1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines vectorizer utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/VectorUtils.h" 15 #include "llvm/ADT/EquivalenceClasses.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Value.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic and vectors for the vector form of the 42 /// intrinsic. 43 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 44 switch (ID) { 45 case Intrinsic::bswap: // Begin integer bit-manipulation. 46 case Intrinsic::bitreverse: 47 case Intrinsic::ctpop: 48 case Intrinsic::ctlz: 49 case Intrinsic::cttz: 50 case Intrinsic::fshl: 51 case Intrinsic::fshr: 52 case Intrinsic::sqrt: // Begin floating-point. 53 case Intrinsic::sin: 54 case Intrinsic::cos: 55 case Intrinsic::exp: 56 case Intrinsic::exp2: 57 case Intrinsic::log: 58 case Intrinsic::log10: 59 case Intrinsic::log2: 60 case Intrinsic::fabs: 61 case Intrinsic::minnum: 62 case Intrinsic::maxnum: 63 case Intrinsic::minimum: 64 case Intrinsic::maximum: 65 case Intrinsic::copysign: 66 case Intrinsic::floor: 67 case Intrinsic::ceil: 68 case Intrinsic::trunc: 69 case Intrinsic::rint: 70 case Intrinsic::nearbyint: 71 case Intrinsic::round: 72 case Intrinsic::pow: 73 case Intrinsic::fma: 74 case Intrinsic::fmuladd: 75 case Intrinsic::powi: 76 case Intrinsic::canonicalize: 77 return true; 78 default: 79 return false; 80 } 81 } 82 83 /// Identifies if the intrinsic has a scalar operand. It check for 84 /// ctlz,cttz and powi special intrinsics whose argument is scalar. 85 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 86 unsigned ScalarOpdIdx) { 87 switch (ID) { 88 case Intrinsic::ctlz: 89 case Intrinsic::cttz: 90 case Intrinsic::powi: 91 return (ScalarOpdIdx == 1); 92 default: 93 return false; 94 } 95 } 96 97 /// Returns intrinsic ID for call. 98 /// For the input call instruction it finds mapping intrinsic and returns 99 /// its ID, in case it does not found it return not_intrinsic. 100 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 101 const TargetLibraryInfo *TLI) { 102 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 103 if (ID == Intrinsic::not_intrinsic) 104 return Intrinsic::not_intrinsic; 105 106 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 107 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 108 ID == Intrinsic::sideeffect) 109 return ID; 110 return Intrinsic::not_intrinsic; 111 } 112 113 /// Find the operand of the GEP that should be checked for consecutive 114 /// stores. This ignores trailing indices that have no effect on the final 115 /// pointer. 116 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 117 const DataLayout &DL = Gep->getModule()->getDataLayout(); 118 unsigned LastOperand = Gep->getNumOperands() - 1; 119 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 120 121 // Walk backwards and try to peel off zeros. 122 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 123 // Find the type we're currently indexing into. 124 gep_type_iterator GEPTI = gep_type_begin(Gep); 125 std::advance(GEPTI, LastOperand - 2); 126 127 // If it's a type with the same allocation size as the result of the GEP we 128 // can peel off the zero index. 129 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 130 break; 131 --LastOperand; 132 } 133 134 return LastOperand; 135 } 136 137 /// If the argument is a GEP, then returns the operand identified by 138 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 139 /// operand, it returns that instead. 140 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 141 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 142 if (!GEP) 143 return Ptr; 144 145 unsigned InductionOperand = getGEPInductionOperand(GEP); 146 147 // Check that all of the gep indices are uniform except for our induction 148 // operand. 149 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 150 if (i != InductionOperand && 151 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 152 return Ptr; 153 return GEP->getOperand(InductionOperand); 154 } 155 156 /// If a value has only one user that is a CastInst, return it. 157 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 158 Value *UniqueCast = nullptr; 159 for (User *U : Ptr->users()) { 160 CastInst *CI = dyn_cast<CastInst>(U); 161 if (CI && CI->getType() == Ty) { 162 if (!UniqueCast) 163 UniqueCast = CI; 164 else 165 return nullptr; 166 } 167 } 168 return UniqueCast; 169 } 170 171 /// Get the stride of a pointer access in a loop. Looks for symbolic 172 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 173 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 174 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 175 if (!PtrTy || PtrTy->isAggregateType()) 176 return nullptr; 177 178 // Try to remove a gep instruction to make the pointer (actually index at this 179 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 180 // pointer, otherwise, we are analyzing the index. 