1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::bswap: // Begin integer bit-manipulation.
47   case Intrinsic::bitreverse:
48   case Intrinsic::ctpop:
49   case Intrinsic::ctlz:
50   case Intrinsic::cttz:
51   case Intrinsic::fshl:
52   case Intrinsic::fshr:
53   case Intrinsic::sadd_sat:
54   case Intrinsic::ssub_sat:
55   case Intrinsic::uadd_sat:
56   case Intrinsic::usub_sat:
57   case Intrinsic::smul_fix:
58   case Intrinsic::smul_fix_sat:
59   case Intrinsic::umul_fix:
60   case Intrinsic::umul_fix_sat:
61   case Intrinsic::sqrt: // Begin floating-point.
62   case Intrinsic::sin:
63   case Intrinsic::cos:
64   case Intrinsic::exp:
65   case Intrinsic::exp2:
66   case Intrinsic::log:
67   case Intrinsic::log10:
68   case Intrinsic::log2:
69   case Intrinsic::fabs:
70   case Intrinsic::minnum:
71   case Intrinsic::maxnum:
72   case Intrinsic::minimum:
73   case Intrinsic::maximum:
74   case Intrinsic::copysign:
75   case Intrinsic::floor:
76   case Intrinsic::ceil:
77   case Intrinsic::trunc:
78   case Intrinsic::rint:
79   case Intrinsic::nearbyint:
80   case Intrinsic::round:
81   case Intrinsic::pow:
82   case Intrinsic::fma:
83   case Intrinsic::fmuladd:
84   case Intrinsic::powi:
85   case Intrinsic::canonicalize:
86     return true;
87   default:
88     return false;
89   }
90 }
91 
92 /// Identifies if the vector form of the intrinsic has a scalar operand.
93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
94                                         unsigned ScalarOpdIdx) {
95   switch (ID) {
96   case Intrinsic::ctlz:
97   case Intrinsic::cttz:
98   case Intrinsic::powi:
99     return (ScalarOpdIdx == 1);
100   case Intrinsic::smul_fix:
101   case Intrinsic::smul_fix_sat:
102   case Intrinsic::umul_fix:
103   case Intrinsic::umul_fix_sat:
104     return (ScalarOpdIdx == 2);
105   default:
106     return false;
107   }
108 }
109 
110 /// Returns intrinsic ID for call.
111 /// For the input call instruction it finds mapping intrinsic and returns
112 /// its ID, in case it does not found it return not_intrinsic.
113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
114                                                 const TargetLibraryInfo *TLI) {
115   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
116   if (ID == Intrinsic::not_intrinsic)
117     return Intrinsic::not_intrinsic;
118 
119   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
120       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
121       ID == Intrinsic::sideeffect)
122     return ID;
123   return Intrinsic::not_intrinsic;
124 }
125 
126 /// Find the operand of the GEP that should be checked for consecutive
127 /// stores. This ignores trailing indices that have no effect on the final
128 /// pointer.
129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
130   const DataLayout &DL = Gep->getModule()->getDataLayout();
131   unsigned LastOperand = Gep->getNumOperands() - 1;
132   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
133 
134   // Walk backwards and try to peel off zeros.
135   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
136     // Find the type we're currently indexing into.
137     gep_type_iterator GEPTI = gep_type_begin(Gep);
138     std::advance(GEPTI, LastOperand - 2);
139 
140     // If it's a type with the same allocation size as the result of the GEP we
141     // can peel off the zero index.
142     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
143       break;
144     --LastOperand;
145   }
146 
147   return LastOperand;
148 }
149 
150 /// If the argument is a GEP, then returns the operand identified by
151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
152 /// operand, it returns that instead.
153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
154   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
155   if (!GEP)
156     return Ptr;
157 
158   unsigned InductionOperand = getGEPInductionOperand(GEP);
159 
160   // Check that all of the gep indices are uniform except for our induction
161   // operand.
162   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
163     if (i != InductionOperand &&
164         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
165       return Ptr;
166   return GEP->getOperand(InductionOperand);
167 }
168 
169 /// If a value has only one user that is a CastInst, return it.
170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
171   Value *UniqueCast = nullptr;
172   for (User *U : Ptr->users()) {
173     CastInst *CI = dyn_cast<CastInst>(U);
174     if (CI && CI->getType() == Ty) {
175       if (!UniqueCast)
176         UniqueCast = CI;
177       else
178         return nullptr;
179     }
180   }
181   return UniqueCast;
182 }
183 
184 /// Get the stride of a pointer access in a loop. Looks for symbolic
185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
187   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
188   if (!PtrTy || PtrTy->isAggregateType())
189     return nullptr;
190 
191   // Try to remove a gep instruction to make the pointer (actually index at this
192   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
193   // pointer, otherwise, we are analyzing the index.
194   Value *OrigPtr = Ptr;
195 
196   // The size of the pointer access.
