1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/CommandLine.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic, and vectors for the vector form of the 42 /// intrinsic (except operands that are marked as always being scalar by 43 /// hasVectorInstrinsicScalarOpd). 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::bswap: // Begin integer bit-manipulation. 47 case Intrinsic::bitreverse: 48 case Intrinsic::ctpop: 49 case Intrinsic::ctlz: 50 case Intrinsic::cttz: 51 case Intrinsic::fshl: 52 case Intrinsic::fshr: 53 case Intrinsic::sadd_sat: 54 case Intrinsic::ssub_sat: 55 case Intrinsic::uadd_sat: 56 case Intrinsic::usub_sat: 57 case Intrinsic::smul_fix: 58 case Intrinsic::smul_fix_sat: 59 case Intrinsic::umul_fix: 60 case Intrinsic::umul_fix_sat: 61 case Intrinsic::sqrt: // Begin floating-point. 62 case Intrinsic::sin: 63 case Intrinsic::cos: 64 case Intrinsic::exp: 65 case Intrinsic::exp2: 66 case Intrinsic::log: 67 case Intrinsic::log10: 68 case Intrinsic::log2: 69 case Intrinsic::fabs: 70 case Intrinsic::minnum: 71 case Intrinsic::maxnum: 72 case Intrinsic::minimum: 73 case Intrinsic::maximum: 74 case Intrinsic::copysign: 75 case Intrinsic::floor: 76 case Intrinsic::ceil: 77 case Intrinsic::trunc: 78 case Intrinsic::rint: 79 case Intrinsic::nearbyint: 80 case Intrinsic::round: 81 case Intrinsic::pow: 82 case Intrinsic::fma: 83 case Intrinsic::fmuladd: 84 case Intrinsic::powi: 85 case Intrinsic::canonicalize: 86 return true; 87 default: 88 return false; 89 } 90 } 91 92 /// Identifies if the vector form of the intrinsic has a scalar operand. 93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 94 unsigned ScalarOpdIdx) { 95 switch (ID) { 96 case Intrinsic::ctlz: 97 case Intrinsic::cttz: 98 case Intrinsic::powi: 99 return (ScalarOpdIdx == 1); 100 case Intrinsic::smul_fix: 101 case Intrinsic::smul_fix_sat: 102 case Intrinsic::umul_fix: 103 case Intrinsic::umul_fix_sat: 104 return (ScalarOpdIdx == 2); 105 default: 106 return false; 107 } 108 } 109 110 /// Returns intrinsic ID for call. 111 /// For the input call instruction it finds mapping intrinsic and returns 112 /// its ID, in case it does not found it return not_intrinsic. 113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 114 const TargetLibraryInfo *TLI) { 115 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 116 if (ID == Intrinsic::not_intrinsic) 117 return Intrinsic::not_intrinsic; 118 119 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 120 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 121 ID == Intrinsic::sideeffect) 122 return ID; 123 return Intrinsic::not_intrinsic; 124 } 125 126 /// Find the operand of the GEP that should be checked for consecutive 127 /// stores. This ignores trailing indices that have no effect on the final 128 /// pointer. 129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 130 const DataLayout &DL = Gep->getModule()->getDataLayout(); 131 unsigned LastOperand = Gep->getNumOperands() - 1; 132 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 133 134 // Walk backwards and try to peel off zeros. 135 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 136 // Find the type we're currently indexing into. 137 gep_type_iterator GEPTI = gep_type_begin(Gep); 138 std::advance(GEPTI, LastOperand - 2); 139 140 // If it's a type with the same allocation size as the result of the GEP we 141 // can peel off the zero index. 142 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 143 break; 144 --LastOperand; 145 } 146 147 return LastOperand; 148 } 149 150 /// If the argument is a GEP, then returns the operand identified by 151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 152 /// operand, it returns that instead. 153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 154 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 155 if (!GEP) 156 return Ptr; 157 158 unsigned InductionOperand = getGEPInductionOperand(GEP); 159 160 // Check that all of the gep indices are uniform except for our induction 161 // operand. 162 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 163 if (i != InductionOperand && 164 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 165 return Ptr; 166 return GEP->getOperand(InductionOperand); 167 } 168 169 /// If a value has only one user that is a CastInst, return it. 170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 171 Value *UniqueCast = nullptr; 172 for (User *U : Ptr->users()) { 173 CastInst *CI = dyn_cast<CastInst>(U); 174 if (CI && CI->getType() == Ty) { 175 if (!UniqueCast) 176 UniqueCast = CI; 177 else 178 return nullptr; 179 } 180 } 181 return UniqueCast; 182 } 183 184 /// Get the stride of a pointer access in a loop. Looks for symbolic 185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 187 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 188 if (!PtrTy || PtrTy->isAggregateType()) 189 return nullptr; 190 191 // Try to remove a gep instruction to make the pointer (actually index at this 192 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 193 // pointer, otherwise, we are analyzing the index. 194 Value *OrigPtr = Ptr; 195 196 // The size of the pointer access. 197 int64_t PtrAccessSize = 1; 198 199 Ptr = stripGetElementPtr(Ptr, SE, Lp); 200 const SCEV *V = SE->getSCEV(Ptr); 201 202 if (Ptr != OrigPtr) 203 // Strip off casts. 204 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 205 V = C->getOperand(); 206 207 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 208 if (!S) 209 return nullptr; 210 211 V = S->getStepRecurrence(*SE); 212 if (!V) 213 return nullptr; 214 215 // Strip off the size of access multiplication if we are still analyzing the 216 // pointer. 