1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/CommandLine.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic, and vectors for the vector form of the 42 /// intrinsic (except operands that are marked as always being scalar by 43 /// hasVectorInstrinsicScalarOpd). 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::bswap: // Begin integer bit-manipulation. 47 case Intrinsic::bitreverse: 48 case Intrinsic::ctpop: 49 case Intrinsic::ctlz: 50 case Intrinsic::cttz: 51 case Intrinsic::fshl: 52 case Intrinsic::fshr: 53 case Intrinsic::sadd_sat: 54 case Intrinsic::ssub_sat: 55 case Intrinsic::uadd_sat: 56 case Intrinsic::usub_sat: 57 case Intrinsic::smul_fix: 58 case Intrinsic::smul_fix_sat: 59 case Intrinsic::umul_fix: 60 case Intrinsic::umul_fix_sat: 61 case Intrinsic::sqrt: // Begin floating-point. 62 case Intrinsic::sin: 63 case Intrinsic::cos: 64 case Intrinsic::exp: 65 case Intrinsic::exp2: 66 case Intrinsic::log: 67 case Intrinsic::log10: 68 case Intrinsic::log2: 69 case Intrinsic::fabs: 70 case Intrinsic::minnum: 71 case Intrinsic::maxnum: 72 case Intrinsic::minimum: 73 case Intrinsic::maximum: 74 case Intrinsic::copysign: 75 case Intrinsic::floor: 76 case Intrinsic::ceil: 77 case Intrinsic::trunc: 78 case Intrinsic::rint: 79 case Intrinsic::nearbyint: 80 case Intrinsic::round: 81 case Intrinsic::pow: 82 case Intrinsic::fma: 83 case Intrinsic::fmuladd: 84 case Intrinsic::powi: 85 case Intrinsic::canonicalize: 86 return true; 87 default: 88 return false; 89 } 90 } 91 92 /// Identifies if the vector form of the intrinsic has a scalar operand. 93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 94 unsigned ScalarOpdIdx) { 95 switch (ID) { 96 case Intrinsic::ctlz: 97 case Intrinsic::cttz: 98 case Intrinsic::powi: 99 return (ScalarOpdIdx == 1); 100 case Intrinsic::smul_fix: 101 case Intrinsic::smul_fix_sat: 102 case Intrinsic::umul_fix: 103 case Intrinsic::umul_fix_sat: 104 return (ScalarOpdIdx == 2); 105 default: 106 return false; 107 } 108 } 109 110 /// Returns intrinsic ID for call. 111 /// For the input call instruction it finds mapping intrinsic and returns 112 /// its ID, in case it does not found it return not_intrinsic. 113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 114 const TargetLibraryInfo *TLI) { 115 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 116 if (ID == Intrinsic::not_intrinsic) 117 return Intrinsic::not_intrinsic; 118 119 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 120 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 121 ID == Intrinsic::sideeffect) 122 return ID; 123 return Intrinsic::not_intrinsic; 124 } 125 126 /// Find the operand of the GEP that should be checked for consecutive 127 /// stores. This ignores trailing indices that have no effect on the final 128 /// pointer. 129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 130 const DataLayout &DL = Gep->getModule()->getDataLayout(); 131 unsigned LastOperand = Gep->getNumOperands() - 1; 132 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 133 134 // Walk backwards and try to peel off zeros. 135 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 136 // Find the type we're currently indexing into. 137 gep_type_iterator GEPTI = gep_type_begin(Gep); 138 std::advance(GEPTI, LastOperand - 2); 139 140 // If it's a type with the same allocation size as the result of the GEP we 141 // can peel off the zero index. 142 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 143 break; 144 --LastOperand; 145 } 146 147 return LastOperand; 148 } 149 150 /// If the argument is a GEP, then returns the operand identified by 151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 152 /// operand, it returns that instead. 153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 154 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 155 if (!GEP) 156 return Ptr; 157 158 unsigned InductionOperand = getGEPInductionOperand(GEP); 159 160 // Check that all of the gep indices are uniform except for our induction 161 // operand. 162 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 163 if (i != InductionOperand && 164 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 165 return Ptr; 166 return GEP->getOperand(InductionOperand); 167 } 168 169 /// If a value has only one user that is a CastInst, return it. 170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 171 Value *UniqueCast = nullptr; 172 for (User *U : Ptr->users()) { 173 CastInst *CI = dyn_cast<CastInst>(U); 174 if (CI && CI->getType() == Ty) { 175 if (!UniqueCast) 176 UniqueCast = CI; 177 else 178 return nullptr; 179 } 180 } 181 return UniqueCast; 182 } 183 184 /// Get the stride of a pointer access in a loop. Looks for symbolic 185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 187 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 188 if (!PtrTy || PtrTy->isAggregateType()) 189 return nullptr; 190 191 // Try to remove a gep instruction to make the pointer (actually index at this 192 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 193 // pointer, otherwise, we are analyzing the index. 194 Value *OrigPtr = Ptr; 195 196 // The size of the pointer access. 197 int64_t PtrAccessSize = 1; 198 199 Ptr = stripGetElementPtr(Ptr, SE, Lp); 200 const SCEV *V = SE->getSCEV(Ptr); 201 202 if (Ptr != OrigPtr) 203 // Strip off casts. 204 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 205 V = C->getOperand(); 206 207 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 208 if (!S) 209 return nullptr; 210 211 V = S->getStepRecurrence(*SE); 212 if (!V) 213 return nullptr; 214 215 // Strip off the size of access multiplication if we are still analyzing the 216 // pointer. 