1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 28 #define DEBUG_TYPE "vectorutils" 29 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 /// Maximum factor for an interleaved memory access. 34 static cl::opt<unsigned> MaxInterleaveGroupFactor( 35 "max-interleave-group-factor", cl::Hidden, 36 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 37 cl::init(8)); 38 39 /// Return true if all of the intrinsic's arguments and return type are scalars 40 /// for the scalar form of the intrinsic and vectors for the vector form of the 41 /// intrinsic. 42 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 43 switch (ID) { 44 case Intrinsic::bswap: // Begin integer bit-manipulation. 45 case Intrinsic::bitreverse: 46 case Intrinsic::ctpop: 47 case Intrinsic::ctlz: 48 case Intrinsic::cttz: 49 case Intrinsic::fshl: 50 case Intrinsic::fshr: 51 case Intrinsic::sadd_sat: 52 case Intrinsic::ssub_sat: 53 case Intrinsic::uadd_sat: 54 case Intrinsic::usub_sat: 55 case Intrinsic::sqrt: // Begin floating-point. 56 case Intrinsic::sin: 57 case Intrinsic::cos: 58 case Intrinsic::exp: 59 case Intrinsic::exp2: 60 case Intrinsic::log: 61 case Intrinsic::log10: 62 case Intrinsic::log2: 63 case Intrinsic::fabs: 64 case Intrinsic::minnum: 65 case Intrinsic::maxnum: 66 case Intrinsic::minimum: 67 case Intrinsic::maximum: 68 case Intrinsic::copysign: 69 case Intrinsic::floor: 70 case Intrinsic::ceil: 71 case Intrinsic::trunc: 72 case Intrinsic::rint: 73 case Intrinsic::nearbyint: 74 case Intrinsic::round: 75 case Intrinsic::pow: 76 case Intrinsic::fma: 77 case Intrinsic::fmuladd: 78 case Intrinsic::powi: 79 case Intrinsic::canonicalize: 80 return true; 81 default: 82 return false; 83 } 84 } 85 86 /// Identifies if the intrinsic has a scalar operand. It check for 87 /// ctlz,cttz and powi special intrinsics whose argument is scalar. 88 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 89 unsigned ScalarOpdIdx) { 90 switch (ID) { 91 case Intrinsic::ctlz: 92 case Intrinsic::cttz: 93 case Intrinsic::powi: 94 return (ScalarOpdIdx == 1); 95 default: 96 return false; 97 } 98 } 99 100 /// Returns intrinsic ID for call. 101 /// For the input call instruction it finds mapping intrinsic and returns 102 /// its ID, in case it does not found it return not_intrinsic. 103 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 104 const TargetLibraryInfo *TLI) { 105 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 106 if (ID == Intrinsic::not_intrinsic) 107 return Intrinsic::not_intrinsic; 108 109 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 110 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 111 ID == Intrinsic::sideeffect) 112 return ID; 113 return Intrinsic::not_intrinsic; 114 } 115 116 /// Find the operand of the GEP that should be checked for consecutive 117 /// stores. This ignores trailing indices that have no effect on the final 118 /// pointer. 119 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 120 const DataLayout &DL = Gep->getModule()->getDataLayout(); 121 unsigned LastOperand = Gep->getNumOperands() - 1; 122 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 123 124 // Walk backwards and try to peel off zeros. 125 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 126 // Find the type we're currently indexing into. 127 gep_type_iterator GEPTI = gep_type_begin(Gep); 128 std::advance(GEPTI, LastOperand - 2); 129 130 // If it's a type with the same allocation size as the result of the GEP we 131 // can peel off the zero index. 132 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 133 break; 134 --LastOperand; 135 } 136 137 return LastOperand; 138 } 139 140 /// If the argument is a GEP, then returns the operand identified by 141 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 142 /// operand, it returns that instead. 143 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 144 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 145 if (!GEP) 146 return Ptr; 147 148 unsigned InductionOperand = getGEPInductionOperand(GEP); 149 150 // Check that all of the gep indices are uniform except for our induction 151 // operand. 152 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 153 if (i != InductionOperand && 154 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 155 return Ptr; 156 return GEP->getOperand(InductionOperand); 157 } 158 159 /// If a value has only one user that is a CastInst, return it. 160 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 161 Value *UniqueCast = nullptr; 162 for (User *U : Ptr->users()) { 163 CastInst *CI = dyn_cast<CastInst>(U); 164 if (CI && CI->getType() == Ty) { 165 if (!UniqueCast) 166 UniqueCast = CI; 167 else 168 return nullptr; 169 } 170 } 171 return UniqueCast; 172 } 173 174 /// Get the stride of a pointer access in a loop. Looks for symbolic 175 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 176 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 177 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 178 if (!PtrTy || PtrTy->isAggregateType()) 179 return nullptr; 180 181 // Try to remove a gep instruction to make the pointer (actually index at this 182 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 183 // pointer, otherwise, we are analyzing the index. 