217 if (OrigPtr == Ptr) { 218 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 219 if (M->getOperand(0)->getSCEVType() != scConstant) 220 return nullptr; 221 222 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 223 224 // Huge step value - give up. 225 if (APStepVal.getBitWidth() > 64) 226 return nullptr; 227 228 int64_t StepVal = APStepVal.getSExtValue(); 229 if (PtrAccessSize != StepVal) 230 return nullptr; 231 V = M->getOperand(1); 232 } 233 } 234 235 // Strip off casts. 236 Type *StripedOffRecurrenceCast = nullptr; 237 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 238 StripedOffRecurrenceCast = C->getType(); 239 V = C->getOperand(); 240 } 241 242 // Look for the loop invariant symbolic value. 243 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 244 if (!U) 245 return nullptr; 246 247 Value *Stride = U->getValue(); 248 if (!Lp->isLoopInvariant(Stride)) 249 return nullptr; 250 251 // If we have stripped off the recurrence cast we have to make sure that we 252 // return the value that is used in this loop so that we can replace it later. 253 if (StripedOffRecurrenceCast) 254 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 255 256 return Stride; 257 } 258 259 /// Given a vector and an element number, see if the scalar value is 260 /// already around as a register, for example if it were inserted then extracted 261 /// from the vector. 262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 263 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 264 VectorType *VTy = cast<VectorType>(V->getType()); 265 // For fixed-length vector, return undef for out of range access. 266 if (!V->getType()->getVectorIsScalable()) { 267 unsigned Width = VTy->getNumElements(); 268 if (EltNo >= Width) 269 return UndefValue::get(VTy->getElementType()); 270 } 271 272 if (Constant *C = dyn_cast<Constant>(V)) 273 return C->getAggregateElement(EltNo); 274 275 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 276 // If this is an insert to a variable element, we don't know what it is. 277 if (!isa<ConstantInt>(III->getOperand(2))) 278 return nullptr; 279 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 280 281 // If this is an insert to the element we are looking for, return the 282 // inserted value. 283 if (EltNo == IIElt) 284 return III->getOperand(1); 285 286 // Otherwise, the insertelement doesn't modify the value, recurse on its 287 // vector input. 288 return findScalarElement(III->getOperand(0), EltNo); 289 } 290 291 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 292 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 293 int InEl = SVI->getMaskValue(EltNo); 294 if (InEl < 0) 295 return UndefValue::get(VTy->getElementType()); 296 if (InEl < (int)LHSWidth) 297 return findScalarElement(SVI->getOperand(0), InEl); 298 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 299 } 300 301 // Extract a value from a vector add operation with a constant zero. 302 // TODO: Use getBinOpIdentity() to generalize this. 303 Value *Val; Constant *C; 304 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 305 if (Constant *Elt = C->getAggregateElement(EltNo)) 306 if (Elt->isNullValue()) 307 return findScalarElement(Val, EltNo); 308 309 // Otherwise, we don't know. 310 return nullptr; 311 } 312 313 int llvm::getSplatIndex(ArrayRef<int> Mask) { 314 int SplatIndex = -1; 315 for (int M : Mask) { 316 // Ignore invalid (undefined) mask elements. 317 if (M < 0) 318 continue; 319 320 // There can be only 1 non-negative mask element value if this is a splat. 321 if (SplatIndex != -1 && SplatIndex != M) 322 return -1; 323 324 // Initialize the splat index to the 1st non-negative mask element. 325 SplatIndex = M; 326 } 327 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 328 return SplatIndex; 329 } 330 331 /// Get splat value if the input is a splat vector or return nullptr. 332 /// This function is not fully general. It checks only 2 cases: 333 /// the input value is (1) a splat constant vector or (2) a sequence 334 /// of instructions that broadcasts a scalar at element 0. 335 const llvm::Value *llvm::getSplatValue(const Value *V) { 336 if (isa<VectorType>(V->getType())) 337 if (auto *C = dyn_cast<Constant>(V)) 338 return C->getSplatValue(); 339 340 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 341 Value *Splat; 342 if (match(V, m_ShuffleVector( 343 m_InsertElement(m_Value(), m_Value(Splat), m_ZeroInt()), 344 m_Value(), m_ZeroMask()))) 345 return Splat; 346 347 return nullptr; 348 } 349 350 // This setting is based on its counterpart in value tracking, but it could be 351 // adjusted if needed. 352 const unsigned MaxDepth = 6; 353 354 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 355 assert(Depth <= MaxDepth && "Limit Search Depth"); 356 357 if (isa<VectorType>(V->getType())) { 358 if (isa<UndefValue>(V)) 359 return true; 360 // FIXME: We can allow undefs, but if Index was specified, we may want to 361 // check that the constant is defined at that index. 362 if (auto *C = dyn_cast<Constant>(V)) 363 return C->getSplatValue() != nullptr; 364 } 365 366 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 367 // FIXME: We can safely allow undefs here. If Index was specified, we will 368 // check that the mask elt is defined at the required index. 369 if (!is_splat(Shuf->getShuffleMask())) 370 return false; 371 372 // Match any index. 