1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines vectorizer utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/VectorUtils.h" 15 #include "llvm/ADT/EquivalenceClasses.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Value.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic and vectors for the vector form of the 42 /// intrinsic. 43 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 44 switch (ID) { 45 case Intrinsic::bswap: // Begin integer bit-manipulation. 46 case Intrinsic::bitreverse: 47 case Intrinsic::ctpop: 48 case Intrinsic::ctlz: 49 case Intrinsic::cttz: 50 case Intrinsic::fshl: 51 case Intrinsic::fshr: 52 case Intrinsic::sqrt: // Begin floating-point. 53 case Intrinsic::sin: 54 case Intrinsic::cos: 55 case Intrinsic::exp: 56 case Intrinsic::exp2: 57 case Intrinsic::log: 58 case Intrinsic::log10: 59 case Intrinsic::log2: 60 case Intrinsic::fabs: 61 case Intrinsic::minnum: 62 case Intrinsic::maxnum: 63 case Intrinsic::minimum: 64 case Intrinsic::maximum: 65 case Intrinsic::copysign: 66 case Intrinsic::floor: 67 case Intrinsic::ceil: 68 case Intrinsic::trunc: 69 case Intrinsic::rint: 70 case Intrinsic::nearbyint: 71 case Intrinsic::round: 72 case Intrinsic::pow: 73 case Intrinsic::fma: 74 case Intrinsic::fmuladd: 75 case Intrinsic::powi: 76 case Intrinsic::canonicalize: 77 case Intrinsic::sadd_sat: 78 case Intrinsic::ssub_sat: 79 case Intrinsic::uadd_sat: 80 case Intrinsic::usub_sat: 81 return true; 82 default: 83 return false; 84 } 85 } 86 87 /// Identifies if the intrinsic has a scalar operand. It check for 88 /// ctlz,cttz and powi special intrinsics whose argument is scalar. 89 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 90 unsigned ScalarOpdIdx) { 91 switch (ID) { 92 case Intrinsic::ctlz: 93 case Intrinsic::cttz: 94 case Intrinsic::powi: 95 return (ScalarOpdIdx == 1); 96 default: 97 return false; 98 } 99 } 100 101 /// Returns intrinsic ID for call. 102 /// For the input call instruction it finds mapping intrinsic and returns 103 /// its ID, in case it does not found it return not_intrinsic. 104 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 105 const TargetLibraryInfo *TLI) { 106 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 107 if (ID == Intrinsic::not_intrinsic) 108 return Intrinsic::not_intrinsic; 109 110 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 111 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 112 ID == Intrinsic::sideeffect) 113 return ID; 114 return Intrinsic::not_intrinsic; 115 } 116 117 /// Find the operand of the GEP that should be checked for consecutive 118 /// stores. This ignores trailing indices that have no effect on the final 119 /// pointer. 120 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 121 const DataLayout &DL = Gep->getModule()->getDataLayout(); 122 unsigned LastOperand = Gep->getNumOperands() - 1; 123 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 124 125 // Walk backwards and try to peel off zeros. 126 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 127 // Find the type we're currently indexing into. 128 gep_type_iterator GEPTI = gep_type_begin(Gep); 129 std::advance(GEPTI, LastOperand - 2); 130 131 // If it's a type with the same allocation size as the result of the GEP we 132 // can peel off the zero index. 133 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 134 break; 135 --LastOperand; 136 } 137 138 return LastOperand; 139 } 140 141 /// If the argument is a GEP, then returns the operand identified by 142 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 143 /// operand, it returns that instead. 144 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 145 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 146 if (!GEP) 147 return Ptr; 148 149 unsigned InductionOperand = getGEPInductionOperand(GEP); 150 151 // Check that all of the gep indices are uniform except for our induction 152 // operand. 153 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 154 if (i != InductionOperand && 155 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 156 return Ptr; 157 return GEP->getOperand(InductionOperand); 158 } 159 160 /// If a value has only one user that is a CastInst, return it. 161 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 162 Value *UniqueCast = nullptr; 163 for (User *U : Ptr->users()) { 164 CastInst *CI = dyn_cast<CastInst>(U); 165 if (CI && CI->getType() == Ty) { 166 if (!UniqueCast) 167 UniqueCast = CI; 168 else 169 return nullptr; 170 } 171 } 172 return UniqueCast; 173 } 174 175 /// Get the stride of a pointer access in a loop. Looks for symbolic 176 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 177 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 178 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 179 if (!PtrTy || PtrTy->isAggregateType()) 180 return nullptr; 181 182 // Try to remove a gep instruction to make the pointer (actually index at this 183 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 184 // pointer, otherwise, we are analyzing the index. 