1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::bswap: // Begin integer bit-manipulation.
47   case Intrinsic::bitreverse:
48   case Intrinsic::ctpop:
49   case Intrinsic::ctlz:
50   case Intrinsic::cttz:
51   case Intrinsic::fshl:
52   case Intrinsic::fshr:
53   case Intrinsic::sadd_sat:
54   case Intrinsic::ssub_sat:
55   case Intrinsic::uadd_sat:
56   case Intrinsic::usub_sat:
57   case Intrinsic::smul_fix:
58   case Intrinsic::smul_fix_sat:
59   case Intrinsic::umul_fix:
60   case Intrinsic::umul_fix_sat:
61   case Intrinsic::sqrt: // Begin floating-point.
62   case Intrinsic::sin:
63   case Intrinsic::cos:
64   case Intrinsic::exp:
65   case Intrinsic::exp2:
66   case Intrinsic::log:
67   case Intrinsic::log10:
68   case Intrinsic::log2:
69   case Intrinsic::fabs:
70   case Intrinsic::minnum:
71   case Intrinsic::maxnum:
72   case Intrinsic::minimum:
73   case Intrinsic::maximum:
74   case Intrinsic::copysign:
75   case Intrinsic::floor:
76   case Intrinsic::ceil:
77   case Intrinsic::trunc:
78   case Intrinsic::rint:
79   case Intrinsic::nearbyint:
80   case Intrinsic::round:
81   case Intrinsic::pow:
82   case Intrinsic::fma:
83   case Intrinsic::fmuladd:
84   case Intrinsic::powi:
85   case Intrinsic::canonicalize:
86     return true;
87   default:
88     return false;
89   }
90 }
91 
92 /// Identifies if the vector form of the intrinsic has a scalar operand.
93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
94                                         unsigned ScalarOpdIdx) {
95   switch (ID) {
96   case Intrinsic::ctlz:
97   case Intrinsic::cttz:
98   case Intrinsic::powi:
99     return (ScalarOpdIdx == 1);
100   case Intrinsic::smul_fix:
101   case Intrinsic::smul_fix_sat:
102   case Intrinsic::umul_fix:
103   case Intrinsic::umul_fix_sat:
104     return (ScalarOpdIdx == 2);
105   default:
106     return false;
107   }
108 }
109 
110 /// Returns intrinsic ID for call.
111 /// For the input call instruction it finds mapping intrinsic and returns
112 /// its ID, in case it does not found it return not_intrinsic.
113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
114                                                 const TargetLibraryInfo *TLI) {
115   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
116   if (ID == Intrinsic::not_intrinsic)
117     return Intrinsic::not_intrinsic;
118 
119   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
120       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
121       ID == Intrinsic::sideeffect)
122     return ID;
123   return Intrinsic::not_intrinsic;
124 }
125 
126 /// Find the operand of the GEP that should be checked for consecutive
127 /// stores. This ignores trailing indices that have no effect on the final
128 /// pointer.
129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
130   const DataLayout &DL = Gep->getModule()->getDataLayout();
131   unsigned LastOperand = Gep->getNumOperands() - 1;
132   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
133 
134   // Walk backwards and try to peel off zeros.
135   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
136     // Find the type we're currently indexing into.
137     gep_type_iterator GEPTI = gep_type_begin(Gep);
138     std::advance(GEPTI, LastOperand - 2);
139 
140     // If it's a type with the same allocation size as the result of the GEP we
141     // can peel off the zero index.
142     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
143       break;
144     --LastOperand;
145   }
146 
147   return LastOperand;
148 }
149 
150 /// If the argument is a GEP, then returns the operand identified by
151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
152 /// operand, it returns that instead.
153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
154   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
155   if (!GEP)
156     return Ptr;
157 
158   unsigned InductionOperand = getGEPInductionOperand(GEP);
159 
160   // Check that all of the gep indices are uniform except for our induction
161   // operand.
162   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
163     if (i != InductionOperand &&
164         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
165       return Ptr;
166   return GEP->getOperand(InductionOperand);
167 }
168 
169 /// If a value has only one user that is a CastInst, return it.
170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
171   Value *UniqueCast = nullptr;
172   for (User *U : Ptr->users()) {
173     CastInst *CI = dyn_cast<CastInst>(U);
174     if (CI && CI->getType() == Ty) {
175       if (!UniqueCast)
176         UniqueCast = CI;
177       else
178         return nullptr;
179     }
180   }
181   return UniqueCast;
182 }
183 
184 /// Get the stride of a pointer access in a loop. Looks for symbolic
185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
187   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
188   if (!PtrTy || PtrTy->isAggregateType())
189     return nullptr;
190 
191   // Try to remove a gep instruction to make the pointer (actually index at this
192   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
193   // pointer, otherwise, we are analyzing the index.
194   Value *OrigPtr = Ptr;
195 
196   // The size of the pointer access.
197   int64_t PtrAccessSize = 1;
198 
199   Ptr = stripGetElementPtr(Ptr, SE, Lp);
200   const SCEV *V = SE->getSCEV(Ptr);
201 
202   if (Ptr != OrigPtr)
203     // Strip off casts.