181 Value *OrigPtr = Ptr; 182 183 // The size of the pointer access. 184 int64_t PtrAccessSize = 1; 185 186 Ptr = stripGetElementPtr(Ptr, SE, Lp); 187 const SCEV *V = SE->getSCEV(Ptr); 188 189 if (Ptr != OrigPtr) 190 // Strip off casts. 191 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 192 V = C->getOperand(); 193 194 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 195 if (!S) 196 return nullptr; 197 198 V = S->getStepRecurrence(*SE); 199 if (!V) 200 return nullptr; 201 202 // Strip off the size of access multiplication if we are still analyzing the 203 // pointer. 204 if (OrigPtr == Ptr) { 205 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 206 if (M->getOperand(0)->getSCEVType() != scConstant) 207 return nullptr; 208 209 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 210 211 // Huge step value - give up. 212 if (APStepVal.getBitWidth() > 64) 213 return nullptr; 214 215 int64_t StepVal = APStepVal.getSExtValue(); 216 if (PtrAccessSize != StepVal) 217 return nullptr; 218 V = M->getOperand(1); 219 } 220 } 221 222 // Strip off casts. 223 Type *StripedOffRecurrenceCast = nullptr; 224 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 225 StripedOffRecurrenceCast = C->getType(); 226 V = C->getOperand(); 227 } 228 229 // Look for the loop invariant symbolic value. 230 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 231 if (!U) 232 return nullptr; 233 234 Value *Stride = U->getValue(); 235 if (!Lp->isLoopInvariant(Stride)) 236 return nullptr; 237 238 // If we have stripped off the recurrence cast we have to make sure that we 239 // return the value that is used in this loop so that we can replace it later. 240 if (StripedOffRecurrenceCast) 241 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 242 243 return Stride; 244 } 245 246 /// Given a vector and an element number, see if the scalar value is 247 /// already around as a register, for example if it were inserted then extracted 248 /// from the vector. 249 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 250 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 251 VectorType *VTy = cast<VectorType>(V->getType()); 252 unsigned Width = VTy->getNumElements(); 253 if (EltNo >= Width) // Out of range access. 254 return UndefValue::get(VTy->getElementType()); 255 256 if (Constant *C = dyn_cast<Constant>(V)) 257 return C->getAggregateElement(EltNo); 258 259 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 260 // If this is an insert to a variable element, we don't know what it is. 261 if (!isa<ConstantInt>(III->getOperand(2))) 262 return nullptr; 263 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 264 265 // If this is an insert to the element we are looking for, return the 266 // inserted value. 267 if (EltNo == IIElt) 268 return III->getOperand(1); 269 270 // Otherwise, the insertelement doesn't modify the value, recurse on its 271 // vector input. 272 return findScalarElement(III->getOperand(0), EltNo); 273 } 274 275 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 276 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 277 int InEl = SVI->getMaskValue(EltNo); 278 if (InEl < 0) 279 return UndefValue::get(VTy->getElementType()); 280 if (InEl < (int)LHSWidth) 281 return findScalarElement(SVI->getOperand(0), InEl); 282 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 283 } 284 285 // Extract a value from a vector add operation with a constant zero. 286 // TODO: Use getBinOpIdentity() to generalize this. 287 Value *Val; Constant *C; 288 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 289 if (Constant *Elt = C->getAggregateElement(EltNo)) 290 if (Elt->isNullValue()) 291 return findScalarElement(Val, EltNo); 292 293 // Otherwise, we don't know. 294 return nullptr; 295 } 296 297 /// Get splat value if the input is a splat vector or return nullptr. 