1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::bswap: // Begin integer bit-manipulation.
47   case Intrinsic::bitreverse:
48   case Intrinsic::ctpop:
49   case Intrinsic::ctlz:
50   case Intrinsic::cttz:
51   case Intrinsic::fshl:
52   case Intrinsic::fshr:
53   case Intrinsic::sadd_sat:
54   case Intrinsic::ssub_sat:
55   case Intrinsic::uadd_sat:
56   case Intrinsic::usub_sat:
57   case Intrinsic::smul_fix:
58   case Intrinsic::smul_fix_sat:
59   case Intrinsic::umul_fix:
60   case Intrinsic::umul_fix_sat:
61   case Intrinsic::sqrt: // Begin floating-point.
62   case Intrinsic::sin:
63   case Intrinsic::cos:
64   case Intrinsic::exp:
65   case Intrinsic::exp2:
66   case Intrinsic::log:
67   case Intrinsic::log10:
68   case Intrinsic::log2:
69   case Intrinsic::fabs:
70   case Intrinsic::minnum:
71   case Intrinsic::maxnum:
72   case Intrinsic::minimum:
73   case Intrinsic::maximum:
74   case Intrinsic::copysign:
75   case Intrinsic::floor:
76   case Intrinsic::ceil:
77   case Intrinsic::trunc:
78   case Intrinsic::rint:
79   case Intrinsic::nearbyint:
80   case Intrinsic::round:
81   case Intrinsic::pow:
82   case Intrinsic::fma:
83   case Intrinsic::fmuladd:
84   case Intrinsic::powi:
85   case Intrinsic::canonicalize:
86     return true;
87   default:
88     return false;
89   }
90 }
91 
92 /// Identifies if the vector form of the intrinsic has a scalar operand.
93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
94                                         unsigned ScalarOpdIdx) {
95   switch (ID) {
96   case Intrinsic::ctlz:
97   case Intrinsic::cttz:
98   case Intrinsic::powi:
99     return (ScalarOpdIdx == 1);
100   case Intrinsic::smul_fix:
101   case Intrinsic::smul_fix_sat:
102   case Intrinsic::umul_fix:
103   case Intrinsic::umul_fix_sat:
104     return (ScalarOpdIdx == 2);
105   default:
106     return false;
107   }
108 }
109 
110 /// Returns intrinsic ID for call.
111 /// For the input call instruction it finds mapping intrinsic and returns
112 /// its ID, in case it does not found it return not_intrinsic.
113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
114                                                 const TargetLibraryInfo *TLI) {
115   Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
116   if (ID == Intrinsic::not_intrinsic)
117     return Intrinsic::not_intrinsic;
118 
119   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
120       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
121       ID == Intrinsic::sideeffect)
122     return ID;
123   return Intrinsic::not_intrinsic;
124 }
125 
126 /// Find the operand of the GEP that should be checked for consecutive
127 /// stores. This ignores trailing indices that have no effect on the final
128 /// pointer.
129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
130   const DataLayout &DL = Gep->getModule()->getDataLayout();
131   unsigned LastOperand = Gep->getNumOperands() - 1;
132   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
133 
134   // Walk backwards and try to peel off zeros.
135   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
136     // Find the type we're currently indexing into.
137     gep_type_iterator GEPTI = gep_type_begin(Gep);
138     std::advance(GEPTI, LastOperand - 2);
139 
140     // If it's a type with the same allocation size as the result of the GEP we
141     // can peel off the zero index.
142     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
143       break;
144     --LastOperand;
145   }
146 
147   return LastOperand;
148 }
149 
150 /// If the argument is a GEP, then returns the operand identified by
151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
152 /// operand, it returns that instead.
153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
154   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
155   if (!GEP)
156     return Ptr;
157 
158   unsigned InductionOperand = getGEPInductionOperand(GEP);
159 
160   // Check that all of the gep indices are uniform except for our induction
161   // operand.
162   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
163     if (i != InductionOperand &&
164         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
165       return Ptr;
166   return GEP->getOperand(InductionOperand);
167 }
168 
169 /// If a value has only one user that is a CastInst, return it.
170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
171   Value *UniqueCast = nullptr;
172   for (User *U : Ptr->users()) {
173     CastInst *CI = dyn_cast<CastInst>(U);
174     if (CI && CI->getType() == Ty) {
175       if (!UniqueCast)
176         UniqueCast = CI;
177       else
178         return nullptr;
179     }
180   }
181   return UniqueCast;
182 }
183 
184 /// Get the stride of a pointer access in a loop. Looks for symbolic
185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
187   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
188   if (!PtrTy || PtrTy->isAggregateType())
189     return nullptr;
190 
191   // Try to remove a gep instruction to make the pointer (actually index at this
192   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
193   // pointer, otherwise, we are analyzing the index.
194   Value *OrigPtr = Ptr;
195 
196   // The size of the pointer access.
197   int64_t PtrAccessSize = 1;
198 
199   Ptr = stripGetElementPtr(Ptr, SE, Lp);
200   const SCEV *V = SE->getSCEV(Ptr);
201 
202   if (Ptr != OrigPtr)
203     // Strip off casts.
204     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
205       V = C->getOperand();
206 
207   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
208   if (!S)
209     return nullptr;
210 
211   V = S->getStepRecurrence(*SE);
212   if (!V)
213     return nullptr;
214 
215   // Strip off the size of access multiplication if we are still analyzing the
216   // pointer.