204     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
205       V = C->getOperand();
206 
207   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
208   if (!S)
209     return nullptr;
210 
211   V = S->getStepRecurrence(*SE);
212   if (!V)
213     return nullptr;
214 
215   // Strip off the size of access multiplication if we are still analyzing the
216   // pointer.
217   if (OrigPtr == Ptr) {
218     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
219       if (M->getOperand(0)->getSCEVType() != scConstant)
220         return nullptr;
221 
222       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
223 
224       // Huge step value - give up.
225       if (APStepVal.getBitWidth() > 64)
226         return nullptr;
227 
228       int64_t StepVal = APStepVal.getSExtValue();
229       if (PtrAccessSize != StepVal)
230         return nullptr;
231       V = M->getOperand(1);
232     }
233   }
234 
235   // Strip off casts.
236   Type *StripedOffRecurrenceCast = nullptr;
237   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
238     StripedOffRecurrenceCast = C->getType();
239     V = C->getOperand();
240   }
241 
242   // Look for the loop invariant symbolic value.
243   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
244   if (!U)
245     return nullptr;
246 
247   Value *Stride = U->getValue();
248   if (!Lp->isLoopInvariant(Stride))
249     return nullptr;
250 
251   // If we have stripped off the recurrence cast we have to make sure that we
252   // return the value that is used in this loop so that we can replace it later.
253   if (StripedOffRecurrenceCast)
254     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
255 
256   return Stride;
257 }
258 
259 /// Given a vector and an element number, see if the scalar value is
260 /// already around as a register, for example if it were inserted then extracted
261 /// from the vector.
262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
263   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
264   VectorType *VTy = cast<VectorType>(V->getType());
265   // For fixed-length vector, return undef for out of range access.
266   if (!V->getType()->getVectorIsScalable()) {
267     unsigned Width = VTy->getNumElements();
268     if (EltNo >= Width)
269       return UndefValue::get(VTy->getElementType());
270   }
271 
272   if (Constant *C = dyn_cast<Constant>(V))
273     return C->getAggregateElement(EltNo);
274 
275   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
276     // If this is an insert to a variable element, we don't know what it is.
277     if (!isa<ConstantInt>(III->getOperand(2)))
278       return nullptr;
279     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
280 
281     // If this is an insert to the element we are looking for, return the
282     // inserted value.
283     if (EltNo == IIElt)
284       return III->getOperand(1);
285 
286     // Otherwise, the insertelement doesn't modify the value, recurse on its
287     // vector input.
288     return findScalarElement(III->getOperand(0), EltNo);
289   }
290 
291   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
292     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
293     int InEl = SVI->getMaskValue(EltNo);
294     if (InEl < 0)
295       return UndefValue::get(VTy->getElementType());
296     if (InEl < (int)LHSWidth)
297       return findScalarElement(SVI->getOperand(0), InEl);
298     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
299   }
300 
301   // Extract a value from a vector add operation with a constant zero.
302   // TODO: Use getBinOpIdentity() to generalize this.
303   Value *Val; Constant *C;
304   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
305     if (Constant *Elt = C->getAggregateElement(EltNo))
306       if (Elt->isNullValue())
307         return findScalarElement(Val, EltNo);
308 
309   // Otherwise, we don't know.
310   return nullptr;
311 }
312 
313 int llvm::getSplatIndex(ArrayRef<int> Mask) {
314   int SplatIndex = -1;
315   for (int M : Mask) {
316     // Ignore invalid (undefined) mask elements.
317     if (M < 0)
318       continue;
319 
320     // There can be only 1 non-negative mask element value if this is a splat.
321     if (SplatIndex != -1 && SplatIndex != M)
322       return -1;
323 
324     // Initialize the splat index to the 1st non-negative mask element.
325     SplatIndex = M;
326   }
327   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
328   return SplatIndex;
329 }
330 
331 /// Get splat value if the input is a splat vector or return nullptr.
332 /// This function is not fully general. It checks only 2 cases:
333 /// the input value is (1) a splat constant vector or (2) a sequence
334 /// of instructions that broadcasts a scalar at element 0.
335 const llvm::Value *llvm::getSplatValue(const Value *V) {
336   if (isa<VectorType>(V->getType()))
337     if (auto *C = dyn_cast<Constant>(V))
338       return C->getSplatValue();
339 
340   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
341   Value *Splat;
342   if (match(V, m_ShuffleVector(
343                    m_InsertElement(m_Value(), m_Value(Splat), m_ZeroInt()),
344                    m_Value(), m_ZeroMask())))
345     return Splat;
346 
347   return nullptr;
348 }
349 
350 // This setting is based on its counterpart in value tracking, but it could be
351 // adjusted if needed.
352 const unsigned MaxDepth = 6;
353 
354 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
355   assert(Depth <= MaxDepth && "Limit Search Depth");
356 
357   if (isa<VectorType>(V->getType())) {
358     if (isa<UndefValue>(V))
359       return true;
360     // FIXME: We can allow undefs, but if Index was specified, we may want to
361     //        check that the constant is defined at that index.
