1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 
28 #define DEBUG_TYPE "vectorutils"
29 
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
32 
33 /// Maximum factor for an interleaved memory access.
34 static cl::opt<unsigned> MaxInterleaveGroupFactor(
35     "max-interleave-group-factor", cl::Hidden,
36     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
37     cl::init(8));
38 
39 /// Return true if all of the intrinsic's arguments and return type are scalars
40 /// for the scalar form of the intrinsic and vectors for the vector form of the
41 /// intrinsic.
42 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
43   switch (ID) {
44   case Intrinsic::bswap: // Begin integer bit-manipulation.
45   case Intrinsic::bitreverse:
46   case Intrinsic::ctpop:
47   case Intrinsic::ctlz:
48   case Intrinsic::cttz:
49   case Intrinsic::fshl:
50   case Intrinsic::fshr:
51   case Intrinsic::sadd_sat:
52   case Intrinsic::ssub_sat:
53   case Intrinsic::uadd_sat:
54   case Intrinsic::usub_sat:
55   case Intrinsic::smul_fix:
56   case Intrinsic::umul_fix:
57   case Intrinsic::sqrt: // Begin floating-point.
58   case Intrinsic::sin:
59   case Intrinsic::cos:
60   case Intrinsic::exp:
61   case Intrinsic::exp2:
62   case Intrinsic::log:
63   case Intrinsic::log10:
64   case Intrinsic::log2:
65   case Intrinsic::fabs:
66   case Intrinsic::minnum:
67   case Intrinsic::maxnum:
68   case Intrinsic::minimum:
69   case Intrinsic::maximum:
70   case Intrinsic::copysign:
71   case Intrinsic::floor:
72   case Intrinsic::ceil:
73   case Intrinsic::trunc:
74   case Intrinsic::rint:
75   case Intrinsic::nearbyint:
76   case Intrinsic::round:
77   case Intrinsic::pow:
78   case Intrinsic::fma:
79   case Intrinsic::fmuladd:
80   case Intrinsic::powi:
81   case Intrinsic::canonicalize:
82     return true;
83   default:
84     return false;
85   }
86 }
87 
88 /// Identifies if the intrinsic has a scalar operand. It check for
89 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
90 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
91                                         unsigned ScalarOpdIdx) {
92   switch (ID) {
93   case Intrinsic::ctlz:
94   case Intrinsic::cttz:
95   case Intrinsic::powi:
96     return (ScalarOpdIdx == 1);
97   case Intrinsic::smul_fix:
98   case Intrinsic::umul_fix:
99     return (ScalarOpdIdx == 2);
100   default:
101     return false;
102   }
103 }
104 
105 /// Returns intrinsic ID for call.
106 /// For the input call instruction it finds mapping intrinsic and returns
107 /// its ID, in case it does not found it return not_intrinsic.
108 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
109                                                 const TargetLibraryInfo *TLI) {
110   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
111   if (ID == Intrinsic::not_intrinsic)
112     return Intrinsic::not_intrinsic;
113 
114   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
115       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
116       ID == Intrinsic::sideeffect)
117     return ID;
118   return Intrinsic::not_intrinsic;
119 }
120 
121 /// Find the operand of the GEP that should be checked for consecutive
122 /// stores. This ignores trailing indices that have no effect on the final
123 /// pointer.
124 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
125   const DataLayout &DL = Gep->getModule()->getDataLayout();
126   unsigned LastOperand = Gep->getNumOperands() - 1;
127   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
128 
129   // Walk backwards and try to peel off zeros.
130   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
131     // Find the type we're currently indexing into.
132     gep_type_iterator GEPTI = gep_type_begin(Gep);
133     std::advance(GEPTI, LastOperand - 2);
134 
135     // If it's a type with the same allocation size as the result of the GEP we
136     // can peel off the zero index.
137     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
138       break;
139     --LastOperand;
140   }
141 
142   return LastOperand;
143 }
144 
145 /// If the argument is a GEP, then returns the operand identified by
146 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
147 /// operand, it returns that instead.
148 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
149   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
150   if (!GEP)
151     return Ptr;
152 
153   unsigned InductionOperand = getGEPInductionOperand(GEP);
154 
155   // Check that all of the gep indices are uniform except for our induction
156   // operand.
157   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
158     if (i != InductionOperand &&
159         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
160       return Ptr;
161   return GEP->getOperand(InductionOperand);
162 }
163 
164 /// If a value has only one user that is a CastInst, return it.