217 if (OrigPtr == Ptr) { 218 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 219 if (M->getOperand(0)->getSCEVType() != scConstant) 220 return nullptr; 221 222 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 223 224 // Huge step value - give up. 225 if (APStepVal.getBitWidth() > 64) 226 return nullptr; 227 228 int64_t StepVal = APStepVal.getSExtValue(); 229 if (PtrAccessSize != StepVal) 230 return nullptr; 231 V = M->getOperand(1); 232 } 233 } 234 235 // Strip off casts. 236 Type *StripedOffRecurrenceCast = nullptr; 237 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 238 StripedOffRecurrenceCast = C->getType(); 239 V = C->getOperand(); 240 } 241 242 // Look for the loop invariant symbolic value. 243 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 244 if (!U) 245 return nullptr; 246 247 Value *Stride = U->getValue(); 248 if (!Lp->isLoopInvariant(Stride)) 249 return nullptr; 250 251 // If we have stripped off the recurrence cast we have to make sure that we 252 // return the value that is used in this loop so that we can replace it later. 253 if (StripedOffRecurrenceCast) 254 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 255 256 return Stride; 257 } 258 259 /// Given a vector and an element number, see if the scalar value is 260 /// already around as a register, for example if it were inserted then extracted 261 /// from the vector. 262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 263 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 264 VectorType *VTy = cast<VectorType>(V->getType()); 265 // For fixed-length vector, return undef for out of range access. 266 if (!VTy->isScalable()) { 267 unsigned Width = VTy->getNumElements(); 268 if (EltNo >= Width) 269 return UndefValue::get(VTy->getElementType()); 270 } 271 272 if (Constant *C = dyn_cast<Constant>(V)) 273 return C->getAggregateElement(EltNo); 274 275 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 276 // If this is an insert to a variable element, we don't know what it is. 277 if (!isa<ConstantInt>(III->getOperand(2))) 278 return nullptr; 279 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 280 281 // If this is an insert to the element we are looking for, return the 282 // inserted value. 283 if (EltNo == IIElt) 284 return III->getOperand(1); 285 286 // Otherwise, the insertelement doesn't modify the value, recurse on its 287 // vector input. 288 return findScalarElement(III->getOperand(0), EltNo); 289 } 290 291 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 292 unsigned LHSWidth = 293 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements(); 294 int InEl = SVI->getMaskValue(EltNo); 295 if (InEl < 0) 296 return UndefValue::get(VTy->getElementType()); 297 if (InEl < (int)LHSWidth) 298 return findScalarElement(SVI->getOperand(0), InEl); 299 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 300 } 301 302 // Extract a value from a vector add operation with a constant zero. 303 // TODO: Use getBinOpIdentity() to generalize this. 304 Value *Val; Constant *C; 305 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 306 if (Constant *Elt = C->getAggregateElement(EltNo)) 307 if (Elt->isNullValue()) 308 return findScalarElement(Val, EltNo); 309 310 // Otherwise, we don't know. 311 return nullptr; 312 } 313 314 int llvm::getSplatIndex(ArrayRef<int> Mask) { 315 int SplatIndex = -1; 316 for (int M : Mask) { 317 // Ignore invalid (undefined) mask elements. 318 if (M < 0) 319 continue; 320 321 // There can be only 1 non-negative mask element value if this is a splat. 322 if (SplatIndex != -1 && SplatIndex != M) 323 return -1; 324 325 // Initialize the splat index to the 1st non-negative mask element. 326 SplatIndex = M; 327 } 328 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 329 return SplatIndex; 330 } 331 332 /// Get splat value if the input is a splat vector or return nullptr. 333 /// This function is not fully general. It checks only 2 cases: 334 /// the input value is (1) a splat constant vector or (2) a sequence 335 /// of instructions that broadcasts a scalar at element 0. 336 const llvm::Value *llvm::getSplatValue(const Value *V) { 337 if (isa<VectorType>(V->getType())) 338 if (auto *C = dyn_cast<Constant>(V)) 339 return C->getSplatValue(); 340 341 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 342 Value *Splat; 343 if (match(V, m_ShuffleVector( 344 m_InsertElement(m_Value(), m_Value(Splat), m_ZeroInt()), 345 m_Value(), m_ZeroMask()))) 346 return Splat; 347 348 return nullptr; 349 } 350 351 // This setting is based on its counterpart in value tracking, but it could be 352 // adjusted if needed. 353 const unsigned MaxDepth = 6; 354 355 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 356 assert(Depth <= MaxDepth && "Limit Search Depth"); 357 358 if (isa<VectorType>(V->getType())) { 359 if (isa<UndefValue>(V)) 360 return true; 361 // FIXME: We can allow undefs, but if Index was specified, we may want to 362 // check that the constant is defined at that index. 363 if (auto *C = dyn_cast<Constant>(V)) 364 return C->getSplatValue() != nullptr; 365 } 366 367 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 368 // FIXME: We can safely allow undefs here. If Index was specified, we will 369 // check that the mask elt is defined at the required index. 370 if (!is_splat(Shuf->getShuffleMask())) 371 return false; 372 373 // Match any index. 374 if (Index == -1) 375 return true; 376 377 // Match a specific element. The mask should be defined at and match the 378 // specified index. 379 return Shuf->getMaskValue(Index) == Index; 380 } 381 382 // The remaining tests are all recursive, so bail out if we hit the limit. 383 if (Depth++ == MaxDepth) 384 return false; 385 386 // If both operands of a binop are splats, the result is a splat. 387 Value *X, *Y, *Z; 388 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 389 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 390 391 // If all operands of a select are splats, the result is a splat. 