184 Value *OrigPtr = Ptr; 185 186 // The size of the pointer access. 187 int64_t PtrAccessSize = 1; 188 189 Ptr = stripGetElementPtr(Ptr, SE, Lp); 190 const SCEV *V = SE->getSCEV(Ptr); 191 192 if (Ptr != OrigPtr) 193 // Strip off casts. 194 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 195 V = C->getOperand(); 196 197 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 198 if (!S) 199 return nullptr; 200 201 V = S->getStepRecurrence(*SE); 202 if (!V) 203 return nullptr; 204 205 // Strip off the size of access multiplication if we are still analyzing the 206 // pointer. 207 if (OrigPtr == Ptr) { 208 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 209 if (M->getOperand(0)->getSCEVType() != scConstant) 210 return nullptr; 211 212 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 213 214 // Huge step value - give up. 215 if (APStepVal.getBitWidth() > 64) 216 return nullptr; 217 218 int64_t StepVal = APStepVal.getSExtValue(); 219 if (PtrAccessSize != StepVal) 220 return nullptr; 221 V = M->getOperand(1); 222 } 223 } 224 225 // Strip off casts. 226 Type *StripedOffRecurrenceCast = nullptr; 227 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 228 StripedOffRecurrenceCast = C->getType(); 229 V = C->getOperand(); 230 } 231 232 // Look for the loop invariant symbolic value. 233 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 234 if (!U) 235 return nullptr; 236 237 Value *Stride = U->getValue(); 238 if (!Lp->isLoopInvariant(Stride)) 239 return nullptr; 240 241 // If we have stripped off the recurrence cast we have to make sure that we 242 // return the value that is used in this loop so that we can replace it later. 243 if (StripedOffRecurrenceCast) 244 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 245 246 return Stride; 247 } 248 249 /// Given a vector and an element number, see if the scalar value is 250 /// already around as a register, for example if it were inserted then extracted 251 /// from the vector. 252 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 253 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 254 VectorType *VTy = cast<VectorType>(V->getType()); 255 unsigned Width = VTy->getNumElements(); 256 if (EltNo >= Width) // Out of range access. 257 return UndefValue::get(VTy->getElementType()); 258 259 if (Constant *C = dyn_cast<Constant>(V)) 260 return C->getAggregateElement(EltNo); 261 262 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 263 // If this is an insert to a variable element, we don't know what it is. 264 if (!isa<ConstantInt>(III->getOperand(2))) 265 return nullptr; 266 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 267 268 // If this is an insert to the element we are looking for, return the 269 // inserted value. 270 if (EltNo == IIElt) 271 return III->getOperand(1); 272 273 // Otherwise, the insertelement doesn't modify the value, recurse on its 274 // vector input. 275 return findScalarElement(III->getOperand(0), EltNo); 276 } 277 278 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 279 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 280 int InEl = SVI->getMaskValue(EltNo); 281 if (InEl < 0) 282 return UndefValue::get(VTy->getElementType()); 283 if (InEl < (int)LHSWidth) 284 return findScalarElement(SVI->getOperand(0), InEl); 285 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 286 } 287 288 // Extract a value from a vector add operation with a constant zero. 289 // TODO: Use getBinOpIdentity() to generalize this. 290 Value *Val; Constant *C; 291 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 292 if (Constant *Elt = C->getAggregateElement(EltNo)) 293 if (Elt->isNullValue()) 294 return findScalarElement(Val, EltNo); 295 296 // Otherwise, we don't know. 297 return nullptr; 298 } 299 300 /// Get splat value if the input is a splat vector or return nullptr. 301 /// This function is not fully general. It checks only 2 cases: 302 /// the input value is (1) a splat constants vector or (2) a sequence 303 /// of instructions that broadcast a single value into a vector. 304 /// 305 const llvm::Value *llvm::getSplatValue(const Value *V) { 306 307 if (auto *C = dyn_cast<Constant>(V)) 308 if (isa<VectorType>(V->getType())) 309 return C->getSplatValue(); 310 311 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V); 312 if (!ShuffleInst) 313 return nullptr; 314 // All-zero (or undef) shuffle mask elements. 