "invalid type for null constant"); 5645 V = Constant::getNullValue(Ty); 5646 return false; 5647 case ValID::t_None: 5648 if (!Ty->isTokenTy()) 5649 return error(ID.Loc, "invalid type for none constant"); 5650 V = Constant::getNullValue(Ty); 5651 return false; 5652 case ValID::t_Poison: 5653 // FIXME: LabelTy should not be a first-class type. 5654 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5655 return error(ID.Loc, "invalid type for poison constant"); 5656 V = PoisonValue::get(Ty); 5657 return false; 5658 case ValID::t_Constant: 5659 if (ID.ConstantVal->getType() != Ty) 5660 return error(ID.Loc, "constant expression type mismatch"); 5661 V = ID.ConstantVal; 5662 return false; 5663 case ValID::t_ConstantStruct: 5664 case ValID::t_PackedConstantStruct: 5665 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5666 if (ST->getNumElements() != ID.UIntVal) 5667 return error(ID.Loc, 5668 "initializer with struct type has wrong # elements"); 5669 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5670 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5671 5672 // Verify that the elements are compatible with the structtype. 5673 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5674 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5675 return error( 5676 ID.Loc, 5677 "element " + Twine(i) + 5678 " of struct initializer doesn't match struct element type"); 5679 5680 V = ConstantStruct::get( 5681 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5682 } else 5683 return error(ID.Loc, "constant expression type mismatch"); 5684 return false; 5685 } 5686 llvm_unreachable("Invalid ValID"); 5687 } 5688 5689 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5690 C = nullptr; 5691 ValID ID; 5692 auto Loc = Lex.getLoc(); 5693 if (parseValID(ID, /*PFS=*/nullptr)) 5694 return true; 5695 switch (ID.Kind) { 5696 case ValID::t_APSInt: 5697 case ValID::t_APFloat: 5698 case ValID::t_Undef: 5699 case ValID::t_Constant: 5700 case ValID::t_ConstantStruct: 5701 case ValID::t_PackedConstantStruct: { 5702 Value *V; 5703 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5704 return true; 5705 assert(isa<Constant>(V) && "Expected a constant value"); 5706 C = cast<Constant>(V); 5707 return false; 5708 } 5709 case ValID::t_Null: 5710 C = Constant::getNullValue(Ty); 5711 return false; 5712 default: 5713 return error(Loc, "expected a constant value"); 5714 } 5715 } 5716 5717 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5718 V = nullptr; 5719 ValID ID; 5720 return parseValID(ID, PFS) || 5721 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5722 } 5723 5724 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5725 Type *Ty = nullptr; 5726 return parseType(Ty) || parseValue(Ty, V, PFS); 5727 } 5728 5729 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5730 PerFunctionState &PFS) { 5731 Value *V; 5732 Loc = Lex.getLoc(); 5733 if (parseTypeAndValue(V, PFS)) 5734 return true; 5735 if (!isa<BasicBlock>(V)) 5736 return error(Loc, "expected a basic block"); 5737 BB = cast<BasicBlock>(V); 5738 return false; 5739 } 5740 5741 /// FunctionHeader 5742 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5743 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5744 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5745 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5746 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5747 // parse the linkage. 5748 LocTy LinkageLoc = Lex.getLoc(); 5749 unsigned Linkage; 5750 unsigned Visibility; 5751 unsigned DLLStorageClass; 5752 bool DSOLocal; 5753 AttrBuilder RetAttrs; 5754 unsigned CC; 5755 bool HasLinkage; 5756 Type *RetType = nullptr; 5757 LocTy RetTypeLoc = Lex.getLoc(); 5758 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5759 DSOLocal) || 5760 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5761 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5762 return true; 5763 5764 // Verify that the linkage is ok. 5765 switch ((GlobalValue::LinkageTypes)Linkage) { 5766 case GlobalValue::ExternalLinkage: 5767 break; // always ok. 5768 case GlobalValue::ExternalWeakLinkage: 5769 if (IsDefine) 5770 return error(LinkageLoc, "invalid linkage for function definition"); 5771 break; 5772 case GlobalValue::PrivateLinkage: 5773 case GlobalValue::InternalLinkage: 5774 case GlobalValue::AvailableExternallyLinkage: 5775 case GlobalValue::LinkOnceAnyLinkage: 5776 case GlobalValue::LinkOnceODRLinkage: 5777 case GlobalValue::WeakAnyLinkage: 5778 case GlobalValue::WeakODRLinkage: 5779 if (!IsDefine) 5780 return error(LinkageLoc, "invalid linkage for function declaration"); 5781 break; 5782 case GlobalValue::AppendingLinkage: 5783 case GlobalValue::CommonLinkage: 5784 return error(LinkageLoc, "invalid function linkage type"); 5785 } 5786 5787 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5788 return error(LinkageLoc, 5789 "symbol with local linkage must have default visibility"); 5790 5791 if (!FunctionType::isValidReturnType(RetType)) 5792 return error(RetTypeLoc, "invalid function return type"); 5793 5794 LocTy NameLoc = Lex.getLoc(); 5795 5796 std::string FunctionName; 5797 if (Lex.getKind() == lltok::GlobalVar) { 5798 FunctionName = Lex.getStrVal(); 5799 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5800 unsigned NameID = Lex.getUIntVal(); 5801 5802 if (NameID != NumberedVals.size()) 5803 return tokError("function expected to be numbered '%" + 5804 Twine(NumberedVals.size()) + "'"); 5805 } else { 5806 return tokError("expected function name"); 5807 } 5808 5809 Lex.Lex(); 5810 5811 if (Lex.getKind() != lltok::lparen) 5812 return tokError("expected '(' in function argument list"); 5813 5814 SmallVector<ArgInfo, 8> ArgList; 5815 bool IsVarArg; 5816 AttrBuilder FuncAttrs; 5817 std::vector<unsigned> FwdRefAttrGrps; 5818 LocTy BuiltinLoc; 5819 std::string Section; 5820 std::string Partition; 5821 MaybeAlign Alignment; 5822 std::string GC; 5823 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5824 unsigned AddrSpace = 0; 5825 Constant *Prefix = nullptr; 5826 Constant *Prologue = nullptr; 5827 Constant *PersonalityFn = nullptr; 5828 Comdat *C; 5829 5830 if (parseArgumentList(ArgList, IsVarArg) || 5831 parseOptionalUnnamedAddr(UnnamedAddr) || 5832 parseOptionalProgramAddrSpace(AddrSpace) || 5833 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5834 BuiltinLoc) || 5835 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5836 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5837 parseOptionalComdat(FunctionName, C) || 5838 parseOptionalAlignment(Alignment) || 5839 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5840 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5841 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5842 (EatIfPresent(lltok::kw_personality) && 5843 parseGlobalTypeAndValue(PersonalityFn))) 5844 return true; 5845 5846 if (FuncAttrs.contains(Attribute::Builtin)) 5847 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5848 5849 // If the alignment was parsed as an attribute, move to the alignment field. 5850 if (FuncAttrs.hasAlignmentAttr()) { 5851 Alignment = FuncAttrs.getAlignment(); 5852 FuncAttrs.removeAttribute(Attribute::Alignment); 5853 } 5854 5855 // Okay, if we got here, the function is syntactically valid. Convert types 5856 // and do semantic checks. 5857 std::vector<Type*> ParamTypeList; 5858 SmallVector<AttributeSet, 8> Attrs; 5859 5860 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5861 ParamTypeList.push_back(ArgList[i].Ty); 5862 Attrs.push_back(ArgList[i].Attrs); 5863 } 5864 5865 AttributeList PAL = 5866 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5867 AttributeSet::get(Context, RetAttrs), Attrs); 5868 5869 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5870 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5871 5872 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5873 PointerType *PFT = PointerType::get(FT, AddrSpace); 5874 5875 Fn = nullptr; 5876 if (!FunctionName.empty()) { 5877 // If this was a definition of a forward reference, remove the definition 5878 // from the forward reference table and fill in the forward ref. 5879 auto FRVI = ForwardRefVals.find(FunctionName); 5880 if (FRVI != ForwardRefVals.end()) { 5881 Fn = M->getFunction(FunctionName); 5882 if (!Fn) 5883 return error(FRVI->second.second, "invalid forward reference to " 5884 "function as global value!"); 5885 if (Fn->getType() != PFT) 5886 return error(FRVI->second.second, 5887 "invalid forward reference to " 5888 "function '" + 5889 FunctionName + 5890 "' with wrong type: " 5891 "expected '" + 5892 getTypeString(PFT) + "' but was '" + 5893 getTypeString(Fn->getType()) + "'"); 5894 ForwardRefVals.erase(FRVI); 5895 } else if ((Fn = M->getFunction(FunctionName))) { 5896 // Reject redefinitions. 5897 return error(NameLoc, 5898 "invalid redefinition of function '" + FunctionName + "'"); 5899 } else if (M->getNamedValue(FunctionName)) { 5900 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5901 } 5902 5903 } else { 5904 // If this is a definition of a forward referenced function, make sure the 5905 // types agree. 5906 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5907 if (I != ForwardRefValIDs.end()) { 5908 Fn = cast<Function>(I->second.first); 5909 if (Fn->getType() != PFT) 5910 return error(NameLoc, "type of definition and forward reference of '@" + 5911 Twine(NumberedVals.size()) + 5912 "' disagree: " 5913 "expected '" + 5914 getTypeString(PFT) + "' but was '" + 5915 getTypeString(Fn->getType()) + "'"); 5916 ForwardRefValIDs.erase(I); 5917 } 5918 } 5919 5920 if (!Fn) 5921 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5922 FunctionName, M); 5923 else // Move the forward-reference to the correct spot in the module. 5924 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5925 5926 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5927 5928 if (FunctionName.empty()) 5929 NumberedVals.push_back(Fn); 5930 5931 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5932 maybeSetDSOLocal(DSOLocal, *Fn); 5933 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5934 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5935 Fn->setCallingConv(CC); 5936 Fn->setAttributes(PAL); 5937 Fn->setUnnamedAddr(UnnamedAddr); 5938 Fn->setAlignment(MaybeAlign(Alignment)); 5939 Fn->setSection(Section); 5940 Fn->setPartition(Partition); 5941 Fn->setComdat(C); 5942 Fn->setPersonalityFn(PersonalityFn); 5943 if (!GC.empty()) Fn->setGC(GC); 5944 Fn->setPrefixData(Prefix); 5945 Fn->setPrologueData(Prologue); 5946 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5947 5948 // Add all of the arguments we parsed to the function. 5949 Function::arg_iterator ArgIt = Fn->arg_begin(); 5950 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5951 // If the argument has a name, insert it into the argument symbol table. 5952 if (ArgList[i].Name.empty()) continue; 5953 5954 // Set the name, if it conflicted, it will be auto-renamed. 5955 ArgIt->setName(ArgList[i].Name); 5956 5957 if (ArgIt->getName() != ArgList[i].Name) 5958 return error(ArgList[i].Loc, 5959 "redefinition of argument '%" + ArgList[i].Name + "'"); 5960 } 5961 5962 if (IsDefine) 5963 return false; 5964 5965 // Check the declaration has no block address forward references. 5966 ValID ID; 5967 if (FunctionName.empty()) { 5968 ID.Kind = ValID::t_GlobalID; 5969 ID.UIntVal = NumberedVals.size() - 1; 5970 } else { 5971 ID.Kind = ValID::t_GlobalName; 5972 ID.StrVal = FunctionName; 5973 } 5974 auto Blocks = ForwardRefBlockAddresses.find(ID); 5975 if (Blocks != ForwardRefBlockAddresses.end()) 5976 return error(Blocks->first.Loc, 5977 "cannot take blockaddress inside a declaration"); 5978 return false; 5979 } 5980 5981 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5982 ValID ID; 5983 if (FunctionNumber == -1) { 5984 ID.Kind = ValID::t_GlobalName; 5985 ID.StrVal = std::string(F.getName()); 5986 } else { 5987 ID.Kind = ValID::t_GlobalID; 5988 ID.UIntVal = FunctionNumber; 5989 } 5990 5991 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5992 if (Blocks == P.ForwardRefBlockAddresses.end()) 5993 return false; 5994 5995 for (const auto &I : Blocks->second) { 5996 const ValID &BBID = I.first; 5997 GlobalValue *GV = I.second; 5998 5999 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6000 "Expected local id or name"); 6001 BasicBlock *BB; 6002 if (BBID.Kind == ValID::t_LocalName) 6003 BB = getBB(BBID.StrVal, BBID.Loc); 6004 else 6005 BB = getBB(BBID.UIntVal, BBID.Loc); 6006 if (!BB) 6007 return P.error(BBID.Loc, "referenced value is not a basic block"); 6008 6009 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 6010 GV->eraseFromParent(); 6011 } 6012 6013 P.ForwardRefBlockAddresses.erase(Blocks); 6014 return false; 6015 } 6016 6017 /// parseFunctionBody 6018 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6019 bool LLParser::parseFunctionBody(Function &Fn) { 6020 if (Lex.getKind() != lltok::lbrace) 6021 return tokError("expected '{' in function body"); 6022 Lex.Lex(); // eat the {. 6023 6024 int FunctionNumber = -1; 6025 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6026 6027 PerFunctionState PFS(*this, Fn, FunctionNumber); 6028 6029 // Resolve block addresses and allow basic blocks to be forward-declared 6030 // within this function. 6031 if (PFS.resolveForwardRefBlockAddresses()) 6032 return true; 6033 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 6034 6035 // We need at least one basic block. 6036 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6037 return tokError("function body requires at least one basic block"); 6038 6039 while (Lex.getKind() != lltok::rbrace && 6040 Lex.getKind() != lltok::kw_uselistorder) 6041 if (parseBasicBlock(PFS)) 6042 return true; 6043 6044 while (Lex.getKind() != lltok::rbrace) 6045 if (parseUseListOrder(&PFS)) 6046 return true; 6047 6048 // Eat the }. 6049 Lex.Lex(); 6050 6051 // Verify function is ok. 6052 return PFS.finishFunction(); 6053 } 6054 6055 /// parseBasicBlock 6056 /// ::= (LabelStr|LabelID)? Instruction* 6057 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6058 // If this basic block starts out with a name, remember it. 6059 std::string Name; 6060 int NameID = -1; 6061 LocTy NameLoc = Lex.getLoc(); 6062 if (Lex.getKind() == lltok::LabelStr) { 6063 Name = Lex.getStrVal(); 6064 Lex.Lex(); 6065 } else if (Lex.getKind() == lltok::LabelID) { 6066 NameID = Lex.getUIntVal(); 6067 Lex.Lex(); 6068 } 6069 6070 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6071 if (!BB) 6072 return true; 6073 6074 std::string NameStr; 6075 6076 // parse the instructions in this block until we get a terminator. 6077 Instruction *Inst; 6078 do { 6079 // This instruction may have three possibilities for a name: a) none 6080 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6081 LocTy NameLoc = Lex.getLoc(); 6082 int NameID = -1; 6083 NameStr = ""; 6084 6085 if (Lex.getKind() == lltok::LocalVarID) { 6086 NameID = Lex.getUIntVal(); 6087 Lex.Lex(); 6088 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6089 return true; 6090 } else if (Lex.getKind() == lltok::LocalVar) { 6091 NameStr = Lex.getStrVal(); 6092 Lex.Lex(); 6093 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6094 return true; 6095 } 6096 6097 switch (parseInstruction(Inst, BB, PFS)) { 6098 default: 6099 llvm_unreachable("Unknown parseInstruction result!"); 6100 case InstError: return true; 6101 case InstNormal: 6102 BB->getInstList().push_back(Inst); 6103 6104 // With a normal result, we check to see if the instruction is followed by 6105 // a comma and metadata. 6106 if (EatIfPresent(lltok::comma)) 6107 if (parseInstructionMetadata(*Inst)) 6108 return true; 6109 break; 6110 case InstExtraComma: 6111 BB->getInstList().push_back(Inst); 6112 6113 // If the instruction parser ate an extra comma at the end of it, it 6114 // *must* be followed by metadata. 6115 if (parseInstructionMetadata(*Inst)) 6116 return true; 6117 break; 6118 } 6119 6120 // Set the name on the instruction. 6121 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6122 return true; 6123 } while (!Inst->isTerminator()); 6124 6125 return false; 6126 } 6127 6128 //===----------------------------------------------------------------------===// 6129 // Instruction Parsing. 6130 //===----------------------------------------------------------------------===// 6131 6132 /// parseInstruction - parse one of the many different instructions. 6133 /// 6134 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6135 PerFunctionState &PFS) { 6136 lltok::Kind Token = Lex.getKind(); 6137 if (Token == lltok::Eof) 6138 return tokError("found end of file when expecting more instructions"); 6139 LocTy Loc = Lex.getLoc(); 6140 unsigned KeywordVal = Lex.getUIntVal(); 6141 Lex.Lex(); // Eat the keyword. 