392 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 393 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 394 isSplatValue(Z, Index, Depth); 395 396 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 397 398 return false; 399 } 400 401 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 402 SmallVectorImpl<int> &ScaledMask) { 403 assert(Scale > 0 && "Unexpected scaling factor"); 404 405 // Fast-path: if no scaling, then it is just a copy. 406 if (Scale == 1) { 407 ScaledMask.assign(Mask.begin(), Mask.end()); 408 return; 409 } 410 411 ScaledMask.clear(); 412 for (int MaskElt : Mask) { 413 if (MaskElt >= 0) { 414 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= 415 std::numeric_limits<int32_t>::max() && 416 "Overflowed 32-bits"); 417 } 418 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 419 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 420 } 421 } 422 423 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 424 SmallVectorImpl<int> &ScaledMask) { 425 assert(Scale > 0 && "Unexpected scaling factor"); 426 427 // Fast-path: if no scaling, then it is just a copy. 428 if (Scale == 1) { 429 ScaledMask.assign(Mask.begin(), Mask.end()); 430 return true; 431 } 432 433 // We must map the original elements down evenly to a type with less elements. 434 int NumElts = Mask.size(); 435 if (NumElts % Scale != 0) 436 return false; 437 438 ScaledMask.clear(); 439 ScaledMask.reserve(NumElts / Scale); 440 441 // Step through the input mask by splitting into Scale-sized slices. 442 do { 443 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 444 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 445 446 // The first element of the slice determines how we evaluate this slice. 447 int SliceFront = MaskSlice.front(); 448 if (SliceFront < 0) { 449 // Negative values (undef or other "sentinel" values) must be equal across 450 // the entire slice. 451 if (!is_splat(MaskSlice)) 452 return false; 453 ScaledMask.push_back(SliceFront); 454 } else { 455 // A positive mask element must be cleanly divisible. 456 if (SliceFront % Scale != 0) 457 return false; 458 // Elements of the slice must be consecutive. 459 for (int i = 1; i < Scale; ++i) 460 if (MaskSlice[i] != SliceFront + i) 461 return false; 462 ScaledMask.push_back(SliceFront / Scale); 463 } 464 Mask = Mask.drop_front(Scale); 465 } while (!Mask.empty()); 466 467 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 468 469 // All elements of the original mask can be scaled down to map to the elements 470 // of a mask with wider elements. 471 return true; 472 } 473 474 MapVector<Instruction *, uint64_t> 475 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 476 const TargetTransformInfo *TTI) { 477 478 // DemandedBits will give us every value's live-out bits. But we want 479 // to ensure no extra casts would need to be inserted, so every DAG 480 // of connected values must have the same minimum bitwidth. 481 EquivalenceClasses<Value *> ECs; 482 SmallVector<Value *, 16> Worklist; 483 SmallPtrSet<Value *, 4> Roots; 484 SmallPtrSet<Value *, 16> Visited; 485 DenseMap<Value *, uint64_t> DBits; 486 SmallPtrSet<Instruction *, 4> InstructionSet; 487 MapVector<Instruction *, uint64_t> MinBWs; 488 489 // Determine the roots. We work bottom-up, from truncs or icmps. 490 bool SeenExtFromIllegalType = false; 491 for (auto *BB : Blocks) 492 for (auto &I : *BB) { 493 InstructionSet.insert(&I); 494 495 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 496 !TTI->isTypeLegal(I.getOperand(0)->getType())) 497 SeenExtFromIllegalType = true; 498 499 // Only deal with non-vector integers up to 64-bits wide. 500 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 501 !I.getType()->isVectorTy() && 502 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 503 // Don't make work for ourselves. If we know the loaded type is legal, 504 // don't add it to the worklist. 505 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 506 continue; 507 508 Worklist.push_back(&I); 509 Roots.insert(&I); 510 } 511 } 512 // Early exit. 513 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 514 return MinBWs; 515 516 // Now proceed breadth-first, unioning values together. 517 while (!Worklist.empty()) { 518 Value *Val = Worklist.pop_back_val(); 519 Value *Leader = ECs.getOrInsertLeaderValue(Val); 520 521 if (Visited.count(Val)) 522 continue; 523 Visited.insert(Val); 524 525 // Non-instructions terminate a chain successfully. 526 if (!isa<Instruction>(Val)) 527 continue; 528 Instruction *I = cast<Instruction>(Val); 529 530 // If we encounter a type that is larger than 64 bits, we can't represent 531 // it so bail out. 532 if (DB.getDemandedBits(I).getBitWidth() > 64) 533 return MapVector<Instruction *, uint64_t>(); 534 535 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 536 DBits[Leader] |= V; 537 DBits[I] = V; 538 539 // Casts, loads and instructions outside of our range terminate a chain 540 // successfully. 541 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 542 !InstructionSet.count(I)) 543 continue; 544 545 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 546 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 547 // transform anything that relies on them. 548 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 549 !I->getType()->isIntegerTy()) { 550 DBits[Leader] |= ~0ULL; 551 continue; 552 } 553 554 // We don't modify the types of PHIs. Reductions will already have been 555 // truncated if possible, and inductions' sizes will have been chosen by 556 // indvars. 557 if (isa<PHINode>(I)) 558 continue; 559 560 if (DBits[Leader] == ~0ULL) 561 // All bits demanded, no point continuing. 