1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::bswap: // Begin integer bit-manipulation.
47   case Intrinsic::bitreverse:
48   case Intrinsic::ctpop:
49   case Intrinsic::ctlz:
50   case Intrinsic::cttz:
51   case Intrinsic::fshl:
52   case Intrinsic::fshr:
53   case Intrinsic::sadd_sat:
54   case Intrinsic::ssub_sat:
55   case Intrinsic::uadd_sat:
56   case Intrinsic::usub_sat:
57   case Intrinsic::smul_fix:
58   case Intrinsic::smul_fix_sat:
59   case Intrinsic::umul_fix:
60   case Intrinsic::umul_fix_sat:
61   case Intrinsic::sqrt: // Begin floating-point.
62   case Intrinsic::sin:
63   case Intrinsic::cos:
64   case Intrinsic::exp:
65   case Intrinsic::exp2:
66   case Intrinsic::log:
67   case Intrinsic::log10:
68   case Intrinsic::log2:
69   case Intrinsic::fabs:
70   case Intrinsic::minnum:
71   case Intrinsic::maxnum:
72   case Intrinsic::minimum:
73   case Intrinsic::maximum:
74   case Intrinsic::copysign:
75   case Intrinsic::floor:
76   case Intrinsic::ceil:
77   case Intrinsic::trunc:
78   case Intrinsic::rint:
79   case Intrinsic::nearbyint:
80   case Intrinsic::round:
81   case Intrinsic::pow:
82   case Intrinsic::fma:
83   case Intrinsic::fmuladd:
84   case Intrinsic::powi:
85   case Intrinsic::canonicalize:
86     return true;
87   default:
88     return false;
89   }
90 }
91 
92 /// Identifies if the vector form of the intrinsic has a scalar operand.
93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
94                                         unsigned ScalarOpdIdx) {
95   switch (ID) {
96   case Intrinsic::ctlz:
97   case Intrinsic::cttz:
98   case Intrinsic::powi:
99     return (ScalarOpdIdx == 1);
100   case Intrinsic::smul_fix:
101   case Intrinsic::smul_fix_sat:
102   case Intrinsic::umul_fix:
103   case Intrinsic::umul_fix_sat:
104     return (ScalarOpdIdx == 2);
105   default:
106     return false;
107   }
108 }
109 
110 /// Returns intrinsic ID for call.
111 /// For the input call instruction it finds mapping intrinsic and returns
112 /// its ID, in case it does not found it return not_intrinsic.
113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
114                                                 const TargetLibraryInfo *TLI) {
115   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
116   if (ID == Intrinsic::not_intrinsic)
117     return Intrinsic::not_intrinsic;
118 
119   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
120       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
121       ID == Intrinsic::sideeffect)
122     return ID;
123   return Intrinsic::not_intrinsic;
124 }
125 
126 /// Find the operand of the GEP that should be checked for consecutive
127 /// stores. This ignores trailing indices that have no effect on the final
128 /// pointer.
129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
130   const DataLayout &DL = Gep->getModule()->getDataLayout();
131   unsigned LastOperand = Gep->getNumOperands() - 1;
132   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
133 
134   // Walk backwards and try to peel off zeros.
135   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
136     // Find the type we're currently indexing into.
137     gep_type_iterator GEPTI = gep_type_begin(Gep);
138     std::advance(GEPTI, LastOperand - 2);
139 
140     // If it's a type with the same allocation size as the result of the GEP we
141     // can peel off the zero index.
142     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
143       break;
144     --LastOperand;
145   }
146 
147   return LastOperand;
148 }
149 
150 /// If the argument is a GEP, then returns the operand identified by
151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
152 /// operand, it returns that instead.
153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
154   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
155   if (!GEP)
156     return Ptr;
157 
158   unsigned InductionOperand = getGEPInductionOperand(GEP);
159 
160   // Check that all of the gep indices are uniform except for our induction
161   // operand.
162   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
163     if (i != InductionOperand &&
164         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
165       return Ptr;
166   return GEP->getOperand(InductionOperand);
167 }
168 
169 /// If a value has only one user that is a CastInst, return it.
170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
171   Value *UniqueCast = nullptr;
172   for (User *U : Ptr->users()) {
173     CastInst *CI = dyn_cast<CastInst>(U);
174     if (CI && CI->getType() == Ty) {
175       if (!UniqueCast)
176         UniqueCast = CI;
177       else
178         return nullptr;
179     }
180   }
181   return UniqueCast;
182 }
183 
184 /// Get the stride of a pointer access in a loop. Looks for symbolic
185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
187   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
188   if (!PtrTy || PtrTy->isAggregateType())
189     return nullptr;
190 
191   // Try to remove a gep instruction to make the pointer (actually index at this
192   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
193   // pointer, otherwise, we are analyzing the index.
194   Value *OrigPtr = Ptr;
195 
196   // The size of the pointer access.
197   int64_t PtrAccessSize = 1;
198 
199   Ptr = stripGetElementPtr(Ptr, SE, Lp);
200   const SCEV *V = SE->getSCEV(Ptr);
201 
202   if (Ptr != OrigPtr)
203     // Strip off casts.
