1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::bswap: // Begin integer bit-manipulation.
47   case Intrinsic::bitreverse:
48   case Intrinsic::ctpop:
49   case Intrinsic::ctlz:
50   case Intrinsic::cttz:
51   case Intrinsic::fshl:
52   case Intrinsic::fshr:
53   case Intrinsic::sadd_sat:
54   case Intrinsic::ssub_sat:
55   case Intrinsic::uadd_sat:
56   case Intrinsic::usub_sat:
57   case Intrinsic::smul_fix:
58   case Intrinsic::smul_fix_sat:
59   case Intrinsic::umul_fix:
60   case Intrinsic::umul_fix_sat:
61   case Intrinsic::sqrt: // Begin floating-point.
62   case Intrinsic::sin:
63   case Intrinsic::cos:
64   case Intrinsic::exp:
65   case Intrinsic::exp2:
66   case Intrinsic::log:
67   case Intrinsic::log10:
68   case Intrinsic::log2:
69   case Intrinsic::fabs:
70   case Intrinsic::minnum:
71   case Intrinsic::maxnum:
72   case Intrinsic::minimum:
73   case Intrinsic::maximum:
74   case Intrinsic::copysign:
75   case Intrinsic::floor:
76   case Intrinsic::ceil:
77   case Intrinsic::trunc:
78   case Intrinsic::rint:
79   case Intrinsic::nearbyint:
80   case Intrinsic::round:
81   case Intrinsic::pow:
82   case Intrinsic::fma:
83   case Intrinsic::fmuladd:
84   case Intrinsic::powi:
85   case Intrinsic::canonicalize:
86     return true;
87   default:
88     return false;
89   }
90 }
91 
92 /// Identifies if the vector form of the intrinsic has a scalar operand.
93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
94                                         unsigned ScalarOpdIdx) {
95   switch (ID) {
96   case Intrinsic::ctlz:
97   case Intrinsic::cttz:
98   case Intrinsic::powi:
99     return (ScalarOpdIdx == 1);
100   case Intrinsic::smul_fix:
101   case Intrinsic::smul_fix_sat:
102   case Intrinsic::umul_fix:
103   case Intrinsic::umul_fix_sat:
104     return (ScalarOpdIdx == 2);
105   default:
106     return false;
107   }
108 }
109 
110 /// Returns intrinsic ID for call.
111 /// For the input call instruction it finds mapping intrinsic and returns
112 /// its ID, in case it does not found it return not_intrinsic.
113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
114                                                 const TargetLibraryInfo *TLI) {
115   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
116   if (ID == Intrinsic::not_intrinsic)
117     return Intrinsic::not_intrinsic;
118 
119   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
120       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
121       ID == Intrinsic::sideeffect)
122     return ID;
123   return Intrinsic::not_intrinsic;
124 }
125 
126 /// Find the operand of the GEP that should be checked for consecutive
127 /// stores. This ignores trailing indices that have no effect on the final
128 /// pointer.
129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
130   const DataLayout &DL = Gep->getModule()->getDataLayout();
131   unsigned LastOperand = Gep->getNumOperands() - 1;
132   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
133 
134   // Walk backwards and try to peel off zeros.
135   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
136     // Find the type we're currently indexing into.
137     gep_type_iterator GEPTI = gep_type_begin(Gep);
138     std::advance(GEPTI, LastOperand - 2);
139 
140     // If it's a type with the same allocation size as the result of the GEP we
141     // can peel off the zero index.
142     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
143       break;
144     --LastOperand;
145   }
146 
147   return LastOperand;
148 }
149 
150 /// If the argument is a GEP, then returns the operand identified by
151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
152 /// operand, it returns that instead.
153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
154   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
155   if (!GEP)
156     return Ptr;
157 
158   unsigned InductionOperand = getGEPInductionOperand(GEP);
159 
160   // Check that all of the gep indices are uniform except for our induction
161   // operand.
162   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
163     if (i != InductionOperand &&
164         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
165       return Ptr;
166   return GEP->getOperand(InductionOperand);
167 }
168 
169 /// If a value has only one user that is a CastInst, return it.
170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
171   Value *UniqueCast = nullptr;
172   for (User *U : Ptr->users()) {
173     CastInst *CI = dyn_cast<CastInst>(U);
174     if (CI && CI->getType() == Ty) {
175       if (!UniqueCast)
176         UniqueCast = CI;
177       else
178         return nullptr;
179     }
180   }
181   return UniqueCast;
182 }
183 
184 /// Get the stride of a pointer access in a loop. Looks for symbolic
185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
187   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
188   if (!PtrTy || PtrTy->isAggregateType())
189     return nullptr;
190 
191   // Try to remove a gep instruction to make the pointer (actually index at this
192   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
193   // pointer, otherwise, we are analyzing the index.
194   Value *OrigPtr = Ptr;
195 
196   // The size of the pointer access.
197   int64_t PtrAccessSize = 1;
198 
199   Ptr = stripGetElementPtr(Ptr, SE, Lp);
200   const SCEV *V = SE->getSCEV(Ptr);
201 
202   if (Ptr != OrigPtr)
203     // Strip off casts.
