1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 
28 #define DEBUG_TYPE "vectorutils"
29 
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
32 
33 /// Maximum factor for an interleaved memory access.
34 static cl::opt<unsigned> MaxInterleaveGroupFactor(
35     "max-interleave-group-factor", cl::Hidden,
36     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
37     cl::init(8));
38 
39 /// Return true if all of the intrinsic's arguments and return type are scalars
40 /// for the scalar form of the intrinsic and vectors for the vector form of the
41 /// intrinsic.
42 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
43   switch (ID) {
44   case Intrinsic::bswap: // Begin integer bit-manipulation.
45   case Intrinsic::bitreverse:
46   case Intrinsic::ctpop:
47   case Intrinsic::ctlz:
48   case Intrinsic::cttz:
49   case Intrinsic::fshl:
50   case Intrinsic::fshr:
51   case Intrinsic::sadd_sat:
52   case Intrinsic::ssub_sat:
53   case Intrinsic::uadd_sat:
54   case Intrinsic::usub_sat:
55   case Intrinsic::sqrt: // Begin floating-point.
56   case Intrinsic::sin:
57   case Intrinsic::cos:
58   case Intrinsic::exp:
59   case Intrinsic::exp2:
60   case Intrinsic::log:
61   case Intrinsic::log10:
62   case Intrinsic::log2:
63   case Intrinsic::fabs:
64   case Intrinsic::minnum:
65   case Intrinsic::maxnum:
66   case Intrinsic::minimum:
67   case Intrinsic::maximum:
68   case Intrinsic::copysign:
69   case Intrinsic::floor:
70   case Intrinsic::ceil:
71   case Intrinsic::trunc:
72   case Intrinsic::rint:
73   case Intrinsic::nearbyint:
74   case Intrinsic::round:
75   case Intrinsic::pow:
76   case Intrinsic::fma:
77   case Intrinsic::fmuladd:
78   case Intrinsic::powi:
79   case Intrinsic::canonicalize:
80     return true;
81   default:
82     return false;
83   }
84 }
85 
86 /// Identifies if the intrinsic has a scalar operand. It check for
87 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
88 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
89                                         unsigned ScalarOpdIdx) {
90   switch (ID) {
91   case Intrinsic::ctlz:
92   case Intrinsic::cttz:
93   case Intrinsic::powi:
94     return (ScalarOpdIdx == 1);
95   default:
96     return false;
97   }
98 }
99 
100 /// Returns intrinsic ID for call.
101 /// For the input call instruction it finds mapping intrinsic and returns
102 /// its ID, in case it does not found it return not_intrinsic.
103 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
104                                                 const TargetLibraryInfo *TLI) {
105   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
106   if (ID == Intrinsic::not_intrinsic)
107     return Intrinsic::not_intrinsic;
108 
109   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
110       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
111       ID == Intrinsic::sideeffect)
112     return ID;
113   return Intrinsic::not_intrinsic;
114 }
115 
116 /// Find the operand of the GEP that should be checked for consecutive
117 /// stores. This ignores trailing indices that have no effect on the final
118 /// pointer.
119 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
120   const DataLayout &DL = Gep->getModule()->getDataLayout();
121   unsigned LastOperand = Gep->getNumOperands() - 1;
122   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
123 
124   // Walk backwards and try to peel off zeros.
125   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
126     // Find the type we're currently indexing into.
127     gep_type_iterator GEPTI = gep_type_begin(Gep);
128     std::advance(GEPTI, LastOperand - 2);
129 
130     // If it's a type with the same allocation size as the result of the GEP we
131     // can peel off the zero index.
132     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
133       break;
134     --LastOperand;
135   }
136 
137   return LastOperand;
138 }
139 
140 /// If the argument is a GEP, then returns the operand identified by
141 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
142 /// operand, it returns that instead.
143 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
144   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
145   if (!GEP)
146     return Ptr;
147 
148   unsigned InductionOperand = getGEPInductionOperand(GEP);
149 
150   // Check that all of the gep indices are uniform except for our induction
151   // operand.
152   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
153     if (i != InductionOperand &&
154         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
155       return Ptr;
156   return GEP->getOperand(InductionOperand);
157 }
158 
159 /// If a value has only one user that is a CastInst, return it.