204     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
205       V = C->getOperand();
206 
207   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
208   if (!S)
209     return nullptr;
210 
211   V = S->getStepRecurrence(*SE);
212   if (!V)
213     return nullptr;
214 
215   // Strip off the size of access multiplication if we are still analyzing the
216   // pointer.
217   if (OrigPtr == Ptr) {
218     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
219       if (M->getOperand(0)->getSCEVType() != scConstant)
220         return nullptr;
221 
222       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
223 
224       // Huge step value - give up.
225       if (APStepVal.getBitWidth() > 64)
226         return nullptr;
227 
228       int64_t StepVal = APStepVal.getSExtValue();
229       if (PtrAccessSize != StepVal)
230         return nullptr;
231       V = M->getOperand(1);
232     }
233   }
234 
235   // Strip off casts.
236   Type *StripedOffRecurrenceCast = nullptr;
237   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
238     StripedOffRecurrenceCast = C->getType();
239     V = C->getOperand();
240   }
241 
242   // Look for the loop invariant symbolic value.
243   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
244   if (!U)
245     return nullptr;
246 
247   Value *Stride = U->getValue();
248   if (!Lp->isLoopInvariant(Stride))
249     return nullptr;
250 
251   // If we have stripped off the recurrence cast we have to make sure that we
252   // return the value that is used in this loop so that we can replace it later.
253   if (StripedOffRecurrenceCast)
254     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
255 
256   return Stride;
257 }
258 
259 /// Given a vector and an element number, see if the scalar value is
260 /// already around as a register, for example if it were inserted then extracted
261 /// from the vector.
262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
263   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
264   VectorType *VTy = cast<VectorType>(V->getType());
265   // For fixed-length vector, return undef for out of range access.
266   if (!VTy->isScalable()) {
267     unsigned Width = VTy->getNumElements();
268     if (EltNo >= Width)
269       return UndefValue::get(VTy->getElementType());
270   }
271 
272   if (Constant *C = dyn_cast<Constant>(V))
273     return C->getAggregateElement(EltNo);
274 
275   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
276     // If this is an insert to a variable element, we don't know what it is.
277     if (!isa<ConstantInt>(III->getOperand(2)))
278       return nullptr;
279     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
280 
281     // If this is an insert to the element we are looking for, return the
282     // inserted value.
283     if (EltNo == IIElt)
284       return III->getOperand(1);
285 
286     // Otherwise, the insertelement doesn't modify the value, recurse on its
287     // vector input.
288     return findScalarElement(III->getOperand(0), EltNo);
289   }
290 
291   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
292     unsigned LHSWidth =
293         cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
294     int InEl = SVI->getMaskValue(EltNo);
295     if (InEl < 0)
296       return UndefValue::get(VTy->getElementType());
297     if (InEl < (int)LHSWidth)
298       return findScalarElement(SVI->getOperand(0), InEl);
299     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
300   }
301 
302   // Extract a value from a vector add operation with a constant zero.
303   // TODO: Use getBinOpIdentity() to generalize this.
304   Value *Val; Constant *C;
305   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
306     if (Constant *Elt = C->getAggregateElement(EltNo))
307       if (Elt->isNullValue())
308         return findScalarElement(Val, EltNo);
309 
310   // Otherwise, we don't know.
311   return nullptr;
312 }
313 
314 int llvm::getSplatIndex(ArrayRef<int> Mask) {
315   int SplatIndex = -1;
316   for (int M : Mask) {
317     // Ignore invalid (undefined) mask elements.
318     if (M < 0)
319       continue;
320 
321     // There can be only 1 non-negative mask element value if this is a splat.
322     if (SplatIndex != -1 && SplatIndex != M)
323       return -1;
324 
325     // Initialize the splat index to the 1st non-negative mask element.
326     SplatIndex = M;
327   }
328   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
329   return SplatIndex;
330 }
331 
332 /// Get splat value if the input is a splat vector or return nullptr.
333 /// This function is not fully general. It checks only 2 cases:
334 /// the input value is (1) a splat constant vector or (2) a sequence
335 /// of instructions that broadcasts a scalar at element 0.
336 const llvm::Value *llvm::getSplatValue(const Value *V) {
337   if (isa<VectorType>(V->getType()))
338     if (auto *C = dyn_cast<Constant>(V))
339       return C->getSplatValue();
340 
341   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
342   Value *Splat;
343   if (match(V, m_ShuffleVector(
344                    m_InsertElement(m_Value(), m_Value(Splat), m_ZeroInt()),
345                    m_Value(), m_ZeroMask())))
346     return Splat;
347 
348   return nullptr;
349 }
350 
351 // This setting is based on its counterpart in value tracking, but it could be
352 // adjusted if needed.
353 const unsigned MaxDepth = 6;
354 
355 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
356   assert(Depth <= MaxDepth && "Limit Search Depth");
357 
358   if (isa<VectorType>(V->getType())) {
359     if (isa<UndefValue>(V))
360       return true;
361     // FIXME: We can allow undefs, but if Index was specified, we may want to
362     //        check that the constant is defined at that index.
