1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines vectorizer utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/VectorUtils.h" 15 #include "llvm/ADT/EquivalenceClasses.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Value.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Identify if the intrinsic is trivially vectorizable. 41 /// This method returns true if the intrinsic's argument types are all 42 /// scalars for the scalar form of the intrinsic and all vectors for 43 /// the vector form of the intrinsic. 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::sqrt: 47 case Intrinsic::sin: 48 case Intrinsic::cos: 49 case Intrinsic::exp: 50 case Intrinsic::exp2: 51 case Intrinsic::log: 52 case Intrinsic::log10: 53 case Intrinsic::log2: 54 case Intrinsic::fabs: 55 case Intrinsic::minnum: 56 case Intrinsic::maxnum: 57 case Intrinsic::copysign: 58 case Intrinsic::floor: 59 case Intrinsic::ceil: 60 case Intrinsic::trunc: 61 case Intrinsic::rint: 62 case Intrinsic::nearbyint: 63 case Intrinsic::round: 64 case Intrinsic::bswap: 65 case Intrinsic::bitreverse: 66 case Intrinsic::ctpop: 67 case Intrinsic::pow: 68 case Intrinsic::fma: 69 case Intrinsic::fmuladd: 70 case Intrinsic::ctlz: 71 case Intrinsic::cttz: 72 case Intrinsic::powi: 73 case Intrinsic::canonicalize: 74 return true; 75 default: 76 return false; 77 } 78 } 79 80 /// Identifies if the intrinsic has a scalar operand. It check for 81 /// ctlz,cttz and powi special intrinsics whose argument is scalar. 82 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 83 unsigned ScalarOpdIdx) { 84 switch (ID) { 85 case Intrinsic::ctlz: 86 case Intrinsic::cttz: 87 case Intrinsic::powi: 88 return (ScalarOpdIdx == 1); 89 default: 90 return false; 91 } 92 } 93 94 /// Returns intrinsic ID for call. 95 /// For the input call instruction it finds mapping intrinsic and returns 96 /// its ID, in case it does not found it return not_intrinsic. 97 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 98 const TargetLibraryInfo *TLI) { 99 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 100 if (ID == Intrinsic::not_intrinsic) 101 return Intrinsic::not_intrinsic; 102 103 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 104 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 105 ID == Intrinsic::sideeffect) 106 return ID; 107 return Intrinsic::not_intrinsic; 108 } 109 110 /// Find the operand of the GEP that should be checked for consecutive 111 /// stores. This ignores trailing indices that have no effect on the final 112 /// pointer. 113 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 114 const DataLayout &DL = Gep->getModule()->getDataLayout(); 115 unsigned LastOperand = Gep->getNumOperands() - 1; 116 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 117 118 // Walk backwards and try to peel off zeros. 119 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 120 // Find the type we're currently indexing into. 121 gep_type_iterator GEPTI = gep_type_begin(Gep); 122 std::advance(GEPTI, LastOperand - 2); 123 124 // If it's a type with the same allocation size as the result of the GEP we 125 // can peel off the zero index. 126 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 127 break; 128 --LastOperand; 129 } 130 131 return LastOperand; 132 } 133 134 /// If the argument is a GEP, then returns the operand identified by 135 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 136 /// operand, it returns that instead. 137 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 138 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 139 if (!GEP) 140 return Ptr; 141 142 unsigned InductionOperand = getGEPInductionOperand(GEP); 143 144 // Check that all of the gep indices are uniform except for our induction 145 // operand. 146 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 147 if (i != InductionOperand && 148 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 149 return Ptr; 150 return GEP->getOperand(InductionOperand); 151 } 152 153 /// If a value has only one user that is a CastInst, return it. 154 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 155 Value *UniqueCast = nullptr; 156 for (User *U : Ptr->users()) { 157 CastInst *CI = dyn_cast<CastInst>(U); 158 if (CI && CI->getType() == Ty) { 159 if (!UniqueCast) 160 UniqueCast = CI; 161 else 162 return nullptr; 163 } 164 } 165 return UniqueCast; 166 } 167 168 /// Get the stride of a pointer access in a loop. Looks for symbolic 169 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 170 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 171 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 172 if (!PtrTy || PtrTy->isAggregateType()) 173 return nullptr; 174 175 // Try to remove a gep instruction to make the pointer (actually index at this 176 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 177 // pointer, otherwise, we are analyzing the index. 