373 if (Index == -1) 374 return true; 375 376 // Match a specific element. The mask should be defined at and match the 377 // specified index. 378 return Shuf->getMaskValue(Index) == Index; 379 } 380 381 // The remaining tests are all recursive, so bail out if we hit the limit. 382 if (Depth++ == MaxDepth) 383 return false; 384 385 // If both operands of a binop are splats, the result is a splat. 386 Value *X, *Y, *Z; 387 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 388 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 389 390 // If all operands of a select are splats, the result is a splat. 391 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 392 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 393 isSplatValue(Z, Index, Depth); 394 395 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 396 397 return false; 398 } 399 400 void llvm::scaleShuffleMask(size_t Scale, ArrayRef<int> Mask, 401 SmallVectorImpl<int> &ScaledMask) { 402 assert(Scale > 0 && "Unexpected scaling factor"); 403 404 // Fast-path: if no scaling, then it is just a copy. 405 if (Scale == 1) { 406 ScaledMask.assign(Mask.begin(), Mask.end()); 407 return; 408 } 409 410 ScaledMask.clear(); 411 for (int MaskElt : Mask) 412 for (int ScaleElt = 0; ScaleElt != (int)Scale; ++ScaleElt) 413 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + ScaleElt); 414 } 415 416 MapVector<Instruction *, uint64_t> 417 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 418 const TargetTransformInfo *TTI) { 419 420 // DemandedBits will give us every value's live-out bits. But we want 421 // to ensure no extra casts would need to be inserted, so every DAG 422 // of connected values must have the same minimum bitwidth. 423 EquivalenceClasses<Value *> ECs; 424 SmallVector<Value *, 16> Worklist; 425 SmallPtrSet<Value *, 4> Roots; 426 SmallPtrSet<Value *, 16> Visited; 427 DenseMap<Value *, uint64_t> DBits; 428 SmallPtrSet<Instruction *, 4> InstructionSet; 429 MapVector<Instruction *, uint64_t> MinBWs; 430 431 // Determine the roots. We work bottom-up, from truncs or icmps. 432 bool SeenExtFromIllegalType = false; 433 for (auto *BB : Blocks) 434 for (auto &I : *BB) { 435 InstructionSet.insert(&I); 436 437 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 438 !TTI->isTypeLegal(I.getOperand(0)->getType())) 439 SeenExtFromIllegalType = true; 440 441 // Only deal with non-vector integers up to 64-bits wide. 442 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 443 !I.getType()->isVectorTy() && 444 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 445 // Don't make work for ourselves. If we know the loaded type is legal, 446 // don't add it to the worklist. 447 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 448 continue; 449 450 Worklist.push_back(&I); 451 Roots.insert(&I); 452 } 453 } 454 // Early exit. 455 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 456 return MinBWs; 457 458 // Now proceed breadth-first, unioning values together. 459 while (!Worklist.empty()) { 460 Value *Val = Worklist.pop_back_val(); 461 Value *Leader = ECs.getOrInsertLeaderValue(Val); 462 463 if (Visited.count(Val)) 464 continue; 465 Visited.insert(Val); 466 467 // Non-instructions terminate a chain successfully. 468 if (!isa<Instruction>(Val)) 469 continue; 470 Instruction *I = cast<Instruction>(Val); 471 472 // If we encounter a type that is larger than 64 bits, we can't represent 473 // it so bail out. 474 if (DB.getDemandedBits(I).getBitWidth() > 64) 475 return MapVector<Instruction *, uint64_t>(); 476 477 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 478 DBits[Leader] |= V; 479 DBits[I] = V; 480 481 // Casts, loads and instructions outside of our range terminate a chain 482 // successfully. 483 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 484 !InstructionSet.count(I)) 485 continue; 486 487 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 488 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 489 // transform anything that relies on them. 490 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 491 !I->getType()->isIntegerTy()) { 492 DBits[Leader] |= ~0ULL; 493 continue; 494 } 495 496 // We don't modify the types of PHIs. Reductions will already have been 497 // truncated if possible, and inductions' sizes will have been chosen by 498 // indvars. 499 if (isa<PHINode>(I)) 500 continue; 501 502 if (DBits[Leader] == ~0ULL) 503 // All bits demanded, no point continuing. 504 continue; 505 506 for (Value *O : cast<User>(I)->operands()) { 507 ECs.unionSets(Leader, O); 508 Worklist.push_back(O); 509 } 510 } 511 512 // Now we've discovered all values, walk them to see if there are 513 // any users we didn't see. If there are, we can't optimize that 514 // chain. 515 for (auto &I : DBits) 516 for (auto *U : I.first->users()) 517 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 518 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 519 520 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 521 uint64_t LeaderDemandedBits = 0; 522 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 523 LeaderDemandedBits |= DBits[*MI]; 524 525 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 526 llvm::countLeadingZeros(LeaderDemandedBits); 527 // Round up to a power of 2 528 if (!isPowerOf2_64((uint64_t)MinBW)) 529 MinBW = NextPowerOf2(MinBW); 530 531 // We don't modify the types of PHIs. Reductions will already have been 532 // truncated if possible, and inductions' sizes will have been chosen by 533 // indvars. 534 // If we are required to shrink a PHI, abandon this entire equivalence class. 