204     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
205       V = C->getOperand();
206 
207   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
208   if (!S)
209     return nullptr;
210 
211   V = S->getStepRecurrence(*SE);
212   if (!V)
213     return nullptr;
214 
215   // Strip off the size of access multiplication if we are still analyzing the
216   // pointer.
217   if (OrigPtr == Ptr) {
218     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
219       if (M->getOperand(0)->getSCEVType() != scConstant)
220         return nullptr;
221 
222       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
223 
224       // Huge step value - give up.
225       if (APStepVal.getBitWidth() > 64)
226         return nullptr;
227 
228       int64_t StepVal = APStepVal.getSExtValue();
229       if (PtrAccessSize != StepVal)
230         return nullptr;
231       V = M->getOperand(1);
232     }
233   }
234 
235   // Strip off casts.
236   Type *StripedOffRecurrenceCast = nullptr;
237   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
238     StripedOffRecurrenceCast = C->getType();
239     V = C->getOperand();
240   }
241 
242   // Look for the loop invariant symbolic value.
243   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
244   if (!U)
245     return nullptr;
246 
247   Value *Stride = U->getValue();
248   if (!Lp->isLoopInvariant(Stride))
249     return nullptr;
250 
251   // If we have stripped off the recurrence cast we have to make sure that we
252   // return the value that is used in this loop so that we can replace it later.
253   if (StripedOffRecurrenceCast)
254     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
255 
256   return Stride;
257 }
258 
259 /// Given a vector and an element number, see if the scalar value is
260 /// already around as a register, for example if it were inserted then extracted
261 /// from the vector.
262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
263   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
264   VectorType *VTy = cast<VectorType>(V->getType());
265   // For fixed-length vector, return undef for out of range access.
266   if (!V->getType()->getVectorIsScalable()) {
267     unsigned Width = VTy->getNumElements();
268     if (EltNo >= Width)
269       return UndefValue::get(VTy->getElementType());
270   }
271 
272   if (Constant *C = dyn_cast<Constant>(V))
273     return C->getAggregateElement(EltNo);
274 
275   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
276     // If this is an insert to a variable element, we don't know what it is.
277     if (!isa<ConstantInt>(III->getOperand(2)))
278       return nullptr;
279     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
280 
281     // If this is an insert to the element we are looking for, return the
282     // inserted value.
283     if (EltNo == IIElt)
284       return III->getOperand(1);
285 
286     // Otherwise, the insertelement doesn't modify the value, recurse on its
287     // vector input.
288     return findScalarElement(III->getOperand(0), EltNo);
289   }
290 
291   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
292     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
293     int InEl = SVI->getMaskValue(EltNo);
294     if (InEl < 0)
295       return UndefValue::get(VTy->getElementType());
296     if (InEl < (int)LHSWidth)
297       return findScalarElement(SVI->getOperand(0), InEl);
298     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
299   }
300 
301   // Extract a value from a vector add operation with a constant zero.
302   // TODO: Use getBinOpIdentity() to generalize this.
303   Value *Val; Constant *C;
304   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
305     if (Constant *Elt = C->getAggregateElement(EltNo))
306       if (Elt->isNullValue())
307         return findScalarElement(Val, EltNo);
308 
309   // Otherwise, we don't know.
310   return nullptr;
311 }
312 
313 int llvm::getSplatIndex(ArrayRef<int> Mask) {
314   int SplatIndex = -1;
315   for (int M : Mask) {
316     // Ignore invalid (undefined) mask elements.
317     if (M < 0)
318       continue;
319 
320     // There can be only 1 non-negative mask element value if this is a splat.
321     if (SplatIndex != -1 && SplatIndex != M)
322       return -1;
323 
324     // Initialize the splat index to the 1st non-negative mask element.
325     SplatIndex = M;
326   }
327   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
328   return SplatIndex;
329 }
330 
331 /// Get splat value if the input is a splat vector or return nullptr.
332 /// This function is not fully general. It checks only 2 cases:
333 /// the input value is (1) a splat constant vector or (2) a sequence
334 /// of instructions that broadcasts a scalar at element 0.
335 const llvm::Value *llvm::getSplatValue(const Value *V) {
336   if (isa<VectorType>(V->getType()))
337     if (auto *C = dyn_cast<Constant>(V))
338       return C->getSplatValue();
339 
340   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
341   Value *Splat;
342   if (match(V, m_ShuffleVector(
343                    m_InsertElement(m_Value(), m_Value(Splat), m_ZeroInt()),
344                    m_Value(), m_ZeroMask())))
345     return Splat;
346 
347   return nullptr;
348 }
349 
350 // This setting is based on its counterpart in value tracking, but it could be
351 // adjusted if needed.
352 const unsigned MaxDepth = 6;
353 
354 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
355   assert(Depth <= MaxDepth && "Limit Search Depth");
356 
357   if (isa<VectorType>(V->getType())) {
358     if (isa<UndefValue>(V))
359       return true;
360     // FIXME: We can allow undefs, but if Index was specified, we may want to
361     //        check that the constant is defined at that index.