298 /// This function is not fully general. It checks only 2 cases: 299 /// the input value is (1) a splat constants vector or (2) a sequence 300 /// of instructions that broadcast a single value into a vector. 301 /// 302 const llvm::Value *llvm::getSplatValue(const Value *V) { 303 304 if (auto *C = dyn_cast<Constant>(V)) 305 if (isa<VectorType>(V->getType())) 306 return C->getSplatValue(); 307 308 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V); 309 if (!ShuffleInst) 310 return nullptr; 311 // All-zero (or undef) shuffle mask elements. 312 for (int MaskElt : ShuffleInst->getShuffleMask()) 313 if (MaskElt != 0 && MaskElt != -1) 314 return nullptr; 315 // The first shuffle source is 'insertelement' with index 0. 316 auto *InsertEltInst = 317 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0)); 318 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) || 319 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero()) 320 return nullptr; 321 322 return InsertEltInst->getOperand(1); 323 } 324 325 MapVector<Instruction *, uint64_t> 326 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 327 const TargetTransformInfo *TTI) { 328 329 // DemandedBits will give us every value's live-out bits. But we want 330 // to ensure no extra casts would need to be inserted, so every DAG 331 // of connected values must have the same minimum bitwidth. 332 EquivalenceClasses<Value *> ECs; 333 SmallVector<Value *, 16> Worklist; 334 SmallPtrSet<Value *, 4> Roots; 335 SmallPtrSet<Value *, 16> Visited; 336 DenseMap<Value *, uint64_t> DBits; 337 SmallPtrSet<Instruction *, 4> InstructionSet; 338 MapVector<Instruction *, uint64_t> MinBWs; 339 340 // Determine the roots. We work bottom-up, from truncs or icmps. 341 bool SeenExtFromIllegalType = false; 342 for (auto *BB : Blocks) 343 for (auto &I : *BB) { 344 InstructionSet.insert(&I); 345 346 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 347 !TTI->isTypeLegal(I.getOperand(0)->getType())) 348 SeenExtFromIllegalType = true; 349 350 // Only deal with non-vector integers up to 64-bits wide. 351 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 352 !I.getType()->isVectorTy() && 353 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 354 // Don't make work for ourselves. If we know the loaded type is legal, 355 // don't add it to the worklist. 356 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 357 continue; 358 359 Worklist.push_back(&I); 360 Roots.insert(&I); 361 } 362 } 363 // Early exit. 364 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 365 return MinBWs; 366 367 // Now proceed breadth-first, unioning values together. 368 while (!Worklist.empty()) { 369 Value *Val = Worklist.pop_back_val(); 370 Value *Leader = ECs.getOrInsertLeaderValue(Val); 371 372 if (Visited.count(Val)) 373 continue; 374 Visited.insert(Val); 375 376 // Non-instructions terminate a chain successfully. 377 if (!isa<Instruction>(Val)) 378 continue; 379 Instruction *I = cast<Instruction>(Val); 380 381 // If we encounter a type that is larger than 64 bits, we can't represent 382 // it so bail out. 383 if (DB.getDemandedBits(I).getBitWidth() > 64) 384 return MapVector<Instruction *, uint64_t>(); 385 386 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 387 DBits[Leader] |= V; 388 DBits[I] = V; 389 390 // Casts, loads and instructions outside of our range terminate a chain 391 // successfully. 392 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 393 !InstructionSet.count(I)) 394 continue; 395 396 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 397 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 398 // transform anything that relies on them. 399 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 400 !I->getType()->isIntegerTy()) { 401 DBits[Leader] |= ~0ULL; 402 continue; 403 } 404 405 // We don't modify the types of PHIs. Reductions will already have been 406 // truncated if possible, and inductions' sizes will have been chosen by 407 // indvars. 408 if (isa<PHINode>(I)) 409 continue; 410 411 if (DBits[Leader] == ~0ULL) 412 // All bits demanded, no point continuing. 413 continue; 414 415 for (Value *O : cast<User>(I)->operands()) { 416 ECs.unionSets(Leader, O); 417 Worklist.push_back(O); 418 } 419 } 420 421 // Now we've discovered all values, walk them to see if there are 422 // any users we didn't see. If there are, we can't optimize that 423 // chain. 