535 bool Abort = false; 536 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 537 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 538 Abort = true; 539 break; 540 } 541 if (Abort) 542 continue; 543 544 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 545 if (!isa<Instruction>(*MI)) 546 continue; 547 Type *Ty = (*MI)->getType(); 548 if (Roots.count(*MI)) 549 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 550 if (MinBW < Ty->getScalarSizeInBits()) 551 MinBWs[cast<Instruction>(*MI)] = MinBW; 552 } 553 } 554 555 return MinBWs; 556 } 557 558 /// Add all access groups in @p AccGroups to @p List. 559 template <typename ListT> 560 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 561 // Interpret an access group as a list containing itself. 562 if (AccGroups->getNumOperands() == 0) { 563 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 564 List.insert(AccGroups); 565 return; 566 } 567 568 for (auto &AccGroupListOp : AccGroups->operands()) { 569 auto *Item = cast<MDNode>(AccGroupListOp.get()); 570 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 571 List.insert(Item); 572 } 573 } 574 575 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 576 if (!AccGroups1) 577 return AccGroups2; 578 if (!AccGroups2) 579 return AccGroups1; 580 if (AccGroups1 == AccGroups2) 581 return AccGroups1; 582 583 SmallSetVector<Metadata *, 4> Union; 584 addToAccessGroupList(Union, AccGroups1); 585 addToAccessGroupList(Union, AccGroups2); 586 587 if (Union.size() == 0) 588 return nullptr; 589 if (Union.size() == 1) 590 return cast<MDNode>(Union.front()); 591 592 LLVMContext &Ctx = AccGroups1->getContext(); 593 return MDNode::get(Ctx, Union.getArrayRef()); 594 } 595 596 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 597 const Instruction *Inst2) { 598 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 599 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 600 601 if (!MayAccessMem1 && !MayAccessMem2) 602 return nullptr; 603 if (!MayAccessMem1) 604 return Inst2->getMetadata(LLVMContext::MD_access_group); 605 if (!MayAccessMem2) 606 return Inst1->getMetadata(LLVMContext::MD_access_group); 607 608 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 609 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 610 if (!MD1 || !MD2) 611 return nullptr; 612 if (MD1 == MD2) 613 return MD1; 614 615 // Use set for scalable 'contains' check. 616 SmallPtrSet<Metadata *, 4> AccGroupSet2; 617 addToAccessGroupList(AccGroupSet2, MD2); 618 619 SmallVector<Metadata *, 4> Intersection; 620 if (MD1->getNumOperands() == 0) { 621 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 622 if (AccGroupSet2.count(MD1)) 623 Intersection.push_back(MD1); 624 } else { 625 for (const MDOperand &Node : MD1->operands()) { 626 auto *Item = cast<MDNode>(Node.get()); 627 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 628 if (AccGroupSet2.count(Item)) 629 Intersection.push_back(Item); 630 } 631 } 632 633 if (Intersection.size() == 0) 634 return nullptr; 635 if (Intersection.size() == 1) 636 return cast<MDNode>(Intersection.front()); 637 638 LLVMContext &Ctx = Inst1->getContext(); 639 return MDNode::get(Ctx, Intersection); 640 } 641 642 /// \returns \p I after propagating metadata from \p VL. 643 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 644 Instruction *I0 = cast<Instruction>(VL[0]); 645 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 646 I0->getAllMetadataOtherThanDebugLoc(Metadata); 647 648 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 649 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 650 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 651 LLVMContext::MD_access_group}) { 652 MDNode *MD = I0->getMetadata(Kind); 653 654 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 655 const Instruction *IJ = cast<Instruction>(VL[J]); 656 MDNode *IMD = IJ->getMetadata(Kind); 657 switch (Kind) { 658 case LLVMContext::MD_tbaa: 659 MD = MDNode::getMostGenericTBAA(MD, IMD); 660 break; 661 case LLVMContext::MD_alias_scope: 662 MD = MDNode::getMostGenericAliasScope(MD, IMD); 663 break; 664 case LLVMContext::MD_fpmath: 665 MD = MDNode::getMostGenericFPMath(MD, IMD); 666 break; 667 case LLVMContext::MD_noalias: 668 case LLVMContext::MD_nontemporal: 669 case LLVMContext::MD_invariant_load: 670 MD = MDNode::intersect(MD, IMD); 671 break; 672 case LLVMContext::MD_access_group: 673 MD = intersectAccessGroups(Inst, IJ); 674 break; 675 default: 676 llvm_unreachable("unhandled metadata"); 677 } 678 } 679 680 Inst->setMetadata(Kind, MD); 681 } 682 683 return Inst; 684 } 685 686 Constant * 687 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 688 const InterleaveGroup<Instruction> &Group) { 689 // All 1's means mask is not needed. 690 if (Group.getNumMembers() == Group.getFactor()) 691 return nullptr; 692 693 // TODO: support reversed access. 694 assert(!Group.isReverse() && "Reversed group not supported."); 695 696 SmallVector<Constant *, 16> Mask; 697 for (unsigned i = 0; i < VF; i++) 698 for (unsigned j = 0; j < Group.getFactor(); ++j) { 699 unsigned HasMember = Group.getMember(j) ? 