363     if (auto *C = dyn_cast<Constant>(V))
364       return C->getSplatValue() != nullptr;
365   }
366 
367   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
368     // FIXME: We can safely allow undefs here. If Index was specified, we will
369     //        check that the mask elt is defined at the required index.
370     if (!is_splat(Shuf->getShuffleMask()))
371       return false;
372 
373     // Match any index.
374     if (Index == -1)
375       return true;
376 
377     // Match a specific element. The mask should be defined at and match the
378     // specified index.
379     return Shuf->getMaskValue(Index) == Index;
380   }
381 
382   // The remaining tests are all recursive, so bail out if we hit the limit.
383   if (Depth++ == MaxDepth)
384     return false;
385 
386   // If both operands of a binop are splats, the result is a splat.
387   Value *X, *Y, *Z;
388   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
389     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
390 
391   // If all operands of a select are splats, the result is a splat.
392   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
393     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
394            isSplatValue(Z, Index, Depth);
395 
396   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
397 
398   return false;
399 }
400 
401 void llvm::scaleShuffleMask(size_t Scale, ArrayRef<int> Mask,
402                             SmallVectorImpl<int> &ScaledMask) {
403   assert(Scale > 0 && "Unexpected scaling factor");
404 
405   // Fast-path: if no scaling, then it is just a copy.
406   if (Scale == 1) {
407     ScaledMask.assign(Mask.begin(), Mask.end());
408     return;
409   }
410 
411   ScaledMask.clear();
412   for (int MaskElt : Mask)
413     for (int ScaleElt = 0; ScaleElt != (int)Scale; ++ScaleElt)
414       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + ScaleElt);
415 }
416 
417 MapVector<Instruction *, uint64_t>
418 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
419                                const TargetTransformInfo *TTI) {
420 
421   // DemandedBits will give us every value's live-out bits. But we want
422   // to ensure no extra casts would need to be inserted, so every DAG
423   // of connected values must have the same minimum bitwidth.
424   EquivalenceClasses<Value *> ECs;
425   SmallVector<Value *, 16> Worklist;
426   SmallPtrSet<Value *, 4> Roots;
427   SmallPtrSet<Value *, 16> Visited;
428   DenseMap<Value *, uint64_t> DBits;
429   SmallPtrSet<Instruction *, 4> InstructionSet;
430   MapVector<Instruction *, uint64_t> MinBWs;
431 
432   // Determine the roots. We work bottom-up, from truncs or icmps.
433   bool SeenExtFromIllegalType = false;
434   for (auto *BB : Blocks)
435     for (auto &I : *BB) {
436       InstructionSet.insert(&I);
437 
438       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
439           !TTI->isTypeLegal(I.getOperand(0)->getType()))
440         SeenExtFromIllegalType = true;
441 
442       // Only deal with non-vector integers up to 64-bits wide.
443       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
444           !I.getType()->isVectorTy() &&
445           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
446         // Don't make work for ourselves. If we know the loaded type is legal,
447         // don't add it to the worklist.
448         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
449           continue;
450 
451         Worklist.push_back(&I);
452         Roots.insert(&I);
453       }
454     }
455   // Early exit.
456   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
457     return MinBWs;
458 
459   // Now proceed breadth-first, unioning values together.
460   while (!Worklist.empty()) {
461     Value *Val = Worklist.pop_back_val();
462     Value *Leader = ECs.getOrInsertLeaderValue(Val);
463 
464     if (Visited.count(Val))
465       continue;
466     Visited.insert(Val);
467 
468     // Non-instructions terminate a chain successfully.
469     if (!isa<Instruction>(Val))
470       continue;
471     Instruction *I = cast<Instruction>(Val);
472 
473     // If we encounter a type that is larger than 64 bits, we can't represent
474     // it so bail out.
475     if (DB.getDemandedBits(I).getBitWidth() > 64)
476       return MapVector<Instruction *, uint64_t>();
477 
478     uint64_t V = DB.getDemandedBits(I).getZExtValue();
479     DBits[Leader] |= V;
480     DBits[I] = V;
481 
482     // Casts, loads and instructions outside of our range terminate a chain
483     // successfully.
484     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
485         !InstructionSet.count(I))
486       continue;
487 
488     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
489     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
490     // transform anything that relies on them.
491     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
492         !I->getType()->isIntegerTy()) {
493       DBits[Leader] |= ~0ULL;
494       continue;
495     }
496 
497     // We don't modify the types of PHIs. Reductions will already have been
498     // truncated if possible, and inductions' sizes will have been chosen by
499     // indvars.
500     if (isa<PHINode>(I))
501       continue;
502 
503     if (DBits[Leader] == ~0ULL)
504       // All bits demanded, no point continuing.
505       continue;
506 
507     for (Value *O : cast<User>(I)->operands()) {
508       ECs.unionSets(Leader, O);
509       Worklist.push_back(O);
510     }
511   }
512 
513   // Now we've discovered all values, walk them to see if there are
514   // any users we didn't see. If there are, we can't optimize that
515   // chain.