6142 6143 switch (Token) { 6144 default: 6145 return error(Loc, "expected instruction opcode"); 6146 // Terminator Instructions. 6147 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6148 case lltok::kw_ret: 6149 return parseRet(Inst, BB, PFS); 6150 case lltok::kw_br: 6151 return parseBr(Inst, PFS); 6152 case lltok::kw_switch: 6153 return parseSwitch(Inst, PFS); 6154 case lltok::kw_indirectbr: 6155 return parseIndirectBr(Inst, PFS); 6156 case lltok::kw_invoke: 6157 return parseInvoke(Inst, PFS); 6158 case lltok::kw_resume: 6159 return parseResume(Inst, PFS); 6160 case lltok::kw_cleanupret: 6161 return parseCleanupRet(Inst, PFS); 6162 case lltok::kw_catchret: 6163 return parseCatchRet(Inst, PFS); 6164 case lltok::kw_catchswitch: 6165 return parseCatchSwitch(Inst, PFS); 6166 case lltok::kw_catchpad: 6167 return parseCatchPad(Inst, PFS); 6168 case lltok::kw_cleanuppad: 6169 return parseCleanupPad(Inst, PFS); 6170 case lltok::kw_callbr: 6171 return parseCallBr(Inst, PFS); 6172 // Unary Operators. 6173 case lltok::kw_fneg: { 6174 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6175 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6176 if (Res != 0) 6177 return Res; 6178 if (FMF.any()) 6179 Inst->setFastMathFlags(FMF); 6180 return false; 6181 } 6182 // Binary Operators. 6183 case lltok::kw_add: 6184 case lltok::kw_sub: 6185 case lltok::kw_mul: 6186 case lltok::kw_shl: { 6187 bool NUW = EatIfPresent(lltok::kw_nuw); 6188 bool NSW = EatIfPresent(lltok::kw_nsw); 6189 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6190 6191 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6192 return true; 6193 6194 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6195 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6196 return false; 6197 } 6198 case lltok::kw_fadd: 6199 case lltok::kw_fsub: 6200 case lltok::kw_fmul: 6201 case lltok::kw_fdiv: 6202 case lltok::kw_frem: { 6203 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6204 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6205 if (Res != 0) 6206 return Res; 6207 if (FMF.any()) 6208 Inst->setFastMathFlags(FMF); 6209 return 0; 6210 } 6211 6212 case lltok::kw_sdiv: 6213 case lltok::kw_udiv: 6214 case lltok::kw_lshr: 6215 case lltok::kw_ashr: { 6216 bool Exact = EatIfPresent(lltok::kw_exact); 6217 6218 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6219 return true; 6220 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6221 return false; 6222 } 6223 6224 case lltok::kw_urem: 6225 case lltok::kw_srem: 6226 return parseArithmetic(Inst, PFS, KeywordVal, 6227 /*IsFP*/ false); 6228 case lltok::kw_and: 6229 case lltok::kw_or: 6230 case lltok::kw_xor: 6231 return parseLogical(Inst, PFS, KeywordVal); 6232 case lltok::kw_icmp: 6233 return parseCompare(Inst, PFS, KeywordVal); 6234 case lltok::kw_fcmp: { 6235 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6236 int Res = parseCompare(Inst, PFS, KeywordVal); 6237 if (Res != 0) 6238 return Res; 6239 if (FMF.any()) 6240 Inst->setFastMathFlags(FMF); 6241 return 0; 6242 } 6243 6244 // Casts. 6245 case lltok::kw_trunc: 6246 case lltok::kw_zext: 6247 case lltok::kw_sext: 6248 case lltok::kw_fptrunc: 6249 case lltok::kw_fpext: 6250 case lltok::kw_bitcast: 6251 case lltok::kw_addrspacecast: 6252 case lltok::kw_uitofp: 6253 case lltok::kw_sitofp: 6254 case lltok::kw_fptoui: 6255 case lltok::kw_fptosi: 6256 case lltok::kw_inttoptr: 6257 case lltok::kw_ptrtoint: 6258 return parseCast(Inst, PFS, KeywordVal); 6259 // Other. 6260 case lltok::kw_select: { 6261 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6262 int Res = parseSelect(Inst, PFS); 6263 if (Res != 0) 6264 return Res; 6265 if (FMF.any()) { 6266 if (!isa<FPMathOperator>(Inst)) 6267 return error(Loc, "fast-math-flags specified for select without " 6268 "floating-point scalar or vector return type"); 6269 Inst->setFastMathFlags(FMF); 6270 } 6271 return 0; 6272 } 6273 case lltok::kw_va_arg: 6274 return parseVAArg(Inst, PFS); 6275 case lltok::kw_extractelement: 6276 return parseExtractElement(Inst, PFS); 6277 case lltok::kw_insertelement: 6278 return parseInsertElement(Inst, PFS); 6279 case lltok::kw_shufflevector: 6280 return parseShuffleVector(Inst, PFS); 6281 case lltok::kw_phi: { 6282 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6283 int Res = parsePHI(Inst, PFS); 6284 if (Res != 0) 6285 return Res; 6286 if (FMF.any()) { 6287 if (!isa<FPMathOperator>(Inst)) 6288 return error(Loc, "fast-math-flags specified for phi without " 6289 "floating-point scalar or vector return type"); 6290 Inst->setFastMathFlags(FMF); 6291 } 6292 return 0; 6293 } 6294 case lltok::kw_landingpad: 6295 return parseLandingPad(Inst, PFS); 6296 case lltok::kw_freeze: 6297 return parseFreeze(Inst, PFS); 6298 // Call. 6299 case lltok::kw_call: 6300 return parseCall(Inst, PFS, CallInst::TCK_None); 6301 case lltok::kw_tail: 6302 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6303 case lltok::kw_musttail: 6304 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6305 case lltok::kw_notail: 6306 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6307 // Memory. 6308 case lltok::kw_alloca: 6309 return parseAlloc(Inst, PFS); 6310 case lltok::kw_load: 6311 return parseLoad(Inst, PFS); 6312 case lltok::kw_store: 6313 return parseStore(Inst, PFS); 6314 case lltok::kw_cmpxchg: 6315 return parseCmpXchg(Inst, PFS); 6316 case lltok::kw_atomicrmw: 6317 return parseAtomicRMW(Inst, PFS); 6318 case lltok::kw_fence: 6319 return parseFence(Inst, PFS); 6320 case lltok::kw_getelementptr: 6321 return parseGetElementPtr(Inst, PFS); 6322 case lltok::kw_extractvalue: 6323 return parseExtractValue(Inst, PFS); 6324 case lltok::kw_insertvalue: 6325 return parseInsertValue(Inst, PFS); 6326 } 6327 } 6328 6329 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6330 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6331 if (Opc == Instruction::FCmp) { 6332 switch (Lex.getKind()) { 6333 default: 6334 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6335 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6336 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6337 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6338 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6339 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6340 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6341 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6342 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6343 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6344 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6345 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6346 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6347 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6348 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6349 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6350 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6351 } 6352 } else { 6353 switch (Lex.getKind()) { 6354 default: 6355 return tokError("expected icmp predicate (e.g. 'eq')"); 6356 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6357 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6358 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6359 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6360 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6361 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6362 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6363 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6364 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6365 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6366 } 6367 } 6368 Lex.Lex(); 6369 return false; 6370 } 6371 6372 //===----------------------------------------------------------------------===// 6373 // Terminator Instructions. 6374 //===----------------------------------------------------------------------===// 6375 6376 /// parseRet - parse a return instruction. 6377 /// ::= 'ret' void (',' !dbg, !1)* 6378 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6379 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6380 PerFunctionState &PFS) { 6381 SMLoc TypeLoc = Lex.getLoc(); 6382 Type *Ty = nullptr; 6383 if (parseType(Ty, true /*void allowed*/)) 6384 return true; 6385 6386 Type *ResType = PFS.getFunction().getReturnType(); 6387 6388 if (Ty->isVoidTy()) { 6389 if (!ResType->isVoidTy()) 6390 return error(TypeLoc, "value doesn't match function result type '" + 6391 getTypeString(ResType) + "'"); 6392 6393 Inst = ReturnInst::Create(Context); 6394 return false; 6395 } 6396 6397 Value *RV; 6398 if (parseValue(Ty, RV, PFS)) 6399 return true; 6400 6401 if (ResType != RV->getType()) 6402 return error(TypeLoc, "value doesn't match function result type '" + 6403 getTypeString(ResType) + "'"); 6404 6405 Inst = ReturnInst::Create(Context, RV); 6406 return false; 6407 } 6408 6409 /// parseBr 6410 /// ::= 'br' TypeAndValue 6411 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6412 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6413 LocTy Loc, Loc2; 6414 Value *Op0; 6415 BasicBlock *Op1, *Op2; 6416 if (parseTypeAndValue(Op0, Loc, PFS)) 6417 return true; 6418 6419 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6420 Inst = BranchInst::Create(BB); 6421 return false; 6422 } 6423 6424 if (Op0->getType() != Type::getInt1Ty(Context)) 6425 return error(Loc, "branch condition must have 'i1' type"); 6426 6427 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6428 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6429 parseToken(lltok::comma, "expected ',' after true destination") || 6430 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6431 return true; 6432 6433 Inst = BranchInst::Create(Op1, Op2, Op0); 6434 return false; 6435 } 6436 6437 /// parseSwitch 6438 /// Instruction 6439 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6440 /// JumpTable 6441 /// ::= (TypeAndValue ',' TypeAndValue)* 6442 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6443 LocTy CondLoc, BBLoc; 6444 Value *Cond; 6445 BasicBlock *DefaultBB; 6446 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6447 parseToken(lltok::comma, "expected ',' after switch condition") || 6448 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6449 parseToken(lltok::lsquare, "expected '[' with switch table")) 6450 return true; 6451 6452 if (!Cond->getType()->isIntegerTy()) 6453 return error(CondLoc, "switch condition must have integer type"); 6454 6455 // parse the jump table pairs. 6456 SmallPtrSet<Value*, 32> SeenCases; 6457 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6458 while (Lex.getKind() != lltok::rsquare) { 6459 Value *Constant; 6460 BasicBlock *DestBB; 6461 6462 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6463 parseToken(lltok::comma, "expected ',' after case value") || 6464 parseTypeAndBasicBlock(DestBB, PFS)) 6465 return true; 6466 6467 if (!SeenCases.insert(Constant).second) 6468 return error(CondLoc, "duplicate case value in switch"); 6469 if (!isa<ConstantInt>(Constant)) 6470 return error(CondLoc, "case value is not a constant integer"); 6471 6472 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6473 } 6474 6475 Lex.Lex(); // Eat the ']'. 6476 6477 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6478 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6479 SI->addCase(Table[i].first, Table[i].second); 6480 Inst = SI; 6481 return false; 6482 } 6483 6484 /// parseIndirectBr 6485 /// Instruction 6486 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6487 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6488 LocTy AddrLoc; 6489 Value *Address; 6490 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6491 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6492 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6493 return true; 6494 6495 if (!Address->getType()->isPointerTy()) 6496 return error(AddrLoc, "indirectbr address must have pointer type"); 6497 6498 // parse the destination list. 6499 SmallVector<BasicBlock*, 16> DestList; 6500 6501 if (Lex.getKind() != lltok::rsquare) { 6502 BasicBlock *DestBB; 6503 if (parseTypeAndBasicBlock(DestBB, PFS)) 6504 return true; 6505 DestList.push_back(DestBB); 6506 6507 while (EatIfPresent(lltok::comma)) { 6508 if (parseTypeAndBasicBlock(DestBB, PFS)) 6509 return true; 6510 DestList.push_back(DestBB); 6511 } 6512 } 6513 6514 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6515 return true; 6516 6517 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6518 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6519 IBI->addDestination(DestList[i]); 6520 Inst = IBI; 6521 return false; 6522 } 6523 6524 /// parseInvoke 6525 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6526 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6527 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6528 LocTy CallLoc = Lex.getLoc(); 6529 AttrBuilder RetAttrs, FnAttrs; 6530 std::vector<unsigned> FwdRefAttrGrps; 6531 LocTy NoBuiltinLoc; 6532 unsigned CC; 6533 unsigned InvokeAddrSpace; 6534 Type *RetType = nullptr; 6535 LocTy RetTypeLoc; 6536 ValID CalleeID; 6537 SmallVector<ParamInfo, 16> ArgList; 6538 SmallVector<OperandBundleDef, 2> BundleList; 6539 6540 BasicBlock *NormalBB, *UnwindBB; 6541 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6542 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6543 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6544 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6545 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6546 NoBuiltinLoc) || 6547 parseOptionalOperandBundles(BundleList, PFS) || 6548 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6549 parseTypeAndBasicBlock(NormalBB, PFS) || 6550 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6551 parseTypeAndBasicBlock(UnwindBB, PFS)) 6552 return true; 6553 6554 // If RetType is a non-function pointer type, then this is the short syntax 6555 // for the call, which means that RetType is just the return type. Infer the 6556 // rest of the function argument types from the arguments that are present. 6557 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6558 if (!Ty) { 6559 // Pull out the types of all of the arguments... 6560 std::vector<Type*> ParamTypes; 6561 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6562 ParamTypes.push_back(ArgList[i].V->getType()); 6563 6564 if (!FunctionType::isValidReturnType(RetType)) 6565 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6566 6567 Ty = FunctionType::get(RetType, ParamTypes, false); 6568 } 6569 6570 CalleeID.FTy = Ty; 6571 6572 // Look up the callee. 6573 Value *Callee; 6574 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6575 Callee, &PFS, /*IsCall=*/true)) 6576 return true; 6577 6578 // Set up the Attribute for the function. 6579 SmallVector<Value *, 8> Args; 6580 SmallVector<AttributeSet, 8> ArgAttrs; 6581 6582 // Loop through FunctionType's arguments and ensure they are specified 6583 // correctly. Also, gather any parameter attributes. 6584 FunctionType::param_iterator I = Ty->param_begin(); 6585 FunctionType::param_iterator E = Ty->param_end(); 6586 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6587 Type *ExpectedTy = nullptr; 6588 if (I != E) { 6589 ExpectedTy = *I++; 6590 } else if (!Ty->isVarArg()) { 6591 return error(ArgList[i].Loc, "too many arguments specified"); 6592 } 6593 6594 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6595 return error(ArgList[i].Loc, "argument is not of expected type '" + 6596 getTypeString(ExpectedTy) + "'"); 6597 Args.push_back(ArgList[i].V); 6598 ArgAttrs.push_back(ArgList[i].Attrs); 6599 } 6600 6601 if (I != E) 6602 return error(CallLoc, "not enough parameters specified for call"); 6603 6604 if (FnAttrs.hasAlignmentAttr()) 6605 return error(CallLoc, "invoke instructions may not have an alignment"); 6606 6607 // Finish off the Attribute and check them 6608 AttributeList PAL = 6609 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6610 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6611 6612 InvokeInst *II = 6613 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6614 II->setCallingConv(CC); 6615 II->setAttributes(PAL); 6616 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6617 Inst = II; 6618 return false; 6619 } 6620 6621 /// parseResume 6622 /// ::= 'resume' TypeAndValue 6623 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6624 Value *Exn; LocTy ExnLoc; 6625 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6626 return true; 6627 6628 ResumeInst *RI = ResumeInst::Create(Exn); 6629 Inst = RI; 6630 return false; 6631 } 6632 6633 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6634 PerFunctionState &PFS) { 6635 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6636 return true; 6637 6638 while (Lex.getKind() != lltok::rsquare) { 6639 // If this isn't the first argument, we need a comma. 