185 Value *OrigPtr = Ptr; 186 187 // The size of the pointer access. 188 int64_t PtrAccessSize = 1; 189 190 Ptr = stripGetElementPtr(Ptr, SE, Lp); 191 const SCEV *V = SE->getSCEV(Ptr); 192 193 if (Ptr != OrigPtr) 194 // Strip off casts. 195 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 196 V = C->getOperand(); 197 198 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 199 if (!S) 200 return nullptr; 201 202 V = S->getStepRecurrence(*SE); 203 if (!V) 204 return nullptr; 205 206 // Strip off the size of access multiplication if we are still analyzing the 207 // pointer. 208 if (OrigPtr == Ptr) { 209 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 210 if (M->getOperand(0)->getSCEVType() != scConstant) 211 return nullptr; 212 213 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 214 215 // Huge step value - give up. 216 if (APStepVal.getBitWidth() > 64) 217 return nullptr; 218 219 int64_t StepVal = APStepVal.getSExtValue(); 220 if (PtrAccessSize != StepVal) 221 return nullptr; 222 V = M->getOperand(1); 223 } 224 } 225 226 // Strip off casts. 227 Type *StripedOffRecurrenceCast = nullptr; 228 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 229 StripedOffRecurrenceCast = C->getType(); 230 V = C->getOperand(); 231 } 232 233 // Look for the loop invariant symbolic value. 234 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 235 if (!U) 236 return nullptr; 237 238 Value *Stride = U->getValue(); 239 if (!Lp->isLoopInvariant(Stride)) 240 return nullptr; 241 242 // If we have stripped off the recurrence cast we have to make sure that we 243 // return the value that is used in this loop so that we can replace it later. 244 if (StripedOffRecurrenceCast) 245 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 246 247 return Stride; 248 } 249 250 /// Given a vector and an element number, see if the scalar value is 251 /// already around as a register, for example if it were inserted then extracted 252 /// from the vector. 253 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 254 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 255 VectorType *VTy = cast<VectorType>(V->getType()); 256 unsigned Width = VTy->getNumElements(); 257 if (EltNo >= Width) // Out of range access. 258 return UndefValue::get(VTy->getElementType()); 259 260 if (Constant *C = dyn_cast<Constant>(V)) 261 return C->getAggregateElement(EltNo); 262 263 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 264 // If this is an insert to a variable element, we don't know what it is. 265 if (!isa<ConstantInt>(III->getOperand(2))) 266 return nullptr; 267 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 268 269 // If this is an insert to the element we are looking for, return the 270 // inserted value. 271 if (EltNo == IIElt) 272 return III->getOperand(1); 273 274 // Otherwise, the insertelement doesn't modify the value, recurse on its 275 // vector input. 276 return findScalarElement(III->getOperand(0), EltNo); 277 } 278 279 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 280 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 281 int InEl = SVI->getMaskValue(EltNo); 282 if (InEl < 0) 283 return UndefValue::get(VTy->getElementType()); 284 if (InEl < (int)LHSWidth) 285 return findScalarElement(SVI->getOperand(0), InEl); 286 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 287 } 288 289 // Extract a value from a vector add operation with a constant zero. 290 // TODO: Use getBinOpIdentity() to generalize this. 291 Value *Val; Constant *C; 292 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 293 if (Constant *Elt = C->getAggregateElement(EltNo)) 294 if (Elt->isNullValue()) 295 return findScalarElement(Val, EltNo); 296 297 // Otherwise, we don't know. 298 return nullptr; 299 } 300 301 /// Get splat value if the input is a splat vector or return nullptr. 302 /// This function is not fully general. It checks only 2 cases: 303 /// the input value is (1) a splat constants vector or (2) a sequence 304 /// of instructions that broadcast a single value into a vector. 305 /// 306 const llvm::Value *llvm::getSplatValue(const Value *V) { 307 308 if (auto *C = dyn_cast<Constant>(V)) 309 if (isa<VectorType>(V->getType())) 310 return C->getSplatValue(); 311 312 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V); 313 if (!ShuffleInst) 314 return nullptr; 315 // All-zero (or undef) shuffle mask elements. 