1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines vectorizer utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/IR/Value.h" 25 #include "llvm/IR/Constants.h" 26 27 using namespace llvm; 28 using namespace llvm::PatternMatch; 29 30 /// \brief Identify if the intrinsic is trivially vectorizable. 31 /// This method returns true if the intrinsic's argument types are all 32 /// scalars for the scalar form of the intrinsic and all vectors for 33 /// the vector form of the intrinsic. 34 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 35 switch (ID) { 36 case Intrinsic::sqrt: 37 case Intrinsic::sin: 38 case Intrinsic::cos: 39 case Intrinsic::exp: 40 case Intrinsic::exp2: 41 case Intrinsic::log: 42 case Intrinsic::log10: 43 case Intrinsic::log2: 44 case Intrinsic::fabs: 45 case Intrinsic::minnum: 46 case Intrinsic::maxnum: 47 case Intrinsic::copysign: 48 case Intrinsic::floor: 49 case Intrinsic::ceil: 50 case Intrinsic::trunc: 51 case Intrinsic::rint: 52 case Intrinsic::nearbyint: 53 case Intrinsic::round: 54 case Intrinsic::bswap: 55 case Intrinsic::ctpop: 56 case Intrinsic::pow: 57 case Intrinsic::fma: 58 case Intrinsic::fmuladd: 59 case Intrinsic::ctlz: 60 case Intrinsic::cttz: 61 case Intrinsic::powi: 62 return true; 63 default: 64 return false; 65 } 66 } 67 68 /// \brief Identifies if the intrinsic has a scalar operand. It check for 69 /// ctlz,cttz and powi special intrinsics whose argument is scalar. 70 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 71 unsigned ScalarOpdIdx) { 72 switch (ID) { 73 case Intrinsic::ctlz: 74 case Intrinsic::cttz: 75 case Intrinsic::powi: 76 return (ScalarOpdIdx == 1); 77 default: 78 return false; 79 } 80 } 81 82 /// \brief Returns intrinsic ID for call. 83 /// For the input call instruction it finds mapping intrinsic and returns 84 /// its ID, in case it does not found it return not_intrinsic. 85 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 86 const TargetLibraryInfo *TLI) { 87 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 88 if (ID == Intrinsic::not_intrinsic) 89 return Intrinsic::not_intrinsic; 90 91 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 92 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume) 93 return ID; 94 return Intrinsic::not_intrinsic; 95 } 96 97 /// \brief Find the operand of the GEP that should be checked for consecutive 98 /// stores. This ignores trailing indices that have no effect on the final 99 /// pointer. 100 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 101 const DataLayout &DL = Gep->getModule()->getDataLayout(); 102 unsigned LastOperand = Gep->getNumOperands() - 1; 103 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 104 105 // Walk backwards and try to peel off zeros. 106 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 107 // Find the type we're currently indexing into. 108 gep_type_iterator GEPTI = gep_type_begin(Gep); 109 std::advance(GEPTI, LastOperand - 1); 110 111 // If it's a type with the same allocation size as the result of the GEP we 112 // can peel off the zero index. 113 if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize) 114 break; 115 --LastOperand; 116 } 117 118 return LastOperand; 119 } 120 121 /// \brief If the argument is a GEP, then returns the operand identified by 122 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 123 /// operand, it returns that instead. 124 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 125 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 126 if (!GEP) 127 return Ptr; 128 129 unsigned InductionOperand = getGEPInductionOperand(GEP); 130 131 // Check that all of the gep indices are uniform except for our induction 132 // operand. 133 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 134 if (i != InductionOperand && 135 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 136 return Ptr; 137 return GEP->getOperand(InductionOperand); 138 } 139 140 /// \brief If a value has only one user that is a CastInst, return it. 141 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 142 Value *UniqueCast = nullptr; 143 for (User *U : Ptr->users()) { 144 CastInst *CI = dyn_cast<CastInst>(U); 145 if (CI && CI->getType() == Ty) { 146 if (!UniqueCast) 147 UniqueCast = CI; 148 else 149 return nullptr; 150 } 151 } 152 return UniqueCast; 153 } 154 155 /// \brief Get the stride of a pointer access in a loop. Looks for symbolic 156 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 157 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 158 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 159 if (!PtrTy || PtrTy->isAggregateType()) 160 return nullptr; 161 162 // Try to remove a gep instruction to make the pointer (actually index at this 163 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 164 // pointer, otherwise, we are analyzing the index. 