1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/CommandLine.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic, and vectors for the vector form of the 42 /// intrinsic (except operands that are marked as always being scalar by 43 /// hasVectorInstrinsicScalarOpd). 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::bswap: // Begin integer bit-manipulation. 47 case Intrinsic::bitreverse: 48 case Intrinsic::ctpop: 49 case Intrinsic::ctlz: 50 case Intrinsic::cttz: 51 case Intrinsic::fshl: 52 case Intrinsic::fshr: 53 case Intrinsic::sadd_sat: 54 case Intrinsic::ssub_sat: 55 case Intrinsic::uadd_sat: 56 case Intrinsic::usub_sat: 57 case Intrinsic::smul_fix: 58 case Intrinsic::smul_fix_sat: 59 case Intrinsic::umul_fix: 60 case Intrinsic::umul_fix_sat: 61 case Intrinsic::sqrt: // Begin floating-point. 62 case Intrinsic::sin: 63 case Intrinsic::cos: 64 case Intrinsic::exp: 65 case Intrinsic::exp2: 66 case Intrinsic::log: 67 case Intrinsic::log10: 68 case Intrinsic::log2: 69 case Intrinsic::fabs: 70 case Intrinsic::minnum: 71 case Intrinsic::maxnum: 72 case Intrinsic::minimum: 73 case Intrinsic::maximum: 74 case Intrinsic::copysign: 75 case Intrinsic::floor: 76 case Intrinsic::ceil: 77 case Intrinsic::trunc: 78 case Intrinsic::rint: 79 case Intrinsic::nearbyint: 80 case Intrinsic::round: 81 case Intrinsic::pow: 82 case Intrinsic::fma: 83 case Intrinsic::fmuladd: 84 case Intrinsic::powi: 85 case Intrinsic::canonicalize: 86 return true; 87 default: 88 return false; 89 } 90 } 91 92 /// Identifies if the vector form of the intrinsic has a scalar operand. 93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 94 unsigned ScalarOpdIdx) { 95 switch (ID) { 96 case Intrinsic::ctlz: 97 case Intrinsic::cttz: 98 case Intrinsic::powi: 99 return (ScalarOpdIdx == 1); 100 case Intrinsic::smul_fix: 101 case Intrinsic::smul_fix_sat: 102 case Intrinsic::umul_fix: 103 case Intrinsic::umul_fix_sat: 104 return (ScalarOpdIdx == 2); 105 default: 106 return false; 107 } 108 } 109 110 /// Returns intrinsic ID for call. 111 /// For the input call instruction it finds mapping intrinsic and returns 112 /// its ID, in case it does not found it return not_intrinsic. 113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 114 const TargetLibraryInfo *TLI) { 115 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 116 if (ID == Intrinsic::not_intrinsic) 117 return Intrinsic::not_intrinsic; 118 119 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 120 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 121 ID == Intrinsic::sideeffect) 122 return ID; 123 return Intrinsic::not_intrinsic; 124 } 125 126 /// Find the operand of the GEP that should be checked for consecutive 127 /// stores. This ignores trailing indices that have no effect on the final 128 /// pointer. 129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 130 const DataLayout &DL = Gep->getModule()->getDataLayout(); 131 unsigned LastOperand = Gep->getNumOperands() - 1; 132 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 133 134 // Walk backwards and try to peel off zeros. 135 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 136 // Find the type we're currently indexing into. 137 gep_type_iterator GEPTI = gep_type_begin(Gep); 138 std::advance(GEPTI, LastOperand - 2); 139 140 // If it's a type with the same allocation size as the result of the GEP we 141 // can peel off the zero index. 142 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 143 break; 144 --LastOperand; 145 } 146 147 return LastOperand; 148 } 149 150 /// If the argument is a GEP, then returns the operand identified by 151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 152 /// operand, it returns that instead. 153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 154 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 155 if (!GEP) 156 return Ptr; 157 158 unsigned InductionOperand = getGEPInductionOperand(GEP); 159 160 // Check that all of the gep indices are uniform except for our induction 161 // operand. 162 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 163 if (i != InductionOperand && 164 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 165 return Ptr; 166 return GEP->getOperand(InductionOperand); 167 } 168 169 /// If a value has only one user that is a CastInst, return it. 170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 171 Value *UniqueCast = nullptr; 172 for (User *U : Ptr->users()) { 173 CastInst *CI = dyn_cast<CastInst>(U); 174 if (CI && CI->getType() == Ty) { 175 if (!UniqueCast) 176 UniqueCast = CI; 177 else 178 return nullptr; 179 } 180 } 181 return UniqueCast; 182 } 183 184 /// Get the stride of a pointer access in a loop. Looks for symbolic 185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 187 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 188 if (!PtrTy || PtrTy->isAggregateType()) 189 return nullptr; 190 191 // Try to remove a gep instruction to make the pointer (actually index at this 192 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 193 // pointer, otherwise, we are analyzing the index. 194 Value *OrigPtr = Ptr; 195 196 // The size of the pointer access. 197 int64_t PtrAccessSize = 1; 198 199 Ptr = stripGetElementPtr(Ptr, SE, Lp); 200 const SCEV *V = SE->getSCEV(Ptr); 201 202 if (Ptr != OrigPtr) 203 // Strip off casts. 