1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines vectorizer utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/IR/GetElementPtrTypeIterator.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/IR/Value.h"
24 #include "llvm/IR/Constants.h"
25 
26 using namespace llvm;
27 using namespace llvm::PatternMatch;
28 
29 /// \brief Identify if the intrinsic is trivially vectorizable.
30 /// This method returns true if the intrinsic's argument types are all
31 /// scalars for the scalar form of the intrinsic and all vectors for
32 /// the vector form of the intrinsic.
33 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
34   switch (ID) {
35   case Intrinsic::sqrt:
36   case Intrinsic::sin:
37   case Intrinsic::cos:
38   case Intrinsic::exp:
39   case Intrinsic::exp2:
40   case Intrinsic::log:
41   case Intrinsic::log10:
42   case Intrinsic::log2:
43   case Intrinsic::fabs:
44   case Intrinsic::minnum:
45   case Intrinsic::maxnum:
46   case Intrinsic::copysign:
47   case Intrinsic::floor:
48   case Intrinsic::ceil:
49   case Intrinsic::trunc:
50   case Intrinsic::rint:
51   case Intrinsic::nearbyint:
52   case Intrinsic::round:
53   case Intrinsic::bswap:
54   case Intrinsic::ctpop:
55   case Intrinsic::pow:
56   case Intrinsic::fma:
57   case Intrinsic::fmuladd:
58   case Intrinsic::ctlz:
59   case Intrinsic::cttz:
60   case Intrinsic::powi:
61     return true;
62   default:
63     return false;
64   }
65 }
66 
67 /// \brief Identifies if the intrinsic has a scalar operand. It check for
68 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
69 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
70                                         unsigned ScalarOpdIdx) {
71   switch (ID) {
72   case Intrinsic::ctlz:
73   case Intrinsic::cttz:
74   case Intrinsic::powi:
75     return (ScalarOpdIdx == 1);
76   default:
77     return false;
78   }
79 }
80 
81 /// \brief Check call has a unary float signature
82 /// It checks following:
83 /// a) call should have a single argument
84 /// b) argument type should be floating point type
85 /// c) call instruction type and argument type should be same
86 /// d) call should only reads memory.
87 /// If all these condition is met then return ValidIntrinsicID
88 /// else return not_intrinsic.
89 Intrinsic::ID
90 llvm::checkUnaryFloatSignature(const CallInst &I,
91                                Intrinsic::ID ValidIntrinsicID) {
92   if (I.getNumArgOperands() != 1 ||
93       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
94       I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
95     return Intrinsic::not_intrinsic;
96 
97   return ValidIntrinsicID;
98 }
99 
100 /// \brief Check call has a binary float signature
101 /// It checks following:
102 /// a) call should have 2 arguments.
103 /// b) arguments type should be floating point type
104 /// c) call instruction type and arguments type should be same
105 /// d) call should only reads memory.
106 /// If all these condition is met then return ValidIntrinsicID
107 /// else return not_intrinsic.
108 Intrinsic::ID
109 llvm::checkBinaryFloatSignature(const CallInst &I,
110                                 Intrinsic::ID ValidIntrinsicID) {
111   if (I.getNumArgOperands() != 2 ||
112       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
113       !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
114       I.getType() != I.getArgOperand(0)->getType() ||
115       I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
116     return Intrinsic::not_intrinsic;
117 
118   return ValidIntrinsicID;
119 }
120 
121 /// \brief Returns intrinsic ID for call.
122 /// For the input call instruction it finds mapping intrinsic and returns
123 /// its ID, in case it does not found it return not_intrinsic.
124 Intrinsic::ID llvm::getIntrinsicIDForCall(const CallInst *CI,
125                                           const TargetLibraryInfo *TLI) {
126   // If we have an intrinsic call, check if it is trivially vectorizable.
127   if (const auto *II = dyn_cast<IntrinsicInst>(CI)) {
128     Intrinsic::ID ID = II->getIntrinsicID();
129     if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
130         ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
131       return ID;
132     return Intrinsic::not_intrinsic;
133   }
134 
135   if (!TLI)
136     return Intrinsic::not_intrinsic;
137 
138   LibFunc::Func Func;
139   Function *F = CI->getCalledFunction();
140   // We're going to make assumptions on the semantics of the functions, check
141   // that the target knows that it's available in this environment and it does
142   // not have local linkage.
143   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
144     return Intrinsic::not_intrinsic;
145 
146   // Otherwise check if we have a call to a function that can be turned into a
147   // vector intrinsic.