316 for (int MaskElt : ShuffleInst->getShuffleMask()) 317 if (MaskElt != 0 && MaskElt != -1) 318 return nullptr; 319 // The first shuffle source is 'insertelement' with index 0. 320 auto *InsertEltInst = 321 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0)); 322 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) || 323 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero()) 324 return nullptr; 325 326 return InsertEltInst->getOperand(1); 327 } 328 329 MapVector<Instruction *, uint64_t> 330 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 331 const TargetTransformInfo *TTI) { 332 333 // DemandedBits will give us every value's live-out bits. But we want 334 // to ensure no extra casts would need to be inserted, so every DAG 335 // of connected values must have the same minimum bitwidth. 336 EquivalenceClasses<Value *> ECs; 337 SmallVector<Value *, 16> Worklist; 338 SmallPtrSet<Value *, 4> Roots; 339 SmallPtrSet<Value *, 16> Visited; 340 DenseMap<Value *, uint64_t> DBits; 341 SmallPtrSet<Instruction *, 4> InstructionSet; 342 MapVector<Instruction *, uint64_t> MinBWs; 343 344 // Determine the roots. We work bottom-up, from truncs or icmps. 345 bool SeenExtFromIllegalType = false; 346 for (auto *BB : Blocks) 347 for (auto &I : *BB) { 348 InstructionSet.insert(&I); 349 350 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 351 !TTI->isTypeLegal(I.getOperand(0)->getType())) 352 SeenExtFromIllegalType = true; 353 354 // Only deal with non-vector integers up to 64-bits wide. 355 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 356 !I.getType()->isVectorTy() && 357 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 358 // Don't make work for ourselves. If we know the loaded type is legal, 359 // don't add it to the worklist. 360 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 361 continue; 362 363 Worklist.push_back(&I); 364 Roots.insert(&I); 365 } 366 } 367 // Early exit. 368 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 369 return MinBWs; 370 371 // Now proceed breadth-first, unioning values together. 372 while (!Worklist.empty()) { 373 Value *Val = Worklist.pop_back_val(); 374 Value *Leader = ECs.getOrInsertLeaderValue(Val); 375 376 if (Visited.count(Val)) 377 continue; 378 Visited.insert(Val); 379 380 // Non-instructions terminate a chain successfully. 381 if (!isa<Instruction>(Val)) 382 continue; 383 Instruction *I = cast<Instruction>(Val); 384 385 // If we encounter a type that is larger than 64 bits, we can't represent 386 // it so bail out. 387 if (DB.getDemandedBits(I).getBitWidth() > 64) 388 return MapVector<Instruction *, uint64_t>(); 389 390 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 391 DBits[Leader] |= V; 392 DBits[I] = V; 393 394 // Casts, loads and instructions outside of our range terminate a chain 395 // successfully. 396 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 397 !InstructionSet.count(I)) 398 continue; 399 400 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 401 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 402 // transform anything that relies on them. 403 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 404 !I->getType()->isIntegerTy()) { 405 DBits[Leader] |= ~0ULL; 406 continue; 407 } 408 409 // We don't modify the types of PHIs. Reductions will already have been 410 // truncated if possible, and inductions' sizes will have been chosen by 411 // indvars. 412 if (isa<PHINode>(I)) 413 continue; 414 415 if (DBits[Leader] == ~0ULL) 416 // All bits demanded, no point continuing. 417 continue; 418 419 for (Value *O : cast<User>(I)->operands()) { 420 ECs.unionSets(Leader, O); 421 Worklist.push_back(O); 422 } 423 } 424 425 // Now we've discovered all values, walk them to see if there are 426 // any users we didn't see. If there are, we can't optimize that 427 // chain. 428 for (auto &I : DBits) 429 for (auto *U : I.first->users()) 430 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 431 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 432 433 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 434 uint64_t LeaderDemandedBits = 0; 435 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 436 LeaderDemandedBits |= DBits[*MI]; 437 438 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 439 llvm::countLeadingZeros(LeaderDemandedBits); 440 // Round up to a power of 2 441 if (!isPowerOf2_64((uint64_t)MinBW)) 442 MinBW = NextPowerOf2(MinBW); 443 444 // We don't modify the types of PHIs. Reductions will already have been 445 // truncated if possible, and inductions' sizes will have been chosen by 446 // indvars. 447 // If we are required to shrink a PHI, abandon this entire equivalence class. 