362     if (auto *C = dyn_cast<Constant>(V))
363       return C->getSplatValue() != nullptr;
364   }
365 
366   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
367     // FIXME: We can safely allow undefs here. If Index was specified, we will
368     //        check that the mask elt is defined at the required index.
369     if (!is_splat(Shuf->getShuffleMask()))
370       return false;
371 
372     // Match any index.
373     if (Index == -1)
374       return true;
375 
376     // Match a specific element. The mask should be defined at and match the
377     // specified index.
378     return Shuf->getMaskValue(Index) == Index;
379   }
380 
381   // The remaining tests are all recursive, so bail out if we hit the limit.
382   if (Depth++ == MaxDepth)
383     return false;
384 
385   // If both operands of a binop are splats, the result is a splat.
386   Value *X, *Y, *Z;
387   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
388     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
389 
390   // If all operands of a select are splats, the result is a splat.
391   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
392     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
393            isSplatValue(Z, Index, Depth);
394 
395   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
396 
397   return false;
398 }
399 
400 MapVector<Instruction *, uint64_t>
401 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
402                                const TargetTransformInfo *TTI) {
403 
404   // DemandedBits will give us every value's live-out bits. But we want
405   // to ensure no extra casts would need to be inserted, so every DAG
406   // of connected values must have the same minimum bitwidth.
407   EquivalenceClasses<Value *> ECs;
408   SmallVector<Value *, 16> Worklist;
409   SmallPtrSet<Value *, 4> Roots;
410   SmallPtrSet<Value *, 16> Visited;
411   DenseMap<Value *, uint64_t> DBits;
412   SmallPtrSet<Instruction *, 4> InstructionSet;
413   MapVector<Instruction *, uint64_t> MinBWs;
414 
415   // Determine the roots. We work bottom-up, from truncs or icmps.
416   bool SeenExtFromIllegalType = false;
417   for (auto *BB : Blocks)
418     for (auto &I : *BB) {
419       InstructionSet.insert(&I);
420 
421       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
422           !TTI->isTypeLegal(I.getOperand(0)->getType()))
423         SeenExtFromIllegalType = true;
424 
425       // Only deal with non-vector integers up to 64-bits wide.
426       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
427           !I.getType()->isVectorTy() &&
428           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
429         // Don't make work for ourselves. If we know the loaded type is legal,
430         // don't add it to the worklist.
431         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
432           continue;
433 
434         Worklist.push_back(&I);
435         Roots.insert(&I);
436       }
437     }
438   // Early exit.
439   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
440     return MinBWs;
441 
442   // Now proceed breadth-first, unioning values together.
443   while (!Worklist.empty()) {
444     Value *Val = Worklist.pop_back_val();
445     Value *Leader = ECs.getOrInsertLeaderValue(Val);
446 
447     if (Visited.count(Val))
448       continue;
449     Visited.insert(Val);
450 
451     // Non-instructions terminate a chain successfully.
452     if (!isa<Instruction>(Val))
453       continue;
454     Instruction *I = cast<Instruction>(Val);
455 
456     // If we encounter a type that is larger than 64 bits, we can't represent
457     // it so bail out.
458     if (DB.getDemandedBits(I).getBitWidth() > 64)
459       return MapVector<Instruction *, uint64_t>();
460 
461     uint64_t V = DB.getDemandedBits(I).getZExtValue();
462     DBits[Leader] |= V;
463     DBits[I] = V;
464 
465     // Casts, loads and instructions outside of our range terminate a chain
466     // successfully.
467     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
468         !InstructionSet.count(I))
469       continue;
470 
471     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
472     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
473     // transform anything that relies on them.
474     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
475         !I->getType()->isIntegerTy()) {
476       DBits[Leader] |= ~0ULL;
477       continue;
478     }
479 
480     // We don't modify the types of PHIs. Reductions will already have been
481     // truncated if possible, and inductions' sizes will have been chosen by
482     // indvars.
483     if (isa<PHINode>(I))
484       continue;
485 
486     if (DBits[Leader] == ~0ULL)
487       // All bits demanded, no point continuing.
488       continue;
489 
490     for (Value *O : cast<User>(I)->operands()) {
491       ECs.unionSets(Leader, O);
492       Worklist.push_back(O);
493     }
494   }
495 
496   // Now we've discovered all values, walk them to see if there are
497   // any users we didn't see. If there are, we can't optimize that
498   // chain.
499   for (auto &I : DBits)
500     for (auto *U : I.first->users())
501       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
502         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
503 
504   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
505     uint64_t LeaderDemandedBits = 0;
506     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
507       LeaderDemandedBits |= DBits[*MI];
508 
509     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
510                      llvm::countLeadingZeros(LeaderDemandedBits);
511     // Round up to a power of 2
512     if (!isPowerOf2_64((uint64_t)MinBW))
513       MinBW = NextPowerOf2(MinBW);
514 
515     // We don't modify the types of PHIs. Reductions will already have been
516     // truncated if possible, and inductions' sizes will have been chosen by
517     // indvars.