148   switch (Func) {
149   default:
150     break;
151   case LibFunc::sin:
152   case LibFunc::sinf:
153   case LibFunc::sinl:
154     return checkUnaryFloatSignature(*CI, Intrinsic::sin);
155   case LibFunc::cos:
156   case LibFunc::cosf:
157   case LibFunc::cosl:
158     return checkUnaryFloatSignature(*CI, Intrinsic::cos);
159   case LibFunc::exp:
160   case LibFunc::expf:
161   case LibFunc::expl:
162     return checkUnaryFloatSignature(*CI, Intrinsic::exp);
163   case LibFunc::exp2:
164   case LibFunc::exp2f:
165   case LibFunc::exp2l:
166     return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
167   case LibFunc::log:
168   case LibFunc::logf:
169   case LibFunc::logl:
170     return checkUnaryFloatSignature(*CI, Intrinsic::log);
171   case LibFunc::log10:
172   case LibFunc::log10f:
173   case LibFunc::log10l:
174     return checkUnaryFloatSignature(*CI, Intrinsic::log10);
175   case LibFunc::log2:
176   case LibFunc::log2f:
177   case LibFunc::log2l:
178     return checkUnaryFloatSignature(*CI, Intrinsic::log2);
179   case LibFunc::fabs:
180   case LibFunc::fabsf:
181   case LibFunc::fabsl:
182     return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
183   case LibFunc::fmin:
184   case LibFunc::fminf:
185   case LibFunc::fminl:
186     return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
187   case LibFunc::fmax:
188   case LibFunc::fmaxf:
189   case LibFunc::fmaxl:
190     return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
191   case LibFunc::copysign:
192   case LibFunc::copysignf:
193   case LibFunc::copysignl:
194     return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
195   case LibFunc::floor:
196   case LibFunc::floorf:
197   case LibFunc::floorl:
198     return checkUnaryFloatSignature(*CI, Intrinsic::floor);
199   case LibFunc::ceil:
200   case LibFunc::ceilf:
201   case LibFunc::ceill:
202     return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
203   case LibFunc::trunc:
204   case LibFunc::truncf:
205   case LibFunc::truncl:
206     return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
207   case LibFunc::rint:
208   case LibFunc::rintf:
209   case LibFunc::rintl:
210     return checkUnaryFloatSignature(*CI, Intrinsic::rint);
211   case LibFunc::nearbyint:
212   case LibFunc::nearbyintf:
213   case LibFunc::nearbyintl:
214     return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
215   case LibFunc::round:
216   case LibFunc::roundf:
217   case LibFunc::roundl:
218     return checkUnaryFloatSignature(*CI, Intrinsic::round);
219   case LibFunc::pow:
220   case LibFunc::powf:
221   case LibFunc::powl:
222     return checkBinaryFloatSignature(*CI, Intrinsic::pow);
223   case LibFunc::sqrt:
224   case LibFunc::sqrtf:
225   case LibFunc::sqrtl:
226     if (CI->hasNoNaNs())
227       return checkUnaryFloatSignature(*CI, Intrinsic::sqrt);
228     return Intrinsic::not_intrinsic;
229   }
230 
231   return Intrinsic::not_intrinsic;
232 }
233 
234 /// \brief Find the operand of the GEP that should be checked for consecutive
235 /// stores. This ignores trailing indices that have no effect on the final
236 /// pointer.
237 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
238   const DataLayout &DL = Gep->getModule()->getDataLayout();
239   unsigned LastOperand = Gep->getNumOperands() - 1;
240   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
241 
242   // Walk backwards and try to peel off zeros.
243   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
244     // Find the type we're currently indexing into.
245     gep_type_iterator GEPTI = gep_type_begin(Gep);
246     std::advance(GEPTI, LastOperand - 1);
247 
248     // If it's a type with the same allocation size as the result of the GEP we
249     // can peel off the zero index.
250     if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
251       break;
252     --LastOperand;
253   }
254 
255   return LastOperand;
256 }
257 
258 /// \brief If the argument is a GEP, then returns the operand identified by
259 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
260 /// operand, it returns that instead.
261 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
262   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
263   if (!GEP)
264     return Ptr;
265 
266   unsigned InductionOperand = getGEPInductionOperand(GEP);
267 
268   // Check that all of the gep indices are uniform except for our induction
269   // operand.
270   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
271     if (i != InductionOperand &&
272         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
273       return Ptr;
274   return GEP->getOperand(InductionOperand);
275 }
276 
277 /// \brief If a value has only one user that is a CastInst, return it.
278 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
279   Value *UniqueCast = nullptr;
280   for (User *U : Ptr->users()) {
281     CastInst *CI = dyn_cast<CastInst>(U);
282     if (CI && CI->getType() == Ty) {
283       if (!UniqueCast)
284         UniqueCast = CI;
285       else
286         return nullptr;
287     }
288   }
289   return UniqueCast;
290 }
291 
292 /// \brief Get the stride of a pointer access in a loop. Looks for symbolic
293 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
294 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
295   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
296   if (!PtrTy || PtrTy->isAggregateType())
297     return nullptr;
298 
299   // Try to remove a gep instruction to make the pointer (actually index at this
300   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
301   // pointer, otherwise, we are analyzing the index.