160 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
161   Value *UniqueCast = nullptr;
162   for (User *U : Ptr->users()) {
163     CastInst *CI = dyn_cast<CastInst>(U);
164     if (CI && CI->getType() == Ty) {
165       if (!UniqueCast)
166         UniqueCast = CI;
167       else
168         return nullptr;
169     }
170   }
171   return UniqueCast;
172 }
173 
174 /// Get the stride of a pointer access in a loop. Looks for symbolic
175 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
176 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
177   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
178   if (!PtrTy || PtrTy->isAggregateType())
179     return nullptr;
180 
181   // Try to remove a gep instruction to make the pointer (actually index at this
182   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
183   // pointer, otherwise, we are analyzing the index.
184   Value *OrigPtr = Ptr;
185 
186   // The size of the pointer access.
187   int64_t PtrAccessSize = 1;
188 
189   Ptr = stripGetElementPtr(Ptr, SE, Lp);
190   const SCEV *V = SE->getSCEV(Ptr);
191 
192   if (Ptr != OrigPtr)
193     // Strip off casts.
194     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
195       V = C->getOperand();
196 
197   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
198   if (!S)
199     return nullptr;
200 
201   V = S->getStepRecurrence(*SE);
202   if (!V)
203     return nullptr;
204 
205   // Strip off the size of access multiplication if we are still analyzing the
206   // pointer.
207   if (OrigPtr == Ptr) {
208     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
209       if (M->getOperand(0)->getSCEVType() != scConstant)
210         return nullptr;
211 
212       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
213 
214       // Huge step value - give up.
215       if (APStepVal.getBitWidth() > 64)
216         return nullptr;
217 
218       int64_t StepVal = APStepVal.getSExtValue();
219       if (PtrAccessSize != StepVal)
220         return nullptr;
221       V = M->getOperand(1);
222     }
223   }
224 
225   // Strip off casts.
226   Type *StripedOffRecurrenceCast = nullptr;
227   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
228     StripedOffRecurrenceCast = C->getType();
229     V = C->getOperand();
230   }
231 
232   // Look for the loop invariant symbolic value.
233   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
234   if (!U)
235     return nullptr;
236 
237   Value *Stride = U->getValue();
238   if (!Lp->isLoopInvariant(Stride))
239     return nullptr;
240 
241   // If we have stripped off the recurrence cast we have to make sure that we
242   // return the value that is used in this loop so that we can replace it later.
243   if (StripedOffRecurrenceCast)
244     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
245 
246   return Stride;
247 }
248 
249 /// Given a vector and an element number, see if the scalar value is
250 /// already around as a register, for example if it were inserted then extracted
251 /// from the vector.
252 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
253   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
254   VectorType *VTy = cast<VectorType>(V->getType());
255   unsigned Width = VTy->getNumElements();
256   if (EltNo >= Width)  // Out of range access.
257     return UndefValue::get(VTy->getElementType());
258 
259   if (Constant *C = dyn_cast<Constant>(V))
260     return C->getAggregateElement(EltNo);
261 
262   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
263     // If this is an insert to a variable element, we don't know what it is.
264     if (!isa<ConstantInt>(III->getOperand(2)))
265       return nullptr;
266     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
267 
268     // If this is an insert to the element we are looking for, return the
269     // inserted value.
270     if (EltNo == IIElt)
271       return III->getOperand(1);
272 
273     // Otherwise, the insertelement doesn't modify the value, recurse on its
274     // vector input.
275     return findScalarElement(III->getOperand(0), EltNo);
276   }
277 
278   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
279     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
280     int InEl = SVI->getMaskValue(EltNo);
281     if (InEl < 0)
282       return UndefValue::get(VTy->getElementType());
283     if (InEl < (int)LHSWidth)
284       return findScalarElement(SVI->getOperand(0), InEl);
285     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
286   }
287 
288   // Extract a value from a vector add operation with a constant zero.
289   // TODO: Use getBinOpIdentity() to generalize this.
290   Value *Val; Constant *C;
291   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
292     if (Constant *Elt = C->getAggregateElement(EltNo))
293       if (Elt->isNullValue())
294         return findScalarElement(Val, EltNo);
295 
296   // Otherwise, we don't know.
297   return nullptr;
298 }
299 
300 /// Get splat value if the input is a splat vector or return nullptr.
301 /// This function is not fully general. It checks only 2 cases:
302 /// the input value is (1) a splat constants vector or (2) a sequence
303 /// of instructions that broadcast a single value into a vector.