204 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 205 V = C->getOperand(); 206 207 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 208 if (!S) 209 return nullptr; 210 211 V = S->getStepRecurrence(*SE); 212 if (!V) 213 return nullptr; 214 215 // Strip off the size of access multiplication if we are still analyzing the 216 // pointer. 217 if (OrigPtr == Ptr) { 218 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 219 if (M->getOperand(0)->getSCEVType() != scConstant) 220 return nullptr; 221 222 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 223 224 // Huge step value - give up. 225 if (APStepVal.getBitWidth() > 64) 226 return nullptr; 227 228 int64_t StepVal = APStepVal.getSExtValue(); 229 if (PtrAccessSize != StepVal) 230 return nullptr; 231 V = M->getOperand(1); 232 } 233 } 234 235 // Strip off casts. 236 Type *StripedOffRecurrenceCast = nullptr; 237 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 238 StripedOffRecurrenceCast = C->getType(); 239 V = C->getOperand(); 240 } 241 242 // Look for the loop invariant symbolic value. 243 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 244 if (!U) 245 return nullptr; 246 247 Value *Stride = U->getValue(); 248 if (!Lp->isLoopInvariant(Stride)) 249 return nullptr; 250 251 // If we have stripped off the recurrence cast we have to make sure that we 252 // return the value that is used in this loop so that we can replace it later. 253 if (StripedOffRecurrenceCast) 254 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 255 256 return Stride; 257 } 258 259 /// Given a vector and an element number, see if the scalar value is 260 /// already around as a register, for example if it were inserted then extracted 261 /// from the vector. 262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 263 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 264 VectorType *VTy = cast<VectorType>(V->getType()); 265 unsigned Width = VTy->getNumElements(); 266 if (EltNo >= Width) // Out of range access. 267 return UndefValue::get(VTy->getElementType()); 268 269 if (Constant *C = dyn_cast<Constant>(V)) 270 return C->getAggregateElement(EltNo); 271 272 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 273 // If this is an insert to a variable element, we don't know what it is. 274 if (!isa<ConstantInt>(III->getOperand(2))) 275 return nullptr; 276 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 277 278 // If this is an insert to the element we are looking for, return the 279 // inserted value. 280 if (EltNo == IIElt) 281 return III->getOperand(1); 282 283 // Otherwise, the insertelement doesn't modify the value, recurse on its 284 // vector input. 285 return findScalarElement(III->getOperand(0), EltNo); 286 } 287 288 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 289 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 290 int InEl = SVI->getMaskValue(EltNo); 291 if (InEl < 0) 292 return UndefValue::get(VTy->getElementType()); 293 if (InEl < (int)LHSWidth) 294 return findScalarElement(SVI->getOperand(0), InEl); 295 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 296 } 297 298 // Extract a value from a vector add operation with a constant zero. 299 // TODO: Use getBinOpIdentity() to generalize this. 300 Value *Val; Constant *C; 301 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 302 if (Constant *Elt = C->getAggregateElement(EltNo)) 303 if (Elt->isNullValue()) 304 return findScalarElement(Val, EltNo); 305 306 // Otherwise, we don't know. 307 return nullptr; 308 } 309 310 int llvm::getSplatIndex(ArrayRef<int> Mask) { 311 int SplatIndex = -1; 312 for (int M : Mask) { 313 // Ignore invalid (undefined) mask elements. 314 if (M < 0) 315 continue; 316 317 // There can be only 1 non-negative mask element value if this is a splat. 318 if (SplatIndex != -1 && SplatIndex != M) 319 return -1; 320 321 // Initialize the splat index to the 1st non-negative mask element. 322 SplatIndex = M; 323 } 324 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 325 return SplatIndex; 326 } 327 328 /// Get splat value if the input is a splat vector or return nullptr. 329 /// This function is not fully general. It checks only 2 cases: 330 /// the input value is (1) a splat constant vector or (2) a sequence 331 /// of instructions that broadcasts a scalar at element 0. 332 const llvm::Value *llvm::getSplatValue(const Value *V) { 333 if (isa<VectorType>(V->getType())) 334 if (auto *C = dyn_cast<Constant>(V)) 335 return C->getSplatValue(); 336 337 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 338 Value *Splat; 339 if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat), 340 m_ZeroInt()), 341 m_Value(), m_ZeroInt()))) 342 return Splat; 343 344 return nullptr; 345 } 346 347 // This setting is based on its counterpart in value tracking, but it could be 348 // adjusted if needed. 349 const unsigned MaxDepth = 6; 350 351 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 352 assert(Depth <= MaxDepth && "Limit Search Depth"); 353 354 if (isa<VectorType>(V->getType())) { 355 if (isa<UndefValue>(V)) 356 return true; 357 // FIXME: We can allow undefs, but if Index was specified, we may want to 358 // check that the constant is defined at that index. 359 if (auto *C = dyn_cast<Constant>(V)) 360 return C->getSplatValue() != nullptr; 361 } 362 363 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 364 // FIXME: We can safely allow undefs here. If Index was specified, we will 365 // check that the mask elt is defined at the required index. 366 if (!Shuf->getMask()->getSplatValue()) 367 return false; 368 369 // Match any index. 