217   if (OrigPtr == Ptr) {
218     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
219       if (M->getOperand(0)->getSCEVType() != scConstant)
220         return nullptr;
221 
222       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
223 
224       // Huge step value - give up.
225       if (APStepVal.getBitWidth() > 64)
226         return nullptr;
227 
228       int64_t StepVal = APStepVal.getSExtValue();
229       if (PtrAccessSize != StepVal)
230         return nullptr;
231       V = M->getOperand(1);
232     }
233   }
234 
235   // Strip off casts.
236   Type *StripedOffRecurrenceCast = nullptr;
237   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
238     StripedOffRecurrenceCast = C->getType();
239     V = C->getOperand();
240   }
241 
242   // Look for the loop invariant symbolic value.
243   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
244   if (!U)
245     return nullptr;
246 
247   Value *Stride = U->getValue();
248   if (!Lp->isLoopInvariant(Stride))
249     return nullptr;
250 
251   // If we have stripped off the recurrence cast we have to make sure that we
252   // return the value that is used in this loop so that we can replace it later.
253   if (StripedOffRecurrenceCast)
254     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
255 
256   return Stride;
257 }
258 
259 /// Given a vector and an element number, see if the scalar value is
260 /// already around as a register, for example if it were inserted then extracted
261 /// from the vector.
262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
263   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
264   VectorType *VTy = cast<VectorType>(V->getType());
265   // For fixed-length vector, return undef for out of range access.
266   if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
267     unsigned Width = FVTy->getNumElements();
268     if (EltNo >= Width)
269       return UndefValue::get(FVTy->getElementType());
270   }
271 
272   if (Constant *C = dyn_cast<Constant>(V))
273     return C->getAggregateElement(EltNo);
274 
275   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
276     // If this is an insert to a variable element, we don't know what it is.
277     if (!isa<ConstantInt>(III->getOperand(2)))
278       return nullptr;
279     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
280 
281     // If this is an insert to the element we are looking for, return the
282     // inserted value.
283     if (EltNo == IIElt)
284       return III->getOperand(1);
285 
286     // Otherwise, the insertelement doesn't modify the value, recurse on its
287     // vector input.
288     return findScalarElement(III->getOperand(0), EltNo);
289   }
290 
291   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
292   // Restrict the following transformation to fixed-length vector.
293   if (SVI && isa<FixedVectorType>(SVI->getType())) {
294     unsigned LHSWidth =
295         cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
296     int InEl = SVI->getMaskValue(EltNo);
297     if (InEl < 0)
298       return UndefValue::get(VTy->getElementType());
299     if (InEl < (int)LHSWidth)
300       return findScalarElement(SVI->getOperand(0), InEl);
301     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
302   }
303 
304   // Extract a value from a vector add operation with a constant zero.
305   // TODO: Use getBinOpIdentity() to generalize this.
306   Value *Val; Constant *C;
307   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
308     if (Constant *Elt = C->getAggregateElement(EltNo))
309       if (Elt->isNullValue())
310         return findScalarElement(Val, EltNo);
311 
312   // Otherwise, we don't know.
313   return nullptr;
314 }
315 
316 int llvm::getSplatIndex(ArrayRef<int> Mask) {
317   int SplatIndex = -1;
318   for (int M : Mask) {
319     // Ignore invalid (undefined) mask elements.
320     if (M < 0)
321       continue;
322 
323     // There can be only 1 non-negative mask element value if this is a splat.
324     if (SplatIndex != -1 && SplatIndex != M)
325       return -1;
326 
327     // Initialize the splat index to the 1st non-negative mask element.
328     SplatIndex = M;
329   }
330   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
331   return SplatIndex;
332 }
333 
334 /// Get splat value if the input is a splat vector or return nullptr.
335 /// This function is not fully general. It checks only 2 cases:
336 /// the input value is (1) a splat constant vector or (2) a sequence
337 /// of instructions that broadcasts a scalar at element 0.
338 const llvm::Value *llvm::getSplatValue(const Value *V) {
339   if (isa<VectorType>(V->getType()))
340     if (auto *C = dyn_cast<Constant>(V))
341       return C->getSplatValue();
342 
343   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
344   Value *Splat;
345   if (match(V, m_ShuffleVector(
346                    m_InsertElement(m_Value(), m_Value(Splat), m_ZeroInt()),
347                    m_Value(), m_ZeroMask())))
348     return Splat;
349 
350   return nullptr;
351 }
352 
353 // This setting is based on its counterpart in value tracking, but it could be
354 // adjusted if needed.
355 const unsigned MaxDepth = 6;
356 
357 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
358   assert(Depth <= MaxDepth && "Limit Search Depth");
359 
360   if (isa<VectorType>(V->getType())) {
361     if (isa<UndefValue>(V))
362       return true;
363     // FIXME: We can allow undefs, but if Index was specified, we may want to
364     //        check that the constant is defined at that index.
365     if (auto *C = dyn_cast<Constant>(V))
366       return C->getSplatValue() != nullptr;
367   }
368 
369   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
370     // FIXME: We can safely allow undefs here. If Index was specified, we will
371     //        check that the mask elt is defined at the required index.
372     if (!is_splat(Shuf->getShuffleMask()))
373       return false;
374 
375     // Match any index.
376     if (Index == -1)
377       return true;
378 
379     // Match a specific element. The mask should be defined at and match the
380     // specified index.