1 : 0; 700 Mask.push_back(Builder.getInt1(HasMember)); 701 } 702 703 return ConstantVector::get(Mask); 704 } 705 706 Constant *llvm::createReplicatedMask(IRBuilderBase &Builder, 707 unsigned ReplicationFactor, unsigned VF) { 708 SmallVector<Constant *, 16> MaskVec; 709 for (unsigned i = 0; i < VF; i++) 710 for (unsigned j = 0; j < ReplicationFactor; j++) 711 MaskVec.push_back(Builder.getInt32(i)); 712 713 return ConstantVector::get(MaskVec); 714 } 715 716 Constant *llvm::createInterleaveMask(IRBuilderBase &Builder, unsigned VF, 717 unsigned NumVecs) { 718 SmallVector<Constant *, 16> Mask; 719 for (unsigned i = 0; i < VF; i++) 720 for (unsigned j = 0; j < NumVecs; j++) 721 Mask.push_back(Builder.getInt32(j * VF + i)); 722 723 return ConstantVector::get(Mask); 724 } 725 726 Constant *llvm::createStrideMask(IRBuilderBase &Builder, unsigned Start, 727 unsigned Stride, unsigned VF) { 728 SmallVector<Constant *, 16> Mask; 729 for (unsigned i = 0; i < VF; i++) 730 Mask.push_back(Builder.getInt32(Start + i * Stride)); 731 732 return ConstantVector::get(Mask); 733 } 734 735 Constant *llvm::createSequentialMask(IRBuilderBase &Builder, unsigned Start, 736 unsigned NumInts, unsigned NumUndefs) { 737 SmallVector<Constant *, 16> Mask; 738 for (unsigned i = 0; i < NumInts; i++) 739 Mask.push_back(Builder.getInt32(Start + i)); 740 741 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 742 for (unsigned i = 0; i < NumUndefs; i++) 743 Mask.push_back(Undef); 744 745 return ConstantVector::get(Mask); 746 } 747 748 /// A helper function for concatenating vectors. This function concatenates two 749 /// vectors having the same element type. If the second vector has fewer 750 /// elements than the first, it is padded with undefs. 751 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 752 Value *V2) { 753 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 754 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 755 assert(VecTy1 && VecTy2 && 756 VecTy1->getScalarType() == VecTy2->getScalarType() && 757 "Expect two vectors with the same element type"); 758 759 unsigned NumElts1 = VecTy1->getNumElements(); 760 unsigned NumElts2 = VecTy2->getNumElements(); 761 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 762 763 if (NumElts1 > NumElts2) { 764 // Extend with UNDEFs. 765 Constant *ExtMask = 766 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 767 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 768 } 769 770 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 771 return Builder.CreateShuffleVector(V1, V2, Mask); 772 } 773 774 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 775 ArrayRef<Value *> Vecs) { 776 unsigned NumVecs = Vecs.size(); 777 assert(NumVecs > 1 && "Should be at least two vectors"); 778 779 SmallVector<Value *, 8> ResList; 780 ResList.append(Vecs.begin(), Vecs.end()); 781 do { 782 SmallVector<Value *, 8> TmpList; 783 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 784 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 785 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 786 "Only the last vector may have a different type"); 787 788 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 789 } 790 791 // Push the last vector if the total number of vectors is odd. 792 if (NumVecs % 2 != 0) 793 TmpList.push_back(ResList[NumVecs - 1]); 794 795 ResList = TmpList; 796 NumVecs = ResList.size(); 797 } while (NumVecs > 1); 798 799 return ResList[0]; 800 } 801 802 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 803 auto *ConstMask = dyn_cast<Constant>(Mask); 804 if (!ConstMask) 805 return false; 806 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 807 return true; 808 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 809 ++I) { 810 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 811 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 812 continue; 813 return false; 814 } 815 return true; 816 } 817 818 819 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 820 auto *ConstMask = dyn_cast<Constant>(Mask); 821 if (!ConstMask) 822 return false; 823 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 824 return true; 825 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 826 ++I) { 827 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 828 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 829 continue; 830 return false; 831 } 832 return true; 833 } 834 835 /// TODO: This is a lot like known bits, but for 836 /// vectors. Is there something we can common this with? 837 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 838 839 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements(); 840 APInt DemandedElts = APInt::getAllOnesValue(VWidth); 841 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 842 for (unsigned i = 0; i < VWidth; i++) 843 if (CV->getAggregateElement(i)->isNullValue()) 844 DemandedElts.clearBit(i); 845 return DemandedElts; 846 } 847 848 bool InterleavedAccessInfo::isStrided(int Stride) { 849 unsigned Factor = std::abs(Stride); 850 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 851 } 852 853 void InterleavedAccessInfo::collectConstStrideAccesses( 854 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 855 const ValueToValueMap &Strides) { 856 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 857 858 // Since it's desired that the load/store instructions be maintained in 859 // "program order" for the interleaved access analysis, we have to visit the 860 // blocks in the loop in reverse postorder (i.e., in a topological order). 861 // Such an ordering will ensure that any load/store that may be executed 862 // before a second load/store will precede the second load/store in 863 // AccessStrideInfo. 