362     if (auto *C = dyn_cast<Constant>(V))
363       return C->getSplatValue() != nullptr;
364   }
365 
366   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
367     // FIXME: We can safely allow undefs here. If Index was specified, we will
368     //        check that the mask elt is defined at the required index.
369     if (!is_splat(Shuf->getShuffleMask()))
370       return false;
371 
372     // Match any index.
373     if (Index == -1)
374       return true;
375 
376     // Match a specific element. The mask should be defined at and match the
377     // specified index.
378     return Shuf->getMaskValue(Index) == Index;
379   }
380 
381   // The remaining tests are all recursive, so bail out if we hit the limit.
382   if (Depth++ == MaxDepth)
383     return false;
384 
385   // If both operands of a binop are splats, the result is a splat.
386   Value *X, *Y, *Z;
387   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
388     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
389 
390   // If all operands of a select are splats, the result is a splat.
391   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
392     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
393            isSplatValue(Z, Index, Depth);
394 
395   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
396 
397   return false;
398 }
399 
400 void llvm::scaleShuffleMask(size_t Scale, ArrayRef<int> Mask,
401                             SmallVectorImpl<int> &ScaledMask) {
402   assert(Scale > 0 && "Unexpected scaling factor");
403 
404   // Fast-path: if no scaling, then it is just a copy.
405   if (Scale == 1) {
406     ScaledMask.assign(Mask.begin(), Mask.end());
407     return;
408   }
409 
410   ScaledMask.clear();
411   for (int MaskElt : Mask)
412     for (int ScaleElt = 0; ScaleElt != (int)Scale; ++ScaleElt)
413       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + ScaleElt);
414 }
415 
416 MapVector<Instruction *, uint64_t>
417 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
418                                const TargetTransformInfo *TTI) {
419 
420   // DemandedBits will give us every value's live-out bits. But we want
421   // to ensure no extra casts would need to be inserted, so every DAG
422   // of connected values must have the same minimum bitwidth.
423   EquivalenceClasses<Value *> ECs;
424   SmallVector<Value *, 16> Worklist;
425   SmallPtrSet<Value *, 4> Roots;
426   SmallPtrSet<Value *, 16> Visited;
427   DenseMap<Value *, uint64_t> DBits;
428   SmallPtrSet<Instruction *, 4> InstructionSet;
429   MapVector<Instruction *, uint64_t> MinBWs;
430 
431   // Determine the roots. We work bottom-up, from truncs or icmps.
432   bool SeenExtFromIllegalType = false;
433   for (auto *BB : Blocks)
434     for (auto &I : *BB) {
435       InstructionSet.insert(&I);
436 
437       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
438           !TTI->isTypeLegal(I.getOperand(0)->getType()))
439         SeenExtFromIllegalType = true;
440 
441       // Only deal with non-vector integers up to 64-bits wide.
442       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
443           !I.getType()->isVectorTy() &&
444           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
445         // Don't make work for ourselves. If we know the loaded type is legal,
446         // don't add it to the worklist.
447         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
448           continue;
449 
450         Worklist.push_back(&I);
451         Roots.insert(&I);
452       }
453     }
454   // Early exit.
455   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
456     return MinBWs;
457 
458   // Now proceed breadth-first, unioning values together.
459   while (!Worklist.empty()) {
460     Value *Val = Worklist.pop_back_val();
461     Value *Leader = ECs.getOrInsertLeaderValue(Val);
462 
463     if (Visited.count(Val))
464       continue;
465     Visited.insert(Val);
466 
467     // Non-instructions terminate a chain successfully.
468     if (!isa<Instruction>(Val))
469       continue;
470     Instruction *I = cast<Instruction>(Val);
471 
472     // If we encounter a type that is larger than 64 bits, we can't represent
473     // it so bail out.
474     if (DB.getDemandedBits(I).getBitWidth() > 64)
475       return MapVector<Instruction *, uint64_t>();
476 
477     uint64_t V = DB.getDemandedBits(I).getZExtValue();
478     DBits[Leader] |= V;
479     DBits[I] = V;
480 
481     // Casts, loads and instructions outside of our range terminate a chain
482     // successfully.
483     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
484         !InstructionSet.count(I))
485       continue;
486 
487     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
488     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
489     // transform anything that relies on them.
490     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
491         !I->getType()->isIntegerTy()) {
492       DBits[Leader] |= ~0ULL;
493       continue;
494     }
495 
496     // We don't modify the types of PHIs. Reductions will already have been
497     // truncated if possible, and inductions' sizes will have been chosen by
498     // indvars.
499     if (isa<PHINode>(I))
500       continue;
501 
502     if (DBits[Leader] == ~0ULL)
503       // All bits demanded, no point continuing.
504       continue;
505 
506     for (Value *O : cast<User>(I)->operands()) {
507       ECs.unionSets(Leader, O);
508       Worklist.push_back(O);
509     }
510   }
511 
512   // Now we've discovered all values, walk them to see if there are
513   // any users we didn't see. If there are, we can't optimize that
514   // chain.