424 for (auto &I : DBits) 425 for (auto *U : I.first->users()) 426 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 427 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 428 429 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 430 uint64_t LeaderDemandedBits = 0; 431 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 432 LeaderDemandedBits |= DBits[*MI]; 433 434 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 435 llvm::countLeadingZeros(LeaderDemandedBits); 436 // Round up to a power of 2 437 if (!isPowerOf2_64((uint64_t)MinBW)) 438 MinBW = NextPowerOf2(MinBW); 439 440 // We don't modify the types of PHIs. Reductions will already have been 441 // truncated if possible, and inductions' sizes will have been chosen by 442 // indvars. 443 // If we are required to shrink a PHI, abandon this entire equivalence class. 444 bool Abort = false; 445 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 446 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 447 Abort = true; 448 break; 449 } 450 if (Abort) 451 continue; 452 453 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 454 if (!isa<Instruction>(*MI)) 455 continue; 456 Type *Ty = (*MI)->getType(); 457 if (Roots.count(*MI)) 458 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 459 if (MinBW < Ty->getScalarSizeInBits()) 460 MinBWs[cast<Instruction>(*MI)] = MinBW; 461 } 462 } 463 464 return MinBWs; 465 } 466 467 /// \returns \p I after propagating metadata from \p VL. 468 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 469 Instruction *I0 = cast<Instruction>(VL[0]); 470 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 471 I0->getAllMetadataOtherThanDebugLoc(Metadata); 472 473 for (auto Kind : 474 {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 475 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 476 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) { 477 MDNode *MD = I0->getMetadata(Kind); 478 479 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 480 const Instruction *IJ = cast<Instruction>(VL[J]); 481 MDNode *IMD = IJ->getMetadata(Kind); 482 switch (Kind) { 483 case LLVMContext::MD_tbaa: 484 MD = MDNode::getMostGenericTBAA(MD, IMD); 485 break; 486 case LLVMContext::MD_alias_scope: 487 MD = MDNode::getMostGenericAliasScope(MD, IMD); 488 break; 489 case LLVMContext::MD_fpmath: 490 MD = MDNode::getMostGenericFPMath(MD, IMD); 491 break; 492 case LLVMContext::MD_noalias: 493 case LLVMContext::MD_nontemporal: 494 case LLVMContext::MD_invariant_load: 495 MD = MDNode::intersect(MD, IMD); 496 break; 497 default: 498 llvm_unreachable("unhandled metadata"); 499 } 500 } 501 502 Inst->setMetadata(Kind, MD); 503 } 504 505 return Inst; 506 } 507 508 Constant * 509 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF, 510 const InterleaveGroup<Instruction> &Group) { 511 // All 1's means mask is not needed. 512 if (Group.getNumMembers() == Group.getFactor()) 513 return nullptr; 514 515 // TODO: support reversed access. 516 assert(!Group.isReverse() && "Reversed group not supported."); 517 518 SmallVector<Constant *, 16> Mask; 519 for (unsigned i = 0; i < VF; i++) 520 for (unsigned j = 0; j < Group.getFactor(); ++j) { 521 unsigned HasMember = Group.getMember(j) ? 1 : 0; 522 Mask.push_back(Builder.getInt1(HasMember)); 523 } 524 525 return ConstantVector::get(Mask); 526 } 527 528 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, 529 unsigned ReplicationFactor, unsigned VF) { 530 SmallVector<Constant *, 16> MaskVec; 531 for (unsigned i = 0; i < VF; i++) 532 for (unsigned j = 0; j < ReplicationFactor; j++) 533 MaskVec.push_back(Builder.getInt32(i)); 534 535 return ConstantVector::get(MaskVec); 536 } 537 538 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, 539 unsigned NumVecs) { 540 SmallVector<Constant *, 16> Mask; 541 for (unsigned i = 0; i < VF; i++) 542 for (unsigned j = 0; j < NumVecs; j++) 543 Mask.push_back(Builder.getInt32(j * VF + i)); 544 545 return ConstantVector::get(Mask); 546 } 547 548 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, 549 unsigned Stride, unsigned VF) { 550 SmallVector<Constant *, 16> Mask; 551 for (unsigned i = 0; i < VF; i++) 552 Mask.push_back(Builder.getInt32(Start + i * Stride)); 553 554 return ConstantVector::get(Mask); 555 } 556 557 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, 558 unsigned NumInts, unsigned NumUndefs) { 559 SmallVector<Constant *, 16> Mask; 560 for (unsigned i = 0; i < NumInts; i++) 561 Mask.push_back(Builder.getInt32(Start + i)); 562 563 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 564 for (unsigned i = 0; i < NumUndefs; i++) 565 Mask.push_back(Undef); 566 567 return ConstantVector::get(Mask); 568 } 569 570 /// A helper function for concatenating vectors. This function concatenates two 571 /// vectors having the same element type. If the second vector has fewer 572 /// elements than the first, it is padded with undefs. 