1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines vectorizer utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/IR/GetElementPtrTypeIterator.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/IR/Value.h"
24 #include "llvm/IR/Constants.h"
25 
26 using namespace llvm;
27 using namespace llvm::PatternMatch;
28 
29 /// \brief Identify if the intrinsic is trivially vectorizable.
30 /// This method returns true if the intrinsic's argument types are all
31 /// scalars for the scalar form of the intrinsic and all vectors for
32 /// the vector form of the intrinsic.
33 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
34   switch (ID) {
35   case Intrinsic::sqrt:
36   case Intrinsic::sin:
37   case Intrinsic::cos:
38   case Intrinsic::exp:
39   case Intrinsic::exp2:
40   case Intrinsic::log:
41   case Intrinsic::log10:
42   case Intrinsic::log2:
43   case Intrinsic::fabs:
44   case Intrinsic::minnum:
45   case Intrinsic::maxnum:
46   case Intrinsic::copysign:
47   case Intrinsic::floor:
48   case Intrinsic::ceil:
49   case Intrinsic::trunc:
50   case Intrinsic::rint:
51   case Intrinsic::nearbyint:
52   case Intrinsic::round:
53   case Intrinsic::bswap:
54   case Intrinsic::ctpop:
55   case Intrinsic::pow:
56   case Intrinsic::fma:
57   case Intrinsic::fmuladd:
58   case Intrinsic::ctlz:
59   case Intrinsic::cttz:
60   case Intrinsic::powi:
61     return true;
62   default:
63     return false;
64   }
65 }
66 
67 /// \brief Identifies if the intrinsic has a scalar operand. It check for
68 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
69 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
70                                         unsigned ScalarOpdIdx) {
71   switch (ID) {
72   case Intrinsic::ctlz:
73   case Intrinsic::cttz:
74   case Intrinsic::powi:
75     return (ScalarOpdIdx == 1);
76   default:
77     return false;
78   }
79 }
80 
81 /// \brief Check call has a unary float signature
82 /// It checks following:
83 /// a) call should have a single argument
84 /// b) argument type should be floating point type
85 /// c) call instruction type and argument type should be same
86 /// d) call should only reads memory.
87 /// If all these condition is met then return ValidIntrinsicID
88 /// else return not_intrinsic.
89 Intrinsic::ID
90 llvm::checkUnaryFloatSignature(const CallInst &I,
91                                Intrinsic::ID ValidIntrinsicID) {
92   if (I.getNumArgOperands() != 1 ||
93       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
94       I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
95     return Intrinsic::not_intrinsic;
96 
97   return ValidIntrinsicID;
98 }
99 
100 /// \brief Check call has a binary float signature
101 /// It checks following:
102 /// a) call should have 2 arguments.
103 /// b) arguments type should be floating point type
104 /// c) call instruction type and arguments type should be same
105 /// d) call should only reads memory.
106 /// If all these condition is met then return ValidIntrinsicID
107 /// else return not_intrinsic.
108 Intrinsic::ID
109 llvm::checkBinaryFloatSignature(const CallInst &I,
110                                 Intrinsic::ID ValidIntrinsicID) {
111   if (I.getNumArgOperands() != 2 ||
112       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
113       !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
114       I.getType() != I.getArgOperand(0)->getType() ||
115       I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
116     return Intrinsic::not_intrinsic;
117 
118   return ValidIntrinsicID;
119 }
120 
121 /// \brief Returns intrinsic ID for call.
122 /// For the input call instruction it finds mapping intrinsic and returns
123 /// its ID, in case it does not found it return not_intrinsic.
124 Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI,
125                                           const TargetLibraryInfo *TLI) {
126   // If we have an intrinsic call, check if it is trivially vectorizable.
127   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
128     Intrinsic::ID ID = II->getIntrinsicID();
129     if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
130         ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
131       return ID;
132     return Intrinsic::not_intrinsic;
133   }
134 
135   if (!TLI)
136     return Intrinsic::not_intrinsic;
137 
138   LibFunc::Func Func;
139   Function *F = CI->getCalledFunction();
140   // We're going to make assumptions on the semantics of the functions, check
141   // that the target knows that it's available in this environment and it does
142   // not have local linkage.
143   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
144     return Intrinsic::not_intrinsic;
145 
146   // Otherwise check if we have a call to a function that can be turned into a
147   // vector intrinsic.