6640 if (!Args.empty() && 6641 parseToken(lltok::comma, "expected ',' in argument list")) 6642 return true; 6643 6644 // parse the argument. 6645 LocTy ArgLoc; 6646 Type *ArgTy = nullptr; 6647 if (parseType(ArgTy, ArgLoc)) 6648 return true; 6649 6650 Value *V; 6651 if (ArgTy->isMetadataTy()) { 6652 if (parseMetadataAsValue(V, PFS)) 6653 return true; 6654 } else { 6655 if (parseValue(ArgTy, V, PFS)) 6656 return true; 6657 } 6658 Args.push_back(V); 6659 } 6660 6661 Lex.Lex(); // Lex the ']'. 6662 return false; 6663 } 6664 6665 /// parseCleanupRet 6666 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6667 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6668 Value *CleanupPad = nullptr; 6669 6670 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6671 return true; 6672 6673 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6674 return true; 6675 6676 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6677 return true; 6678 6679 BasicBlock *UnwindBB = nullptr; 6680 if (Lex.getKind() == lltok::kw_to) { 6681 Lex.Lex(); 6682 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6683 return true; 6684 } else { 6685 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6686 return true; 6687 } 6688 } 6689 6690 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6691 return false; 6692 } 6693 6694 /// parseCatchRet 6695 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6696 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6697 Value *CatchPad = nullptr; 6698 6699 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6700 return true; 6701 6702 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6703 return true; 6704 6705 BasicBlock *BB; 6706 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6707 parseTypeAndBasicBlock(BB, PFS)) 6708 return true; 6709 6710 Inst = CatchReturnInst::Create(CatchPad, BB); 6711 return false; 6712 } 6713 6714 /// parseCatchSwitch 6715 /// ::= 'catchswitch' within Parent 6716 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6717 Value *ParentPad; 6718 6719 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6720 return true; 6721 6722 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6723 Lex.getKind() != lltok::LocalVarID) 6724 return tokError("expected scope value for catchswitch"); 6725 6726 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6727 return true; 6728 6729 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6730 return true; 6731 6732 SmallVector<BasicBlock *, 32> Table; 6733 do { 6734 BasicBlock *DestBB; 6735 if (parseTypeAndBasicBlock(DestBB, PFS)) 6736 return true; 6737 Table.push_back(DestBB); 6738 } while (EatIfPresent(lltok::comma)); 6739 6740 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6741 return true; 6742 6743 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6744 return true; 6745 6746 BasicBlock *UnwindBB = nullptr; 6747 if (EatIfPresent(lltok::kw_to)) { 6748 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6749 return true; 6750 } else { 6751 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6752 return true; 6753 } 6754 6755 auto *CatchSwitch = 6756 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6757 for (BasicBlock *DestBB : Table) 6758 CatchSwitch->addHandler(DestBB); 6759 Inst = CatchSwitch; 6760 return false; 6761 } 6762 6763 /// parseCatchPad 6764 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6765 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6766 Value *CatchSwitch = nullptr; 6767 6768 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6769 return true; 6770 6771 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6772 return tokError("expected scope value for catchpad"); 6773 6774 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6775 return true; 6776 6777 SmallVector<Value *, 8> Args; 6778 if (parseExceptionArgs(Args, PFS)) 6779 return true; 6780 6781 Inst = CatchPadInst::Create(CatchSwitch, Args); 6782 return false; 6783 } 6784 6785 /// parseCleanupPad 6786 /// ::= 'cleanuppad' within Parent ParamList 6787 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6788 Value *ParentPad = nullptr; 6789 6790 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6791 return true; 6792 6793 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6794 Lex.getKind() != lltok::LocalVarID) 6795 return tokError("expected scope value for cleanuppad"); 6796 6797 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6798 return true; 6799 6800 SmallVector<Value *, 8> Args; 6801 if (parseExceptionArgs(Args, PFS)) 6802 return true; 6803 6804 Inst = CleanupPadInst::Create(ParentPad, Args); 6805 return false; 6806 } 6807 6808 //===----------------------------------------------------------------------===// 6809 // Unary Operators. 6810 //===----------------------------------------------------------------------===// 6811 6812 /// parseUnaryOp 6813 /// ::= UnaryOp TypeAndValue ',' Value 6814 /// 6815 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6816 /// operand is allowed. 6817 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6818 unsigned Opc, bool IsFP) { 6819 LocTy Loc; Value *LHS; 6820 if (parseTypeAndValue(LHS, Loc, PFS)) 6821 return true; 6822 6823 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6824 : LHS->getType()->isIntOrIntVectorTy(); 6825 6826 if (!Valid) 6827 return error(Loc, "invalid operand type for instruction"); 6828 6829 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6830 return false; 6831 } 6832 6833 /// parseCallBr 6834 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6835 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6836 /// '[' LabelList ']' 6837 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6838 LocTy CallLoc = Lex.getLoc(); 6839 AttrBuilder RetAttrs, FnAttrs; 6840 std::vector<unsigned> FwdRefAttrGrps; 6841 LocTy NoBuiltinLoc; 6842 unsigned CC; 6843 Type *RetType = nullptr; 6844 LocTy RetTypeLoc; 6845 ValID CalleeID; 6846 SmallVector<ParamInfo, 16> ArgList; 6847 SmallVector<OperandBundleDef, 2> BundleList; 6848 6849 BasicBlock *DefaultDest; 6850 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6851 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6852 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6853 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6854 NoBuiltinLoc) || 6855 parseOptionalOperandBundles(BundleList, PFS) || 6856 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6857 parseTypeAndBasicBlock(DefaultDest, PFS) || 6858 parseToken(lltok::lsquare, "expected '[' in callbr")) 6859 return true; 6860 6861 // parse the destination list. 6862 SmallVector<BasicBlock *, 16> IndirectDests; 6863 6864 if (Lex.getKind() != lltok::rsquare) { 6865 BasicBlock *DestBB; 6866 if (parseTypeAndBasicBlock(DestBB, PFS)) 6867 return true; 6868 IndirectDests.push_back(DestBB); 6869 6870 while (EatIfPresent(lltok::comma)) { 6871 if (parseTypeAndBasicBlock(DestBB, PFS)) 6872 return true; 6873 IndirectDests.push_back(DestBB); 6874 } 6875 } 6876 6877 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6878 return true; 6879 6880 // If RetType is a non-function pointer type, then this is the short syntax 6881 // for the call, which means that RetType is just the return type. Infer the 6882 // rest of the function argument types from the arguments that are present. 6883 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6884 if (!Ty) { 6885 // Pull out the types of all of the arguments... 6886 std::vector<Type *> ParamTypes; 6887 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6888 ParamTypes.push_back(ArgList[i].V->getType()); 6889 6890 if (!FunctionType::isValidReturnType(RetType)) 6891 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6892 6893 Ty = FunctionType::get(RetType, ParamTypes, false); 6894 } 6895 6896 CalleeID.FTy = Ty; 6897 6898 // Look up the callee. 6899 Value *Callee; 6900 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6901 /*IsCall=*/true)) 6902 return true; 6903 6904 // Set up the Attribute for the function. 6905 SmallVector<Value *, 8> Args; 6906 SmallVector<AttributeSet, 8> ArgAttrs; 6907 6908 // Loop through FunctionType's arguments and ensure they are specified 6909 // correctly. Also, gather any parameter attributes. 6910 FunctionType::param_iterator I = Ty->param_begin(); 6911 FunctionType::param_iterator E = Ty->param_end(); 6912 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6913 Type *ExpectedTy = nullptr; 6914 if (I != E) { 6915 ExpectedTy = *I++; 6916 } else if (!Ty->isVarArg()) { 6917 return error(ArgList[i].Loc, "too many arguments specified"); 6918 } 6919 6920 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6921 return error(ArgList[i].Loc, "argument is not of expected type '" + 6922 getTypeString(ExpectedTy) + "'"); 6923 Args.push_back(ArgList[i].V); 6924 ArgAttrs.push_back(ArgList[i].Attrs); 6925 } 6926 6927 if (I != E) 6928 return error(CallLoc, "not enough parameters specified for call"); 6929 6930 if (FnAttrs.hasAlignmentAttr()) 6931 return error(CallLoc, "callbr instructions may not have an alignment"); 6932 6933 // Finish off the Attribute and check them 6934 AttributeList PAL = 6935 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6936 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6937 6938 CallBrInst *CBI = 6939 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6940 BundleList); 6941 CBI->setCallingConv(CC); 6942 CBI->setAttributes(PAL); 6943 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6944 Inst = CBI; 6945 return false; 6946 } 6947 6948 //===----------------------------------------------------------------------===// 6949 // Binary Operators. 6950 //===----------------------------------------------------------------------===// 6951 6952 /// parseArithmetic 6953 /// ::= ArithmeticOps TypeAndValue ',' Value 6954 /// 6955 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6956 /// operand is allowed. 6957 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6958 unsigned Opc, bool IsFP) { 6959 LocTy Loc; Value *LHS, *RHS; 6960 if (parseTypeAndValue(LHS, Loc, PFS) || 6961 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6962 parseValue(LHS->getType(), RHS, PFS)) 6963 return true; 6964 6965 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6966 : LHS->getType()->isIntOrIntVectorTy(); 6967 6968 if (!Valid) 6969 return error(Loc, "invalid operand type for instruction"); 6970 6971 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6972 return false; 6973 } 6974 6975 /// parseLogical 6976 /// ::= ArithmeticOps TypeAndValue ',' Value { 6977 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6978 unsigned Opc) { 6979 LocTy Loc; Value *LHS, *RHS; 6980 if (parseTypeAndValue(LHS, Loc, PFS) || 6981 parseToken(lltok::comma, "expected ',' in logical operation") || 6982 parseValue(LHS->getType(), RHS, PFS)) 6983 return true; 6984 6985 if (!LHS->getType()->isIntOrIntVectorTy()) 6986 return error(Loc, 6987 "instruction requires integer or integer vector operands"); 6988 6989 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6990 return false; 6991 } 6992 6993 /// parseCompare 6994 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6995 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6996 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6997 unsigned Opc) { 6998 // parse the integer/fp comparison predicate. 6999 LocTy Loc; 7000 unsigned Pred; 7001 Value *LHS, *RHS; 7002 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7003 parseToken(lltok::comma, "expected ',' after compare value") || 7004 parseValue(LHS->getType(), RHS, PFS)) 7005 return true; 7006 7007 if (Opc == Instruction::FCmp) { 7008 if (!LHS->getType()->isFPOrFPVectorTy()) 7009 return error(Loc, "fcmp requires floating point operands"); 7010 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7011 } else { 7012 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7013 if (!LHS->getType()->isIntOrIntVectorTy() && 7014 !LHS->getType()->isPtrOrPtrVectorTy()) 7015 return error(Loc, "icmp requires integer operands"); 7016 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7017 } 7018 return false; 7019 } 7020 7021 //===----------------------------------------------------------------------===// 7022 // Other Instructions. 7023 //===----------------------------------------------------------------------===// 7024 7025 /// parseCast 7026 /// ::= CastOpc TypeAndValue 'to' Type 7027 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7028 unsigned Opc) { 7029 LocTy Loc; 7030 Value *Op; 7031 Type *DestTy = nullptr; 7032 if (parseTypeAndValue(Op, Loc, PFS) || 7033 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7034 parseType(DestTy)) 7035 return true; 7036 7037 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7038 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7039 return error(Loc, "invalid cast opcode for cast from '" + 7040 getTypeString(Op->getType()) + "' to '" + 7041 getTypeString(DestTy) + "'"); 7042 } 7043 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7044 return false; 7045 } 7046 7047 /// parseSelect 7048 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7049 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7050 LocTy Loc; 7051 Value *Op0, *Op1, *Op2; 7052 if (parseTypeAndValue(Op0, Loc, PFS) || 7053 parseToken(lltok::comma, "expected ',' after select condition") || 7054 parseTypeAndValue(Op1, PFS) || 7055 parseToken(lltok::comma, "expected ',' after select value") || 7056 parseTypeAndValue(Op2, PFS)) 7057 return true; 7058 7059 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7060 return error(Loc, Reason); 7061 7062 Inst = SelectInst::Create(Op0, Op1, Op2); 7063 return false; 7064 } 7065 7066 /// parseVAArg 7067 /// ::= 'va_arg' TypeAndValue ',' Type 7068 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7069 Value *Op; 7070 Type *EltTy = nullptr; 7071 LocTy TypeLoc; 7072 if (parseTypeAndValue(Op, PFS) || 7073 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7074 parseType(EltTy, TypeLoc)) 7075 return true; 7076 7077 if (!EltTy->isFirstClassType()) 7078 return error(TypeLoc, "va_arg requires operand with first class type"); 7079 7080 Inst = new VAArgInst(Op, EltTy); 7081 return false; 7082 } 7083 7084 /// parseExtractElement 7085 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7086 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7087 LocTy Loc; 7088 Value *Op0, *Op1; 7089 if (parseTypeAndValue(Op0, Loc, PFS) || 7090 parseToken(lltok::comma, "expected ',' after extract value") || 7091 parseTypeAndValue(Op1, PFS)) 7092 return true; 7093 7094 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7095 return error(Loc, "invalid extractelement operands"); 7096 7097 Inst = ExtractElementInst::Create(Op0, Op1); 7098 return false; 7099 } 7100 7101 /// parseInsertElement 7102 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7103 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7104 LocTy Loc; 7105 Value *Op0, *Op1, *Op2; 7106 if (parseTypeAndValue(Op0, Loc, PFS) || 7107 parseToken(lltok::comma, "expected ',' after insertelement value") || 7108 parseTypeAndValue(Op1, PFS) || 7109 parseToken(lltok::comma, "expected ',' after insertelement value") || 7110 parseTypeAndValue(Op2, PFS)) 7111 return true; 7112 7113 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7114 return error(Loc, "invalid insertelement operands"); 7115 7116 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7117 return false; 7118 } 7119 7120 /// parseShuffleVector 7121 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7122 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7123 LocTy Loc; 7124 Value *Op0, *Op1, *Op2; 7125 if (parseTypeAndValue(Op0, Loc, PFS) || 7126 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7127 parseTypeAndValue(Op1, PFS) || 7128 parseToken(lltok::comma, "expected ',' after shuffle value") || 7129 parseTypeAndValue(Op2, PFS)) 7130 return true; 7131 7132 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7133 return error(Loc, "invalid shufflevector operands"); 7134 7135 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7136 return false; 7137 } 7138 7139 /// parsePHI 7140 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7141 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7142 Type *Ty = nullptr; LocTy TypeLoc; 7143 Value *Op0, *Op1; 7144 7145 if (parseType(Ty, TypeLoc) || 7146 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7147 parseValue(Ty, Op0, PFS) || 7148 parseToken(lltok::comma, "expected ',' after insertelement value") || 7149 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7150 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7151 return true; 7152 7153 bool AteExtraComma = false; 7154 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7155 7156 while (true) { 7157 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7158 7159 if (!EatIfPresent(lltok::comma)) 7160 break; 7161 7162 if (Lex.getKind() == lltok::MetadataVar) { 7163 AteExtraComma = true; 7164 break; 7165 } 7166 7167 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7168 parseValue(Ty, Op0, PFS) || 7169 parseToken(lltok::comma, "expected ',' after insertelement value") || 7170 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7171 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7172 return true; 7173 } 7174 7175 if (!Ty->isFirstClassType()) 7176 return error(TypeLoc, "phi node must have first class type"); 7177 7178 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7179 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7180 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7181 Inst = PN; 7182 return AteExtraComma ? InstExtraComma : InstNormal; 7183 } 7184 7185 /// parseLandingPad 7186 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7187 /// Clause 7188 /// ::= 'catch' TypeAndValue 7189 /// ::= 'filter' 7190 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7191 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7192 Type *Ty = nullptr; LocTy TyLoc; 7193 7194 if (parseType(Ty, TyLoc)) 7195 return true; 7196 7197 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7198 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7199 7200 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7201 LandingPadInst::ClauseType CT; 7202 if (EatIfPresent(lltok::kw_catch)) 7203 CT = LandingPadInst::Catch; 7204 else if (EatIfPresent(lltok::kw_filter)) 7205 CT = LandingPadInst::Filter; 7206 else 7207 return tokError("expected 'catch' or 'filter' clause type"); 7208 7209 Value *V; 7210 LocTy VLoc; 7211 if (parseTypeAndValue(V, VLoc, PFS)) 7212 return true; 7213 7214 // A 'catch' type expects a non-array constant. A filter clause expects an 7215 // array constant. 