315 for (int MaskElt : ShuffleInst->getShuffleMask()) 316 if (MaskElt != 0 && MaskElt != -1) 317 return nullptr; 318 // The first shuffle source is 'insertelement' with index 0. 319 auto *InsertEltInst = 320 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0)); 321 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) || 322 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero()) 323 return nullptr; 324 325 return InsertEltInst->getOperand(1); 326 } 327 328 MapVector<Instruction *, uint64_t> 329 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 330 const TargetTransformInfo *TTI) { 331 332 // DemandedBits will give us every value's live-out bits. But we want 333 // to ensure no extra casts would need to be inserted, so every DAG 334 // of connected values must have the same minimum bitwidth. 335 EquivalenceClasses<Value *> ECs; 336 SmallVector<Value *, 16> Worklist; 337 SmallPtrSet<Value *, 4> Roots; 338 SmallPtrSet<Value *, 16> Visited; 339 DenseMap<Value *, uint64_t> DBits; 340 SmallPtrSet<Instruction *, 4> InstructionSet; 341 MapVector<Instruction *, uint64_t> MinBWs; 342 343 // Determine the roots. We work bottom-up, from truncs or icmps. 344 bool SeenExtFromIllegalType = false; 345 for (auto *BB : Blocks) 346 for (auto &I : *BB) { 347 InstructionSet.insert(&I); 348 349 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 350 !TTI->isTypeLegal(I.getOperand(0)->getType())) 351 SeenExtFromIllegalType = true; 352 353 // Only deal with non-vector integers up to 64-bits wide. 354 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 355 !I.getType()->isVectorTy() && 356 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 357 // Don't make work for ourselves. If we know the loaded type is legal, 358 // don't add it to the worklist. 359 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 360 continue; 361 362 Worklist.push_back(&I); 363 Roots.insert(&I); 364 } 365 } 366 // Early exit. 367 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 368 return MinBWs; 369 370 // Now proceed breadth-first, unioning values together. 371 while (!Worklist.empty()) { 372 Value *Val = Worklist.pop_back_val(); 373 Value *Leader = ECs.getOrInsertLeaderValue(Val); 374 375 if (Visited.count(Val)) 376 continue; 377 Visited.insert(Val); 378 379 // Non-instructions terminate a chain successfully. 380 if (!isa<Instruction>(Val)) 381 continue; 382 Instruction *I = cast<Instruction>(Val); 383 384 // If we encounter a type that is larger than 64 bits, we can't represent 385 // it so bail out. 386 if (DB.getDemandedBits(I).getBitWidth() > 64) 387 return MapVector<Instruction *, uint64_t>(); 388 389 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 390 DBits[Leader] |= V; 391 DBits[I] = V; 392 393 // Casts, loads and instructions outside of our range terminate a chain 394 // successfully. 395 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 396 !InstructionSet.count(I)) 397 continue; 398 399 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 400 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 401 // transform anything that relies on them. 402 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 403 !I->getType()->isIntegerTy()) { 404 DBits[Leader] |= ~0ULL; 405 continue; 406 } 407 408 // We don't modify the types of PHIs. Reductions will already have been 409 // truncated if possible, and inductions' sizes will have been chosen by 410 // indvars. 411 if (isa<PHINode>(I)) 412 continue; 413 414 if (DBits[Leader] == ~0ULL) 415 // All bits demanded, no point continuing. 416 continue; 417 418 for (Value *O : cast<User>(I)->operands()) { 419 ECs.unionSets(Leader, O); 420 Worklist.push_back(O); 421 } 422 } 423 424 // Now we've discovered all values, walk them to see if there are 425 // any users we didn't see. If there are, we can't optimize that 426 // chain. 427 for (auto &I : DBits) 428 for (auto *U : I.first->users()) 429 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 430 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 431 432 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 433 uint64_t LeaderDemandedBits = 0; 434 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 435 LeaderDemandedBits |= DBits[*MI]; 436 437 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 438 llvm::countLeadingZeros(LeaderDemandedBits); 439 // Round up to a power of 2 440 if (!isPowerOf2_64((uint64_t)MinBW)) 441 MinBW = NextPowerOf2(MinBW); 442 443 // We don't modify the types of PHIs. Reductions will already have been 444 // truncated if possible, and inductions' sizes will have been chosen by 445 // indvars. 