178 Value *OrigPtr = Ptr; 179 180 // The size of the pointer access. 181 int64_t PtrAccessSize = 1; 182 183 Ptr = stripGetElementPtr(Ptr, SE, Lp); 184 const SCEV *V = SE->getSCEV(Ptr); 185 186 if (Ptr != OrigPtr) 187 // Strip off casts. 188 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 189 V = C->getOperand(); 190 191 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 192 if (!S) 193 return nullptr; 194 195 V = S->getStepRecurrence(*SE); 196 if (!V) 197 return nullptr; 198 199 // Strip off the size of access multiplication if we are still analyzing the 200 // pointer. 201 if (OrigPtr == Ptr) { 202 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 203 if (M->getOperand(0)->getSCEVType() != scConstant) 204 return nullptr; 205 206 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 207 208 // Huge step value - give up. 209 if (APStepVal.getBitWidth() > 64) 210 return nullptr; 211 212 int64_t StepVal = APStepVal.getSExtValue(); 213 if (PtrAccessSize != StepVal) 214 return nullptr; 215 V = M->getOperand(1); 216 } 217 } 218 219 // Strip off casts. 220 Type *StripedOffRecurrenceCast = nullptr; 221 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 222 StripedOffRecurrenceCast = C->getType(); 223 V = C->getOperand(); 224 } 225 226 // Look for the loop invariant symbolic value. 227 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 228 if (!U) 229 return nullptr; 230 231 Value *Stride = U->getValue(); 232 if (!Lp->isLoopInvariant(Stride)) 233 return nullptr; 234 235 // If we have stripped off the recurrence cast we have to make sure that we 236 // return the value that is used in this loop so that we can replace it later. 237 if (StripedOffRecurrenceCast) 238 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 239 240 return Stride; 241 } 242 243 /// Given a vector and an element number, see if the scalar value is 244 /// already around as a register, for example if it were inserted then extracted 245 /// from the vector. 246 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 247 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 248 VectorType *VTy = cast<VectorType>(V->getType()); 249 unsigned Width = VTy->getNumElements(); 250 if (EltNo >= Width) // Out of range access. 251 return UndefValue::get(VTy->getElementType()); 252 253 if (Constant *C = dyn_cast<Constant>(V)) 254 return C->getAggregateElement(EltNo); 255 256 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 257 // If this is an insert to a variable element, we don't know what it is. 258 if (!isa<ConstantInt>(III->getOperand(2))) 259 return nullptr; 260 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 261 262 // If this is an insert to the element we are looking for, return the 263 // inserted value. 264 if (EltNo == IIElt) 265 return III->getOperand(1); 266 267 // Otherwise, the insertelement doesn't modify the value, recurse on its 268 // vector input. 269 return findScalarElement(III->getOperand(0), EltNo); 270 } 271 272 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 273 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 274 int InEl = SVI->getMaskValue(EltNo); 275 if (InEl < 0) 276 return UndefValue::get(VTy->getElementType()); 277 if (InEl < (int)LHSWidth) 278 return findScalarElement(SVI->getOperand(0), InEl); 279 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 280 } 281 282 // Extract a value from a vector add operation with a constant zero. 283 Value *Val = nullptr; Constant *Con = nullptr; 284 if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) 285 if (Constant *Elt = Con->getAggregateElement(EltNo)) 286 if (Elt->isNullValue()) 287 return findScalarElement(Val, EltNo); 288 289 // Otherwise, we don't know. 290 return nullptr; 291 } 292 293 /// Get splat value if the input is a splat vector or return nullptr. 294 /// This function is not fully general. It checks only 2 cases: 295 /// the input value is (1) a splat constants vector or (2) a sequence 296 /// of instructions that broadcast a single value into a vector. 297 /// 298 const llvm::Value *llvm::getSplatValue(const Value *V) { 299 300 if (auto *C = dyn_cast<Constant>(V)) 301 if (isa<VectorType>(V->getType())) 302 return C->getSplatValue(); 303 304 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V); 305 if (!ShuffleInst) 306 return nullptr; 307 // All-zero (or undef) shuffle mask elements. 