1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/CommandLine.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic, and vectors for the vector form of the 42 /// intrinsic (except operands that are marked as always being scalar by 43 /// hasVectorInstrinsicScalarOpd). 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::abs: // Begin integer bit-manipulation. 47 case Intrinsic::bswap: 48 case Intrinsic::bitreverse: 49 case Intrinsic::ctpop: 50 case Intrinsic::ctlz: 51 case Intrinsic::cttz: 52 case Intrinsic::fshl: 53 case Intrinsic::fshr: 54 case Intrinsic::smax: 55 case Intrinsic::smin: 56 case Intrinsic::umax: 57 case Intrinsic::umin: 58 case Intrinsic::sadd_sat: 59 case Intrinsic::ssub_sat: 60 case Intrinsic::uadd_sat: 61 case Intrinsic::usub_sat: 62 case Intrinsic::smul_fix: 63 case Intrinsic::smul_fix_sat: 64 case Intrinsic::umul_fix: 65 case Intrinsic::umul_fix_sat: 66 case Intrinsic::sqrt: // Begin floating-point. 67 case Intrinsic::sin: 68 case Intrinsic::cos: 69 case Intrinsic::exp: 70 case Intrinsic::exp2: 71 case Intrinsic::log: 72 case Intrinsic::log10: 73 case Intrinsic::log2: 74 case Intrinsic::fabs: 75 case Intrinsic::minnum: 76 case Intrinsic::maxnum: 77 case Intrinsic::minimum: 78 case Intrinsic::maximum: 79 case Intrinsic::copysign: 80 case Intrinsic::floor: 81 case Intrinsic::ceil: 82 case Intrinsic::trunc: 83 case Intrinsic::rint: 84 case Intrinsic::nearbyint: 85 case Intrinsic::round: 86 case Intrinsic::roundeven: 87 case Intrinsic::pow: 88 case Intrinsic::fma: 89 case Intrinsic::fmuladd: 90 case Intrinsic::powi: 91 case Intrinsic::canonicalize: 92 return true; 93 default: 94 return false; 95 } 96 } 97 98 /// Identifies if the vector form of the intrinsic has a scalar operand. 99 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 100 unsigned ScalarOpdIdx) { 101 switch (ID) { 102 case Intrinsic::abs: 103 case Intrinsic::ctlz: 104 case Intrinsic::cttz: 105 case Intrinsic::powi: 106 return (ScalarOpdIdx == 1); 107 case Intrinsic::smul_fix: 108 case Intrinsic::smul_fix_sat: 109 case Intrinsic::umul_fix: 110 case Intrinsic::umul_fix_sat: 111 return (ScalarOpdIdx == 2); 112 default: 113 return false; 114 } 115 } 116 117 /// Returns intrinsic ID for call. 118 /// For the input call instruction it finds mapping intrinsic and returns 119 /// its ID, in case it does not found it return not_intrinsic. 120 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 121 const TargetLibraryInfo *TLI) { 122 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 123 if (ID == Intrinsic::not_intrinsic) 124 return Intrinsic::not_intrinsic; 125 126 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 127 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 128 ID == Intrinsic::sideeffect) 129 return ID; 130 return Intrinsic::not_intrinsic; 131 } 132 133 /// Find the operand of the GEP that should be checked for consecutive 134 /// stores. This ignores trailing indices that have no effect on the final 135 /// pointer. 136 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 137 const DataLayout &DL = Gep->getModule()->getDataLayout(); 138 unsigned LastOperand = Gep->getNumOperands() - 1; 139 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 140 141 // Walk backwards and try to peel off zeros. 142 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 143 // Find the type we're currently indexing into. 144 gep_type_iterator GEPTI = gep_type_begin(Gep); 145 std::advance(GEPTI, LastOperand - 2); 146 147 // If it's a type with the same allocation size as the result of the GEP we 148 // can peel off the zero index. 149 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 150 break; 151 --LastOperand; 152 } 153 154 return LastOperand; 155 } 156 157 /// If the argument is a GEP, then returns the operand identified by 158 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 159 /// operand, it returns that instead. 160 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 161 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 162 if (!GEP) 163 return Ptr; 164 165 unsigned InductionOperand = getGEPInductionOperand(GEP); 166 167 // Check that all of the gep indices are uniform except for our induction 168 // operand. 169 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 170 if (i != InductionOperand && 171 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 172 return Ptr; 173 return GEP->getOperand(InductionOperand); 174 } 175 176 /// If a value has only one user that is a CastInst, return it. 177 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 178 Value *UniqueCast = nullptr; 179 for (User *U : Ptr->users()) { 180 CastInst *CI = dyn_cast<CastInst>(U); 181 if (CI && CI->getType() == Ty) { 182 if (!UniqueCast) 183 UniqueCast = CI; 184 else 185 return nullptr; 186 } 187 } 188 return UniqueCast; 189 } 190 191 /// Get the stride of a pointer access in a loop. Looks for symbolic 192 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 193 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 194 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 195 if (!PtrTy || PtrTy->isAggregateType()) 196 return nullptr; 197 198 // Try to remove a gep instruction to make the pointer (actually index at this 199 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 200 // pointer, otherwise, we are analyzing the index. 201 Value *OrigPtr = Ptr; 202 203 // The size of the pointer access. 204 int64_t PtrAccessSize = 1; 205 206 Ptr = stripGetElementPtr(Ptr, SE, Lp); 207 const SCEV *V = SE->getSCEV(Ptr); 208 209 if (Ptr != OrigPtr) 210 // Strip off casts. 211 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 212 V = C->getOperand(); 213 214 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 215 if (!S) 216 return nullptr; 217 218 V = S->getStepRecurrence(*SE); 219 if (!V) 220 return nullptr; 221 222 // Strip off the size of access multiplication if we are still analyzing the 223 // pointer. 