446 // If we are required to shrink a PHI, abandon this entire equivalence class. 447 bool Abort = false; 448 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 449 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 450 Abort = true; 451 break; 452 } 453 if (Abort) 454 continue; 455 456 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 457 if (!isa<Instruction>(*MI)) 458 continue; 459 Type *Ty = (*MI)->getType(); 460 if (Roots.count(*MI)) 461 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 462 if (MinBW < Ty->getScalarSizeInBits()) 463 MinBWs[cast<Instruction>(*MI)] = MinBW; 464 } 465 } 466 467 return MinBWs; 468 } 469 470 /// Add all access groups in @p AccGroups to @p List. 471 template <typename ListT> 472 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 473 // Interpret an access group as a list containing itself. 474 if (AccGroups->getNumOperands() == 0) { 475 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 476 List.insert(AccGroups); 477 return; 478 } 479 480 for (auto &AccGroupListOp : AccGroups->operands()) { 481 auto *Item = cast<MDNode>(AccGroupListOp.get()); 482 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 483 List.insert(Item); 484 } 485 } 486 487 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 488 if (!AccGroups1) 489 return AccGroups2; 490 if (!AccGroups2) 491 return AccGroups1; 492 if (AccGroups1 == AccGroups2) 493 return AccGroups1; 494 495 SmallSetVector<Metadata *, 4> Union; 496 addToAccessGroupList(Union, AccGroups1); 497 addToAccessGroupList(Union, AccGroups2); 498 499 if (Union.size() == 0) 500 return nullptr; 501 if (Union.size() == 1) 502 return cast<MDNode>(Union.front()); 503 504 LLVMContext &Ctx = AccGroups1->getContext(); 505 return MDNode::get(Ctx, Union.getArrayRef()); 506 } 507 508 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 509 const Instruction *Inst2) { 510 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 511 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 512 513 if (!MayAccessMem1 && !MayAccessMem2) 514 return nullptr; 515 if (!MayAccessMem1) 516 return Inst2->getMetadata(LLVMContext::MD_access_group); 517 if (!MayAccessMem2) 518 return Inst1->getMetadata(LLVMContext::MD_access_group); 519 520 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 521 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 522 if (!MD1 || !MD2) 523 return nullptr; 524 if (MD1 == MD2) 525 return MD1; 526 527 // Use set for scalable 'contains' check. 528 SmallPtrSet<Metadata *, 4> AccGroupSet2; 529 addToAccessGroupList(AccGroupSet2, MD2); 530 531 SmallVector<Metadata *, 4> Intersection; 532 if (MD1->getNumOperands() == 0) { 533 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 534 if (AccGroupSet2.count(MD1)) 535 Intersection.push_back(MD1); 536 } else { 537 for (const MDOperand &Node : MD1->operands()) { 538 auto *Item = cast<MDNode>(Node.get()); 539 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 540 if (AccGroupSet2.count(Item)) 541 Intersection.push_back(Item); 542 } 543 } 544 545 if (Intersection.size() == 0) 546 return nullptr; 547 if (Intersection.size() == 1) 548 return cast<MDNode>(Intersection.front()); 549 550 LLVMContext &Ctx = Inst1->getContext(); 551 return MDNode::get(Ctx, Intersection); 552 } 553 554 /// \returns \p I after propagating metadata from \p VL. 555 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 556 Instruction *I0 = cast<Instruction>(VL[0]); 557 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 558 I0->getAllMetadataOtherThanDebugLoc(Metadata); 559 560 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 561 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 562 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 563 LLVMContext::MD_access_group}) { 564 MDNode *MD = I0->getMetadata(Kind); 565 566 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 567 const Instruction *IJ = cast<Instruction>(VL[J]); 568 MDNode *IMD = IJ->getMetadata(Kind); 569 switch (Kind) { 570 case LLVMContext::MD_tbaa: 571 MD = MDNode::getMostGenericTBAA(MD, IMD); 572 break; 573 case LLVMContext::MD_alias_scope: 574 MD = MDNode::getMostGenericAliasScope(MD, IMD); 575 break; 576 case LLVMContext::MD_fpmath: 577 MD = MDNode::getMostGenericFPMath(MD, IMD); 578 break; 579 case LLVMContext::MD_noalias: 580 case LLVMContext::MD_nontemporal: 581 case LLVMContext::MD_invariant_load: 582 MD = MDNode::intersect(MD, IMD); 583 break; 584 case LLVMContext::MD_access_group: 585 MD = intersectAccessGroups(Inst, IJ); 586 break; 587 default: 588 llvm_unreachable("unhandled metadata"); 589 } 590 } 591 592 Inst->setMetadata(Kind, MD); 593 } 594 595 return Inst; 596 } 597 598 Constant * 599 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF, 600 const InterleaveGroup<Instruction> &Group) { 601 // All 1's means mask is not needed. 