308 for (int MaskElt : ShuffleInst->getShuffleMask()) 309 if (MaskElt != 0 && MaskElt != -1) 310 return nullptr; 311 // The first shuffle source is 'insertelement' with index 0. 312 auto *InsertEltInst = 313 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0)); 314 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) || 315 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero()) 316 return nullptr; 317 318 return InsertEltInst->getOperand(1); 319 } 320 321 MapVector<Instruction *, uint64_t> 322 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 323 const TargetTransformInfo *TTI) { 324 325 // DemandedBits will give us every value's live-out bits. But we want 326 // to ensure no extra casts would need to be inserted, so every DAG 327 // of connected values must have the same minimum bitwidth. 328 EquivalenceClasses<Value *> ECs; 329 SmallVector<Value *, 16> Worklist; 330 SmallPtrSet<Value *, 4> Roots; 331 SmallPtrSet<Value *, 16> Visited; 332 DenseMap<Value *, uint64_t> DBits; 333 SmallPtrSet<Instruction *, 4> InstructionSet; 334 MapVector<Instruction *, uint64_t> MinBWs; 335 336 // Determine the roots. We work bottom-up, from truncs or icmps. 337 bool SeenExtFromIllegalType = false; 338 for (auto *BB : Blocks) 339 for (auto &I : *BB) { 340 InstructionSet.insert(&I); 341 342 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 343 !TTI->isTypeLegal(I.getOperand(0)->getType())) 344 SeenExtFromIllegalType = true; 345 346 // Only deal with non-vector integers up to 64-bits wide. 347 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 348 !I.getType()->isVectorTy() && 349 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 350 // Don't make work for ourselves. If we know the loaded type is legal, 351 // don't add it to the worklist. 352 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 353 continue; 354 355 Worklist.push_back(&I); 356 Roots.insert(&I); 357 } 358 } 359 // Early exit. 360 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 361 return MinBWs; 362 363 // Now proceed breadth-first, unioning values together. 364 while (!Worklist.empty()) { 365 Value *Val = Worklist.pop_back_val(); 366 Value *Leader = ECs.getOrInsertLeaderValue(Val); 367 368 if (Visited.count(Val)) 369 continue; 370 Visited.insert(Val); 371 372 // Non-instructions terminate a chain successfully. 373 if (!isa<Instruction>(Val)) 374 continue; 375 Instruction *I = cast<Instruction>(Val); 376 377 // If we encounter a type that is larger than 64 bits, we can't represent 378 // it so bail out. 379 if (DB.getDemandedBits(I).getBitWidth() > 64) 380 return MapVector<Instruction *, uint64_t>(); 381 382 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 383 DBits[Leader] |= V; 384 DBits[I] = V; 385 386 // Casts, loads and instructions outside of our range terminate a chain 387 // successfully. 388 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 389 !InstructionSet.count(I)) 390 continue; 391 392 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 393 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 394 // transform anything that relies on them. 395 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 396 !I->getType()->isIntegerTy()) { 397 DBits[Leader] |= ~0ULL; 398 continue; 399 } 400 401 // We don't modify the types of PHIs. Reductions will already have been 402 // truncated if possible, and inductions' sizes will have been chosen by 403 // indvars. 404 if (isa<PHINode>(I)) 405 continue; 406 407 if (DBits[Leader] == ~0ULL) 408 // All bits demanded, no point continuing. 409 continue; 410 411 for (Value *O : cast<User>(I)->operands()) { 412 ECs.unionSets(Leader, O); 413 Worklist.push_back(O); 414 } 415 } 416 417 // Now we've discovered all values, walk them to see if there are 418 // any users we didn't see. If there are, we can't optimize that 419 // chain. 420 for (auto &I : DBits) 421 for (auto *U : I.first->users()) 422 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 423 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 424 425 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 426 uint64_t LeaderDemandedBits = 0; 427 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 428 LeaderDemandedBits |= DBits[*MI]; 429 430 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 431 llvm::countLeadingZeros(LeaderDemandedBits); 432 // Round up to a power of 2 433 if (!isPowerOf2_64((uint64_t)MinBW)) 434 MinBW = NextPowerOf2(MinBW); 435 436 // We don't modify the types of PHIs. Reductions will already have been 437 // truncated if possible, and inductions' sizes will have been chosen by 438 // indvars. 439 // If we are required to shrink a PHI, abandon this entire equivalence class. 