370 if (Index == -1) 371 return true; 372 373 // Match a specific element. The mask should be defined at and match the 374 // specified index. 375 return Shuf->getMaskValue(Index) == Index; 376 } 377 378 // The remaining tests are all recursive, so bail out if we hit the limit. 379 if (Depth++ == MaxDepth) 380 return false; 381 382 // If both operands of a binop are splats, the result is a splat. 383 Value *X, *Y, *Z; 384 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 385 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 386 387 // If all operands of a select are splats, the result is a splat. 388 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 389 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 390 isSplatValue(Z, Index, Depth); 391 392 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 393 394 return false; 395 } 396 397 MapVector<Instruction *, uint64_t> 398 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 399 const TargetTransformInfo *TTI) { 400 401 // DemandedBits will give us every value's live-out bits. But we want 402 // to ensure no extra casts would need to be inserted, so every DAG 403 // of connected values must have the same minimum bitwidth. 404 EquivalenceClasses<Value *> ECs; 405 SmallVector<Value *, 16> Worklist; 406 SmallPtrSet<Value *, 4> Roots; 407 SmallPtrSet<Value *, 16> Visited; 408 DenseMap<Value *, uint64_t> DBits; 409 SmallPtrSet<Instruction *, 4> InstructionSet; 410 MapVector<Instruction *, uint64_t> MinBWs; 411 412 // Determine the roots. We work bottom-up, from truncs or icmps. 413 bool SeenExtFromIllegalType = false; 414 for (auto *BB : Blocks) 415 for (auto &I : *BB) { 416 InstructionSet.insert(&I); 417 418 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 419 !TTI->isTypeLegal(I.getOperand(0)->getType())) 420 SeenExtFromIllegalType = true; 421 422 // Only deal with non-vector integers up to 64-bits wide. 423 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 424 !I.getType()->isVectorTy() && 425 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 426 // Don't make work for ourselves. If we know the loaded type is legal, 427 // don't add it to the worklist. 428 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 429 continue; 430 431 Worklist.push_back(&I); 432 Roots.insert(&I); 433 } 434 } 435 // Early exit. 436 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 437 return MinBWs; 438 439 // Now proceed breadth-first, unioning values together. 440 while (!Worklist.empty()) { 441 Value *Val = Worklist.pop_back_val(); 442 Value *Leader = ECs.getOrInsertLeaderValue(Val); 443 444 if (Visited.count(Val)) 445 continue; 446 Visited.insert(Val); 447 448 // Non-instructions terminate a chain successfully. 449 if (!isa<Instruction>(Val)) 450 continue; 451 Instruction *I = cast<Instruction>(Val); 452 453 // If we encounter a type that is larger than 64 bits, we can't represent 454 // it so bail out. 455 if (DB.getDemandedBits(I).getBitWidth() > 64) 456 return MapVector<Instruction *, uint64_t>(); 457 458 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 459 DBits[Leader] |= V; 460 DBits[I] = V; 461 462 // Casts, loads and instructions outside of our range terminate a chain 463 // successfully. 464 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 465 !InstructionSet.count(I)) 466 continue; 467 468 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 469 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 470 // transform anything that relies on them. 471 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 472 !I->getType()->isIntegerTy()) { 473 DBits[Leader] |= ~0ULL; 474 continue; 475 } 476 477 // We don't modify the types of PHIs. Reductions will already have been 478 // truncated if possible, and inductions' sizes will have been chosen by 479 // indvars. 480 if (isa<PHINode>(I)) 481 continue; 482 483 if (DBits[Leader] == ~0ULL) 484 // All bits demanded, no point continuing. 485 continue; 486 487 for (Value *O : cast<User>(I)->operands()) { 488 ECs.unionSets(Leader, O); 489 Worklist.push_back(O); 490 } 491 } 492 493 // Now we've discovered all values, walk them to see if there are 494 // any users we didn't see. If there are, we can't optimize that 495 // chain. 496 for (auto &I : DBits) 497 for (auto *U : I.first->users()) 498 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 499 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 500 501 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 502 uint64_t LeaderDemandedBits = 0; 503 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 504 LeaderDemandedBits |= DBits[*MI]; 505 506 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 507 llvm::countLeadingZeros(LeaderDemandedBits); 508 // Round up to a power of 2 509 if (!isPowerOf2_64((uint64_t)MinBW)) 510 MinBW = NextPowerOf2(MinBW); 511 512 // We don't modify the types of PHIs. Reductions will already have been 513 // truncated if possible, and inductions' sizes will have been chosen by 514 // indvars. 515 // If we are required to shrink a PHI, abandon this entire equivalence class. 516 bool Abort = false; 517 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 518 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 519 Abort = true; 520 break; 521 } 522 if (Abort) 523 continue; 524 525 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 526 if (!isa<Instruction>(*MI)) 527 continue; 528 Type *Ty = (*MI)->getType(); 529 if (Roots.count(*MI)) 530 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 531 if (MinBW < Ty->getScalarSizeInBits()) 532 MinBWs[cast<Instruction>(*MI)] = MinBW; 533 } 534 } 535 536 return MinBWs; 537 } 538 539 /// Add all access groups in @p AccGroups to @p List. 540 template <typename ListT> 541 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 542 // Interpret an access group as a list containing itself. 