518     // If we are required to shrink a PHI, abandon this entire equivalence class.
519     bool Abort = false;
520     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
521       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
522         Abort = true;
523         break;
524       }
525     if (Abort)
526       continue;
527 
528     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
529       if (!isa<Instruction>(*MI))
530         continue;
531       Type *Ty = (*MI)->getType();
532       if (Roots.count(*MI))
533         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
534       if (MinBW < Ty->getScalarSizeInBits())
535         MinBWs[cast<Instruction>(*MI)] = MinBW;
536     }
537   }
538 
539   return MinBWs;
540 }
541 
542 /// Add all access groups in @p AccGroups to @p List.
543 template <typename ListT>
544 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
545   // Interpret an access group as a list containing itself.
546   if (AccGroups->getNumOperands() == 0) {
547     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
548     List.insert(AccGroups);
549     return;
550   }
551 
552   for (auto &AccGroupListOp : AccGroups->operands()) {
553     auto *Item = cast<MDNode>(AccGroupListOp.get());
554     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
555     List.insert(Item);
556   }
557 }
558 
559 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
560   if (!AccGroups1)
561     return AccGroups2;
562   if (!AccGroups2)
563     return AccGroups1;
564   if (AccGroups1 == AccGroups2)
565     return AccGroups1;
566 
567   SmallSetVector<Metadata *, 4> Union;
568   addToAccessGroupList(Union, AccGroups1);
569   addToAccessGroupList(Union, AccGroups2);
570 
571   if (Union.size() == 0)
572     return nullptr;
573   if (Union.size() == 1)
574     return cast<MDNode>(Union.front());
575 
576   LLVMContext &Ctx = AccGroups1->getContext();
577   return MDNode::get(Ctx, Union.getArrayRef());
578 }
579 
580 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
581                                     const Instruction *Inst2) {
582   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
583   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
584 
585   if (!MayAccessMem1 && !MayAccessMem2)
586     return nullptr;
587   if (!MayAccessMem1)
588     return Inst2->getMetadata(LLVMContext::MD_access_group);
589   if (!MayAccessMem2)
590     return Inst1->getMetadata(LLVMContext::MD_access_group);
591 
592   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
593   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
594   if (!MD1 || !MD2)
595     return nullptr;
596   if (MD1 == MD2)
597     return MD1;
598 
599   // Use set for scalable 'contains' check.
600   SmallPtrSet<Metadata *, 4> AccGroupSet2;
601   addToAccessGroupList(AccGroupSet2, MD2);
602 
603   SmallVector<Metadata *, 4> Intersection;
604   if (MD1->getNumOperands() == 0) {
605     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
606     if (AccGroupSet2.count(MD1))
607       Intersection.push_back(MD1);
608   } else {
609     for (const MDOperand &Node : MD1->operands()) {
610       auto *Item = cast<MDNode>(Node.get());
611       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
612       if (AccGroupSet2.count(Item))
613         Intersection.push_back(Item);
614     }
615   }
616 
617   if (Intersection.size() == 0)
618     return nullptr;
619   if (Intersection.size() == 1)
620     return cast<MDNode>(Intersection.front());
621 
622   LLVMContext &Ctx = Inst1->getContext();
623   return MDNode::get(Ctx, Intersection);
624 }
625 
626 /// \returns \p I after propagating metadata from \p VL.
627 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
628   Instruction *I0 = cast<Instruction>(VL[0]);
629   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
630   I0->getAllMetadataOtherThanDebugLoc(Metadata);
631 
632   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
633                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
634                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
635                     LLVMContext::MD_access_group}) {
636     MDNode *MD = I0->getMetadata(Kind);
637 
638     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
639       const Instruction *IJ = cast<Instruction>(VL[J]);
640       MDNode *IMD = IJ->getMetadata(Kind);
641       switch (Kind) {
642       case LLVMContext::MD_tbaa:
643         MD = MDNode::getMostGenericTBAA(MD, IMD);
644         break;
645       case LLVMContext::MD_alias_scope:
646         MD = MDNode::getMostGenericAliasScope(MD, IMD);
647         break;
648       case LLVMContext::MD_fpmath:
649         MD = MDNode::getMostGenericFPMath(MD, IMD);
650         break;
651       case LLVMContext::MD_noalias:
652       case LLVMContext::MD_nontemporal:
653       case LLVMContext::MD_invariant_load:
654         MD = MDNode::intersect(MD, IMD);
655         break;
656       case LLVMContext::MD_access_group:
657         MD = intersectAccessGroups(Inst, IJ);
658         break;
659       default:
660         llvm_unreachable("unhandled metadata");
661       }
662     }
663 
664     Inst->setMetadata(Kind, MD);
665   }
666 
667   return Inst;
668 }
669 
670 Constant *
671 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
672                            const InterleaveGroup<Instruction> &Group) {
673   // All 1's means mask is not needed.
674   if (Group.getNumMembers() == Group.getFactor())
675     return nullptr;
676 
677   // TODO: support reversed access.