515   for (auto &I : DBits)
516     for (auto *U : I.first->users())
517       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
518         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
519 
520   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
521     uint64_t LeaderDemandedBits = 0;
522     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
523       LeaderDemandedBits |= DBits[*MI];
524 
525     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
526                      llvm::countLeadingZeros(LeaderDemandedBits);
527     // Round up to a power of 2
528     if (!isPowerOf2_64((uint64_t)MinBW))
529       MinBW = NextPowerOf2(MinBW);
530 
531     // We don't modify the types of PHIs. Reductions will already have been
532     // truncated if possible, and inductions' sizes will have been chosen by
533     // indvars.
534     // If we are required to shrink a PHI, abandon this entire equivalence class.
535     bool Abort = false;
536     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
537       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
538         Abort = true;
539         break;
540       }
541     if (Abort)
542       continue;
543 
544     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
545       if (!isa<Instruction>(*MI))
546         continue;
547       Type *Ty = (*MI)->getType();
548       if (Roots.count(*MI))
549         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
550       if (MinBW < Ty->getScalarSizeInBits())
551         MinBWs[cast<Instruction>(*MI)] = MinBW;
552     }
553   }
554 
555   return MinBWs;
556 }
557 
558 /// Add all access groups in @p AccGroups to @p List.
559 template <typename ListT>
560 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
561   // Interpret an access group as a list containing itself.
562   if (AccGroups->getNumOperands() == 0) {
563     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
564     List.insert(AccGroups);
565     return;
566   }
567 
568   for (auto &AccGroupListOp : AccGroups->operands()) {
569     auto *Item = cast<MDNode>(AccGroupListOp.get());
570     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
571     List.insert(Item);
572   }
573 }
574 
575 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
576   if (!AccGroups1)
577     return AccGroups2;
578   if (!AccGroups2)
579     return AccGroups1;
580   if (AccGroups1 == AccGroups2)
581     return AccGroups1;
582 
583   SmallSetVector<Metadata *, 4> Union;
584   addToAccessGroupList(Union, AccGroups1);
585   addToAccessGroupList(Union, AccGroups2);
586 
587   if (Union.size() == 0)
588     return nullptr;
589   if (Union.size() == 1)
590     return cast<MDNode>(Union.front());
591 
592   LLVMContext &Ctx = AccGroups1->getContext();
593   return MDNode::get(Ctx, Union.getArrayRef());
594 }
595 
596 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
597                                     const Instruction *Inst2) {
598   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
599   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
600 
601   if (!MayAccessMem1 && !MayAccessMem2)
602     return nullptr;
603   if (!MayAccessMem1)
604     return Inst2->getMetadata(LLVMContext::MD_access_group);
605   if (!MayAccessMem2)
606     return Inst1->getMetadata(LLVMContext::MD_access_group);
607 
608   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
609   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
610   if (!MD1 || !MD2)
611     return nullptr;
612   if (MD1 == MD2)
613     return MD1;
614 
615   // Use set for scalable 'contains' check.
616   SmallPtrSet<Metadata *, 4> AccGroupSet2;
617   addToAccessGroupList(AccGroupSet2, MD2);
618 
619   SmallVector<Metadata *, 4> Intersection;
620   if (MD1->getNumOperands() == 0) {
621     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
622     if (AccGroupSet2.count(MD1))
623       Intersection.push_back(MD1);
624   } else {
625     for (const MDOperand &Node : MD1->operands()) {
626       auto *Item = cast<MDNode>(Node.get());
627       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
628       if (AccGroupSet2.count(Item))
629         Intersection.push_back(Item);
630     }
631   }
632 
633   if (Intersection.size() == 0)
634     return nullptr;
635   if (Intersection.size() == 1)
636     return cast<MDNode>(Intersection.front());
637 
638   LLVMContext &Ctx = Inst1->getContext();
639   return MDNode::get(Ctx, Intersection);
640 }
641 
642 /// \returns \p I after propagating metadata from \p VL.
643 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
644   Instruction *I0 = cast<Instruction>(VL[0]);
645   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
646   I0->getAllMetadataOtherThanDebugLoc(Metadata);
647 
648   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
649                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
650                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
651                     LLVMContext::MD_access_group}) {
652     MDNode *MD = I0->getMetadata(Kind);
653 
654     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
655       const Instruction *IJ = cast<Instruction>(VL[J]);
656       MDNode *IMD = IJ->getMetadata(Kind);
657       switch (Kind) {
658       case LLVMContext::MD_tbaa:
659         MD = MDNode::getMostGenericTBAA(MD, IMD);
660         break;
661       case LLVMContext::MD_alias_scope:
662         MD = MDNode::getMostGenericAliasScope(MD, IMD);
663         break;
664       case LLVMContext::MD_fpmath:
665         MD = MDNode::getMostGenericFPMath(MD, IMD);
666         break;
667       case LLVMContext::MD_noalias:
668       case LLVMContext::MD_nontemporal:
669       case LLVMContext::MD_invariant_load:
670         MD = MDNode::intersect(MD, IMD);
671         break;
672       case LLVMContext::MD_access_group:
673         MD = intersectAccessGroups(Inst, IJ);
674         break;
675       default:
676         llvm_unreachable("unhandled metadata");
677       }
678     }
679 
680     Inst->setMetadata(Kind, MD);
681   }
682 
683   return Inst;
684 }
685 
686 Constant *
687 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
688                            const InterleaveGroup<Instruction> &Group) {
689   // All 1's means mask is not needed.