197   int64_t PtrAccessSize = 1;
198 
199   Ptr = stripGetElementPtr(Ptr, SE, Lp);
200   const SCEV *V = SE->getSCEV(Ptr);
201 
202   if (Ptr != OrigPtr)
203     // Strip off casts.
204     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
205       V = C->getOperand();
206 
207   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
208   if (!S)
209     return nullptr;
210 
211   V = S->getStepRecurrence(*SE);
212   if (!V)
213     return nullptr;
214 
215   // Strip off the size of access multiplication if we are still analyzing the
216   // pointer.
217   if (OrigPtr == Ptr) {
218     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
219       if (M->getOperand(0)->getSCEVType() != scConstant)
220         return nullptr;
221 
222       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
223 
224       // Huge step value - give up.
225       if (APStepVal.getBitWidth() > 64)
226         return nullptr;
227 
228       int64_t StepVal = APStepVal.getSExtValue();
229       if (PtrAccessSize != StepVal)
230         return nullptr;
231       V = M->getOperand(1);
232     }
233   }
234 
235   // Strip off casts.
236   Type *StripedOffRecurrenceCast = nullptr;
237   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
238     StripedOffRecurrenceCast = C->getType();
239     V = C->getOperand();
240   }
241 
242   // Look for the loop invariant symbolic value.
243   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
244   if (!U)
245     return nullptr;
246 
247   Value *Stride = U->getValue();
248   if (!Lp->isLoopInvariant(Stride))
249     return nullptr;
250 
251   // If we have stripped off the recurrence cast we have to make sure that we
252   // return the value that is used in this loop so that we can replace it later.
253   if (StripedOffRecurrenceCast)
254     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
255 
256   return Stride;
257 }
258 
259 /// Given a vector and an element number, see if the scalar value is
260 /// already around as a register, for example if it were inserted then extracted
261 /// from the vector.
262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
263   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
264   VectorType *VTy = cast<VectorType>(V->getType());
265   unsigned Width = VTy->getNumElements();
266   if (EltNo >= Width)  // Out of range access.
267     return UndefValue::get(VTy->getElementType());
268 
269   if (Constant *C = dyn_cast<Constant>(V))
270     return C->getAggregateElement(EltNo);
271 
272   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
273     // If this is an insert to a variable element, we don't know what it is.
274     if (!isa<ConstantInt>(III->getOperand(2)))
275       return nullptr;
276     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
277 
278     // If this is an insert to the element we are looking for, return the
279     // inserted value.
280     if (EltNo == IIElt)
281       return III->getOperand(1);
282 
283     // Otherwise, the insertelement doesn't modify the value, recurse on its
284     // vector input.
285     return findScalarElement(III->getOperand(0), EltNo);
286   }
287 
288   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
289     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
290     int InEl = SVI->getMaskValue(EltNo);
291     if (InEl < 0)
292       return UndefValue::get(VTy->getElementType());
293     if (InEl < (int)LHSWidth)
294       return findScalarElement(SVI->getOperand(0), InEl);
295     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
296   }
297 
298   // Extract a value from a vector add operation with a constant zero.
299   // TODO: Use getBinOpIdentity() to generalize this.
300   Value *Val; Constant *C;
301   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
302     if (Constant *Elt = C->getAggregateElement(EltNo))
303       if (Elt->isNullValue())
304         return findScalarElement(Val, EltNo);
305 
306   // Otherwise, we don't know.
307   return nullptr;
308 }
309 
310 /// Get splat value if the input is a splat vector or return nullptr.
311 /// This function is not fully general. It checks only 2 cases:
312 /// the input value is (1) a splat constant vector or (2) a sequence
313 /// of instructions that broadcasts a scalar at element 0.
314 const llvm::Value *llvm::getSplatValue(const Value *V) {
315   if (isa<VectorType>(V->getType()))
316     if (auto *C = dyn_cast<Constant>(V))
317       return C->getSplatValue();
318 
319   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
320   Value *Splat;
321   if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat),
322                                                m_ZeroInt()),
323                                m_Value(), m_ZeroInt())))
324     return Splat;
325 
326   return nullptr;
327 }
328 
329 // This setting is based on its counterpart in value tracking, but it could be
330 // adjusted if needed.
331 const unsigned MaxDepth = 6;
332 
333 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
334   assert(Depth <= MaxDepth && "Limit Search Depth");
335 
336   if (isa<VectorType>(V->getType())) {
337     if (isa<UndefValue>(V))
338       return true;
339     // FIXME: We can allow undefs, but if Index was specified, we may want to
340     //        check that the constant is defined at that index.
341     if (auto *C = dyn_cast<Constant>(V))
342       return C->getSplatValue() != nullptr;
343   }
344 
345   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
346     // FIXME: We can safely allow undefs here. If Index was specified, we will
347     //        check that the mask elt is defined at the required index.
348     if (!Shuf->getMask()->getSplatValue())
349       return false;
350 
351     // Match any index.