562 continue; 563 564 for (Value *O : cast<User>(I)->operands()) { 565 ECs.unionSets(Leader, O); 566 Worklist.push_back(O); 567 } 568 } 569 570 // Now we've discovered all values, walk them to see if there are 571 // any users we didn't see. If there are, we can't optimize that 572 // chain. 573 for (auto &I : DBits) 574 for (auto *U : I.first->users()) 575 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 576 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 577 578 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 579 uint64_t LeaderDemandedBits = 0; 580 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 581 LeaderDemandedBits |= DBits[*MI]; 582 583 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 584 llvm::countLeadingZeros(LeaderDemandedBits); 585 // Round up to a power of 2 586 if (!isPowerOf2_64((uint64_t)MinBW)) 587 MinBW = NextPowerOf2(MinBW); 588 589 // We don't modify the types of PHIs. Reductions will already have been 590 // truncated if possible, and inductions' sizes will have been chosen by 591 // indvars. 592 // If we are required to shrink a PHI, abandon this entire equivalence class. 593 bool Abort = false; 594 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 595 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 596 Abort = true; 597 break; 598 } 599 if (Abort) 600 continue; 601 602 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 603 if (!isa<Instruction>(*MI)) 604 continue; 605 Type *Ty = (*MI)->getType(); 606 if (Roots.count(*MI)) 607 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 608 if (MinBW < Ty->getScalarSizeInBits()) 609 MinBWs[cast<Instruction>(*MI)] = MinBW; 610 } 611 } 612 613 return MinBWs; 614 } 615 616 /// Add all access groups in @p AccGroups to @p List. 617 template <typename ListT> 618 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 619 // Interpret an access group as a list containing itself. 620 if (AccGroups->getNumOperands() == 0) { 621 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 622 List.insert(AccGroups); 623 return; 624 } 625 626 for (auto &AccGroupListOp : AccGroups->operands()) { 627 auto *Item = cast<MDNode>(AccGroupListOp.get()); 628 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 629 List.insert(Item); 630 } 631 } 632 633 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 634 if (!AccGroups1) 635 return AccGroups2; 636 if (!AccGroups2) 637 return AccGroups1; 638 if (AccGroups1 == AccGroups2) 639 return AccGroups1; 640 641 SmallSetVector<Metadata *, 4> Union; 642 addToAccessGroupList(Union, AccGroups1); 643 addToAccessGroupList(Union, AccGroups2); 644 645 if (Union.size() == 0) 646 return nullptr; 647 if (Union.size() == 1) 648 return cast<MDNode>(Union.front()); 649 650 LLVMContext &Ctx = AccGroups1->getContext(); 651 return MDNode::get(Ctx, Union.getArrayRef()); 652 } 653 654 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 655 const Instruction *Inst2) { 656 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 657 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 658 659 if (!MayAccessMem1 && !MayAccessMem2) 660 return nullptr; 661 if (!MayAccessMem1) 662 return Inst2->getMetadata(LLVMContext::MD_access_group); 663 if (!MayAccessMem2) 664 return Inst1->getMetadata(LLVMContext::MD_access_group); 665 666 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 667 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 668 if (!MD1 || !MD2) 669 return nullptr; 670 if (MD1 == MD2) 671 return MD1; 672 673 // Use set for scalable 'contains' check. 674 SmallPtrSet<Metadata *, 4> AccGroupSet2; 675 addToAccessGroupList(AccGroupSet2, MD2); 676 677 SmallVector<Metadata *, 4> Intersection; 678 if (MD1->getNumOperands() == 0) { 679 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 680 if (AccGroupSet2.count(MD1)) 681 Intersection.push_back(MD1); 682 } else { 683 for (const MDOperand &Node : MD1->operands()) { 684 auto *Item = cast<MDNode>(Node.get()); 685 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 686 if (AccGroupSet2.count(Item)) 687 Intersection.push_back(Item); 688 } 689 } 690 691 if (Intersection.size() == 0) 692 return nullptr; 693 if (Intersection.size() == 1) 694 return cast<MDNode>(Intersection.front()); 695 696 LLVMContext &Ctx = Inst1->getContext(); 697 return MDNode::get(Ctx, Intersection); 698 } 699 700 /// \returns \p I after propagating metadata from \p VL. 701 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 702 Instruction *I0 = cast<Instruction>(VL[0]); 703 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 704 I0->getAllMetadataOtherThanDebugLoc(Metadata); 705 706 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 707 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 708 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 709 LLVMContext::MD_access_group}) { 710 MDNode *MD = I0->getMetadata(Kind); 711 712 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 713 const Instruction *IJ = cast<Instruction>(VL[J]); 714 MDNode *IMD = IJ->getMetadata(Kind); 715 switch (Kind) { 716 case LLVMContext::MD_tbaa: 717 MD = MDNode::getMostGenericTBAA(MD, IMD); 718 break; 719 case LLVMContext::MD_alias_scope: 720 MD = MDNode::getMostGenericAliasScope(MD, IMD); 721 break; 722 case LLVMContext::MD_fpmath: 723 MD = MDNode::getMostGenericFPMath(MD, IMD); 724 break; 725 case LLVMContext::MD_noalias: 726 case LLVMContext::MD_nontemporal: 727 case LLVMContext::MD_invariant_load: 728 MD = MDNode::intersect(MD, IMD); 729 break; 730 case LLVMContext::MD_access_group: 731 MD = intersectAccessGroups(Inst, IJ); 732 break; 733 default: 734 llvm_unreachable("unhandled metadata"); 735 } 736 } 737 738 Inst->setMetadata(Kind, MD); 739 } 740 741 return Inst; 742 } 743 744 Constant * 745 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 746 const InterleaveGroup<Instruction> &Group) { 747 // All 1's means mask is not needed. 