304 ///
305 const llvm::Value *llvm::getSplatValue(const Value *V) {
306 
307   if (auto *C = dyn_cast<Constant>(V))
308     if (isa<VectorType>(V->getType()))
309       return C->getSplatValue();
310 
311   auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
312   if (!ShuffleInst)
313     return nullptr;
314   // All-zero (or undef) shuffle mask elements.
315   for (int MaskElt : ShuffleInst->getShuffleMask())
316     if (MaskElt != 0 && MaskElt != -1)
317       return nullptr;
318   // The first shuffle source is 'insertelement' with index 0.
319   auto *InsertEltInst =
320     dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
321   if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
322       !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
323     return nullptr;
324 
325   return InsertEltInst->getOperand(1);
326 }
327 
328 MapVector<Instruction *, uint64_t>
329 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
330                                const TargetTransformInfo *TTI) {
331 
332   // DemandedBits will give us every value's live-out bits. But we want
333   // to ensure no extra casts would need to be inserted, so every DAG
334   // of connected values must have the same minimum bitwidth.
335   EquivalenceClasses<Value *> ECs;
336   SmallVector<Value *, 16> Worklist;
337   SmallPtrSet<Value *, 4> Roots;
338   SmallPtrSet<Value *, 16> Visited;
339   DenseMap<Value *, uint64_t> DBits;
340   SmallPtrSet<Instruction *, 4> InstructionSet;
341   MapVector<Instruction *, uint64_t> MinBWs;
342 
343   // Determine the roots. We work bottom-up, from truncs or icmps.
344   bool SeenExtFromIllegalType = false;
345   for (auto *BB : Blocks)
346     for (auto &I : *BB) {
347       InstructionSet.insert(&I);
348 
349       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
350           !TTI->isTypeLegal(I.getOperand(0)->getType()))
351         SeenExtFromIllegalType = true;
352 
353       // Only deal with non-vector integers up to 64-bits wide.
354       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
355           !I.getType()->isVectorTy() &&
356           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
357         // Don't make work for ourselves. If we know the loaded type is legal,
358         // don't add it to the worklist.
359         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
360           continue;
361 
362         Worklist.push_back(&I);
363         Roots.insert(&I);
364       }
365     }
366   // Early exit.
367   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
368     return MinBWs;
369 
370   // Now proceed breadth-first, unioning values together.
371   while (!Worklist.empty()) {
372     Value *Val = Worklist.pop_back_val();
373     Value *Leader = ECs.getOrInsertLeaderValue(Val);
374 
375     if (Visited.count(Val))
376       continue;
377     Visited.insert(Val);
378 
379     // Non-instructions terminate a chain successfully.
380     if (!isa<Instruction>(Val))
381       continue;
382     Instruction *I = cast<Instruction>(Val);
383 
384     // If we encounter a type that is larger than 64 bits, we can't represent
385     // it so bail out.
386     if (DB.getDemandedBits(I).getBitWidth() > 64)
387       return MapVector<Instruction *, uint64_t>();
388 
389     uint64_t V = DB.getDemandedBits(I).getZExtValue();
390     DBits[Leader] |= V;
391     DBits[I] = V;
392 
393     // Casts, loads and instructions outside of our range terminate a chain
394     // successfully.
395     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
396         !InstructionSet.count(I))
397       continue;
398 
399     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
400     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
401     // transform anything that relies on them.
402     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
403         !I->getType()->isIntegerTy()) {
404       DBits[Leader] |= ~0ULL;
405       continue;
406     }
407 
408     // We don't modify the types of PHIs. Reductions will already have been
409     // truncated if possible, and inductions' sizes will have been chosen by
410     // indvars.
411     if (isa<PHINode>(I))
412       continue;
413 
414     if (DBits[Leader] == ~0ULL)
415       // All bits demanded, no point continuing.
416       continue;
417 
418     for (Value *O : cast<User>(I)->operands()) {
419       ECs.unionSets(Leader, O);
420       Worklist.push_back(O);
421     }
422   }
423 
424   // Now we've discovered all values, walk them to see if there are
425   // any users we didn't see. If there are, we can't optimize that
426   // chain.
427   for (auto &I : DBits)
428     for (auto *U : I.first->users())
429       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
430         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
431 
432   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
433     uint64_t LeaderDemandedBits = 0;
434     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
435       LeaderDemandedBits |= DBits[*MI];
436 
437     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
438                      llvm::countLeadingZeros(LeaderDemandedBits);
439     // Round up to a power of 2
440     if (!isPowerOf2_64((uint64_t)MinBW))
441       MinBW = NextPowerOf2(MinBW);
442 
443     // We don't modify the types of PHIs. Reductions will already have been
444     // truncated if possible, and inductions' sizes will have been chosen by
445     // indvars.