165 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
166   Value *UniqueCast = nullptr;
167   for (User *U : Ptr->users()) {
168     CastInst *CI = dyn_cast<CastInst>(U);
169     if (CI && CI->getType() == Ty) {
170       if (!UniqueCast)
171         UniqueCast = CI;
172       else
173         return nullptr;
174     }
175   }
176   return UniqueCast;
177 }
178 
179 /// Get the stride of a pointer access in a loop. Looks for symbolic
180 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
181 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
182   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
183   if (!PtrTy || PtrTy->isAggregateType())
184     return nullptr;
185 
186   // Try to remove a gep instruction to make the pointer (actually index at this
187   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
188   // pointer, otherwise, we are analyzing the index.
189   Value *OrigPtr = Ptr;
190 
191   // The size of the pointer access.
192   int64_t PtrAccessSize = 1;
193 
194   Ptr = stripGetElementPtr(Ptr, SE, Lp);
195   const SCEV *V = SE->getSCEV(Ptr);
196 
197   if (Ptr != OrigPtr)
198     // Strip off casts.
199     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
200       V = C->getOperand();
201 
202   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
203   if (!S)
204     return nullptr;
205 
206   V = S->getStepRecurrence(*SE);
207   if (!V)
208     return nullptr;
209 
210   // Strip off the size of access multiplication if we are still analyzing the
211   // pointer.
212   if (OrigPtr == Ptr) {
213     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
214       if (M->getOperand(0)->getSCEVType() != scConstant)
215         return nullptr;
216 
217       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
218 
219       // Huge step value - give up.
220       if (APStepVal.getBitWidth() > 64)
221         return nullptr;
222 
223       int64_t StepVal = APStepVal.getSExtValue();
224       if (PtrAccessSize != StepVal)
225         return nullptr;
226       V = M->getOperand(1);
227     }
228   }
229 
230   // Strip off casts.
231   Type *StripedOffRecurrenceCast = nullptr;
232   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
233     StripedOffRecurrenceCast = C->getType();
234     V = C->getOperand();
235   }
236 
237   // Look for the loop invariant symbolic value.
238   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
239   if (!U)
240     return nullptr;
241 
242   Value *Stride = U->getValue();
243   if (!Lp->isLoopInvariant(Stride))
244     return nullptr;
245 
246   // If we have stripped off the recurrence cast we have to make sure that we
247   // return the value that is used in this loop so that we can replace it later.
248   if (StripedOffRecurrenceCast)
249     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
250 
251   return Stride;
252 }
253 
254 /// Given a vector and an element number, see if the scalar value is
255 /// already around as a register, for example if it were inserted then extracted
256 /// from the vector.
257 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
258   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
259   VectorType *VTy = cast<VectorType>(V->getType());
260   unsigned Width = VTy->getNumElements();
261   if (EltNo >= Width)  // Out of range access.
262     return UndefValue::get(VTy->getElementType());
263 
264   if (Constant *C = dyn_cast<Constant>(V))
265     return C->getAggregateElement(EltNo);
266 
267   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
268     // If this is an insert to a variable element, we don't know what it is.
269     if (!isa<ConstantInt>(III->getOperand(2)))
270       return nullptr;
271     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
272 
273     // If this is an insert to the element we are looking for, return the
274     // inserted value.
275     if (EltNo == IIElt)
276       return III->getOperand(1);
277 
278     // Otherwise, the insertelement doesn't modify the value, recurse on its
279     // vector input.
280     return findScalarElement(III->getOperand(0), EltNo);
281   }
282 
283   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
284     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
285     int InEl = SVI->getMaskValue(EltNo);
286     if (InEl < 0)
287       return UndefValue::get(VTy->getElementType());
288     if (InEl < (int)LHSWidth)
289       return findScalarElement(SVI->getOperand(0), InEl);
290     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
291   }
292 
293   // Extract a value from a vector add operation with a constant zero.
294   // TODO: Use getBinOpIdentity() to generalize this.
295   Value *Val; Constant *C;
296   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
297     if (Constant *Elt = C->getAggregateElement(EltNo))
298       if (Elt->isNullValue())
299         return findScalarElement(Val, EltNo);
300 
301   // Otherwise, we don't know.
302   return nullptr;
303 }
304 
305 /// Get splat value if the input is a splat vector or return nullptr.
306 /// This function is not fully general. It checks only 2 cases:
307 /// the input value is (1) a splat constants vector or (2) a sequence
308 /// of instructions that broadcast a single value into a vector.