381     return Shuf->getMaskValue(Index) == Index;
382   }
383 
384   // The remaining tests are all recursive, so bail out if we hit the limit.
385   if (Depth++ == MaxDepth)
386     return false;
387 
388   // If both operands of a binop are splats, the result is a splat.
389   Value *X, *Y, *Z;
390   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
391     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
392 
393   // If all operands of a select are splats, the result is a splat.
394   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
395     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
396            isSplatValue(Z, Index, Depth);
397 
398   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
399 
400   return false;
401 }
402 
403 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
404                                  SmallVectorImpl<int> &ScaledMask) {
405   assert(Scale > 0 && "Unexpected scaling factor");
406 
407   // Fast-path: if no scaling, then it is just a copy.
408   if (Scale == 1) {
409     ScaledMask.assign(Mask.begin(), Mask.end());
410     return;
411   }
412 
413   ScaledMask.clear();
414   for (int MaskElt : Mask) {
415     if (MaskElt >= 0) {
416       assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <=
417                  std::numeric_limits<int32_t>::max() &&
418              "Overflowed 32-bits");
419     }
420     for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
421       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
422   }
423 }
424 
425 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
426                                 SmallVectorImpl<int> &ScaledMask) {
427   assert(Scale > 0 && "Unexpected scaling factor");
428 
429   // Fast-path: if no scaling, then it is just a copy.
430   if (Scale == 1) {
431     ScaledMask.assign(Mask.begin(), Mask.end());
432     return true;
433   }
434 
435   // We must map the original elements down evenly to a type with less elements.
436   int NumElts = Mask.size();
437   if (NumElts % Scale != 0)
438     return false;
439 
440   ScaledMask.clear();
441   ScaledMask.reserve(NumElts / Scale);
442 
443   // Step through the input mask by splitting into Scale-sized slices.
444   do {
445     ArrayRef<int> MaskSlice = Mask.take_front(Scale);
446     assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
447 
448     // The first element of the slice determines how we evaluate this slice.
449     int SliceFront = MaskSlice.front();
450     if (SliceFront < 0) {
451       // Negative values (undef or other "sentinel" values) must be equal across
452       // the entire slice.
453       if (!is_splat(MaskSlice))
454         return false;
455       ScaledMask.push_back(SliceFront);
456     } else {
457       // A positive mask element must be cleanly divisible.
458       if (SliceFront % Scale != 0)
459         return false;
460       // Elements of the slice must be consecutive.
461       for (int i = 1; i < Scale; ++i)
462         if (MaskSlice[i] != SliceFront + i)
463           return false;
464       ScaledMask.push_back(SliceFront / Scale);
465     }
466     Mask = Mask.drop_front(Scale);
467   } while (!Mask.empty());
468 
469   assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
470 
471   // All elements of the original mask can be scaled down to map to the elements
472   // of a mask with wider elements.
473   return true;
474 }
475 
476 MapVector<Instruction *, uint64_t>
477 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
478                                const TargetTransformInfo *TTI) {
479 
480   // DemandedBits will give us every value's live-out bits. But we want
481   // to ensure no extra casts would need to be inserted, so every DAG
482   // of connected values must have the same minimum bitwidth.
483   EquivalenceClasses<Value *> ECs;
484   SmallVector<Value *, 16> Worklist;
485   SmallPtrSet<Value *, 4> Roots;
486   SmallPtrSet<Value *, 16> Visited;
487   DenseMap<Value *, uint64_t> DBits;
488   SmallPtrSet<Instruction *, 4> InstructionSet;
489   MapVector<Instruction *, uint64_t> MinBWs;
490 
491   // Determine the roots. We work bottom-up, from truncs or icmps.
492   bool SeenExtFromIllegalType = false;
493   for (auto *BB : Blocks)
494     for (auto &I : *BB) {
495       InstructionSet.insert(&I);
496 
497       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
498           !TTI->isTypeLegal(I.getOperand(0)->getType()))
499         SeenExtFromIllegalType = true;
500 
501       // Only deal with non-vector integers up to 64-bits wide.
502       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
503           !I.getType()->isVectorTy() &&
504           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
505         // Don't make work for ourselves. If we know the loaded type is legal,
506         // don't add it to the worklist.
507         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
508           continue;
509 
510         Worklist.push_back(&I);
511         Roots.insert(&I);
512       }
513     }
514   // Early exit.
515   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
516     return MinBWs;
517 
518   // Now proceed breadth-first, unioning values together.
519   while (!Worklist.empty()) {
520     Value *Val = Worklist.pop_back_val();
521     Value *Leader = ECs.getOrInsertLeaderValue(Val);
522 
523     if (Visited.count(Val))
524       continue;
525     Visited.insert(Val);
526 
527     // Non-instructions terminate a chain successfully.
528     if (!isa<Instruction>(Val))
529       continue;
530     Instruction *I = cast<Instruction>(Val);
531 
532     // If we encounter a type that is larger than 64 bits, we can't represent
533     // it so bail out.
534     if (DB.getDemandedBits(I).getBitWidth() > 64)
535       return MapVector<Instruction *, uint64_t>();
536 
537     uint64_t V = DB.getDemandedBits(I).getZExtValue();
538     DBits[Leader] |= V;
539     DBits[I] = V;
540 
541     // Casts, loads and instructions outside of our range terminate a chain
542     // successfully.