352     if (Index == -1)
353       return true;
354 
355     // Match a specific element. The mask should be defined at and match the
356     // specified index.
357     return Shuf->getMaskValue(Index) == Index;
358   }
359 
360   // The remaining tests are all recursive, so bail out if we hit the limit.
361   if (Depth++ == MaxDepth)
362     return false;
363 
364   // If both operands of a binop are splats, the result is a splat.
365   Value *X, *Y, *Z;
366   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
367     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
368 
369   // If all operands of a select are splats, the result is a splat.
370   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
371     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
372            isSplatValue(Z, Index, Depth);
373 
374   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
375 
376   return false;
377 }
378 
379 MapVector<Instruction *, uint64_t>
380 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
381                                const TargetTransformInfo *TTI) {
382 
383   // DemandedBits will give us every value's live-out bits. But we want
384   // to ensure no extra casts would need to be inserted, so every DAG
385   // of connected values must have the same minimum bitwidth.
386   EquivalenceClasses<Value *> ECs;
387   SmallVector<Value *, 16> Worklist;
388   SmallPtrSet<Value *, 4> Roots;
389   SmallPtrSet<Value *, 16> Visited;
390   DenseMap<Value *, uint64_t> DBits;
391   SmallPtrSet<Instruction *, 4> InstructionSet;
392   MapVector<Instruction *, uint64_t> MinBWs;
393 
394   // Determine the roots. We work bottom-up, from truncs or icmps.
395   bool SeenExtFromIllegalType = false;
396   for (auto *BB : Blocks)
397     for (auto &I : *BB) {
398       InstructionSet.insert(&I);
399 
400       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
401           !TTI->isTypeLegal(I.getOperand(0)->getType()))
402         SeenExtFromIllegalType = true;
403 
404       // Only deal with non-vector integers up to 64-bits wide.
405       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
406           !I.getType()->isVectorTy() &&
407           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
408         // Don't make work for ourselves. If we know the loaded type is legal,
409         // don't add it to the worklist.
410         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
411           continue;
412 
413         Worklist.push_back(&I);
414         Roots.insert(&I);
415       }
416     }
417   // Early exit.
418   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
419     return MinBWs;
420 
421   // Now proceed breadth-first, unioning values together.
422   while (!Worklist.empty()) {
423     Value *Val = Worklist.pop_back_val();
424     Value *Leader = ECs.getOrInsertLeaderValue(Val);
425 
426     if (Visited.count(Val))
427       continue;
428     Visited.insert(Val);
429 
430     // Non-instructions terminate a chain successfully.
431     if (!isa<Instruction>(Val))
432       continue;
433     Instruction *I = cast<Instruction>(Val);
434 
435     // If we encounter a type that is larger than 64 bits, we can't represent
436     // it so bail out.
437     if (DB.getDemandedBits(I).getBitWidth() > 64)
438       return MapVector<Instruction *, uint64_t>();
439 
440     uint64_t V = DB.getDemandedBits(I).getZExtValue();
441     DBits[Leader] |= V;
442     DBits[I] = V;
443 
444     // Casts, loads and instructions outside of our range terminate a chain
445     // successfully.
446     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
447         !InstructionSet.count(I))
448       continue;
449 
450     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
451     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
452     // transform anything that relies on them.
453     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
454         !I->getType()->isIntegerTy()) {
455       DBits[Leader] |= ~0ULL;
456       continue;
457     }
458 
459     // We don't modify the types of PHIs. Reductions will already have been
460     // truncated if possible, and inductions' sizes will have been chosen by
461     // indvars.
462     if (isa<PHINode>(I))
463       continue;
464 
465     if (DBits[Leader] == ~0ULL)
466       // All bits demanded, no point continuing.
467       continue;
468 
469     for (Value *O : cast<User>(I)->operands()) {
470       ECs.unionSets(Leader, O);
471       Worklist.push_back(O);
472     }
473   }
474 
475   // Now we've discovered all values, walk them to see if there are
476   // any users we didn't see. If there are, we can't optimize that
477   // chain.
478   for (auto &I : DBits)
479     for (auto *U : I.first->users())
480       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
481         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
482 
483   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
484     uint64_t LeaderDemandedBits = 0;
485     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
486       LeaderDemandedBits |= DBits[*MI];
487 
488     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
489                      llvm::countLeadingZeros(LeaderDemandedBits);
490     // Round up to a power of 2
491     if (!isPowerOf2_64((uint64_t)MinBW))
492       MinBW = NextPowerOf2(MinBW);
493 
494     // We don't modify the types of PHIs. Reductions will already have been
495     // truncated if possible, and inductions' sizes will have been chosen by
496     // indvars.
497     // If we are required to shrink a PHI, abandon this entire equivalence class.