602 if (Group.getNumMembers() == Group.getFactor()) 603 return nullptr; 604 605 // TODO: support reversed access. 606 assert(!Group.isReverse() && "Reversed group not supported."); 607 608 SmallVector<Constant *, 16> Mask; 609 for (unsigned i = 0; i < VF; i++) 610 for (unsigned j = 0; j < Group.getFactor(); ++j) { 611 unsigned HasMember = Group.getMember(j) ? 1 : 0; 612 Mask.push_back(Builder.getInt1(HasMember)); 613 } 614 615 return ConstantVector::get(Mask); 616 } 617 618 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, 619 unsigned ReplicationFactor, unsigned VF) { 620 SmallVector<Constant *, 16> MaskVec; 621 for (unsigned i = 0; i < VF; i++) 622 for (unsigned j = 0; j < ReplicationFactor; j++) 623 MaskVec.push_back(Builder.getInt32(i)); 624 625 return ConstantVector::get(MaskVec); 626 } 627 628 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, 629 unsigned NumVecs) { 630 SmallVector<Constant *, 16> Mask; 631 for (unsigned i = 0; i < VF; i++) 632 for (unsigned j = 0; j < NumVecs; j++) 633 Mask.push_back(Builder.getInt32(j * VF + i)); 634 635 return ConstantVector::get(Mask); 636 } 637 638 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, 639 unsigned Stride, unsigned VF) { 640 SmallVector<Constant *, 16> Mask; 641 for (unsigned i = 0; i < VF; i++) 642 Mask.push_back(Builder.getInt32(Start + i * Stride)); 643 644 return ConstantVector::get(Mask); 645 } 646 647 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, 648 unsigned NumInts, unsigned NumUndefs) { 649 SmallVector<Constant *, 16> Mask; 650 for (unsigned i = 0; i < NumInts; i++) 651 Mask.push_back(Builder.getInt32(Start + i)); 652 653 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 654 for (unsigned i = 0; i < NumUndefs; i++) 655 Mask.push_back(Undef); 656 657 return ConstantVector::get(Mask); 658 } 659 660 /// A helper function for concatenating vectors. This function concatenates two 661 /// vectors having the same element type. If the second vector has fewer 662 /// elements than the first, it is padded with undefs. 663 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 664 Value *V2) { 665 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 666 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 667 assert(VecTy1 && VecTy2 && 668 VecTy1->getScalarType() == VecTy2->getScalarType() && 669 "Expect two vectors with the same element type"); 670 671 unsigned NumElts1 = VecTy1->getNumElements(); 672 unsigned NumElts2 = VecTy2->getNumElements(); 673 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 674 675 if (NumElts1 > NumElts2) { 676 // Extend with UNDEFs. 677 Constant *ExtMask = 678 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 679 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 680 } 681 682 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 683 return Builder.CreateShuffleVector(V1, V2, Mask); 684 } 685 686 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) { 687 unsigned NumVecs = Vecs.size(); 688 assert(NumVecs > 1 && "Should be at least two vectors"); 689 690 SmallVector<Value *, 8> ResList; 691 ResList.append(Vecs.begin(), Vecs.end()); 692 do { 693 SmallVector<Value *, 8> TmpList; 694 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 695 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 696 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 697 "Only the last vector may have a different type"); 698 699 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 700 } 701 702 // Push the last vector if the total number of vectors is odd. 703 if (NumVecs % 2 != 0) 704 TmpList.push_back(ResList[NumVecs - 1]); 705 706 ResList = TmpList; 707 NumVecs = ResList.size(); 708 } while (NumVecs > 1); 709 710 return ResList[0]; 711 } 712 713 bool InterleavedAccessInfo::isStrided(int Stride) { 714 unsigned Factor = std::abs(Stride); 715 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 716 } 717 718 void InterleavedAccessInfo::collectConstStrideAccesses( 719 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 720 const ValueToValueMap &Strides) { 721 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 722 723 // Since it's desired that the load/store instructions be maintained in 724 // "program order" for the interleaved access analysis, we have to visit the 725 // blocks in the loop in reverse postorder (i.e., in a topological order). 726 // Such an ordering will ensure that any load/store that may be executed 727 // before a second load/store will precede the second load/store in 728 // AccessStrideInfo. 