864 LoopBlocksDFS DFS(TheLoop); 865 DFS.perform(LI); 866 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 867 for (auto &I : *BB) { 868 auto *LI = dyn_cast<LoadInst>(&I); 869 auto *SI = dyn_cast<StoreInst>(&I); 870 if (!LI && !SI) 871 continue; 872 873 Value *Ptr = getLoadStorePointerOperand(&I); 874 // We don't check wrapping here because we don't know yet if Ptr will be 875 // part of a full group or a group with gaps. Checking wrapping for all 876 // pointers (even those that end up in groups with no gaps) will be overly 877 // conservative. For full groups, wrapping should be ok since if we would 878 // wrap around the address space we would do a memory access at nullptr 879 // even without the transformation. The wrapping checks are therefore 880 // deferred until after we've formed the interleaved groups. 881 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 882 /*Assume=*/true, /*ShouldCheckWrap=*/false); 883 884 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 885 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 886 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 887 888 // An alignment of 0 means target ABI alignment. 889 MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I)); 890 if (!Alignment) 891 Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType())); 892 893 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment); 894 } 895 } 896 897 // Analyze interleaved accesses and collect them into interleaved load and 898 // store groups. 899 // 900 // When generating code for an interleaved load group, we effectively hoist all 901 // loads in the group to the location of the first load in program order. When 902 // generating code for an interleaved store group, we sink all stores to the 903 // location of the last store. This code motion can change the order of load 904 // and store instructions and may break dependences. 905 // 906 // The code generation strategy mentioned above ensures that we won't violate 907 // any write-after-read (WAR) dependences. 908 // 909 // E.g., for the WAR dependence: a = A[i]; // (1) 910 // A[i] = b; // (2) 911 // 912 // The store group of (2) is always inserted at or below (2), and the load 913 // group of (1) is always inserted at or above (1). Thus, the instructions will 914 // never be reordered. All other dependences are checked to ensure the 915 // correctness of the instruction reordering. 916 // 917 // The algorithm visits all memory accesses in the loop in bottom-up program 918 // order. Program order is established by traversing the blocks in the loop in 919 // reverse postorder when collecting the accesses. 920 // 921 // We visit the memory accesses in bottom-up order because it can simplify the 922 // construction of store groups in the presence of write-after-write (WAW) 923 // dependences. 924 // 925 // E.g., for the WAW dependence: A[i] = a; // (1) 926 // A[i] = b; // (2) 927 // A[i + 1] = c; // (3) 928 // 929 // We will first create a store group with (3) and (2). (1) can't be added to 930 // this group because it and (2) are dependent. However, (1) can be grouped 931 // with other accesses that may precede it in program order. Note that a 932 // bottom-up order does not imply that WAW dependences should not be checked. 933 void InterleavedAccessInfo::analyzeInterleaving( 934 bool EnablePredicatedInterleavedMemAccesses) { 935 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 936 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 937 938 // Holds all accesses with a constant stride. 939 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 940 collectConstStrideAccesses(AccessStrideInfo, Strides); 941 942 if (AccessStrideInfo.empty()) 943 return; 944 945 // Collect the dependences in the loop. 946 collectDependences(); 947 948 // Holds all interleaved store groups temporarily. 949 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 950 // Holds all interleaved load groups temporarily. 951 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 952 953 // Search in bottom-up program order for pairs of accesses (A and B) that can 954 // form interleaved load or store groups. In the algorithm below, access A 955 // precedes access B in program order. We initialize a group for B in the 956 // outer loop of the algorithm, and then in the inner loop, we attempt to 957 // insert each A into B's group if: 958 // 959 // 1. A and B have the same stride, 960 // 2. A and B have the same memory object size, and 961 // 3. A belongs in B's group according to its distance from B. 962 // 963 // Special care is taken to ensure group formation will not break any 964 // dependences. 965 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 966 BI != E; ++BI) { 967 Instruction *B = BI->first; 968 StrideDescriptor DesB = BI->second; 969 970 // Initialize a group for B if it has an allowable stride. Even if we don't 971 // create a group for B, we continue with the bottom-up algorithm to ensure 972 // we don't break any of B's dependences. 973 InterleaveGroup<Instruction> *Group = nullptr; 974 if (isStrided(DesB.Stride) && 975 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 976 Group = getInterleaveGroup(B); 977 if (!Group) { 978 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 979 << '\n'); 980 Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 981 } 982 if (B->mayWriteToMemory()) 983 StoreGroups.insert(Group); 984 else 985 LoadGroups.insert(Group); 986 } 987 988 for (auto AI = std::next(BI); AI != E; ++AI) { 989 Instruction *A = AI->first; 990 StrideDescriptor DesA = AI->second; 991 992 // Our code motion strategy implies that we can't have dependences 993 // between accesses in an interleaved group and other accesses located 994 // between the first and last member of the group. Note that this also 995 // means that a group can't have more than one member at a given offset. 