224 if (OrigPtr == Ptr) { 225 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 226 if (M->getOperand(0)->getSCEVType() != scConstant) 227 return nullptr; 228 229 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 230 231 // Huge step value - give up. 232 if (APStepVal.getBitWidth() > 64) 233 return nullptr; 234 235 int64_t StepVal = APStepVal.getSExtValue(); 236 if (PtrAccessSize != StepVal) 237 return nullptr; 238 V = M->getOperand(1); 239 } 240 } 241 242 // Strip off casts. 243 Type *StripedOffRecurrenceCast = nullptr; 244 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 245 StripedOffRecurrenceCast = C->getType(); 246 V = C->getOperand(); 247 } 248 249 // Look for the loop invariant symbolic value. 250 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 251 if (!U) 252 return nullptr; 253 254 Value *Stride = U->getValue(); 255 if (!Lp->isLoopInvariant(Stride)) 256 return nullptr; 257 258 // If we have stripped off the recurrence cast we have to make sure that we 259 // return the value that is used in this loop so that we can replace it later. 260 if (StripedOffRecurrenceCast) 261 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 262 263 return Stride; 264 } 265 266 /// Given a vector and an element number, see if the scalar value is 267 /// already around as a register, for example if it were inserted then extracted 268 /// from the vector. 269 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 270 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 271 VectorType *VTy = cast<VectorType>(V->getType()); 272 // For fixed-length vector, return undef for out of range access. 273 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 274 unsigned Width = FVTy->getNumElements(); 275 if (EltNo >= Width) 276 return UndefValue::get(FVTy->getElementType()); 277 } 278 279 if (Constant *C = dyn_cast<Constant>(V)) 280 return C->getAggregateElement(EltNo); 281 282 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 283 // If this is an insert to a variable element, we don't know what it is. 284 if (!isa<ConstantInt>(III->getOperand(2))) 285 return nullptr; 286 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 287 288 // If this is an insert to the element we are looking for, return the 289 // inserted value. 290 if (EltNo == IIElt) 291 return III->getOperand(1); 292 293 // Otherwise, the insertelement doesn't modify the value, recurse on its 294 // vector input. 295 return findScalarElement(III->getOperand(0), EltNo); 296 } 297 298 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 299 // Restrict the following transformation to fixed-length vector. 300 if (SVI && isa<FixedVectorType>(SVI->getType())) { 301 unsigned LHSWidth = 302 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 303 int InEl = SVI->getMaskValue(EltNo); 304 if (InEl < 0) 305 return UndefValue::get(VTy->getElementType()); 306 if (InEl < (int)LHSWidth) 307 return findScalarElement(SVI->getOperand(0), InEl); 308 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 309 } 310 311 // Extract a value from a vector add operation with a constant zero. 312 // TODO: Use getBinOpIdentity() to generalize this. 313 Value *Val; Constant *C; 314 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 315 if (Constant *Elt = C->getAggregateElement(EltNo)) 316 if (Elt->isNullValue()) 317 return findScalarElement(Val, EltNo); 318 319 // Otherwise, we don't know. 320 return nullptr; 321 } 322 323 int llvm::getSplatIndex(ArrayRef<int> Mask) { 324 int SplatIndex = -1; 325 for (int M : Mask) { 326 // Ignore invalid (undefined) mask elements. 327 if (M < 0) 328 continue; 329 330 // There can be only 1 non-negative mask element value if this is a splat. 331 if (SplatIndex != -1 && SplatIndex != M) 332 return -1; 333 334 // Initialize the splat index to the 1st non-negative mask element. 335 SplatIndex = M; 336 } 337 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 338 return SplatIndex; 339 } 340 341 /// Get splat value if the input is a splat vector or return nullptr. 342 /// This function is not fully general. It checks only 2 cases: 343 /// the input value is (1) a splat constant vector or (2) a sequence 344 /// of instructions that broadcasts a scalar at element 0. 345 const llvm::Value *llvm::getSplatValue(const Value *V) { 346 if (isa<VectorType>(V->getType())) 347 if (auto *C = dyn_cast<Constant>(V)) 348 return C->getSplatValue(); 349 350 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 351 Value *Splat; 352 if (match(V, 353 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 354 m_Value(), m_ZeroMask()))) 355 return Splat; 356 357 return nullptr; 358 } 359 360 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 361 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 362 363 if (isa<VectorType>(V->getType())) { 364 if (isa<UndefValue>(V)) 365 return true; 366 // FIXME: We can allow undefs, but if Index was specified, we may want to 367 // check that the constant is defined at that index. 368 if (auto *C = dyn_cast<Constant>(V)) 369 return C->getSplatValue() != nullptr; 370 } 371 372 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 373 // FIXME: We can safely allow undefs here. If Index was specified, we will 374 // check that the mask elt is defined at the required index. 375 if (!is_splat(Shuf->getShuffleMask())) 376 return false; 377 378 // Match any index. 379 if (Index == -1) 380 return true; 381 382 // Match a specific element. The mask should be defined at and match the 383 // specified index. 384 return Shuf->getMaskValue(Index) == Index; 385 } 386 387 // The remaining tests are all recursive, so bail out if we hit the limit. 388 if (Depth++ == MaxAnalysisRecursionDepth) 389 return false; 390 391 // If both operands of a binop are splats, the result is a splat. 