748 if (Group.getNumMembers() == Group.getFactor()) 749 return nullptr; 750 751 // TODO: support reversed access. 752 assert(!Group.isReverse() && "Reversed group not supported."); 753 754 SmallVector<Constant *, 16> Mask; 755 for (unsigned i = 0; i < VF; i++) 756 for (unsigned j = 0; j < Group.getFactor(); ++j) { 757 unsigned HasMember = Group.getMember(j) ? 1 : 0; 758 Mask.push_back(Builder.getInt1(HasMember)); 759 } 760 761 return ConstantVector::get(Mask); 762 } 763 764 Constant *llvm::createReplicatedMask(IRBuilderBase &Builder, 765 unsigned ReplicationFactor, unsigned VF) { 766 SmallVector<Constant *, 16> MaskVec; 767 for (unsigned i = 0; i < VF; i++) 768 for (unsigned j = 0; j < ReplicationFactor; j++) 769 MaskVec.push_back(Builder.getInt32(i)); 770 771 return ConstantVector::get(MaskVec); 772 } 773 774 Constant *llvm::createInterleaveMask(IRBuilderBase &Builder, unsigned VF, 775 unsigned NumVecs) { 776 SmallVector<Constant *, 16> Mask; 777 for (unsigned i = 0; i < VF; i++) 778 for (unsigned j = 0; j < NumVecs; j++) 779 Mask.push_back(Builder.getInt32(j * VF + i)); 780 781 return ConstantVector::get(Mask); 782 } 783 784 Constant *llvm::createStrideMask(IRBuilderBase &Builder, unsigned Start, 785 unsigned Stride, unsigned VF) { 786 SmallVector<Constant *, 16> Mask; 787 for (unsigned i = 0; i < VF; i++) 788 Mask.push_back(Builder.getInt32(Start + i * Stride)); 789 790 return ConstantVector::get(Mask); 791 } 792 793 Constant *llvm::createSequentialMask(IRBuilderBase &Builder, unsigned Start, 794 unsigned NumInts, unsigned NumUndefs) { 795 SmallVector<Constant *, 16> Mask; 796 for (unsigned i = 0; i < NumInts; i++) 797 Mask.push_back(Builder.getInt32(Start + i)); 798 799 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 800 for (unsigned i = 0; i < NumUndefs; i++) 801 Mask.push_back(Undef); 802 803 return ConstantVector::get(Mask); 804 } 805 806 /// A helper function for concatenating vectors. This function concatenates two 807 /// vectors having the same element type. If the second vector has fewer 808 /// elements than the first, it is padded with undefs. 809 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 810 Value *V2) { 811 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 812 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 813 assert(VecTy1 && VecTy2 && 814 VecTy1->getScalarType() == VecTy2->getScalarType() && 815 "Expect two vectors with the same element type"); 816 817 unsigned NumElts1 = VecTy1->getNumElements(); 818 unsigned NumElts2 = VecTy2->getNumElements(); 819 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 820 821 if (NumElts1 > NumElts2) { 822 // Extend with UNDEFs. 823 Constant *ExtMask = 824 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 825 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 826 } 827 828 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 829 return Builder.CreateShuffleVector(V1, V2, Mask); 830 } 831 832 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 833 ArrayRef<Value *> Vecs) { 834 unsigned NumVecs = Vecs.size(); 835 assert(NumVecs > 1 && "Should be at least two vectors"); 836 837 SmallVector<Value *, 8> ResList; 838 ResList.append(Vecs.begin(), Vecs.end()); 839 do { 840 SmallVector<Value *, 8> TmpList; 841 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 842 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 843 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 844 "Only the last vector may have a different type"); 845 846 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 847 } 848 849 // Push the last vector if the total number of vectors is odd. 850 if (NumVecs % 2 != 0) 851 TmpList.push_back(ResList[NumVecs - 1]); 852 853 ResList = TmpList; 854 NumVecs = ResList.size(); 855 } while (NumVecs > 1); 856 857 return ResList[0]; 858 } 859 860 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 861 auto *ConstMask = dyn_cast<Constant>(Mask); 862 if (!ConstMask) 863 return false; 864 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 865 return true; 866 for (unsigned I = 0, 867 E = cast<VectorType>(ConstMask->getType())->getNumElements(); 868 I != E; ++I) { 869 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 870 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 871 continue; 872 return false; 873 } 874 return true; 875 } 876 877 878 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 879 auto *ConstMask = dyn_cast<Constant>(Mask); 880 if (!ConstMask) 881 return false; 882 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 883 return true; 884 for (unsigned I = 0, 885 E = cast<VectorType>(ConstMask->getType())->getNumElements(); 886 I != E; ++I) { 887 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 888 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 889 continue; 890 return false; 891 } 892 return true; 893 } 894 895 /// TODO: This is a lot like known bits, but for 896 /// vectors. Is there something we can common this with? 897 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 898 899 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements(); 900 APInt DemandedElts = APInt::getAllOnesValue(VWidth); 901 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 902 for (unsigned i = 0; i < VWidth; i++) 903 if (CV->getAggregateElement(i)->isNullValue()) 904 DemandedElts.clearBit(i); 905 return DemandedElts; 906 } 907 908 bool InterleavedAccessInfo::isStrided(int Stride) { 909 unsigned Factor = std::abs(Stride); 910 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 911 } 912 913 void InterleavedAccessInfo::collectConstStrideAccesses( 914 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 915 const ValueToValueMap &Strides) { 916 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 917 918 // Since it's desired that the load/store instructions be maintained in 919 // "program order" for the interleaved access analysis, we have to visit the 920 // blocks in the loop in reverse postorder (i.e., in a topological order). 