1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 // According to the LangRef, branching on a poison condition is absolutely 86 // immediate full UB. However, historically we haven't implemented that 87 // consistently as we had an important transformation (non-trivial unswitch) 88 // which introduced instances of branch on poison/undef to otherwise well 89 // defined programs. This issue has since been fixed, but the flag is 90 // temporarily retained to easily diagnose potential regressions. 91 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 92 cl::Hidden, cl::init(true)); 93 94 95 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 96 /// returns the element type's bitwidth. 97 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 98 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 99 return BitWidth; 100 101 return DL.getPointerTypeSizeInBits(Ty); 102 } 103 104 namespace { 105 106 // Simplifying using an assume can only be done in a particular control-flow 107 // context (the context instruction provides that context). If an assume and 108 // the context instruction are not in the same block then the DT helps in 109 // figuring out if we can use it. 110 struct Query { 111 const DataLayout &DL; 112 AssumptionCache *AC; 113 const Instruction *CxtI; 114 const DominatorTree *DT; 115 116 // Unlike the other analyses, this may be a nullptr because not all clients 117 // provide it currently. 118 OptimizationRemarkEmitter *ORE; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, bool UseInstrInfo, 125 OptimizationRemarkEmitter *ORE = nullptr) 126 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 127 }; 128 129 } // end anonymous namespace 130 131 // Given the provided Value and, potentially, a context instruction, return 132 // the preferred context instruction (if any). 133 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 134 // If we've been provided with a context instruction, then use that (provided 135 // it has been inserted). 136 if (CxtI && CxtI->getParent()) 137 return CxtI; 138 139 // If the value is really an already-inserted instruction, then use that. 140 CxtI = dyn_cast<Instruction>(V); 141 if (CxtI && CxtI->getParent()) 142 return CxtI; 143 144 return nullptr; 145 } 146 147 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V1); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 CxtI = dyn_cast<Instruction>(V2); 159 if (CxtI && CxtI->getParent()) 160 return CxtI; 161 162 return nullptr; 163 } 164 165 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 166 const APInt &DemandedElts, 167 APInt &DemandedLHS, APInt &DemandedRHS) { 168 // The length of scalable vectors is unknown at compile time, thus we 169 // cannot check their values 170 if (isa<ScalableVectorType>(Shuf->getType())) 171 return false; 172 173 int NumElts = 174 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 175 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 177 if (DemandedElts.isZero()) 178 return true; 179 // Simple case of a shuffle with zeroinitializer. 180 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 181 DemandedLHS.setBit(0); 182 return true; 183 } 184 for (int i = 0; i != NumMaskElts; ++i) { 185 if (!DemandedElts[i]) 186 continue; 187 int M = Shuf->getMaskValue(i); 188 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 189 190 // For undef elements, we don't know anything about the common state of 191 // the shuffle result. 192 if (M == -1) 193 return false; 194 if (M < NumElts) 195 DemandedLHS.setBit(M % NumElts); 196 else 197 DemandedRHS.setBit(M % NumElts); 198 } 199 200 return true; 201 } 202 203 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 204 KnownBits &Known, unsigned Depth, const Query &Q); 205 206 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 207 const Query &Q) { 208 // FIXME: We currently have no way to represent the DemandedElts of a scalable 209 // vector 210 if (isa<ScalableVectorType>(V->getType())) { 211 Known.resetAll(); 212 return; 213 } 214 215 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 216 APInt DemandedElts = 217 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 218 computeKnownBits(V, DemandedElts, Known, Depth, Q); 219 } 220 221 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 222 const DataLayout &DL, unsigned Depth, 223 AssumptionCache *AC, const Instruction *CxtI, 224 const DominatorTree *DT, 225 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 226 ::computeKnownBits(V, Known, Depth, 227 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 228 } 229 230 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 231 KnownBits &Known, const DataLayout &DL, 232 unsigned Depth, AssumptionCache *AC, 233 const Instruction *CxtI, const DominatorTree *DT, 234 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 235 ::computeKnownBits(V, DemandedElts, Known, Depth, 236 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 237 } 238 239 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 240 unsigned Depth, const Query &Q); 241 242 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 243 const Query &Q); 244 245 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 246 unsigned Depth, AssumptionCache *AC, 247 const Instruction *CxtI, 248 const DominatorTree *DT, 249 OptimizationRemarkEmitter *ORE, 250 bool UseInstrInfo) { 251 return ::computeKnownBits( 252 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 253 } 254 255 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 256 const DataLayout &DL, unsigned Depth, 257 AssumptionCache *AC, const Instruction *CxtI, 258 const DominatorTree *DT, 259 OptimizationRemarkEmitter *ORE, 260 bool UseInstrInfo) { 261 return ::computeKnownBits( 262 V, DemandedElts, Depth, 263 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 264 } 265 266 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 267 const DataLayout &DL, AssumptionCache *AC, 268 const Instruction *CxtI, const DominatorTree *DT, 269 bool UseInstrInfo) { 270 assert(LHS->getType() == RHS->getType() && 271 "LHS and RHS should have the same type"); 272 assert(LHS->getType()->isIntOrIntVectorTy() && 273 "LHS and RHS should be integers"); 274 // Look for an inverted mask: (X & ~M) op (Y & M). 