448 bool Abort = false; 449 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 450 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 451 Abort = true; 452 break; 453 } 454 if (Abort) 455 continue; 456 457 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 458 if (!isa<Instruction>(*MI)) 459 continue; 460 Type *Ty = (*MI)->getType(); 461 if (Roots.count(*MI)) 462 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 463 if (MinBW < Ty->getScalarSizeInBits()) 464 MinBWs[cast<Instruction>(*MI)] = MinBW; 465 } 466 } 467 468 return MinBWs; 469 } 470 471 /// Add all access groups in @p AccGroups to @p List. 472 template <typename ListT> 473 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 474 // Interpret an access group as a list containing itself. 475 if (AccGroups->getNumOperands() == 0) { 476 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 477 List.insert(AccGroups); 478 return; 479 } 480 481 for (auto &AccGroupListOp : AccGroups->operands()) { 482 auto *Item = cast<MDNode>(AccGroupListOp.get()); 483 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 484 List.insert(Item); 485 } 486 } 487 488 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 489 if (!AccGroups1) 490 return AccGroups2; 491 if (!AccGroups2) 492 return AccGroups1; 493 if (AccGroups1 == AccGroups2) 494 return AccGroups1; 495 496 SmallSetVector<Metadata *, 4> Union; 497 addToAccessGroupList(Union, AccGroups1); 498 addToAccessGroupList(Union, AccGroups2); 499 500 if (Union.size() == 0) 501 return nullptr; 502 if (Union.size() == 1) 503 return cast<MDNode>(Union.front()); 504 505 LLVMContext &Ctx = AccGroups1->getContext(); 506 return MDNode::get(Ctx, Union.getArrayRef()); 507 } 508 509 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 510 const Instruction *Inst2) { 511 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 512 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 513 514 if (!MayAccessMem1 && !MayAccessMem2) 515 return nullptr; 516 if (!MayAccessMem1) 517 return Inst2->getMetadata(LLVMContext::MD_access_group); 518 if (!MayAccessMem2) 519 return Inst1->getMetadata(LLVMContext::MD_access_group); 520 521 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 522 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 523 if (!MD1 || !MD2) 524 return nullptr; 525 if (MD1 == MD2) 526 return MD1; 527 528 // Use set for scalable 'contains' check. 529 SmallPtrSet<Metadata *, 4> AccGroupSet2; 530 addToAccessGroupList(AccGroupSet2, MD2); 531 532 SmallVector<Metadata *, 4> Intersection; 533 if (MD1->getNumOperands() == 0) { 534 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 535 if (AccGroupSet2.count(MD1)) 536 Intersection.push_back(MD1); 537 } else { 538 for (const MDOperand &Node : MD1->operands()) { 539 auto *Item = cast<MDNode>(Node.get()); 540 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 541 if (AccGroupSet2.count(Item)) 542 Intersection.push_back(Item); 543 } 544 } 545 546 if (Intersection.size() == 0) 547 return nullptr; 548 if (Intersection.size() == 1) 549 return cast<MDNode>(Intersection.front()); 550 551 LLVMContext &Ctx = Inst1->getContext(); 552 return MDNode::get(Ctx, Intersection); 553 } 554 555 /// \returns \p I after propagating metadata from \p VL. 556 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 557 Instruction *I0 = cast<Instruction>(VL[0]); 558 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 559 I0->getAllMetadataOtherThanDebugLoc(Metadata); 560 561 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 562 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 563 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 564 LLVMContext::MD_access_group}) { 565 MDNode *MD = I0->getMetadata(Kind); 566 567 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 568 const Instruction *IJ = cast<Instruction>(VL[J]); 569 MDNode *IMD = IJ->getMetadata(Kind); 570 switch (Kind) { 571 case LLVMContext::MD_tbaa: 572 MD = MDNode::getMostGenericTBAA(MD, IMD); 573 break; 574 case LLVMContext::MD_alias_scope: 575 MD = MDNode::getMostGenericAliasScope(MD, IMD); 576 break; 577 case LLVMContext::MD_fpmath: 578 MD = MDNode::getMostGenericFPMath(MD, IMD); 579 break; 580 case LLVMContext::MD_noalias: 581 case LLVMContext::MD_nontemporal: 582 case LLVMContext::MD_invariant_load: 583 MD = MDNode::intersect(MD, IMD); 584 break; 585 case LLVMContext::MD_access_group: 586 MD = intersectAccessGroups(Inst, IJ); 587 break; 588 default: 589 llvm_unreachable("unhandled metadata"); 590 } 591 } 592 593 Inst->setMetadata(Kind, MD); 594 } 595 596 return Inst; 597 } 598 599 Constant * 600 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF, 601 const InterleaveGroup<Instruction> &Group) { 602 // All 1's means mask is not needed. 603 if (Group.getNumMembers() == Group.getFactor()) 604 return nullptr; 605 606 // TODO: support reversed access. 