921 // Such an ordering will ensure that any load/store that may be executed 922 // before a second load/store will precede the second load/store in 923 // AccessStrideInfo. 924 LoopBlocksDFS DFS(TheLoop); 925 DFS.perform(LI); 926 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 927 for (auto &I : *BB) { 928 auto *LI = dyn_cast<LoadInst>(&I); 929 auto *SI = dyn_cast<StoreInst>(&I); 930 if (!LI && !SI) 931 continue; 932 933 Value *Ptr = getLoadStorePointerOperand(&I); 934 // We don't check wrapping here because we don't know yet if Ptr will be 935 // part of a full group or a group with gaps. Checking wrapping for all 936 // pointers (even those that end up in groups with no gaps) will be overly 937 // conservative. For full groups, wrapping should be ok since if we would 938 // wrap around the address space we would do a memory access at nullptr 939 // even without the transformation. The wrapping checks are therefore 940 // deferred until after we've formed the interleaved groups. 941 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 942 /*Assume=*/true, /*ShouldCheckWrap=*/false); 943 944 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 945 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 946 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 947 948 // An alignment of 0 means target ABI alignment. 949 MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I)); 950 if (!Alignment) 951 Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType())); 952 953 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment); 954 } 955 } 956 957 // Analyze interleaved accesses and collect them into interleaved load and 958 // store groups. 959 // 960 // When generating code for an interleaved load group, we effectively hoist all 961 // loads in the group to the location of the first load in program order. When 962 // generating code for an interleaved store group, we sink all stores to the 963 // location of the last store. This code motion can change the order of load 964 // and store instructions and may break dependences. 965 // 966 // The code generation strategy mentioned above ensures that we won't violate 967 // any write-after-read (WAR) dependences. 968 // 969 // E.g., for the WAR dependence: a = A[i]; // (1) 970 // A[i] = b; // (2) 971 // 972 // The store group of (2) is always inserted at or below (2), and the load 973 // group of (1) is always inserted at or above (1). Thus, the instructions will 974 // never be reordered. All other dependences are checked to ensure the 975 // correctness of the instruction reordering. 976 // 977 // The algorithm visits all memory accesses in the loop in bottom-up program 978 // order. Program order is established by traversing the blocks in the loop in 979 // reverse postorder when collecting the accesses. 980 // 981 // We visit the memory accesses in bottom-up order because it can simplify the 982 // construction of store groups in the presence of write-after-write (WAW) 983 // dependences. 984 // 985 // E.g., for the WAW dependence: A[i] = a; // (1) 986 // A[i] = b; // (2) 987 // A[i + 1] = c; // (3) 988 // 989 // We will first create a store group with (3) and (2). (1) can't be added to 990 // this group because it and (2) are dependent. However, (1) can be grouped 991 // with other accesses that may precede it in program order. Note that a 992 // bottom-up order does not imply that WAW dependences should not be checked. 993 void InterleavedAccessInfo::analyzeInterleaving( 994 bool EnablePredicatedInterleavedMemAccesses) { 995 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 996 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 997 998 // Holds all accesses with a constant stride. 999 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1000 collectConstStrideAccesses(AccessStrideInfo, Strides); 1001 1002 if (AccessStrideInfo.empty()) 1003 return; 1004 1005 // Collect the dependences in the loop. 1006 collectDependences(); 1007 1008 // Holds all interleaved store groups temporarily. 1009 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1010 // Holds all interleaved load groups temporarily. 1011 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1012 1013 // Search in bottom-up program order for pairs of accesses (A and B) that can 1014 // form interleaved load or store groups. In the algorithm below, access A 1015 // precedes access B in program order. We initialize a group for B in the 1016 // outer loop of the algorithm, and then in the inner loop, we attempt to 1017 // insert each A into B's group if: 1018 // 1019 // 1. A and B have the same stride, 1020 // 2. A and B have the same memory object size, and 1021 // 3. A belongs in B's group according to its distance from B. 1022 // 1023 // Special care is taken to ensure group formation will not break any 1024 // dependences. 1025 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1026 BI != E; ++BI) { 1027 Instruction *B = BI->first; 1028 StrideDescriptor DesB = BI->second; 1029 1030 // Initialize a group for B if it has an allowable stride. Even if we don't 1031 // create a group for B, we continue with the bottom-up algorithm to ensure 1032 // we don't break any of B's dependences. 