996 // The accesses in a group can have dependences with other accesses, but 997 // we must ensure we don't extend the boundaries of the group such that 998 // we encompass those dependent accesses. 999 // 1000 // For example, assume we have the sequence of accesses shown below in a 1001 // stride-2 loop: 1002 // 1003 // (1, 2) is a group | A[i] = a; // (1) 1004 // | A[i-1] = b; // (2) | 1005 // A[i-3] = c; // (3) 1006 // A[i] = d; // (4) | (2, 4) is not a group 1007 // 1008 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1009 // but not with (4). If we did, the dependent access (3) would be within 1010 // the boundaries of the (2, 4) group. 1011 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 1012 // If a dependence exists and A is already in a group, we know that A 1013 // must be a store since A precedes B and WAR dependences are allowed. 1014 // Thus, A would be sunk below B. We release A's group to prevent this 1015 // illegal code motion. A will then be free to form another group with 1016 // instructions that precede it. 1017 if (isInterleaved(A)) { 1018 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 1019 1020 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1021 "dependence between " << *A << " and "<< *B << '\n'); 1022 1023 StoreGroups.remove(StoreGroup); 1024 releaseGroup(StoreGroup); 1025 } 1026 1027 // If a dependence exists and A is not already in a group (or it was 1028 // and we just released it), B might be hoisted above A (if B is a 1029 // load) or another store might be sunk below A (if B is a store). In 1030 // either case, we can't add additional instructions to B's group. B 1031 // will only form a group with instructions that it precedes. 1032 break; 1033 } 1034 1035 // At this point, we've checked for illegal code motion. If either A or B 1036 // isn't strided, there's nothing left to do. 1037 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1038 continue; 1039 1040 // Ignore A if it's already in a group or isn't the same kind of memory 1041 // operation as B. 1042 // Note that mayReadFromMemory() isn't mutually exclusive to 1043 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1044 // here, canVectorizeMemory() should have returned false - except for the 1045 // case we asked for optimization remarks. 1046 if (isInterleaved(A) || 1047 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1048 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1049 continue; 1050 1051 // Check rules 1 and 2. Ignore A if its stride or size is different from 1052 // that of B. 1053 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1054 continue; 1055 1056 // Ignore A if the memory object of A and B don't belong to the same 1057 // address space 1058 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1059 continue; 1060 1061 // Calculate the distance from A to B. 1062 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1063 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1064 if (!DistToB) 1065 continue; 1066 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1067 1068 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1069 // size. 1070 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1071 continue; 1072 1073 // All members of a predicated interleave-group must have the same predicate, 1074 // and currently must reside in the same BB. 1075 BasicBlock *BlockA = A->getParent(); 1076 BasicBlock *BlockB = B->getParent(); 1077 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1078 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1079 continue; 1080 1081 // The index of A is the index of B plus A's distance to B in multiples 1082 // of the size. 1083 int IndexA = 1084 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1085 1086 // Try to insert A into B's group. 1087 if (Group->insertMember(A, IndexA, DesA.Alignment)) { 1088 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1089 << " into the interleave group with" << *B 1090 << '\n'); 1091 InterleaveGroupMap[A] = Group; 1092 1093 // Set the first load in program order as the insert position. 1094 if (A->mayReadFromMemory()) 1095 Group->setInsertPos(A); 1096 } 1097 } // Iteration over A accesses. 1098 } // Iteration over B accesses. 1099 1100 // Remove interleaved store groups with gaps. 1101 for (auto *Group : StoreGroups) 1102 if (Group->getNumMembers() != Group->getFactor()) { 1103 LLVM_DEBUG( 1104 dbgs() << "LV: Invalidate candidate interleaved store group due " 1105 "to gaps.\n"); 1106 releaseGroup(Group); 1107 } 1108 // Remove interleaved groups with gaps (currently only loads) whose memory 1109 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1110 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1111 // not check wrapping (see documentation there). 1112 // FORNOW we use Assume=false; 1113 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1114 // of runtime SCEV assumptions checks (thereby potentially failing to 1115 // vectorize altogether). 1116 // Additional optional optimizations: 1117 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1118 // wrap then we can deduce that all pointers in the group don't wrap. 1119 // This means that we can forcefully peel the loop in order to only have to 1120 // check the first pointer for no-wrap. When we'll change to use Assume=true 1121 // we'll only need at most one runtime check per interleaved group. 1122 for (auto *Group : LoadGroups) { 1123 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1124 // load would wrap around the address space we would do a memory access at 1125 // nullptr even without the transformation. 