607 assert(!Group.isReverse() && "Reversed group not supported."); 608 609 SmallVector<Constant *, 16> Mask; 610 for (unsigned i = 0; i < VF; i++) 611 for (unsigned j = 0; j < Group.getFactor(); ++j) { 612 unsigned HasMember = Group.getMember(j) ? 1 : 0; 613 Mask.push_back(Builder.getInt1(HasMember)); 614 } 615 616 return ConstantVector::get(Mask); 617 } 618 619 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, 620 unsigned ReplicationFactor, unsigned VF) { 621 SmallVector<Constant *, 16> MaskVec; 622 for (unsigned i = 0; i < VF; i++) 623 for (unsigned j = 0; j < ReplicationFactor; j++) 624 MaskVec.push_back(Builder.getInt32(i)); 625 626 return ConstantVector::get(MaskVec); 627 } 628 629 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, 630 unsigned NumVecs) { 631 SmallVector<Constant *, 16> Mask; 632 for (unsigned i = 0; i < VF; i++) 633 for (unsigned j = 0; j < NumVecs; j++) 634 Mask.push_back(Builder.getInt32(j * VF + i)); 635 636 return ConstantVector::get(Mask); 637 } 638 639 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, 640 unsigned Stride, unsigned VF) { 641 SmallVector<Constant *, 16> Mask; 642 for (unsigned i = 0; i < VF; i++) 643 Mask.push_back(Builder.getInt32(Start + i * Stride)); 644 645 return ConstantVector::get(Mask); 646 } 647 648 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, 649 unsigned NumInts, unsigned NumUndefs) { 650 SmallVector<Constant *, 16> Mask; 651 for (unsigned i = 0; i < NumInts; i++) 652 Mask.push_back(Builder.getInt32(Start + i)); 653 654 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 655 for (unsigned i = 0; i < NumUndefs; i++) 656 Mask.push_back(Undef); 657 658 return ConstantVector::get(Mask); 659 } 660 661 /// A helper function for concatenating vectors. This function concatenates two 662 /// vectors having the same element type. If the second vector has fewer 663 /// elements than the first, it is padded with undefs. 664 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 665 Value *V2) { 666 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 667 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 668 assert(VecTy1 && VecTy2 && 669 VecTy1->getScalarType() == VecTy2->getScalarType() && 670 "Expect two vectors with the same element type"); 671 672 unsigned NumElts1 = VecTy1->getNumElements(); 673 unsigned NumElts2 = VecTy2->getNumElements(); 674 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 675 676 if (NumElts1 > NumElts2) { 677 // Extend with UNDEFs. 678 Constant *ExtMask = 679 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 680 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 681 } 682 683 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 684 return Builder.CreateShuffleVector(V1, V2, Mask); 685 } 686 687 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) { 688 unsigned NumVecs = Vecs.size(); 689 assert(NumVecs > 1 && "Should be at least two vectors"); 690 691 SmallVector<Value *, 8> ResList; 692 ResList.append(Vecs.begin(), Vecs.end()); 693 do { 694 SmallVector<Value *, 8> TmpList; 695 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 696 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 697 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 698 "Only the last vector may have a different type"); 699 700 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 701 } 702 703 // Push the last vector if the total number of vectors is odd. 704 if (NumVecs % 2 != 0) 705 TmpList.push_back(ResList[NumVecs - 1]); 706 707 ResList = TmpList; 708 NumVecs = ResList.size(); 709 } while (NumVecs > 1); 710 711 return ResList[0]; 712 } 713 714 bool InterleavedAccessInfo::isStrided(int Stride) { 715 unsigned Factor = std::abs(Stride); 716 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 717 } 718 719 void InterleavedAccessInfo::collectConstStrideAccesses( 720 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 721 const ValueToValueMap &Strides) { 722 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 723 724 // Since it's desired that the load/store instructions be maintained in 725 // "program order" for the interleaved access analysis, we have to visit the 726 // blocks in the loop in reverse postorder (i.e., in a topological order). 727 // Such an ordering will ensure that any load/store that may be executed 728 // before a second load/store will precede the second load/store in 729 // AccessStrideInfo. 