1033 InterleaveGroup<Instruction> *Group = nullptr; 1034 if (isStrided(DesB.Stride) && 1035 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1036 Group = getInterleaveGroup(B); 1037 if (!Group) { 1038 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1039 << '\n'); 1040 Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1041 } 1042 if (B->mayWriteToMemory()) 1043 StoreGroups.insert(Group); 1044 else 1045 LoadGroups.insert(Group); 1046 } 1047 1048 for (auto AI = std::next(BI); AI != E; ++AI) { 1049 Instruction *A = AI->first; 1050 StrideDescriptor DesA = AI->second; 1051 1052 // Our code motion strategy implies that we can't have dependences 1053 // between accesses in an interleaved group and other accesses located 1054 // between the first and last member of the group. Note that this also 1055 // means that a group can't have more than one member at a given offset. 1056 // The accesses in a group can have dependences with other accesses, but 1057 // we must ensure we don't extend the boundaries of the group such that 1058 // we encompass those dependent accesses. 1059 // 1060 // For example, assume we have the sequence of accesses shown below in a 1061 // stride-2 loop: 1062 // 1063 // (1, 2) is a group | A[i] = a; // (1) 1064 // | A[i-1] = b; // (2) | 1065 // A[i-3] = c; // (3) 1066 // A[i] = d; // (4) | (2, 4) is not a group 1067 // 1068 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1069 // but not with (4). If we did, the dependent access (3) would be within 1070 // the boundaries of the (2, 4) group. 1071 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 1072 // If a dependence exists and A is already in a group, we know that A 1073 // must be a store since A precedes B and WAR dependences are allowed. 1074 // Thus, A would be sunk below B. We release A's group to prevent this 1075 // illegal code motion. A will then be free to form another group with 1076 // instructions that precede it. 1077 if (isInterleaved(A)) { 1078 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 1079 1080 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1081 "dependence between " << *A << " and "<< *B << '\n'); 1082 1083 StoreGroups.remove(StoreGroup); 1084 releaseGroup(StoreGroup); 1085 } 1086 1087 // If a dependence exists and A is not already in a group (or it was 1088 // and we just released it), B might be hoisted above A (if B is a 1089 // load) or another store might be sunk below A (if B is a store). In 1090 // either case, we can't add additional instructions to B's group. B 1091 // will only form a group with instructions that it precedes. 1092 break; 1093 } 1094 1095 // At this point, we've checked for illegal code motion. If either A or B 1096 // isn't strided, there's nothing left to do. 1097 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1098 continue; 1099 1100 // Ignore A if it's already in a group or isn't the same kind of memory 1101 // operation as B. 1102 // Note that mayReadFromMemory() isn't mutually exclusive to 1103 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1104 // here, canVectorizeMemory() should have returned false - except for the 1105 // case we asked for optimization remarks. 1106 if (isInterleaved(A) || 1107 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1108 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1109 continue; 1110 1111 // Check rules 1 and 2. Ignore A if its stride or size is different from 1112 // that of B. 1113 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1114 continue; 1115 1116 // Ignore A if the memory object of A and B don't belong to the same 1117 // address space 1118 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1119 continue; 1120 1121 // Calculate the distance from A to B. 1122 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1123 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1124 if (!DistToB) 1125 continue; 1126 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1127 1128 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1129 // size. 1130 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1131 continue; 1132 1133 // All members of a predicated interleave-group must have the same predicate, 1134 // and currently must reside in the same BB. 1135 BasicBlock *BlockA = A->getParent(); 1136 BasicBlock *BlockB = B->getParent(); 1137 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1138 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1139 continue; 1140 1141 // The index of A is the index of B plus A's distance to B in multiples 1142 // of the size. 1143 int IndexA = 1144 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1145 1146 // Try to insert A into B's group. 1147 if (Group->insertMember(A, IndexA, DesA.Alignment)) { 1148 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1149 << " into the interleave group with" << *B 1150 << '\n'); 1151 InterleaveGroupMap[A] = Group; 1152 1153 // Set the first load in program order as the insert position. 1154 if (A->mayReadFromMemory()) 1155 Group->setInsertPos(A); 1156 } 1157 } // Iteration over A accesses. 1158 } // Iteration over B accesses. 1159 1160 // Remove interleaved store groups with gaps. 1161 for (auto *Group : StoreGroups) 1162 if (Group->getNumMembers() != Group->getFactor()) { 1163 LLVM_DEBUG( 1164 dbgs() << "LV: Invalidate candidate interleaved store group due " 1165 "to gaps.\n"); 1166 releaseGroup(Group); 1167 } 1168 // Remove interleaved groups with gaps (currently only loads) whose memory 1169 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1170 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1171 // not check wrapping (see documentation there). 1172 // FORNOW we use Assume=false; 1173 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1174 // of runtime SCEV assumptions checks (thereby potentially failing to 1175 // vectorize altogether). 1176 // Additional optional optimizations: 1177 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1178 // wrap then we can deduce that all pointers in the group don't wrap. 1179 // This means that we can forcefully peel the loop in order to only have to 1180 // check the first pointer for no-wrap. When we'll change to use Assume=true 1181 // we'll only need at most one runtime check per interleaved group. 