7216 if (CT == LandingPadInst::Catch) { 7217 if (isa<ArrayType>(V->getType())) 7218 error(VLoc, "'catch' clause has an invalid type"); 7219 } else { 7220 if (!isa<ArrayType>(V->getType())) 7221 error(VLoc, "'filter' clause has an invalid type"); 7222 } 7223 7224 Constant *CV = dyn_cast<Constant>(V); 7225 if (!CV) 7226 return error(VLoc, "clause argument must be a constant"); 7227 LP->addClause(CV); 7228 } 7229 7230 Inst = LP.release(); 7231 return false; 7232 } 7233 7234 /// parseFreeze 7235 /// ::= 'freeze' Type Value 7236 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7237 LocTy Loc; 7238 Value *Op; 7239 if (parseTypeAndValue(Op, Loc, PFS)) 7240 return true; 7241 7242 Inst = new FreezeInst(Op); 7243 return false; 7244 } 7245 7246 /// parseCall 7247 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7248 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7249 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7250 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7251 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7252 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7253 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7254 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7255 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7256 CallInst::TailCallKind TCK) { 7257 AttrBuilder RetAttrs, FnAttrs; 7258 std::vector<unsigned> FwdRefAttrGrps; 7259 LocTy BuiltinLoc; 7260 unsigned CallAddrSpace; 7261 unsigned CC; 7262 Type *RetType = nullptr; 7263 LocTy RetTypeLoc; 7264 ValID CalleeID; 7265 SmallVector<ParamInfo, 16> ArgList; 7266 SmallVector<OperandBundleDef, 2> BundleList; 7267 LocTy CallLoc = Lex.getLoc(); 7268 7269 if (TCK != CallInst::TCK_None && 7270 parseToken(lltok::kw_call, 7271 "expected 'tail call', 'musttail call', or 'notail call'")) 7272 return true; 7273 7274 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7275 7276 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7277 parseOptionalProgramAddrSpace(CallAddrSpace) || 7278 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7279 parseValID(CalleeID) || 7280 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7281 PFS.getFunction().isVarArg()) || 7282 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7283 parseOptionalOperandBundles(BundleList, PFS)) 7284 return true; 7285 7286 // If RetType is a non-function pointer type, then this is the short syntax 7287 // for the call, which means that RetType is just the return type. Infer the 7288 // rest of the function argument types from the arguments that are present. 7289 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7290 if (!Ty) { 7291 // Pull out the types of all of the arguments... 7292 std::vector<Type*> ParamTypes; 7293 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7294 ParamTypes.push_back(ArgList[i].V->getType()); 7295 7296 if (!FunctionType::isValidReturnType(RetType)) 7297 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7298 7299 Ty = FunctionType::get(RetType, ParamTypes, false); 7300 } 7301 7302 CalleeID.FTy = Ty; 7303 7304 // Look up the callee. 7305 Value *Callee; 7306 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7307 &PFS, /*IsCall=*/true)) 7308 return true; 7309 7310 // Set up the Attribute for the function. 7311 SmallVector<AttributeSet, 8> Attrs; 7312 7313 SmallVector<Value*, 8> Args; 7314 7315 // Loop through FunctionType's arguments and ensure they are specified 7316 // correctly. Also, gather any parameter attributes. 7317 FunctionType::param_iterator I = Ty->param_begin(); 7318 FunctionType::param_iterator E = Ty->param_end(); 7319 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7320 Type *ExpectedTy = nullptr; 7321 if (I != E) { 7322 ExpectedTy = *I++; 7323 } else if (!Ty->isVarArg()) { 7324 return error(ArgList[i].Loc, "too many arguments specified"); 7325 } 7326 7327 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7328 return error(ArgList[i].Loc, "argument is not of expected type '" + 7329 getTypeString(ExpectedTy) + "'"); 7330 Args.push_back(ArgList[i].V); 7331 Attrs.push_back(ArgList[i].Attrs); 7332 } 7333 7334 if (I != E) 7335 return error(CallLoc, "not enough parameters specified for call"); 7336 7337 if (FnAttrs.hasAlignmentAttr()) 7338 return error(CallLoc, "call instructions may not have an alignment"); 7339 7340 // Finish off the Attribute and check them 7341 AttributeList PAL = 7342 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7343 AttributeSet::get(Context, RetAttrs), Attrs); 7344 7345 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7346 CI->setTailCallKind(TCK); 7347 CI->setCallingConv(CC); 7348 if (FMF.any()) { 7349 if (!isa<FPMathOperator>(CI)) { 7350 CI->deleteValue(); 7351 return error(CallLoc, "fast-math-flags specified for call without " 7352 "floating-point scalar or vector return type"); 7353 } 7354 CI->setFastMathFlags(FMF); 7355 } 7356 CI->setAttributes(PAL); 7357 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7358 Inst = CI; 7359 return false; 7360 } 7361 7362 //===----------------------------------------------------------------------===// 7363 // Memory Instructions. 7364 //===----------------------------------------------------------------------===// 7365 7366 /// parseAlloc 7367 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7368 /// (',' 'align' i32)? (',', 'addrspace(n))? 7369 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7370 Value *Size = nullptr; 7371 LocTy SizeLoc, TyLoc, ASLoc; 7372 MaybeAlign Alignment; 7373 unsigned AddrSpace = 0; 7374 Type *Ty = nullptr; 7375 7376 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7377 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7378 7379 if (parseType(Ty, TyLoc)) 7380 return true; 7381 7382 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7383 return error(TyLoc, "invalid type for alloca"); 7384 7385 bool AteExtraComma = false; 7386 if (EatIfPresent(lltok::comma)) { 7387 if (Lex.getKind() == lltok::kw_align) { 7388 if (parseOptionalAlignment(Alignment)) 7389 return true; 7390 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7391 return true; 7392 } else if (Lex.getKind() == lltok::kw_addrspace) { 7393 ASLoc = Lex.getLoc(); 7394 if (parseOptionalAddrSpace(AddrSpace)) 7395 return true; 7396 } else if (Lex.getKind() == lltok::MetadataVar) { 7397 AteExtraComma = true; 7398 } else { 7399 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7400 return true; 7401 if (EatIfPresent(lltok::comma)) { 7402 if (Lex.getKind() == lltok::kw_align) { 7403 if (parseOptionalAlignment(Alignment)) 7404 return true; 7405 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7406 return true; 7407 } else if (Lex.getKind() == lltok::kw_addrspace) { 7408 ASLoc = Lex.getLoc(); 7409 if (parseOptionalAddrSpace(AddrSpace)) 7410 return true; 7411 } else if (Lex.getKind() == lltok::MetadataVar) { 7412 AteExtraComma = true; 7413 } 7414 } 7415 } 7416 } 7417 7418 if (Size && !Size->getType()->isIntegerTy()) 7419 return error(SizeLoc, "element count must have integer type"); 7420 7421 SmallPtrSet<Type *, 4> Visited; 7422 if (!Alignment && !Ty->isSized(&Visited)) 7423 return error(TyLoc, "Cannot allocate unsized type"); 7424 if (!Alignment) 7425 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7426 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7427 AI->setUsedWithInAlloca(IsInAlloca); 7428 AI->setSwiftError(IsSwiftError); 7429 Inst = AI; 7430 return AteExtraComma ? InstExtraComma : InstNormal; 7431 } 7432 7433 /// parseLoad 7434 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7435 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7436 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7437 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7438 Value *Val; LocTy Loc; 7439 MaybeAlign Alignment; 7440 bool AteExtraComma = false; 7441 bool isAtomic = false; 7442 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7443 SyncScope::ID SSID = SyncScope::System; 7444 7445 if (Lex.getKind() == lltok::kw_atomic) { 7446 isAtomic = true; 7447 Lex.Lex(); 7448 } 7449 7450 bool isVolatile = false; 7451 if (Lex.getKind() == lltok::kw_volatile) { 7452 isVolatile = true; 7453 Lex.Lex(); 7454 } 7455 7456 Type *Ty; 7457 LocTy ExplicitTypeLoc = Lex.getLoc(); 7458 if (parseType(Ty) || 7459 parseToken(lltok::comma, "expected comma after load's type") || 7460 parseTypeAndValue(Val, Loc, PFS) || 7461 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7462 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7463 return true; 7464 7465 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7466 return error(Loc, "load operand must be a pointer to a first class type"); 7467 if (isAtomic && !Alignment) 7468 return error(Loc, "atomic load must have explicit non-zero alignment"); 7469 if (Ordering == AtomicOrdering::Release || 7470 Ordering == AtomicOrdering::AcquireRelease) 7471 return error(Loc, "atomic load cannot use Release ordering"); 7472 7473 if (Ty != cast<PointerType>(Val->getType())->getElementType()) { 7474 return error( 7475 ExplicitTypeLoc, 7476 typeComparisonErrorMessage( 7477 "explicit pointee type doesn't match operand's pointee type", Ty, 7478 cast<PointerType>(Val->getType())->getElementType())); 7479 } 7480 SmallPtrSet<Type *, 4> Visited; 7481 if (!Alignment && !Ty->isSized(&Visited)) 7482 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7483 if (!Alignment) 7484 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7485 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7486 return AteExtraComma ? InstExtraComma : InstNormal; 7487 } 7488 7489 /// parseStore 7490 7491 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7492 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7493 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7494 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7495 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7496 MaybeAlign Alignment; 7497 bool AteExtraComma = false; 7498 bool isAtomic = false; 7499 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7500 SyncScope::ID SSID = SyncScope::System; 7501 7502 if (Lex.getKind() == lltok::kw_atomic) { 7503 isAtomic = true; 7504 Lex.Lex(); 7505 } 7506 7507 bool isVolatile = false; 7508 if (Lex.getKind() == lltok::kw_volatile) { 7509 isVolatile = true; 7510 Lex.Lex(); 7511 } 7512 7513 if (parseTypeAndValue(Val, Loc, PFS) || 7514 parseToken(lltok::comma, "expected ',' after store operand") || 7515 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7516 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7517 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7518 return true; 7519 7520 if (!Ptr->getType()->isPointerTy()) 7521 return error(PtrLoc, "store operand must be a pointer"); 7522 if (!Val->getType()->isFirstClassType()) 7523 return error(Loc, "store operand must be a first class value"); 7524 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7525 return error(Loc, "stored value and pointer type do not match"); 7526 if (isAtomic && !Alignment) 7527 return error(Loc, "atomic store must have explicit non-zero alignment"); 7528 if (Ordering == AtomicOrdering::Acquire || 7529 Ordering == AtomicOrdering::AcquireRelease) 7530 return error(Loc, "atomic store cannot use Acquire ordering"); 7531 SmallPtrSet<Type *, 4> Visited; 7532 if (!Alignment && !Val->getType()->isSized(&Visited)) 7533 return error(Loc, "storing unsized types is not allowed"); 7534 if (!Alignment) 7535 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7536 7537 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7538 return AteExtraComma ? InstExtraComma : InstNormal; 7539 } 7540 7541 /// parseCmpXchg 7542 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7543 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7544 /// 'Align'? 7545 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7546 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7547 bool AteExtraComma = false; 7548 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7549 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7550 SyncScope::ID SSID = SyncScope::System; 7551 bool isVolatile = false; 7552 bool isWeak = false; 7553 MaybeAlign Alignment; 7554 7555 if (EatIfPresent(lltok::kw_weak)) 7556 isWeak = true; 7557 7558 if (EatIfPresent(lltok::kw_volatile)) 7559 isVolatile = true; 7560 7561 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7562 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7563 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7564 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7565 parseTypeAndValue(New, NewLoc, PFS) || 7566 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7567 parseOrdering(FailureOrdering) || 7568 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7569 return true; 7570 7571 if (SuccessOrdering == AtomicOrdering::Unordered || 7572 FailureOrdering == AtomicOrdering::Unordered) 7573 return tokError("cmpxchg cannot be unordered"); 7574 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7575 return tokError("cmpxchg failure argument shall be no stronger than the " 7576 "success argument"); 7577 if (FailureOrdering == AtomicOrdering::Release || 7578 FailureOrdering == AtomicOrdering::AcquireRelease) 7579 return tokError( 7580 "cmpxchg failure ordering cannot include release semantics"); 7581 if (!Ptr->getType()->isPointerTy()) 7582 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7583 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7584 return error(CmpLoc, "compare value and pointer type do not match"); 7585 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7586 return error(NewLoc, "new value and pointer type do not match"); 7587 if (!New->getType()->isFirstClassType()) 7588 return error(NewLoc, "cmpxchg operand must be a first class value"); 7589 7590 const Align DefaultAlignment( 7591 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7592 Cmp->getType())); 7593 7594 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7595 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7596 FailureOrdering, SSID); 7597 CXI->setVolatile(isVolatile); 7598 CXI->setWeak(isWeak); 7599 7600 Inst = CXI; 7601 return AteExtraComma ? InstExtraComma : InstNormal; 7602 } 7603 7604 /// parseAtomicRMW 7605 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7606 /// 'singlethread'? AtomicOrdering 7607 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7608 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7609 bool AteExtraComma = false; 7610 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7611 SyncScope::ID SSID = SyncScope::System; 7612 bool isVolatile = false; 7613 bool IsFP = false; 7614 AtomicRMWInst::BinOp Operation; 7615 MaybeAlign Alignment; 7616 7617 if (EatIfPresent(lltok::kw_volatile)) 7618 isVolatile = true; 7619 7620 switch (Lex.getKind()) { 7621 default: 7622 return tokError("expected binary operation in atomicrmw"); 7623 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7624 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7625 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7626 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7627 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7628 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7629 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7630 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7631 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7632 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7633 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7634 case lltok::kw_fadd: 7635 Operation = AtomicRMWInst::FAdd; 7636 IsFP = true; 7637 break; 7638 case lltok::kw_fsub: 7639 Operation = AtomicRMWInst::FSub; 7640 IsFP = true; 7641 break; 7642 } 7643 Lex.Lex(); // Eat the operation. 