730 LoopBlocksDFS DFS(TheLoop); 731 DFS.perform(LI); 732 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 733 for (auto &I : *BB) { 734 auto *LI = dyn_cast<LoadInst>(&I); 735 auto *SI = dyn_cast<StoreInst>(&I); 736 if (!LI && !SI) 737 continue; 738 739 Value *Ptr = getLoadStorePointerOperand(&I); 740 // We don't check wrapping here because we don't know yet if Ptr will be 741 // part of a full group or a group with gaps. Checking wrapping for all 742 // pointers (even those that end up in groups with no gaps) will be overly 743 // conservative. For full groups, wrapping should be ok since if we would 744 // wrap around the address space we would do a memory access at nullptr 745 // even without the transformation. The wrapping checks are therefore 746 // deferred until after we've formed the interleaved groups. 747 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 748 /*Assume=*/true, /*ShouldCheckWrap=*/false); 749 750 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 751 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 752 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 753 754 // An alignment of 0 means target ABI alignment. 755 unsigned Align = getLoadStoreAlignment(&I); 756 if (!Align) 757 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 758 759 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 760 } 761 } 762 763 // Analyze interleaved accesses and collect them into interleaved load and 764 // store groups. 765 // 766 // When generating code for an interleaved load group, we effectively hoist all 767 // loads in the group to the location of the first load in program order. When 768 // generating code for an interleaved store group, we sink all stores to the 769 // location of the last store. This code motion can change the order of load 770 // and store instructions and may break dependences. 771 // 772 // The code generation strategy mentioned above ensures that we won't violate 773 // any write-after-read (WAR) dependences. 774 // 775 // E.g., for the WAR dependence: a = A[i]; // (1) 776 // A[i] = b; // (2) 777 // 778 // The store group of (2) is always inserted at or below (2), and the load 779 // group of (1) is always inserted at or above (1). Thus, the instructions will 780 // never be reordered. All other dependences are checked to ensure the 781 // correctness of the instruction reordering. 782 // 783 // The algorithm visits all memory accesses in the loop in bottom-up program 784 // order. Program order is established by traversing the blocks in the loop in 785 // reverse postorder when collecting the accesses. 786 // 787 // We visit the memory accesses in bottom-up order because it can simplify the 788 // construction of store groups in the presence of write-after-write (WAW) 789 // dependences. 790 // 791 // E.g., for the WAW dependence: A[i] = a; // (1) 792 // A[i] = b; // (2) 793 // A[i + 1] = c; // (3) 794 // 795 // We will first create a store group with (3) and (2). (1) can't be added to 796 // this group because it and (2) are dependent. However, (1) can be grouped 797 // with other accesses that may precede it in program order. Note that a 798 // bottom-up order does not imply that WAW dependences should not be checked. 799 void InterleavedAccessInfo::analyzeInterleaving( 800 bool EnablePredicatedInterleavedMemAccesses) { 801 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 802 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 803 804 // Holds all accesses with a constant stride. 805 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 806 collectConstStrideAccesses(AccessStrideInfo, Strides); 807 808 if (AccessStrideInfo.empty()) 809 return; 810 811 // Collect the dependences in the loop. 812 collectDependences(); 813 814 // Holds all interleaved store groups temporarily. 815 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 816 // Holds all interleaved load groups temporarily. 817 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 818 819 // Search in bottom-up program order for pairs of accesses (A and B) that can 820 // form interleaved load or store groups. In the algorithm below, access A 821 // precedes access B in program order. We initialize a group for B in the 822 // outer loop of the algorithm, and then in the inner loop, we attempt to 823 // insert each A into B's group if: 824 // 825 // 1. A and B have the same stride, 826 // 2. A and B have the same memory object size, and 827 // 3. A belongs in B's group according to its distance from B. 828 // 829 // Special care is taken to ensure group formation will not break any 830 // dependences. 831 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 832 BI != E; ++BI) { 833 Instruction *B = BI->first; 834 StrideDescriptor DesB = BI->second; 835 836 // Initialize a group for B if it has an allowable stride. Even if we don't 837 // create a group for B, we continue with the bottom-up algorithm to ensure 838 // we don't break any of B's dependences. 