498     bool Abort = false;
499     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
500       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
501         Abort = true;
502         break;
503       }
504     if (Abort)
505       continue;
506 
507     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
508       if (!isa<Instruction>(*MI))
509         continue;
510       Type *Ty = (*MI)->getType();
511       if (Roots.count(*MI))
512         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
513       if (MinBW < Ty->getScalarSizeInBits())
514         MinBWs[cast<Instruction>(*MI)] = MinBW;
515     }
516   }
517 
518   return MinBWs;
519 }
520 
521 /// Add all access groups in @p AccGroups to @p List.
522 template <typename ListT>
523 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
524   // Interpret an access group as a list containing itself.
525   if (AccGroups->getNumOperands() == 0) {
526     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
527     List.insert(AccGroups);
528     return;
529   }
530 
531   for (auto &AccGroupListOp : AccGroups->operands()) {
532     auto *Item = cast<MDNode>(AccGroupListOp.get());
533     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
534     List.insert(Item);
535   }
536 }
537 
538 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
539   if (!AccGroups1)
540     return AccGroups2;
541   if (!AccGroups2)
542     return AccGroups1;
543   if (AccGroups1 == AccGroups2)
544     return AccGroups1;
545 
546   SmallSetVector<Metadata *, 4> Union;
547   addToAccessGroupList(Union, AccGroups1);
548   addToAccessGroupList(Union, AccGroups2);
549 
550   if (Union.size() == 0)
551     return nullptr;
552   if (Union.size() == 1)
553     return cast<MDNode>(Union.front());
554 
555   LLVMContext &Ctx = AccGroups1->getContext();
556   return MDNode::get(Ctx, Union.getArrayRef());
557 }
558 
559 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
560                                     const Instruction *Inst2) {
561   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
562   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
563 
564   if (!MayAccessMem1 && !MayAccessMem2)
565     return nullptr;
566   if (!MayAccessMem1)
567     return Inst2->getMetadata(LLVMContext::MD_access_group);
568   if (!MayAccessMem2)
569     return Inst1->getMetadata(LLVMContext::MD_access_group);
570 
571   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
572   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
573   if (!MD1 || !MD2)
574     return nullptr;
575   if (MD1 == MD2)
576     return MD1;
577 
578   // Use set for scalable 'contains' check.
579   SmallPtrSet<Metadata *, 4> AccGroupSet2;
580   addToAccessGroupList(AccGroupSet2, MD2);
581 
582   SmallVector<Metadata *, 4> Intersection;
583   if (MD1->getNumOperands() == 0) {
584     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
585     if (AccGroupSet2.count(MD1))
586       Intersection.push_back(MD1);
587   } else {
588     for (const MDOperand &Node : MD1->operands()) {
589       auto *Item = cast<MDNode>(Node.get());
590       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
591       if (AccGroupSet2.count(Item))
592         Intersection.push_back(Item);
593     }
594   }
595 
596   if (Intersection.size() == 0)
597     return nullptr;
598   if (Intersection.size() == 1)
599     return cast<MDNode>(Intersection.front());
600 
601   LLVMContext &Ctx = Inst1->getContext();
602   return MDNode::get(Ctx, Intersection);
603 }
604 
605 /// \returns \p I after propagating metadata from \p VL.
606 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
607   Instruction *I0 = cast<Instruction>(VL[0]);
608   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
609   I0->getAllMetadataOtherThanDebugLoc(Metadata);
610 
611   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
612                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
613                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
614                     LLVMContext::MD_access_group}) {
615     MDNode *MD = I0->getMetadata(Kind);
616 
617     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
618       const Instruction *IJ = cast<Instruction>(VL[J]);
619       MDNode *IMD = IJ->getMetadata(Kind);
620       switch (Kind) {
621       case LLVMContext::MD_tbaa:
622         MD = MDNode::getMostGenericTBAA(MD, IMD);
623         break;
624       case LLVMContext::MD_alias_scope:
625         MD = MDNode::getMostGenericAliasScope(MD, IMD);
626         break;
627       case LLVMContext::MD_fpmath:
628         MD = MDNode::getMostGenericFPMath(MD, IMD);
629         break;
630       case LLVMContext::MD_noalias:
631       case LLVMContext::MD_nontemporal:
632       case LLVMContext::MD_invariant_load:
633         MD = MDNode::intersect(MD, IMD);
634         break;
635       case LLVMContext::MD_access_group:
636         MD = intersectAccessGroups(Inst, IJ);
637         break;
638       default:
639         llvm_unreachable("unhandled metadata");
640       }
641     }
642 
643     Inst->setMetadata(Kind, MD);
644   }
645 
646   return Inst;
647 }
648 
649 Constant *
650 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
651                            const InterleaveGroup<Instruction> &Group) {
652   // All 1's means mask is not needed.
653   if (Group.getNumMembers() == Group.getFactor())
654     return nullptr;
655 
656   // TODO: support reversed access.