392 Value *X, *Y, *Z; 393 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 394 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 395 396 // If all operands of a select are splats, the result is a splat. 397 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 398 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 399 isSplatValue(Z, Index, Depth); 400 401 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 402 403 return false; 404 } 405 406 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 407 SmallVectorImpl<int> &ScaledMask) { 408 assert(Scale > 0 && "Unexpected scaling factor"); 409 410 // Fast-path: if no scaling, then it is just a copy. 411 if (Scale == 1) { 412 ScaledMask.assign(Mask.begin(), Mask.end()); 413 return; 414 } 415 416 ScaledMask.clear(); 417 for (int MaskElt : Mask) { 418 if (MaskElt >= 0) { 419 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= 420 std::numeric_limits<int32_t>::max() && 421 "Overflowed 32-bits"); 422 } 423 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 424 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 425 } 426 } 427 428 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 429 SmallVectorImpl<int> &ScaledMask) { 430 assert(Scale > 0 && "Unexpected scaling factor"); 431 432 // Fast-path: if no scaling, then it is just a copy. 433 if (Scale == 1) { 434 ScaledMask.assign(Mask.begin(), Mask.end()); 435 return true; 436 } 437 438 // We must map the original elements down evenly to a type with less elements. 439 int NumElts = Mask.size(); 440 if (NumElts % Scale != 0) 441 return false; 442 443 ScaledMask.clear(); 444 ScaledMask.reserve(NumElts / Scale); 445 446 // Step through the input mask by splitting into Scale-sized slices. 447 do { 448 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 449 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 450 451 // The first element of the slice determines how we evaluate this slice. 452 int SliceFront = MaskSlice.front(); 453 if (SliceFront < 0) { 454 // Negative values (undef or other "sentinel" values) must be equal across 455 // the entire slice. 456 if (!is_splat(MaskSlice)) 457 return false; 458 ScaledMask.push_back(SliceFront); 459 } else { 460 // A positive mask element must be cleanly divisible. 461 if (SliceFront % Scale != 0) 462 return false; 463 // Elements of the slice must be consecutive. 464 for (int i = 1; i < Scale; ++i) 465 if (MaskSlice[i] != SliceFront + i) 466 return false; 467 ScaledMask.push_back(SliceFront / Scale); 468 } 469 Mask = Mask.drop_front(Scale); 470 } while (!Mask.empty()); 471 472 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 473 474 // All elements of the original mask can be scaled down to map to the elements 475 // of a mask with wider elements. 476 return true; 477 } 478 479 MapVector<Instruction *, uint64_t> 480 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 481 const TargetTransformInfo *TTI) { 482 483 // DemandedBits will give us every value's live-out bits. But we want 484 // to ensure no extra casts would need to be inserted, so every DAG 485 // of connected values must have the same minimum bitwidth. 486 EquivalenceClasses<Value *> ECs; 487 SmallVector<Value *, 16> Worklist; 488 SmallPtrSet<Value *, 4> Roots; 489 SmallPtrSet<Value *, 16> Visited; 490 DenseMap<Value *, uint64_t> DBits; 491 SmallPtrSet<Instruction *, 4> InstructionSet; 492 MapVector<Instruction *, uint64_t> MinBWs; 493 494 // Determine the roots. We work bottom-up, from truncs or icmps. 495 bool SeenExtFromIllegalType = false; 496 for (auto *BB : Blocks) 497 for (auto &I : *BB) { 498 InstructionSet.insert(&I); 499 500 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 501 !TTI->isTypeLegal(I.getOperand(0)->getType())) 502 SeenExtFromIllegalType = true; 503 504 // Only deal with non-vector integers up to 64-bits wide. 505 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 506 !I.getType()->isVectorTy() && 507 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 508 // Don't make work for ourselves. If we know the loaded type is legal, 509 // don't add it to the worklist. 510 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 511 continue; 512 513 Worklist.push_back(&I); 514 Roots.insert(&I); 515 } 516 } 517 // Early exit. 518 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 519 return MinBWs; 520 521 // Now proceed breadth-first, unioning values together. 522 while (!Worklist.empty()) { 523 Value *Val = Worklist.pop_back_val(); 524 Value *Leader = ECs.getOrInsertLeaderValue(Val); 525 526 if (Visited.count(Val)) 527 continue; 528 Visited.insert(Val); 529 530 // Non-instructions terminate a chain successfully. 531 if (!isa<Instruction>(Val)) 532 continue; 533 Instruction *I = cast<Instruction>(Val); 534 535 // If we encounter a type that is larger than 64 bits, we can't represent 536 // it so bail out. 537 if (DB.getDemandedBits(I).getBitWidth() > 64) 538 return MapVector<Instruction *, uint64_t>(); 539 540 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 541 DBits[Leader] |= V; 542 DBits[I] = V; 543 544 // Casts, loads and instructions outside of our range terminate a chain 545 // successfully. 546 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 547 !InstructionSet.count(I)) 548 continue; 549 550 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 551 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 552 // transform anything that relies on them. 553 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 554 !I->getType()->isIntegerTy()) { 555 DBits[Leader] |= ~0ULL; 556 continue; 557 } 558 559 // We don't modify the types of PHIs. Reductions will already have been 560 // truncated if possible, and inductions' sizes will have been chosen by 561 // indvars. 