839 InterleaveGroup<Instruction> *Group = nullptr; 840 if (isStrided(DesB.Stride) && 841 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 842 Group = getInterleaveGroup(B); 843 if (!Group) { 844 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 845 << '\n'); 846 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 847 } 848 if (B->mayWriteToMemory()) 849 StoreGroups.insert(Group); 850 else 851 LoadGroups.insert(Group); 852 } 853 854 for (auto AI = std::next(BI); AI != E; ++AI) { 855 Instruction *A = AI->first; 856 StrideDescriptor DesA = AI->second; 857 858 // Our code motion strategy implies that we can't have dependences 859 // between accesses in an interleaved group and other accesses located 860 // between the first and last member of the group. Note that this also 861 // means that a group can't have more than one member at a given offset. 862 // The accesses in a group can have dependences with other accesses, but 863 // we must ensure we don't extend the boundaries of the group such that 864 // we encompass those dependent accesses. 865 // 866 // For example, assume we have the sequence of accesses shown below in a 867 // stride-2 loop: 868 // 869 // (1, 2) is a group | A[i] = a; // (1) 870 // | A[i-1] = b; // (2) | 871 // A[i-3] = c; // (3) 872 // A[i] = d; // (4) | (2, 4) is not a group 873 // 874 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 875 // but not with (4). If we did, the dependent access (3) would be within 876 // the boundaries of the (2, 4) group. 877 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 878 // If a dependence exists and A is already in a group, we know that A 879 // must be a store since A precedes B and WAR dependences are allowed. 880 // Thus, A would be sunk below B. We release A's group to prevent this 881 // illegal code motion. A will then be free to form another group with 882 // instructions that precede it. 883 if (isInterleaved(A)) { 884 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 885 StoreGroups.remove(StoreGroup); 886 releaseGroup(StoreGroup); 887 } 888 889 // If a dependence exists and A is not already in a group (or it was 890 // and we just released it), B might be hoisted above A (if B is a 891 // load) or another store might be sunk below A (if B is a store). In 892 // either case, we can't add additional instructions to B's group. B 893 // will only form a group with instructions that it precedes. 894 break; 895 } 896 897 // At this point, we've checked for illegal code motion. If either A or B 898 // isn't strided, there's nothing left to do. 899 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 900 continue; 901 902 // Ignore A if it's already in a group or isn't the same kind of memory 903 // operation as B. 904 // Note that mayReadFromMemory() isn't mutually exclusive to 905 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 906 // here, canVectorizeMemory() should have returned false - except for the 907 // case we asked for optimization remarks. 908 if (isInterleaved(A) || 909 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 910 (A->mayWriteToMemory() != B->mayWriteToMemory())) 911 continue; 912 913 // Check rules 1 and 2. Ignore A if its stride or size is different from 914 // that of B. 915 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 916 continue; 917 918 // Ignore A if the memory object of A and B don't belong to the same 919 // address space 920 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 921 continue; 922 923 // Calculate the distance from A to B. 924 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 925 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 926 if (!DistToB) 927 continue; 928 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 929 930 // Check rule 3. Ignore A if its distance to B is not a multiple of the 931 // size. 932 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 933 continue; 934 935 // All members of a predicated interleave-group must have the same predicate, 936 // and currently must reside in the same BB. 937 BasicBlock *BlockA = A->getParent(); 938 BasicBlock *BlockB = B->getParent(); 939 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 940 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 941 continue; 942 943 // The index of A is the index of B plus A's distance to B in multiples 944 // of the size. 945 int IndexA = 946 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 947 948 // Try to insert A into B's group. 949 if (Group->insertMember(A, IndexA, DesA.Align)) { 950 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 951 << " into the interleave group with" << *B 952 << '\n'); 953 InterleaveGroupMap[A] = Group; 954 955 // Set the first load in program order as the insert position. 