657   assert(!Group.isReverse() && "Reversed group not supported.");
658 
659   SmallVector<Constant *, 16> Mask;
660   for (unsigned i = 0; i < VF; i++)
661     for (unsigned j = 0; j < Group.getFactor(); ++j) {
662       unsigned HasMember = Group.getMember(j) ? 1 : 0;
663       Mask.push_back(Builder.getInt1(HasMember));
664     }
665 
666   return ConstantVector::get(Mask);
667 }
668 
669 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
670                                      unsigned ReplicationFactor, unsigned VF) {
671   SmallVector<Constant *, 16> MaskVec;
672   for (unsigned i = 0; i < VF; i++)
673     for (unsigned j = 0; j < ReplicationFactor; j++)
674       MaskVec.push_back(Builder.getInt32(i));
675 
676   return ConstantVector::get(MaskVec);
677 }
678 
679 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
680                                      unsigned NumVecs) {
681   SmallVector<Constant *, 16> Mask;
682   for (unsigned i = 0; i < VF; i++)
683     for (unsigned j = 0; j < NumVecs; j++)
684       Mask.push_back(Builder.getInt32(j * VF + i));
685 
686   return ConstantVector::get(Mask);
687 }
688 
689 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
690                                  unsigned Stride, unsigned VF) {
691   SmallVector<Constant *, 16> Mask;
692   for (unsigned i = 0; i < VF; i++)
693     Mask.push_back(Builder.getInt32(Start + i * Stride));
694 
695   return ConstantVector::get(Mask);
696 }
697 
698 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
699                                      unsigned NumInts, unsigned NumUndefs) {
700   SmallVector<Constant *, 16> Mask;
701   for (unsigned i = 0; i < NumInts; i++)
702     Mask.push_back(Builder.getInt32(Start + i));
703 
704   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
705   for (unsigned i = 0; i < NumUndefs; i++)
706     Mask.push_back(Undef);
707 
708   return ConstantVector::get(Mask);
709 }
710 
711 /// A helper function for concatenating vectors. This function concatenates two
712 /// vectors having the same element type. If the second vector has fewer
713 /// elements than the first, it is padded with undefs.
714 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
715                                     Value *V2) {
716   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
717   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
718   assert(VecTy1 && VecTy2 &&
719          VecTy1->getScalarType() == VecTy2->getScalarType() &&
720          "Expect two vectors with the same element type");
721 
722   unsigned NumElts1 = VecTy1->getNumElements();
723   unsigned NumElts2 = VecTy2->getNumElements();
724   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
725 
726   if (NumElts1 > NumElts2) {
727     // Extend with UNDEFs.
728     Constant *ExtMask =
729         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
730     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
731   }
732 
733   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
734   return Builder.CreateShuffleVector(V1, V2, Mask);
735 }
736 
737 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
738   unsigned NumVecs = Vecs.size();
739   assert(NumVecs > 1 && "Should be at least two vectors");
740 
741   SmallVector<Value *, 8> ResList;
742   ResList.append(Vecs.begin(), Vecs.end());
743   do {
744     SmallVector<Value *, 8> TmpList;
745     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
746       Value *V0 = ResList[i], *V1 = ResList[i + 1];
747       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
748              "Only the last vector may have a different type");
749 
750       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
751     }
752 
753     // Push the last vector if the total number of vectors is odd.
754     if (NumVecs % 2 != 0)
755       TmpList.push_back(ResList[NumVecs - 1]);
756 
757     ResList = TmpList;
758     NumVecs = ResList.size();
759   } while (NumVecs > 1);
760 
761   return ResList[0];
762 }
763 
764 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
765   auto *ConstMask = dyn_cast<Constant>(Mask);
766   if (!ConstMask)
767     return false;
768   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
769     return true;
770   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
771        ++I) {
772     if (auto *MaskElt = ConstMask->getAggregateElement(I))
773       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
774         continue;
775     return false;
776   }
777   return true;
778 }
779 
780 
781 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
782   auto *ConstMask = dyn_cast<Constant>(Mask);
783   if (!ConstMask)
784     return false;
785   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
786     return true;
787   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
788        ++I) {
789     if (auto *MaskElt = ConstMask->getAggregateElement(I))
790       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
791         continue;
792     return false;
793   }
794   return true;
795 }
796 
797 /// TODO: This is a lot like known bits, but for
798 /// vectors.  Is there something we can common this with?
799 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
800 
801   const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
802   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
803   if (auto *CV = dyn_cast<ConstantVector>(Mask))
804     for (unsigned i = 0; i < VWidth; i++)
805       if (CV->getAggregateElement(i)->isNullValue())
806         DemandedElts.clearBit(i);
807   return DemandedElts;
808 }
809 
810 bool InterleavedAccessInfo::isStrided(int Stride) {
811   unsigned Factor = std::abs(Stride);
812   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
813 }
814 
815 void InterleavedAccessInfo::collectConstStrideAccesses(
816     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
817     const ValueToValueMap &Strides) {
818   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
819 
820   // Since it's desired that the load/store instructions be maintained in
821   // "program order" for the interleaved access analysis, we have to visit the
822   // blocks in the loop in reverse postorder (i.e., in a topological order).