690   if (Group.getNumMembers() == Group.getFactor())
691     return nullptr;
692 
693   // TODO: support reversed access.
694   assert(!Group.isReverse() && "Reversed group not supported.");
695 
696   SmallVector<Constant *, 16> Mask;
697   for (unsigned i = 0; i < VF; i++)
698     for (unsigned j = 0; j < Group.getFactor(); ++j) {
699       unsigned HasMember = Group.getMember(j) ? 1 : 0;
700       Mask.push_back(Builder.getInt1(HasMember));
701     }
702 
703   return ConstantVector::get(Mask);
704 }
705 
706 Constant *llvm::createReplicatedMask(IRBuilderBase &Builder,
707                                      unsigned ReplicationFactor, unsigned VF) {
708   SmallVector<Constant *, 16> MaskVec;
709   for (unsigned i = 0; i < VF; i++)
710     for (unsigned j = 0; j < ReplicationFactor; j++)
711       MaskVec.push_back(Builder.getInt32(i));
712 
713   return ConstantVector::get(MaskVec);
714 }
715 
716 Constant *llvm::createInterleaveMask(IRBuilderBase &Builder, unsigned VF,
717                                      unsigned NumVecs) {
718   SmallVector<Constant *, 16> Mask;
719   for (unsigned i = 0; i < VF; i++)
720     for (unsigned j = 0; j < NumVecs; j++)
721       Mask.push_back(Builder.getInt32(j * VF + i));
722 
723   return ConstantVector::get(Mask);
724 }
725 
726 Constant *llvm::createStrideMask(IRBuilderBase &Builder, unsigned Start,
727                                  unsigned Stride, unsigned VF) {
728   SmallVector<Constant *, 16> Mask;
729   for (unsigned i = 0; i < VF; i++)
730     Mask.push_back(Builder.getInt32(Start + i * Stride));
731 
732   return ConstantVector::get(Mask);
733 }
734 
735 Constant *llvm::createSequentialMask(IRBuilderBase &Builder, unsigned Start,
736                                      unsigned NumInts, unsigned NumUndefs) {
737   SmallVector<Constant *, 16> Mask;
738   for (unsigned i = 0; i < NumInts; i++)
739     Mask.push_back(Builder.getInt32(Start + i));
740 
741   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
742   for (unsigned i = 0; i < NumUndefs; i++)
743     Mask.push_back(Undef);
744 
745   return ConstantVector::get(Mask);
746 }
747 
748 /// A helper function for concatenating vectors. This function concatenates two
749 /// vectors having the same element type. If the second vector has fewer
750 /// elements than the first, it is padded with undefs.
751 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
752                                     Value *V2) {
753   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
754   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
755   assert(VecTy1 && VecTy2 &&
756          VecTy1->getScalarType() == VecTy2->getScalarType() &&
757          "Expect two vectors with the same element type");
758 
759   unsigned NumElts1 = VecTy1->getNumElements();
760   unsigned NumElts2 = VecTy2->getNumElements();
761   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
762 
763   if (NumElts1 > NumElts2) {
764     // Extend with UNDEFs.
765     Constant *ExtMask =
766         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
767     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
768   }
769 
770   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
771   return Builder.CreateShuffleVector(V1, V2, Mask);
772 }
773 
774 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
775                                 ArrayRef<Value *> Vecs) {
776   unsigned NumVecs = Vecs.size();
777   assert(NumVecs > 1 && "Should be at least two vectors");
778 
779   SmallVector<Value *, 8> ResList;
780   ResList.append(Vecs.begin(), Vecs.end());
781   do {
782     SmallVector<Value *, 8> TmpList;
783     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
784       Value *V0 = ResList[i], *V1 = ResList[i + 1];
785       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
786              "Only the last vector may have a different type");
787 
788       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
789     }
790 
791     // Push the last vector if the total number of vectors is odd.
792     if (NumVecs % 2 != 0)
793       TmpList.push_back(ResList[NumVecs - 1]);
794 
795     ResList = TmpList;
796     NumVecs = ResList.size();
797   } while (NumVecs > 1);
798 
799   return ResList[0];
800 }
801 
802 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
803   auto *ConstMask = dyn_cast<Constant>(Mask);
804   if (!ConstMask)
805     return false;
806   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
807     return true;
808   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
809        ++I) {
810     if (auto *MaskElt = ConstMask->getAggregateElement(I))
811       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
812         continue;
813     return false;
814   }
815   return true;
816 }
817 
818 
819 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
820   auto *ConstMask = dyn_cast<Constant>(Mask);
821   if (!ConstMask)
822     return false;
823   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
824     return true;
825   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
826        ++I) {
827     if (auto *MaskElt = ConstMask->getAggregateElement(I))
828       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
829         continue;
830     return false;
831   }
832   return true;
833 }
834 
835 /// TODO: This is a lot like known bits, but for
836 /// vectors.  Is there something we can common this with?