543 if (AccGroups->getNumOperands() == 0) { 544 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 545 List.insert(AccGroups); 546 return; 547 } 548 549 for (auto &AccGroupListOp : AccGroups->operands()) { 550 auto *Item = cast<MDNode>(AccGroupListOp.get()); 551 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 552 List.insert(Item); 553 } 554 } 555 556 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 557 if (!AccGroups1) 558 return AccGroups2; 559 if (!AccGroups2) 560 return AccGroups1; 561 if (AccGroups1 == AccGroups2) 562 return AccGroups1; 563 564 SmallSetVector<Metadata *, 4> Union; 565 addToAccessGroupList(Union, AccGroups1); 566 addToAccessGroupList(Union, AccGroups2); 567 568 if (Union.size() == 0) 569 return nullptr; 570 if (Union.size() == 1) 571 return cast<MDNode>(Union.front()); 572 573 LLVMContext &Ctx = AccGroups1->getContext(); 574 return MDNode::get(Ctx, Union.getArrayRef()); 575 } 576 577 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 578 const Instruction *Inst2) { 579 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 580 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 581 582 if (!MayAccessMem1 && !MayAccessMem2) 583 return nullptr; 584 if (!MayAccessMem1) 585 return Inst2->getMetadata(LLVMContext::MD_access_group); 586 if (!MayAccessMem2) 587 return Inst1->getMetadata(LLVMContext::MD_access_group); 588 589 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 590 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 591 if (!MD1 || !MD2) 592 return nullptr; 593 if (MD1 == MD2) 594 return MD1; 595 596 // Use set for scalable 'contains' check. 597 SmallPtrSet<Metadata *, 4> AccGroupSet2; 598 addToAccessGroupList(AccGroupSet2, MD2); 599 600 SmallVector<Metadata *, 4> Intersection; 601 if (MD1->getNumOperands() == 0) { 602 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 603 if (AccGroupSet2.count(MD1)) 604 Intersection.push_back(MD1); 605 } else { 606 for (const MDOperand &Node : MD1->operands()) { 607 auto *Item = cast<MDNode>(Node.get()); 608 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 609 if (AccGroupSet2.count(Item)) 610 Intersection.push_back(Item); 611 } 612 } 613 614 if (Intersection.size() == 0) 615 return nullptr; 616 if (Intersection.size() == 1) 617 return cast<MDNode>(Intersection.front()); 618 619 LLVMContext &Ctx = Inst1->getContext(); 620 return MDNode::get(Ctx, Intersection); 621 } 622 623 /// \returns \p I after propagating metadata from \p VL. 624 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 625 Instruction *I0 = cast<Instruction>(VL[0]); 626 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 627 I0->getAllMetadataOtherThanDebugLoc(Metadata); 628 629 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 630 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 631 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 632 LLVMContext::MD_access_group}) { 633 MDNode *MD = I0->getMetadata(Kind); 634 635 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 636 const Instruction *IJ = cast<Instruction>(VL[J]); 637 MDNode *IMD = IJ->getMetadata(Kind); 638 switch (Kind) { 639 case LLVMContext::MD_tbaa: 640 MD = MDNode::getMostGenericTBAA(MD, IMD); 641 break; 642 case LLVMContext::MD_alias_scope: 643 MD = MDNode::getMostGenericAliasScope(MD, IMD); 644 break; 645 case LLVMContext::MD_fpmath: 646 MD = MDNode::getMostGenericFPMath(MD, IMD); 647 break; 648 case LLVMContext::MD_noalias: 649 case LLVMContext::MD_nontemporal: 650 case LLVMContext::MD_invariant_load: 651 MD = MDNode::intersect(MD, IMD); 652 break; 653 case LLVMContext::MD_access_group: 654 MD = intersectAccessGroups(Inst, IJ); 655 break; 656 default: 657 llvm_unreachable("unhandled metadata"); 658 } 659 } 660 661 Inst->setMetadata(Kind, MD); 662 } 663 664 return Inst; 665 } 666 667 Constant * 668 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 669 const InterleaveGroup<Instruction> &Group) { 670 // All 1's means mask is not needed. 671 if (Group.getNumMembers() == Group.getFactor()) 672 return nullptr; 673 674 // TODO: support reversed access. 675 assert(!Group.isReverse() && "Reversed group not supported."); 676 677 SmallVector<Constant *, 16> Mask; 678 for (unsigned i = 0; i < VF; i++) 679 for (unsigned j = 0; j < Group.getFactor(); ++j) { 680 unsigned HasMember = Group.getMember(j) ? 