678   assert(!Group.isReverse() && "Reversed group not supported.");
679 
680   SmallVector<Constant *, 16> Mask;
681   for (unsigned i = 0; i < VF; i++)
682     for (unsigned j = 0; j < Group.getFactor(); ++j) {
683       unsigned HasMember = Group.getMember(j) ? 1 : 0;
684       Mask.push_back(Builder.getInt1(HasMember));
685     }
686 
687   return ConstantVector::get(Mask);
688 }
689 
690 Constant *llvm::createReplicatedMask(IRBuilderBase &Builder,
691                                      unsigned ReplicationFactor, unsigned VF) {
692   SmallVector<Constant *, 16> MaskVec;
693   for (unsigned i = 0; i < VF; i++)
694     for (unsigned j = 0; j < ReplicationFactor; j++)
695       MaskVec.push_back(Builder.getInt32(i));
696 
697   return ConstantVector::get(MaskVec);
698 }
699 
700 Constant *llvm::createInterleaveMask(IRBuilderBase &Builder, unsigned VF,
701                                      unsigned NumVecs) {
702   SmallVector<Constant *, 16> Mask;
703   for (unsigned i = 0; i < VF; i++)
704     for (unsigned j = 0; j < NumVecs; j++)
705       Mask.push_back(Builder.getInt32(j * VF + i));
706 
707   return ConstantVector::get(Mask);
708 }
709 
710 Constant *llvm::createStrideMask(IRBuilderBase &Builder, unsigned Start,
711                                  unsigned Stride, unsigned VF) {
712   SmallVector<Constant *, 16> Mask;
713   for (unsigned i = 0; i < VF; i++)
714     Mask.push_back(Builder.getInt32(Start + i * Stride));
715 
716   return ConstantVector::get(Mask);
717 }
718 
719 Constant *llvm::createSequentialMask(IRBuilderBase &Builder, unsigned Start,
720                                      unsigned NumInts, unsigned NumUndefs) {
721   SmallVector<Constant *, 16> Mask;
722   for (unsigned i = 0; i < NumInts; i++)
723     Mask.push_back(Builder.getInt32(Start + i));
724 
725   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
726   for (unsigned i = 0; i < NumUndefs; i++)
727     Mask.push_back(Undef);
728 
729   return ConstantVector::get(Mask);
730 }
731 
732 /// A helper function for concatenating vectors. This function concatenates two
733 /// vectors having the same element type. If the second vector has fewer
734 /// elements than the first, it is padded with undefs.
735 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
736                                     Value *V2) {
737   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
738   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
739   assert(VecTy1 && VecTy2 &&
740          VecTy1->getScalarType() == VecTy2->getScalarType() &&
741          "Expect two vectors with the same element type");
742 
743   unsigned NumElts1 = VecTy1->getNumElements();
744   unsigned NumElts2 = VecTy2->getNumElements();
745   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
746 
747   if (NumElts1 > NumElts2) {
748     // Extend with UNDEFs.
749     Constant *ExtMask =
750         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
751     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
752   }
753 
754   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
755   return Builder.CreateShuffleVector(V1, V2, Mask);
756 }
757 
758 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
759                                 ArrayRef<Value *> Vecs) {
760   unsigned NumVecs = Vecs.size();
761   assert(NumVecs > 1 && "Should be at least two vectors");
762 
763   SmallVector<Value *, 8> ResList;
764   ResList.append(Vecs.begin(), Vecs.end());
765   do {
766     SmallVector<Value *, 8> TmpList;
767     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
768       Value *V0 = ResList[i], *V1 = ResList[i + 1];
769       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
770              "Only the last vector may have a different type");
771 
772       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
773     }
774 
775     // Push the last vector if the total number of vectors is odd.
776     if (NumVecs % 2 != 0)
777       TmpList.push_back(ResList[NumVecs - 1]);
778 
779     ResList = TmpList;
780     NumVecs = ResList.size();
781   } while (NumVecs > 1);
782 
783   return ResList[0];
784 }
785 
786 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
787   auto *ConstMask = dyn_cast<Constant>(Mask);
788   if (!ConstMask)
789     return false;
790   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
791     return true;
792   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
793        ++I) {
794     if (auto *MaskElt = ConstMask->getAggregateElement(I))
795       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
796         continue;
797     return false;
798   }
799   return true;
800 }
801 
802 
803 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
804   auto *ConstMask = dyn_cast<Constant>(Mask);
805   if (!ConstMask)
806     return false;
807   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
808     return true;
809   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
810        ++I) {
811     if (auto *MaskElt = ConstMask->getAggregateElement(I))
812       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
813         continue;
814     return false;
815   }
816   return true;
817 }
818 
819 /// TODO: This is a lot like known bits, but for
820 /// vectors.  Is there something we can common this with?
