1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/CommandLine.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic, and vectors for the vector form of the 42 /// intrinsic (except operands that are marked as always being scalar by 43 /// hasVectorInstrinsicScalarOpd). 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::bswap: // Begin integer bit-manipulation. 47 case Intrinsic::bitreverse: 48 case Intrinsic::ctpop: 49 case Intrinsic::ctlz: 50 case Intrinsic::cttz: 51 case Intrinsic::fshl: 52 case Intrinsic::fshr: 53 case Intrinsic::sadd_sat: 54 case Intrinsic::ssub_sat: 55 case Intrinsic::uadd_sat: 56 case Intrinsic::usub_sat: 57 case Intrinsic::smul_fix: 58 case Intrinsic::smul_fix_sat: 59 case Intrinsic::umul_fix: 60 case Intrinsic::umul_fix_sat: 61 case Intrinsic::sqrt: // Begin floating-point. 62 case Intrinsic::sin: 63 case Intrinsic::cos: 64 case Intrinsic::exp: 65 case Intrinsic::exp2: 66 case Intrinsic::log: 67 case Intrinsic::log10: 68 case Intrinsic::log2: 69 case Intrinsic::fabs: 70 case Intrinsic::minnum: 71 case Intrinsic::maxnum: 72 case Intrinsic::minimum: 73 case Intrinsic::maximum: 74 case Intrinsic::copysign: 75 case Intrinsic::floor: 76 case Intrinsic::ceil: 77 case Intrinsic::trunc: 78 case Intrinsic::rint: 79 case Intrinsic::nearbyint: 80 case Intrinsic::round: 81 case Intrinsic::pow: 82 case Intrinsic::fma: 83 case Intrinsic::fmuladd: 84 case Intrinsic::powi: 85 case Intrinsic::canonicalize: 86 return true; 87 default: 88 return false; 89 } 90 } 91 92 /// Identifies if the vector form of the intrinsic has a scalar operand. 93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 94 unsigned ScalarOpdIdx) { 95 switch (ID) { 96 case Intrinsic::ctlz: 97 case Intrinsic::cttz: 98 case Intrinsic::powi: 99 return (ScalarOpdIdx == 1); 100 case Intrinsic::smul_fix: 101 case Intrinsic::smul_fix_sat: 102 case Intrinsic::umul_fix: 103 case Intrinsic::umul_fix_sat: 104 return (ScalarOpdIdx == 2); 105 default: 106 return false; 107 } 108 } 109 110 /// Returns intrinsic ID for call. 111 /// For the input call instruction it finds mapping intrinsic and returns 112 /// its ID, in case it does not found it return not_intrinsic. 113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 114 const TargetLibraryInfo *TLI) { 115 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 116 if (ID == Intrinsic::not_intrinsic) 117 return Intrinsic::not_intrinsic; 118 119 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 120 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 121 ID == Intrinsic::sideeffect) 122 return ID; 123 return Intrinsic::not_intrinsic; 124 } 125 126 /// Find the operand of the GEP that should be checked for consecutive 127 /// stores. This ignores trailing indices that have no effect on the final 128 /// pointer. 129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 130 const DataLayout &DL = Gep->getModule()->getDataLayout(); 131 unsigned LastOperand = Gep->getNumOperands() - 1; 132 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 133 134 // Walk backwards and try to peel off zeros. 135 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 136 // Find the type we're currently indexing into. 137 gep_type_iterator GEPTI = gep_type_begin(Gep); 138 std::advance(GEPTI, LastOperand - 2); 139 140 // If it's a type with the same allocation size as the result of the GEP we 141 // can peel off the zero index. 142 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 143 break; 144 --LastOperand; 145 } 146 147 return LastOperand; 148 } 149 150 /// If the argument is a GEP, then returns the operand identified by 151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 152 /// operand, it returns that instead. 153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 154 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 155 if (!GEP) 156 return Ptr; 157 158 unsigned InductionOperand = getGEPInductionOperand(GEP); 159 160 // Check that all of the gep indices are uniform except for our induction 161 // operand. 162 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 163 if (i != InductionOperand && 164 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 165 return Ptr; 166 return GEP->getOperand(InductionOperand); 167 } 168 169 /// If a value has only one user that is a CastInst, return it. 170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 171 Value *UniqueCast = nullptr; 172 for (User *U : Ptr->users()) { 173 CastInst *CI = dyn_cast<CastInst>(U); 174 if (CI && CI->getType() == Ty) { 175 if (!UniqueCast) 176 UniqueCast = CI; 177 else 178 return nullptr; 179 } 180 } 181 return UniqueCast; 182 } 183 184 /// Get the stride of a pointer access in a loop. Looks for symbolic 185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 187 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 188 if (!PtrTy || PtrTy->isAggregateType()) 189 return nullptr; 190 191 // Try to remove a gep instruction to make the pointer (actually index at this 192 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 193 // pointer, otherwise, we are analyzing the index. 194 Value *OrigPtr = Ptr; 195 196 // The size of the pointer access. 197 int64_t PtrAccessSize = 1; 198 199 Ptr = stripGetElementPtr(Ptr, SE, Lp); 200 const SCEV *V = SE->getSCEV(Ptr); 201 202 if (Ptr != OrigPtr) 203 // Strip off casts. 204 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 205 V = C->getOperand(); 206 207 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 208 if (!S) 209 return nullptr; 210 211 V = S->getStepRecurrence(*SE); 212 if (!V) 213 return nullptr; 214 215 // Strip off the size of access multiplication if we are still analyzing the 216 // pointer. 