7644 7645 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7646 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7647 parseTypeAndValue(Val, ValLoc, PFS) || 7648 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7649 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7650 return true; 7651 7652 if (Ordering == AtomicOrdering::Unordered) 7653 return tokError("atomicrmw cannot be unordered"); 7654 if (!Ptr->getType()->isPointerTy()) 7655 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7656 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7657 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7658 7659 if (Operation == AtomicRMWInst::Xchg) { 7660 if (!Val->getType()->isIntegerTy() && 7661 !Val->getType()->isFloatingPointTy()) { 7662 return error(ValLoc, 7663 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7664 " operand must be an integer or floating point type"); 7665 } 7666 } else if (IsFP) { 7667 if (!Val->getType()->isFloatingPointTy()) { 7668 return error(ValLoc, "atomicrmw " + 7669 AtomicRMWInst::getOperationName(Operation) + 7670 " operand must be a floating point type"); 7671 } 7672 } else { 7673 if (!Val->getType()->isIntegerTy()) { 7674 return error(ValLoc, "atomicrmw " + 7675 AtomicRMWInst::getOperationName(Operation) + 7676 " operand must be an integer"); 7677 } 7678 } 7679 7680 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7681 if (Size < 8 || (Size & (Size - 1))) 7682 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7683 " integer"); 7684 const Align DefaultAlignment( 7685 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7686 Val->getType())); 7687 AtomicRMWInst *RMWI = 7688 new AtomicRMWInst(Operation, Ptr, Val, 7689 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7690 RMWI->setVolatile(isVolatile); 7691 Inst = RMWI; 7692 return AteExtraComma ? InstExtraComma : InstNormal; 7693 } 7694 7695 /// parseFence 7696 /// ::= 'fence' 'singlethread'? AtomicOrdering 7697 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7698 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7699 SyncScope::ID SSID = SyncScope::System; 7700 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7701 return true; 7702 7703 if (Ordering == AtomicOrdering::Unordered) 7704 return tokError("fence cannot be unordered"); 7705 if (Ordering == AtomicOrdering::Monotonic) 7706 return tokError("fence cannot be monotonic"); 7707 7708 Inst = new FenceInst(Context, Ordering, SSID); 7709 return InstNormal; 7710 } 7711 7712 /// parseGetElementPtr 7713 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7714 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7715 Value *Ptr = nullptr; 7716 Value *Val = nullptr; 7717 LocTy Loc, EltLoc; 7718 7719 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7720 7721 Type *Ty = nullptr; 7722 LocTy ExplicitTypeLoc = Lex.getLoc(); 7723 if (parseType(Ty) || 7724 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7725 parseTypeAndValue(Ptr, Loc, PFS)) 7726 return true; 7727 7728 Type *BaseType = Ptr->getType(); 7729 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7730 if (!BasePointerType) 7731 return error(Loc, "base of getelementptr must be a pointer"); 7732 7733 if (Ty != BasePointerType->getElementType()) { 7734 return error( 7735 ExplicitTypeLoc, 7736 typeComparisonErrorMessage( 7737 "explicit pointee type doesn't match operand's pointee type", Ty, 7738 BasePointerType->getElementType())); 7739 } 7740 7741 SmallVector<Value*, 16> Indices; 7742 bool AteExtraComma = false; 7743 // GEP returns a vector of pointers if at least one of parameters is a vector. 7744 // All vector parameters should have the same vector width. 7745 ElementCount GEPWidth = BaseType->isVectorTy() 7746 ? cast<VectorType>(BaseType)->getElementCount() 7747 : ElementCount::getFixed(0); 7748 7749 while (EatIfPresent(lltok::comma)) { 7750 if (Lex.getKind() == lltok::MetadataVar) { 7751 AteExtraComma = true; 7752 break; 7753 } 7754 if (parseTypeAndValue(Val, EltLoc, PFS)) 7755 return true; 7756 if (!Val->getType()->isIntOrIntVectorTy()) 7757 return error(EltLoc, "getelementptr index must be an integer"); 7758 7759 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7760 ElementCount ValNumEl = ValVTy->getElementCount(); 7761 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7762 return error( 7763 EltLoc, 7764 "getelementptr vector index has a wrong number of elements"); 7765 GEPWidth = ValNumEl; 7766 } 7767 Indices.push_back(Val); 7768 } 7769 7770 SmallPtrSet<Type*, 4> Visited; 7771 if (!Indices.empty() && !Ty->isSized(&Visited)) 7772 return error(Loc, "base element of getelementptr must be sized"); 7773 7774 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7775 return error(Loc, "invalid getelementptr indices"); 7776 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7777 if (InBounds) 7778 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7779 return AteExtraComma ? InstExtraComma : InstNormal; 7780 } 7781 7782 /// parseExtractValue 7783 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7784 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7785 Value *Val; LocTy Loc; 7786 SmallVector<unsigned, 4> Indices; 7787 bool AteExtraComma; 7788 if (parseTypeAndValue(Val, Loc, PFS) || 7789 parseIndexList(Indices, AteExtraComma)) 7790 return true; 7791 7792 if (!Val->getType()->isAggregateType()) 7793 return error(Loc, "extractvalue operand must be aggregate type"); 7794 7795 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7796 return error(Loc, "invalid indices for extractvalue"); 7797 Inst = ExtractValueInst::Create(Val, Indices); 7798 return AteExtraComma ? InstExtraComma : InstNormal; 7799 } 7800 7801 /// parseInsertValue 7802 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7803 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7804 Value *Val0, *Val1; LocTy Loc0, Loc1; 7805 SmallVector<unsigned, 4> Indices; 7806 bool AteExtraComma; 7807 if (parseTypeAndValue(Val0, Loc0, PFS) || 7808 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7809 parseTypeAndValue(Val1, Loc1, PFS) || 7810 parseIndexList(Indices, AteExtraComma)) 7811 return true; 7812 7813 if (!Val0->getType()->isAggregateType()) 7814 return error(Loc0, "insertvalue operand must be aggregate type"); 7815 7816 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7817 if (!IndexedType) 7818 return error(Loc0, "invalid indices for insertvalue"); 7819 if (IndexedType != Val1->getType()) 7820 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7821 getTypeString(Val1->getType()) + "' instead of '" + 7822 getTypeString(IndexedType) + "'"); 7823 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7824 return AteExtraComma ? InstExtraComma : InstNormal; 7825 } 7826 7827 //===----------------------------------------------------------------------===// 7828 // Embedded metadata. 7829 //===----------------------------------------------------------------------===// 7830 7831 /// parseMDNodeVector 7832 /// ::= { Element (',' Element)* } 7833 /// Element 7834 /// ::= 'null' | TypeAndValue 7835 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7836 if (parseToken(lltok::lbrace, "expected '{' here")) 7837 return true; 7838 7839 // Check for an empty list. 7840 if (EatIfPresent(lltok::rbrace)) 7841 return false; 7842 7843 do { 7844 // Null is a special case since it is typeless. 7845 if (EatIfPresent(lltok::kw_null)) { 7846 Elts.push_back(nullptr); 7847 continue; 7848 } 7849 7850 Metadata *MD; 7851 if (parseMetadata(MD, nullptr)) 7852 return true; 7853 Elts.push_back(MD); 7854 } while (EatIfPresent(lltok::comma)); 7855 7856 return parseToken(lltok::rbrace, "expected end of metadata node"); 7857 } 7858 7859 //===----------------------------------------------------------------------===// 7860 // Use-list order directives. 7861 //===----------------------------------------------------------------------===// 7862 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7863 SMLoc Loc) { 7864 if (V->use_empty()) 7865 return error(Loc, "value has no uses"); 7866 7867 unsigned NumUses = 0; 7868 SmallDenseMap<const Use *, unsigned, 16> Order; 7869 for (const Use &U : V->uses()) { 7870 if (++NumUses > Indexes.size()) 7871 break; 7872 Order[&U] = Indexes[NumUses - 1]; 7873 } 7874 if (NumUses < 2) 7875 return error(Loc, "value only has one use"); 7876 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7877 return error(Loc, 7878 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7879 7880 V->sortUseList([&](const Use &L, const Use &R) { 7881 return Order.lookup(&L) < Order.lookup(&R); 7882 }); 7883 return false; 7884 } 7885 7886 /// parseUseListOrderIndexes 7887 /// ::= '{' uint32 (',' uint32)+ '}' 7888 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7889 SMLoc Loc = Lex.getLoc(); 7890 if (parseToken(lltok::lbrace, "expected '{' here")) 7891 return true; 7892 if (Lex.getKind() == lltok::rbrace) 7893 return Lex.Error("expected non-empty list of uselistorder indexes"); 7894 7895 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7896 // indexes should be distinct numbers in the range [0, size-1], and should 7897 // not be in order. 7898 unsigned Offset = 0; 7899 unsigned Max = 0; 7900 bool IsOrdered = true; 7901 assert(Indexes.empty() && "Expected empty order vector"); 7902 do { 7903 unsigned Index; 7904 if (parseUInt32(Index)) 7905 return true; 7906 7907 // Update consistency checks. 7908 Offset += Index - Indexes.size(); 7909 Max = std::max(Max, Index); 7910 IsOrdered &= Index == Indexes.size(); 7911 7912 Indexes.push_back(Index); 7913 } while (EatIfPresent(lltok::comma)); 7914 7915 if (parseToken(lltok::rbrace, "expected '}' here")) 7916 return true; 7917 7918 if (Indexes.size() < 2) 7919 return error(Loc, "expected >= 2 uselistorder indexes"); 7920 if (Offset != 0 || Max >= Indexes.size()) 7921 return error(Loc, 7922 "expected distinct uselistorder indexes in range [0, size)"); 7923 if (IsOrdered) 7924 return error(Loc, "expected uselistorder indexes to change the order"); 7925 7926 return false; 7927 } 7928 7929 /// parseUseListOrder 7930 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7931 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7932 SMLoc Loc = Lex.getLoc(); 7933 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7934 return true; 7935 7936 Value *V; 7937 SmallVector<unsigned, 16> Indexes; 7938 if (parseTypeAndValue(V, PFS) || 7939 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7940 parseUseListOrderIndexes(Indexes)) 7941 return true; 7942 7943 return sortUseListOrder(V, Indexes, Loc); 7944 } 7945 7946 /// parseUseListOrderBB 7947 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7948 bool LLParser::parseUseListOrderBB() { 7949 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7950 SMLoc Loc = Lex.getLoc(); 7951 Lex.Lex(); 7952 7953 ValID Fn, Label; 7954 SmallVector<unsigned, 16> Indexes; 7955 if (parseValID(Fn) || 7956 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7957 parseValID(Label) || 7958 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7959 parseUseListOrderIndexes(Indexes)) 7960 return true; 7961 7962 // Check the function. 7963 GlobalValue *GV; 7964 if (Fn.Kind == ValID::t_GlobalName) 7965 GV = M->getNamedValue(Fn.StrVal); 7966 else if (Fn.Kind == ValID::t_GlobalID) 7967 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7968 else 7969 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7970 if (!GV) 7971 return error(Fn.Loc, 7972 "invalid function forward reference in uselistorder_bb"); 7973 auto *F = dyn_cast<Function>(GV); 7974 if (!F) 7975 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7976 if (F->isDeclaration()) 7977 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7978 7979 // Check the basic block. 7980 if (Label.Kind == ValID::t_LocalID) 7981 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7982 if (Label.Kind != ValID::t_LocalName) 7983 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7984 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7985 if (!V) 7986 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7987 if (!isa<BasicBlock>(V)) 7988 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7989 7990 return sortUseListOrder(V, Indexes, Loc); 7991 } 7992 7993 /// ModuleEntry 7994 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7995 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7996 bool LLParser::parseModuleEntry(unsigned ID) { 7997 assert(Lex.getKind() == lltok::kw_module); 7998 Lex.Lex(); 7999 8000 std::string Path; 8001 if (parseToken(lltok::colon, "expected ':' here") || 8002 parseToken(lltok::lparen, "expected '(' here") || 8003 parseToken(lltok::kw_path, "expected 'path' here") || 8004 parseToken(lltok::colon, "expected ':' here") || 8005 parseStringConstant(Path) || 8006 parseToken(lltok::comma, "expected ',' here") || 8007 parseToken(lltok::kw_hash, "expected 'hash' here") || 8008 parseToken(lltok::colon, "expected ':' here") || 8009 parseToken(lltok::lparen, "expected '(' here")) 8010 return true; 8011 8012 ModuleHash Hash; 8013 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8014 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8015 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8016 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8017 parseUInt32(Hash[4])) 8018 return true; 8019 8020 if (parseToken(lltok::rparen, "expected ')' here") || 8021 parseToken(lltok::rparen, "expected ')' here")) 8022 return true; 8023 8024 auto ModuleEntry = Index->addModule(Path, ID, Hash); 8025 ModuleIdMap[ID] = ModuleEntry->first(); 8026 8027 return false; 8028 } 8029 8030 /// TypeIdEntry 8031 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8032 bool LLParser::parseTypeIdEntry(unsigned ID) { 8033 assert(Lex.getKind() == lltok::kw_typeid); 8034 Lex.Lex(); 8035 8036 std::string Name; 8037 if (parseToken(lltok::colon, "expected ':' here") || 8038 parseToken(lltok::lparen, "expected '(' here") || 8039 parseToken(lltok::kw_name, "expected 'name' here") || 8040 parseToken(lltok::colon, "expected ':' here") || 8041 parseStringConstant(Name)) 8042 return true; 8043 8044 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8045 if (parseToken(lltok::comma, "expected ',' here") || 8046 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8047 return true; 8048 8049 // Check if this ID was forward referenced, and if so, update the 8050 // corresponding GUIDs. 8051 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8052 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8053 for (auto TIDRef : FwdRefTIDs->second) { 8054 assert(!