543     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
544         !InstructionSet.count(I))
545       continue;
546 
547     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
548     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
549     // transform anything that relies on them.
550     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
551         !I->getType()->isIntegerTy()) {
552       DBits[Leader] |= ~0ULL;
553       continue;
554     }
555 
556     // We don't modify the types of PHIs. Reductions will already have been
557     // truncated if possible, and inductions' sizes will have been chosen by
558     // indvars.
559     if (isa<PHINode>(I))
560       continue;
561 
562     if (DBits[Leader] == ~0ULL)
563       // All bits demanded, no point continuing.
564       continue;
565 
566     for (Value *O : cast<User>(I)->operands()) {
567       ECs.unionSets(Leader, O);
568       Worklist.push_back(O);
569     }
570   }
571 
572   // Now we've discovered all values, walk them to see if there are
573   // any users we didn't see. If there are, we can't optimize that
574   // chain.
575   for (auto &I : DBits)
576     for (auto *U : I.first->users())
577       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
578         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
579 
580   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
581     uint64_t LeaderDemandedBits = 0;
582     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
583       LeaderDemandedBits |= DBits[*MI];
584 
585     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
586                      llvm::countLeadingZeros(LeaderDemandedBits);
587     // Round up to a power of 2
588     if (!isPowerOf2_64((uint64_t)MinBW))
589       MinBW = NextPowerOf2(MinBW);
590 
591     // We don't modify the types of PHIs. Reductions will already have been
592     // truncated if possible, and inductions' sizes will have been chosen by
593     // indvars.
594     // If we are required to shrink a PHI, abandon this entire equivalence class.
595     bool Abort = false;
596     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
597       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
598         Abort = true;
599         break;
600       }
601     if (Abort)
602       continue;
603 
604     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
605       if (!isa<Instruction>(*MI))
606         continue;
607       Type *Ty = (*MI)->getType();
608       if (Roots.count(*MI))
609         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
610       if (MinBW < Ty->getScalarSizeInBits())
611         MinBWs[cast<Instruction>(*MI)] = MinBW;
612     }
613   }
614 
615   return MinBWs;
616 }
617 
618 /// Add all access groups in @p AccGroups to @p List.
619 template <typename ListT>
620 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
621   // Interpret an access group as a list containing itself.
622   if (AccGroups->getNumOperands() == 0) {
623     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
624     List.insert(AccGroups);
625     return;
626   }
627 
628   for (auto &AccGroupListOp : AccGroups->operands()) {
629     auto *Item = cast<MDNode>(AccGroupListOp.get());
630     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
631     List.insert(Item);
632   }
633 }
634 
635 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
636   if (!AccGroups1)
637     return AccGroups2;
638   if (!AccGroups2)
639     return AccGroups1;
640   if (AccGroups1 == AccGroups2)
641     return AccGroups1;
642 
643   SmallSetVector<Metadata *, 4> Union;
644   addToAccessGroupList(Union, AccGroups1);
645   addToAccessGroupList(Union, AccGroups2);
646 
647   if (Union.size() == 0)
648     return nullptr;
649   if (Union.size() == 1)
650     return cast<MDNode>(Union.front());
651 
652   LLVMContext &Ctx = AccGroups1->getContext();
653   return MDNode::get(Ctx, Union.getArrayRef());
654 }
655 
656 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
657                                     const Instruction *Inst2) {
658   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
659   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
660 
661   if (!MayAccessMem1 && !MayAccessMem2)
662     return nullptr;
663   if (!MayAccessMem1)
664     return Inst2->getMetadata(LLVMContext::MD_access_group);
665   if (!MayAccessMem2)
666     return Inst1->getMetadata(LLVMContext::MD_access_group);
667 
668   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
669   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
670   if (!MD1 || !MD2)
671     return nullptr;
672   if (MD1 == MD2)
673     return MD1;
674 
675   // Use set for scalable 'contains' check.
676   SmallPtrSet<Metadata *, 4> AccGroupSet2;
677   addToAccessGroupList(AccGroupSet2, MD2);
678 
679   SmallVector<Metadata *, 4> Intersection;
680   if (MD1->getNumOperands() == 0) {
681     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
682     if (AccGroupSet2.count(MD1))
683       Intersection.push_back(MD1);
684   } else {
685     for (const MDOperand &Node : MD1->operands()) {
686       auto *Item = cast<MDNode>(Node.get());
687       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
688       if (AccGroupSet2.count(Item))
689         Intersection.push_back(Item);
690     }
691   }
692 
693   if (Intersection.size() == 0)
694     return nullptr;
695   if (Intersection.size() == 1)
696     return cast<MDNode>(Intersection.front());
697 
698   LLVMContext &Ctx = Inst1->getContext();
699   return MDNode::get(Ctx, Intersection);
700 }
701 
702 /// \returns \p I after propagating metadata from \p VL.