217 if (OrigPtr == Ptr) { 218 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 219 if (M->getOperand(0)->getSCEVType() != scConstant) 220 return nullptr; 221 222 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 223 224 // Huge step value - give up. 225 if (APStepVal.getBitWidth() > 64) 226 return nullptr; 227 228 int64_t StepVal = APStepVal.getSExtValue(); 229 if (PtrAccessSize != StepVal) 230 return nullptr; 231 V = M->getOperand(1); 232 } 233 } 234 235 // Strip off casts. 236 Type *StripedOffRecurrenceCast = nullptr; 237 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 238 StripedOffRecurrenceCast = C->getType(); 239 V = C->getOperand(); 240 } 241 242 // Look for the loop invariant symbolic value. 243 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 244 if (!U) 245 return nullptr; 246 247 Value *Stride = U->getValue(); 248 if (!Lp->isLoopInvariant(Stride)) 249 return nullptr; 250 251 // If we have stripped off the recurrence cast we have to make sure that we 252 // return the value that is used in this loop so that we can replace it later. 253 if (StripedOffRecurrenceCast) 254 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 255 256 return Stride; 257 } 258 259 /// Given a vector and an element number, see if the scalar value is 260 /// already around as a register, for example if it were inserted then extracted 261 /// from the vector. 262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 263 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 264 VectorType *VTy = cast<VectorType>(V->getType()); 265 // For fixed-length vector, return undef for out of range access. 266 if (!VTy->isScalable()) { 267 unsigned Width = VTy->getNumElements(); 268 if (EltNo >= Width) 269 return UndefValue::get(VTy->getElementType()); 270 } 271 272 if (Constant *C = dyn_cast<Constant>(V)) 273 return C->getAggregateElement(EltNo); 274 275 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 276 // If this is an insert to a variable element, we don't know what it is. 277 if (!isa<ConstantInt>(III->getOperand(2))) 278 return nullptr; 279 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 280 281 // If this is an insert to the element we are looking for, return the 282 // inserted value. 283 if (EltNo == IIElt) 284 return III->getOperand(1); 285 286 // Otherwise, the insertelement doesn't modify the value, recurse on its 287 // vector input. 288 return findScalarElement(III->getOperand(0), EltNo); 289 } 290 291 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 292 unsigned LHSWidth = 293 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements(); 294 int InEl = SVI->getMaskValue(EltNo); 295 if (InEl < 0) 296 return UndefValue::get(VTy->getElementType()); 297 if (InEl < (int)LHSWidth) 298 return findScalarElement(SVI->getOperand(0), InEl); 299 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 300 } 301 302 // Extract a value from a vector add operation with a constant zero. 303 // TODO: Use getBinOpIdentity() to generalize this. 304 Value *Val; Constant *C; 305 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 306 if (Constant *Elt = C->getAggregateElement(EltNo)) 307 if (Elt->isNullValue()) 308 return findScalarElement(Val, EltNo); 309 310 // Otherwise, we don't know. 311 return nullptr; 312 } 313 314 int llvm::getSplatIndex(ArrayRef<int> Mask) { 315 int SplatIndex = -1; 316 for (int M : Mask) { 317 // Ignore invalid (undefined) mask elements. 318 if (M < 0) 319 continue; 320 321 // There can be only 1 non-negative mask element value if this is a splat. 322 if (SplatIndex != -1 && SplatIndex != M) 323 return -1; 324 325 // Initialize the splat index to the 1st non-negative mask element. 326 SplatIndex = M; 327 } 328 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 329 return SplatIndex; 330 } 331 332 /// Get splat value if the input is a splat vector or return nullptr. 333 /// This function is not fully general. It checks only 2 cases: 334 /// the input value is (1) a splat constant vector or (2) a sequence 335 /// of instructions that broadcasts a scalar at element 0. 336 const llvm::Value *llvm::getSplatValue(const Value *V) { 337 if (isa<VectorType>(V->getType())) 338 if (auto *C = dyn_cast<Constant>(V)) 339 return C->getSplatValue(); 340 341 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 342 Value *Splat; 343 if (match(V, m_ShuffleVector( 344 m_InsertElement(m_Value(), m_Value(Splat), m_ZeroInt()), 345 m_Value(), m_ZeroMask()))) 346 return Splat; 347 348 return nullptr; 349 } 350 351 // This setting is based on its counterpart in value tracking, but it could be 352 // adjusted if needed. 353 const unsigned MaxDepth = 6; 354 355 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 356 assert(Depth <= MaxDepth && "Limit Search Depth"); 357 358 if (isa<VectorType>(V->getType())) { 359 if (isa<UndefValue>(V)) 360 return true; 361 // FIXME: We can allow undefs, but if Index was specified, we may want to 362 // check that the constant is defined at that index. 363 if (auto *C = dyn_cast<Constant>(V)) 364 return C->getSplatValue() != nullptr; 365 } 366 367 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 368 // FIXME: We can safely allow undefs here. If Index was specified, we will 369 // check that the mask elt is defined at the required index. 370 if (!is_splat(Shuf->getShuffleMask())) 371 return false; 372 373 // Match any index. 374 if (Index == -1) 375 return true; 376 377 // Match a specific element. The mask should be defined at and match the 378 // specified index. 