516   for (auto &I : DBits)
517     for (auto *U : I.first->users())
518       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
519         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
520 
521   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
522     uint64_t LeaderDemandedBits = 0;
523     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
524       LeaderDemandedBits |= DBits[*MI];
525 
526     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
527                      llvm::countLeadingZeros(LeaderDemandedBits);
528     // Round up to a power of 2
529     if (!isPowerOf2_64((uint64_t)MinBW))
530       MinBW = NextPowerOf2(MinBW);
531 
532     // We don't modify the types of PHIs. Reductions will already have been
533     // truncated if possible, and inductions' sizes will have been chosen by
534     // indvars.
535     // If we are required to shrink a PHI, abandon this entire equivalence class.
536     bool Abort = false;
537     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
538       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
539         Abort = true;
540         break;
541       }
542     if (Abort)
543       continue;
544 
545     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
546       if (!isa<Instruction>(*MI))
547         continue;
548       Type *Ty = (*MI)->getType();
549       if (Roots.count(*MI))
550         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
551       if (MinBW < Ty->getScalarSizeInBits())
552         MinBWs[cast<Instruction>(*MI)] = MinBW;
553     }
554   }
555 
556   return MinBWs;
557 }
558 
559 /// Add all access groups in @p AccGroups to @p List.
560 template <typename ListT>
561 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
562   // Interpret an access group as a list containing itself.
563   if (AccGroups->getNumOperands() == 0) {
564     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
565     List.insert(AccGroups);
566     return;
567   }
568 
569   for (auto &AccGroupListOp : AccGroups->operands()) {
570     auto *Item = cast<MDNode>(AccGroupListOp.get());
571     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
572     List.insert(Item);
573   }
574 }
575 
576 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
577   if (!AccGroups1)
578     return AccGroups2;
579   if (!AccGroups2)
580     return AccGroups1;
581   if (AccGroups1 == AccGroups2)
582     return AccGroups1;
583 
584   SmallSetVector<Metadata *, 4> Union;
585   addToAccessGroupList(Union, AccGroups1);
586   addToAccessGroupList(Union, AccGroups2);
587 
588   if (Union.size() == 0)
589     return nullptr;
590   if (Union.size() == 1)
591     return cast<MDNode>(Union.front());
592 
593   LLVMContext &Ctx = AccGroups1->getContext();
594   return MDNode::get(Ctx, Union.getArrayRef());
595 }
596 
597 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
598                                     const Instruction *Inst2) {
599   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
600   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
601 
602   if (!MayAccessMem1 && !MayAccessMem2)
603     return nullptr;
604   if (!MayAccessMem1)
605     return Inst2->getMetadata(LLVMContext::MD_access_group);
606   if (!MayAccessMem2)
607     return Inst1->getMetadata(LLVMContext::MD_access_group);
608 
609   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
610   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
611   if (!MD1 || !MD2)
612     return nullptr;
613   if (MD1 == MD2)
614     return MD1;
615 
616   // Use set for scalable 'contains' check.
617   SmallPtrSet<Metadata *, 4> AccGroupSet2;
618   addToAccessGroupList(AccGroupSet2, MD2);
619 
620   SmallVector<Metadata *, 4> Intersection;
621   if (MD1->getNumOperands() == 0) {
622     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
623     if (AccGroupSet2.count(MD1))
624       Intersection.push_back(MD1);
625   } else {
626     for (const MDOperand &Node : MD1->operands()) {
627       auto *Item = cast<MDNode>(Node.get());
628       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
629       if (AccGroupSet2.count(Item))
630         Intersection.push_back(Item);
631     }
632   }
633 
634   if (Intersection.size() == 0)
635     return nullptr;
636   if (Intersection.size() == 1)
637     return cast<MDNode>(Intersection.front());
638 
639   LLVMContext &Ctx = Inst1->getContext();
640   return MDNode::get(Ctx, Intersection);
641 }
642 
643 /// \returns \p I after propagating metadata from \p VL.
644 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
645   Instruction *I0 = cast<Instruction>(VL[0]);
646   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
647   I0->getAllMetadataOtherThanDebugLoc(Metadata);
648 
649   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
650                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
651                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
652                     LLVMContext::MD_access_group}) {
653     MDNode *MD = I0->getMetadata(Kind);
654 
655     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
656       const Instruction *IJ = cast<Instruction>(VL[J]);
657       MDNode *IMD = IJ->getMetadata(Kind);
658       switch (Kind) {
659       case LLVMContext::MD_tbaa:
660         MD = MDNode::getMostGenericTBAA(MD, IMD);
661         break;
662       case LLVMContext::MD_alias_scope:
663         MD = MDNode::getMostGenericAliasScope(MD, IMD);
664         break;
665       case LLVMContext::MD_fpmath:
666         MD = MDNode::getMostGenericFPMath(MD, IMD);
667         break;
668       case LLVMContext::MD_noalias:
669       case LLVMContext::MD_nontemporal:
670       case LLVMContext::MD_invariant_load:
671         MD = MDNode::intersect(MD, IMD);
672         break;
673       case LLVMContext::MD_access_group:
674         MD = intersectAccessGroups(Inst, IJ);
675         break;
676       default:
677         llvm_unreachable("unhandled metadata");
678       }
679     }
680 
681     Inst->setMetadata(Kind, MD);
682   }
683 
684   return Inst;
685 }
686 
687 Constant *
688 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
689                            const InterleaveGroup<Instruction> &Group) {
690   // All 1's means mask is not needed.