703 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
704   Instruction *I0 = cast<Instruction>(VL[0]);
705   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
706   I0->getAllMetadataOtherThanDebugLoc(Metadata);
707 
708   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
709                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
710                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
711                     LLVMContext::MD_access_group}) {
712     MDNode *MD = I0->getMetadata(Kind);
713 
714     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
715       const Instruction *IJ = cast<Instruction>(VL[J]);
716       MDNode *IMD = IJ->getMetadata(Kind);
717       switch (Kind) {
718       case LLVMContext::MD_tbaa:
719         MD = MDNode::getMostGenericTBAA(MD, IMD);
720         break;
721       case LLVMContext::MD_alias_scope:
722         MD = MDNode::getMostGenericAliasScope(MD, IMD);
723         break;
724       case LLVMContext::MD_fpmath:
725         MD = MDNode::getMostGenericFPMath(MD, IMD);
726         break;
727       case LLVMContext::MD_noalias:
728       case LLVMContext::MD_nontemporal:
729       case LLVMContext::MD_invariant_load:
730         MD = MDNode::intersect(MD, IMD);
731         break;
732       case LLVMContext::MD_access_group:
733         MD = intersectAccessGroups(Inst, IJ);
734         break;
735       default:
736         llvm_unreachable("unhandled metadata");
737       }
738     }
739 
740     Inst->setMetadata(Kind, MD);
741   }
742 
743   return Inst;
744 }
745 
746 Constant *
747 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
748                            const InterleaveGroup<Instruction> &Group) {
749   // All 1's means mask is not needed.
750   if (Group.getNumMembers() == Group.getFactor())
751     return nullptr;
752 
753   // TODO: support reversed access.
754   assert(!Group.isReverse() && "Reversed group not supported.");
755 
756   SmallVector<Constant *, 16> Mask;
757   for (unsigned i = 0; i < VF; i++)
758     for (unsigned j = 0; j < Group.getFactor(); ++j) {
759       unsigned HasMember = Group.getMember(j) ? 1 : 0;
760       Mask.push_back(Builder.getInt1(HasMember));
761     }
762 
763   return ConstantVector::get(Mask);
764 }
765 
766 llvm::SmallVector<int, 16>
767 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
768   SmallVector<int, 16> MaskVec;
769   for (unsigned i = 0; i < VF; i++)
770     for (unsigned j = 0; j < ReplicationFactor; j++)
771       MaskVec.push_back(i);
772 
773   return MaskVec;
774 }
775 
776 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
777                                                       unsigned NumVecs) {
778   SmallVector<int, 16> Mask;
779   for (unsigned i = 0; i < VF; i++)
780     for (unsigned j = 0; j < NumVecs; j++)
781       Mask.push_back(j * VF + i);
782 
783   return Mask;
784 }
785 
786 llvm::SmallVector<int, 16>
787 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
788   SmallVector<int, 16> Mask;
789   for (unsigned i = 0; i < VF; i++)
790     Mask.push_back(Start + i * Stride);
791 
792   return Mask;
793 }
794 
795 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
796                                                       unsigned NumInts,
797                                                       unsigned NumUndefs) {
798   SmallVector<int, 16> Mask;
799   for (unsigned i = 0; i < NumInts; i++)
800     Mask.push_back(Start + i);
801 
802   for (unsigned i = 0; i < NumUndefs; i++)
803     Mask.push_back(-1);
804 
805   return Mask;
806 }
807 
808 /// A helper function for concatenating vectors. This function concatenates two
809 /// vectors having the same element type. If the second vector has fewer
810 /// elements than the first, it is padded with undefs.
811 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
812                                     Value *V2) {
813   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
814   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
815   assert(VecTy1 && VecTy2 &&
816          VecTy1->getScalarType() == VecTy2->getScalarType() &&
817          "Expect two vectors with the same element type");
818 
819   unsigned NumElts1 = VecTy1->getNumElements();
820   unsigned NumElts2 = VecTy2->getNumElements();
821   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
822 
823   if (NumElts1 > NumElts2) {
824     // Extend with UNDEFs.
825     V2 = Builder.CreateShuffleVector(
826         V2, UndefValue::get(VecTy2),
827         createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
828   }
829 
830   return Builder.CreateShuffleVector(
831       V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
832 }
833 
834 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
835                                 ArrayRef<Value *> Vecs) {
836   unsigned NumVecs = Vecs.size();
837   assert(NumVecs > 1 && "Should be at least two vectors");
838 
839   SmallVector<Value *, 8> ResList;
840   ResList.append(Vecs.begin(), Vecs.end());
841   do {
842     SmallVector<Value *, 8> TmpList;
843     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
844       Value *V0 = ResList[i], *V1 = ResList[i + 1];
845       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
846              "Only the last vector may have a different type");
847 
848       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
849     }
850 
851     // Push the last vector if the total number of vectors is odd.
852     if (NumVecs % 2 != 0)
853       TmpList.push_back(ResList[NumVecs - 1]);
854 
855     ResList = TmpList;
856     NumVecs = ResList.size();
857   } while (NumVecs > 1);
858 
859   return ResList[0];
860 }
861 
862 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
863   auto *ConstMask = dyn_cast<Constant>(Mask);
864   if (!ConstMask)
865     return false;
866   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
867     return true;
868   for (unsigned I = 0,
869                 E = cast<VectorType>(ConstMask->getType())->getNumElements();
870        I != E; ++I) {
871     if (auto *MaskElt = ConstMask->getAggregateElement(I))
872       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
873         continue;
874     return false;
875   }
876   return true;
877 }
878 
879 
880 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
881   auto *ConstMask = dyn_cast<Constant>(Mask);
882   if (!ConstMask)
883     return false;
884   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
885     return true;
886   for (unsigned I = 0,
887                 E = cast<VectorType>(ConstMask->getType())->getNumElements();
888        I != E; ++I) {
889     if (auto *MaskElt = ConstMask->getAggregateElement(I))
890       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
891         continue;
892     return false;
893   }
894   return true;
895 }
896 
897 /// TODO: This is a lot like known bits, but for
898 /// vectors.  Is there something we can common this with?