446     // If we are required to shrink a PHI, abandon this entire equivalence class.
447     bool Abort = false;
448     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
449       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
450         Abort = true;
451         break;
452       }
453     if (Abort)
454       continue;
455 
456     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
457       if (!isa<Instruction>(*MI))
458         continue;
459       Type *Ty = (*MI)->getType();
460       if (Roots.count(*MI))
461         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
462       if (MinBW < Ty->getScalarSizeInBits())
463         MinBWs[cast<Instruction>(*MI)] = MinBW;
464     }
465   }
466 
467   return MinBWs;
468 }
469 
470 /// Add all access groups in @p AccGroups to @p List.
471 template <typename ListT>
472 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
473   // Interpret an access group as a list containing itself.
474   if (AccGroups->getNumOperands() == 0) {
475     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
476     List.insert(AccGroups);
477     return;
478   }
479 
480   for (auto &AccGroupListOp : AccGroups->operands()) {
481     auto *Item = cast<MDNode>(AccGroupListOp.get());
482     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
483     List.insert(Item);
484   }
485 }
486 
487 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
488   if (!AccGroups1)
489     return AccGroups2;
490   if (!AccGroups2)
491     return AccGroups1;
492   if (AccGroups1 == AccGroups2)
493     return AccGroups1;
494 
495   SmallSetVector<Metadata *, 4> Union;
496   addToAccessGroupList(Union, AccGroups1);
497   addToAccessGroupList(Union, AccGroups2);
498 
499   if (Union.size() == 0)
500     return nullptr;
501   if (Union.size() == 1)
502     return cast<MDNode>(Union.front());
503 
504   LLVMContext &Ctx = AccGroups1->getContext();
505   return MDNode::get(Ctx, Union.getArrayRef());
506 }
507 
508 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
509                                     const Instruction *Inst2) {
510   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
511   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
512 
513   if (!MayAccessMem1 && !MayAccessMem2)
514     return nullptr;
515   if (!MayAccessMem1)
516     return Inst2->getMetadata(LLVMContext::MD_access_group);
517   if (!MayAccessMem2)
518     return Inst1->getMetadata(LLVMContext::MD_access_group);
519 
520   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
521   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
522   if (!MD1 || !MD2)
523     return nullptr;
524   if (MD1 == MD2)
525     return MD1;
526 
527   // Use set for scalable 'contains' check.
528   SmallPtrSet<Metadata *, 4> AccGroupSet2;
529   addToAccessGroupList(AccGroupSet2, MD2);
530 
531   SmallVector<Metadata *, 4> Intersection;
532   if (MD1->getNumOperands() == 0) {
533     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
534     if (AccGroupSet2.count(MD1))
535       Intersection.push_back(MD1);
536   } else {
537     for (const MDOperand &Node : MD1->operands()) {
538       auto *Item = cast<MDNode>(Node.get());
539       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
540       if (AccGroupSet2.count(Item))
541         Intersection.push_back(Item);
542     }
543   }
544 
545   if (Intersection.size() == 0)
546     return nullptr;
547   if (Intersection.size() == 1)
548     return cast<MDNode>(Intersection.front());
549 
550   LLVMContext &Ctx = Inst1->getContext();
551   return MDNode::get(Ctx, Intersection);
552 }
553 
554 /// \returns \p I after propagating metadata from \p VL.
555 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
556   Instruction *I0 = cast<Instruction>(VL[0]);
557   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
558   I0->getAllMetadataOtherThanDebugLoc(Metadata);
559 
560   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
561                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
562                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
563                     LLVMContext::MD_access_group}) {
564     MDNode *MD = I0->getMetadata(Kind);
565 
566     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
567       const Instruction *IJ = cast<Instruction>(VL[J]);
568       MDNode *IMD = IJ->getMetadata(Kind);
569       switch (Kind) {
570       case LLVMContext::MD_tbaa:
571         MD = MDNode::getMostGenericTBAA(MD, IMD);
572         break;
573       case LLVMContext::MD_alias_scope:
574         MD = MDNode::getMostGenericAliasScope(MD, IMD);
575         break;
576       case LLVMContext::MD_fpmath:
577         MD = MDNode::getMostGenericFPMath(MD, IMD);
578         break;
579       case LLVMContext::MD_noalias:
580       case LLVMContext::MD_nontemporal:
581       case LLVMContext::MD_invariant_load:
582         MD = MDNode::intersect(MD, IMD);
583         break;
584       case LLVMContext::MD_access_group:
585         MD = intersectAccessGroups(Inst, IJ);
586         break;
587       default:
588         llvm_unreachable("unhandled metadata");
589       }
590     }
591 
592     Inst->setMetadata(Kind, MD);
593   }
594 
595   return Inst;
596 }
597 
598 Constant *
599 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
600                            const InterleaveGroup<Instruction> &Group) {
601   // All 1's means mask is not needed.