302   Value *OrigPtr = Ptr;
303 
304   // The size of the pointer access.
305   int64_t PtrAccessSize = 1;
306 
307   Ptr = stripGetElementPtr(Ptr, SE, Lp);
308   const SCEV *V = SE->getSCEV(Ptr);
309 
310   if (Ptr != OrigPtr)
311     // Strip off casts.
312     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
313       V = C->getOperand();
314 
315   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
316   if (!S)
317     return nullptr;
318 
319   V = S->getStepRecurrence(*SE);
320   if (!V)
321     return nullptr;
322 
323   // Strip off the size of access multiplication if we are still analyzing the
324   // pointer.
325   if (OrigPtr == Ptr) {
326     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
327       if (M->getOperand(0)->getSCEVType() != scConstant)
328         return nullptr;
329 
330       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
331 
332       // Huge step value - give up.
333       if (APStepVal.getBitWidth() > 64)
334         return nullptr;
335 
336       int64_t StepVal = APStepVal.getSExtValue();
337       if (PtrAccessSize != StepVal)
338         return nullptr;
339       V = M->getOperand(1);
340     }
341   }
342 
343   // Strip off casts.
344   Type *StripedOffRecurrenceCast = nullptr;
345   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
346     StripedOffRecurrenceCast = C->getType();
347     V = C->getOperand();
348   }
349 
350   // Look for the loop invariant symbolic value.
351   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
352   if (!U)
353     return nullptr;
354 
355   Value *Stride = U->getValue();
356   if (!Lp->isLoopInvariant(Stride))
357     return nullptr;
358 
359   // If we have stripped off the recurrence cast we have to make sure that we
360   // return the value that is used in this loop so that we can replace it later.
361   if (StripedOffRecurrenceCast)
362     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
363 
364   return Stride;
365 }
366 
367 /// \brief Given a vector and an element number, see if the scalar value is
368 /// already around as a register, for example if it were inserted then extracted
369 /// from the vector.
370 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
371   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
372   VectorType *VTy = cast<VectorType>(V->getType());
373   unsigned Width = VTy->getNumElements();
374   if (EltNo >= Width)  // Out of range access.
375     return UndefValue::get(VTy->getElementType());
376 
377   if (Constant *C = dyn_cast<Constant>(V))
378     return C->getAggregateElement(EltNo);
379 
380   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
381     // If this is an insert to a variable element, we don't know what it is.
382     if (!isa<ConstantInt>(III->getOperand(2)))
383       return nullptr;
384     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
385 
386     // If this is an insert to the element we are looking for, return the
387     // inserted value.
388     if (EltNo == IIElt)
389       return III->getOperand(1);
390 
391     // Otherwise, the insertelement doesn't modify the value, recurse on its
392     // vector input.
393     return findScalarElement(III->getOperand(0), EltNo);
394   }
395 
396   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
397     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
398     int InEl = SVI->getMaskValue(EltNo);
399     if (InEl < 0)
400       return UndefValue::get(VTy->getElementType());
401     if (InEl < (int)LHSWidth)
402       return findScalarElement(SVI->getOperand(0), InEl);
403     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
404   }
405 
406   // Extract a value from a vector add operation with a constant zero.
407   Value *Val = nullptr; Constant *Con = nullptr;
408   if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
409     if (Constant *Elt = Con->getAggregateElement(EltNo))
410       if (Elt->isNullValue())
411         return findScalarElement(Val, EltNo);
412 
413   // Otherwise, we don't know.
414   return nullptr;
415 }
416 
417 /// \brief Get splat value if the input is a splat vector or return nullptr.
418 /// This function is not fully general. It checks only 2 cases:
419 /// the input value is (1) a splat constants vector or (2) a sequence
420 /// of instructions that broadcast a single value into a vector.
421 ///
422 const llvm::Value *llvm::getSplatValue(const Value *V) {
423 
424   if (auto *C = dyn_cast<Constant>(V))
425     if (isa<VectorType>(V->getType()))
426       return C->getSplatValue();
427 
428   auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
429   if (!ShuffleInst)
430     return nullptr;
431   // All-zero (or undef) shuffle mask elements.
432   for (int MaskElt : ShuffleInst->getShuffleMask())
433     if (MaskElt != 0 && MaskElt != -1)
434       return nullptr;
435   // The first shuffle source is 'insertelement' with index 0.