309 ///
310 const llvm::Value *llvm::getSplatValue(const Value *V) {
311 
312   if (auto *C = dyn_cast<Constant>(V))
313     if (isa<VectorType>(V->getType()))
314       return C->getSplatValue();
315 
316   auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
317   if (!ShuffleInst)
318     return nullptr;
319   // All-zero (or undef) shuffle mask elements.
320   for (int MaskElt : ShuffleInst->getShuffleMask())
321     if (MaskElt != 0 && MaskElt != -1)
322       return nullptr;
323   // The first shuffle source is 'insertelement' with index 0.
324   auto *InsertEltInst =
325     dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
326   if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
327       !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
328     return nullptr;
329 
330   return InsertEltInst->getOperand(1);
331 }
332 
333 MapVector<Instruction *, uint64_t>
334 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
335                                const TargetTransformInfo *TTI) {
336 
337   // DemandedBits will give us every value's live-out bits. But we want
338   // to ensure no extra casts would need to be inserted, so every DAG
339   // of connected values must have the same minimum bitwidth.
340   EquivalenceClasses<Value *> ECs;
341   SmallVector<Value *, 16> Worklist;
342   SmallPtrSet<Value *, 4> Roots;
343   SmallPtrSet<Value *, 16> Visited;
344   DenseMap<Value *, uint64_t> DBits;
345   SmallPtrSet<Instruction *, 4> InstructionSet;
346   MapVector<Instruction *, uint64_t> MinBWs;
347 
348   // Determine the roots. We work bottom-up, from truncs or icmps.
349   bool SeenExtFromIllegalType = false;
350   for (auto *BB : Blocks)
351     for (auto &I : *BB) {
352       InstructionSet.insert(&I);
353 
354       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
355           !TTI->isTypeLegal(I.getOperand(0)->getType()))
356         SeenExtFromIllegalType = true;
357 
358       // Only deal with non-vector integers up to 64-bits wide.
359       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
360           !I.getType()->isVectorTy() &&
361           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
362         // Don't make work for ourselves. If we know the loaded type is legal,
363         // don't add it to the worklist.
364         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
365           continue;
366 
367         Worklist.push_back(&I);
368         Roots.insert(&I);
369       }
370     }
371   // Early exit.
372   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
373     return MinBWs;
374 
375   // Now proceed breadth-first, unioning values together.
376   while (!Worklist.empty()) {
377     Value *Val = Worklist.pop_back_val();
378     Value *Leader = ECs.getOrInsertLeaderValue(Val);
379 
380     if (Visited.count(Val))
381       continue;
382     Visited.insert(Val);
383 
384     // Non-instructions terminate a chain successfully.
385     if (!isa<Instruction>(Val))
386       continue;
387     Instruction *I = cast<Instruction>(Val);
388 
389     // If we encounter a type that is larger than 64 bits, we can't represent
390     // it so bail out.
391     if (DB.getDemandedBits(I).getBitWidth() > 64)
392       return MapVector<Instruction *, uint64_t>();
393 
394     uint64_t V = DB.getDemandedBits(I).getZExtValue();
395     DBits[Leader] |= V;
396     DBits[I] = V;
397 
398     // Casts, loads and instructions outside of our range terminate a chain
399     // successfully.
400     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
401         !InstructionSet.count(I))
402       continue;
403 
404     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
405     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
406     // transform anything that relies on them.
407     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
408         !I->getType()->isIntegerTy()) {
409       DBits[Leader] |= ~0ULL;
410       continue;
411     }
412 
413     // We don't modify the types of PHIs. Reductions will already have been
414     // truncated if possible, and inductions' sizes will have been chosen by
415     // indvars.
416     if (isa<PHINode>(I))
417       continue;
418 
419     if (DBits[Leader] == ~0ULL)
420       // All bits demanded, no point continuing.
421       continue;
422 
423     for (Value *O : cast<User>(I)->operands()) {
424       ECs.unionSets(Leader, O);
425       Worklist.push_back(O);
426     }
427   }
428 
429   // Now we've discovered all values, walk them to see if there are
430   // any users we didn't see. If there are, we can't optimize that
431   // chain.