379 return Shuf->getMaskValue(Index) == Index; 380 } 381 382 // The remaining tests are all recursive, so bail out if we hit the limit. 383 if (Depth++ == MaxDepth) 384 return false; 385 386 // If both operands of a binop are splats, the result is a splat. 387 Value *X, *Y, *Z; 388 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 389 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 390 391 // If all operands of a select are splats, the result is a splat. 392 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 393 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 394 isSplatValue(Z, Index, Depth); 395 396 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 397 398 return false; 399 } 400 401 void llvm::scaleShuffleMask(size_t Scale, ArrayRef<int> Mask, 402 SmallVectorImpl<int> &ScaledMask) { 403 assert(Scale > 0 && "Unexpected scaling factor"); 404 405 // Fast-path: if no scaling, then it is just a copy. 406 if (Scale == 1) { 407 ScaledMask.assign(Mask.begin(), Mask.end()); 408 return; 409 } 410 411 ScaledMask.clear(); 412 for (int MaskElt : Mask) 413 for (int ScaleElt = 0; ScaleElt != (int)Scale; ++ScaleElt) 414 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + ScaleElt); 415 } 416 417 MapVector<Instruction *, uint64_t> 418 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 419 const TargetTransformInfo *TTI) { 420 421 // DemandedBits will give us every value's live-out bits. But we want 422 // to ensure no extra casts would need to be inserted, so every DAG 423 // of connected values must have the same minimum bitwidth. 424 EquivalenceClasses<Value *> ECs; 425 SmallVector<Value *, 16> Worklist; 426 SmallPtrSet<Value *, 4> Roots; 427 SmallPtrSet<Value *, 16> Visited; 428 DenseMap<Value *, uint64_t> DBits; 429 SmallPtrSet<Instruction *, 4> InstructionSet; 430 MapVector<Instruction *, uint64_t> MinBWs; 431 432 // Determine the roots. We work bottom-up, from truncs or icmps. 433 bool SeenExtFromIllegalType = false; 434 for (auto *BB : Blocks) 435 for (auto &I : *BB) { 436 InstructionSet.insert(&I); 437 438 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 439 !TTI->isTypeLegal(I.getOperand(0)->getType())) 440 SeenExtFromIllegalType = true; 441 442 // Only deal with non-vector integers up to 64-bits wide. 443 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 444 !I.getType()->isVectorTy() && 445 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 446 // Don't make work for ourselves. If we know the loaded type is legal, 447 // don't add it to the worklist. 448 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 449 continue; 450 451 Worklist.push_back(&I); 452 Roots.insert(&I); 453 } 454 } 455 // Early exit. 456 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 457 return MinBWs; 458 459 // Now proceed breadth-first, unioning values together. 460 while (!Worklist.empty()) { 461 Value *Val = Worklist.pop_back_val(); 462 Value *Leader = ECs.getOrInsertLeaderValue(Val); 463 464 if (Visited.count(Val)) 465 continue; 466 Visited.insert(Val); 467 468 // Non-instructions terminate a chain successfully. 469 if (!isa<Instruction>(Val)) 470 continue; 471 Instruction *I = cast<Instruction>(Val); 472 473 // If we encounter a type that is larger than 64 bits, we can't represent 474 // it so bail out. 475 if (DB.getDemandedBits(I).getBitWidth() > 64) 476 return MapVector<Instruction *, uint64_t>(); 477 478 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 479 DBits[Leader] |= V; 480 DBits[I] = V; 481 482 // Casts, loads and instructions outside of our range terminate a chain 483 // successfully. 484 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 485 !InstructionSet.count(I)) 486 continue; 487 488 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 489 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 490 // transform anything that relies on them. 491 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 492 !I->getType()->isIntegerTy()) { 493 DBits[Leader] |= ~0ULL; 494 continue; 495 } 496 497 // We don't modify the types of PHIs. Reductions will already have been 498 // truncated if possible, and inductions' sizes will have been chosen by 499 // indvars. 500 if (isa<PHINode>(I)) 501 continue; 502 503 if (DBits[Leader] == ~0ULL) 504 // All bits demanded, no point continuing. 505 continue; 506 507 for (Value *O : cast<User>(I)->operands()) { 508 ECs.unionSets(Leader, O); 509 Worklist.push_back(O); 510 } 511 } 512 513 // Now we've discovered all values, walk them to see if there are 514 // any users we didn't see. If there are, we can't optimize that 515 // chain. 516 for (auto &I : DBits) 517 for (auto *U : I.first->users()) 518 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 519 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 520 521 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 522 uint64_t LeaderDemandedBits = 0; 523 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 524 LeaderDemandedBits |= DBits[*MI]; 525 526 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 527 llvm::countLeadingZeros(LeaderDemandedBits); 528 // Round up to a power of 2 529 if (!isPowerOf2_64((uint64_t)MinBW)) 530 MinBW = NextPowerOf2(MinBW); 531 532 // We don't modify the types of PHIs. Reductions will already have been 533 // truncated if possible, and inductions' sizes will have been chosen by 534 // indvars. 535 // If we are required to shrink a PHI, abandon this entire equivalence class. 