440 bool Abort = false; 441 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 442 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 443 Abort = true; 444 break; 445 } 446 if (Abort) 447 continue; 448 449 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 450 if (!isa<Instruction>(*MI)) 451 continue; 452 Type *Ty = (*MI)->getType(); 453 if (Roots.count(*MI)) 454 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 455 if (MinBW < Ty->getScalarSizeInBits()) 456 MinBWs[cast<Instruction>(*MI)] = MinBW; 457 } 458 } 459 460 return MinBWs; 461 } 462 463 /// \returns \p I after propagating metadata from \p VL. 464 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 465 Instruction *I0 = cast<Instruction>(VL[0]); 466 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 467 I0->getAllMetadataOtherThanDebugLoc(Metadata); 468 469 for (auto Kind : 470 {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 471 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 472 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) { 473 MDNode *MD = I0->getMetadata(Kind); 474 475 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 476 const Instruction *IJ = cast<Instruction>(VL[J]); 477 MDNode *IMD = IJ->getMetadata(Kind); 478 switch (Kind) { 479 case LLVMContext::MD_tbaa: 480 MD = MDNode::getMostGenericTBAA(MD, IMD); 481 break; 482 case LLVMContext::MD_alias_scope: 483 MD = MDNode::getMostGenericAliasScope(MD, IMD); 484 break; 485 case LLVMContext::MD_fpmath: 486 MD = MDNode::getMostGenericFPMath(MD, IMD); 487 break; 488 case LLVMContext::MD_noalias: 489 case LLVMContext::MD_nontemporal: 490 case LLVMContext::MD_invariant_load: 491 MD = MDNode::intersect(MD, IMD); 492 break; 493 default: 494 llvm_unreachable("unhandled metadata"); 495 } 496 } 497 498 Inst->setMetadata(Kind, MD); 499 } 500 501 return Inst; 502 } 503 504 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, 505 unsigned NumVecs) { 506 SmallVector<Constant *, 16> Mask; 507 for (unsigned i = 0; i < VF; i++) 508 for (unsigned j = 0; j < NumVecs; j++) 509 Mask.push_back(Builder.getInt32(j * VF + i)); 510 511 return ConstantVector::get(Mask); 512 } 513 514 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, 515 unsigned Stride, unsigned VF) { 516 SmallVector<Constant *, 16> Mask; 517 for (unsigned i = 0; i < VF; i++) 518 Mask.push_back(Builder.getInt32(Start + i * Stride)); 519 520 return ConstantVector::get(Mask); 521 } 522 523 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, 524 unsigned NumInts, unsigned NumUndefs) { 525 SmallVector<Constant *, 16> Mask; 526 for (unsigned i = 0; i < NumInts; i++) 527 Mask.push_back(Builder.getInt32(Start + i)); 528 529 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 530 for (unsigned i = 0; i < NumUndefs; i++) 531 Mask.push_back(Undef); 532 533 return ConstantVector::get(Mask); 534 } 535 536 /// A helper function for concatenating vectors. This function concatenates two 537 /// vectors having the same element type. If the second vector has fewer 538 /// elements than the first, it is padded with undefs. 539 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 540 Value *V2) { 541 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 542 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 543 assert(VecTy1 && VecTy2 && 544 VecTy1->getScalarType() == VecTy2->getScalarType() && 545 "Expect two vectors with the same element type"); 546 547 unsigned NumElts1 = VecTy1->getNumElements(); 548 unsigned NumElts2 = VecTy2->getNumElements(); 549 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 550 551 if (NumElts1 > NumElts2) { 552 // Extend with UNDEFs. 553 Constant *ExtMask = 554 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 555 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 556 } 557 558 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 559 return Builder.CreateShuffleVector(V1, V2, Mask); 560 } 561 562 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) { 563 unsigned NumVecs = Vecs.size(); 564 assert(NumVecs > 1 && "Should be at least two vectors"); 565 566 SmallVector<Value *, 8> ResList; 567 ResList.append(Vecs.begin(), Vecs.end()); 568 do { 569 SmallVector<Value *, 8> TmpList; 570 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 571 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 572 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 573 "Only the last vector may have a different type"); 574 575 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 576 } 577 578 // Push the last vector if the total number of vectors is odd. 579 if (NumVecs % 2 != 0) 580 TmpList.push_back(ResList[NumVecs - 1]); 