823   // Such an ordering will ensure that any load/store that may be executed
824   // before a second load/store will precede the second load/store in
825   // AccessStrideInfo.
826   LoopBlocksDFS DFS(TheLoop);
827   DFS.perform(LI);
828   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
829     for (auto &I : *BB) {
830       auto *LI = dyn_cast<LoadInst>(&I);
831       auto *SI = dyn_cast<StoreInst>(&I);
832       if (!LI && !SI)
833         continue;
834 
835       Value *Ptr = getLoadStorePointerOperand(&I);
836       // We don't check wrapping here because we don't know yet if Ptr will be
837       // part of a full group or a group with gaps. Checking wrapping for all
838       // pointers (even those that end up in groups with no gaps) will be overly
839       // conservative. For full groups, wrapping should be ok since if we would
840       // wrap around the address space we would do a memory access at nullptr
841       // even without the transformation. The wrapping checks are therefore
842       // deferred until after we've formed the interleaved groups.
843       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
844                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
845 
846       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
847       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
848       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
849 
850       // An alignment of 0 means target ABI alignment.
851       MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
852       if (!Alignment)
853         Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));
854 
855       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
856     }
857 }
858 
859 // Analyze interleaved accesses and collect them into interleaved load and
860 // store groups.
861 //
862 // When generating code for an interleaved load group, we effectively hoist all
863 // loads in the group to the location of the first load in program order. When
864 // generating code for an interleaved store group, we sink all stores to the
865 // location of the last store. This code motion can change the order of load
866 // and store instructions and may break dependences.
867 //
868 // The code generation strategy mentioned above ensures that we won't violate
869 // any write-after-read (WAR) dependences.
870 //
871 // E.g., for the WAR dependence:  a = A[i];      // (1)
872 //                                A[i] = b;      // (2)
873 //
874 // The store group of (2) is always inserted at or below (2), and the load
875 // group of (1) is always inserted at or above (1). Thus, the instructions will
876 // never be reordered. All other dependences are checked to ensure the
877 // correctness of the instruction reordering.
878 //
879 // The algorithm visits all memory accesses in the loop in bottom-up program
880 // order. Program order is established by traversing the blocks in the loop in
881 // reverse postorder when collecting the accesses.
882 //
883 // We visit the memory accesses in bottom-up order because it can simplify the
884 // construction of store groups in the presence of write-after-write (WAW)
885 // dependences.
886 //
887 // E.g., for the WAW dependence:  A[i] = a;      // (1)
888 //                                A[i] = b;      // (2)
889 //                                A[i + 1] = c;  // (3)
890 //
891 // We will first create a store group with (3) and (2). (1) can't be added to
892 // this group because it and (2) are dependent. However, (1) can be grouped
893 // with other accesses that may precede it in program order. Note that a
894 // bottom-up order does not imply that WAW dependences should not be checked.
895 void InterleavedAccessInfo::analyzeInterleaving(
896                                  bool EnablePredicatedInterleavedMemAccesses) {
897   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
898   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
899 
900   // Holds all accesses with a constant stride.
901   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
902   collectConstStrideAccesses(AccessStrideInfo, Strides);
903 
904   if (AccessStrideInfo.empty())
905     return;
906 
907   // Collect the dependences in the loop.
908   collectDependences();
909 
910   // Holds all interleaved store groups temporarily.
911   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
912   // Holds all interleaved load groups temporarily.
913   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
914 
915   // Search in bottom-up program order for pairs of accesses (A and B) that can
916   // form interleaved load or store groups. In the algorithm below, access A
917   // precedes access B in program order. We initialize a group for B in the
918   // outer loop of the algorithm, and then in the inner loop, we attempt to
919   // insert each A into B's group if:
920   //
921   //  1. A and B have the same stride,
922   //  2. A and B have the same memory object size, and
923   //  3. A belongs in B's group according to its distance from B.
924   //
925   // Special care is taken to ensure group formation will not break any
926   // dependences.
927   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
928        BI != E; ++BI) {
929     Instruction *B = BI->first;
930     StrideDescriptor DesB = BI->second;
931 
932     // Initialize a group for B if it has an allowable stride. Even if we don't
933     // create a group for B, we continue with the bottom-up algorithm to ensure
934     // we don't break any of B's dependences.
935     InterleaveGroup<Instruction> *Group = nullptr;
936     if (isStrided(DesB.Stride) &&
937         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
938       Group = getInterleaveGroup(B);
939       if (!Group) {
940         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
941                           << '\n');
942         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
943       }
944       if (B->mayWriteToMemory())
945         StoreGroups.insert(Group);
946       else
947         LoadGroups.insert(Group);
948     }
949 
950     for (auto AI = std::next(BI); AI != E; ++AI) {
951       Instruction *A = AI->first;
952       StrideDescriptor DesA = AI->second;
953 
954       // Our code motion strategy implies that we can't have dependences
955       // between accesses in an interleaved group and other accesses located
956       // between the first and last member of the group. Note that this also
957       // means that a group can't have more than one member at a given offset.