432   for (auto &I : DBits)
433     for (auto *U : I.first->users())
434       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
435         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
436 
437   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
438     uint64_t LeaderDemandedBits = 0;
439     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
440       LeaderDemandedBits |= DBits[*MI];
441 
442     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
443                      llvm::countLeadingZeros(LeaderDemandedBits);
444     // Round up to a power of 2
445     if (!isPowerOf2_64((uint64_t)MinBW))
446       MinBW = NextPowerOf2(MinBW);
447 
448     // We don't modify the types of PHIs. Reductions will already have been
449     // truncated if possible, and inductions' sizes will have been chosen by
450     // indvars.
451     // If we are required to shrink a PHI, abandon this entire equivalence class.
452     bool Abort = false;
453     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
454       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
455         Abort = true;
456         break;
457       }
458     if (Abort)
459       continue;
460 
461     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
462       if (!isa<Instruction>(*MI))
463         continue;
464       Type *Ty = (*MI)->getType();
465       if (Roots.count(*MI))
466         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
467       if (MinBW < Ty->getScalarSizeInBits())
468         MinBWs[cast<Instruction>(*MI)] = MinBW;
469     }
470   }
471 
472   return MinBWs;
473 }
474 
475 /// Add all access groups in @p AccGroups to @p List.
476 template <typename ListT>
477 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
478   // Interpret an access group as a list containing itself.
479   if (AccGroups->getNumOperands() == 0) {
480     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
481     List.insert(AccGroups);
482     return;
483   }
484 
485   for (auto &AccGroupListOp : AccGroups->operands()) {
486     auto *Item = cast<MDNode>(AccGroupListOp.get());
487     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
488     List.insert(Item);
489   }
490 }
491 
492 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
493   if (!AccGroups1)
494     return AccGroups2;
495   if (!AccGroups2)
496     return AccGroups1;
497   if (AccGroups1 == AccGroups2)
498     return AccGroups1;
499 
500   SmallSetVector<Metadata *, 4> Union;
501   addToAccessGroupList(Union, AccGroups1);
502   addToAccessGroupList(Union, AccGroups2);
503 
504   if (Union.size() == 0)
505     return nullptr;
506   if (Union.size() == 1)
507     return cast<MDNode>(Union.front());
508 
509   LLVMContext &Ctx = AccGroups1->getContext();
510   return MDNode::get(Ctx, Union.getArrayRef());
511 }
512 
513 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
514                                     const Instruction *Inst2) {
515   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
516   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
517 
518   if (!MayAccessMem1 && !MayAccessMem2)
519     return nullptr;
520   if (!MayAccessMem1)
521     return Inst2->getMetadata(LLVMContext::MD_access_group);
522   if (!MayAccessMem2)
523     return Inst1->getMetadata(LLVMContext::MD_access_group);
524 
525   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
526   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
527   if (!MD1 || !MD2)
528     return nullptr;
529   if (MD1 == MD2)
530     return MD1;
531 
532   // Use set for scalable 'contains' check.
533   SmallPtrSet<Metadata *, 4> AccGroupSet2;
534   addToAccessGroupList(AccGroupSet2, MD2);
535 
536   SmallVector<Metadata *, 4> Intersection;
537   if (MD1->getNumOperands() == 0) {
538     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
539     if (AccGroupSet2.count(MD1))
540       Intersection.push_back(MD1);
541   } else {
542     for (const MDOperand &Node : MD1->operands()) {
543       auto *Item = cast<MDNode>(Node.get());
544       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
545       if (AccGroupSet2.count(Item))
546         Intersection.push_back(Item);
547     }
548   }
549 
550   if (Intersection.size() == 0)
551     return nullptr;
552   if (Intersection.size() == 1)
553     return cast<MDNode>(Intersection.front());
554 
555   LLVMContext &Ctx = Inst1->getContext();
556   return MDNode::get(Ctx, Intersection);
557 }
558 
559 /// \returns \p I after propagating metadata from \p VL.
560 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
561   Instruction *I0 = cast<Instruction>(VL[0]);
562   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
563   I0->getAllMetadataOtherThanDebugLoc(Metadata);
564 
565   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
566                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
567                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
568                     LLVMContext::MD_access_group}) {
569     MDNode *MD = I0->getMetadata(Kind);
570 
571     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
572       const Instruction *IJ = cast<Instruction>(VL[J]);
573       MDNode *IMD = IJ->getMetadata(Kind);
574       switch (Kind) {
575       case LLVMContext::MD_tbaa:
576         MD = MDNode::getMostGenericTBAA(MD, IMD);
577         break;
578       case LLVMContext::MD_alias_scope:
579         MD = MDNode::getMostGenericAliasScope(MD, IMD);
580         break;
581       case LLVMContext::MD_fpmath:
582         MD = MDNode::getMostGenericFPMath(MD, IMD);
583         break;
584       case LLVMContext::MD_noalias:
585       case LLVMContext::MD_nontemporal:
586       case LLVMContext::MD_invariant_load:
587         MD = MDNode::intersect(MD, IMD);
588         break;
589       case LLVMContext::MD_access_group:
590         MD = intersectAccessGroups(Inst, IJ);
591         break;
592       default:
593         llvm_unreachable("unhandled metadata");
594       }
595     }
596 
597     Inst->setMetadata(Kind, MD);
598   }
599 
600   return Inst;
601 }
602 
603 Constant *
604 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
605                            const InterleaveGroup<Instruction> &Group) {
606   // All 1's means mask is not needed.