1 : 0; 681 Mask.push_back(Builder.getInt1(HasMember)); 682 } 683 684 return ConstantVector::get(Mask); 685 } 686 687 Constant *llvm::createReplicatedMask(IRBuilderBase &Builder, 688 unsigned ReplicationFactor, unsigned VF) { 689 SmallVector<Constant *, 16> MaskVec; 690 for (unsigned i = 0; i < VF; i++) 691 for (unsigned j = 0; j < ReplicationFactor; j++) 692 MaskVec.push_back(Builder.getInt32(i)); 693 694 return ConstantVector::get(MaskVec); 695 } 696 697 Constant *llvm::createInterleaveMask(IRBuilderBase &Builder, unsigned VF, 698 unsigned NumVecs) { 699 SmallVector<Constant *, 16> Mask; 700 for (unsigned i = 0; i < VF; i++) 701 for (unsigned j = 0; j < NumVecs; j++) 702 Mask.push_back(Builder.getInt32(j * VF + i)); 703 704 return ConstantVector::get(Mask); 705 } 706 707 Constant *llvm::createStrideMask(IRBuilderBase &Builder, unsigned Start, 708 unsigned Stride, unsigned VF) { 709 SmallVector<Constant *, 16> Mask; 710 for (unsigned i = 0; i < VF; i++) 711 Mask.push_back(Builder.getInt32(Start + i * Stride)); 712 713 return ConstantVector::get(Mask); 714 } 715 716 Constant *llvm::createSequentialMask(IRBuilderBase &Builder, unsigned Start, 717 unsigned NumInts, unsigned NumUndefs) { 718 SmallVector<Constant *, 16> Mask; 719 for (unsigned i = 0; i < NumInts; i++) 720 Mask.push_back(Builder.getInt32(Start + i)); 721 722 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 723 for (unsigned i = 0; i < NumUndefs; i++) 724 Mask.push_back(Undef); 725 726 return ConstantVector::get(Mask); 727 } 728 729 /// A helper function for concatenating vectors. This function concatenates two 730 /// vectors having the same element type. If the second vector has fewer 731 /// elements than the first, it is padded with undefs. 732 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 733 Value *V2) { 734 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 735 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 736 assert(VecTy1 && VecTy2 && 737 VecTy1->getScalarType() == VecTy2->getScalarType() && 738 "Expect two vectors with the same element type"); 739 740 unsigned NumElts1 = VecTy1->getNumElements(); 741 unsigned NumElts2 = VecTy2->getNumElements(); 742 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 743 744 if (NumElts1 > NumElts2) { 745 // Extend with UNDEFs. 746 Constant *ExtMask = 747 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 748 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 749 } 750 751 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 752 return Builder.CreateShuffleVector(V1, V2, Mask); 753 } 754 755 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 756 ArrayRef<Value *> Vecs) { 757 unsigned NumVecs = Vecs.size(); 758 assert(NumVecs > 1 && "Should be at least two vectors"); 759 760 SmallVector<Value *, 8> ResList; 761 ResList.append(Vecs.begin(), Vecs.end()); 762 do { 763 SmallVector<Value *, 8> TmpList; 764 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 765 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 766 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 767 "Only the last vector may have a different type"); 768 769 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 770 } 771 772 // Push the last vector if the total number of vectors is odd. 773 if (NumVecs % 2 != 0) 774 TmpList.push_back(ResList[NumVecs - 1]); 775 776 ResList = TmpList; 777 NumVecs = ResList.size(); 778 } while (NumVecs > 1); 779 780 return ResList[0]; 781 } 782 783 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 784 auto *ConstMask = dyn_cast<Constant>(Mask); 785 if (!ConstMask) 786 return false; 787 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 788 return true; 789 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 790 ++I) { 791 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 792 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 793 continue; 794 return false; 795 } 796 return true; 797 } 798 799 800 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 801 auto *ConstMask = dyn_cast<Constant>(Mask); 802 if (!ConstMask) 803 return false; 804 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 805 return true; 806 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 807 ++I) { 808 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 809 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 810 continue; 811 return false; 812 } 813 return true; 814 } 815 816 /// TODO: This is a lot like known bits, but for 817 /// vectors. Is there something we can common this with? 818 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 819 820 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements(); 821 APInt DemandedElts = APInt::getAllOnesValue(VWidth); 822 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 823 for (unsigned i = 0; i < VWidth; i++) 824 if (CV->getAggregateElement(i)->isNullValue()) 825 DemandedElts.clearBit(i); 826 return DemandedElts; 827 } 828 829 bool InterleavedAccessInfo::isStrided(int Stride) { 830 unsigned Factor = std::abs(Stride); 831 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 832 } 833 834 void InterleavedAccessInfo::collectConstStrideAccesses( 835 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 836 const ValueToValueMap &Strides) { 837 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 838 839 // Since it's desired that the load/store instructions be maintained in 840 // "program order" for the interleaved access analysis, we have to visit the 841 // blocks in the loop in reverse postorder (i.e., in a topological order). 842 // Such an ordering will ensure that any load/store that may be executed 843 // before a second load/store will precede the second load/store in 844 // AccessStrideInfo. 845 LoopBlocksDFS DFS(TheLoop); 846 DFS.perform(LI); 847 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 848 for (auto &I : *BB) { 849 auto *LI = dyn_cast<LoadInst>(&I); 850 auto *SI = dyn_cast<StoreInst>(&I); 851 if (!LI && !SI) 852 continue; 853 854 Value *Ptr = getLoadStorePointerOperand(&I); 855 // We don't check wrapping here because we don't know yet if Ptr will be 856 // part of a full group or a group with gaps. Checking wrapping for all 857 // pointers (even those that end up in groups with no gaps) will be overly 858 // conservative. For full groups, wrapping should be ok since if we would 859 // wrap around the address space we would do a memory access at nullptr 860 // even without the transformation. The wrapping checks are therefore 861 // deferred until after we've formed the interleaved groups. 