1126 if (Group->getNumMembers() == Group->getFactor()) 1127 continue; 1128 1129 // Case 2: If first and last members of the group don't wrap this implies 1130 // that all the pointers in the group don't wrap. 1131 // So we check only group member 0 (which is always guaranteed to exist), 1132 // and group member Factor - 1; If the latter doesn't exist we rely on 1133 // peeling (if it is a non-reversed accsess -- see Case 3). 1134 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 1135 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 1136 /*ShouldCheckWrap=*/true)) { 1137 LLVM_DEBUG( 1138 dbgs() << "LV: Invalidate candidate interleaved group due to " 1139 "first group member potentially pointer-wrapping.\n"); 1140 releaseGroup(Group); 1141 continue; 1142 } 1143 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 1144 if (LastMember) { 1145 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 1146 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 1147 /*ShouldCheckWrap=*/true)) { 1148 LLVM_DEBUG( 1149 dbgs() << "LV: Invalidate candidate interleaved group due to " 1150 "last group member potentially pointer-wrapping.\n"); 1151 releaseGroup(Group); 1152 } 1153 } else { 1154 // Case 3: A non-reversed interleaved load group with gaps: We need 1155 // to execute at least one scalar epilogue iteration. This will ensure 1156 // we don't speculatively access memory out-of-bounds. We only need 1157 // to look for a member at index factor - 1, since every group must have 1158 // a member at index zero. 1159 if (Group->isReverse()) { 1160 LLVM_DEBUG( 1161 dbgs() << "LV: Invalidate candidate interleaved group due to " 1162 "a reverse access with gaps.\n"); 1163 releaseGroup(Group); 1164 continue; 1165 } 1166 LLVM_DEBUG( 1167 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1168 RequiresScalarEpilogue = true; 1169 } 1170 } 1171 } 1172 1173 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1174 // If no group had triggered the requirement to create an epilogue loop, 1175 // there is nothing to do. 1176 if (!requiresScalarEpilogue()) 1177 return; 1178 1179 // Avoid releasing a Group twice. 1180 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; 1181 for (auto &I : InterleaveGroupMap) { 1182 InterleaveGroup<Instruction> *Group = I.second; 1183 if (Group->requiresScalarEpilogue()) 1184 DelSet.insert(Group); 1185 } 1186 for (auto *Ptr : DelSet) { 1187 LLVM_DEBUG( 1188 dbgs() 1189 << "LV: Invalidate candidate interleaved group due to gaps that " 1190 "require a scalar epilogue (not allowed under optsize) and cannot " 1191 "be masked (not enabled). \n"); 1192 releaseGroup(Ptr); 1193 } 1194 1195 RequiresScalarEpilogue = false; 1196 } 1197 1198 template <typename InstT> 1199 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1200 llvm_unreachable("addMetadata can only be used for Instruction"); 1201 } 1202 1203 namespace llvm { 1204 template <> 1205 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1206 SmallVector<Value *, 4> VL; 1207 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1208 [](std::pair<int, Instruction *> p) { return p.second; }); 1209 propagateMetadata(NewInst, VL); 1210 } 1211 } 1212 1213 void VFABI::getVectorVariantNames( 1214 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1215 const StringRef S = 1216 CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName) 1217 .getValueAsString(); 1218 if (S.empty()) 1219 return; 1220 1221 SmallVector<StringRef, 8> ListAttr; 1222 S.split(ListAttr, ","); 1223 1224 for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1225 #ifndef NDEBUG 1226 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); 1227 Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule())); 1228 assert(Info.hasValue() && "Invalid name for a VFABI variant."); 1229 assert(CI.getModule()->getFunction(Info.getValue().VectorName) && 1230 "Vector function is missing."); 1231 #endif 1232 VariantMappings.push_back(std::string(S)); 1233 } 1234 } 1235 1236 bool VFShape::hasValidParameterList() const { 1237 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1238 ++Pos) { 1239 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1240 1241 switch (Parameters[Pos].ParamKind) { 1242 default: // Nothing to check. 1243 break; 1244 case VFParamKind::OMP_Linear: 1245 case VFParamKind::OMP_LinearRef: 1246 case VFParamKind::OMP_LinearVal: 1247 case VFParamKind::OMP_LinearUVal: 1248 // Compile time linear steps must be non-zero. 1249 if (Parameters[Pos].LinearStepOrPos == 0) 1250 return false; 1251 break; 1252 case VFParamKind::OMP_LinearPos: 1253 case VFParamKind::OMP_LinearRefPos: 1254 case VFParamKind::OMP_LinearValPos: 1255 case VFParamKind::OMP_LinearUValPos: 1256 // The runtime linear step must be referring to some other 1257 // parameters in the signature. 1258 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1259 return false; 1260 // The linear step parameter must be marked as uniform. 1261 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1262 VFParamKind::OMP_Uniform) 1263 return false; 1264 // The linear step parameter can't point at itself. 1265 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1266 return false; 1267 break; 1268 case VFParamKind::GlobalPredicate: 1269 // The global predicate must be the unique. Can be placed anywhere in the 1270 // signature. 1271 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1272 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1273 return false; 1274 break; 1275 } 1276 } 1277 return true; 1278 } 1279