165 Value *OrigPtr = Ptr; 166 167 // The size of the pointer access. 168 int64_t PtrAccessSize = 1; 169 170 Ptr = stripGetElementPtr(Ptr, SE, Lp); 171 const SCEV *V = SE->getSCEV(Ptr); 172 173 if (Ptr != OrigPtr) 174 // Strip off casts. 175 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 176 V = C->getOperand(); 177 178 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 179 if (!S) 180 return nullptr; 181 182 V = S->getStepRecurrence(*SE); 183 if (!V) 184 return nullptr; 185 186 // Strip off the size of access multiplication if we are still analyzing the 187 // pointer. 188 if (OrigPtr == Ptr) { 189 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 190 if (M->getOperand(0)->getSCEVType() != scConstant) 191 return nullptr; 192 193 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 194 195 // Huge step value - give up. 196 if (APStepVal.getBitWidth() > 64) 197 return nullptr; 198 199 int64_t StepVal = APStepVal.getSExtValue(); 200 if (PtrAccessSize != StepVal) 201 return nullptr; 202 V = M->getOperand(1); 203 } 204 } 205 206 // Strip off casts. 207 Type *StripedOffRecurrenceCast = nullptr; 208 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 209 StripedOffRecurrenceCast = C->getType(); 210 V = C->getOperand(); 211 } 212 213 // Look for the loop invariant symbolic value. 214 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 215 if (!U) 216 return nullptr; 217 218 Value *Stride = U->getValue(); 219 if (!Lp->isLoopInvariant(Stride)) 220 return nullptr; 221 222 // If we have stripped off the recurrence cast we have to make sure that we 223 // return the value that is used in this loop so that we can replace it later. 224 if (StripedOffRecurrenceCast) 225 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 226 227 return Stride; 228 } 229 230 /// \brief Given a vector and an element number, see if the scalar value is 231 /// already around as a register, for example if it were inserted then extracted 232 /// from the vector. 233 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 234 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 235 VectorType *VTy = cast<VectorType>(V->getType()); 236 unsigned Width = VTy->getNumElements(); 237 if (EltNo >= Width) // Out of range access. 238 return UndefValue::get(VTy->getElementType()); 239 240 if (Constant *C = dyn_cast<Constant>(V)) 241 return C->getAggregateElement(EltNo); 242 243 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 244 // If this is an insert to a variable element, we don't know what it is. 245 if (!isa<ConstantInt>(III->getOperand(2))) 246 return nullptr; 247 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 248 249 // If this is an insert to the element we are looking for, return the 250 // inserted value. 251 if (EltNo == IIElt) 252 return III->getOperand(1); 253 254 // Otherwise, the insertelement doesn't modify the value, recurse on its 255 // vector input. 256 return findScalarElement(III->getOperand(0), EltNo); 257 } 258 259 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 260 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 261 int InEl = SVI->getMaskValue(EltNo); 262 if (InEl < 0) 263 return UndefValue::get(VTy->getElementType()); 264 if (InEl < (int)LHSWidth) 265 return findScalarElement(SVI->getOperand(0), InEl); 266 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 267 } 268 269 // Extract a value from a vector add operation with a constant zero. 270 Value *Val = nullptr; Constant *Con = nullptr; 271 if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) 272 if (Constant *Elt = Con->getAggregateElement(EltNo)) 273 if (Elt->isNullValue()) 274 return findScalarElement(Val, EltNo); 275 276 // Otherwise, we don't know. 277 return nullptr; 278 } 279 280 /// \brief Get splat value if the input is a splat vector or return nullptr. 281 /// This function is not fully general. It checks only 2 cases: 282 /// the input value is (1) a splat constants vector or (2) a sequence 283 /// of instructions that broadcast a single value into a vector. 284 /// 285 const llvm::Value *llvm::getSplatValue(const Value *V) { 286 287 if (auto *C = dyn_cast<Constant>(V)) 288 if (isa<VectorType>(V->getType())) 289 return C->getSplatValue(); 290 291 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V); 292 if (!ShuffleInst) 293 return nullptr; 294 // All-zero (or undef) shuffle mask elements. 295 for (int MaskElt : ShuffleInst->getShuffleMask()) 296 if (MaskElt != 0 && MaskElt != -1) 297 return nullptr; 298 // The first shuffle source is 'insertelement' with index 0. 