536 bool Abort = false; 537 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 538 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 539 Abort = true; 540 break; 541 } 542 if (Abort) 543 continue; 544 545 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 546 if (!isa<Instruction>(*MI)) 547 continue; 548 Type *Ty = (*MI)->getType(); 549 if (Roots.count(*MI)) 550 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 551 if (MinBW < Ty->getScalarSizeInBits()) 552 MinBWs[cast<Instruction>(*MI)] = MinBW; 553 } 554 } 555 556 return MinBWs; 557 } 558 559 /// Add all access groups in @p AccGroups to @p List. 560 template <typename ListT> 561 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 562 // Interpret an access group as a list containing itself. 563 if (AccGroups->getNumOperands() == 0) { 564 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 565 List.insert(AccGroups); 566 return; 567 } 568 569 for (auto &AccGroupListOp : AccGroups->operands()) { 570 auto *Item = cast<MDNode>(AccGroupListOp.get()); 571 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 572 List.insert(Item); 573 } 574 } 575 576 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 577 if (!AccGroups1) 578 return AccGroups2; 579 if (!AccGroups2) 580 return AccGroups1; 581 if (AccGroups1 == AccGroups2) 582 return AccGroups1; 583 584 SmallSetVector<Metadata *, 4> Union; 585 addToAccessGroupList(Union, AccGroups1); 586 addToAccessGroupList(Union, AccGroups2); 587 588 if (Union.size() == 0) 589 return nullptr; 590 if (Union.size() == 1) 591 return cast<MDNode>(Union.front()); 592 593 LLVMContext &Ctx = AccGroups1->getContext(); 594 return MDNode::get(Ctx, Union.getArrayRef()); 595 } 596 597 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 598 const Instruction *Inst2) { 599 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 600 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 601 602 if (!MayAccessMem1 && !MayAccessMem2) 603 return nullptr; 604 if (!MayAccessMem1) 605 return Inst2->getMetadata(LLVMContext::MD_access_group); 606 if (!MayAccessMem2) 607 return Inst1->getMetadata(LLVMContext::MD_access_group); 608 609 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 610 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 611 if (!MD1 || !MD2) 612 return nullptr; 613 if (MD1 == MD2) 614 return MD1; 615 616 // Use set for scalable 'contains' check. 617 SmallPtrSet<Metadata *, 4> AccGroupSet2; 618 addToAccessGroupList(AccGroupSet2, MD2); 619 620 SmallVector<Metadata *, 4> Intersection; 621 if (MD1->getNumOperands() == 0) { 622 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 623 if (AccGroupSet2.count(MD1)) 624 Intersection.push_back(MD1); 625 } else { 626 for (const MDOperand &Node : MD1->operands()) { 627 auto *Item = cast<MDNode>(Node.get()); 628 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 629 if (AccGroupSet2.count(Item)) 630 Intersection.push_back(Item); 631 } 632 } 633 634 if (Intersection.size() == 0) 635 return nullptr; 636 if (Intersection.size() == 1) 637 return cast<MDNode>(Intersection.front()); 638 639 LLVMContext &Ctx = Inst1->getContext(); 640 return MDNode::get(Ctx, Intersection); 641 } 642 643 /// \returns \p I after propagating metadata from \p VL. 644 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 645 Instruction *I0 = cast<Instruction>(VL[0]); 646 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 647 I0->getAllMetadataOtherThanDebugLoc(Metadata); 648 649 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 650 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 651 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 652 LLVMContext::MD_access_group}) { 653 MDNode *MD = I0->getMetadata(Kind); 654 655 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 656 const Instruction *IJ = cast<Instruction>(VL[J]); 657 MDNode *IMD = IJ->getMetadata(Kind); 658 switch (Kind) { 659 case LLVMContext::MD_tbaa: 660 MD = MDNode::getMostGenericTBAA(MD, IMD); 661 break; 662 case LLVMContext::MD_alias_scope: 663 MD = MDNode::getMostGenericAliasScope(MD, IMD); 664 break; 665 case LLVMContext::MD_fpmath: 666 MD = MDNode::getMostGenericFPMath(MD, IMD); 667 break; 668 case LLVMContext::MD_noalias: 669 case LLVMContext::MD_nontemporal: 670 case LLVMContext::MD_invariant_load: 671 MD = MDNode::intersect(MD, IMD); 672 break; 673 case LLVMContext::MD_access_group: 674 MD = intersectAccessGroups(Inst, IJ); 675 break; 676 default: 677 llvm_unreachable("unhandled metadata"); 678 } 679 } 680 681 Inst->setMetadata(Kind, MD); 682 } 683 684 return Inst; 685 } 686 687 Constant * 688 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 689 const InterleaveGroup<Instruction> &Group) { 690 // All 1's means mask is not needed. 691 if (Group.getNumMembers() == Group.getFactor()) 692 return nullptr; 693 694 // TODO: support reversed access. 695 assert(!Group.isReverse() && "Reversed group not supported."); 696 697 SmallVector<Constant *, 16> Mask; 698 for (unsigned i = 0; i < VF; i++) 699 for (unsigned j = 0; j < Group.getFactor(); ++j) { 700 unsigned HasMember = Group.getMember(j) ? 