573 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 574 Value *V2) { 575 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 576 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 577 assert(VecTy1 && VecTy2 && 578 VecTy1->getScalarType() == VecTy2->getScalarType() && 579 "Expect two vectors with the same element type"); 580 581 unsigned NumElts1 = VecTy1->getNumElements(); 582 unsigned NumElts2 = VecTy2->getNumElements(); 583 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 584 585 if (NumElts1 > NumElts2) { 586 // Extend with UNDEFs. 587 Constant *ExtMask = 588 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 589 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 590 } 591 592 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 593 return Builder.CreateShuffleVector(V1, V2, Mask); 594 } 595 596 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) { 597 unsigned NumVecs = Vecs.size(); 598 assert(NumVecs > 1 && "Should be at least two vectors"); 599 600 SmallVector<Value *, 8> ResList; 601 ResList.append(Vecs.begin(), Vecs.end()); 602 do { 603 SmallVector<Value *, 8> TmpList; 604 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 605 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 606 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 607 "Only the last vector may have a different type"); 608 609 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 610 } 611 612 // Push the last vector if the total number of vectors is odd. 613 if (NumVecs % 2 != 0) 614 TmpList.push_back(ResList[NumVecs - 1]); 615 616 ResList = TmpList; 617 NumVecs = ResList.size(); 618 } while (NumVecs > 1); 619 620 return ResList[0]; 621 } 622 623 bool InterleavedAccessInfo::isStrided(int Stride) { 624 unsigned Factor = std::abs(Stride); 625 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 626 } 627 628 void InterleavedAccessInfo::collectConstStrideAccesses( 629 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 630 const ValueToValueMap &Strides) { 631 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 632 633 // Since it's desired that the load/store instructions be maintained in 634 // "program order" for the interleaved access analysis, we have to visit the 635 // blocks in the loop in reverse postorder (i.e., in a topological order). 636 // Such an ordering will ensure that any load/store that may be executed 637 // before a second load/store will precede the second load/store in 638 // AccessStrideInfo. 639 LoopBlocksDFS DFS(TheLoop); 640 DFS.perform(LI); 641 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 642 for (auto &I : *BB) { 643 auto *LI = dyn_cast<LoadInst>(&I); 644 auto *SI = dyn_cast<StoreInst>(&I); 645 if (!LI && !SI) 646 continue; 647 648 Value *Ptr = getLoadStorePointerOperand(&I); 649 // We don't check wrapping here because we don't know yet if Ptr will be 650 // part of a full group or a group with gaps. Checking wrapping for all 651 // pointers (even those that end up in groups with no gaps) will be overly 652 // conservative. For full groups, wrapping should be ok since if we would 653 // wrap around the address space we would do a memory access at nullptr 654 // even without the transformation. The wrapping checks are therefore 655 // deferred until after we've formed the interleaved groups. 656 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 657 /*Assume=*/true, /*ShouldCheckWrap=*/false); 658 659 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 660 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 661 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 662 663 // An alignment of 0 means target ABI alignment. 