821 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
822 
823   const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
824   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
825   if (auto *CV = dyn_cast<ConstantVector>(Mask))
826     for (unsigned i = 0; i < VWidth; i++)
827       if (CV->getAggregateElement(i)->isNullValue())
828         DemandedElts.clearBit(i);
829   return DemandedElts;
830 }
831 
832 bool InterleavedAccessInfo::isStrided(int Stride) {
833   unsigned Factor = std::abs(Stride);
834   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
835 }
836 
837 void InterleavedAccessInfo::collectConstStrideAccesses(
838     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
839     const ValueToValueMap &Strides) {
840   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
841 
842   // Since it's desired that the load/store instructions be maintained in
843   // "program order" for the interleaved access analysis, we have to visit the
844   // blocks in the loop in reverse postorder (i.e., in a topological order).
845   // Such an ordering will ensure that any load/store that may be executed
846   // before a second load/store will precede the second load/store in
847   // AccessStrideInfo.
848   LoopBlocksDFS DFS(TheLoop);
849   DFS.perform(LI);
850   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
851     for (auto &I : *BB) {
852       auto *LI = dyn_cast<LoadInst>(&I);
853       auto *SI = dyn_cast<StoreInst>(&I);
854       if (!LI && !SI)
855         continue;
856 
857       Value *Ptr = getLoadStorePointerOperand(&I);
858       // We don't check wrapping here because we don't know yet if Ptr will be
859       // part of a full group or a group with gaps. Checking wrapping for all
860       // pointers (even those that end up in groups with no gaps) will be overly
861       // conservative. For full groups, wrapping should be ok since if we would
862       // wrap around the address space we would do a memory access at nullptr
863       // even without the transformation. The wrapping checks are therefore
864       // deferred until after we've formed the interleaved groups.
865       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
866                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
867 
868       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
869       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
870       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
871 
872       // An alignment of 0 means target ABI alignment.
873       MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
874       if (!Alignment)
875         Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));
876 
877       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
878     }
879 }
880 
881 // Analyze interleaved accesses and collect them into interleaved load and
882 // store groups.
883 //
884 // When generating code for an interleaved load group, we effectively hoist all
885 // loads in the group to the location of the first load in program order. When
886 // generating code for an interleaved store group, we sink all stores to the
887 // location of the last store. This code motion can change the order of load
888 // and store instructions and may break dependences.
889 //
890 // The code generation strategy mentioned above ensures that we won't violate
891 // any write-after-read (WAR) dependences.
892 //
893 // E.g., for the WAR dependence:  a = A[i];      // (1)
894 //                                A[i] = b;      // (2)
895 //
896 // The store group of (2) is always inserted at or below (2), and the load
897 // group of (1) is always inserted at or above (1). Thus, the instructions will
898 // never be reordered. All other dependences are checked to ensure the
899 // correctness of the instruction reordering.
900 //
901 // The algorithm visits all memory accesses in the loop in bottom-up program
902 // order. Program order is established by traversing the blocks in the loop in
903 // reverse postorder when collecting the accesses.
904 //
905 // We visit the memory accesses in bottom-up order because it can simplify the
906 // construction of store groups in the presence of write-after-write (WAW)
907 // dependences.
908 //
909 // E.g., for the WAW dependence:  A[i] = a;      // (1)
910 //                                A[i] = b;      // (2)
911 //                                A[i + 1] = c;  // (3)
912 //
913 // We will first create a store group with (3) and (2). (1) can't be added to
914 // this group because it and (2) are dependent. However, (1) can be grouped
915 // with other accesses that may precede it in program order. Note that a
916 // bottom-up order does not imply that WAW dependences should not be checked.
917 void InterleavedAccessInfo::analyzeInterleaving(
918                                  bool EnablePredicatedInterleavedMemAccesses) {
919   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
920   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
921 
922   // Holds all accesses with a constant stride.
923   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
924   collectConstStrideAccesses(AccessStrideInfo, Strides);
925 
926   if (AccessStrideInfo.empty())
927     return;
928 
929   // Collect the dependences in the loop.
930   collectDependences();
931 
932   // Holds all interleaved store groups temporarily.
933   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
934   // Holds all interleaved load groups temporarily.
935   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
936 
937   // Search in bottom-up program order for pairs of accesses (A and B) that can
938   // form interleaved load or store groups. In the algorithm below, access A
939   // precedes access B in program order. We initialize a group for B in the
940   // outer loop of the algorithm, and then in the inner loop, we attempt to
941   // insert each A into B's group if:
942   //
943   //  1. A and B have the same stride,
944   //  2. A and B have the same memory object size, and
945   //  3. A belongs in B's group according to its distance from B.
946   //
947   // Special care is taken to ensure group formation will not break any
948   // dependences.
949   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
950        BI != E; ++BI) {
951     Instruction *B = BI->first;
952     StrideDescriptor DesB = BI->second;
953 
954     // Initialize a group for B if it has an allowable stride. Even if we don't
955     // create a group for B, we continue with the bottom-up algorithm to ensure
956     // we don't break any of B's dependences.