*TIDRef.first && 8055 "Forward referenced type id GUID expected to be 0"); 8056 *TIDRef.first = GlobalValue::getGUID(Name); 8057 } 8058 ForwardRefTypeIds.erase(FwdRefTIDs); 8059 } 8060 8061 return false; 8062 } 8063 8064 /// TypeIdSummary 8065 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8066 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8067 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8068 parseToken(lltok::colon, "expected ':' here") || 8069 parseToken(lltok::lparen, "expected '(' here") || 8070 parseTypeTestResolution(TIS.TTRes)) 8071 return true; 8072 8073 if (EatIfPresent(lltok::comma)) { 8074 // Expect optional wpdResolutions field 8075 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8076 return true; 8077 } 8078 8079 if (parseToken(lltok::rparen, "expected ')' here")) 8080 return true; 8081 8082 return false; 8083 } 8084 8085 static ValueInfo EmptyVI = 8086 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8087 8088 /// TypeIdCompatibleVtableEntry 8089 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8090 /// TypeIdCompatibleVtableInfo 8091 /// ')' 8092 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8093 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8094 Lex.Lex(); 8095 8096 std::string Name; 8097 if (parseToken(lltok::colon, "expected ':' here") || 8098 parseToken(lltok::lparen, "expected '(' here") || 8099 parseToken(lltok::kw_name, "expected 'name' here") || 8100 parseToken(lltok::colon, "expected ':' here") || 8101 parseStringConstant(Name)) 8102 return true; 8103 8104 TypeIdCompatibleVtableInfo &TI = 8105 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8106 if (parseToken(lltok::comma, "expected ',' here") || 8107 parseToken(lltok::kw_summary, "expected 'summary' here") || 8108 parseToken(lltok::colon, "expected ':' here") || 8109 parseToken(lltok::lparen, "expected '(' here")) 8110 return true; 8111 8112 IdToIndexMapType IdToIndexMap; 8113 // parse each call edge 8114 do { 8115 uint64_t Offset; 8116 if (parseToken(lltok::lparen, "expected '(' here") || 8117 parseToken(lltok::kw_offset, "expected 'offset' here") || 8118 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8119 parseToken(lltok::comma, "expected ',' here")) 8120 return true; 8121 8122 LocTy Loc = Lex.getLoc(); 8123 unsigned GVId; 8124 ValueInfo VI; 8125 if (parseGVReference(VI, GVId)) 8126 return true; 8127 8128 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8129 // forward reference. We will save the location of the ValueInfo needing an 8130 // update, but can only do so once the std::vector is finalized. 8131 if (VI == EmptyVI) 8132 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8133 TI.push_back({Offset, VI}); 8134 8135 if (parseToken(lltok::rparen, "expected ')' in call")) 8136 return true; 8137 } while (EatIfPresent(lltok::comma)); 8138 8139 // Now that the TI vector is finalized, it is safe to save the locations 8140 // of any forward GV references that need updating later. 8141 for (auto I : IdToIndexMap) { 8142 auto &Infos = ForwardRefValueInfos[I.first]; 8143 for (auto P : I.second) { 8144 assert(TI[P.first].VTableVI == EmptyVI && 8145 "Forward referenced ValueInfo expected to be empty"); 8146 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8147 } 8148 } 8149 8150 if (parseToken(lltok::rparen, "expected ')' here") || 8151 parseToken(lltok::rparen, "expected ')' here")) 8152 return true; 8153 8154 // Check if this ID was forward referenced, and if so, update the 8155 // corresponding GUIDs. 8156 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8157 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8158 for (auto TIDRef : FwdRefTIDs->second) { 8159 assert(!*TIDRef.first && 8160 "Forward referenced type id GUID expected to be 0"); 8161 *TIDRef.first = GlobalValue::getGUID(Name); 8162 } 8163 ForwardRefTypeIds.erase(FwdRefTIDs); 8164 } 8165 8166 return false; 8167 } 8168 8169 /// TypeTestResolution 8170 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8171 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8172 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8173 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8174 /// [',' 'inlinesBits' ':' UInt64]? ')' 8175 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8176 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8177 parseToken(lltok::colon, "expected ':' here") || 8178 parseToken(lltok::lparen, "expected '(' here") || 8179 parseToken(lltok::kw_kind, "expected 'kind' here") || 8180 parseToken(lltok::colon, "expected ':' here")) 8181 return true; 8182 8183 switch (Lex.getKind()) { 8184 case lltok::kw_unknown: 8185 TTRes.TheKind = TypeTestResolution::Unknown; 8186 break; 8187 case lltok::kw_unsat: 8188 TTRes.TheKind = TypeTestResolution::Unsat; 8189 break; 8190 case lltok::kw_byteArray: 8191 TTRes.TheKind = TypeTestResolution::ByteArray; 8192 break; 8193 case lltok::kw_inline: 8194 TTRes.TheKind = TypeTestResolution::Inline; 8195 break; 8196 case lltok::kw_single: 8197 TTRes.TheKind = TypeTestResolution::Single; 8198 break; 8199 case lltok::kw_allOnes: 8200 TTRes.TheKind = TypeTestResolution::AllOnes; 8201 break; 8202 default: 8203 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8204 } 8205 Lex.Lex(); 8206 8207 if (parseToken(lltok::comma, "expected ',' here") || 8208 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8209 parseToken(lltok::colon, "expected ':' here") || 8210 parseUInt32(TTRes.SizeM1BitWidth)) 8211 return true; 8212 8213 // parse optional fields 8214 while (EatIfPresent(lltok::comma)) { 8215 switch (Lex.getKind()) { 8216 case lltok::kw_alignLog2: 8217 Lex.Lex(); 8218 if (parseToken(lltok::colon, "expected ':'") || 8219 parseUInt64(TTRes.AlignLog2)) 8220 return true; 8221 break; 8222 case lltok::kw_sizeM1: 8223 Lex.Lex(); 8224 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8225 return true; 8226 break; 8227 case lltok::kw_bitMask: { 8228 unsigned Val; 8229 Lex.Lex(); 8230 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8231 return true; 8232 assert(Val <= 0xff); 8233 TTRes.BitMask = (uint8_t)Val; 8234 break; 8235 } 8236 case lltok::kw_inlineBits: 8237 Lex.Lex(); 8238 if (parseToken(lltok::colon, "expected ':'") || 8239 parseUInt64(TTRes.InlineBits)) 8240 return true; 8241 break; 8242 default: 8243 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8244 } 8245 } 8246 8247 if (parseToken(lltok::rparen, "expected ')' here")) 8248 return true; 8249 8250 return false; 8251 } 8252 8253 /// OptionalWpdResolutions 8254 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8255 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8256 bool LLParser::parseOptionalWpdResolutions( 8257 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8258 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8259 parseToken(lltok::colon, "expected ':' here") || 8260 parseToken(lltok::lparen, "expected '(' here")) 8261 return true; 8262 8263 do { 8264 uint64_t Offset; 8265 WholeProgramDevirtResolution WPDRes; 8266 if (parseToken(lltok::lparen, "expected '(' here") || 8267 parseToken(lltok::kw_offset, "expected 'offset' here") || 8268 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8269 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8270 parseToken(lltok::rparen, "expected ')' here")) 8271 return true; 8272 WPDResMap[Offset] = WPDRes; 8273 } while (EatIfPresent(lltok::comma)); 8274 8275 if (parseToken(lltok::rparen, "expected ')' here")) 8276 return true; 8277 8278 return false; 8279 } 8280 8281 /// WpdRes 8282 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8283 /// [',' OptionalResByArg]? ')' 8284 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8285 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8286 /// [',' OptionalResByArg]? ')' 8287 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8288 /// [',' OptionalResByArg]? ')' 8289 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8290 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8291 parseToken(lltok::colon, "expected ':' here") || 8292 parseToken(lltok::lparen, "expected '(' here") || 8293 parseToken(lltok::kw_kind, "expected 'kind' here") || 8294 parseToken(lltok::colon, "expected ':' here")) 8295 return true; 8296 8297 switch (Lex.getKind()) { 8298 case lltok::kw_indir: 8299 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8300 break; 8301 case lltok::kw_singleImpl: 8302 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8303 break; 8304 case lltok::kw_branchFunnel: 8305 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8306 break; 8307 default: 8308 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8309 } 8310 Lex.Lex(); 8311 8312 // parse optional fields 8313 while (EatIfPresent(lltok::comma)) { 8314 switch (Lex.getKind()) { 8315 case lltok::kw_singleImplName: 8316 Lex.Lex(); 8317 if (parseToken(lltok::colon, "expected ':' here") || 8318 parseStringConstant(WPDRes.SingleImplName)) 8319 return true; 8320 break; 8321 case lltok::kw_resByArg: 8322 if (parseOptionalResByArg(WPDRes.ResByArg)) 8323 return true; 8324 break; 8325 default: 8326 return error(Lex.getLoc(), 8327 "expected optional WholeProgramDevirtResolution field"); 8328 } 8329 } 8330 8331 if (parseToken(lltok::rparen, "expected ')' here")) 8332 return true; 8333 8334 return false; 8335 } 8336 8337 /// OptionalResByArg 8338 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8339 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8340 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8341 /// 'virtualConstProp' ) 8342 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8343 /// [',' 'bit' ':' UInt32]? ')' 8344 bool LLParser::parseOptionalResByArg( 8345 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8346 &ResByArg) { 8347 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8348 parseToken(lltok::colon, "expected ':' here") || 8349 parseToken(lltok::lparen, "expected '(' here")) 8350 return true; 8351 8352 do { 8353 std::vector<uint64_t> Args; 8354 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8355 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8356 parseToken(lltok::colon, "expected ':' here") || 8357 parseToken(lltok::lparen, "expected '(' here") || 8358 parseToken(lltok::kw_kind, "expected 'kind' here") || 8359 parseToken(lltok::colon, "expected ':' here")) 8360 return true; 8361 8362 WholeProgramDevirtResolution::ByArg ByArg; 8363 switch (Lex.getKind()) { 8364 case lltok::kw_indir: 8365 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8366 break; 8367 case lltok::kw_uniformRetVal: 8368 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8369 break; 8370 case lltok::kw_uniqueRetVal: 8371 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8372 break; 8373 case lltok::kw_virtualConstProp: 8374 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8375 break; 8376 default: 8377 return error(Lex.getLoc(), 8378 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8379 } 8380 Lex.Lex(); 8381 8382 // parse optional fields 8383 while (EatIfPresent(lltok::comma)) { 8384 switch (Lex.getKind()) { 8385 case lltok::kw_info: 8386 Lex.Lex(); 8387 if (parseToken(lltok::colon, "expected ':' here") || 8388 parseUInt64(ByArg.Info)) 8389 return true; 8390 break; 8391 case lltok::kw_byte: 8392 Lex.Lex(); 8393 if (parseToken(lltok::colon, "expected ':' here") || 8394 parseUInt32(ByArg.Byte)) 8395 return true; 8396 break; 8397 case lltok::kw_bit: 8398 Lex.Lex(); 8399 if (parseToken(lltok::colon, "expected ':' here") || 8400 parseUInt32(ByArg.Bit)) 8401 return true; 8402 break; 8403 default: 8404 return error(Lex.getLoc(), 8405 "expected optional whole program devirt field"); 8406 } 8407 } 8408 8409 if (parseToken(lltok::rparen, "expected ')' here")) 8410 return true; 8411 8412 ResByArg[Args] = ByArg; 8413 } while (EatIfPresent(lltok::comma)); 8414 8415 if (parseToken(lltok::rparen, "expected ')' here")) 8416 return true; 8417 8418 return false; 8419 } 8420 8421 /// OptionalResByArg 8422 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8423 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8424 if (parseToken(lltok::kw_args, "expected 'args' here") || 8425 parseToken(lltok::colon, "expected ':' here") || 8426 parseToken(lltok::lparen, "expected '(' here")) 8427 return true; 8428 8429 do { 8430 uint64_t Val; 8431 if (parseUInt64(Val)) 8432 return true; 8433 Args.push_back(Val); 8434 } while (EatIfPresent(lltok::comma)); 8435 8436 if (parseToken(lltok::rparen, "expected ')' here")) 8437 return true; 8438 8439 return false; 8440 } 8441 8442 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8443 8444 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8445 bool ReadOnly = Fwd->isReadOnly(); 8446 bool WriteOnly = Fwd->isWriteOnly(); 8447 assert(!(ReadOnly && WriteOnly)); 8448 *Fwd = Resolved; 8449 if (ReadOnly) 8450 Fwd->setReadOnly(); 8451 if (WriteOnly) 8452 Fwd->setWriteOnly(); 8453 } 8454 8455 /// Stores the given Name/GUID and associated summary into the Index. 8456 /// Also updates any forward references to the associated entry ID. 8457 void LLParser::addGlobalValueToIndex( 8458 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8459 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8460 // First create the ValueInfo utilizing the Name or GUID. 8461 ValueInfo VI; 8462 if (GUID != 0) { 8463 assert(Name.empty()); 8464 VI = Index->getOrInsertValueInfo(GUID); 8465 } else { 8466 assert(!Name.empty()); 8467 if (M) { 8468 auto *GV = M->getNamedValue(Name); 8469 assert(GV); 8470 VI = Index->getOrInsertValueInfo(GV); 8471 } else { 8472 assert( 8473 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8474 "Need a source_filename to compute GUID for local"); 8475 GUID = GlobalValue::getGUID( 8476 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8477 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8478 } 8479 } 8480 8481 // Resolve forward references from calls/refs 8482 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8483 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8484 for (auto VIRef : FwdRefVIs->second) { 8485 assert(VIRef.first->getRef() == FwdVIRef && 8486 "Forward referenced ValueInfo expected to be empty"); 8487 resolveFwdRef(VIRef.first, VI); 8488 } 8489 ForwardRefValueInfos.erase(FwdRefVIs); 8490 } 8491 8492 // Resolve forward references from aliases 8493 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8494 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8495 for (auto AliaseeRef : FwdRefAliasees->second) { 8496 assert(!AliaseeRef.first->hasAliasee() && 8497 "Forward referencing alias already has aliasee"); 8498 assert(Summary && "Aliasee must be a definition"); 8499 AliaseeRef.first->setAliasee(VI, Summary.get()); 8500 } 8501 ForwardRefAliasees.erase(FwdRefAliasees); 8502 } 8503 8504 // Add the summary if one was provided. 8505 if (Summary) 8506 Index->addGlobalValueSummary(VI, std::move(Summary)); 8507 8508 // Save the associated ValueInfo for use in later references by ID. 8509 if (ID == NumberedValueInfos.size()) 8510 NumberedValueInfos.push_back(VI); 8511 else { 8512 // Handle non-continuous numbers (to make test simplification easier). 8513 if (ID > NumberedValueInfos.size()) 8514 NumberedValueInfos.resize(ID + 1); 8515 NumberedValueInfos[ID] = VI; 8516 } 8517 } 8518 8519 /// parseSummaryIndexFlags 8520 /// ::= 'flags' ':' UInt64 8521 bool LLParser::parseSummaryIndexFlags() { 8522 assert(Lex.getKind() == lltok::kw_flags); 8523 Lex.Lex(); 8524 8525 if (parseToken(lltok::colon, "expected ':' here")) 8526 return true; 8527 uint64_t Flags; 8528 if (parseUInt64(Flags)) 8529 return true; 8530 if (Index) 8531 Index->setFlags(Flags); 8532 return false; 8533 } 8534 8535 /// parseBlockCount 8536 /// ::= 'blockcount' ':' UInt64 8537 bool LLParser::parseBlockCount() { 8538 assert(Lex.getKind() == lltok::kw_blockcount); 8539 Lex.Lex(); 8540 8541 if (parseToken(lltok::colon, "expected ':' here")) 8542 return true; 8543 uint64_t BlockCount; 8544 if (parseUInt64(BlockCount)) 8545 return true; 8546 if (Index) 8547 Index->setBlockCount(BlockCount); 8548 return false; 8549 } 8550 8551 /// parseGVEntry 8552 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8553 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8554 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8555 bool LLParser::parseGVEntry(unsigned ID) { 8556 assert(Lex.getKind() == lltok::kw_gv); 8557 Lex.Lex(); 8558 8559 if (parseToken(lltok::colon, "expected ':' here") || 8560 parseToken(lltok::lparen, "expected '(' here")) 8561 return true; 8562 8563 std::string Name; 8564 GlobalValue::GUID GUID = 0; 8565 switch (Lex.getKind()) { 8566 case lltok::kw_name: 8567 Lex.Lex(); 8568 if (parseToken(lltok::colon, "expected ':' here") || 8569 parseStringConstant(Name)) 8570 return true; 8571 // Can't create GUID/ValueInfo until we have the linkage. 8572 break; 8573 case lltok::kw_guid: 8574 Lex.Lex(); 8575 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8576 return true; 8577 break; 8578 default: 8579 return error(Lex.getLoc(), "expected name or guid tag"); 8580 } 8581 8582 if (!EatIfPresent(lltok::comma)) { 8583 // No summaries. Wrap up. 8584 if (parseToken(lltok::rparen, "expected ')' here")) 8585 return true; 8586 // This was created for a call to an external or indirect target. 