837 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
838 
839   const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
840   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
841   if (auto *CV = dyn_cast<ConstantVector>(Mask))
842     for (unsigned i = 0; i < VWidth; i++)
843       if (CV->getAggregateElement(i)->isNullValue())
844         DemandedElts.clearBit(i);
845   return DemandedElts;
846 }
847 
848 bool InterleavedAccessInfo::isStrided(int Stride) {
849   unsigned Factor = std::abs(Stride);
850   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
851 }
852 
853 void InterleavedAccessInfo::collectConstStrideAccesses(
854     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
855     const ValueToValueMap &Strides) {
856   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
857 
858   // Since it's desired that the load/store instructions be maintained in
859   // "program order" for the interleaved access analysis, we have to visit the
860   // blocks in the loop in reverse postorder (i.e., in a topological order).
861   // Such an ordering will ensure that any load/store that may be executed
862   // before a second load/store will precede the second load/store in
863   // AccessStrideInfo.
864   LoopBlocksDFS DFS(TheLoop);
865   DFS.perform(LI);
866   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
867     for (auto &I : *BB) {
868       auto *LI = dyn_cast<LoadInst>(&I);
869       auto *SI = dyn_cast<StoreInst>(&I);
870       if (!LI && !SI)
871         continue;
872 
873       Value *Ptr = getLoadStorePointerOperand(&I);
874       // We don't check wrapping here because we don't know yet if Ptr will be
875       // part of a full group or a group with gaps. Checking wrapping for all
876       // pointers (even those that end up in groups with no gaps) will be overly
877       // conservative. For full groups, wrapping should be ok since if we would
878       // wrap around the address space we would do a memory access at nullptr
879       // even without the transformation. The wrapping checks are therefore
880       // deferred until after we've formed the interleaved groups.
881       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
882                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
883 
884       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
885       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
886       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
887 
888       // An alignment of 0 means target ABI alignment.
889       MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
890       if (!Alignment)
891         Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));
892 
893       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
894     }
895 }
896 
897 // Analyze interleaved accesses and collect them into interleaved load and
898 // store groups.
899 //
900 // When generating code for an interleaved load group, we effectively hoist all
901 // loads in the group to the location of the first load in program order. When
902 // generating code for an interleaved store group, we sink all stores to the
903 // location of the last store. This code motion can change the order of load
904 // and store instructions and may break dependences.
905 //
906 // The code generation strategy mentioned above ensures that we won't violate
907 // any write-after-read (WAR) dependences.
908 //
909 // E.g., for the WAR dependence:  a = A[i];      // (1)
910 //                                A[i] = b;      // (2)
911 //
912 // The store group of (2) is always inserted at or below (2), and the load
913 // group of (1) is always inserted at or above (1). Thus, the instructions will
914 // never be reordered. All other dependences are checked to ensure the
915 // correctness of the instruction reordering.
916 //
917 // The algorithm visits all memory accesses in the loop in bottom-up program
918 // order. Program order is established by traversing the blocks in the loop in
919 // reverse postorder when collecting the accesses.
920 //
921 // We visit the memory accesses in bottom-up order because it can simplify the
922 // construction of store groups in the presence of write-after-write (WAW)
923 // dependences.
924 //
925 // E.g., for the WAW dependence:  A[i] = a;      // (1)
926 //                                A[i] = b;      // (2)
927 //                                A[i + 1] = c;  // (3)
928 //
929 // We will first create a store group with (3) and (2). (1) can't be added to
930 // this group because it and (2) are dependent. However, (1) can be grouped
931 // with other accesses that may precede it in program order. Note that a
932 // bottom-up order does not imply that WAW dependences should not be checked.
933 void InterleavedAccessInfo::analyzeInterleaving(
934                                  bool EnablePredicatedInterleavedMemAccesses) {
935   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
936   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
937 
938   // Holds all accesses with a constant stride.
939   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
940   collectConstStrideAccesses(AccessStrideInfo, Strides);
941 
942   if (AccessStrideInfo.empty())
943     return;
944 
945   // Collect the dependences in the loop.
946   collectDependences();
947 
948   // Holds all interleaved store groups temporarily.
949   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
950   // Holds all interleaved load groups temporarily.
951   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
952 
953   // Search in bottom-up program order for pairs of accesses (A and B) that can
954   // form interleaved load or store groups. In the algorithm below, access A
955   // precedes access B in program order. We initialize a group for B in the
956   // outer loop of the algorithm, and then in the inner loop, we attempt to
957   // insert each A into B's group if:
958   //
959   //  1. A and B have the same stride,
960   //  2. A and B have the same memory object size, and
961   //  3. A belongs in B's group according to its distance from B.
962   //
963   // Special care is taken to ensure group formation will not break any
964   // dependences.
965   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
966        BI != E; ++BI) {
967     Instruction *B = BI->first;
968     StrideDescriptor DesB = BI->second;
969 
970     // Initialize a group for B if it has an allowable stride. Even if we don't
971     // create a group for B, we continue with the bottom-up algorithm to ensure
972     // we don't break any of B's dependences.