664 unsigned Align = getLoadStoreAlignment(&I); 665 if (!Align) 666 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 667 668 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 669 } 670 } 671 672 // Analyze interleaved accesses and collect them into interleaved load and 673 // store groups. 674 // 675 // When generating code for an interleaved load group, we effectively hoist all 676 // loads in the group to the location of the first load in program order. When 677 // generating code for an interleaved store group, we sink all stores to the 678 // location of the last store. This code motion can change the order of load 679 // and store instructions and may break dependences. 680 // 681 // The code generation strategy mentioned above ensures that we won't violate 682 // any write-after-read (WAR) dependences. 683 // 684 // E.g., for the WAR dependence: a = A[i]; // (1) 685 // A[i] = b; // (2) 686 // 687 // The store group of (2) is always inserted at or below (2), and the load 688 // group of (1) is always inserted at or above (1). Thus, the instructions will 689 // never be reordered. All other dependences are checked to ensure the 690 // correctness of the instruction reordering. 691 // 692 // The algorithm visits all memory accesses in the loop in bottom-up program 693 // order. Program order is established by traversing the blocks in the loop in 694 // reverse postorder when collecting the accesses. 695 // 696 // We visit the memory accesses in bottom-up order because it can simplify the 697 // construction of store groups in the presence of write-after-write (WAW) 698 // dependences. 699 // 700 // E.g., for the WAW dependence: A[i] = a; // (1) 701 // A[i] = b; // (2) 702 // A[i + 1] = c; // (3) 703 // 704 // We will first create a store group with (3) and (2). (1) can't be added to 705 // this group because it and (2) are dependent. However, (1) can be grouped 706 // with other accesses that may precede it in program order. Note that a 707 // bottom-up order does not imply that WAW dependences should not be checked. 708 void InterleavedAccessInfo::analyzeInterleaving( 709 bool EnablePredicatedInterleavedMemAccesses) { 710 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 711 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 712 713 // Holds all accesses with a constant stride. 714 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 715 collectConstStrideAccesses(AccessStrideInfo, Strides); 716 717 if (AccessStrideInfo.empty()) 718 return; 719 720 // Collect the dependences in the loop. 721 collectDependences(); 722 723 // Holds all interleaved store groups temporarily. 724 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 725 // Holds all interleaved load groups temporarily. 726 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 727 728 // Search in bottom-up program order for pairs of accesses (A and B) that can 729 // form interleaved load or store groups. In the algorithm below, access A 730 // precedes access B in program order. We initialize a group for B in the 731 // outer loop of the algorithm, and then in the inner loop, we attempt to 732 // insert each A into B's group if: 733 // 734 // 1. A and B have the same stride, 735 // 2. A and B have the same memory object size, and 736 // 3. A belongs in B's group according to its distance from B. 737 // 738 // Special care is taken to ensure group formation will not break any 739 // dependences. 740 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 741 BI != E; ++BI) { 742 Instruction *B = BI->first; 743 StrideDescriptor DesB = BI->second; 744 745 // Initialize a group for B if it has an allowable stride. Even if we don't 746 // create a group for B, we continue with the bottom-up algorithm to ensure 747 // we don't break any of B's dependences. 748 InterleaveGroup<Instruction> *Group = nullptr; 749 if (isStrided(DesB.Stride) && 750 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 751 Group = getInterleaveGroup(B); 752 if (!Group) { 753 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 754 << '\n'); 755 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 756 } 757 if (B->mayWriteToMemory()) 758 StoreGroups.insert(Group); 759 else 760 LoadGroups.insert(Group); 761 } 762 763 for (auto AI = std::next(BI); AI != E; ++AI) { 764 Instruction *A = AI->first; 765 StrideDescriptor DesA = AI->second; 766 767 // Our code motion strategy implies that we can't have dependences 768 // between accesses in an interleaved group and other accesses located 769 // between the first and last member of the group. Note that this also 770 // means that a group can't have more than one member at a given offset. 