1 : 0; 701 Mask.push_back(Builder.getInt1(HasMember)); 702 } 703 704 return ConstantVector::get(Mask); 705 } 706 707 Constant *llvm::createReplicatedMask(IRBuilderBase &Builder, 708 unsigned ReplicationFactor, unsigned VF) { 709 SmallVector<Constant *, 16> MaskVec; 710 for (unsigned i = 0; i < VF; i++) 711 for (unsigned j = 0; j < ReplicationFactor; j++) 712 MaskVec.push_back(Builder.getInt32(i)); 713 714 return ConstantVector::get(MaskVec); 715 } 716 717 Constant *llvm::createInterleaveMask(IRBuilderBase &Builder, unsigned VF, 718 unsigned NumVecs) { 719 SmallVector<Constant *, 16> Mask; 720 for (unsigned i = 0; i < VF; i++) 721 for (unsigned j = 0; j < NumVecs; j++) 722 Mask.push_back(Builder.getInt32(j * VF + i)); 723 724 return ConstantVector::get(Mask); 725 } 726 727 Constant *llvm::createStrideMask(IRBuilderBase &Builder, unsigned Start, 728 unsigned Stride, unsigned VF) { 729 SmallVector<Constant *, 16> Mask; 730 for (unsigned i = 0; i < VF; i++) 731 Mask.push_back(Builder.getInt32(Start + i * Stride)); 732 733 return ConstantVector::get(Mask); 734 } 735 736 Constant *llvm::createSequentialMask(IRBuilderBase &Builder, unsigned Start, 737 unsigned NumInts, unsigned NumUndefs) { 738 SmallVector<Constant *, 16> Mask; 739 for (unsigned i = 0; i < NumInts; i++) 740 Mask.push_back(Builder.getInt32(Start + i)); 741 742 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 743 for (unsigned i = 0; i < NumUndefs; i++) 744 Mask.push_back(Undef); 745 746 return ConstantVector::get(Mask); 747 } 748 749 /// A helper function for concatenating vectors. This function concatenates two 750 /// vectors having the same element type. If the second vector has fewer 751 /// elements than the first, it is padded with undefs. 752 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 753 Value *V2) { 754 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 755 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 756 assert(VecTy1 && VecTy2 && 757 VecTy1->getScalarType() == VecTy2->getScalarType() && 758 "Expect two vectors with the same element type"); 759 760 unsigned NumElts1 = VecTy1->getNumElements(); 761 unsigned NumElts2 = VecTy2->getNumElements(); 762 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 763 764 if (NumElts1 > NumElts2) { 765 // Extend with UNDEFs. 766 Constant *ExtMask = 767 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 768 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 769 } 770 771 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 772 return Builder.CreateShuffleVector(V1, V2, Mask); 773 } 774 775 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 776 ArrayRef<Value *> Vecs) { 777 unsigned NumVecs = Vecs.size(); 778 assert(NumVecs > 1 && "Should be at least two vectors"); 779 780 SmallVector<Value *, 8> ResList; 781 ResList.append(Vecs.begin(), Vecs.end()); 782 do { 783 SmallVector<Value *, 8> TmpList; 784 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 785 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 786 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 787 "Only the last vector may have a different type"); 788 789 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 790 } 791 792 // Push the last vector if the total number of vectors is odd. 793 if (NumVecs % 2 != 0) 794 TmpList.push_back(ResList[NumVecs - 1]); 795 796 ResList = TmpList; 797 NumVecs = ResList.size(); 798 } while (NumVecs > 1); 799 800 return ResList[0]; 801 } 802 803 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 804 auto *ConstMask = dyn_cast<Constant>(Mask); 805 if (!ConstMask) 806 return false; 807 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 808 return true; 809 for (unsigned I = 0, 810 E = cast<VectorType>(ConstMask->getType())->getNumElements(); 811 I != E; ++I) { 812 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 813 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 814 continue; 815 return false; 816 } 817 return true; 818 } 819 820 821 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 822 auto *ConstMask = dyn_cast<Constant>(Mask); 823 if (!ConstMask) 824 return false; 825 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 826 return true; 827 for (unsigned I = 0, 828 E = cast<VectorType>(ConstMask->getType())->getNumElements(); 829 I != E; ++I) { 830 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 831 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 832 continue; 833 return false; 834 } 835 return true; 836 } 837 838 /// TODO: This is a lot like known bits, but for 839 /// vectors. Is there something we can common this with? 840 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 841 842 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements(); 843 APInt DemandedElts = APInt::getAllOnesValue(VWidth); 844 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 845 for (unsigned i = 0; i < VWidth; i++) 846 if (CV->getAggregateElement(i)->isNullValue()) 847 DemandedElts.clearBit(i); 848 return DemandedElts; 849 } 850 851 bool InterleavedAccessInfo::isStrided(int Stride) { 852 unsigned Factor = std::abs(Stride); 853 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 854 } 855 856 void InterleavedAccessInfo::collectConstStrideAccesses( 857 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 858 const ValueToValueMap &Strides) { 859 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 860 861 // Since it's desired that the load/store instructions be maintained in 862 // "program order" for the interleaved access analysis, we have to visit the 863 // blocks in the loop in reverse postorder (i.e., in a topological order). 864 // Such an ordering will ensure that any load/store that may be executed 865 // before a second load/store will precede the second load/store in 866 // AccessStrideInfo. 