8587 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8588 // created for indirect calls with VP. A Name with no GUID came from 8589 // an external definition. We pass ExternalLinkage since that is only 8590 // used when the GUID must be computed from Name, and in that case 8591 // the symbol must have external linkage. 8592 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8593 nullptr); 8594 return false; 8595 } 8596 8597 // Have a list of summaries 8598 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8599 parseToken(lltok::colon, "expected ':' here") || 8600 parseToken(lltok::lparen, "expected '(' here")) 8601 return true; 8602 do { 8603 switch (Lex.getKind()) { 8604 case lltok::kw_function: 8605 if (parseFunctionSummary(Name, GUID, ID)) 8606 return true; 8607 break; 8608 case lltok::kw_variable: 8609 if (parseVariableSummary(Name, GUID, ID)) 8610 return true; 8611 break; 8612 case lltok::kw_alias: 8613 if (parseAliasSummary(Name, GUID, ID)) 8614 return true; 8615 break; 8616 default: 8617 return error(Lex.getLoc(), "expected summary type"); 8618 } 8619 } while (EatIfPresent(lltok::comma)); 8620 8621 if (parseToken(lltok::rparen, "expected ')' here") || 8622 parseToken(lltok::rparen, "expected ')' here")) 8623 return true; 8624 8625 return false; 8626 } 8627 8628 /// FunctionSummary 8629 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8630 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8631 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8632 /// [',' OptionalRefs]? ')' 8633 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8634 unsigned ID) { 8635 assert(Lex.getKind() == lltok::kw_function); 8636 Lex.Lex(); 8637 8638 StringRef ModulePath; 8639 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8640 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8641 /*NotEligibleToImport=*/false, 8642 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8643 unsigned InstCount; 8644 std::vector<FunctionSummary::EdgeTy> Calls; 8645 FunctionSummary::TypeIdInfo TypeIdInfo; 8646 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8647 std::vector<ValueInfo> Refs; 8648 // Default is all-zeros (conservative values). 8649 FunctionSummary::FFlags FFlags = {}; 8650 if (parseToken(lltok::colon, "expected ':' here") || 8651 parseToken(lltok::lparen, "expected '(' here") || 8652 parseModuleReference(ModulePath) || 8653 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8654 parseToken(lltok::comma, "expected ',' here") || 8655 parseToken(lltok::kw_insts, "expected 'insts' here") || 8656 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8657 return true; 8658 8659 // parse optional fields 8660 while (EatIfPresent(lltok::comma)) { 8661 switch (Lex.getKind()) { 8662 case lltok::kw_funcFlags: 8663 if (parseOptionalFFlags(FFlags)) 8664 return true; 8665 break; 8666 case lltok::kw_calls: 8667 if (parseOptionalCalls(Calls)) 8668 return true; 8669 break; 8670 case lltok::kw_typeIdInfo: 8671 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8672 return true; 8673 break; 8674 case lltok::kw_refs: 8675 if (parseOptionalRefs(Refs)) 8676 return true; 8677 break; 8678 case lltok::kw_params: 8679 if (parseOptionalParamAccesses(ParamAccesses)) 8680 return true; 8681 break; 8682 default: 8683 return error(Lex.getLoc(), "expected optional function summary field"); 8684 } 8685 } 8686 8687 if (parseToken(lltok::rparen, "expected ')' here")) 8688 return true; 8689 8690 auto FS = std::make_unique<FunctionSummary>( 8691 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8692 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8693 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8694 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8695 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8696 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8697 std::move(ParamAccesses)); 8698 8699 FS->setModulePath(ModulePath); 8700 8701 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8702 ID, std::move(FS)); 8703 8704 return false; 8705 } 8706 8707 /// VariableSummary 8708 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8709 /// [',' OptionalRefs]? ')' 8710 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8711 unsigned ID) { 8712 assert(Lex.getKind() == lltok::kw_variable); 8713 Lex.Lex(); 8714 8715 StringRef ModulePath; 8716 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8717 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8718 /*NotEligibleToImport=*/false, 8719 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8720 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8721 /* WriteOnly */ false, 8722 /* Constant */ false, 8723 GlobalObject::VCallVisibilityPublic); 8724 std::vector<ValueInfo> Refs; 8725 VTableFuncList VTableFuncs; 8726 if (parseToken(lltok::colon, "expected ':' here") || 8727 parseToken(lltok::lparen, "expected '(' here") || 8728 parseModuleReference(ModulePath) || 8729 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8730 parseToken(lltok::comma, "expected ',' here") || 8731 parseGVarFlags(GVarFlags)) 8732 return true; 8733 8734 // parse optional fields 8735 while (EatIfPresent(lltok::comma)) { 8736 switch (Lex.getKind()) { 8737 case lltok::kw_vTableFuncs: 8738 if (parseOptionalVTableFuncs(VTableFuncs)) 8739 return true; 8740 break; 8741 case lltok::kw_refs: 8742 if (parseOptionalRefs(Refs)) 8743 return true; 8744 break; 8745 default: 8746 return error(Lex.getLoc(), "expected optional variable summary field"); 8747 } 8748 } 8749 8750 if (parseToken(lltok::rparen, "expected ')' here")) 8751 return true; 8752 8753 auto GS = 8754 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8755 8756 GS->setModulePath(ModulePath); 8757 GS->setVTableFuncs(std::move(VTableFuncs)); 8758 8759 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8760 ID, std::move(GS)); 8761 8762 return false; 8763 } 8764 8765 /// AliasSummary 8766 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8767 /// 'aliasee' ':' GVReference ')' 8768 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8769 unsigned ID) { 8770 assert(Lex.getKind() == lltok::kw_alias); 8771 LocTy Loc = Lex.getLoc(); 8772 Lex.Lex(); 8773 8774 StringRef ModulePath; 8775 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8776 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8777 /*NotEligibleToImport=*/false, 8778 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8779 if (parseToken(lltok::colon, "expected ':' here") || 8780 parseToken(lltok::lparen, "expected '(' here") || 8781 parseModuleReference(ModulePath) || 8782 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8783 parseToken(lltok::comma, "expected ',' here") || 8784 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8785 parseToken(lltok::colon, "expected ':' here")) 8786 return true; 8787 8788 ValueInfo AliaseeVI; 8789 unsigned GVId; 8790 if (parseGVReference(AliaseeVI, GVId)) 8791 return true; 8792 8793 if (parseToken(lltok::rparen, "expected ')' here")) 8794 return true; 8795 8796 auto AS = std::make_unique<AliasSummary>(GVFlags); 8797 8798 AS->setModulePath(ModulePath); 8799 8800 // Record forward reference if the aliasee is not parsed yet. 8801 if (AliaseeVI.getRef() == FwdVIRef) { 8802 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8803 } else { 8804 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8805 assert(Summary && "Aliasee must be a definition"); 8806 AS->setAliasee(AliaseeVI, Summary); 8807 } 8808 8809 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8810 ID, std::move(AS)); 8811 8812 return false; 8813 } 8814 8815 /// Flag 8816 /// ::= [0|1] 8817 bool LLParser::parseFlag(unsigned &Val) { 8818 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8819 return tokError("expected integer"); 8820 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8821 Lex.Lex(); 8822 return false; 8823 } 8824 8825 /// OptionalFFlags 8826 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8827 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8828 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8829 /// [',' 'noInline' ':' Flag]? ')' 8830 /// [',' 'alwaysInline' ':' Flag]? ')' 8831 8832 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8833 assert(Lex.getKind() == lltok::kw_funcFlags); 8834 Lex.Lex(); 8835 8836 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8837 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8838 return true; 8839 8840 do { 8841 unsigned Val = 0; 8842 switch (Lex.getKind()) { 8843 case lltok::kw_readNone: 8844 Lex.Lex(); 8845 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8846 return true; 8847 FFlags.ReadNone = Val; 8848 break; 8849 case lltok::kw_readOnly: 8850 Lex.Lex(); 8851 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8852 return true; 8853 FFlags.ReadOnly = Val; 8854 break; 8855 case lltok::kw_noRecurse: 8856 Lex.Lex(); 8857 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8858 return true; 8859 FFlags.NoRecurse = Val; 8860 break; 8861 case lltok::kw_returnDoesNotAlias: 8862 Lex.Lex(); 8863 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8864 return true; 8865 FFlags.ReturnDoesNotAlias = Val; 8866 break; 8867 case lltok::kw_noInline: 8868 Lex.Lex(); 8869 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8870 return true; 8871 FFlags.NoInline = Val; 8872 break; 8873 case lltok::kw_alwaysInline: 8874 Lex.Lex(); 8875 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8876 return true; 8877 FFlags.AlwaysInline = Val; 8878 break; 8879 default: 8880 return error(Lex.getLoc(), "expected function flag type"); 8881 } 8882 } while (EatIfPresent(lltok::comma)); 8883 8884 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8885 return true; 8886 8887 return false; 8888 } 8889 8890 /// OptionalCalls 8891 /// := 'calls' ':' '(' Call [',' Call]* ')' 8892 /// Call ::= '(' 'callee' ':' GVReference 8893 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8894 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8895 assert(Lex.getKind() == lltok::kw_calls); 8896 Lex.Lex(); 8897 8898 if (parseToken(lltok::colon, "expected ':' in calls") | 8899 parseToken(lltok::lparen, "expected '(' in calls")) 8900 return true; 8901 8902 IdToIndexMapType IdToIndexMap; 8903 // parse each call edge 8904 do { 8905 ValueInfo VI; 8906 if (parseToken(lltok::lparen, "expected '(' in call") || 8907 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8908 parseToken(lltok::colon, "expected ':'")) 8909 return true; 8910 8911 LocTy Loc = Lex.getLoc(); 8912 unsigned GVId; 8913 if (parseGVReference(VI, GVId)) 8914 return true; 8915 8916 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8917 unsigned RelBF = 0; 8918 if (EatIfPresent(lltok::comma)) { 8919 // Expect either hotness or relbf 8920 if (EatIfPresent(lltok::kw_hotness)) { 8921 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8922 return true; 8923 } else { 8924 if (parseToken(lltok::kw_relbf, "expected relbf") || 8925 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8926 return true; 8927 } 8928 } 8929 // Keep track of the Call array index needing a forward reference. 8930 // We will save the location of the ValueInfo needing an update, but 8931 // can only do so once the std::vector is finalized. 8932 if (VI.getRef() == FwdVIRef) 8933 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8934 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8935 8936 if (parseToken(lltok::rparen, "expected ')' in call")) 8937 return true; 8938 } while (EatIfPresent(lltok::comma)); 8939 8940 // Now that the Calls vector is finalized, it is safe to save the locations 8941 // of any forward GV references that need updating later. 8942 for (auto I : IdToIndexMap) { 8943 auto &Infos = ForwardRefValueInfos[I.first]; 8944 for (auto P : I.second) { 8945 assert(Calls[P.first].first.getRef() == FwdVIRef && 8946 "Forward referenced ValueInfo expected to be empty"); 8947 Infos.emplace_back(&Calls[P.first].first, P.second); 8948 } 8949 } 8950 8951 if (parseToken(lltok::rparen, "expected ')' in calls")) 8952 return true; 8953 8954 return false; 8955 } 8956 8957 /// Hotness 8958 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8959 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8960 switch (Lex.getKind()) { 8961 case lltok::kw_unknown: 8962 Hotness = CalleeInfo::HotnessType::Unknown; 8963 break; 8964 case lltok::kw_cold: 8965 Hotness = CalleeInfo::HotnessType::Cold; 8966 break; 8967 case lltok::kw_none: 8968 Hotness = CalleeInfo::HotnessType::None; 8969 break; 8970 case lltok::kw_hot: 8971 Hotness = CalleeInfo::HotnessType::Hot; 8972 break; 8973 case lltok::kw_critical: 8974 Hotness = CalleeInfo::HotnessType::Critical; 8975 break; 8976 default: 8977 return error(Lex.getLoc(), "invalid call edge hotness"); 8978 } 8979 Lex.Lex(); 8980 return false; 8981 } 8982 8983 /// OptionalVTableFuncs 8984 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8985 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8986 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8987 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8988 Lex.Lex(); 8989 8990 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8991 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8992 return true; 8993 8994 IdToIndexMapType IdToIndexMap; 8995 // parse each virtual function pair 8996 do { 8997 ValueInfo VI; 8998 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8999 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9000 parseToken(lltok::colon, "expected ':'")) 9001 return true; 9002 9003 LocTy Loc = Lex.getLoc(); 9004 unsigned GVId; 9005 if (parseGVReference(VI, GVId)) 9006 return true; 9007 9008 uint64_t Offset; 9009 if (parseToken(lltok::comma, "expected comma") || 9010 parseToken(lltok::kw_offset, "expected offset") || 9011 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9012 return true; 9013 9014 // Keep track of the VTableFuncs array index needing a forward reference. 9015 // We will save the location of the ValueInfo needing an update, but 9016 // can only do so once the std::vector is finalized. 9017 if (VI == EmptyVI) 9018 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9019 VTableFuncs.push_back({VI, Offset}); 9020 9021 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9022 return true; 9023 } while (EatIfPresent(lltok::comma)); 9024 9025 // Now that the VTableFuncs vector is finalized, it is safe to save the 9026 // locations of any forward GV references that need updating later. 9027 for (auto I : IdToIndexMap) { 9028 auto &Infos = ForwardRefValueInfos[I.first]; 9029 for (auto P : I.second) { 9030 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9031 "Forward referenced ValueInfo expected to be empty"); 9032 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9033 } 9034 } 9035 9036 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9037 return true; 9038 9039 return false; 9040 } 9041 9042 /// ParamNo := 'param' ':' UInt64 9043 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9044 if (parseToken(lltok::kw_param, "expected 'param' here") || 9045 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9046 return true; 9047 return false; 9048 } 9049 9050 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9051 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9052 APSInt Lower; 9053 APSInt Upper; 9054 auto ParseAPSInt = [&](APSInt &Val) { 9055 if (Lex.getKind() != lltok::APSInt) 9056 return tokError("expected integer"); 9057 Val = Lex.getAPSIntVal(); 9058 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9059 Val.setIsSigned(true); 9060 Lex.Lex(); 9061 return false; 9062 }; 9063 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9064 parseToken(lltok::colon, "expected ':' here") || 9065 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9066 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9067 parseToken(lltok::rsquare, "expected ']' here")) 9068 return true; 9069 9070 ++Upper; 9071 Range = 9072 (Lower == Upper && !Lower.isMaxValue()) 9073 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9074 : ConstantRange(Lower, Upper); 9075 9076 return false; 9077 } 9078 9079 /// ParamAccessCall 9080 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9081 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9082 IdLocListType &IdLocList) { 9083 if (parseToken(lltok::lparen, "expected '(' here") || 9084 parseToken(lltok::kw_callee, "expected 'callee' here") || 9085 parseToken(lltok::colon, "expected ':' here")) 9086 return true; 9087 9088 unsigned GVId; 9089 ValueInfo VI; 9090 LocTy Loc = Lex.getLoc(); 9091 if (parseGVReference(VI, GVId)) 9092 return true; 9093 9094 Call.Callee = VI; 9095 IdLocList.emplace_back(GVId, Loc); 9096 9097 if (parseToken(lltok::comma, "expected ',' here") || 9098 parseParamNo(Call.ParamNo) || 9099 parseToken(lltok::comma, "expected ',' here") || 9100 parseParamAccessOffset(Call.Offsets)) 9101 return true; 9102 9103 if (parseToken(lltok::rparen, "expected ')' here")) 9104 return true; 9105 9106 return false; 9107 } 9108 9109 /// ParamAccess 9110 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9111 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9112 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9113 IdLocListType &IdLocList) { 9114 if (parseToken(lltok::lparen, "expected '(' here") || 9115 parseParamNo(Param.ParamNo) || 9116 parseToken(lltok::comma, "expected ',' here") || 9117 parseParamAccessOffset(Param.Use)) 9118 return true; 9119 9120 if (EatIfPresent(lltok::comma)) { 9121 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9122 parseToken(lltok::colon, "expected ':' here") || 9123 parseToken(lltok::lparen, "expected '(' here")) 9124 return true; 9125 do { 9126 FunctionSummary::ParamAccess::Call Call; 9127 if (parseParamAccessCall(Call, IdLocList)) 9128 return true; 9129 Param.Calls.push_back(Call); 9130 } while (EatIfPresent(lltok::comma)); 9131 9132 if (parseToken(lltok::rparen, "expected ')' here")) 9133 return true; 9134 } 9135 9136 if (parseToken(lltok::rparen, "expected ')' here")) 9137 return true; 9138 9139 return false; 9140 } 9141 9142 /// OptionalParamAccesses 9143 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9144 bool LLParser::parseOptionalParamAccesses( 9145 std::vector<FunctionSummary::ParamAccess> &Params) { 9146 assert(Lex.getKind() == lltok::kw_params); 9147 Lex.Lex(); 9148 9149 if (parseToken(lltok::colon, "expected ':' here") || 9150 parseToken(lltok::lparen, "expected '(' here")) 9151 return true; 9152 9153 IdLocListType VContexts; 9154 size_t CallsNum = 0; 9155 do { 9156 FunctionSummary::ParamAccess ParamAccess; 9157 if (parseParamAccess(ParamAccess, VContexts)) 9158 return true; 9159 CallsNum += ParamAccess.Calls.size(); 9160 assert(VContexts.size() == CallsNum); 9161 Params.emplace_back(std::move(ParamAccess)); 9162 } while (EatIfPresent(lltok::comma)); 9163 9164 if (parseToken(lltok::rparen, "expected ')' here")) 9165 return true; 9166 9167 // Now that the Params is finalized, it is safe to save the locations 9168 // of any forward GV references that need updating later. 