1182 for (auto *Group : LoadGroups) { 1183 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1184 // load would wrap around the address space we would do a memory access at 1185 // nullptr even without the transformation. 1186 if (Group->getNumMembers() == Group->getFactor()) 1187 continue; 1188 1189 // Case 2: If first and last members of the group don't wrap this implies 1190 // that all the pointers in the group don't wrap. 1191 // So we check only group member 0 (which is always guaranteed to exist), 1192 // and group member Factor - 1; If the latter doesn't exist we rely on 1193 // peeling (if it is a non-reversed accsess -- see Case 3). 1194 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 1195 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 1196 /*ShouldCheckWrap=*/true)) { 1197 LLVM_DEBUG( 1198 dbgs() << "LV: Invalidate candidate interleaved group due to " 1199 "first group member potentially pointer-wrapping.\n"); 1200 releaseGroup(Group); 1201 continue; 1202 } 1203 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 1204 if (LastMember) { 1205 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 1206 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 1207 /*ShouldCheckWrap=*/true)) { 1208 LLVM_DEBUG( 1209 dbgs() << "LV: Invalidate candidate interleaved group due to " 1210 "last group member potentially pointer-wrapping.\n"); 1211 releaseGroup(Group); 1212 } 1213 } else { 1214 // Case 3: A non-reversed interleaved load group with gaps: We need 1215 // to execute at least one scalar epilogue iteration. This will ensure 1216 // we don't speculatively access memory out-of-bounds. We only need 1217 // to look for a member at index factor - 1, since every group must have 1218 // a member at index zero. 1219 if (Group->isReverse()) { 1220 LLVM_DEBUG( 1221 dbgs() << "LV: Invalidate candidate interleaved group due to " 1222 "a reverse access with gaps.\n"); 1223 releaseGroup(Group); 1224 continue; 1225 } 1226 LLVM_DEBUG( 1227 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1228 RequiresScalarEpilogue = true; 1229 } 1230 } 1231 } 1232 1233 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1234 // If no group had triggered the requirement to create an epilogue loop, 1235 // there is nothing to do. 1236 if (!requiresScalarEpilogue()) 1237 return; 1238 1239 // Avoid releasing a Group twice. 1240 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; 1241 for (auto &I : InterleaveGroupMap) { 1242 InterleaveGroup<Instruction> *Group = I.second; 1243 if (Group->requiresScalarEpilogue()) 1244 DelSet.insert(Group); 1245 } 1246 for (auto *Ptr : DelSet) { 1247 LLVM_DEBUG( 1248 dbgs() 1249 << "LV: Invalidate candidate interleaved group due to gaps that " 1250 "require a scalar epilogue (not allowed under optsize) and cannot " 1251 "be masked (not enabled). \n"); 1252 releaseGroup(Ptr); 1253 } 1254 1255 RequiresScalarEpilogue = false; 1256 } 1257 1258 template <typename InstT> 1259 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1260 llvm_unreachable("addMetadata can only be used for Instruction"); 1261 } 1262 1263 namespace llvm { 1264 template <> 1265 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1266 SmallVector<Value *, 4> VL; 1267 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1268 [](std::pair<int, Instruction *> p) { return p.second; }); 1269 propagateMetadata(NewInst, VL); 1270 } 1271 } 1272 1273 void VFABI::getVectorVariantNames( 1274 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1275 const StringRef S = 1276 CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName) 1277 .getValueAsString(); 1278 if (S.empty()) 1279 return; 1280 1281 SmallVector<StringRef, 8> ListAttr; 1282 S.split(ListAttr, ","); 1283 1284 for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1285 #ifndef NDEBUG 1286 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); 1287 Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule())); 1288 assert(Info.hasValue() && "Invalid name for a VFABI variant."); 1289 assert(CI.getModule()->getFunction(Info.getValue().VectorName) && 1290 "Vector function is missing."); 1291 #endif 1292 VariantMappings.push_back(std::string(S)); 1293 } 1294 } 1295 1296 bool VFShape::hasValidParameterList() const { 1297 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1298 ++Pos) { 1299 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1300 1301 switch (Parameters[Pos].ParamKind) { 1302 default: // Nothing to check. 1303 break; 1304 case VFParamKind::OMP_Linear: 1305 case VFParamKind::OMP_LinearRef: 1306 case VFParamKind::OMP_LinearVal: 1307 case VFParamKind::OMP_LinearUVal: 1308 // Compile time linear steps must be non-zero. 1309 if (Parameters[Pos].LinearStepOrPos == 0) 1310 return false; 1311 break; 1312 case VFParamKind::OMP_LinearPos: 1313 case VFParamKind::OMP_LinearRefPos: 1314 case VFParamKind::OMP_LinearValPos: 1315 case VFParamKind::OMP_LinearUValPos: 1316 // The runtime linear step must be referring to some other 1317 // parameters in the signature. 1318 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1319 return false; 1320 // The linear step parameter must be marked as uniform. 1321 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1322 VFParamKind::OMP_Uniform) 1323 return false; 1324 // The linear step parameter can't point at itself. 1325 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1326 return false; 1327 break; 1328 case VFParamKind::GlobalPredicate: 1329 // The global predicate must be the unique. Can be placed anywhere in the 1330 // signature. 1331 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1332 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1333 return false; 1334 break; 1335 } 1336 } 1337 return true; 1338 } 1339