148   switch (Func) {
149   default:
150     break;
151   case LibFunc::sin:
152   case LibFunc::sinf:
153   case LibFunc::sinl:
154     return checkUnaryFloatSignature(*CI, Intrinsic::sin);
155   case LibFunc::cos:
156   case LibFunc::cosf:
157   case LibFunc::cosl:
158     return checkUnaryFloatSignature(*CI, Intrinsic::cos);
159   case LibFunc::exp:
160   case LibFunc::expf:
161   case LibFunc::expl:
162     return checkUnaryFloatSignature(*CI, Intrinsic::exp);
163   case LibFunc::exp2:
164   case LibFunc::exp2f:
165   case LibFunc::exp2l:
166     return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
167   case LibFunc::log:
168   case LibFunc::logf:
169   case LibFunc::logl:
170     return checkUnaryFloatSignature(*CI, Intrinsic::log);
171   case LibFunc::log10:
172   case LibFunc::log10f:
173   case LibFunc::log10l:
174     return checkUnaryFloatSignature(*CI, Intrinsic::log10);
175   case LibFunc::log2:
176   case LibFunc::log2f:
177   case LibFunc::log2l:
178     return checkUnaryFloatSignature(*CI, Intrinsic::log2);
179   case LibFunc::fabs:
180   case LibFunc::fabsf:
181   case LibFunc::fabsl:
182     return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
183   case LibFunc::fmin:
184   case LibFunc::fminf:
185   case LibFunc::fminl:
186     return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
187   case LibFunc::fmax:
188   case LibFunc::fmaxf:
189   case LibFunc::fmaxl:
190     return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
191   case LibFunc::copysign:
192   case LibFunc::copysignf:
193   case LibFunc::copysignl:
194     return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
195   case LibFunc::floor:
196   case LibFunc::floorf:
197   case LibFunc::floorl:
198     return checkUnaryFloatSignature(*CI, Intrinsic::floor);
199   case LibFunc::ceil:
200   case LibFunc::ceilf:
201   case LibFunc::ceill:
202     return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
203   case LibFunc::trunc:
204   case LibFunc::truncf:
205   case LibFunc::truncl:
206     return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
207   case LibFunc::rint:
208   case LibFunc::rintf:
209   case LibFunc::rintl:
210     return checkUnaryFloatSignature(*CI, Intrinsic::rint);
211   case LibFunc::nearbyint:
212   case LibFunc::nearbyintf:
213   case LibFunc::nearbyintl:
214     return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
215   case LibFunc::round:
216   case LibFunc::roundf:
217   case LibFunc::roundl:
218     return checkUnaryFloatSignature(*CI, Intrinsic::round);
219   case LibFunc::pow:
220   case LibFunc::powf:
221   case LibFunc::powl:
222     return checkBinaryFloatSignature(*CI, Intrinsic::pow);
223   }
224 
225   return Intrinsic::not_intrinsic;
226 }
227 
228 /// \brief Find the operand of the GEP that should be checked for consecutive
229 /// stores. This ignores trailing indices that have no effect on the final
230 /// pointer.
231 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
232   const DataLayout &DL = Gep->getModule()->getDataLayout();
233   unsigned LastOperand = Gep->getNumOperands() - 1;
234   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
235 
236   // Walk backwards and try to peel off zeros.
237   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
238     // Find the type we're currently indexing into.
239     gep_type_iterator GEPTI = gep_type_begin(Gep);
240     std::advance(GEPTI, LastOperand - 1);
241 
242     // If it's a type with the same allocation size as the result of the GEP we
243     // can peel off the zero index.
244     if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
245       break;
246     --LastOperand;
247   }
248 
249   return LastOperand;
250 }
251 
252 /// \brief If the argument is a GEP, then returns the operand identified by
253 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
254 /// operand, it returns that instead.
255 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
256   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
257   if (!GEP)
258     return Ptr;
259 
260   unsigned InductionOperand = getGEPInductionOperand(GEP);
261 
262   // Check that all of the gep indices are uniform except for our induction
263   // operand.
264   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
265     if (i != InductionOperand &&
266         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
267       return Ptr;
268   return GEP->getOperand(InductionOperand);
269 }
270 
271 /// \brief If a value has only one user that is a CastInst, return it.
272 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
273   Value *UniqueCast = nullptr;
274   for (User *U : Ptr->users()) {
275     CastInst *CI = dyn_cast<CastInst>(U);
276     if (CI && CI->getType() == Ty) {
277       if (!UniqueCast)
278         UniqueCast = CI;
279       else
280         return nullptr;
281     }
282   }
283   return UniqueCast;
284 }
285 
286 /// \brief Get the stride of a pointer access in a loop. Looks for symbolic
287 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
288 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
289   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
290   if (!PtrTy || PtrTy->isAggregateType())
291     return nullptr;
292 
293   // Try to remove a gep instruction to make the pointer (actually index at this
294   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
295   // pointer, otherwise, we are analyzing the index.