436   auto *InsertEltInst =
437     dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
438   if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
439       !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
440     return nullptr;
441 
442   return InsertEltInst->getOperand(1);
443 }
444 
445 MapVector<Instruction *, uint64_t>
446 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
447                                const TargetTransformInfo *TTI) {
448 
449   // DemandedBits will give us every value's live-out bits. But we want
450   // to ensure no extra casts would need to be inserted, so every DAG
451   // of connected values must have the same minimum bitwidth.
452   EquivalenceClasses<Value *> ECs;
453   SmallVector<Value *, 16> Worklist;
454   SmallPtrSet<Value *, 4> Roots;
455   SmallPtrSet<Value *, 16> Visited;
456   DenseMap<Value *, uint64_t> DBits;
457   SmallPtrSet<Instruction *, 4> InstructionSet;
458   MapVector<Instruction *, uint64_t> MinBWs;
459 
460   // Determine the roots. We work bottom-up, from truncs or icmps.
461   bool SeenExtFromIllegalType = false;
462   for (auto *BB : Blocks)
463     for (auto &I : *BB) {
464       InstructionSet.insert(&I);
465 
466       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
467           !TTI->isTypeLegal(I.getOperand(0)->getType()))
468         SeenExtFromIllegalType = true;
469 
470       // Only deal with non-vector integers up to 64-bits wide.
471       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
472           !I.getType()->isVectorTy() &&
473           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
474         // Don't make work for ourselves. If we know the loaded type is legal,
475         // don't add it to the worklist.
476         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
477           continue;
478 
479         Worklist.push_back(&I);
480         Roots.insert(&I);
481       }
482     }
483   // Early exit.
484   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
485     return MinBWs;
486 
487   // Now proceed breadth-first, unioning values together.
488   while (!Worklist.empty()) {
489     Value *Val = Worklist.pop_back_val();
490     Value *Leader = ECs.getOrInsertLeaderValue(Val);
491 
492     if (Visited.count(Val))
493       continue;
494     Visited.insert(Val);
495 
496     // Non-instructions terminate a chain successfully.
497     if (!isa<Instruction>(Val))
498       continue;
499     Instruction *I = cast<Instruction>(Val);
500 
501     // If we encounter a type that is larger than 64 bits, we can't represent
502     // it so bail out.
503     if (DB.getDemandedBits(I).getBitWidth() > 64)
504       return MapVector<Instruction *, uint64_t>();
505 
506     uint64_t V = DB.getDemandedBits(I).getZExtValue();
507     DBits[Leader] |= V;
508     DBits[I] = V;
509 
510     // Casts, loads and instructions outside of our range terminate a chain
511     // successfully.
512     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
513         !InstructionSet.count(I))
514       continue;
515 
516     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
517     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
518     // transform anything that relies on them.
519     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
520         !I->getType()->isIntegerTy()) {
521       DBits[Leader] |= ~0ULL;
522       continue;
523     }
524 
525     // We don't modify the types of PHIs. Reductions will already have been
526     // truncated if possible, and inductions' sizes will have been chosen by
527     // indvars.
528     if (isa<PHINode>(I))
529       continue;
530 
531     if (DBits[Leader] == ~0ULL)
532       // All bits demanded, no point continuing.
533       continue;
534 
535     for (Value *O : cast<User>(I)->operands()) {
536       ECs.unionSets(Leader, O);
537       Worklist.push_back(O);
538     }
539   }
540 
541   // Now we've discovered all values, walk them to see if there are
542   // any users we didn't see. If there are, we can't optimize that
543   // chain.
544   for (auto &I : DBits)
545     for (auto *U : I.first->users())
546       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
547         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
548 
549   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
550     uint64_t LeaderDemandedBits = 0;
551     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
552       LeaderDemandedBits |= DBits[*MI];
553 
554     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
555                      llvm::countLeadingZeros(LeaderDemandedBits);
556     // Round up to a power of 2
557     if (!isPowerOf2_64((uint64_t)MinBW))
558       MinBW = NextPowerOf2(MinBW);
559 
560     // We don't modify the types of PHIs. Reductions will already have been
561     // truncated if possible, and inductions' sizes will have been chosen by
562     // indvars.
563     // If we are required to shrink a PHI, abandon this entire equivalence class.
564     bool Abort = false;
565     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
566       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
567         Abort = true;
568         break;
569       }
570     if (Abort)
571       continue;
572 
573     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
574       if (!isa<Instruction>(*MI))
575         continue;
576       Type *Ty = (*MI)->getType();
577       if (Roots.count(*MI))
578         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
579       if (MinBW < Ty->getScalarSizeInBits())
580         MinBWs[cast<Instruction>(*MI)] = MinBW;
581     }
582   }
583 
584   return MinBWs;
585 }
586