729 LoopBlocksDFS DFS(TheLoop); 730 DFS.perform(LI); 731 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 732 for (auto &I : *BB) { 733 auto *LI = dyn_cast<LoadInst>(&I); 734 auto *SI = dyn_cast<StoreInst>(&I); 735 if (!LI && !SI) 736 continue; 737 738 Value *Ptr = getLoadStorePointerOperand(&I); 739 // We don't check wrapping here because we don't know yet if Ptr will be 740 // part of a full group or a group with gaps. Checking wrapping for all 741 // pointers (even those that end up in groups with no gaps) will be overly 742 // conservative. For full groups, wrapping should be ok since if we would 743 // wrap around the address space we would do a memory access at nullptr 744 // even without the transformation. The wrapping checks are therefore 745 // deferred until after we've formed the interleaved groups. 746 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 747 /*Assume=*/true, /*ShouldCheckWrap=*/false); 748 749 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 750 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 751 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 752 753 // An alignment of 0 means target ABI alignment. 754 unsigned Align = getLoadStoreAlignment(&I); 755 if (!Align) 756 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 757 758 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 759 } 760 } 761 762 // Analyze interleaved accesses and collect them into interleaved load and 763 // store groups. 764 // 765 // When generating code for an interleaved load group, we effectively hoist all 766 // loads in the group to the location of the first load in program order. When 767 // generating code for an interleaved store group, we sink all stores to the 768 // location of the last store. This code motion can change the order of load 769 // and store instructions and may break dependences. 770 // 771 // The code generation strategy mentioned above ensures that we won't violate 772 // any write-after-read (WAR) dependences. 773 // 774 // E.g., for the WAR dependence: a = A[i]; // (1) 775 // A[i] = b; // (2) 776 // 777 // The store group of (2) is always inserted at or below (2), and the load 778 // group of (1) is always inserted at or above (1). Thus, the instructions will 779 // never be reordered. All other dependences are checked to ensure the 780 // correctness of the instruction reordering. 781 // 782 // The algorithm visits all memory accesses in the loop in bottom-up program 783 // order. Program order is established by traversing the blocks in the loop in 784 // reverse postorder when collecting the accesses. 785 // 786 // We visit the memory accesses in bottom-up order because it can simplify the 787 // construction of store groups in the presence of write-after-write (WAW) 788 // dependences. 789 // 790 // E.g., for the WAW dependence: A[i] = a; // (1) 791 // A[i] = b; // (2) 792 // A[i + 1] = c; // (3) 793 // 794 // We will first create a store group with (3) and (2). (1) can't be added to 795 // this group because it and (2) are dependent. However, (1) can be grouped 796 // with other accesses that may precede it in program order. Note that a 797 // bottom-up order does not imply that WAW dependences should not be checked. 798 void InterleavedAccessInfo::analyzeInterleaving( 799 bool EnablePredicatedInterleavedMemAccesses) { 800 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 801 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 802 803 // Holds all accesses with a constant stride. 804 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 805 collectConstStrideAccesses(AccessStrideInfo, Strides); 806 807 if (AccessStrideInfo.empty()) 808 return; 809 810 // Collect the dependences in the loop. 811 collectDependences(); 812 813 // Holds all interleaved store groups temporarily. 814 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 815 // Holds all interleaved load groups temporarily. 816 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 817 818 // Search in bottom-up program order for pairs of accesses (A and B) that can 819 // form interleaved load or store groups. In the algorithm below, access A 820 // precedes access B in program order. We initialize a group for B in the 821 // outer loop of the algorithm, and then in the inner loop, we attempt to 822 // insert each A into B's group if: 823 // 824 // 1. A and B have the same stride, 825 // 2. A and B have the same memory object size, and 826 // 3. A belongs in B's group according to its distance from B. 827 // 828 // Special care is taken to ensure group formation will not break any 829 // dependences. 830 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 831 BI != E; ++BI) { 832 Instruction *B = BI->first; 833 StrideDescriptor DesB = BI->second; 834 835 // Initialize a group for B if it has an allowable stride. Even if we don't 836 // create a group for B, we continue with the bottom-up algorithm to ensure 837 // we don't break any of B's dependences. 