867 LoopBlocksDFS DFS(TheLoop); 868 DFS.perform(LI); 869 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 870 for (auto &I : *BB) { 871 auto *LI = dyn_cast<LoadInst>(&I); 872 auto *SI = dyn_cast<StoreInst>(&I); 873 if (!LI && !SI) 874 continue; 875 876 Value *Ptr = getLoadStorePointerOperand(&I); 877 // We don't check wrapping here because we don't know yet if Ptr will be 878 // part of a full group or a group with gaps. Checking wrapping for all 879 // pointers (even those that end up in groups with no gaps) will be overly 880 // conservative. For full groups, wrapping should be ok since if we would 881 // wrap around the address space we would do a memory access at nullptr 882 // even without the transformation. The wrapping checks are therefore 883 // deferred until after we've formed the interleaved groups. 884 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 885 /*Assume=*/true, /*ShouldCheckWrap=*/false); 886 887 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 888 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 889 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 890 891 // An alignment of 0 means target ABI alignment. 892 MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I)); 893 if (!Alignment) 894 Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType())); 895 896 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment); 897 } 898 } 899 900 // Analyze interleaved accesses and collect them into interleaved load and 901 // store groups. 902 // 903 // When generating code for an interleaved load group, we effectively hoist all 904 // loads in the group to the location of the first load in program order. When 905 // generating code for an interleaved store group, we sink all stores to the 906 // location of the last store. This code motion can change the order of load 907 // and store instructions and may break dependences. 908 // 909 // The code generation strategy mentioned above ensures that we won't violate 910 // any write-after-read (WAR) dependences. 911 // 912 // E.g., for the WAR dependence: a = A[i]; // (1) 913 // A[i] = b; // (2) 914 // 915 // The store group of (2) is always inserted at or below (2), and the load 916 // group of (1) is always inserted at or above (1). Thus, the instructions will 917 // never be reordered. All other dependences are checked to ensure the 918 // correctness of the instruction reordering. 919 // 920 // The algorithm visits all memory accesses in the loop in bottom-up program 921 // order. Program order is established by traversing the blocks in the loop in 922 // reverse postorder when collecting the accesses. 923 // 924 // We visit the memory accesses in bottom-up order because it can simplify the 925 // construction of store groups in the presence of write-after-write (WAW) 926 // dependences. 927 // 928 // E.g., for the WAW dependence: A[i] = a; // (1) 929 // A[i] = b; // (2) 930 // A[i + 1] = c; // (3) 931 // 932 // We will first create a store group with (3) and (2). (1) can't be added to 933 // this group because it and (2) are dependent. However, (1) can be grouped 934 // with other accesses that may precede it in program order. Note that a 935 // bottom-up order does not imply that WAW dependences should not be checked. 936 void InterleavedAccessInfo::analyzeInterleaving( 937 bool EnablePredicatedInterleavedMemAccesses) { 938 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 939 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 940 941 // Holds all accesses with a constant stride. 942 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 943 collectConstStrideAccesses(AccessStrideInfo, Strides); 944 945 if (AccessStrideInfo.empty()) 946 return; 947 948 // Collect the dependences in the loop. 949 collectDependences(); 950 951 // Holds all interleaved store groups temporarily. 952 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 953 // Holds all interleaved load groups temporarily. 954 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 955 956 // Search in bottom-up program order for pairs of accesses (A and B) that can 957 // form interleaved load or store groups. In the algorithm below, access A 958 // precedes access B in program order. We initialize a group for B in the 959 // outer loop of the algorithm, and then in the inner loop, we attempt to 960 // insert each A into B's group if: 961 // 962 // 1. A and B have the same stride, 963 // 2. A and B have the same memory object size, and 964 // 3. A belongs in B's group according to its distance from B. 965 // 966 // Special care is taken to ensure group formation will not break any 967 // dependences. 968 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 969 BI != E; ++BI) { 970 Instruction *B = BI->first; 971 StrideDescriptor DesB = BI->second; 972 973 // Initialize a group for B if it has an allowable stride. Even if we don't 974 // create a group for B, we continue with the bottom-up algorithm to ensure 975 // we don't break any of B's dependences. 976 InterleaveGroup<Instruction> *Group = nullptr; 977 if (isStrided(DesB.Stride) && 978 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 979 Group = getInterleaveGroup(B); 980 if (!Group) { 981 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 982 << '\n'); 983 Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 984 } 985 if (B->mayWriteToMemory()) 986 StoreGroups.insert(Group); 987 else 988 LoadGroups.insert(Group); 989 } 990 991 for (auto AI = std::next(BI); AI != E; ++AI) { 992 Instruction *A = AI->first; 993 StrideDescriptor DesA = AI->second; 994 995 // Our code motion strategy implies that we can't have dependences 996 // between accesses in an interleaved group and other accesses located 997 // between the first and last member of the group. Note that this also 998 // means that a group can't have more than one member at a given offset. 