862 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 863 /*Assume=*/true, /*ShouldCheckWrap=*/false); 864 865 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 866 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 867 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 868 869 // An alignment of 0 means target ABI alignment. 870 MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I)); 871 if (!Alignment) 872 Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType())); 873 874 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment); 875 } 876 } 877 878 // Analyze interleaved accesses and collect them into interleaved load and 879 // store groups. 880 // 881 // When generating code for an interleaved load group, we effectively hoist all 882 // loads in the group to the location of the first load in program order. When 883 // generating code for an interleaved store group, we sink all stores to the 884 // location of the last store. This code motion can change the order of load 885 // and store instructions and may break dependences. 886 // 887 // The code generation strategy mentioned above ensures that we won't violate 888 // any write-after-read (WAR) dependences. 889 // 890 // E.g., for the WAR dependence: a = A[i]; // (1) 891 // A[i] = b; // (2) 892 // 893 // The store group of (2) is always inserted at or below (2), and the load 894 // group of (1) is always inserted at or above (1). Thus, the instructions will 895 // never be reordered. All other dependences are checked to ensure the 896 // correctness of the instruction reordering. 897 // 898 // The algorithm visits all memory accesses in the loop in bottom-up program 899 // order. Program order is established by traversing the blocks in the loop in 900 // reverse postorder when collecting the accesses. 901 // 902 // We visit the memory accesses in bottom-up order because it can simplify the 903 // construction of store groups in the presence of write-after-write (WAW) 904 // dependences. 905 // 906 // E.g., for the WAW dependence: A[i] = a; // (1) 907 // A[i] = b; // (2) 908 // A[i + 1] = c; // (3) 909 // 910 // We will first create a store group with (3) and (2). (1) can't be added to 911 // this group because it and (2) are dependent. However, (1) can be grouped 912 // with other accesses that may precede it in program order. Note that a 913 // bottom-up order does not imply that WAW dependences should not be checked. 914 void InterleavedAccessInfo::analyzeInterleaving( 915 bool EnablePredicatedInterleavedMemAccesses) { 916 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 917 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 918 919 // Holds all accesses with a constant stride. 920 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 921 collectConstStrideAccesses(AccessStrideInfo, Strides); 922 923 if (AccessStrideInfo.empty()) 924 return; 925 926 // Collect the dependences in the loop. 927 collectDependences(); 928 929 // Holds all interleaved store groups temporarily. 930 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 931 // Holds all interleaved load groups temporarily. 932 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 933 934 // Search in bottom-up program order for pairs of accesses (A and B) that can 935 // form interleaved load or store groups. In the algorithm below, access A 936 // precedes access B in program order. We initialize a group for B in the 937 // outer loop of the algorithm, and then in the inner loop, we attempt to 938 // insert each A into B's group if: 939 // 940 // 1. A and B have the same stride, 941 // 2. A and B have the same memory object size, and 942 // 3. A belongs in B's group according to its distance from B. 943 // 944 // Special care is taken to ensure group formation will not break any 945 // dependences. 946 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 947 BI != E; ++BI) { 948 Instruction *B = BI->first; 949 StrideDescriptor DesB = BI->second; 950 951 // Initialize a group for B if it has an allowable stride. Even if we don't 952 // create a group for B, we continue with the bottom-up algorithm to ensure 953 // we don't break any of B's dependences. 954 InterleaveGroup<Instruction> *Group = nullptr; 955 if (isStrided(DesB.Stride) && 956 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 957 Group = getInterleaveGroup(B); 958 if (!Group) { 959 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 960 << '\n'); 961 Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 962 } 963 if (B->mayWriteToMemory()) 964 StoreGroups.insert(Group); 965 else 966 LoadGroups.insert(Group); 967 } 968 969 for (auto AI = std::next(BI); AI != E; ++AI) { 970 Instruction *A = AI->first; 971 StrideDescriptor DesA = AI->second; 972 973 // Our code motion strategy implies that we can't have dependences 974 // between accesses in an interleaved group and other accesses located 975 // between the first and last member of the group. Note that this also 976 // means that a group can't have more than one member at a given offset. 977 // The accesses in a group can have dependences with other accesses, but 978 // we must ensure we don't extend the boundaries of the group such that 979 // we encompass those dependent accesses. 