838 InterleaveGroup<Instruction> *Group = nullptr; 839 if (isStrided(DesB.Stride) && 840 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 841 Group = getInterleaveGroup(B); 842 if (!Group) { 843 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 844 << '\n'); 845 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 846 } 847 if (B->mayWriteToMemory()) 848 StoreGroups.insert(Group); 849 else 850 LoadGroups.insert(Group); 851 } 852 853 for (auto AI = std::next(BI); AI != E; ++AI) { 854 Instruction *A = AI->first; 855 StrideDescriptor DesA = AI->second; 856 857 // Our code motion strategy implies that we can't have dependences 858 // between accesses in an interleaved group and other accesses located 859 // between the first and last member of the group. Note that this also 860 // means that a group can't have more than one member at a given offset. 861 // The accesses in a group can have dependences with other accesses, but 862 // we must ensure we don't extend the boundaries of the group such that 863 // we encompass those dependent accesses. 864 // 865 // For example, assume we have the sequence of accesses shown below in a 866 // stride-2 loop: 867 // 868 // (1, 2) is a group | A[i] = a; // (1) 869 // | A[i-1] = b; // (2) | 870 // A[i-3] = c; // (3) 871 // A[i] = d; // (4) | (2, 4) is not a group 872 // 873 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 874 // but not with (4). If we did, the dependent access (3) would be within 875 // the boundaries of the (2, 4) group. 876 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 877 // If a dependence exists and A is already in a group, we know that A 878 // must be a store since A precedes B and WAR dependences are allowed. 879 // Thus, A would be sunk below B. We release A's group to prevent this 880 // illegal code motion. A will then be free to form another group with 881 // instructions that precede it. 882 if (isInterleaved(A)) { 883 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 884 StoreGroups.remove(StoreGroup); 885 releaseGroup(StoreGroup); 886 } 887 888 // If a dependence exists and A is not already in a group (or it was 889 // and we just released it), B might be hoisted above A (if B is a 890 // load) or another store might be sunk below A (if B is a store). In 891 // either case, we can't add additional instructions to B's group. B 892 // will only form a group with instructions that it precedes. 893 break; 894 } 895 896 // At this point, we've checked for illegal code motion. If either A or B 897 // isn't strided, there's nothing left to do. 898 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 899 continue; 900 901 // Ignore A if it's already in a group or isn't the same kind of memory 902 // operation as B. 903 // Note that mayReadFromMemory() isn't mutually exclusive to 904 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 905 // here, canVectorizeMemory() should have returned false - except for the 906 // case we asked for optimization remarks. 907 if (isInterleaved(A) || 908 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 909 (A->mayWriteToMemory() != B->mayWriteToMemory())) 910 continue; 911 912 // Check rules 1 and 2. Ignore A if its stride or size is different from 913 // that of B. 914 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 915 continue; 916 917 // Ignore A if the memory object of A and B don't belong to the same 918 // address space 919 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 920 continue; 921 922 // Calculate the distance from A to B. 923 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 924 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 925 if (!DistToB) 926 continue; 927 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 928 929 // Check rule 3. Ignore A if its distance to B is not a multiple of the 930 // size. 931 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 932 continue; 933 934 // All members of a predicated interleave-group must have the same predicate, 935 // and currently must reside in the same BB. 936 BasicBlock *BlockA = A->getParent(); 937 BasicBlock *BlockB = B->getParent(); 938 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 939 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 940 continue; 941 942 // The index of A is the index of B plus A's distance to B in multiples 943 // of the size. 944 int IndexA = 945 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 946 947 // Try to insert A into B's group. 948 if (Group->insertMember(A, IndexA, DesA.Align)) { 949 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 950 << " into the interleave group with" << *B 951 << '\n'); 952 InterleaveGroupMap[A] = Group; 953 954 // Set the first load in program order as the insert position. 