296   Value *OrigPtr = Ptr;
297 
298   // The size of the pointer access.
299   int64_t PtrAccessSize = 1;
300 
301   Ptr = stripGetElementPtr(Ptr, SE, Lp);
302   const SCEV *V = SE->getSCEV(Ptr);
303 
304   if (Ptr != OrigPtr)
305     // Strip off casts.
306     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
307       V = C->getOperand();
308 
309   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
310   if (!S)
311     return nullptr;
312 
313   V = S->getStepRecurrence(*SE);
314   if (!V)
315     return nullptr;
316 
317   // Strip off the size of access multiplication if we are still analyzing the
318   // pointer.
319   if (OrigPtr == Ptr) {
320     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
321       if (M->getOperand(0)->getSCEVType() != scConstant)
322         return nullptr;
323 
324       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
325 
326       // Huge step value - give up.
327       if (APStepVal.getBitWidth() > 64)
328         return nullptr;
329 
330       int64_t StepVal = APStepVal.getSExtValue();
331       if (PtrAccessSize != StepVal)
332         return nullptr;
333       V = M->getOperand(1);
334     }
335   }
336 
337   // Strip off casts.
338   Type *StripedOffRecurrenceCast = nullptr;
339   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
340     StripedOffRecurrenceCast = C->getType();
341     V = C->getOperand();
342   }
343 
344   // Look for the loop invariant symbolic value.
345   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
346   if (!U)
347     return nullptr;
348 
349   Value *Stride = U->getValue();
350   if (!Lp->isLoopInvariant(Stride))
351     return nullptr;
352 
353   // If we have stripped off the recurrence cast we have to make sure that we
354   // return the value that is used in this loop so that we can replace it later.
355   if (StripedOffRecurrenceCast)
356     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
357 
358   return Stride;
359 }
360 
361 /// \brief Given a vector and an element number, see if the scalar value is
362 /// already around as a register, for example if it were inserted then extracted
363 /// from the vector.
364 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
365   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
366   VectorType *VTy = cast<VectorType>(V->getType());
367   unsigned Width = VTy->getNumElements();
368   if (EltNo >= Width)  // Out of range access.
369     return UndefValue::get(VTy->getElementType());
370 
371   if (Constant *C = dyn_cast<Constant>(V))
372     return C->getAggregateElement(EltNo);
373 
374   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
375     // If this is an insert to a variable element, we don't know what it is.
376     if (!isa<ConstantInt>(III->getOperand(2)))
377       return nullptr;
378     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
379 
380     // If this is an insert to the element we are looking for, return the
381     // inserted value.
382     if (EltNo == IIElt)
383       return III->getOperand(1);
384 
385     // Otherwise, the insertelement doesn't modify the value, recurse on its
386     // vector input.
387     return findScalarElement(III->getOperand(0), EltNo);
388   }
389 
390   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
391     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
392     int InEl = SVI->getMaskValue(EltNo);
393     if (InEl < 0)
394       return UndefValue::get(VTy->getElementType());
395     if (InEl < (int)LHSWidth)
396       return findScalarElement(SVI->getOperand(0), InEl);
397     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
398   }
399 
400   // Extract a value from a vector add operation with a constant zero.
401   Value *Val = nullptr; Constant *Con = nullptr;
402   if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
403     if (Constant *Elt = Con->getAggregateElement(EltNo))
404       if (Elt->isNullValue())
405         return findScalarElement(Val, EltNo);
406 
407   // Otherwise, we don't know.
408   return nullptr;
409 }
410 
411 /// \brief Get splat value if the input is a splat vector or return nullptr.
412 /// This function is not fully general. It checks only 2 cases:
413 /// the input value is (1) a splat constants vector or (2) a sequence
414 /// of instructions that broadcast a single value into a vector.
415 ///
416 const llvm::Value *llvm::getSplatValue(const Value *V) {
417 
418   if (auto *C = dyn_cast<Constant>(V))
419     if (isa<VectorType>(V->getType()))
420       return C->getSplatValue();
421 
422   auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
423   if (!ShuffleInst)
424     return nullptr;
425   // All-zero (or undef) shuffle mask elements.