602   if (Group.getNumMembers() == Group.getFactor())
603     return nullptr;
604 
605   // TODO: support reversed access.
606   assert(!Group.isReverse() && "Reversed group not supported.");
607 
608   SmallVector<Constant *, 16> Mask;
609   for (unsigned i = 0; i < VF; i++)
610     for (unsigned j = 0; j < Group.getFactor(); ++j) {
611       unsigned HasMember = Group.getMember(j) ? 1 : 0;
612       Mask.push_back(Builder.getInt1(HasMember));
613     }
614 
615   return ConstantVector::get(Mask);
616 }
617 
618 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
619                                      unsigned ReplicationFactor, unsigned VF) {
620   SmallVector<Constant *, 16> MaskVec;
621   for (unsigned i = 0; i < VF; i++)
622     for (unsigned j = 0; j < ReplicationFactor; j++)
623       MaskVec.push_back(Builder.getInt32(i));
624 
625   return ConstantVector::get(MaskVec);
626 }
627 
628 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
629                                      unsigned NumVecs) {
630   SmallVector<Constant *, 16> Mask;
631   for (unsigned i = 0; i < VF; i++)
632     for (unsigned j = 0; j < NumVecs; j++)
633       Mask.push_back(Builder.getInt32(j * VF + i));
634 
635   return ConstantVector::get(Mask);
636 }
637 
638 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
639                                  unsigned Stride, unsigned VF) {
640   SmallVector<Constant *, 16> Mask;
641   for (unsigned i = 0; i < VF; i++)
642     Mask.push_back(Builder.getInt32(Start + i * Stride));
643 
644   return ConstantVector::get(Mask);
645 }
646 
647 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
648                                      unsigned NumInts, unsigned NumUndefs) {
649   SmallVector<Constant *, 16> Mask;
650   for (unsigned i = 0; i < NumInts; i++)
651     Mask.push_back(Builder.getInt32(Start + i));
652 
653   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
654   for (unsigned i = 0; i < NumUndefs; i++)
655     Mask.push_back(Undef);
656 
657   return ConstantVector::get(Mask);
658 }
659 
660 /// A helper function for concatenating vectors. This function concatenates two
661 /// vectors having the same element type. If the second vector has fewer
662 /// elements than the first, it is padded with undefs.
663 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
664                                     Value *V2) {
665   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
666   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
667   assert(VecTy1 && VecTy2 &&
668          VecTy1->getScalarType() == VecTy2->getScalarType() &&
669          "Expect two vectors with the same element type");
670 
671   unsigned NumElts1 = VecTy1->getNumElements();
672   unsigned NumElts2 = VecTy2->getNumElements();
673   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
674 
675   if (NumElts1 > NumElts2) {
676     // Extend with UNDEFs.
677     Constant *ExtMask =
678         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
679     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
680   }
681 
682   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
683   return Builder.CreateShuffleVector(V1, V2, Mask);
684 }
685 
686 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
687   unsigned NumVecs = Vecs.size();
688   assert(NumVecs > 1 && "Should be at least two vectors");
689 
690   SmallVector<Value *, 8> ResList;
691   ResList.append(Vecs.begin(), Vecs.end());
692   do {
693     SmallVector<Value *, 8> TmpList;
694     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
695       Value *V0 = ResList[i], *V1 = ResList[i + 1];
696       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
697              "Only the last vector may have a different type");
698 
699       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
700     }
701 
702     // Push the last vector if the total number of vectors is odd.