581 582 ResList = TmpList; 583 NumVecs = ResList.size(); 584 } while (NumVecs > 1); 585 586 return ResList[0]; 587 } 588 589 bool InterleavedAccessInfo::isStrided(int Stride) { 590 unsigned Factor = std::abs(Stride); 591 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 592 } 593 594 void InterleavedAccessInfo::collectConstStrideAccesses( 595 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 596 const ValueToValueMap &Strides) { 597 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 598 599 // Since it's desired that the load/store instructions be maintained in 600 // "program order" for the interleaved access analysis, we have to visit the 601 // blocks in the loop in reverse postorder (i.e., in a topological order). 602 // Such an ordering will ensure that any load/store that may be executed 603 // before a second load/store will precede the second load/store in 604 // AccessStrideInfo. 605 LoopBlocksDFS DFS(TheLoop); 606 DFS.perform(LI); 607 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 608 for (auto &I : *BB) { 609 auto *LI = dyn_cast<LoadInst>(&I); 610 auto *SI = dyn_cast<StoreInst>(&I); 611 if (!LI && !SI) 612 continue; 613 614 Value *Ptr = getLoadStorePointerOperand(&I); 615 // We don't check wrapping here because we don't know yet if Ptr will be 616 // part of a full group or a group with gaps. Checking wrapping for all 617 // pointers (even those that end up in groups with no gaps) will be overly 618 // conservative. For full groups, wrapping should be ok since if we would 619 // wrap around the address space we would do a memory access at nullptr 620 // even without the transformation. The wrapping checks are therefore 621 // deferred until after we've formed the interleaved groups. 622 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 623 /*Assume=*/true, /*ShouldCheckWrap=*/false); 624 625 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 626 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 627 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 628 629 // An alignment of 0 means target ABI alignment. 630 unsigned Align = getLoadStoreAlignment(&I); 631 if (!Align) 632 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 633 634 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 635 } 636 } 637 638 // Analyze interleaved accesses and collect them into interleaved load and 639 // store groups. 640 // 641 // When generating code for an interleaved load group, we effectively hoist all 642 // loads in the group to the location of the first load in program order. When 643 // generating code for an interleaved store group, we sink all stores to the 644 // location of the last store. This code motion can change the order of load 645 // and store instructions and may break dependences. 646 // 647 // The code generation strategy mentioned above ensures that we won't violate 648 // any write-after-read (WAR) dependences. 649 // 650 // E.g., for the WAR dependence: a = A[i]; // (1) 651 // A[i] = b; // (2) 652 // 653 // The store group of (2) is always inserted at or below (2), and the load 654 // group of (1) is always inserted at or above (1). Thus, the instructions will 655 // never be reordered. All other dependences are checked to ensure the 656 // correctness of the instruction reordering. 657 // 658 // The algorithm visits all memory accesses in the loop in bottom-up program 659 // order. Program order is established by traversing the blocks in the loop in 660 // reverse postorder when collecting the accesses. 661 // 662 // We visit the memory accesses in bottom-up order because it can simplify the 663 // construction of store groups in the presence of write-after-write (WAW) 664 // dependences. 665 // 666 // E.g., for the WAW dependence: A[i] = a; // (1) 667 // A[i] = b; // (2) 668 // A[i + 1] = c; // (3) 669 // 670 // We will first create a store group with (3) and (2). (1) can't be added to 671 // this group because it and (2) are dependent. However, (1) can be grouped 672 // with other accesses that may precede it in program order. Note that a 673 // bottom-up order does not imply that WAW dependences should not be checked. 674 void InterleavedAccessInfo::analyzeInterleaving() { 675 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 676 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 677 678 // Holds all accesses with a constant stride. 679 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 680 collectConstStrideAccesses(AccessStrideInfo, Strides); 681 682 if (AccessStrideInfo.empty()) 683 return; 684 685 // Collect the dependences in the loop. 686 collectDependences(); 687 688 // Holds all interleaved store groups temporarily. 