956 if (A->mayReadFromMemory()) 957 Group->setInsertPos(A); 958 } 959 } // Iteration over A accesses. 960 } // Iteration over B accesses. 961 962 // Remove interleaved store groups with gaps. 963 for (auto *Group : StoreGroups) 964 if (Group->getNumMembers() != Group->getFactor()) { 965 LLVM_DEBUG( 966 dbgs() << "LV: Invalidate candidate interleaved store group due " 967 "to gaps.\n"); 968 releaseGroup(Group); 969 } 970 // Remove interleaved groups with gaps (currently only loads) whose memory 971 // accesses may wrap around. We have to revisit the getPtrStride analysis, 972 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 973 // not check wrapping (see documentation there). 974 // FORNOW we use Assume=false; 975 // TODO: Change to Assume=true but making sure we don't exceed the threshold 976 // of runtime SCEV assumptions checks (thereby potentially failing to 977 // vectorize altogether). 978 // Additional optional optimizations: 979 // TODO: If we are peeling the loop and we know that the first pointer doesn't 980 // wrap then we can deduce that all pointers in the group don't wrap. 981 // This means that we can forcefully peel the loop in order to only have to 982 // check the first pointer for no-wrap. When we'll change to use Assume=true 983 // we'll only need at most one runtime check per interleaved group. 984 for (auto *Group : LoadGroups) { 985 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 986 // load would wrap around the address space we would do a memory access at 987 // nullptr even without the transformation. 988 if (Group->getNumMembers() == Group->getFactor()) 989 continue; 990 991 // Case 2: If first and last members of the group don't wrap this implies 992 // that all the pointers in the group don't wrap. 993 // So we check only group member 0 (which is always guaranteed to exist), 994 // and group member Factor - 1; If the latter doesn't exist we rely on 995 // peeling (if it is a non-reveresed accsess -- see Case 3). 996 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 997 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 998 /*ShouldCheckWrap=*/true)) { 999 LLVM_DEBUG( 1000 dbgs() << "LV: Invalidate candidate interleaved group due to " 1001 "first group member potentially pointer-wrapping.\n"); 1002 releaseGroup(Group); 1003 continue; 1004 } 1005 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 1006 if (LastMember) { 1007 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 1008 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 1009 /*ShouldCheckWrap=*/true)) { 1010 LLVM_DEBUG( 1011 dbgs() << "LV: Invalidate candidate interleaved group due to " 1012 "last group member potentially pointer-wrapping.\n"); 1013 releaseGroup(Group); 1014 } 1015 } else { 1016 // Case 3: A non-reversed interleaved load group with gaps: We need 1017 // to execute at least one scalar epilogue iteration. This will ensure 1018 // we don't speculatively access memory out-of-bounds. We only need 1019 // to look for a member at index factor - 1, since every group must have 1020 // a member at index zero. 1021 if (Group->isReverse()) { 1022 LLVM_DEBUG( 1023 dbgs() << "LV: Invalidate candidate interleaved group due to " 1024 "a reverse access with gaps.\n"); 1025 releaseGroup(Group); 1026 continue; 1027 } 1028 LLVM_DEBUG( 1029 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1030 RequiresScalarEpilogue = true; 1031 } 1032 } 1033 } 1034 1035 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1036 // If no group had triggered the requirement to create an epilogue loop, 1037 // there is nothing to do. 1038 if (!requiresScalarEpilogue()) 1039 return; 1040 1041 // Avoid releasing a Group twice. 1042 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; 1043 for (auto &I : InterleaveGroupMap) { 1044 InterleaveGroup<Instruction> *Group = I.second; 1045 if (Group->requiresScalarEpilogue()) 1046 DelSet.insert(Group); 1047 } 1048 for (auto *Ptr : DelSet) { 1049 LLVM_DEBUG( 1050 dbgs() 1051 << "LV: Invalidate candidate interleaved group due to gaps that " 1052 "require a scalar epilogue (not allowed under optsize) and cannot " 1053 "be masked (not enabled). \n"); 1054 releaseGroup(Ptr); 1055 } 1056 1057 RequiresScalarEpilogue = false; 1058 } 1059 1060 template <typename InstT> 1061 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1062 llvm_unreachable("addMetadata can only be used for Instruction"); 1063 } 1064 1065 namespace llvm { 1066 template <> 1067 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1068 SmallVector<Value *, 4> VL; 1069 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1070 [](std::pair<int, Instruction *> p) { return p.second; }); 1071 propagateMetadata(NewInst, VL); 1072 } 1073 } 1074