691   if (Group.getNumMembers() == Group.getFactor())
692     return nullptr;
693 
694   // TODO: support reversed access.
695   assert(!Group.isReverse() && "Reversed group not supported.");
696 
697   SmallVector<Constant *, 16> Mask;
698   for (unsigned i = 0; i < VF; i++)
699     for (unsigned j = 0; j < Group.getFactor(); ++j) {
700       unsigned HasMember = Group.getMember(j) ? 1 : 0;
701       Mask.push_back(Builder.getInt1(HasMember));
702     }
703 
704   return ConstantVector::get(Mask);
705 }
706 
707 Constant *llvm::createReplicatedMask(IRBuilderBase &Builder,
708                                      unsigned ReplicationFactor, unsigned VF) {
709   SmallVector<Constant *, 16> MaskVec;
710   for (unsigned i = 0; i < VF; i++)
711     for (unsigned j = 0; j < ReplicationFactor; j++)
712       MaskVec.push_back(Builder.getInt32(i));
713 
714   return ConstantVector::get(MaskVec);
715 }
716 
717 Constant *llvm::createInterleaveMask(IRBuilderBase &Builder, unsigned VF,
718                                      unsigned NumVecs) {
719   SmallVector<Constant *, 16> Mask;
720   for (unsigned i = 0; i < VF; i++)
721     for (unsigned j = 0; j < NumVecs; j++)
722       Mask.push_back(Builder.getInt32(j * VF + i));
723 
724   return ConstantVector::get(Mask);
725 }
726 
727 Constant *llvm::createStrideMask(IRBuilderBase &Builder, unsigned Start,
728                                  unsigned Stride, unsigned VF) {
729   SmallVector<Constant *, 16> Mask;
730   for (unsigned i = 0; i < VF; i++)
731     Mask.push_back(Builder.getInt32(Start + i * Stride));
732 
733   return ConstantVector::get(Mask);
734 }
735 
736 Constant *llvm::createSequentialMask(IRBuilderBase &Builder, unsigned Start,
737                                      unsigned NumInts, unsigned NumUndefs) {
738   SmallVector<Constant *, 16> Mask;
739   for (unsigned i = 0; i < NumInts; i++)
740     Mask.push_back(Builder.getInt32(Start + i));
741 
742   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
743   for (unsigned i = 0; i < NumUndefs; i++)
744     Mask.push_back(Undef);
745 
746   return ConstantVector::get(Mask);
747 }
748 
749 /// A helper function for concatenating vectors. This function concatenates two
750 /// vectors having the same element type. If the second vector has fewer
751 /// elements than the first, it is padded with undefs.
752 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
753                                     Value *V2) {
754   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
755   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
756   assert(VecTy1 && VecTy2 &&
757          VecTy1->getScalarType() == VecTy2->getScalarType() &&
758          "Expect two vectors with the same element type");
759 
760   unsigned NumElts1 = VecTy1->getNumElements();
761   unsigned NumElts2 = VecTy2->getNumElements();
762   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
763 
764   if (NumElts1 > NumElts2) {
765     // Extend with UNDEFs.
766     Constant *ExtMask =
767         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
768     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
769   }
770 
771   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
772   return Builder.CreateShuffleVector(V1, V2, Mask);
773 }
774 
775 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
776                                 ArrayRef<Value *> Vecs) {
777   unsigned NumVecs = Vecs.size();
778   assert(NumVecs > 1 && "Should be at least two vectors");
779 
780   SmallVector<Value *, 8> ResList;
781   ResList.append(Vecs.begin(), Vecs.end());
782   do {
783     SmallVector<Value *, 8> TmpList;
784     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
785       Value *V0 = ResList[i], *V1 = ResList[i + 1];
786       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
787              "Only the last vector may have a different type");
788 
789       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
790     }
791 
792     // Push the last vector if the total number of vectors is odd.
793     if (NumVecs % 2 != 0)
794       TmpList.push_back(ResList[NumVecs - 1]);
795 
796     ResList = TmpList;
797     NumVecs = ResList.size();
798   } while (NumVecs > 1);
799 
800   return ResList[0];
801 }
802 
803 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
804   auto *ConstMask = dyn_cast<Constant>(Mask);
805   if (!ConstMask)
806     return false;
807   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
808     return true;
809   for (unsigned I = 0,
810                 E = cast<VectorType>(ConstMask->getType())->getNumElements();
811        I != E; ++I) {
812     if (auto *MaskElt = ConstMask->getAggregateElement(I))
813       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
814         continue;
815     return false;
816   }
817   return true;
818 }
819 
820 
821 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
822   auto *ConstMask = dyn_cast<Constant>(Mask);
823   if (!ConstMask)
824     return false;
825   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
826     return true;
827   for (unsigned I = 0,
828                 E = cast<VectorType>(ConstMask->getType())->getNumElements();
829        I != E; ++I) {
830     if (auto *MaskElt = ConstMask->getAggregateElement(I))
831       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
832         continue;
833     return false;
834   }
835   return true;
836 }
837 
838 /// TODO: This is a lot like known bits, but for
839 /// vectors.  Is there something we can common this with?