562 if (isa<PHINode>(I)) 563 continue; 564 565 if (DBits[Leader] == ~0ULL) 566 // All bits demanded, no point continuing. 567 continue; 568 569 for (Value *O : cast<User>(I)->operands()) { 570 ECs.unionSets(Leader, O); 571 Worklist.push_back(O); 572 } 573 } 574 575 // Now we've discovered all values, walk them to see if there are 576 // any users we didn't see. If there are, we can't optimize that 577 // chain. 578 for (auto &I : DBits) 579 for (auto *U : I.first->users()) 580 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 581 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 582 583 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 584 uint64_t LeaderDemandedBits = 0; 585 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 586 LeaderDemandedBits |= DBits[*MI]; 587 588 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 589 llvm::countLeadingZeros(LeaderDemandedBits); 590 // Round up to a power of 2 591 if (!isPowerOf2_64((uint64_t)MinBW)) 592 MinBW = NextPowerOf2(MinBW); 593 594 // We don't modify the types of PHIs. Reductions will already have been 595 // truncated if possible, and inductions' sizes will have been chosen by 596 // indvars. 597 // If we are required to shrink a PHI, abandon this entire equivalence class. 598 bool Abort = false; 599 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 600 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 601 Abort = true; 602 break; 603 } 604 if (Abort) 605 continue; 606 607 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 608 if (!isa<Instruction>(*MI)) 609 continue; 610 Type *Ty = (*MI)->getType(); 611 if (Roots.count(*MI)) 612 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 613 if (MinBW < Ty->getScalarSizeInBits()) 614 MinBWs[cast<Instruction>(*MI)] = MinBW; 615 } 616 } 617 618 return MinBWs; 619 } 620 621 /// Add all access groups in @p AccGroups to @p List. 622 template <typename ListT> 623 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 624 // Interpret an access group as a list containing itself. 625 if (AccGroups->getNumOperands() == 0) { 626 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 627 List.insert(AccGroups); 628 return; 629 } 630 631 for (auto &AccGroupListOp : AccGroups->operands()) { 632 auto *Item = cast<MDNode>(AccGroupListOp.get()); 633 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 634 List.insert(Item); 635 } 636 } 637 638 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 639 if (!AccGroups1) 640 return AccGroups2; 641 if (!AccGroups2) 642 return AccGroups1; 643 if (AccGroups1 == AccGroups2) 644 return AccGroups1; 645 646 SmallSetVector<Metadata *, 4> Union; 647 addToAccessGroupList(Union, AccGroups1); 648 addToAccessGroupList(Union, AccGroups2); 649 650 if (Union.size() == 0) 651 return nullptr; 652 if (Union.size() == 1) 653 return cast<MDNode>(Union.front()); 654 655 LLVMContext &Ctx = AccGroups1->getContext(); 656 return MDNode::get(Ctx, Union.getArrayRef()); 657 } 658 659 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 660 const Instruction *Inst2) { 661 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 662 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 663 664 if (!MayAccessMem1 && !MayAccessMem2) 665 return nullptr; 666 if (!MayAccessMem1) 667 return Inst2->getMetadata(LLVMContext::MD_access_group); 668 if (!MayAccessMem2) 669 return Inst1->getMetadata(LLVMContext::MD_access_group); 670 671 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 672 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 673 if (!MD1 || !MD2) 674 return nullptr; 675 if (MD1 == MD2) 676 return MD1; 677 678 // Use set for scalable 'contains' check. 679 SmallPtrSet<Metadata *, 4> AccGroupSet2; 680 addToAccessGroupList(AccGroupSet2, MD2); 681 682 SmallVector<Metadata *, 4> Intersection; 683 if (MD1->getNumOperands() == 0) { 684 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 685 if (AccGroupSet2.count(MD1)) 686 Intersection.push_back(MD1); 687 } else { 688 for (const MDOperand &Node : MD1->operands()) { 689 auto *Item = cast<MDNode>(Node.get()); 690 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 691 if (AccGroupSet2.count(Item)) 692 Intersection.push_back(Item); 693 } 694 } 695 696 if (Intersection.size() == 0) 697 return nullptr; 698 if (Intersection.size() == 1) 699 return cast<MDNode>(Intersection.front()); 700 701 LLVMContext &Ctx = Inst1->getContext(); 702 return MDNode::get(Ctx, Intersection); 703 } 704 705 /// \returns \p I after propagating metadata from \p VL. 706 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 707 Instruction *I0 = cast<Instruction>(VL[0]); 708 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 709 I0->getAllMetadataOtherThanDebugLoc(Metadata); 710 711 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 712 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 713 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 714 LLVMContext::MD_access_group}) { 715 MDNode *MD = I0->getMetadata(Kind); 716 717 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 718 const Instruction *IJ = cast<Instruction>(VL[J]); 719 MDNode *IMD = IJ->getMetadata(Kind); 720 switch (Kind) { 721 case LLVMContext::MD_tbaa: 722 MD = MDNode::getMostGenericTBAA(MD, IMD); 723 break; 724 case LLVMContext::MD_alias_scope: 725 MD = MDNode::getMostGenericAliasScope(MD, IMD); 726 break; 727 case LLVMContext::MD_fpmath: 728 MD = MDNode::getMostGenericFPMath(MD, IMD); 729 break; 730 case LLVMContext::MD_noalias: 731 case LLVMContext::MD_nontemporal: 732 case LLVMContext::MD_invariant_load: 733 MD = MDNode::intersect(MD, IMD); 734 break; 735 case LLVMContext::MD_access_group: 736 MD = intersectAccessGroups(Inst, IJ); 737 break; 738 default: 739 llvm_unreachable("unhandled metadata"); 740 } 741 } 742 743 Inst->setMetadata(Kind, MD); 744 } 745 746 return Inst; 747 } 748 749 Constant * 750 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 751 const InterleaveGroup<Instruction> &Group) { 752 // All 1's means mask is not needed. 