275 { 276 Value *M; 277 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 278 match(RHS, m_c_And(m_Specific(M), m_Value()))) 279 return true; 280 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 281 match(LHS, m_c_And(m_Specific(M), m_Value()))) 282 return true; 283 } 284 285 // X op (Y & ~X) 286 if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) || 287 match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value()))) 288 return true; 289 290 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern 291 // for constant Y. 292 Value *Y; 293 if (match(RHS, 294 m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) || 295 match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y)))) 296 return true; 297 298 // Look for: (A & B) op ~(A | B) 299 { 300 Value *A, *B; 301 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 302 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 303 return true; 304 if (match(RHS, m_And(m_Value(A), m_Value(B))) && 305 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 306 return true; 307 } 308 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 309 KnownBits LHSKnown(IT->getBitWidth()); 310 KnownBits RHSKnown(IT->getBitWidth()); 311 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 312 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 313 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 314 } 315 316 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 317 return !I->user_empty() && all_of(I->users(), [](const User *U) { 318 ICmpInst::Predicate P; 319 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 320 }); 321 } 322 323 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 324 const Query &Q); 325 326 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 327 bool OrZero, unsigned Depth, 328 AssumptionCache *AC, const Instruction *CxtI, 329 const DominatorTree *DT, bool UseInstrInfo) { 330 return ::isKnownToBeAPowerOfTwo( 331 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 332 } 333 334 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 335 unsigned Depth, const Query &Q); 336 337 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 338 339 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 340 AssumptionCache *AC, const Instruction *CxtI, 341 const DominatorTree *DT, bool UseInstrInfo) { 342 return ::isKnownNonZero(V, Depth, 343 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 344 } 345 346 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 347 unsigned Depth, AssumptionCache *AC, 348 const Instruction *CxtI, const DominatorTree *DT, 349 bool UseInstrInfo) { 350 KnownBits Known = 351 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 352 return Known.isNonNegative(); 353 } 354 355 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 356 AssumptionCache *AC, const Instruction *CxtI, 357 const DominatorTree *DT, bool UseInstrInfo) { 358 if (auto *CI = dyn_cast<ConstantInt>(V)) 359 return CI->getValue().isStrictlyPositive(); 360 361 // TODO: We'd doing two recursive queries here. We should factor this such 362 // that only a single query is needed. 363 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 364 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 365 } 366 367 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 368 AssumptionCache *AC, const Instruction *CxtI, 369 const DominatorTree *DT, bool UseInstrInfo) { 370 KnownBits Known = 371 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 372 return Known.isNegative(); 373 } 374 375 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 376 const Query &Q); 377 378 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 379 const DataLayout &DL, AssumptionCache *AC, 380 const Instruction *CxtI, const DominatorTree *DT, 381 bool UseInstrInfo) { 382 return ::isKnownNonEqual(V1, V2, 0, 383 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 384 UseInstrInfo, /*ORE=*/nullptr)); 385 } 386 387 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 388 const Query &Q); 389 390 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 391 const DataLayout &DL, unsigned Depth, 392 AssumptionCache *AC, const Instruction *CxtI, 393 const DominatorTree *DT, bool UseInstrInfo) { 394 return ::MaskedValueIsZero( 395 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 396 } 397 398 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 399 unsigned Depth, const Query &Q); 400 401 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 402 const Query &Q) { 403 // FIXME: We currently have no way to represent the DemandedElts of a scalable 404 // vector 405 if (isa<ScalableVectorType>(V->getType())) 406 return 1; 407 408 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 409 APInt DemandedElts = 410 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 411 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 412 } 413 414 