607   if (Group.getNumMembers() == Group.getFactor())
608     return nullptr;
609 
610   // TODO: support reversed access.
611   assert(!Group.isReverse() && "Reversed group not supported.");
612 
613   SmallVector<Constant *, 16> Mask;
614   for (unsigned i = 0; i < VF; i++)
615     for (unsigned j = 0; j < Group.getFactor(); ++j) {
616       unsigned HasMember = Group.getMember(j) ? 1 : 0;
617       Mask.push_back(Builder.getInt1(HasMember));
618     }
619 
620   return ConstantVector::get(Mask);
621 }
622 
623 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
624                                      unsigned ReplicationFactor, unsigned VF) {
625   SmallVector<Constant *, 16> MaskVec;
626   for (unsigned i = 0; i < VF; i++)
627     for (unsigned j = 0; j < ReplicationFactor; j++)
628       MaskVec.push_back(Builder.getInt32(i));
629 
630   return ConstantVector::get(MaskVec);
631 }
632 
633 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
634                                      unsigned NumVecs) {
635   SmallVector<Constant *, 16> Mask;
636   for (unsigned i = 0; i < VF; i++)
637     for (unsigned j = 0; j < NumVecs; j++)
638       Mask.push_back(Builder.getInt32(j * VF + i));
639 
640   return ConstantVector::get(Mask);
641 }
642 
643 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
644                                  unsigned Stride, unsigned VF) {
645   SmallVector<Constant *, 16> Mask;
646   for (unsigned i = 0; i < VF; i++)
647     Mask.push_back(Builder.getInt32(Start + i * Stride));
648 
649   return ConstantVector::get(Mask);
650 }
651 
652 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
653                                      unsigned NumInts, unsigned NumUndefs) {
654   SmallVector<Constant *, 16> Mask;
655   for (unsigned i = 0; i < NumInts; i++)
656     Mask.push_back(Builder.getInt32(Start + i));
657 
658   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
659   for (unsigned i = 0; i < NumUndefs; i++)
660     Mask.push_back(Undef);
661 
662   return ConstantVector::get(Mask);
663 }
664 
665 /// A helper function for concatenating vectors. This function concatenates two
666 /// vectors having the same element type. If the second vector has fewer
667 /// elements than the first, it is padded with undefs.
668 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
669                                     Value *V2) {
670   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
671   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
672   assert(VecTy1 && VecTy2 &&
673          VecTy1->getScalarType() == VecTy2->getScalarType() &&
674          "Expect two vectors with the same element type");
675 
676   unsigned NumElts1 = VecTy1->getNumElements();
677   unsigned NumElts2 = VecTy2->getNumElements();
678   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
679 
680   if (NumElts1 > NumElts2) {
681     // Extend with UNDEFs.
682     Constant *ExtMask =
683         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
684     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
685   }
686 
687   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
688   return Builder.CreateShuffleVector(V1, V2, Mask);
689 }
690 
691 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
692   unsigned NumVecs = Vecs.size();
693   assert(NumVecs > 1 && "Should be at least two vectors");
694 
695   SmallVector<Value *, 8> ResList;
696   ResList.append(Vecs.begin(), Vecs.end());
697   do {
698     SmallVector<Value *, 8> TmpList;
699     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
700       Value *V0 = ResList[i], *V1 = ResList[i + 1];
701       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
702              "Only the last vector may have a different type");
703 
704       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
705     }
706 
707     // Push the last vector if the total number of vectors is odd.