426   for (int MaskElt : ShuffleInst->getShuffleMask())
427     if (MaskElt != 0 && MaskElt != -1)
428       return nullptr;
429   // The first shuffle source is 'insertelement' with index 0.
430   auto *InsertEltInst =
431     dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
432   if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
433       !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
434     return nullptr;
435 
436   return InsertEltInst->getOperand(1);
437 }
438 
439 MapVector<Instruction *, uint64_t>
440 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
441                                const TargetTransformInfo *TTI) {
442 
443   // DemandedBits will give us every value's live-out bits. But we want
444   // to ensure no extra casts would need to be inserted, so every DAG
445   // of connected values must have the same minimum bitwidth.
446   EquivalenceClasses<Value *> ECs;
447   SmallVector<Value *, 16> Worklist;
448   SmallPtrSet<Value *, 4> Roots;
449   SmallPtrSet<Value *, 16> Visited;
450   DenseMap<Value *, uint64_t> DBits;
451   SmallPtrSet<Instruction *, 4> InstructionSet;
452   MapVector<Instruction *, uint64_t> MinBWs;
453 
454   // Determine the roots. We work bottom-up, from truncs or icmps.
455   bool SeenExtFromIllegalType = false;
456   for (auto *BB : Blocks)
457     for (auto &I : *BB) {
458       InstructionSet.insert(&I);
459 
460       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
461           !TTI->isTypeLegal(I.getOperand(0)->getType()))
462         SeenExtFromIllegalType = true;
463 
464       // Only deal with non-vector integers up to 64-bits wide.
465       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
466           !I.getType()->isVectorTy() &&
467           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
468         // Don't make work for ourselves. If we know the loaded type is legal,
469         // don't add it to the worklist.
470         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
471           continue;
472 
473         Worklist.push_back(&I);
474         Roots.insert(&I);
475       }
476     }
477   // Early exit.
478   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
479     return MinBWs;
480 
481   // Now proceed breadth-first, unioning values together.
482   while (!Worklist.empty()) {
483     Value *Val = Worklist.pop_back_val();
484     Value *Leader = ECs.getOrInsertLeaderValue(Val);
485 
486     if (Visited.count(Val))
487       continue;
488     Visited.insert(Val);
489 
490     // Non-instructions terminate a chain successfully.
491     if (!isa<Instruction>(Val))
492       continue;
493     Instruction *I = cast<Instruction>(Val);
494 
495     // If we encounter a type that is larger than 64 bits, we can't represent
496     // it so bail out.
497     if (DB.getDemandedBits(I).getBitWidth() > 64)
498       return MapVector<Instruction *, uint64_t>();
499 
500     uint64_t V = DB.getDemandedBits(I).getZExtValue();
501     DBits[Leader] |= V;
502 
503     // Casts, loads and instructions outside of our range terminate a chain
504     // successfully.
505     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
506         !InstructionSet.count(I))
507       continue;
508 
509     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
510     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
511     // transform anything that relies on them.
512     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
513         !I->getType()->isIntegerTy()) {
514       DBits[Leader] |= ~0ULL;
515       continue;
516     }
517 
518     // We don't modify the types of PHIs. Reductions will already have been
519     // truncated if possible, and inductions' sizes will have been chosen by
520     // indvars.
521     if (isa<PHINode>(I))
522       continue;
523 
524     if (DBits[Leader] == ~0ULL)
525       // All bits demanded, no point continuing.
526       continue;
527 
528     for (Value *O : cast<User>(I)->operands()) {
529       ECs.unionSets(Leader, O);
530       Worklist.push_back(O);
531     }
532   }
533 
534   // Now we've discovered all values, walk them to see if there are
535   // any users we didn't see. If there are, we can't optimize that
536   // chain.
537   for (auto &I : DBits)
538     for (auto *U : I.first->users())
539       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
540         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
541 
542   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
543     uint64_t LeaderDemandedBits = 0;
544     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
545       LeaderDemandedBits |= DBits[*MI];
546 
547     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
548                      llvm::countLeadingZeros(LeaderDemandedBits);
549     // Round up to a power of 2
550     if (!isPowerOf2_64((uint64_t)MinBW))
551       MinBW = NextPowerOf2(MinBW);
552     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
553       if (!isa<Instruction>(*MI))
554         continue;
555       Type *Ty = (*MI)->getType();
556       if (Roots.count(*MI))
557         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
558       if (MinBW < Ty->getScalarSizeInBits())
559         MinBWs[cast<Instruction>(*MI)] = MinBW;
560     }
561   }
562 
563   return MinBWs;
564 }
565