958       // The accesses in a group can have dependences with other accesses, but
959       // we must ensure we don't extend the boundaries of the group such that
960       // we encompass those dependent accesses.
961       //
962       // For example, assume we have the sequence of accesses shown below in a
963       // stride-2 loop:
964       //
965       //  (1, 2) is a group | A[i]   = a;  // (1)
966       //                    | A[i-1] = b;  // (2) |
967       //                      A[i-3] = c;  // (3)
968       //                      A[i]   = d;  // (4) | (2, 4) is not a group
969       //
970       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
971       // but not with (4). If we did, the dependent access (3) would be within
972       // the boundaries of the (2, 4) group.
973       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
974         // If a dependence exists and A is already in a group, we know that A
975         // must be a store since A precedes B and WAR dependences are allowed.
976         // Thus, A would be sunk below B. We release A's group to prevent this
977         // illegal code motion. A will then be free to form another group with
978         // instructions that precede it.
979         if (isInterleaved(A)) {
980           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
981 
982           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
983                                "dependence between " << *A << " and "<< *B << '\n');
984 
985           StoreGroups.remove(StoreGroup);
986           releaseGroup(StoreGroup);
987         }
988 
989         // If a dependence exists and A is not already in a group (or it was
990         // and we just released it), B might be hoisted above A (if B is a
991         // load) or another store might be sunk below A (if B is a store). In
992         // either case, we can't add additional instructions to B's group. B
993         // will only form a group with instructions that it precedes.
994         break;
995       }
996 
997       // At this point, we've checked for illegal code motion. If either A or B
998       // isn't strided, there's nothing left to do.
999       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1000         continue;
1001 
1002       // Ignore A if it's already in a group or isn't the same kind of memory
1003       // operation as B.
1004       // Note that mayReadFromMemory() isn't mutually exclusive to
1005       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1006       // here, canVectorizeMemory() should have returned false - except for the
1007       // case we asked for optimization remarks.
1008       if (isInterleaved(A) ||
1009           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1010           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1011         continue;
1012 
1013       // Check rules 1 and 2. Ignore A if its stride or size is different from
1014       // that of B.
1015       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1016         continue;
1017 
1018       // Ignore A if the memory object of A and B don't belong to the same
1019       // address space
1020       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1021         continue;
1022 
1023       // Calculate the distance from A to B.
1024       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1025           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1026       if (!DistToB)
1027         continue;
1028       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1029 
1030       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1031       // size.
1032       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1033         continue;
1034 
1035       // All members of a predicated interleave-group must have the same predicate,
1036       // and currently must reside in the same BB.
1037       BasicBlock *BlockA = A->getParent();
1038       BasicBlock *BlockB = B->getParent();
1039       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1040           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1041         continue;
1042 
1043       // The index of A is the index of B plus A's distance to B in multiples
1044       // of the size.
1045       int IndexA =
1046           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1047 
1048       // Try to insert A into B's group.
1049       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1050         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1051                           << "    into the interleave group with" << *B
1052                           << '\n');
1053         InterleaveGroupMap[A] = Group;
1054 
1055         // Set the first load in program order as the insert position.
1056         if (A->mayReadFromMemory())
1057           Group->setInsertPos(A);
1058       }
1059     } // Iteration over A accesses.
1060   }   // Iteration over B accesses.
1061 
1062   // Remove interleaved store groups with gaps.
1063   for (auto *Group : StoreGroups)
1064     if (Group->getNumMembers() != Group->getFactor()) {
1065       LLVM_DEBUG(
1066           dbgs() << "LV: Invalidate candidate interleaved store group due "
1067                     "to gaps.\n");
1068       releaseGroup(Group);
1069     }
1070   // Remove interleaved groups with gaps (currently only loads) whose memory
1071   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1072   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1073   // not check wrapping (see documentation there).
1074   // FORNOW we use Assume=false;
1075   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1076   // of runtime SCEV assumptions checks (thereby potentially failing to
1077   // vectorize altogether).
1078   // Additional optional optimizations:
1079   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1080   // wrap then we can deduce that all pointers in the group don't wrap.
1081   // This means that we can forcefully peel the loop in order to only have to
1082   // check the first pointer for no-wrap. When we'll change to use Assume=true
1083   // we'll only need at most one runtime check per interleaved group.
1084   for (auto *Group : LoadGroups) {
1085     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1086     // load would wrap around the address space we would do a memory access at
1087     // nullptr even without the transformation.
1088     if (Group->getNumMembers() == Group->getFactor())
1089       continue;
1090 
1091     // Case 2: If first and last members of the group don't wrap this implies
1092     // that all the pointers in the group don't wrap.