957     InterleaveGroup<Instruction> *Group = nullptr;
958     if (isStrided(DesB.Stride) &&
959         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
960       Group = getInterleaveGroup(B);
961       if (!Group) {
962         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
963                           << '\n');
964         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
965       }
966       if (B->mayWriteToMemory())
967         StoreGroups.insert(Group);
968       else
969         LoadGroups.insert(Group);
970     }
971 
972     for (auto AI = std::next(BI); AI != E; ++AI) {
973       Instruction *A = AI->first;
974       StrideDescriptor DesA = AI->second;
975 
976       // Our code motion strategy implies that we can't have dependences
977       // between accesses in an interleaved group and other accesses located
978       // between the first and last member of the group. Note that this also
979       // means that a group can't have more than one member at a given offset.
980       // The accesses in a group can have dependences with other accesses, but
981       // we must ensure we don't extend the boundaries of the group such that
982       // we encompass those dependent accesses.
983       //
984       // For example, assume we have the sequence of accesses shown below in a
985       // stride-2 loop:
986       //
987       //  (1, 2) is a group | A[i]   = a;  // (1)
988       //                    | A[i-1] = b;  // (2) |
989       //                      A[i-3] = c;  // (3)
990       //                      A[i]   = d;  // (4) | (2, 4) is not a group
991       //
992       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
993       // but not with (4). If we did, the dependent access (3) would be within
994       // the boundaries of the (2, 4) group.
995       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
996         // If a dependence exists and A is already in a group, we know that A
997         // must be a store since A precedes B and WAR dependences are allowed.
998         // Thus, A would be sunk below B. We release A's group to prevent this
999         // illegal code motion. A will then be free to form another group with
1000         // instructions that precede it.
1001         if (isInterleaved(A)) {
1002           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1003 
1004           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1005                                "dependence between " << *A << " and "<< *B << '\n');
1006 
1007           StoreGroups.remove(StoreGroup);
1008           releaseGroup(StoreGroup);
1009         }
1010 
1011         // If a dependence exists and A is not already in a group (or it was
1012         // and we just released it), B might be hoisted above A (if B is a
1013         // load) or another store might be sunk below A (if B is a store). In
1014         // either case, we can't add additional instructions to B's group. B
1015         // will only form a group with instructions that it precedes.
1016         break;
1017       }
1018 
1019       // At this point, we've checked for illegal code motion. If either A or B
1020       // isn't strided, there's nothing left to do.
1021       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1022         continue;
1023 
1024       // Ignore A if it's already in a group or isn't the same kind of memory
1025       // operation as B.
1026       // Note that mayReadFromMemory() isn't mutually exclusive to
1027       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1028       // here, canVectorizeMemory() should have returned false - except for the
1029       // case we asked for optimization remarks.
1030       if (isInterleaved(A) ||
1031           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1032           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1033         continue;
1034 
1035       // Check rules 1 and 2. Ignore A if its stride or size is different from
1036       // that of B.
1037       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1038         continue;
1039 
1040       // Ignore A if the memory object of A and B don't belong to the same
1041       // address space
1042       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1043         continue;
1044 
1045       // Calculate the distance from A to B.
1046       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1047           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1048       if (!DistToB)
1049         continue;
1050       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1051 
1052       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1053       // size.
1054       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1055         continue;
1056 
1057       // All members of a predicated interleave-group must have the same predicate,
1058       // and currently must reside in the same BB.
1059       BasicBlock *BlockA = A->getParent();
1060       BasicBlock *BlockB = B->getParent();
1061       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1062           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1063         continue;
1064 
1065       // The index of A is the index of B plus A's distance to B in multiples
1066       // of the size.
1067       int IndexA =
1068           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1069 
1070       // Try to insert A into B's group.
1071       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1072         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1073                           << "    into the interleave group with" << *B
1074                           << '\n');
1075         InterleaveGroupMap[A] = Group;
1076 
1077         // Set the first load in program order as the insert position.
1078         if (A->mayReadFromMemory())
1079           Group->setInsertPos(A);
1080       }
1081     } // Iteration over A accesses.
1082   }   // Iteration over B accesses.
1083 
1084   // Remove interleaved store groups with gaps.
1085   for (auto *Group : StoreGroups)
1086     if (Group->getNumMembers() != Group->getFactor()) {
1087       LLVM_DEBUG(
1088           dbgs() << "LV: Invalidate candidate interleaved store group due "
1089                     "to gaps.\n");
1090       releaseGroup(Group);
1091     }
1092   // Remove interleaved groups with gaps (currently only loads) whose memory
1093   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1094   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1095   // not check wrapping (see documentation there).
1096   // FORNOW we use Assume=false;
1097   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1098   // of runtime SCEV assumptions checks (thereby potentially failing to
1099   // vectorize altogether).
1100   // Additional optional optimizations:
1101   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1102   // wrap then we can deduce that all pointers in the group don't wrap.
1103   // This means that we can forcefully peel the loop in order to only have to
1104   // check the first pointer for no-wrap. When we'll change to use Assume=true
1105   // we'll only need at most one runtime check per interleaved group.
1106   for (auto *Group : LoadGroups) {
1107     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1108     // load would wrap around the address space we would do a memory access at
1109     // nullptr even without the transformation.