899 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
900 
901   const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
902   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
903   if (auto *CV = dyn_cast<ConstantVector>(Mask))
904     for (unsigned i = 0; i < VWidth; i++)
905       if (CV->getAggregateElement(i)->isNullValue())
906         DemandedElts.clearBit(i);
907   return DemandedElts;
908 }
909 
910 bool InterleavedAccessInfo::isStrided(int Stride) {
911   unsigned Factor = std::abs(Stride);
912   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
913 }
914 
915 void InterleavedAccessInfo::collectConstStrideAccesses(
916     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
917     const ValueToValueMap &Strides) {
918   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
919 
920   // Since it's desired that the load/store instructions be maintained in
921   // "program order" for the interleaved access analysis, we have to visit the
922   // blocks in the loop in reverse postorder (i.e., in a topological order).
923   // Such an ordering will ensure that any load/store that may be executed
924   // before a second load/store will precede the second load/store in
925   // AccessStrideInfo.
926   LoopBlocksDFS DFS(TheLoop);
927   DFS.perform(LI);
928   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
929     for (auto &I : *BB) {
930       auto *LI = dyn_cast<LoadInst>(&I);
931       auto *SI = dyn_cast<StoreInst>(&I);
932       if (!LI && !SI)
933         continue;
934 
935       Value *Ptr = getLoadStorePointerOperand(&I);
936       // We don't check wrapping here because we don't know yet if Ptr will be
937       // part of a full group or a group with gaps. Checking wrapping for all
938       // pointers (even those that end up in groups with no gaps) will be overly
939       // conservative. For full groups, wrapping should be ok since if we would
940       // wrap around the address space we would do a memory access at nullptr
941       // even without the transformation. The wrapping checks are therefore
942       // deferred until after we've formed the interleaved groups.
943       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
944                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
945 
946       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
947       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
948       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
949       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
950                                               getLoadStoreAlignment(&I));
951     }
952 }
953 
954 // Analyze interleaved accesses and collect them into interleaved load and
955 // store groups.
956 //
957 // When generating code for an interleaved load group, we effectively hoist all
958 // loads in the group to the location of the first load in program order. When
959 // generating code for an interleaved store group, we sink all stores to the
960 // location of the last store. This code motion can change the order of load
961 // and store instructions and may break dependences.
962 //
963 // The code generation strategy mentioned above ensures that we won't violate
964 // any write-after-read (WAR) dependences.
965 //
966 // E.g., for the WAR dependence:  a = A[i];      // (1)
967 //                                A[i] = b;      // (2)
968 //
969 // The store group of (2) is always inserted at or below (2), and the load
970 // group of (1) is always inserted at or above (1). Thus, the instructions will
971 // never be reordered. All other dependences are checked to ensure the
972 // correctness of the instruction reordering.
973 //
974 // The algorithm visits all memory accesses in the loop in bottom-up program
975 // order. Program order is established by traversing the blocks in the loop in
976 // reverse postorder when collecting the accesses.
977 //
978 // We visit the memory accesses in bottom-up order because it can simplify the
979 // construction of store groups in the presence of write-after-write (WAW)
980 // dependences.
981 //
982 // E.g., for the WAW dependence:  A[i] = a;      // (1)
983 //                                A[i] = b;      // (2)
984 //                                A[i + 1] = c;  // (3)
985 //
986 // We will first create a store group with (3) and (2). (1) can't be added to
987 // this group because it and (2) are dependent. However, (1) can be grouped
988 // with other accesses that may precede it in program order. Note that a
989 // bottom-up order does not imply that WAW dependences should not be checked.
990 void InterleavedAccessInfo::analyzeInterleaving(
991                                  bool EnablePredicatedInterleavedMemAccesses) {
992   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
993   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
994 
995   // Holds all accesses with a constant stride.
996   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
997   collectConstStrideAccesses(AccessStrideInfo, Strides);
998 
999   if (AccessStrideInfo.empty())
1000     return;
1001 
1002   // Collect the dependences in the loop.
1003   collectDependences();
1004 
1005   // Holds all interleaved store groups temporarily.
1006   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1007   // Holds all interleaved load groups temporarily.
1008   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1009 
1010   // Search in bottom-up program order for pairs of accesses (A and B) that can
1011   // form interleaved load or store groups. In the algorithm below, access A
1012   // precedes access B in program order. We initialize a group for B in the
1013   // outer loop of the algorithm, and then in the inner loop, we attempt to
1014   // insert each A into B's group if:
1015   //
1016   //  1. A and B have the same stride,
1017   //  2. A and B have the same memory object size, and
1018   //  3. A belongs in B's group according to its distance from B.
1019   //
1020   // Special care is taken to ensure group formation will not break any
1021   // dependences.
1022   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1023        BI != E; ++BI) {
1024     Instruction *B = BI->first;
1025     StrideDescriptor DesB = BI->second;
1026 
1027     // Initialize a group for B if it has an allowable stride. Even if we don't
1028     // create a group for B, we continue with the bottom-up algorithm to ensure
1029     // we don't break any of B's dependences.