973     InterleaveGroup<Instruction> *Group = nullptr;
974     if (isStrided(DesB.Stride) &&
975         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
976       Group = getInterleaveGroup(B);
977       if (!Group) {
978         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
979                           << '\n');
980         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
981       }
982       if (B->mayWriteToMemory())
983         StoreGroups.insert(Group);
984       else
985         LoadGroups.insert(Group);
986     }
987 
988     for (auto AI = std::next(BI); AI != E; ++AI) {
989       Instruction *A = AI->first;
990       StrideDescriptor DesA = AI->second;
991 
992       // Our code motion strategy implies that we can't have dependences
993       // between accesses in an interleaved group and other accesses located
994       // between the first and last member of the group. Note that this also
995       // means that a group can't have more than one member at a given offset.
996       // The accesses in a group can have dependences with other accesses, but
997       // we must ensure we don't extend the boundaries of the group such that
998       // we encompass those dependent accesses.
999       //
1000       // For example, assume we have the sequence of accesses shown below in a
1001       // stride-2 loop:
1002       //
1003       //  (1, 2) is a group | A[i]   = a;  // (1)
1004       //                    | A[i-1] = b;  // (2) |
1005       //                      A[i-3] = c;  // (3)
1006       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1007       //
1008       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1009       // but not with (4). If we did, the dependent access (3) would be within
1010       // the boundaries of the (2, 4) group.
1011       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1012         // If a dependence exists and A is already in a group, we know that A
1013         // must be a store since A precedes B and WAR dependences are allowed.
1014         // Thus, A would be sunk below B. We release A's group to prevent this
1015         // illegal code motion. A will then be free to form another group with
1016         // instructions that precede it.
1017         if (isInterleaved(A)) {
1018           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1019 
1020           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1021                                "dependence between " << *A << " and "<< *B << '\n');
1022 
1023           StoreGroups.remove(StoreGroup);
1024           releaseGroup(StoreGroup);
1025         }
1026 
1027         // If a dependence exists and A is not already in a group (or it was
1028         // and we just released it), B might be hoisted above A (if B is a
1029         // load) or another store might be sunk below A (if B is a store). In
1030         // either case, we can't add additional instructions to B's group. B
1031         // will only form a group with instructions that it precedes.
1032         break;
1033       }
1034 
1035       // At this point, we've checked for illegal code motion. If either A or B
1036       // isn't strided, there's nothing left to do.
1037       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1038         continue;
1039 
1040       // Ignore A if it's already in a group or isn't the same kind of memory
1041       // operation as B.
1042       // Note that mayReadFromMemory() isn't mutually exclusive to
1043       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1044       // here, canVectorizeMemory() should have returned false - except for the
1045       // case we asked for optimization remarks.
1046       if (isInterleaved(A) ||
1047           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1048           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1049         continue;
1050 
1051       // Check rules 1 and 2. Ignore A if its stride or size is different from
1052       // that of B.
1053       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1054         continue;
1055 
1056       // Ignore A if the memory object of A and B don't belong to the same
1057       // address space
1058       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1059         continue;
1060 
1061       // Calculate the distance from A to B.
1062       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1063           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1064       if (!DistToB)
1065         continue;
1066       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1067 
1068       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1069       // size.
1070       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1071         continue;
1072 
1073       // All members of a predicated interleave-group must have the same predicate,
1074       // and currently must reside in the same BB.
1075       BasicBlock *BlockA = A->getParent();
1076       BasicBlock *BlockB = B->getParent();
1077       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1078           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1079         continue;
1080 
1081       // The index of A is the index of B plus A's distance to B in multiples
1082       // of the size.
1083       int IndexA =
1084           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1085 
1086       // Try to insert A into B's group.
1087       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1088         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1089                           << "    into the interleave group with" << *B
1090                           << '\n');
1091         InterleaveGroupMap[A] = Group;
1092 
1093         // Set the first load in program order as the insert position.
1094         if (A->mayReadFromMemory())
1095           Group->setInsertPos(A);
1096       }
1097     } // Iteration over A accesses.
1098   }   // Iteration over B accesses.
1099 
1100   // Remove interleaved store groups with gaps.
1101   for (auto *Group : StoreGroups)
1102     if (Group->getNumMembers() != Group->getFactor()) {
1103       LLVM_DEBUG(
1104           dbgs() << "LV: Invalidate candidate interleaved store group due "
1105                     "to gaps.\n");
1106       releaseGroup(Group);
1107     }
1108   // Remove interleaved groups with gaps (currently only loads) whose memory
1109   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1110   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1111   // not check wrapping (see documentation there).
1112   // FORNOW we use Assume=false;
1113   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1114   // of runtime SCEV assumptions checks (thereby potentially failing to
1115   // vectorize altogether).
1116   // Additional optional optimizations:
1117   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1118   // wrap then we can deduce that all pointers in the group don't wrap.
1119   // This means that we can forcefully peel the loop in order to only have to
1120   // check the first pointer for no-wrap. When we'll change to use Assume=true
1121   // we'll only need at most one runtime check per interleaved group.