771 // The accesses in a group can have dependences with other accesses, but 772 // we must ensure we don't extend the boundaries of the group such that 773 // we encompass those dependent accesses. 774 // 775 // For example, assume we have the sequence of accesses shown below in a 776 // stride-2 loop: 777 // 778 // (1, 2) is a group | A[i] = a; // (1) 779 // | A[i-1] = b; // (2) | 780 // A[i-3] = c; // (3) 781 // A[i] = d; // (4) | (2, 4) is not a group 782 // 783 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 784 // but not with (4). If we did, the dependent access (3) would be within 785 // the boundaries of the (2, 4) group. 786 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 787 // If a dependence exists and A is already in a group, we know that A 788 // must be a store since A precedes B and WAR dependences are allowed. 789 // Thus, A would be sunk below B. We release A's group to prevent this 790 // illegal code motion. A will then be free to form another group with 791 // instructions that precede it. 792 if (isInterleaved(A)) { 793 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 794 StoreGroups.remove(StoreGroup); 795 releaseGroup(StoreGroup); 796 } 797 798 // If a dependence exists and A is not already in a group (or it was 799 // and we just released it), B might be hoisted above A (if B is a 800 // load) or another store might be sunk below A (if B is a store). In 801 // either case, we can't add additional instructions to B's group. B 802 // will only form a group with instructions that it precedes. 803 break; 804 } 805 806 // At this point, we've checked for illegal code motion. If either A or B 807 // isn't strided, there's nothing left to do. 808 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 809 continue; 810 811 // Ignore A if it's already in a group or isn't the same kind of memory 812 // operation as B. 813 // Note that mayReadFromMemory() isn't mutually exclusive to 814 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 815 // here, canVectorizeMemory() should have returned false - except for the 816 // case we asked for optimization remarks. 817 if (isInterleaved(A) || 818 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 819 (A->mayWriteToMemory() != B->mayWriteToMemory())) 820 continue; 821 822 // Check rules 1 and 2. Ignore A if its stride or size is different from 823 // that of B. 824 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 825 continue; 826 827 // Ignore A if the memory object of A and B don't belong to the same 828 // address space 829 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 830 continue; 831 832 // Calculate the distance from A to B. 833 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 834 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 835 if (!DistToB) 836 continue; 837 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 838 839 // Check rule 3. Ignore A if its distance to B is not a multiple of the 840 // size. 841 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 842 continue; 843 844 // All members of a predicated interleave-group must have the same predicate, 845 // and currently must reside in the same BB. 846 BasicBlock *BlockA = A->getParent(); 847 BasicBlock *BlockB = B->getParent(); 848 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 849 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 850 continue; 851 852 // The index of A is the index of B plus A's distance to B in multiples 853 // of the size. 854 int IndexA = 855 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 856 857 // Try to insert A into B's group. 858 if (Group->insertMember(A, IndexA, DesA.Align)) { 859 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 860 << " into the interleave group with" << *B 861 << '\n'); 862 InterleaveGroupMap[A] = Group; 863 864 // Set the first load in program order as the insert position. 865 if (A->mayReadFromMemory()) 866 Group->setInsertPos(A); 867 } 868 } // Iteration over A accesses. 869 } // Iteration over B accesses. 870 871 // Remove interleaved store groups with gaps. 872 for (auto *Group : StoreGroups) 873 if (Group->getNumMembers() != Group->getFactor()) { 874 LLVM_DEBUG( 875 dbgs() << "LV: Invalidate candidate interleaved store group due " 876 "to gaps.