1030     InterleaveGroup<Instruction> *Group = nullptr;
1031     if (isStrided(DesB.Stride) &&
1032         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1033       Group = getInterleaveGroup(B);
1034       if (!Group) {
1035         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1036                           << '\n');
1037         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1038       }
1039       if (B->mayWriteToMemory())
1040         StoreGroups.insert(Group);
1041       else
1042         LoadGroups.insert(Group);
1043     }
1044 
1045     for (auto AI = std::next(BI); AI != E; ++AI) {
1046       Instruction *A = AI->first;
1047       StrideDescriptor DesA = AI->second;
1048 
1049       // Our code motion strategy implies that we can't have dependences
1050       // between accesses in an interleaved group and other accesses located
1051       // between the first and last member of the group. Note that this also
1052       // means that a group can't have more than one member at a given offset.
1053       // The accesses in a group can have dependences with other accesses, but
1054       // we must ensure we don't extend the boundaries of the group such that
1055       // we encompass those dependent accesses.
1056       //
1057       // For example, assume we have the sequence of accesses shown below in a
1058       // stride-2 loop:
1059       //
1060       //  (1, 2) is a group | A[i]   = a;  // (1)
1061       //                    | A[i-1] = b;  // (2) |
1062       //                      A[i-3] = c;  // (3)
1063       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1064       //
1065       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1066       // but not with (4). If we did, the dependent access (3) would be within
1067       // the boundaries of the (2, 4) group.
1068       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1069         // If a dependence exists and A is already in a group, we know that A
1070         // must be a store since A precedes B and WAR dependences are allowed.
1071         // Thus, A would be sunk below B. We release A's group to prevent this
1072         // illegal code motion. A will then be free to form another group with
1073         // instructions that precede it.
1074         if (isInterleaved(A)) {
1075           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1076 
1077           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1078                                "dependence between " << *A << " and "<< *B << '\n');
1079 
1080           StoreGroups.remove(StoreGroup);
1081           releaseGroup(StoreGroup);
1082         }
1083 
1084         // If a dependence exists and A is not already in a group (or it was
1085         // and we just released it), B might be hoisted above A (if B is a
1086         // load) or another store might be sunk below A (if B is a store). In
1087         // either case, we can't add additional instructions to B's group. B
1088         // will only form a group with instructions that it precedes.
1089         break;
1090       }
1091 
1092       // At this point, we've checked for illegal code motion. If either A or B
1093       // isn't strided, there's nothing left to do.
1094       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1095         continue;
1096 
1097       // Ignore A if it's already in a group or isn't the same kind of memory
1098       // operation as B.
1099       // Note that mayReadFromMemory() isn't mutually exclusive to
1100       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1101       // here, canVectorizeMemory() should have returned false - except for the
1102       // case we asked for optimization remarks.
1103       if (isInterleaved(A) ||
1104           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1105           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1106         continue;
1107 
1108       // Check rules 1 and 2. Ignore A if its stride or size is different from
1109       // that of B.
1110       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1111         continue;
1112 
1113       // Ignore A if the memory object of A and B don't belong to the same
1114       // address space
1115       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1116         continue;
1117 
1118       // Calculate the distance from A to B.
1119       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1120           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1121       if (!DistToB)
1122         continue;
1123       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1124 
1125       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1126       // size.
1127       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1128         continue;
1129 
1130       // All members of a predicated interleave-group must have the same predicate,
1131       // and currently must reside in the same BB.
1132       BasicBlock *BlockA = A->getParent();
1133       BasicBlock *BlockB = B->getParent();
1134       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1135           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1136         continue;
1137 
1138       // The index of A is the index of B plus A's distance to B in multiples
1139       // of the size.
1140       int IndexA =
1141           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1142 
1143       // Try to insert A into B's group.
1144       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1145         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1146                           << "    into the interleave group with" << *B
1147                           << '\n');
1148         InterleaveGroupMap[A] = Group;
1149 
1150         // Set the first load in program order as the insert position.
1151         if (A->mayReadFromMemory())
1152           Group->setInsertPos(A);
1153       }
1154     } // Iteration over A accesses.
1155   }   // Iteration over B accesses.
1156 
1157   // Remove interleaved store groups with gaps.
1158   for (auto *Group : StoreGroups)
1159     if (Group->getNumMembers() != Group->getFactor()) {
1160       LLVM_DEBUG(
1161           dbgs() << "LV: Invalidate candidate interleaved store group due "
1162                     "to gaps.\n");
1163       releaseGroup(Group);
1164     }
1165   // Remove interleaved groups with gaps (currently only loads) whose memory
1166   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1167   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1168   // not check wrapping (see documentation there).
1169   // FORNOW we use Assume=false;
1170   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1171   // of runtime SCEV assumptions checks (thereby potentially failing to
1172   // vectorize altogether).
1173   // Additional optional optimizations:
1174   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1175   // wrap then we can deduce that all pointers in the group don't wrap.
1176   // This means that we can forcefully peel the loop in order to only have to
1177   // check the first pointer for no-wrap. When we'll change to use Assume=true
1178   // we'll only need at most one runtime check per interleaved group.
1179   for (auto *Group : LoadGroups) {
1180     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1181     // load would wrap around the address space we would do a memory access at
1182     // nullptr even without the transformation.
1183     if (Group->getNumMembers() == Group->getFactor())
1184       continue;
1185 
1186     // Case 2: If first and last members of the group don't wrap this implies
1187     // that all the pointers in the group don't wrap.