980 // 981 // For example, assume we have the sequence of accesses shown below in a 982 // stride-2 loop: 983 // 984 // (1, 2) is a group | A[i] = a; // (1) 985 // | A[i-1] = b; // (2) | 986 // A[i-3] = c; // (3) 987 // A[i] = d; // (4) | (2, 4) is not a group 988 // 989 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 990 // but not with (4). If we did, the dependent access (3) would be within 991 // the boundaries of the (2, 4) group. 992 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 993 // If a dependence exists and A is already in a group, we know that A 994 // must be a store since A precedes B and WAR dependences are allowed. 995 // Thus, A would be sunk below B. We release A's group to prevent this 996 // illegal code motion. A will then be free to form another group with 997 // instructions that precede it. 998 if (isInterleaved(A)) { 999 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 1000 1001 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1002 "dependence between " << *A << " and "<< *B << '\n'); 1003 1004 StoreGroups.remove(StoreGroup); 1005 releaseGroup(StoreGroup); 1006 } 1007 1008 // If a dependence exists and A is not already in a group (or it was 1009 // and we just released it), B might be hoisted above A (if B is a 1010 // load) or another store might be sunk below A (if B is a store). In 1011 // either case, we can't add additional instructions to B's group. B 1012 // will only form a group with instructions that it precedes. 1013 break; 1014 } 1015 1016 // At this point, we've checked for illegal code motion. If either A or B 1017 // isn't strided, there's nothing left to do. 1018 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1019 continue; 1020 1021 // Ignore A if it's already in a group or isn't the same kind of memory 1022 // operation as B. 1023 // Note that mayReadFromMemory() isn't mutually exclusive to 1024 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1025 // here, canVectorizeMemory() should have returned false - except for the 1026 // case we asked for optimization remarks. 1027 if (isInterleaved(A) || 1028 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1029 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1030 continue; 1031 1032 // Check rules 1 and 2. Ignore A if its stride or size is different from 1033 // that of B. 1034 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1035 continue; 1036 1037 // Ignore A if the memory object of A and B don't belong to the same 1038 // address space 1039 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1040 continue; 1041 1042 // Calculate the distance from A to B. 1043 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1044 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1045 if (!DistToB) 1046 continue; 1047 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1048 1049 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1050 // size. 1051 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1052 continue; 1053 1054 // All members of a predicated interleave-group must have the same predicate, 1055 // and currently must reside in the same BB. 1056 BasicBlock *BlockA = A->getParent(); 1057 BasicBlock *BlockB = B->getParent(); 1058 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1059 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1060 continue; 1061 1062 // The index of A is the index of B plus A's distance to B in multiples 1063 // of the size. 1064 int IndexA = 1065 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1066 1067 // Try to insert A into B's group. 1068 if (Group->insertMember(A, IndexA, DesA.Alignment)) { 1069 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1070 << " into the interleave group with" << *B 1071 << '\n'); 1072 InterleaveGroupMap[A] = Group; 1073 1074 // Set the first load in program order as the insert position. 1075 if (A->mayReadFromMemory()) 1076 Group->setInsertPos(A); 1077 } 1078 } // Iteration over A accesses. 1079 } // Iteration over B accesses. 1080 1081 // Remove interleaved store groups with gaps. 1082 for (auto *Group : StoreGroups) 1083 if (Group->getNumMembers() != Group->getFactor()) { 1084 LLVM_DEBUG( 1085 dbgs() << "LV: Invalidate candidate interleaved store group due " 1086 "to gaps.\n"); 1087 releaseGroup(Group); 1088 } 1089 // Remove interleaved groups with gaps (currently only loads) whose memory 1090 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1091 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1092 // not check wrapping (see documentation there). 1093 // FORNOW we use Assume=false; 1094 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1095 // of runtime SCEV assumptions checks (thereby potentially failing to 1096 // vectorize altogether). 1097 // Additional optional optimizations: 1098 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1099 // wrap then we can deduce that all pointers in the group don't wrap. 1100 // This means that we can forcefully peel the loop in order to only have to 1101 // check the first pointer for no-wrap. When we'll change to use Assume=true 1102 // we'll only need at most one runtime check per interleaved group. 1103 for (auto *Group : LoadGroups) { 1104 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1105 // load would wrap around the address space we would do a memory access at 1106 // nullptr even without the transformation. 