1110     if (Group->getNumMembers() == Group->getFactor())
1111       continue;
1112 
1113     // Case 2: If first and last members of the group don't wrap this implies
1114     // that all the pointers in the group don't wrap.
1115     // So we check only group member 0 (which is always guaranteed to exist),
1116     // and group member Factor - 1; If the latter doesn't exist we rely on
1117     // peeling (if it is a non-reversed accsess -- see Case 3).
1118     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1119     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1120                       /*ShouldCheckWrap=*/true)) {
1121       LLVM_DEBUG(
1122           dbgs() << "LV: Invalidate candidate interleaved group due to "
1123                     "first group member potentially pointer-wrapping.\n");
1124       releaseGroup(Group);
1125       continue;
1126     }
1127     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1128     if (LastMember) {
1129       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1130       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1131                         /*ShouldCheckWrap=*/true)) {
1132         LLVM_DEBUG(
1133             dbgs() << "LV: Invalidate candidate interleaved group due to "
1134                       "last group member potentially pointer-wrapping.\n");
1135         releaseGroup(Group);
1136       }
1137     } else {
1138       // Case 3: A non-reversed interleaved load group with gaps: We need
1139       // to execute at least one scalar epilogue iteration. This will ensure
1140       // we don't speculatively access memory out-of-bounds. We only need
1141       // to look for a member at index factor - 1, since every group must have
1142       // a member at index zero.
1143       if (Group->isReverse()) {
1144         LLVM_DEBUG(
1145             dbgs() << "LV: Invalidate candidate interleaved group due to "
1146                       "a reverse access with gaps.\n");
1147         releaseGroup(Group);
1148         continue;
1149       }
1150       LLVM_DEBUG(
1151           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1152       RequiresScalarEpilogue = true;
1153     }
1154   }
1155 }
1156 
1157 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1158   // If no group had triggered the requirement to create an epilogue loop,
1159   // there is nothing to do.
1160   if (!requiresScalarEpilogue())
1161     return;
1162 
1163   // Avoid releasing a Group twice.
1164   SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1165   for (auto &I : InterleaveGroupMap) {
1166     InterleaveGroup<Instruction> *Group = I.second;
1167     if (Group->requiresScalarEpilogue())
1168       DelSet.insert(Group);
1169   }
1170   for (auto *Ptr : DelSet) {
1171     LLVM_DEBUG(
1172         dbgs()
1173         << "LV: Invalidate candidate interleaved group due to gaps that "
1174            "require a scalar epilogue (not allowed under optsize) and cannot "
1175            "be masked (not enabled). \n");
1176     releaseGroup(Ptr);
1177   }
1178 
1179   RequiresScalarEpilogue = false;
1180 }
1181 
1182 template <typename InstT>
1183 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1184   llvm_unreachable("addMetadata can only be used for Instruction");
1185 }
1186 
1187 namespace llvm {
1188 template <>
1189 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1190   SmallVector<Value *, 4> VL;
1191   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1192                  [](std::pair<int, Instruction *> p) { return p.second; });
1193   propagateMetadata(NewInst, VL);
1194 }
1195 }
1196 
1197 void VFABI::getVectorVariantNames(
1198     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1199   const StringRef S =
1200       CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1201           .getValueAsString();
1202   if (S.empty())
1203     return;
1204 
1205   SmallVector<StringRef, 8> ListAttr;
1206   S.split(ListAttr, ",");
1207 
1208   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1209 #ifndef NDEBUG
1210     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1211     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1212     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1213     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1214            "Vector function is missing.");
1215 #endif
1216     VariantMappings.push_back(std::string(S));
1217   }
1218 }
1219 
1220 bool VFShape::hasValidParameterList() const {
1221   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1222        ++Pos) {
1223     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1224 
1225     switch (Parameters[Pos].ParamKind) {
1226     default: // Nothing to check.
1227       break;
1228     case VFParamKind::OMP_Linear:
1229     case VFParamKind::OMP_LinearRef:
1230     case VFParamKind::OMP_LinearVal:
1231     case VFParamKind::OMP_LinearUVal:
1232       // Compile time linear steps must be non-zero.
1233       if (Parameters[Pos].LinearStepOrPos == 0)
1234         return false;
1235       break;
1236     case VFParamKind::OMP_LinearPos:
1237     case VFParamKind::OMP_LinearRefPos:
1238     case VFParamKind::OMP_LinearValPos:
1239     case VFParamKind::OMP_LinearUValPos:
1240       // The runtime linear step must be referring to some other
1241       // parameters in the signature.
1242       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1243         return false;
1244       // The linear step parameter must be marked as uniform.
1245       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1246           VFParamKind::OMP_Uniform)
1247         return false;
1248       // The linear step parameter can't point at itself.
1249       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1250         return false;
1251       break;
1252     case VFParamKind::GlobalPredicate:
1253       // The global predicate must be the unique. Can be placed anywhere in the
1254       // signature.
1255       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1256         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1257           return false;
1258       break;
1259     }
1260   }
1261   return true;
1262 }
1263