840 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
841 
842   const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
843   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
844   if (auto *CV = dyn_cast<ConstantVector>(Mask))
845     for (unsigned i = 0; i < VWidth; i++)
846       if (CV->getAggregateElement(i)->isNullValue())
847         DemandedElts.clearBit(i);
848   return DemandedElts;
849 }
850 
851 bool InterleavedAccessInfo::isStrided(int Stride) {
852   unsigned Factor = std::abs(Stride);
853   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
854 }
855 
856 void InterleavedAccessInfo::collectConstStrideAccesses(
857     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
858     const ValueToValueMap &Strides) {
859   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
860 
861   // Since it's desired that the load/store instructions be maintained in
862   // "program order" for the interleaved access analysis, we have to visit the
863   // blocks in the loop in reverse postorder (i.e., in a topological order).
864   // Such an ordering will ensure that any load/store that may be executed
865   // before a second load/store will precede the second load/store in
866   // AccessStrideInfo.
867   LoopBlocksDFS DFS(TheLoop);
868   DFS.perform(LI);
869   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
870     for (auto &I : *BB) {
871       auto *LI = dyn_cast<LoadInst>(&I);
872       auto *SI = dyn_cast<StoreInst>(&I);
873       if (!LI && !SI)
874         continue;
875 
876       Value *Ptr = getLoadStorePointerOperand(&I);
877       // We don't check wrapping here because we don't know yet if Ptr will be
878       // part of a full group or a group with gaps. Checking wrapping for all
879       // pointers (even those that end up in groups with no gaps) will be overly
880       // conservative. For full groups, wrapping should be ok since if we would
881       // wrap around the address space we would do a memory access at nullptr
882       // even without the transformation. The wrapping checks are therefore
883       // deferred until after we've formed the interleaved groups.
884       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
885                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
886 
887       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
888       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
889       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
890 
891       // An alignment of 0 means target ABI alignment.
892       MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
893       if (!Alignment)
894         Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));
895 
896       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
897     }
898 }
899 
900 // Analyze interleaved accesses and collect them into interleaved load and
901 // store groups.
902 //
903 // When generating code for an interleaved load group, we effectively hoist all
904 // loads in the group to the location of the first load in program order. When
905 // generating code for an interleaved store group, we sink all stores to the
906 // location of the last store. This code motion can change the order of load
907 // and store instructions and may break dependences.
908 //
909 // The code generation strategy mentioned above ensures that we won't violate
910 // any write-after-read (WAR) dependences.
911 //
912 // E.g., for the WAR dependence:  a = A[i];      // (1)
913 //                                A[i] = b;      // (2)
914 //
915 // The store group of (2) is always inserted at or below (2), and the load
916 // group of (1) is always inserted at or above (1). Thus, the instructions will
917 // never be reordered. All other dependences are checked to ensure the
918 // correctness of the instruction reordering.
919 //
920 // The algorithm visits all memory accesses in the loop in bottom-up program
921 // order. Program order is established by traversing the blocks in the loop in
922 // reverse postorder when collecting the accesses.
923 //
924 // We visit the memory accesses in bottom-up order because it can simplify the
925 // construction of store groups in the presence of write-after-write (WAW)
926 // dependences.
927 //
928 // E.g., for the WAW dependence:  A[i] = a;      // (1)
929 //                                A[i] = b;      // (2)
930 //                                A[i + 1] = c;  // (3)
931 //
932 // We will first create a store group with (3) and (2). (1) can't be added to
933 // this group because it and (2) are dependent. However, (1) can be grouped
934 // with other accesses that may precede it in program order. Note that a
935 // bottom-up order does not imply that WAW dependences should not be checked.
936 void InterleavedAccessInfo::analyzeInterleaving(
937                                  bool EnablePredicatedInterleavedMemAccesses) {
938   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
939   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
940 
941   // Holds all accesses with a constant stride.
942   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
943   collectConstStrideAccesses(AccessStrideInfo, Strides);
944 
945   if (AccessStrideInfo.empty())
946     return;
947 
948   // Collect the dependences in the loop.
949   collectDependences();
950 
951   // Holds all interleaved store groups temporarily.
952   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
953   // Holds all interleaved load groups temporarily.
954   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
955 
956   // Search in bottom-up program order for pairs of accesses (A and B) that can
957   // form interleaved load or store groups. In the algorithm below, access A
958   // precedes access B in program order. We initialize a group for B in the
959   // outer loop of the algorithm, and then in the inner loop, we attempt to
960   // insert each A into B's group if:
961   //
962   //  1. A and B have the same stride,
963   //  2. A and B have the same memory object size, and
964   //  3. A belongs in B's group according to its distance from B.
965   //
966   // Special care is taken to ensure group formation will not break any
967   // dependences.
968   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
969        BI != E; ++BI) {
970     Instruction *B = BI->first;
971     StrideDescriptor DesB = BI->second;
972 
973     // Initialize a group for B if it has an allowable stride. Even if we don't
974     // create a group for B, we continue with the bottom-up algorithm to ensure
975     // we don't break any of B's dependences.