955 if (A->mayReadFromMemory()) 956 Group->setInsertPos(A); 957 } 958 } // Iteration over A accesses. 959 } // Iteration over B accesses. 960 961 // Remove interleaved store groups with gaps. 962 for (auto *Group : StoreGroups) 963 if (Group->getNumMembers() != Group->getFactor()) { 964 LLVM_DEBUG( 965 dbgs() << "LV: Invalidate candidate interleaved store group due " 966 "to gaps.\n"); 967 releaseGroup(Group); 968 } 969 // Remove interleaved groups with gaps (currently only loads) whose memory 970 // accesses may wrap around. We have to revisit the getPtrStride analysis, 971 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 972 // not check wrapping (see documentation there). 973 // FORNOW we use Assume=false; 974 // TODO: Change to Assume=true but making sure we don't exceed the threshold 975 // of runtime SCEV assumptions checks (thereby potentially failing to 976 // vectorize altogether). 977 // Additional optional optimizations: 978 // TODO: If we are peeling the loop and we know that the first pointer doesn't 979 // wrap then we can deduce that all pointers in the group don't wrap. 980 // This means that we can forcefully peel the loop in order to only have to 981 // check the first pointer for no-wrap. When we'll change to use Assume=true 982 // we'll only need at most one runtime check per interleaved group. 983 for (auto *Group : LoadGroups) { 984 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 985 // load would wrap around the address space we would do a memory access at 986 // nullptr even without the transformation. 987 if (Group->getNumMembers() == Group->getFactor()) 988 continue; 989 990 // Case 2: If first and last members of the group don't wrap this implies 991 // that all the pointers in the group don't wrap. 992 // So we check only group member 0 (which is always guaranteed to exist), 993 // and group member Factor - 1; If the latter doesn't exist we rely on 994 // peeling (if it is a non-reveresed accsess -- see Case 3). 995 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 996 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 997 /*ShouldCheckWrap=*/true)) { 998 LLVM_DEBUG( 999 dbgs() << "LV: Invalidate candidate interleaved group due to " 1000 "first group member potentially pointer-wrapping.\n"); 1001 releaseGroup(Group); 1002 continue; 1003 } 1004 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 1005 if (LastMember) { 1006 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 1007 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 1008 /*ShouldCheckWrap=*/true)) { 1009 LLVM_DEBUG( 1010 dbgs() << "LV: Invalidate candidate interleaved group due to " 1011 "last group member potentially pointer-wrapping.\n"); 1012 releaseGroup(Group); 1013 } 1014 } else { 1015 // Case 3: A non-reversed interleaved load group with gaps: We need 1016 // to execute at least one scalar epilogue iteration. This will ensure 1017 // we don't speculatively access memory out-of-bounds. We only need 1018 // to look for a member at index factor - 1, since every group must have 1019 // a member at index zero. 1020 if (Group->isReverse()) { 1021 LLVM_DEBUG( 1022 dbgs() << "LV: Invalidate candidate interleaved group due to " 1023 "a reverse access with gaps.\n"); 1024 releaseGroup(Group); 1025 continue; 1026 } 1027 LLVM_DEBUG( 1028 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1029 RequiresScalarEpilogue = true; 1030 } 1031 } 1032 } 1033 1034 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1035 // If no group had triggered the requirement to create an epilogue loop, 1036 // there is nothing to do. 1037 if (!requiresScalarEpilogue()) 1038 return; 1039 1040 // Avoid releasing a Group twice. 1041 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; 1042 for (auto &I : InterleaveGroupMap) { 1043 InterleaveGroup<Instruction> *Group = I.second; 1044 if (Group->requiresScalarEpilogue()) 1045 DelSet.insert(Group); 1046 } 1047 for (auto *Ptr : DelSet) { 1048 LLVM_DEBUG( 1049 dbgs() 1050 << "LV: Invalidate candidate interleaved group due to gaps that " 1051 "require a scalar epilogue (not allowed under optsize) and cannot " 1052 "be masked (not enabled). \n"); 1053 releaseGroup(Ptr); 1054 } 1055 1056 RequiresScalarEpilogue = false; 1057 } 1058 1059 template <typename InstT> 1060 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1061 llvm_unreachable("addMetadata can only be used for Instruction"); 1062 } 1063 1064 namespace llvm { 1065 template <> 1066 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1067 SmallVector<Value *, 4> VL; 1068 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1069 [](std::pair<int, Instruction *> p) { return p.second; }); 1070 propagateMetadata(NewInst, VL); 1071 } 1072 } 1073