1107 if (Group->getNumMembers() == Group->getFactor()) 1108 continue; 1109 1110 // Case 2: If first and last members of the group don't wrap this implies 1111 // that all the pointers in the group don't wrap. 1112 // So we check only group member 0 (which is always guaranteed to exist), 1113 // and group member Factor - 1; If the latter doesn't exist we rely on 1114 // peeling (if it is a non-reversed accsess -- see Case 3). 1115 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 1116 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 1117 /*ShouldCheckWrap=*/true)) { 1118 LLVM_DEBUG( 1119 dbgs() << "LV: Invalidate candidate interleaved group due to " 1120 "first group member potentially pointer-wrapping.\n"); 1121 releaseGroup(Group); 1122 continue; 1123 } 1124 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 1125 if (LastMember) { 1126 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 1127 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 1128 /*ShouldCheckWrap=*/true)) { 1129 LLVM_DEBUG( 1130 dbgs() << "LV: Invalidate candidate interleaved group due to " 1131 "last group member potentially pointer-wrapping.\n"); 1132 releaseGroup(Group); 1133 } 1134 } else { 1135 // Case 3: A non-reversed interleaved load group with gaps: We need 1136 // to execute at least one scalar epilogue iteration. This will ensure 1137 // we don't speculatively access memory out-of-bounds. We only need 1138 // to look for a member at index factor - 1, since every group must have 1139 // a member at index zero. 1140 if (Group->isReverse()) { 1141 LLVM_DEBUG( 1142 dbgs() << "LV: Invalidate candidate interleaved group due to " 1143 "a reverse access with gaps.\n"); 1144 releaseGroup(Group); 1145 continue; 1146 } 1147 LLVM_DEBUG( 1148 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1149 RequiresScalarEpilogue = true; 1150 } 1151 } 1152 } 1153 1154 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1155 // If no group had triggered the requirement to create an epilogue loop, 1156 // there is nothing to do. 1157 if (!requiresScalarEpilogue()) 1158 return; 1159 1160 // Avoid releasing a Group twice. 1161 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; 1162 for (auto &I : InterleaveGroupMap) { 1163 InterleaveGroup<Instruction> *Group = I.second; 1164 if (Group->requiresScalarEpilogue()) 1165 DelSet.insert(Group); 1166 } 1167 for (auto *Ptr : DelSet) { 1168 LLVM_DEBUG( 1169 dbgs() 1170 << "LV: Invalidate candidate interleaved group due to gaps that " 1171 "require a scalar epilogue (not allowed under optsize) and cannot " 1172 "be masked (not enabled). \n"); 1173 releaseGroup(Ptr); 1174 } 1175 1176 RequiresScalarEpilogue = false; 1177 } 1178 1179 template <typename InstT> 1180 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1181 llvm_unreachable("addMetadata can only be used for Instruction"); 1182 } 1183 1184 namespace llvm { 1185 template <> 1186 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1187 SmallVector<Value *, 4> VL; 1188 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1189 [](std::pair<int, Instruction *> p) { return p.second; }); 1190 propagateMetadata(NewInst, VL); 1191 } 1192 } 1193 1194 void VFABI::getVectorVariantNames( 1195 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1196 const StringRef S = 1197 CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName) 1198 .getValueAsString(); 1199 if (S.empty()) 1200 return; 1201 1202 SmallVector<StringRef, 8> ListAttr; 1203 S.split(ListAttr, ","); 1204 1205 for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1206 #ifndef NDEBUG 1207 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); 1208 Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule())); 1209 assert(Info.hasValue() && "Invalid name for a VFABI variant."); 1210 assert(CI.getModule()->getFunction(Info.getValue().VectorName) && 1211 "Vector function is missing."); 1212 #endif 1213 VariantMappings.push_back(std::string(S)); 1214 } 1215 } 1216 1217 bool VFShape::hasValidParameterList() const { 1218 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1219 ++Pos) { 1220 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1221 1222 switch (Parameters[Pos].ParamKind) { 1223 default: // Nothing to check. 1224 break; 1225 case VFParamKind::OMP_Linear: 1226 case VFParamKind::OMP_LinearRef: 1227 case VFParamKind::OMP_LinearVal: 1228 case VFParamKind::OMP_LinearUVal: 1229 // Compile time linear steps must be non-zero. 1230 if (Parameters[Pos].LinearStepOrPos == 0) 1231 return false; 1232 break; 1233 case VFParamKind::OMP_LinearPos: 1234 case VFParamKind::OMP_LinearRefPos: 1235 case VFParamKind::OMP_LinearValPos: 1236 case VFParamKind::OMP_LinearUValPos: 1237 // The runtime linear step must be referring to some other 1238 // parameters in the signature. 1239 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1240 return false; 1241 // The linear step parameter must be marked as uniform. 1242 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1243 VFParamKind::OMP_Uniform) 1244 return false; 1245 // The linear step parameter can't point at itself. 1246 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1247 return false; 1248 break; 1249 case VFParamKind::GlobalPredicate: 1250 // The global predicate must be the unique. Can be placed anywhere in the 1251 // signature. 1252 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1253 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1254 return false; 1255 break; 1256 } 1257 } 1258 return true; 1259 } 1260