753 if (Group.getNumMembers() == Group.getFactor()) 754 return nullptr; 755 756 // TODO: support reversed access. 757 assert(!Group.isReverse() && "Reversed group not supported."); 758 759 SmallVector<Constant *, 16> Mask; 760 for (unsigned i = 0; i < VF; i++) 761 for (unsigned j = 0; j < Group.getFactor(); ++j) { 762 unsigned HasMember = Group.getMember(j) ? 1 : 0; 763 Mask.push_back(Builder.getInt1(HasMember)); 764 } 765 766 return ConstantVector::get(Mask); 767 } 768 769 llvm::SmallVector<int, 16> 770 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 771 SmallVector<int, 16> MaskVec; 772 for (unsigned i = 0; i < VF; i++) 773 for (unsigned j = 0; j < ReplicationFactor; j++) 774 MaskVec.push_back(i); 775 776 return MaskVec; 777 } 778 779 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 780 unsigned NumVecs) { 781 SmallVector<int, 16> Mask; 782 for (unsigned i = 0; i < VF; i++) 783 for (unsigned j = 0; j < NumVecs; j++) 784 Mask.push_back(j * VF + i); 785 786 return Mask; 787 } 788 789 llvm::SmallVector<int, 16> 790 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 791 SmallVector<int, 16> Mask; 792 for (unsigned i = 0; i < VF; i++) 793 Mask.push_back(Start + i * Stride); 794 795 return Mask; 796 } 797 798 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 799 unsigned NumInts, 800 unsigned NumUndefs) { 801 SmallVector<int, 16> Mask; 802 for (unsigned i = 0; i < NumInts; i++) 803 Mask.push_back(Start + i); 804 805 for (unsigned i = 0; i < NumUndefs; i++) 806 Mask.push_back(-1); 807 808 return Mask; 809 } 810 811 /// A helper function for concatenating vectors. This function concatenates two 812 /// vectors having the same element type. If the second vector has fewer 813 /// elements than the first, it is padded with undefs. 814 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 815 Value *V2) { 816 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 817 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 818 assert(VecTy1 && VecTy2 && 819 VecTy1->getScalarType() == VecTy2->getScalarType() && 820 "Expect two vectors with the same element type"); 821 822 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 823 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 824 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 825 826 if (NumElts1 > NumElts2) { 827 // Extend with UNDEFs. 828 V2 = Builder.CreateShuffleVector( 829 V2, UndefValue::get(VecTy2), 830 createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 831 } 832 833 return Builder.CreateShuffleVector( 834 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 835 } 836 837 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 838 ArrayRef<Value *> Vecs) { 839 unsigned NumVecs = Vecs.size(); 840 assert(NumVecs > 1 && "Should be at least two vectors"); 841 842 SmallVector<Value *, 8> ResList; 843 ResList.append(Vecs.begin(), Vecs.end()); 844 do { 845 SmallVector<Value *, 8> TmpList; 846 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 847 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 848 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 849 "Only the last vector may have a different type"); 850 851 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 852 } 853 854 // Push the last vector if the total number of vectors is odd. 855 if (NumVecs % 2 != 0) 856 TmpList.push_back(ResList[NumVecs - 1]); 857 858 ResList = TmpList; 859 NumVecs = ResList.size(); 860 } while (NumVecs > 1); 861 862 return ResList[0]; 863 } 864 865 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 866 auto *ConstMask = dyn_cast<Constant>(Mask); 867 if (!ConstMask) 868 return false; 869 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 870 return true; 871 for (unsigned 872 I = 0, 873 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 874 I != E; ++I) { 875 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 876 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 877 continue; 878 return false; 879 } 880 return true; 881 } 882 883 884 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 885 auto *ConstMask = dyn_cast<Constant>(Mask); 886 if (!ConstMask) 887 return false; 888 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 889 return true; 890 for (unsigned 891 I = 0, 892 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 893 I != E; ++I) { 894 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 895 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 896 continue; 897 return false; 898 } 899 return true; 900 } 901 902 /// TODO: This is a lot like known bits, but for 903 /// vectors. Is there something we can common this with? 904 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 905 906 const unsigned VWidth = 907 cast<FixedVectorType>(Mask->getType())->getNumElements(); 908 APInt DemandedElts = APInt::getAllOnesValue(VWidth); 909 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 910 for (unsigned i = 0; i < VWidth; i++) 911 if (CV->getAggregateElement(i)->isNullValue()) 912 DemandedElts.clearBit(i); 913 return DemandedElts; 914 } 915 916 bool InterleavedAccessInfo::isStrided(int Stride) { 917 unsigned Factor = std::abs(Stride); 918 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 919 } 920 921 void InterleavedAccessInfo::collectConstStrideAccesses( 922 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 923 const ValueToValueMap &Strides) { 924 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 925 926 // Since it's desired that the load/store instructions be maintained in 927 // "program order" for the interleaved access analysis, we have to visit the 928 // blocks in the loop in reverse postorder (i.e., in a topological order). 