999 // The accesses in a group can have dependences with other accesses, but 1000 // we must ensure we don't extend the boundaries of the group such that 1001 // we encompass those dependent accesses. 1002 // 1003 // For example, assume we have the sequence of accesses shown below in a 1004 // stride-2 loop: 1005 // 1006 // (1, 2) is a group | A[i] = a; // (1) 1007 // | A[i-1] = b; // (2) | 1008 // A[i-3] = c; // (3) 1009 // A[i] = d; // (4) | (2, 4) is not a group 1010 // 1011 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1012 // but not with (4). If we did, the dependent access (3) would be within 1013 // the boundaries of the (2, 4) group. 1014 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 1015 // If a dependence exists and A is already in a group, we know that A 1016 // must be a store since A precedes B and WAR dependences are allowed. 1017 // Thus, A would be sunk below B. We release A's group to prevent this 1018 // illegal code motion. A will then be free to form another group with 1019 // instructions that precede it. 1020 if (isInterleaved(A)) { 1021 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 1022 1023 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1024 "dependence between " << *A << " and "<< *B << '\n'); 1025 1026 StoreGroups.remove(StoreGroup); 1027 releaseGroup(StoreGroup); 1028 } 1029 1030 // If a dependence exists and A is not already in a group (or it was 1031 // and we just released it), B might be hoisted above A (if B is a 1032 // load) or another store might be sunk below A (if B is a store). In 1033 // either case, we can't add additional instructions to B's group. B 1034 // will only form a group with instructions that it precedes. 1035 break; 1036 } 1037 1038 // At this point, we've checked for illegal code motion. If either A or B 1039 // isn't strided, there's nothing left to do. 1040 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1041 continue; 1042 1043 // Ignore A if it's already in a group or isn't the same kind of memory 1044 // operation as B. 1045 // Note that mayReadFromMemory() isn't mutually exclusive to 1046 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1047 // here, canVectorizeMemory() should have returned false - except for the 1048 // case we asked for optimization remarks. 1049 if (isInterleaved(A) || 1050 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1051 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1052 continue; 1053 1054 // Check rules 1 and 2. Ignore A if its stride or size is different from 1055 // that of B. 1056 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1057 continue; 1058 1059 // Ignore A if the memory object of A and B don't belong to the same 1060 // address space 1061 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1062 continue; 1063 1064 // Calculate the distance from A to B. 1065 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1066 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1067 if (!DistToB) 1068 continue; 1069 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1070 1071 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1072 // size. 1073 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1074 continue; 1075 1076 // All members of a predicated interleave-group must have the same predicate, 1077 // and currently must reside in the same BB. 1078 BasicBlock *BlockA = A->getParent(); 1079 BasicBlock *BlockB = B->getParent(); 1080 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1081 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1082 continue; 1083 1084 // The index of A is the index of B plus A's distance to B in multiples 1085 // of the size. 1086 int IndexA = 1087 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1088 1089 // Try to insert A into B's group. 1090 if (Group->insertMember(A, IndexA, DesA.Alignment)) { 1091 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1092 << " into the interleave group with" << *B 1093 << '\n'); 1094 InterleaveGroupMap[A] = Group; 1095 1096 // Set the first load in program order as the insert position. 1097 if (A->mayReadFromMemory()) 1098 Group->setInsertPos(A); 1099 } 1100 } // Iteration over A accesses. 1101 } // Iteration over B accesses. 1102 1103 // Remove interleaved store groups with gaps. 1104 for (auto *Group : StoreGroups) 1105 if (Group->getNumMembers() != Group->getFactor()) { 1106 LLVM_DEBUG( 1107 dbgs() << "LV: Invalidate candidate interleaved store group due " 1108 "to gaps.\n"); 1109 releaseGroup(Group); 1110 } 1111 // Remove interleaved groups with gaps (currently only loads) whose memory 1112 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1113 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1114 // not check wrapping (see documentation there). 1115 // FORNOW we use Assume=false; 1116 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1117 // of runtime SCEV assumptions checks (thereby potentially failing to 1118 // vectorize altogether). 1119 // Additional optional optimizations: 1120 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1121 // wrap then we can deduce that all pointers in the group don't wrap. 1122 // This means that we can forcefully peel the loop in order to only have to 1123 // check the first pointer for no-wrap. When we'll change to use Assume=true 1124 // we'll only need at most one runtime check per interleaved group. 1125 for (auto *Group : LoadGroups) { 1126 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1127 // load would wrap around the address space we would do a memory access at 1128 // nullptr even without the transformation. 