1122   for (auto *Group : LoadGroups) {
1123     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1124     // load would wrap around the address space we would do a memory access at
1125     // nullptr even without the transformation.
1126     if (Group->getNumMembers() == Group->getFactor())
1127       continue;
1128 
1129     // Case 2: If first and last members of the group don't wrap this implies
1130     // that all the pointers in the group don't wrap.
1131     // So we check only group member 0 (which is always guaranteed to exist),
1132     // and group member Factor - 1; If the latter doesn't exist we rely on
1133     // peeling (if it is a non-reversed accsess -- see Case 3).
1134     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1135     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1136                       /*ShouldCheckWrap=*/true)) {
1137       LLVM_DEBUG(
1138           dbgs() << "LV: Invalidate candidate interleaved group due to "
1139                     "first group member potentially pointer-wrapping.\n");
1140       releaseGroup(Group);
1141       continue;
1142     }
1143     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1144     if (LastMember) {
1145       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1146       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1147                         /*ShouldCheckWrap=*/true)) {
1148         LLVM_DEBUG(
1149             dbgs() << "LV: Invalidate candidate interleaved group due to "
1150                       "last group member potentially pointer-wrapping.\n");
1151         releaseGroup(Group);
1152       }
1153     } else {
1154       // Case 3: A non-reversed interleaved load group with gaps: We need
1155       // to execute at least one scalar epilogue iteration. This will ensure
1156       // we don't speculatively access memory out-of-bounds. We only need
1157       // to look for a member at index factor - 1, since every group must have
1158       // a member at index zero.
1159       if (Group->isReverse()) {
1160         LLVM_DEBUG(
1161             dbgs() << "LV: Invalidate candidate interleaved group due to "
1162                       "a reverse access with gaps.\n");
1163         releaseGroup(Group);
1164         continue;
1165       }
1166       LLVM_DEBUG(
1167           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1168       RequiresScalarEpilogue = true;
1169     }
1170   }
1171 }
1172 
1173 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1174   // If no group had triggered the requirement to create an epilogue loop,
1175   // there is nothing to do.
1176   if (!requiresScalarEpilogue())
1177     return;
1178 
1179   // Avoid releasing a Group twice.
1180   SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1181   for (auto &I : InterleaveGroupMap) {
1182     InterleaveGroup<Instruction> *Group = I.second;
1183     if (Group->requiresScalarEpilogue())
1184       DelSet.insert(Group);
1185   }
1186   for (auto *Ptr : DelSet) {
1187     LLVM_DEBUG(
1188         dbgs()
1189         << "LV: Invalidate candidate interleaved group due to gaps that "
1190            "require a scalar epilogue (not allowed under optsize) and cannot "
1191            "be masked (not enabled). \n");
1192     releaseGroup(Ptr);
1193   }
1194 
1195   RequiresScalarEpilogue = false;
1196 }
1197 
1198 template <typename InstT>
1199 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1200   llvm_unreachable("addMetadata can only be used for Instruction");
1201 }
1202 
1203 namespace llvm {
1204 template <>
1205 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1206   SmallVector<Value *, 4> VL;
1207   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1208                  [](std::pair<int, Instruction *> p) { return p.second; });
1209   propagateMetadata(NewInst, VL);
1210 }
1211 }
1212 
1213 void VFABI::getVectorVariantNames(
1214     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1215   const StringRef S =
1216       CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1217           .getValueAsString();
1218   if (S.empty())
1219     return;
1220 
1221   SmallVector<StringRef, 8> ListAttr;
1222   S.split(ListAttr, ",");
1223 
1224   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1225 #ifndef NDEBUG
1226     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1227     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1228     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1229     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1230            "Vector function is missing.");
1231 #endif
1232     VariantMappings.push_back(std::string(S));
1233   }
1234 }
1235 
1236 bool VFShape::hasValidParameterList() const {
1237   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1238        ++Pos) {
1239     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1240 
1241     switch (Parameters[Pos].ParamKind) {
1242     default: // Nothing to check.
1243       break;
1244     case VFParamKind::OMP_Linear:
1245     case VFParamKind::OMP_LinearRef:
1246     case VFParamKind::OMP_LinearVal:
1247     case VFParamKind::OMP_LinearUVal:
1248       // Compile time linear steps must be non-zero.
1249       if (Parameters[Pos].LinearStepOrPos == 0)
1250         return false;
1251       break;
1252     case VFParamKind::OMP_LinearPos:
1253     case VFParamKind::OMP_LinearRefPos:
1254     case VFParamKind::OMP_LinearValPos:
1255     case VFParamKind::OMP_LinearUValPos:
1256       // The runtime linear step must be referring to some other
1257       // parameters in the signature.
1258       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1259         return false;
1260       // The linear step parameter must be marked as uniform.
1261       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1262           VFParamKind::OMP_Uniform)
1263         return false;
1264       // The linear step parameter can't point at itself.
1265       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1266         return false;
1267       break;
1268     case VFParamKind::GlobalPredicate:
1269       // The global predicate must be the unique. Can be placed anywhere in the
1270       // signature.
1271       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1272         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1273           return false;
1274       break;
1275     }
1276   }
1277   return true;
1278 }
1279