\n"); 877 releaseGroup(Group); 878 } 879 // Remove interleaved groups with gaps (currently only loads) whose memory 880 // accesses may wrap around. We have to revisit the getPtrStride analysis, 881 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 882 // not check wrapping (see documentation there). 883 // FORNOW we use Assume=false; 884 // TODO: Change to Assume=true but making sure we don't exceed the threshold 885 // of runtime SCEV assumptions checks (thereby potentially failing to 886 // vectorize altogether). 887 // Additional optional optimizations: 888 // TODO: If we are peeling the loop and we know that the first pointer doesn't 889 // wrap then we can deduce that all pointers in the group don't wrap. 890 // This means that we can forcefully peel the loop in order to only have to 891 // check the first pointer for no-wrap. When we'll change to use Assume=true 892 // we'll only need at most one runtime check per interleaved group. 893 for (auto *Group : LoadGroups) { 894 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 895 // load would wrap around the address space we would do a memory access at 896 // nullptr even without the transformation. 897 if (Group->getNumMembers() == Group->getFactor()) 898 continue; 899 900 // Case 2: If first and last members of the group don't wrap this implies 901 // that all the pointers in the group don't wrap. 902 // So we check only group member 0 (which is always guaranteed to exist), 903 // and group member Factor - 1; If the latter doesn't exist we rely on 904 // peeling (if it is a non-reveresed accsess -- see Case 3). 905 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 906 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 907 /*ShouldCheckWrap=*/true)) { 908 LLVM_DEBUG( 909 dbgs() << "LV: Invalidate candidate interleaved group due to " 910 "first group member potentially pointer-wrapping.\n"); 911 releaseGroup(Group); 912 continue; 913 } 914 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 915 if (LastMember) { 916 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 917 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 918 /*ShouldCheckWrap=*/true)) { 919 LLVM_DEBUG( 920 dbgs() << "LV: Invalidate candidate interleaved group due to " 921 "last group member potentially pointer-wrapping.\n"); 922 releaseGroup(Group); 923 } 924 } else { 925 // Case 3: A non-reversed interleaved load group with gaps: We need 926 // to execute at least one scalar epilogue iteration. This will ensure 927 // we don't speculatively access memory out-of-bounds. We only need 928 // to look for a member at index factor - 1, since every group must have 929 // a member at index zero. 930 if (Group->isReverse()) { 931 LLVM_DEBUG( 932 dbgs() << "LV: Invalidate candidate interleaved group due to " 933 "a reverse access with gaps.\n"); 934 releaseGroup(Group); 935 continue; 936 } 937 LLVM_DEBUG( 938 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 939 RequiresScalarEpilogue = true; 940 } 941 } 942 } 943 944 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 945 // If no group had triggered the requirement to create an epilogue loop, 946 // there is nothing to do. 947 if (!requiresScalarEpilogue()) 948 return; 949 950 // Avoid releasing a Group twice. 951 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; 952 for (auto &I : InterleaveGroupMap) { 953 InterleaveGroup<Instruction> *Group = I.second; 954 if (Group->requiresScalarEpilogue()) 955 DelSet.insert(Group); 956 } 957 for (auto *Ptr : DelSet) { 958 LLVM_DEBUG( 959 dbgs() 960 << "LV: Invalidate candidate interleaved group due to gaps that " 961 "require a scalar epilogue (not allowed under optsize) and cannot " 962 "be masked (not enabled). \n"); 963 releaseGroup(Ptr); 964 } 965 966 RequiresScalarEpilogue = false; 967 } 968 969 template <typename InstT> 970 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 971 llvm_unreachable("addMetadata can only be used for Instruction"); 972 } 973 974 namespace llvm { 975 template <> 976 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 977 SmallVector<Value *, 4> VL; 978 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 979 [](std::pair<int, Instruction *> p) { return p.second; }); 980 propagateMetadata(NewInst, VL); 981 } 982 } 983