703     if (NumVecs % 2 != 0)
704       TmpList.push_back(ResList[NumVecs - 1]);
705 
706     ResList = TmpList;
707     NumVecs = ResList.size();
708   } while (NumVecs > 1);
709 
710   return ResList[0];
711 }
712 
713 bool InterleavedAccessInfo::isStrided(int Stride) {
714   unsigned Factor = std::abs(Stride);
715   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
716 }
717 
718 void InterleavedAccessInfo::collectConstStrideAccesses(
719     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
720     const ValueToValueMap &Strides) {
721   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
722 
723   // Since it's desired that the load/store instructions be maintained in
724   // "program order" for the interleaved access analysis, we have to visit the
725   // blocks in the loop in reverse postorder (i.e., in a topological order).
726   // Such an ordering will ensure that any load/store that may be executed
727   // before a second load/store will precede the second load/store in
728   // AccessStrideInfo.
729   LoopBlocksDFS DFS(TheLoop);
730   DFS.perform(LI);
731   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
732     for (auto &I : *BB) {
733       auto *LI = dyn_cast<LoadInst>(&I);
734       auto *SI = dyn_cast<StoreInst>(&I);
735       if (!LI && !SI)
736         continue;
737 
738       Value *Ptr = getLoadStorePointerOperand(&I);
739       // We don't check wrapping here because we don't know yet if Ptr will be
740       // part of a full group or a group with gaps. Checking wrapping for all
741       // pointers (even those that end up in groups with no gaps) will be overly
742       // conservative. For full groups, wrapping should be ok since if we would
743       // wrap around the address space we would do a memory access at nullptr
744       // even without the transformation. The wrapping checks are therefore
745       // deferred until after we've formed the interleaved groups.
746       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
747                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
748 
749       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
750       PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
751       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
752 
753       // An alignment of 0 means target ABI alignment.
754       unsigned Align = getLoadStoreAlignment(&I);
755       if (!Align)
756         Align = DL.getABITypeAlignment(PtrTy->getElementType());
757 
758       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
759     }
760 }
761 
762 // Analyze interleaved accesses and collect them into interleaved load and
763 // store groups.
764 //
765 // When generating code for an interleaved load group, we effectively hoist all
766 // loads in the group to the location of the first load in program order. When
767 // generating code for an interleaved store group, we sink all stores to the
768 // location of the last store. This code motion can change the order of load
769 // and store instructions and may break dependences.
770 //
771 // The code generation strategy mentioned above ensures that we won't violate
772 // any write-after-read (WAR) dependences.
773 //
774 // E.g., for the WAR dependence:  a = A[i];      // (1)
775 //                                A[i] = b;      // (2)
776 //
777 // The store group of (2) is always inserted at or below (2), and the load
778 // group of (1) is always inserted at or above (1). Thus, the instructions will
779 // never be reordered. All other dependences are checked to ensure the
780 // correctness of the instruction reordering.
781 //
782 // The algorithm visits all memory accesses in the loop in bottom-up program
783 // order. Program order is established by traversing the blocks in the loop in
784 // reverse postorder when collecting the accesses.
785 //
786 // We visit the memory accesses in bottom-up order because it can simplify the
787 // construction of store groups in the presence of write-after-write (WAW)
788 // dependences.
789 //
790 // E.g., for the WAW dependence:  A[i] = a;      // (1)
791 //                                A[i] = b;      // (2)
792 //                                A[i + 1] = c;  // (3)
793 //
794 // We will first create a store group with (3) and (2). (1) can't be added to
795 // this group because it and (2) are dependent. However, (1) can be grouped
796 // with other accesses that may precede it in program order. Note that a
797 // bottom-up order does not imply that WAW dependences should not be checked.
798 void InterleavedAccessInfo::analyzeInterleaving(
799                                  bool EnablePredicatedInterleavedMemAccesses) {
800   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
801   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
802 
803   // Holds all accesses with a constant stride.
804   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
805   collectConstStrideAccesses(AccessStrideInfo, Strides);
806 
807   if (AccessStrideInfo.empty())
808     return;
809 
810   // Collect the dependences in the loop.
811   collectDependences();
812 
813   // Holds all interleaved store groups temporarily.
814   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
815   // Holds all interleaved load groups temporarily.
816   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
817 
818   // Search in bottom-up program order for pairs of accesses (A and B) that can
819   // form interleaved load or store groups. In the algorithm below, access A
820   // precedes access B in program order. We initialize a group for B in the
821   // outer loop of the algorithm, and then in the inner loop, we attempt to
822   // insert each A into B's group if:
823   //
824   //  1. A and B have the same stride,
825   //  2. A and B have the same memory object size, and
826   //  3. A belongs in B's group according to its distance from B.