929 // Such an ordering will ensure that any load/store that may be executed 930 // before a second load/store will precede the second load/store in 931 // AccessStrideInfo. 932 LoopBlocksDFS DFS(TheLoop); 933 DFS.perform(LI); 934 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 935 for (auto &I : *BB) { 936 auto *LI = dyn_cast<LoadInst>(&I); 937 auto *SI = dyn_cast<StoreInst>(&I); 938 if (!LI && !SI) 939 continue; 940 941 Value *Ptr = getLoadStorePointerOperand(&I); 942 // We don't check wrapping here because we don't know yet if Ptr will be 943 // part of a full group or a group with gaps. Checking wrapping for all 944 // pointers (even those that end up in groups with no gaps) will be overly 945 // conservative. For full groups, wrapping should be ok since if we would 946 // wrap around the address space we would do a memory access at nullptr 947 // even without the transformation. The wrapping checks are therefore 948 // deferred until after we've formed the interleaved groups. 949 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 950 /*Assume=*/true, /*ShouldCheckWrap=*/false); 951 952 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 953 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 954 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 955 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 956 getLoadStoreAlignment(&I)); 957 } 958 } 959 960 // Analyze interleaved accesses and collect them into interleaved load and 961 // store groups. 962 // 963 // When generating code for an interleaved load group, we effectively hoist all 964 // loads in the group to the location of the first load in program order. When 965 // generating code for an interleaved store group, we sink all stores to the 966 // location of the last store. This code motion can change the order of load 967 // and store instructions and may break dependences. 968 // 969 // The code generation strategy mentioned above ensures that we won't violate 970 // any write-after-read (WAR) dependences. 971 // 972 // E.g., for the WAR dependence: a = A[i]; // (1) 973 // A[i] = b; // (2) 974 // 975 // The store group of (2) is always inserted at or below (2), and the load 976 // group of (1) is always inserted at or above (1). Thus, the instructions will 977 // never be reordered. All other dependences are checked to ensure the 978 // correctness of the instruction reordering. 979 // 980 // The algorithm visits all memory accesses in the loop in bottom-up program 981 // order. Program order is established by traversing the blocks in the loop in 982 // reverse postorder when collecting the accesses. 983 // 984 // We visit the memory accesses in bottom-up order because it can simplify the 985 // construction of store groups in the presence of write-after-write (WAW) 986 // dependences. 987 // 988 // E.g., for the WAW dependence: A[i] = a; // (1) 989 // A[i] = b; // (2) 990 // A[i + 1] = c; // (3) 991 // 992 // We will first create a store group with (3) and (2). (1) can't be added to 993 // this group because it and (2) are dependent. However, (1) can be grouped 994 // with other accesses that may precede it in program order. Note that a 995 // bottom-up order does not imply that WAW dependences should not be checked. 996 void InterleavedAccessInfo::analyzeInterleaving( 997 bool EnablePredicatedInterleavedMemAccesses) { 998 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 999 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 1000 1001 // Holds all accesses with a constant stride. 1002 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1003 collectConstStrideAccesses(AccessStrideInfo, Strides); 1004 1005 if (AccessStrideInfo.empty()) 1006 return; 1007 1008 // Collect the dependences in the loop. 1009 collectDependences(); 1010 1011 // Holds all interleaved store groups temporarily. 1012 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1013 // Holds all interleaved load groups temporarily. 1014 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1015 1016 // Search in bottom-up program order for pairs of accesses (A and B) that can 1017 // form interleaved load or store groups. In the algorithm below, access A 1018 // precedes access B in program order. We initialize a group for B in the 1019 // outer loop of the algorithm, and then in the inner loop, we attempt to 1020 // insert each A into B's group if: 1021 // 1022 // 1. A and B have the same stride, 1023 // 2. A and B have the same memory object size, and 1024 // 3. A belongs in B's group according to its distance from B. 1025 // 1026 // Special care is taken to ensure group formation will not break any 1027 // dependences. 1028 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1029 BI != E; ++BI) { 1030 Instruction *B = BI->first; 1031 StrideDescriptor DesB = BI->second; 1032 1033 // Initialize a group for B if it has an allowable stride. Even if we don't 1034 // create a group for B, we continue with the bottom-up algorithm to ensure 1035 // we don't break any of B's dependences. 1036 InterleaveGroup<Instruction> *Group = nullptr; 1037 if (isStrided(DesB.Stride) && 1038 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1039 Group = getInterleaveGroup(B); 1040 if (!Group) { 1041 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1042 << '\n'); 1043 Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1044 } 1045 if (B->mayWriteToMemory()) 1046 StoreGroups.insert(Group); 1047 else 1048 LoadGroups.insert(Group); 1049 } 1050 1051 for (auto AI = std::next(BI); AI != E; ++AI) { 1052 Instruction *A = AI->first; 1053 StrideDescriptor DesA = AI->second; 1054 1055 // Our code motion strategy implies that we can't have dependences 1056 // between accesses in an interleaved group and other accesses located 1057 // between the first and last member of the group. Note that this also 1058 // means that a group can't have more than one member at a given offset. 