9169 IdLocListType::const_iterator ItContext = VContexts.begin(); 9170 for (auto &PA : Params) { 9171 for (auto &C : PA.Calls) { 9172 if (C.Callee.getRef() == FwdVIRef) 9173 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9174 ItContext->second); 9175 ++ItContext; 9176 } 9177 } 9178 assert(ItContext == VContexts.end()); 9179 9180 return false; 9181 } 9182 9183 /// OptionalRefs 9184 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9185 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9186 assert(Lex.getKind() == lltok::kw_refs); 9187 Lex.Lex(); 9188 9189 if (parseToken(lltok::colon, "expected ':' in refs") || 9190 parseToken(lltok::lparen, "expected '(' in refs")) 9191 return true; 9192 9193 struct ValueContext { 9194 ValueInfo VI; 9195 unsigned GVId; 9196 LocTy Loc; 9197 }; 9198 std::vector<ValueContext> VContexts; 9199 // parse each ref edge 9200 do { 9201 ValueContext VC; 9202 VC.Loc = Lex.getLoc(); 9203 if (parseGVReference(VC.VI, VC.GVId)) 9204 return true; 9205 VContexts.push_back(VC); 9206 } while (EatIfPresent(lltok::comma)); 9207 9208 // Sort value contexts so that ones with writeonly 9209 // and readonly ValueInfo are at the end of VContexts vector. 9210 // See FunctionSummary::specialRefCounts() 9211 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9212 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9213 }); 9214 9215 IdToIndexMapType IdToIndexMap; 9216 for (auto &VC : VContexts) { 9217 // Keep track of the Refs array index needing a forward reference. 9218 // We will save the location of the ValueInfo needing an update, but 9219 // can only do so once the std::vector is finalized. 9220 if (VC.VI.getRef() == FwdVIRef) 9221 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9222 Refs.push_back(VC.VI); 9223 } 9224 9225 // Now that the Refs vector is finalized, it is safe to save the locations 9226 // of any forward GV references that need updating later. 9227 for (auto I : IdToIndexMap) { 9228 auto &Infos = ForwardRefValueInfos[I.first]; 9229 for (auto P : I.second) { 9230 assert(Refs[P.first].getRef() == FwdVIRef && 9231 "Forward referenced ValueInfo expected to be empty"); 9232 Infos.emplace_back(&Refs[P.first], P.second); 9233 } 9234 } 9235 9236 if (parseToken(lltok::rparen, "expected ')' in refs")) 9237 return true; 9238 9239 return false; 9240 } 9241 9242 /// OptionalTypeIdInfo 9243 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9244 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9245 /// [',' TypeCheckedLoadConstVCalls]? ')' 9246 bool LLParser::parseOptionalTypeIdInfo( 9247 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9248 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9249 Lex.Lex(); 9250 9251 if (parseToken(lltok::colon, "expected ':' here") || 9252 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9253 return true; 9254 9255 do { 9256 switch (Lex.getKind()) { 9257 case lltok::kw_typeTests: 9258 if (parseTypeTests(TypeIdInfo.TypeTests)) 9259 return true; 9260 break; 9261 case lltok::kw_typeTestAssumeVCalls: 9262 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9263 TypeIdInfo.TypeTestAssumeVCalls)) 9264 return true; 9265 break; 9266 case lltok::kw_typeCheckedLoadVCalls: 9267 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9268 TypeIdInfo.TypeCheckedLoadVCalls)) 9269 return true; 9270 break; 9271 case lltok::kw_typeTestAssumeConstVCalls: 9272 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9273 TypeIdInfo.TypeTestAssumeConstVCalls)) 9274 return true; 9275 break; 9276 case lltok::kw_typeCheckedLoadConstVCalls: 9277 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9278 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9279 return true; 9280 break; 9281 default: 9282 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9283 } 9284 } while (EatIfPresent(lltok::comma)); 9285 9286 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9287 return true; 9288 9289 return false; 9290 } 9291 9292 /// TypeTests 9293 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9294 /// [',' (SummaryID | UInt64)]* ')' 9295 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9296 assert(Lex.getKind() == lltok::kw_typeTests); 9297 Lex.Lex(); 9298 9299 if (parseToken(lltok::colon, "expected ':' here") || 9300 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9301 return true; 9302 9303 IdToIndexMapType IdToIndexMap; 9304 do { 9305 GlobalValue::GUID GUID = 0; 9306 if (Lex.getKind() == lltok::SummaryID) { 9307 unsigned ID = Lex.getUIntVal(); 9308 LocTy Loc = Lex.getLoc(); 9309 // Keep track of the TypeTests array index needing a forward reference. 9310 // We will save the location of the GUID needing an update, but 9311 // can only do so once the std::vector is finalized. 9312 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9313 Lex.Lex(); 9314 } else if (parseUInt64(GUID)) 9315 return true; 9316 TypeTests.push_back(GUID); 9317 } while (EatIfPresent(lltok::comma)); 9318 9319 // Now that the TypeTests vector is finalized, it is safe to save the 9320 // locations of any forward GV references that need updating later. 9321 for (auto I : IdToIndexMap) { 9322 auto &Ids = ForwardRefTypeIds[I.first]; 9323 for (auto P : I.second) { 9324 assert(TypeTests[P.first] == 0 && 9325 "Forward referenced type id GUID expected to be 0"); 9326 Ids.emplace_back(&TypeTests[P.first], P.second); 9327 } 9328 } 9329 9330 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9331 return true; 9332 9333 return false; 9334 } 9335 9336 /// VFuncIdList 9337 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9338 bool LLParser::parseVFuncIdList( 9339 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9340 assert(Lex.getKind() == Kind); 9341 Lex.Lex(); 9342 9343 if (parseToken(lltok::colon, "expected ':' here") || 9344 parseToken(lltok::lparen, "expected '(' here")) 9345 return true; 9346 9347 IdToIndexMapType IdToIndexMap; 9348 do { 9349 FunctionSummary::VFuncId VFuncId; 9350 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9351 return true; 9352 VFuncIdList.push_back(VFuncId); 9353 } while (EatIfPresent(lltok::comma)); 9354 9355 if (parseToken(lltok::rparen, "expected ')' here")) 9356 return true; 9357 9358 // Now that the VFuncIdList vector is finalized, it is safe to save the 9359 // locations of any forward GV references that need updating later. 9360 for (auto I : IdToIndexMap) { 9361 auto &Ids = ForwardRefTypeIds[I.first]; 9362 for (auto P : I.second) { 9363 assert(VFuncIdList[P.first].GUID == 0 && 9364 "Forward referenced type id GUID expected to be 0"); 9365 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9366 } 9367 } 9368 9369 return false; 9370 } 9371 9372 /// ConstVCallList 9373 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9374 bool LLParser::parseConstVCallList( 9375 lltok::Kind Kind, 9376 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9377 assert(Lex.getKind() == Kind); 9378 Lex.Lex(); 9379 9380 if (parseToken(lltok::colon, "expected ':' here") || 9381 parseToken(lltok::lparen, "expected '(' here")) 9382 return true; 9383 9384 IdToIndexMapType IdToIndexMap; 9385 do { 9386 FunctionSummary::ConstVCall ConstVCall; 9387 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9388 return true; 9389 ConstVCallList.push_back(ConstVCall); 9390 } while (EatIfPresent(lltok::comma)); 9391 9392 if (parseToken(lltok::rparen, "expected ')' here")) 9393 return true; 9394 9395 // Now that the ConstVCallList vector is finalized, it is safe to save the 9396 // locations of any forward GV references that need updating later. 9397 for (auto I : IdToIndexMap) { 9398 auto &Ids = ForwardRefTypeIds[I.first]; 9399 for (auto P : I.second) { 9400 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9401 "Forward referenced type id GUID expected to be 0"); 9402 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9403 } 9404 } 9405 9406 return false; 9407 } 9408 9409 /// ConstVCall 9410 /// ::= '(' VFuncId ',' Args ')' 9411 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9412 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9413 if (parseToken(lltok::lparen, "expected '(' here") || 9414 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9415 return true; 9416 9417 if (EatIfPresent(lltok::comma)) 9418 if (parseArgs(ConstVCall.Args)) 9419 return true; 9420 9421 if (parseToken(lltok::rparen, "expected ')' here")) 9422 return true; 9423 9424 return false; 9425 } 9426 9427 /// VFuncId 9428 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9429 /// 'offset' ':' UInt64 ')' 9430 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9431 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9432 assert(Lex.getKind() == lltok::kw_vFuncId); 9433 Lex.Lex(); 9434 9435 if (parseToken(lltok::colon, "expected ':' here") || 9436 parseToken(lltok::lparen, "expected '(' here")) 9437 return true; 9438 9439 if (Lex.getKind() == lltok::SummaryID) { 9440 VFuncId.GUID = 0; 9441 unsigned ID = Lex.getUIntVal(); 9442 LocTy Loc = Lex.getLoc(); 9443 // Keep track of the array index needing a forward reference. 9444 // We will save the location of the GUID needing an update, but 9445 // can only do so once the caller's std::vector is finalized. 9446 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9447 Lex.Lex(); 9448 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9449 parseToken(lltok::colon, "expected ':' here") || 9450 parseUInt64(VFuncId.GUID)) 9451 return true; 9452 9453 if (parseToken(lltok::comma, "expected ',' here") || 9454 parseToken(lltok::kw_offset, "expected 'offset' here") || 9455 parseToken(lltok::colon, "expected ':' here") || 9456 parseUInt64(VFuncId.Offset) || 9457 parseToken(lltok::rparen, "expected ')' here")) 9458 return true; 9459 9460 return false; 9461 } 9462 9463 /// GVFlags 9464 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9465 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9466 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9467 /// 'canAutoHide' ':' Flag ',' ')' 9468 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9469 assert(Lex.getKind() == lltok::kw_flags); 9470 Lex.Lex(); 9471 9472 if (parseToken(lltok::colon, "expected ':' here") || 9473 parseToken(lltok::lparen, "expected '(' here")) 9474 return true; 9475 9476 do { 9477 unsigned Flag = 0; 9478 switch (Lex.getKind()) { 9479 case lltok::kw_linkage: 9480 Lex.Lex(); 9481 if (parseToken(lltok::colon, "expected ':'")) 9482 return true; 9483 bool HasLinkage; 9484 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9485 assert(HasLinkage && "Linkage not optional in summary entry"); 9486 Lex.Lex(); 9487 break; 9488 case lltok::kw_visibility: 9489 Lex.Lex(); 9490 if (parseToken(lltok::colon, "expected ':'")) 9491 return true; 9492 parseOptionalVisibility(Flag); 9493 GVFlags.Visibility = Flag; 9494 break; 9495 case lltok::kw_notEligibleToImport: 9496 Lex.Lex(); 9497 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9498 return true; 9499 GVFlags.NotEligibleToImport = Flag; 9500 break; 9501 case lltok::kw_live: 9502 Lex.Lex(); 9503 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9504 return true; 9505 GVFlags.Live = Flag; 9506 break; 9507 case lltok::kw_dsoLocal: 9508 Lex.Lex(); 9509 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9510 return true; 9511 GVFlags.DSOLocal = Flag; 9512 break; 9513 case lltok::kw_canAutoHide: 9514 Lex.Lex(); 9515 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9516 return true; 9517 GVFlags.CanAutoHide = Flag; 9518 break; 9519 default: 9520 return error(Lex.getLoc(), "expected gv flag type"); 9521 } 9522 } while (EatIfPresent(lltok::comma)); 9523 9524 if (parseToken(lltok::rparen, "expected ')' here")) 9525 return true; 9526 9527 return false; 9528 } 9529 9530 /// GVarFlags 9531 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9532 /// ',' 'writeonly' ':' Flag 9533 /// ',' 'constant' ':' Flag ')' 9534 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9535 assert(Lex.getKind() == lltok::kw_varFlags); 9536 Lex.Lex(); 9537 9538 if (parseToken(lltok::colon, "expected ':' here") || 9539 parseToken(lltok::lparen, "expected '(' here")) 9540 return true; 9541 9542 auto ParseRest = [this](unsigned int &Val) { 9543 Lex.Lex(); 9544 if (parseToken(lltok::colon, "expected ':'")) 9545 return true; 9546 return parseFlag(Val); 9547 }; 9548 9549 do { 9550 unsigned Flag = 0; 9551 switch (Lex.getKind()) { 9552 case lltok::kw_readonly: 9553 if (ParseRest(Flag)) 9554 return true; 9555 GVarFlags.MaybeReadOnly = Flag; 9556 break; 9557 case lltok::kw_writeonly: 9558 if (ParseRest(Flag)) 9559 return true; 9560 GVarFlags.MaybeWriteOnly = Flag; 9561 break; 9562 case lltok::kw_constant: 9563 if (ParseRest(Flag)) 9564 return true; 9565 GVarFlags.Constant = Flag; 9566 break; 9567 case lltok::kw_vcall_visibility: 9568 if (ParseRest(Flag)) 9569 return true; 9570 GVarFlags.VCallVisibility = Flag; 9571 break; 9572 default: 9573 return error(Lex.getLoc(), "expected gvar flag type"); 9574 } 9575 } while (EatIfPresent(lltok::comma)); 9576 return parseToken(lltok::rparen, "expected ')' here"); 9577 } 9578 9579 /// ModuleReference 9580 /// ::= 'module' ':' UInt 9581 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9582 // parse module id. 9583 if (parseToken(lltok::kw_module, "expected 'module' here") || 9584 parseToken(lltok::colon, "expected ':' here") || 9585 parseToken(lltok::SummaryID, "expected module ID")) 9586 return true; 9587 9588 unsigned ModuleID = Lex.getUIntVal(); 9589 auto I = ModuleIdMap.find(ModuleID); 9590 // We should have already parsed all module IDs 9591 assert(I != ModuleIdMap.end()); 9592 ModulePath = I->second; 9593 return false; 9594 } 9595 9596 /// GVReference 9597 /// ::= SummaryID 9598 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9599 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9600 if (!ReadOnly) 9601 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9602 if (parseToken(lltok::SummaryID, "expected GV ID")) 9603 return true; 9604 9605 GVId = Lex.getUIntVal(); 9606 // Check if we already have a VI for this GV 9607 if (GVId < NumberedValueInfos.size()) { 9608 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9609 VI = NumberedValueInfos[GVId]; 9610 } else 9611 // We will create a forward reference to the stored location. 9612 VI = ValueInfo(false, FwdVIRef); 9613 9614 if (ReadOnly) 9615 VI.setReadOnly(); 9616 if (WriteOnly) 9617 VI.setWriteOnly(); 9618 return false; 9619 } 9620