689 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 690 // Holds all interleaved load groups temporarily. 691 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 692 693 // Search in bottom-up program order for pairs of accesses (A and B) that can 694 // form interleaved load or store groups. In the algorithm below, access A 695 // precedes access B in program order. We initialize a group for B in the 696 // outer loop of the algorithm, and then in the inner loop, we attempt to 697 // insert each A into B's group if: 698 // 699 // 1. A and B have the same stride, 700 // 2. A and B have the same memory object size, and 701 // 3. A belongs in B's group according to its distance from B. 702 // 703 // Special care is taken to ensure group formation will not break any 704 // dependences. 705 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 706 BI != E; ++BI) { 707 Instruction *B = BI->first; 708 StrideDescriptor DesB = BI->second; 709 710 // Initialize a group for B if it has an allowable stride. Even if we don't 711 // create a group for B, we continue with the bottom-up algorithm to ensure 712 // we don't break any of B's dependences. 713 InterleaveGroup *Group = nullptr; 714 if (isStrided(DesB.Stride)) { 715 Group = getInterleaveGroup(B); 716 if (!Group) { 717 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 718 << '\n'); 719 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 720 } 721 if (B->mayWriteToMemory()) 722 StoreGroups.insert(Group); 723 else 724 LoadGroups.insert(Group); 725 } 726 727 for (auto AI = std::next(BI); AI != E; ++AI) { 728 Instruction *A = AI->first; 729 StrideDescriptor DesA = AI->second; 730 731 // Our code motion strategy implies that we can't have dependences 732 // between accesses in an interleaved group and other accesses located 733 // between the first and last member of the group. Note that this also 734 // means that a group can't have more than one member at a given offset. 735 // The accesses in a group can have dependences with other accesses, but 736 // we must ensure we don't extend the boundaries of the group such that 737 // we encompass those dependent accesses. 738 // 739 // For example, assume we have the sequence of accesses shown below in a 740 // stride-2 loop: 741 // 742 // (1, 2) is a group | A[i] = a; // (1) 743 // | A[i-1] = b; // (2) | 744 // A[i-3] = c; // (3) 745 // A[i] = d; // (4) | (2, 4) is not a group 746 // 747 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 748 // but not with (4). If we did, the dependent access (3) would be within 749 // the boundaries of the (2, 4) group. 750 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 751 // If a dependence exists and A is already in a group, we know that A 752 // must be a store since A precedes B and WAR dependences are allowed. 753 // Thus, A would be sunk below B. We release A's group to prevent this 754 // illegal code motion. A will then be free to form another group with 755 // instructions that precede it. 756 if (isInterleaved(A)) { 757 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 758 StoreGroups.remove(StoreGroup); 759 releaseGroup(StoreGroup); 760 } 761 762 // If a dependence exists and A is not already in a group (or it was 763 // and we just released it), B might be hoisted above A (if B is a 764 // load) or another store might be sunk below A (if B is a store). In 765 // either case, we can't add additional instructions to B's group. B 766 // will only form a group with instructions that it precedes. 767 break; 768 } 769 770 // At this point, we've checked for illegal code motion. If either A or B 771 // isn't strided, there's nothing left to do. 772 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 773 continue; 774 775 // Ignore A if it's already in a group or isn't the same kind of memory 776 // operation as B. 777 // Note that mayReadFromMemory() isn't mutually exclusive to 778 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 779 // here, canVectorizeMemory() should have returned false - except for the 780 // case we asked for optimization remarks. 