1059 // The accesses in a group can have dependences with other accesses, but 1060 // we must ensure we don't extend the boundaries of the group such that 1061 // we encompass those dependent accesses. 1062 // 1063 // For example, assume we have the sequence of accesses shown below in a 1064 // stride-2 loop: 1065 // 1066 // (1, 2) is a group | A[i] = a; // (1) 1067 // | A[i-1] = b; // (2) | 1068 // A[i-3] = c; // (3) 1069 // A[i] = d; // (4) | (2, 4) is not a group 1070 // 1071 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1072 // but not with (4). If we did, the dependent access (3) would be within 1073 // the boundaries of the (2, 4) group. 1074 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 1075 // If a dependence exists and A is already in a group, we know that A 1076 // must be a store since A precedes B and WAR dependences are allowed. 1077 // Thus, A would be sunk below B. We release A's group to prevent this 1078 // illegal code motion. A will then be free to form another group with 1079 // instructions that precede it. 1080 if (isInterleaved(A)) { 1081 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 1082 1083 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1084 "dependence between " << *A << " and "<< *B << '\n'); 1085 1086 StoreGroups.remove(StoreGroup); 1087 releaseGroup(StoreGroup); 1088 } 1089 1090 // If a dependence exists and A is not already in a group (or it was 1091 // and we just released it), B might be hoisted above A (if B is a 1092 // load) or another store might be sunk below A (if B is a store). In 1093 // either case, we can't add additional instructions to B's group. B 1094 // will only form a group with instructions that it precedes. 1095 break; 1096 } 1097 1098 // At this point, we've checked for illegal code motion. If either A or B 1099 // isn't strided, there's nothing left to do. 1100 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1101 continue; 1102 1103 // Ignore A if it's already in a group or isn't the same kind of memory 1104 // operation as B. 1105 // Note that mayReadFromMemory() isn't mutually exclusive to 1106 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1107 // here, canVectorizeMemory() should have returned false - except for the 1108 // case we asked for optimization remarks. 1109 if (isInterleaved(A) || 1110 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1111 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1112 continue; 1113 1114 // Check rules 1 and 2. Ignore A if its stride or size is different from 1115 // that of B. 1116 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1117 continue; 1118 1119 // Ignore A if the memory object of A and B don't belong to the same 1120 // address space 1121 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1122 continue; 1123 1124 // Calculate the distance from A to B. 1125 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1126 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1127 if (!DistToB) 1128 continue; 1129 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1130 1131 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1132 // size. 1133 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1134 continue; 1135 1136 // All members of a predicated interleave-group must have the same predicate, 1137 // and currently must reside in the same BB. 1138 BasicBlock *BlockA = A->getParent(); 1139 BasicBlock *BlockB = B->getParent(); 1140 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1141 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1142 continue; 1143 1144 // The index of A is the index of B plus A's distance to B in multiples 1145 // of the size. 1146 int IndexA = 1147 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1148 1149 // Try to insert A into B's group. 1150 if (Group->insertMember(A, IndexA, DesA.Alignment)) { 1151 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1152 << " into the interleave group with" << *B 1153 << '\n'); 1154 InterleaveGroupMap[A] = Group; 1155 1156 // Set the first load in program order as the insert position. 1157 if (A->mayReadFromMemory()) 1158 Group->setInsertPos(A); 1159 } 1160 } // Iteration over A accesses. 1161 } // Iteration over B accesses. 1162 1163 // Remove interleaved store groups with gaps. 1164 for (auto *Group : StoreGroups) 1165 if (Group->getNumMembers() != Group->getFactor()) { 1166 LLVM_DEBUG( 1167 dbgs() << "LV: Invalidate candidate interleaved store group due " 1168 "to gaps.\n"); 1169 releaseGroup(Group); 1170 } 1171 // Remove interleaved groups with gaps (currently only loads) whose memory 1172 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1173 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1174 // not check wrapping (see documentation there). 1175 // FORNOW we use Assume=false; 1176 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1177 // of runtime SCEV assumptions checks (thereby potentially failing to 1178 // vectorize altogether). 1179 // Additional optional optimizations: 1180 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1181 // wrap then we can deduce that all pointers in the group don't wrap. 1182 // This means that we can forcefully peel the loop in order to only have to 1183 // check the first pointer for no-wrap. When we'll change to use Assume=true 1184 // we'll only need at most one runtime check per interleaved group. 1185 for (auto *Group : LoadGroups) { 1186 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1187 // load would wrap around the address space we would do a memory access at 1188 // nullptr even without the transformation. 