708     if (NumVecs % 2 != 0)
709       TmpList.push_back(ResList[NumVecs - 1]);
710 
711     ResList = TmpList;
712     NumVecs = ResList.size();
713   } while (NumVecs > 1);
714 
715   return ResList[0];
716 }
717 
718 bool InterleavedAccessInfo::isStrided(int Stride) {
719   unsigned Factor = std::abs(Stride);
720   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
721 }
722 
723 void InterleavedAccessInfo::collectConstStrideAccesses(
724     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
725     const ValueToValueMap &Strides) {
726   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
727 
728   // Since it's desired that the load/store instructions be maintained in
729   // "program order" for the interleaved access analysis, we have to visit the
730   // blocks in the loop in reverse postorder (i.e., in a topological order).
731   // Such an ordering will ensure that any load/store that may be executed
732   // before a second load/store will precede the second load/store in
733   // AccessStrideInfo.
734   LoopBlocksDFS DFS(TheLoop);
735   DFS.perform(LI);
736   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
737     for (auto &I : *BB) {
738       auto *LI = dyn_cast<LoadInst>(&I);
739       auto *SI = dyn_cast<StoreInst>(&I);
740       if (!LI && !SI)
741         continue;
742 
743       Value *Ptr = getLoadStorePointerOperand(&I);
744       // We don't check wrapping here because we don't know yet if Ptr will be
745       // part of a full group or a group with gaps. Checking wrapping for all
746       // pointers (even those that end up in groups with no gaps) will be overly
747       // conservative. For full groups, wrapping should be ok since if we would
748       // wrap around the address space we would do a memory access at nullptr
749       // even without the transformation. The wrapping checks are therefore
750       // deferred until after we've formed the interleaved groups.
751       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
752                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
753 
754       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
755       PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
756       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
757 
758       // An alignment of 0 means target ABI alignment.
759       unsigned Align = getLoadStoreAlignment(&I);
760       if (!Align)
761         Align = DL.getABITypeAlignment(PtrTy->getElementType());
762 
763       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
764     }
765 }
766 
767 // Analyze interleaved accesses and collect them into interleaved load and
768 // store groups.
769 //
770 // When generating code for an interleaved load group, we effectively hoist all
771 // loads in the group to the location of the first load in program order. When
772 // generating code for an interleaved store group, we sink all stores to the
773 // location of the last store. This code motion can change the order of load
774 // and store instructions and may break dependences.
775 //
776 // The code generation strategy mentioned above ensures that we won't violate
777 // any write-after-read (WAR) dependences.
778 //
779 // E.g., for the WAR dependence:  a = A[i];      // (1)
780 //                                A[i] = b;      // (2)
781 //
782 // The store group of (2) is always inserted at or below (2), and the load
783 // group of (1) is always inserted at or above (1). Thus, the instructions will
784 // never be reordered. All other dependences are checked to ensure the
785 // correctness of the instruction reordering.
786 //
787 // The algorithm visits all memory accesses in the loop in bottom-up program
788 // order. Program order is established by traversing the blocks in the loop in
789 // reverse postorder when collecting the accesses.
790 //
791 // We visit the memory accesses in bottom-up order because it can simplify the
792 // construction of store groups in the presence of write-after-write (WAW)
793 // dependences.
794 //
795 // E.g., for the WAW dependence:  A[i] = a;      // (1)
796 //                                A[i] = b;      // (2)
797 //                                A[i + 1] = c;  // (3)
798 //
799 // We will first create a store group with (3) and (2). (1) can't be added to
800 // this group because it and (2) are dependent. However, (1) can be grouped
801 // with other accesses that may precede it in program order. Note that a
802 // bottom-up order does not imply that WAW dependences should not be checked.
803 void InterleavedAccessInfo::analyzeInterleaving(
804                                  bool EnablePredicatedInterleavedMemAccesses) {
805   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
806   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
807 
808   // Holds all accesses with a constant stride.
809   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
810   collectConstStrideAccesses(AccessStrideInfo, Strides);
811 
812   if (AccessStrideInfo.empty())
813     return;
814 
815   // Collect the dependences in the loop.
816   collectDependences();
817 
818   // Holds all interleaved store groups temporarily.
819   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
820   // Holds all interleaved load groups temporarily.
821   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
822 
823   // Search in bottom-up program order for pairs of accesses (A and B) that can
824   // form interleaved load or store groups. In the algorithm below, access A
825   // precedes access B in program order. We initialize a group for B in the
826   // outer loop of the algorithm, and then in the inner loop, we attempt to
827   // insert each A into B's group if:
828   //
829   //  1. A and B have the same stride,
830   //  2. A and B have the same memory object size, and
831   //  3. A belongs in B's group according to its distance from B.