1188     // So we check only group member 0 (which is always guaranteed to exist),
1189     // and group member Factor - 1; If the latter doesn't exist we rely on
1190     // peeling (if it is a non-reversed accsess -- see Case 3).
1191     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1192     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1193                       /*ShouldCheckWrap=*/true)) {
1194       LLVM_DEBUG(
1195           dbgs() << "LV: Invalidate candidate interleaved group due to "
1196                     "first group member potentially pointer-wrapping.\n");
1197       releaseGroup(Group);
1198       continue;
1199     }
1200     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1201     if (LastMember) {
1202       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1203       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1204                         /*ShouldCheckWrap=*/true)) {
1205         LLVM_DEBUG(
1206             dbgs() << "LV: Invalidate candidate interleaved group due to "
1207                       "last group member potentially pointer-wrapping.\n");
1208         releaseGroup(Group);
1209       }
1210     } else {
1211       // Case 3: A non-reversed interleaved load group with gaps: We need
1212       // to execute at least one scalar epilogue iteration. This will ensure
1213       // we don't speculatively access memory out-of-bounds. We only need
1214       // to look for a member at index factor - 1, since every group must have
1215       // a member at index zero.
1216       if (Group->isReverse()) {
1217         LLVM_DEBUG(
1218             dbgs() << "LV: Invalidate candidate interleaved group due to "
1219                       "a reverse access with gaps.\n");
1220         releaseGroup(Group);
1221         continue;
1222       }
1223       LLVM_DEBUG(
1224           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1225       RequiresScalarEpilogue = true;
1226     }
1227   }
1228 }
1229 
1230 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1231   // If no group had triggered the requirement to create an epilogue loop,
1232   // there is nothing to do.
1233   if (!requiresScalarEpilogue())
1234     return;
1235 
1236   bool ReleasedGroup = false;
1237   // Release groups requiring scalar epilogues. Note that this also removes them
1238   // from InterleaveGroups.
1239   for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1240     if (!Group->requiresScalarEpilogue())
1241       continue;
1242     LLVM_DEBUG(
1243         dbgs()
1244         << "LV: Invalidate candidate interleaved group due to gaps that "
1245            "require a scalar epilogue (not allowed under optsize) and cannot "
1246            "be masked (not enabled). \n");
1247     releaseGroup(Group);
1248     ReleasedGroup = true;
1249   }
1250   assert(ReleasedGroup && "At least one group must be invalidated, as a "
1251                           "scalar epilogue was required");
1252   (void)ReleasedGroup;
1253   RequiresScalarEpilogue = false;
1254 }
1255 
1256 template <typename InstT>
1257 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1258   llvm_unreachable("addMetadata can only be used for Instruction");
1259 }
1260 
1261 namespace llvm {
1262 template <>
1263 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1264   SmallVector<Value *, 4> VL;
1265   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1266                  [](std::pair<int, Instruction *> p) { return p.second; });
1267   propagateMetadata(NewInst, VL);
1268 }
1269 }
1270 
1271 std::string VFABI::mangleTLIVectorName(StringRef VectorName,
1272                                        StringRef ScalarName, unsigned numArgs,
1273                                        unsigned VF) {
1274   SmallString<256> Buffer;
1275   llvm::raw_svector_ostream Out(Buffer);
1276   Out << "_ZGV" << VFABI::_LLVM_ << "N" << VF;
1277   for (unsigned I = 0; I < numArgs; ++I)
1278     Out << "v";
1279   Out << "_" << ScalarName << "(" << VectorName << ")";
1280   return std::string(Out.str());
1281 }
1282 
1283 void VFABI::getVectorVariantNames(
1284     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1285   const StringRef S =
1286       CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1287           .getValueAsString();
1288   if (S.empty())
1289     return;
1290 
1291   SmallVector<StringRef, 8> ListAttr;
1292   S.split(ListAttr, ",");
1293 
1294   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1295 #ifndef NDEBUG
1296     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1297     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1298     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1299     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1300            "Vector function is missing.");
1301 #endif
1302     VariantMappings.push_back(std::string(S));
1303   }
1304 }
1305 
1306 bool VFShape::hasValidParameterList() const {
1307   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1308        ++Pos) {
1309     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1310 
1311     switch (Parameters[Pos].ParamKind) {
1312     default: // Nothing to check.
1313       break;
1314     case VFParamKind::OMP_Linear:
1315     case VFParamKind::OMP_LinearRef:
1316     case VFParamKind::OMP_LinearVal:
1317     case VFParamKind::OMP_LinearUVal:
1318       // Compile time linear steps must be non-zero.
1319       if (Parameters[Pos].LinearStepOrPos == 0)
1320         return false;
1321       break;
1322     case VFParamKind::OMP_LinearPos:
1323     case VFParamKind::OMP_LinearRefPos:
1324     case VFParamKind::OMP_LinearValPos:
1325     case VFParamKind::OMP_LinearUValPos:
1326       // The runtime linear step must be referring to some other
1327       // parameters in the signature.
1328       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1329         return false;
1330       // The linear step parameter must be marked as uniform.
1331       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1332           VFParamKind::OMP_Uniform)
1333         return false;
1334       // The linear step parameter can't point at itself.
1335       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1336         return false;
1337       break;
1338     case VFParamKind::GlobalPredicate:
1339       // The global predicate must be the unique. Can be placed anywhere in the
1340       // signature.
1341       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1342         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1343           return false;
1344       break;
1345     }
1346   }
1347   return true;
1348 }
1349