1189 if (Group->getNumMembers() == Group->getFactor()) 1190 continue; 1191 1192 // Case 2: If first and last members of the group don't wrap this implies 1193 // that all the pointers in the group don't wrap. 1194 // So we check only group member 0 (which is always guaranteed to exist), 1195 // and group member Factor - 1; If the latter doesn't exist we rely on 1196 // peeling (if it is a non-reversed accsess -- see Case 3). 1197 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 1198 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 1199 /*ShouldCheckWrap=*/true)) { 1200 LLVM_DEBUG( 1201 dbgs() << "LV: Invalidate candidate interleaved group due to " 1202 "first group member potentially pointer-wrapping.\n"); 1203 releaseGroup(Group); 1204 continue; 1205 } 1206 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 1207 if (LastMember) { 1208 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 1209 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 1210 /*ShouldCheckWrap=*/true)) { 1211 LLVM_DEBUG( 1212 dbgs() << "LV: Invalidate candidate interleaved group due to " 1213 "last group member potentially pointer-wrapping.\n"); 1214 releaseGroup(Group); 1215 } 1216 } else { 1217 // Case 3: A non-reversed interleaved load group with gaps: We need 1218 // to execute at least one scalar epilogue iteration. This will ensure 1219 // we don't speculatively access memory out-of-bounds. We only need 1220 // to look for a member at index factor - 1, since every group must have 1221 // a member at index zero. 1222 if (Group->isReverse()) { 1223 LLVM_DEBUG( 1224 dbgs() << "LV: Invalidate candidate interleaved group due to " 1225 "a reverse access with gaps.\n"); 1226 releaseGroup(Group); 1227 continue; 1228 } 1229 LLVM_DEBUG( 1230 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1231 RequiresScalarEpilogue = true; 1232 } 1233 } 1234 } 1235 1236 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1237 // If no group had triggered the requirement to create an epilogue loop, 1238 // there is nothing to do. 1239 if (!requiresScalarEpilogue()) 1240 return; 1241 1242 bool ReleasedGroup = false; 1243 // Release groups requiring scalar epilogues. Note that this also removes them 1244 // from InterleaveGroups. 1245 for (auto *Group : make_early_inc_range(InterleaveGroups)) { 1246 if (!Group->requiresScalarEpilogue()) 1247 continue; 1248 LLVM_DEBUG( 1249 dbgs() 1250 << "LV: Invalidate candidate interleaved group due to gaps that " 1251 "require a scalar epilogue (not allowed under optsize) and cannot " 1252 "be masked (not enabled). \n"); 1253 releaseGroup(Group); 1254 ReleasedGroup = true; 1255 } 1256 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1257 "scalar epilogue was required"); 1258 (void)ReleasedGroup; 1259 RequiresScalarEpilogue = false; 1260 } 1261 1262 template <typename InstT> 1263 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1264 llvm_unreachable("addMetadata can only be used for Instruction"); 1265 } 1266 1267 namespace llvm { 1268 template <> 1269 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1270 SmallVector<Value *, 4> VL; 1271 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1272 [](std::pair<int, Instruction *> p) { return p.second; }); 1273 propagateMetadata(NewInst, VL); 1274 } 1275 } 1276 1277 std::string VFABI::mangleTLIVectorName(StringRef VectorName, 1278 StringRef ScalarName, unsigned numArgs, 1279 unsigned VF) { 1280 SmallString<256> Buffer; 1281 llvm::raw_svector_ostream Out(Buffer); 1282 Out << "_ZGV" << VFABI::_LLVM_ << "N" << VF; 1283 for (unsigned I = 0; I < numArgs; ++I) 1284 Out << "v"; 1285 Out << "_" << ScalarName << "(" << VectorName << ")"; 1286 return std::string(Out.str()); 1287 } 1288 1289 void VFABI::getVectorVariantNames( 1290 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1291 const StringRef S = 1292 CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName) 1293 .getValueAsString(); 1294 if (S.empty()) 1295 return; 1296 1297 SmallVector<StringRef, 8> ListAttr; 1298 S.split(ListAttr, ","); 1299 1300 for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1301 #ifndef NDEBUG 1302 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); 1303 Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule())); 1304 assert(Info.hasValue() && "Invalid name for a VFABI variant."); 1305 assert(CI.getModule()->getFunction(Info.getValue().VectorName) && 1306 "Vector function is missing."); 1307 #endif 1308 VariantMappings.push_back(std::string(S)); 1309 } 1310 } 1311 1312 bool VFShape::hasValidParameterList() const { 1313 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1314 ++Pos) { 1315 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1316 1317 switch (Parameters[Pos].ParamKind) { 1318 default: // Nothing to check. 1319 break; 1320 case VFParamKind::OMP_Linear: 1321 case VFParamKind::OMP_LinearRef: 1322 case VFParamKind::OMP_LinearVal: 1323 case VFParamKind::OMP_LinearUVal: 1324 // Compile time linear steps must be non-zero. 1325 if (Parameters[Pos].LinearStepOrPos == 0) 1326 return false; 1327 break; 1328 case VFParamKind::OMP_LinearPos: 1329 case VFParamKind::OMP_LinearRefPos: 1330 case VFParamKind::OMP_LinearValPos: 1331 case VFParamKind::OMP_LinearUValPos: 1332 // The runtime linear step must be referring to some other 1333 // parameters in the signature. 1334 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1335 return false; 1336 // The linear step parameter must be marked as uniform. 1337 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1338 VFParamKind::OMP_Uniform) 1339 return false; 1340 // The linear step parameter can't point at itself. 1341 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1342 return false; 1343 break; 1344 case VFParamKind::GlobalPredicate: 1345 // The global predicate must be the unique. Can be placed anywhere in the 1346 // signature. 1347 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1348 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1349 return false; 1350 break; 1351 } 1352 } 1353 return true; 1354 } 1355