299 auto *InsertEltInst = 300 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0)); 301 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) || 302 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue()) 303 return nullptr; 304 305 return InsertEltInst->getOperand(1); 306 } 307 308 MapVector<Instruction *, uint64_t> 309 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 310 const TargetTransformInfo *TTI) { 311 312 // DemandedBits will give us every value's live-out bits. But we want 313 // to ensure no extra casts would need to be inserted, so every DAG 314 // of connected values must have the same minimum bitwidth. 315 EquivalenceClasses<Value *> ECs; 316 SmallVector<Value *, 16> Worklist; 317 SmallPtrSet<Value *, 4> Roots; 318 SmallPtrSet<Value *, 16> Visited; 319 DenseMap<Value *, uint64_t> DBits; 320 SmallPtrSet<Instruction *, 4> InstructionSet; 321 MapVector<Instruction *, uint64_t> MinBWs; 322 323 // Determine the roots. We work bottom-up, from truncs or icmps. 324 bool SeenExtFromIllegalType = false; 325 for (auto *BB : Blocks) 326 for (auto &I : *BB) { 327 InstructionSet.insert(&I); 328 329 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 330 !TTI->isTypeLegal(I.getOperand(0)->getType())) 331 SeenExtFromIllegalType = true; 332 333 // Only deal with non-vector integers up to 64-bits wide. 334 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 335 !I.getType()->isVectorTy() && 336 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 337 // Don't make work for ourselves. If we know the loaded type is legal, 338 // don't add it to the worklist. 339 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 340 continue; 341 342 Worklist.push_back(&I); 343 Roots.insert(&I); 344 } 345 } 346 // Early exit. 347 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 348 return MinBWs; 349 350 // Now proceed breadth-first, unioning values together. 351 while (!Worklist.empty()) { 352 Value *Val = Worklist.pop_back_val(); 353 Value *Leader = ECs.getOrInsertLeaderValue(Val); 354 355 if (Visited.count(Val)) 356 continue; 357 Visited.insert(Val); 358 359 // Non-instructions terminate a chain successfully. 360 if (!isa<Instruction>(Val)) 361 continue; 362 Instruction *I = cast<Instruction>(Val); 363 364 // If we encounter a type that is larger than 64 bits, we can't represent 365 // it so bail out. 366 if (DB.getDemandedBits(I).getBitWidth() > 64) 367 return MapVector<Instruction *, uint64_t>(); 368 369 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 370 DBits[Leader] |= V; 371 DBits[I] = V; 372 373 // Casts, loads and instructions outside of our range terminate a chain 374 // successfully. 375 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 376 !InstructionSet.count(I)) 377 continue; 378 379 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 380 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 381 // transform anything that relies on them. 382 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 383 !I->getType()->isIntegerTy()) { 384 DBits[Leader] |= ~0ULL; 385 continue; 386 } 387 388 // We don't modify the types of PHIs. Reductions will already have been 389 // truncated if possible, and inductions' sizes will have been chosen by 390 // indvars. 391 if (isa<PHINode>(I)) 392 continue; 393 394 if (DBits[Leader] == ~0ULL) 395 // All bits demanded, no point continuing. 396 continue; 397 398 for (Value *O : cast<User>(I)->operands()) { 399 ECs.unionSets(Leader, O); 400 Worklist.push_back(O); 401 } 402 } 403 404 // Now we've discovered all values, walk them to see if there are 405 // any users we didn't see. If there are, we can't optimize that 406 // chain. 407 for (auto &I : DBits) 408 for (auto *U : I.first->users()) 409 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 410 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 411 412 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 413 uint64_t LeaderDemandedBits = 0; 414 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 415 LeaderDemandedBits |= DBits[*MI]; 416 417 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 418 llvm::countLeadingZeros(LeaderDemandedBits); 419 // Round up to a power of 2 420 if (!isPowerOf2_64((uint64_t)MinBW)) 421 MinBW = NextPowerOf2(MinBW); 422 423 // We don't modify the types of PHIs. Reductions will already have been 424 // truncated if possible, and inductions' sizes will have been chosen by 425 // indvars. 426 // If we are required to shrink a PHI, abandon this entire equivalence class. 427 bool Abort = false; 428 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 429 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 430 Abort = true; 431 break; 432 } 433 if (Abort) 434 continue; 435 436 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 437 if (!isa<Instruction>(*MI)) 438 continue; 439 Type *Ty = (*MI)->getType(); 440 if (Roots.count(*MI)) 441 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 442 if (MinBW < Ty->getScalarSizeInBits()) 443 MinBWs[cast<Instruction>(*MI)] = MinBW; 444 } 445 } 446 447 return MinBWs; 448 } 449