781 if (isInterleaved(A) || 782 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 783 (A->mayWriteToMemory() != B->mayWriteToMemory())) 784 continue; 785 786 // Check rules 1 and 2. Ignore A if its stride or size is different from 787 // that of B. 788 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 789 continue; 790 791 // Ignore A if the memory object of A and B don't belong to the same 792 // address space 793 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 794 continue; 795 796 // Calculate the distance from A to B. 797 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 798 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 799 if (!DistToB) 800 continue; 801 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 802 803 // Check rule 3. Ignore A if its distance to B is not a multiple of the 804 // size. 805 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 806 continue; 807 808 // Ignore A if either A or B is in a predicated block. Although we 809 // currently prevent group formation for predicated accesses, we may be 810 // able to relax this limitation in the future once we handle more 811 // complicated blocks. 812 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 813 continue; 814 815 // The index of A is the index of B plus A's distance to B in multiples 816 // of the size. 817 int IndexA = 818 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 819 820 // Try to insert A into B's group. 821 if (Group->insertMember(A, IndexA, DesA.Align)) { 822 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 823 << " into the interleave group with" << *B 824 << '\n'); 825 InterleaveGroupMap[A] = Group; 826 827 // Set the first load in program order as the insert position. 828 if (A->mayReadFromMemory()) 829 Group->setInsertPos(A); 830 } 831 } // Iteration over A accesses. 832 } // Iteration over B accesses. 833 834 // Remove interleaved store groups with gaps. 835 for (InterleaveGroup *Group : StoreGroups) 836 if (Group->getNumMembers() != Group->getFactor()) { 837 LLVM_DEBUG( 838 dbgs() << "LV: Invalidate candidate interleaved store group due " 839 "to gaps.\n"); 840 releaseGroup(Group); 841 } 842 // Remove interleaved groups with gaps (currently only loads) whose memory 843 // accesses may wrap around. We have to revisit the getPtrStride analysis, 844 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 845 // not check wrapping (see documentation there). 846 // FORNOW we use Assume=false; 847 // TODO: Change to Assume=true but making sure we don't exceed the threshold 848 // of runtime SCEV assumptions checks (thereby potentially failing to 849 // vectorize altogether). 850 // Additional optional optimizations: 851 // TODO: If we are peeling the loop and we know that the first pointer doesn't 852 // wrap then we can deduce that all pointers in the group don't wrap. 853 // This means that we can forcefully peel the loop in order to only have to 854 // check the first pointer for no-wrap. When we'll change to use Assume=true 855 // we'll only need at most one runtime check per interleaved group. 856 for (InterleaveGroup *Group : LoadGroups) { 857 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 858 // load would wrap around the address space we would do a memory access at 859 // nullptr even without the transformation. 860 if (Group->getNumMembers() == Group->getFactor()) 861 continue; 862 863 // Case 2: If first and last members of the group don't wrap this implies 864 // that all the pointers in the group don't wrap. 865 // So we check only group member 0 (which is always guaranteed to exist), 866 // and group member Factor - 1; If the latter doesn't exist we rely on 867 // peeling (if it is a non-reveresed accsess -- see Case 3). 868 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 869 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 870 /*ShouldCheckWrap=*/true)) { 871 LLVM_DEBUG( 872 dbgs() << "LV: Invalidate candidate interleaved group due to " 873 "first group member potentially pointer-wrapping.\n"); 874 releaseGroup(Group); 875 continue; 876 } 877 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 878 if (LastMember) { 879 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 880 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 881 /*ShouldCheckWrap=*/true)) { 882 LLVM_DEBUG( 883 dbgs() << "LV: Invalidate candidate interleaved group due to " 884 "last group member potentially pointer-wrapping.\n"); 885 releaseGroup(Group); 886 } 887 } else { 888 // Case 3: A non-reversed interleaved load group with gaps: We need 889 // to execute at least one scalar epilogue iteration. This will ensure 890 // we don't speculatively access memory out-of-bounds. We only need 891 // to look for a member at index factor - 1, since every group must have 892 // a member at index zero. 893 if (Group->isReverse()) { 894 LLVM_DEBUG( 895 dbgs() << "LV: Invalidate candidate interleaved group due to " 896 "a reverse access with gaps.\n"); 897 releaseGroup(Group); 898 continue; 899 } 900 LLVM_DEBUG( 901 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 902 RequiresScalarEpilogue = true; 903 } 904 } 905 } 906