976     InterleaveGroup<Instruction> *Group = nullptr;
977     if (isStrided(DesB.Stride) &&
978         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
979       Group = getInterleaveGroup(B);
980       if (!Group) {
981         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
982                           << '\n');
983         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
984       }
985       if (B->mayWriteToMemory())
986         StoreGroups.insert(Group);
987       else
988         LoadGroups.insert(Group);
989     }
990 
991     for (auto AI = std::next(BI); AI != E; ++AI) {
992       Instruction *A = AI->first;
993       StrideDescriptor DesA = AI->second;
994 
995       // Our code motion strategy implies that we can't have dependences
996       // between accesses in an interleaved group and other accesses located
997       // between the first and last member of the group. Note that this also
998       // means that a group can't have more than one member at a given offset.
999       // The accesses in a group can have dependences with other accesses, but
1000       // we must ensure we don't extend the boundaries of the group such that
1001       // we encompass those dependent accesses.
1002       //
1003       // For example, assume we have the sequence of accesses shown below in a
1004       // stride-2 loop:
1005       //
1006       //  (1, 2) is a group | A[i]   = a;  // (1)
1007       //                    | A[i-1] = b;  // (2) |
1008       //                      A[i-3] = c;  // (3)
1009       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1010       //
1011       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1012       // but not with (4). If we did, the dependent access (3) would be within
1013       // the boundaries of the (2, 4) group.
1014       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1015         // If a dependence exists and A is already in a group, we know that A
1016         // must be a store since A precedes B and WAR dependences are allowed.
1017         // Thus, A would be sunk below B. We release A's group to prevent this
1018         // illegal code motion. A will then be free to form another group with
1019         // instructions that precede it.
1020         if (isInterleaved(A)) {
1021           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1022 
1023           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1024                                "dependence between " << *A << " and "<< *B << '\n');
1025 
1026           StoreGroups.remove(StoreGroup);
1027           releaseGroup(StoreGroup);
1028         }
1029 
1030         // If a dependence exists and A is not already in a group (or it was
1031         // and we just released it), B might be hoisted above A (if B is a
1032         // load) or another store might be sunk below A (if B is a store). In
1033         // either case, we can't add additional instructions to B's group. B
1034         // will only form a group with instructions that it precedes.
1035         break;
1036       }
1037 
1038       // At this point, we've checked for illegal code motion. If either A or B
1039       // isn't strided, there's nothing left to do.
1040       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1041         continue;
1042 
1043       // Ignore A if it's already in a group or isn't the same kind of memory
1044       // operation as B.
1045       // Note that mayReadFromMemory() isn't mutually exclusive to
1046       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1047       // here, canVectorizeMemory() should have returned false - except for the
1048       // case we asked for optimization remarks.
1049       if (isInterleaved(A) ||
1050           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1051           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1052         continue;
1053 
1054       // Check rules 1 and 2. Ignore A if its stride or size is different from
1055       // that of B.
1056       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1057         continue;
1058 
1059       // Ignore A if the memory object of A and B don't belong to the same
1060       // address space
1061       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1062         continue;
1063 
1064       // Calculate the distance from A to B.
1065       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1066           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1067       if (!DistToB)
1068         continue;
1069       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1070 
1071       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1072       // size.
1073       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1074         continue;
1075 
1076       // All members of a predicated interleave-group must have the same predicate,
1077       // and currently must reside in the same BB.
1078       BasicBlock *BlockA = A->getParent();
1079       BasicBlock *BlockB = B->getParent();
1080       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1081           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1082         continue;
1083 
1084       // The index of A is the index of B plus A's distance to B in multiples
1085       // of the size.
1086       int IndexA =
1087           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1088 
1089       // Try to insert A into B's group.
1090       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1091         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1092                           << "    into the interleave group with" << *B
1093                           << '\n');
1094         InterleaveGroupMap[A] = Group;
1095 
1096         // Set the first load in program order as the insert position.
1097         if (A->mayReadFromMemory())
1098           Group->setInsertPos(A);
1099       }
1100     } // Iteration over A accesses.
1101   }   // Iteration over B accesses.
1102 
1103   // Remove interleaved store groups with gaps.
1104   for (auto *Group : StoreGroups)
1105     if (Group->getNumMembers() != Group->getFactor()) {
1106       LLVM_DEBUG(
1107           dbgs() << "LV: Invalidate candidate interleaved store group due "
1108                     "to gaps.\n");
1109       releaseGroup(Group);
1110     }
1111   // Remove interleaved groups with gaps (currently only loads) whose memory
1112   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1113   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1114   // not check wrapping (see documentation there).
1115   // FORNOW we use Assume=false;
1116   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1117   // of runtime SCEV assumptions checks (thereby potentially failing to
1118   // vectorize altogether).
1119   // Additional optional optimizations:
1120   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1121   // wrap then we can deduce that all pointers in the group don't wrap.
1122   // This means that we can forcefully peel the loop in order to only have to
1123   // check the first pointer for no-wrap. When we'll change to use Assume=true
1124   // we'll only need at most one runtime check per interleaved group.