832   //
833   // Special care is taken to ensure group formation will not break any
834   // dependences.
835   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
836        BI != E; ++BI) {
837     Instruction *B = BI->first;
838     StrideDescriptor DesB = BI->second;
839 
840     // Initialize a group for B if it has an allowable stride. Even if we don't
841     // create a group for B, we continue with the bottom-up algorithm to ensure
842     // we don't break any of B's dependences.
843     InterleaveGroup<Instruction> *Group = nullptr;
844     if (isStrided(DesB.Stride) &&
845         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
846       Group = getInterleaveGroup(B);
847       if (!Group) {
848         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
849                           << '\n');
850         Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
851       }
852       if (B->mayWriteToMemory())
853         StoreGroups.insert(Group);
854       else
855         LoadGroups.insert(Group);
856     }
857 
858     for (auto AI = std::next(BI); AI != E; ++AI) {
859       Instruction *A = AI->first;
860       StrideDescriptor DesA = AI->second;
861 
862       // Our code motion strategy implies that we can't have dependences
863       // between accesses in an interleaved group and other accesses located
864       // between the first and last member of the group. Note that this also
865       // means that a group can't have more than one member at a given offset.
866       // The accesses in a group can have dependences with other accesses, but
867       // we must ensure we don't extend the boundaries of the group such that
868       // we encompass those dependent accesses.
869       //
870       // For example, assume we have the sequence of accesses shown below in a
871       // stride-2 loop:
872       //
873       //  (1, 2) is a group | A[i]   = a;  // (1)
874       //                    | A[i-1] = b;  // (2) |
875       //                      A[i-3] = c;  // (3)
876       //                      A[i]   = d;  // (4) | (2, 4) is not a group
877       //
878       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
879       // but not with (4). If we did, the dependent access (3) would be within
880       // the boundaries of the (2, 4) group.
881       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
882         // If a dependence exists and A is already in a group, we know that A
883         // must be a store since A precedes B and WAR dependences are allowed.
884         // Thus, A would be sunk below B. We release A's group to prevent this
885         // illegal code motion. A will then be free to form another group with
886         // instructions that precede it.
887         if (isInterleaved(A)) {
888           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
889           StoreGroups.remove(StoreGroup);
890           releaseGroup(StoreGroup);
891         }
892 
893         // If a dependence exists and A is not already in a group (or it was
894         // and we just released it), B might be hoisted above A (if B is a
895         // load) or another store might be sunk below A (if B is a store). In
896         // either case, we can't add additional instructions to B's group. B
897         // will only form a group with instructions that it precedes.
898         break;
899       }
900 
901       // At this point, we've checked for illegal code motion. If either A or B
902       // isn't strided, there's nothing left to do.
903       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
904         continue;
905 
906       // Ignore A if it's already in a group or isn't the same kind of memory
907       // operation as B.
908       // Note that mayReadFromMemory() isn't mutually exclusive to
909       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
910       // here, canVectorizeMemory() should have returned false - except for the
911       // case we asked for optimization remarks.
912       if (isInterleaved(A) ||
913           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
914           (A->mayWriteToMemory() != B->mayWriteToMemory()))
915         continue;
916 
917       // Check rules 1 and 2. Ignore A if its stride or size is different from
918       // that of B.
919       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
920         continue;
921 
922       // Ignore A if the memory object of A and B don't belong to the same
923       // address space
924       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
925         continue;
926 
927       // Calculate the distance from A to B.
928       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
929           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
930       if (!DistToB)
931         continue;
932       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
933 
934       // Check rule 3. Ignore A if its distance to B is not a multiple of the
935       // size.
936       if (DistanceToB % static_cast<int64_t>(DesB.Size))
937         continue;
938 
939       // All members of a predicated interleave-group must have the same predicate,
940       // and currently must reside in the same BB.
941       BasicBlock *BlockA = A->getParent();
942       BasicBlock *BlockB = B->getParent();
943       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
944           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
945         continue;
946 
947       // The index of A is the index of B plus A's distance to B in multiples
948       // of the size.
949       int IndexA =
950           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
951 
952       // Try to insert A into B's group.
953       if (Group->insertMember(A, IndexA, DesA.Align)) {
954         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
955                           << "    into the interleave group with" << *B
956                           << '\n');
957         InterleaveGroupMap[A] = Group;
958 
959         // Set the first load in program order as the insert position.
960         if (A->mayReadFromMemory())
961           Group->setInsertPos(A);
962       }
963     } // Iteration over A accesses.