1129 if (Group->getNumMembers() == Group->getFactor()) 1130 continue; 1131 1132 // Case 2: If first and last members of the group don't wrap this implies 1133 // that all the pointers in the group don't wrap. 1134 // So we check only group member 0 (which is always guaranteed to exist), 1135 // and group member Factor - 1; If the latter doesn't exist we rely on 1136 // peeling (if it is a non-reversed accsess -- see Case 3). 1137 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 1138 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 1139 /*ShouldCheckWrap=*/true)) { 1140 LLVM_DEBUG( 1141 dbgs() << "LV: Invalidate candidate interleaved group due to " 1142 "first group member potentially pointer-wrapping.\n"); 1143 releaseGroup(Group); 1144 continue; 1145 } 1146 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 1147 if (LastMember) { 1148 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 1149 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 1150 /*ShouldCheckWrap=*/true)) { 1151 LLVM_DEBUG( 1152 dbgs() << "LV: Invalidate candidate interleaved group due to " 1153 "last group member potentially pointer-wrapping.\n"); 1154 releaseGroup(Group); 1155 } 1156 } else { 1157 // Case 3: A non-reversed interleaved load group with gaps: We need 1158 // to execute at least one scalar epilogue iteration. This will ensure 1159 // we don't speculatively access memory out-of-bounds. We only need 1160 // to look for a member at index factor - 1, since every group must have 1161 // a member at index zero. 1162 if (Group->isReverse()) { 1163 LLVM_DEBUG( 1164 dbgs() << "LV: Invalidate candidate interleaved group due to " 1165 "a reverse access with gaps.\n"); 1166 releaseGroup(Group); 1167 continue; 1168 } 1169 LLVM_DEBUG( 1170 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1171 RequiresScalarEpilogue = true; 1172 } 1173 } 1174 } 1175 1176 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1177 // If no group had triggered the requirement to create an epilogue loop, 1178 // there is nothing to do. 1179 if (!requiresScalarEpilogue()) 1180 return; 1181 1182 // Avoid releasing a Group twice. 1183 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; 1184 for (auto &I : InterleaveGroupMap) { 1185 InterleaveGroup<Instruction> *Group = I.second; 1186 if (Group->requiresScalarEpilogue()) 1187 DelSet.insert(Group); 1188 } 1189 for (auto *Ptr : DelSet) { 1190 LLVM_DEBUG( 1191 dbgs() 1192 << "LV: Invalidate candidate interleaved group due to gaps that " 1193 "require a scalar epilogue (not allowed under optsize) and cannot " 1194 "be masked (not enabled). \n"); 1195 releaseGroup(Ptr); 1196 } 1197 1198 RequiresScalarEpilogue = false; 1199 } 1200 1201 template <typename InstT> 1202 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1203 llvm_unreachable("addMetadata can only be used for Instruction"); 1204 } 1205 1206 namespace llvm { 1207 template <> 1208 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1209 SmallVector<Value *, 4> VL; 1210 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1211 [](std::pair<int, Instruction *> p) { return p.second; }); 1212 propagateMetadata(NewInst, VL); 1213 } 1214 } 1215 1216 void VFABI::getVectorVariantNames( 1217 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1218 const StringRef S = 1219 CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName) 1220 .getValueAsString(); 1221 if (S.empty()) 1222 return; 1223 1224 SmallVector<StringRef, 8> ListAttr; 1225 S.split(ListAttr, ","); 1226 1227 for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1228 #ifndef NDEBUG 1229 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); 1230 Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule())); 1231 assert(Info.hasValue() && "Invalid name for a VFABI variant."); 1232 assert(CI.getModule()->getFunction(Info.getValue().VectorName) && 1233 "Vector function is missing."); 1234 #endif 1235 VariantMappings.push_back(std::string(S)); 1236 } 1237 } 1238 1239 bool VFShape::hasValidParameterList() const { 1240 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1241 ++Pos) { 1242 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1243 1244 switch (Parameters[Pos].ParamKind) { 1245 default: // Nothing to check. 1246 break; 1247 case VFParamKind::OMP_Linear: 1248 case VFParamKind::OMP_LinearRef: 1249 case VFParamKind::OMP_LinearVal: 1250 case VFParamKind::OMP_LinearUVal: 1251 // Compile time linear steps must be non-zero. 1252 if (Parameters[Pos].LinearStepOrPos == 0) 1253 return false; 1254 break; 1255 case VFParamKind::OMP_LinearPos: 1256 case VFParamKind::OMP_LinearRefPos: 1257 case VFParamKind::OMP_LinearValPos: 1258 case VFParamKind::OMP_LinearUValPos: 1259 // The runtime linear step must be referring to some other 1260 // parameters in the signature. 1261 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1262 return false; 1263 // The linear step parameter must be marked as uniform. 1264 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1265 VFParamKind::OMP_Uniform) 1266 return false; 1267 // The linear step parameter can't point at itself. 1268 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1269 return false; 1270 break; 1271 case VFParamKind::GlobalPredicate: 1272 // The global predicate must be the unique. Can be placed anywhere in the 1273 // signature. 1274 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1275 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1276 return false; 1277 break; 1278 } 1279 } 1280 return true; 1281 } 1282