827   //
828   // Special care is taken to ensure group formation will not break any
829   // dependences.
830   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
831        BI != E; ++BI) {
832     Instruction *B = BI->first;
833     StrideDescriptor DesB = BI->second;
834 
835     // Initialize a group for B if it has an allowable stride. Even if we don't
836     // create a group for B, we continue with the bottom-up algorithm to ensure
837     // we don't break any of B's dependences.
838     InterleaveGroup<Instruction> *Group = nullptr;
839     if (isStrided(DesB.Stride) &&
840         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
841       Group = getInterleaveGroup(B);
842       if (!Group) {
843         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
844                           << '\n');
845         Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
846       }
847       if (B->mayWriteToMemory())
848         StoreGroups.insert(Group);
849       else
850         LoadGroups.insert(Group);
851     }
852 
853     for (auto AI = std::next(BI); AI != E; ++AI) {
854       Instruction *A = AI->first;
855       StrideDescriptor DesA = AI->second;
856 
857       // Our code motion strategy implies that we can't have dependences
858       // between accesses in an interleaved group and other accesses located
859       // between the first and last member of the group. Note that this also
860       // means that a group can't have more than one member at a given offset.
861       // The accesses in a group can have dependences with other accesses, but
862       // we must ensure we don't extend the boundaries of the group such that
863       // we encompass those dependent accesses.
864       //
865       // For example, assume we have the sequence of accesses shown below in a
866       // stride-2 loop:
867       //
868       //  (1, 2) is a group | A[i]   = a;  // (1)
869       //                    | A[i-1] = b;  // (2) |
870       //                      A[i-3] = c;  // (3)
871       //                      A[i]   = d;  // (4) | (2, 4) is not a group
872       //
873       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
874       // but not with (4). If we did, the dependent access (3) would be within
875       // the boundaries of the (2, 4) group.
876       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
877         // If a dependence exists and A is already in a group, we know that A
878         // must be a store since A precedes B and WAR dependences are allowed.
879         // Thus, A would be sunk below B. We release A's group to prevent this
880         // illegal code motion. A will then be free to form another group with
881         // instructions that precede it.
882         if (isInterleaved(A)) {
883           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
884           StoreGroups.remove(StoreGroup);
885           releaseGroup(StoreGroup);
886         }
887 
888         // If a dependence exists and A is not already in a group (or it was
889         // and we just released it), B might be hoisted above A (if B is a
890         // load) or another store might be sunk below A (if B is a store). In
891         // either case, we can't add additional instructions to B's group. B
892         // will only form a group with instructions that it precedes.
893         break;
894       }
895 
896       // At this point, we've checked for illegal code motion. If either A or B
897       // isn't strided, there's nothing left to do.
898       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
899         continue;
900 
901       // Ignore A if it's already in a group or isn't the same kind of memory
902       // operation as B.
903       // Note that mayReadFromMemory() isn't mutually exclusive to
904       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
905       // here, canVectorizeMemory() should have returned false - except for the
906       // case we asked for optimization remarks.
907       if (isInterleaved(A) ||
908           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
909           (A->mayWriteToMemory() != B->mayWriteToMemory()))
910         continue;
911 
912       // Check rules 1 and 2. Ignore A if its stride or size is different from
913       // that of B.
914       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
915         continue;
916 
917       // Ignore A if the memory object of A and B don't belong to the same
918       // address space
919       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
920         continue;
921 
922       // Calculate the distance from A to B.
923       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
924           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
925       if (!DistToB)
926         continue;
927       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
928 
929       // Check rule 3. Ignore A if its distance to B is not a multiple of the
930       // size.
931       if (DistanceToB % static_cast<int64_t>(DesB.Size))
932         continue;
933 
934       // All members of a predicated interleave-group must have the same predicate,
935       // and currently must reside in the same BB.
936       BasicBlock *BlockA = A->getParent();
937       BasicBlock *BlockB = B->getParent();
938       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
939           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
940         continue;
941 
942       // The index of A is the index of B plus A's distance to B in multiples
943       // of the size.
944       int IndexA =
945           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
946 
947       // Try to insert A into B's group.
948       if (Group->insertMember(A, IndexA, DesA.Align)) {
949         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
950                           << "    into the interleave group with" << *B
951                           << '\n');
952         InterleaveGroupMap[A] = Group;
953 
954         // Set the first load in program order as the insert position.
955         if (A->mayReadFromMemory())
956           Group->setInsertPos(A);
957       }
958     } // Iteration over A accesses.