964   }   // Iteration over B accesses.
965 
966   // Remove interleaved store groups with gaps.
967   for (auto *Group : StoreGroups)
968     if (Group->getNumMembers() != Group->getFactor()) {
969       LLVM_DEBUG(
970           dbgs() << "LV: Invalidate candidate interleaved store group due "
971                     "to gaps.\n");
972       releaseGroup(Group);
973     }
974   // Remove interleaved groups with gaps (currently only loads) whose memory
975   // accesses may wrap around. We have to revisit the getPtrStride analysis,
976   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
977   // not check wrapping (see documentation there).
978   // FORNOW we use Assume=false;
979   // TODO: Change to Assume=true but making sure we don't exceed the threshold
980   // of runtime SCEV assumptions checks (thereby potentially failing to
981   // vectorize altogether).
982   // Additional optional optimizations:
983   // TODO: If we are peeling the loop and we know that the first pointer doesn't
984   // wrap then we can deduce that all pointers in the group don't wrap.
985   // This means that we can forcefully peel the loop in order to only have to
986   // check the first pointer for no-wrap. When we'll change to use Assume=true
987   // we'll only need at most one runtime check per interleaved group.
988   for (auto *Group : LoadGroups) {
989     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
990     // load would wrap around the address space we would do a memory access at
991     // nullptr even without the transformation.
992     if (Group->getNumMembers() == Group->getFactor())
993       continue;
994 
995     // Case 2: If first and last members of the group don't wrap this implies
996     // that all the pointers in the group don't wrap.
997     // So we check only group member 0 (which is always guaranteed to exist),
998     // and group member Factor - 1; If the latter doesn't exist we rely on
999     // peeling (if it is a non-reversed accsess -- see Case 3).
1000     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1001     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1002                       /*ShouldCheckWrap=*/true)) {
1003       LLVM_DEBUG(
1004           dbgs() << "LV: Invalidate candidate interleaved group due to "
1005                     "first group member potentially pointer-wrapping.\n");
1006       releaseGroup(Group);
1007       continue;
1008     }
1009     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1010     if (LastMember) {
1011       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1012       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1013                         /*ShouldCheckWrap=*/true)) {
1014         LLVM_DEBUG(
1015             dbgs() << "LV: Invalidate candidate interleaved group due to "
1016                       "last group member potentially pointer-wrapping.\n");
1017         releaseGroup(Group);
1018       }
1019     } else {
1020       // Case 3: A non-reversed interleaved load group with gaps: We need
1021       // to execute at least one scalar epilogue iteration. This will ensure
1022       // we don't speculatively access memory out-of-bounds. We only need
1023       // to look for a member at index factor - 1, since every group must have
1024       // a member at index zero.
1025       if (Group->isReverse()) {
1026         LLVM_DEBUG(
1027             dbgs() << "LV: Invalidate candidate interleaved group due to "
1028                       "a reverse access with gaps.\n");
1029         releaseGroup(Group);
1030         continue;
1031       }
1032       LLVM_DEBUG(
1033           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1034       RequiresScalarEpilogue = true;
1035     }
1036   }
1037 }
1038 
1039 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1040   // If no group had triggered the requirement to create an epilogue loop,
1041   // there is nothing to do.
1042   if (!requiresScalarEpilogue())
1043     return;
1044 
1045   // Avoid releasing a Group twice.
1046   SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1047   for (auto &I : InterleaveGroupMap) {
1048     InterleaveGroup<Instruction> *Group = I.second;
1049     if (Group->requiresScalarEpilogue())
1050       DelSet.insert(Group);
1051   }
1052   for (auto *Ptr : DelSet) {
1053     LLVM_DEBUG(
1054         dbgs()
1055         << "LV: Invalidate candidate interleaved group due to gaps that "
1056            "require a scalar epilogue (not allowed under optsize) and cannot "
1057            "be masked (not enabled). \n");
1058     releaseGroup(Ptr);
1059   }
1060 
1061   RequiresScalarEpilogue = false;
1062 }
1063 
1064 template <typename InstT>
1065 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1066   llvm_unreachable("addMetadata can only be used for Instruction");
1067 }
1068 
1069 namespace llvm {
1070 template <>
1071 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1072   SmallVector<Value *, 4> VL;
1073   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1074                  [](std::pair<int, Instruction *> p) { return p.second; });
1075   propagateMetadata(NewInst, VL);
1076 }
1077 }
1078