1093     // So we check only group member 0 (which is always guaranteed to exist),
1094     // and group member Factor - 1; If the latter doesn't exist we rely on
1095     // peeling (if it is a non-reversed accsess -- see Case 3).
1096     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1097     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1098                       /*ShouldCheckWrap=*/true)) {
1099       LLVM_DEBUG(
1100           dbgs() << "LV: Invalidate candidate interleaved group due to "
1101                     "first group member potentially pointer-wrapping.\n");
1102       releaseGroup(Group);
1103       continue;
1104     }
1105     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1106     if (LastMember) {
1107       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1108       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1109                         /*ShouldCheckWrap=*/true)) {
1110         LLVM_DEBUG(
1111             dbgs() << "LV: Invalidate candidate interleaved group due to "
1112                       "last group member potentially pointer-wrapping.\n");
1113         releaseGroup(Group);
1114       }
1115     } else {
1116       // Case 3: A non-reversed interleaved load group with gaps: We need
1117       // to execute at least one scalar epilogue iteration. This will ensure
1118       // we don't speculatively access memory out-of-bounds. We only need
1119       // to look for a member at index factor - 1, since every group must have
1120       // a member at index zero.
1121       if (Group->isReverse()) {
1122         LLVM_DEBUG(
1123             dbgs() << "LV: Invalidate candidate interleaved group due to "
1124                       "a reverse access with gaps.\n");
1125         releaseGroup(Group);
1126         continue;
1127       }
1128       LLVM_DEBUG(
1129           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1130       RequiresScalarEpilogue = true;
1131     }
1132   }
1133 }
1134 
1135 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1136   // If no group had triggered the requirement to create an epilogue loop,
1137   // there is nothing to do.
1138   if (!requiresScalarEpilogue())
1139     return;
1140 
1141   // Avoid releasing a Group twice.
1142   SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1143   for (auto &I : InterleaveGroupMap) {
1144     InterleaveGroup<Instruction> *Group = I.second;
1145     if (Group->requiresScalarEpilogue())
1146       DelSet.insert(Group);
1147   }
1148   for (auto *Ptr : DelSet) {
1149     LLVM_DEBUG(
1150         dbgs()
1151         << "LV: Invalidate candidate interleaved group due to gaps that "
1152            "require a scalar epilogue (not allowed under optsize) and cannot "
1153            "be masked (not enabled). \n");
1154     releaseGroup(Ptr);
1155   }
1156 
1157   RequiresScalarEpilogue = false;
1158 }
1159 
1160 template <typename InstT>
1161 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1162   llvm_unreachable("addMetadata can only be used for Instruction");
1163 }
1164 
1165 namespace llvm {
1166 template <>
1167 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1168   SmallVector<Value *, 4> VL;
1169   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1170                  [](std::pair<int, Instruction *> p) { return p.second; });
1171   propagateMetadata(NewInst, VL);
1172 }
1173 }
1174 
1175 void VFABI::getVectorVariantNames(
1176     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1177   const StringRef S =
1178       CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1179           .getValueAsString();
1180   if (S.empty())
1181     return;
1182 
1183   SmallVector<StringRef, 8> ListAttr;
1184   S.split(ListAttr, ",");
1185 
1186   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1187 #ifndef NDEBUG
1188     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1189     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1190     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1191     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1192            "Vector function is missing.");
1193 #endif
1194     VariantMappings.push_back(std::string(S));
1195   }
1196 }
1197 
1198 bool VFShape::hasValidParameterList() const {
1199   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1200        ++Pos) {
1201     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1202 
1203     switch (Parameters[Pos].ParamKind) {
1204     default: // Nothing to check.
1205       break;
1206     case VFParamKind::OMP_Linear:
1207     case VFParamKind::OMP_LinearRef:
1208     case VFParamKind::OMP_LinearVal:
1209     case VFParamKind::OMP_LinearUVal:
1210       // Compile time linear steps must be non-zero.
1211       if (Parameters[Pos].LinearStepOrPos == 0)
1212         return false;
1213       break;
1214     case VFParamKind::OMP_LinearPos:
1215     case VFParamKind::OMP_LinearRefPos:
1216     case VFParamKind::OMP_LinearValPos:
1217     case VFParamKind::OMP_LinearUValPos:
1218       // The runtime linear step must be referring to some other
1219       // parameters in the signature.
1220       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1221         return false;
1222       // The linear step parameter must be marked as uniform.
1223       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1224           VFParamKind::OMP_Uniform)
1225         return false;
1226       // The linear step parameter can't point at itself.
1227       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1228         return false;
1229       break;
1230     case VFParamKind::GlobalPredicate:
1231       // The global predicate must be the unique. Can be placed anywhere in the
1232       // signature.
1233       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1234         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1235           return false;
1236       break;
1237     }
1238   }
1239   return true;
1240 }
1241