959   }   // Iteration over B accesses.
960 
961   // Remove interleaved store groups with gaps.
962   for (auto *Group : StoreGroups)
963     if (Group->getNumMembers() != Group->getFactor()) {
964       LLVM_DEBUG(
965           dbgs() << "LV: Invalidate candidate interleaved store group due "
966                     "to gaps.\n");
967       releaseGroup(Group);
968     }
969   // Remove interleaved groups with gaps (currently only loads) whose memory
970   // accesses may wrap around. We have to revisit the getPtrStride analysis,
971   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
972   // not check wrapping (see documentation there).
973   // FORNOW we use Assume=false;
974   // TODO: Change to Assume=true but making sure we don't exceed the threshold
975   // of runtime SCEV assumptions checks (thereby potentially failing to
976   // vectorize altogether).
977   // Additional optional optimizations:
978   // TODO: If we are peeling the loop and we know that the first pointer doesn't
979   // wrap then we can deduce that all pointers in the group don't wrap.
980   // This means that we can forcefully peel the loop in order to only have to
981   // check the first pointer for no-wrap. When we'll change to use Assume=true
982   // we'll only need at most one runtime check per interleaved group.
983   for (auto *Group : LoadGroups) {
984     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
985     // load would wrap around the address space we would do a memory access at
986     // nullptr even without the transformation.
987     if (Group->getNumMembers() == Group->getFactor())
988       continue;
989 
990     // Case 2: If first and last members of the group don't wrap this implies
991     // that all the pointers in the group don't wrap.
992     // So we check only group member 0 (which is always guaranteed to exist),
993     // and group member Factor - 1; If the latter doesn't exist we rely on
994     // peeling (if it is a non-reveresed accsess -- see Case 3).
995     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
996     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
997                       /*ShouldCheckWrap=*/true)) {
998       LLVM_DEBUG(
999           dbgs() << "LV: Invalidate candidate interleaved group due to "
1000                     "first group member potentially pointer-wrapping.\n");
1001       releaseGroup(Group);
1002       continue;
1003     }
1004     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1005     if (LastMember) {
1006       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1007       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1008                         /*ShouldCheckWrap=*/true)) {
1009         LLVM_DEBUG(
1010             dbgs() << "LV: Invalidate candidate interleaved group due to "
1011                       "last group member potentially pointer-wrapping.\n");
1012         releaseGroup(Group);
1013       }
1014     } else {
1015       // Case 3: A non-reversed interleaved load group with gaps: We need
1016       // to execute at least one scalar epilogue iteration. This will ensure
1017       // we don't speculatively access memory out-of-bounds. We only need
1018       // to look for a member at index factor - 1, since every group must have
1019       // a member at index zero.
1020       if (Group->isReverse()) {
1021         LLVM_DEBUG(
1022             dbgs() << "LV: Invalidate candidate interleaved group due to "
1023                       "a reverse access with gaps.\n");
1024         releaseGroup(Group);
1025         continue;
1026       }
1027       LLVM_DEBUG(
1028           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1029       RequiresScalarEpilogue = true;
1030     }
1031   }
1032 }
1033 
1034 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1035   // If no group had triggered the requirement to create an epilogue loop,
1036   // there is nothing to do.
1037   if (!requiresScalarEpilogue())
1038     return;
1039 
1040   // Avoid releasing a Group twice.
1041   SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1042   for (auto &I : InterleaveGroupMap) {
1043     InterleaveGroup<Instruction> *Group = I.second;
1044     if (Group->requiresScalarEpilogue())
1045       DelSet.insert(Group);
1046   }
1047   for (auto *Ptr : DelSet) {
1048     LLVM_DEBUG(
1049         dbgs()
1050         << "LV: Invalidate candidate interleaved group due to gaps that "
1051            "require a scalar epilogue (not allowed under optsize) and cannot "
1052            "be masked (not enabled). \n");
1053     releaseGroup(Ptr);
1054   }
1055 
1056   RequiresScalarEpilogue = false;
1057 }
1058 
1059 template <typename InstT>
1060 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1061   llvm_unreachable("addMetadata can only be used for Instruction");
1062 }
1063 
1064 namespace llvm {
1065 template <>
1066 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1067   SmallVector<Value *, 4> VL;
1068   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1069                  [](std::pair<int, Instruction *> p) { return p.second; });
1070   propagateMetadata(NewInst, VL);
1071 }
1072 }
1073