1125   for (auto *Group : LoadGroups) {
1126     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1127     // load would wrap around the address space we would do a memory access at
1128     // nullptr even without the transformation.
1129     if (Group->getNumMembers() == Group->getFactor())
1130       continue;
1131 
1132     // Case 2: If first and last members of the group don't wrap this implies
1133     // that all the pointers in the group don't wrap.
1134     // So we check only group member 0 (which is always guaranteed to exist),
1135     // and group member Factor - 1; If the latter doesn't exist we rely on
1136     // peeling (if it is a non-reversed accsess -- see Case 3).
1137     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1138     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1139                       /*ShouldCheckWrap=*/true)) {
1140       LLVM_DEBUG(
1141           dbgs() << "LV: Invalidate candidate interleaved group due to "
1142                     "first group member potentially pointer-wrapping.\n");
1143       releaseGroup(Group);
1144       continue;
1145     }
1146     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1147     if (LastMember) {
1148       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1149       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1150                         /*ShouldCheckWrap=*/true)) {
1151         LLVM_DEBUG(
1152             dbgs() << "LV: Invalidate candidate interleaved group due to "
1153                       "last group member potentially pointer-wrapping.\n");
1154         releaseGroup(Group);
1155       }
1156     } else {
1157       // Case 3: A non-reversed interleaved load group with gaps: We need
1158       // to execute at least one scalar epilogue iteration. This will ensure
1159       // we don't speculatively access memory out-of-bounds. We only need
1160       // to look for a member at index factor - 1, since every group must have
1161       // a member at index zero.
1162       if (Group->isReverse()) {
1163         LLVM_DEBUG(
1164             dbgs() << "LV: Invalidate candidate interleaved group due to "
1165                       "a reverse access with gaps.\n");
1166         releaseGroup(Group);
1167         continue;
1168       }
1169       LLVM_DEBUG(
1170           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1171       RequiresScalarEpilogue = true;
1172     }
1173   }
1174 }
1175 
1176 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1177   // If no group had triggered the requirement to create an epilogue loop,
1178   // there is nothing to do.
1179   if (!requiresScalarEpilogue())
1180     return;
1181 
1182   // Avoid releasing a Group twice.
1183   SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1184   for (auto &I : InterleaveGroupMap) {
1185     InterleaveGroup<Instruction> *Group = I.second;
1186     if (Group->requiresScalarEpilogue())
1187       DelSet.insert(Group);
1188   }
1189   for (auto *Ptr : DelSet) {
1190     LLVM_DEBUG(
1191         dbgs()
1192         << "LV: Invalidate candidate interleaved group due to gaps that "
1193            "require a scalar epilogue (not allowed under optsize) and cannot "
1194            "be masked (not enabled). \n");
1195     releaseGroup(Ptr);
1196   }
1197 
1198   RequiresScalarEpilogue = false;
1199 }
1200 
1201 template <typename InstT>
1202 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1203   llvm_unreachable("addMetadata can only be used for Instruction");
1204 }
1205 
1206 namespace llvm {
1207 template <>
1208 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1209   SmallVector<Value *, 4> VL;
1210   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1211                  [](std::pair<int, Instruction *> p) { return p.second; });
1212   propagateMetadata(NewInst, VL);
1213 }
1214 }
1215 
1216 void VFABI::getVectorVariantNames(
1217     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1218   const StringRef S =
1219       CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1220           .getValueAsString();
1221   if (S.empty())
1222     return;
1223 
1224   SmallVector<StringRef, 8> ListAttr;
1225   S.split(ListAttr, ",");
1226 
1227   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1228 #ifndef NDEBUG
1229     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1230     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1231     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1232     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1233            "Vector function is missing.");
1234 #endif
1235     VariantMappings.push_back(std::string(S));
1236   }
1237 }
1238 
1239 bool VFShape::hasValidParameterList() const {
1240   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1241        ++Pos) {
1242     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1243 
1244     switch (Parameters[Pos].ParamKind) {
1245     default: // Nothing to check.
1246       break;
1247     case VFParamKind::OMP_Linear:
1248     case VFParamKind::OMP_LinearRef:
1249     case VFParamKind::OMP_LinearVal:
1250     case VFParamKind::OMP_LinearUVal:
1251       // Compile time linear steps must be non-zero.
1252       if (Parameters[Pos].LinearStepOrPos == 0)
1253         return false;
1254       break;
1255     case VFParamKind::OMP_LinearPos:
1256     case VFParamKind::OMP_LinearRefPos:
1257     case VFParamKind::OMP_LinearValPos:
1258     case VFParamKind::OMP_LinearUValPos:
1259       // The runtime linear step must be referring to some other
1260       // parameters in the signature.
1261       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1262         return false;
1263       // The linear step parameter must be marked as uniform.
1264       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1265           VFParamKind::OMP_Uniform)
1266         return false;
1267       // The linear step parameter can't point at itself.
1268       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1269         return false;
1270       break;
1271     case VFParamKind::GlobalPredicate:
1272       // The global predicate must be the unique. Can be placed anywhere in the
1273       // signature.
1274       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1275         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1276           return false;
1277       break;
1278     }
1279   }
1280   return true;
1281 }
1282