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 415 unsigned Depth, AssumptionCache *AC, 416 const Instruction *CxtI, 417 const DominatorTree *DT, bool UseInstrInfo) { 418 return ::ComputeNumSignBits( 419 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 420 } 421 422 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 423 unsigned Depth, AssumptionCache *AC, 424 const Instruction *CxtI, 425 const DominatorTree *DT) { 426 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 427 return V->getType()->getScalarSizeInBits() - SignBits + 1; 428 } 429 430 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 431 bool NSW, const APInt &DemandedElts, 432 KnownBits &KnownOut, KnownBits &Known2, 433 unsigned Depth, const Query &Q) { 434 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 435 436 // If one operand is unknown and we have no nowrap information, 437 // the result will be unknown independently of the second operand. 438 if (KnownOut.isUnknown() && !NSW) 439 return; 440 441 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 442 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 443 } 444 445 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 446 const APInt &DemandedElts, KnownBits &Known, 447 KnownBits &Known2, unsigned Depth, 448 const Query &Q) { 449 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 450 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 451 452 bool isKnownNegative = false; 453 bool isKnownNonNegative = false; 454 // If the multiplication is known not to overflow, compute the sign bit. 455 if (NSW) { 456 if (Op0 == Op1) { 457 // The product of a number with itself is non-negative. 458 isKnownNonNegative = true; 459 } else { 460 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 461 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 462 bool isKnownNegativeOp1 = Known.isNegative(); 463 bool isKnownNegativeOp0 = Known2.isNegative(); 464 // The product of two numbers with the same sign is non-negative. 465 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 466 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 467 // The product of a negative number and a non-negative number is either 468 // negative or zero. 469 if (!isKnownNonNegative) 470 isKnownNegative = 471 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 472 Known2.isNonZero()) || 473 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 474 } 475 } 476 477 bool SelfMultiply = Op0 == Op1; 478 // TODO: SelfMultiply can be poison, but not undef. 479 if (SelfMultiply) 480 SelfMultiply &= 481 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 482 Known = KnownBits::mul(Known, Known2, SelfMultiply); 483 484 // Only make use of no-wrap flags if we failed to compute the sign bit 485 // directly. This matters if the multiplication always overflows, in 486 // which case we prefer to follow the result of the direct computation, 487 // though as the program is invoking undefined behaviour we can choose 488 // whatever we like here. 489 if (isKnownNonNegative && !Known.isNegative()) 490 Known.makeNonNegative(); 491 else if (isKnownNegative && !Known.isNonNegative()) 492 Known.makeNegative(); 493 } 494 495 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 496 KnownBits &Known) { 497 unsigned BitWidth = Known.getBitWidth(); 498 unsigned NumRanges = Ranges.getNumOperands() / 2; 499 assert(NumRanges >= 1); 500 501 Known.Zero.setAllBits(); 502 Known.One.setAllBits(); 503 504 for (unsigned i = 0; i < NumRanges; ++i) { 505 ConstantInt *Lower = 506 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 507 ConstantInt *Upper = 508 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 509 ConstantRange Range(Lower->getValue(), Upper->getValue()); 510 511 // The first CommonPrefixBits of all values in Range are equal. 512 unsigned CommonPrefixBits = 513 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 514 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 515 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 516 Known.One &= UnsignedMax & Mask; 517 Known.Zero &= ~UnsignedMax & Mask; 518 } 519 } 520 521 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 522 SmallVector<const Value *, 16> WorkSet(1, I); 523 SmallPtrSet<const Value *, 32> Visited; 524 SmallPtrSet<const Value *, 16> EphValues; 525 526 // The instruction defining an assumption's condition itself is always 527 // considered ephemeral to that assumption (even if it has other 528 // non-ephemeral users). See r246696's test case for an example. 529 if (is_contained(I->operands(), E)) 530 return true; 531 532 while (!WorkSet.empty()) { 533 const Value *V = WorkSet.pop_back_val(); 534 if (!Visited.insert(V).second) 535 continue; 536 537 // If all uses of this value are ephemeral, then so is this value. 538 if (llvm::all_of(V->users(), [&](const User *U) { 539 return EphValues.count(U); 540 })) { 541 if (V == E) 542 return true; 543 544 if (V == I || (isa<Instruction>(V) && 545 !cast<Instruction>(V)->mayHaveSideEffects() && 546 !cast<Instruction>(V)->isTerminator())) { 547 EphValues.insert(V); 548 if (const User *U = dyn_cast<User>(V)) 549 append_range(WorkSet, U->operands()); 550 } 551 } 552 } 553 554 return false; 555 } 556 557 // Is this an intrinsic that cannot be speculated but also cannot trap? 558 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 559 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 560 return CI->isAssumeLikeIntrinsic(); 561 562 return false; 563 } 564 565 bool llvm::isValidAssumeForContext(const Instruction *Inv, 566 const Instruction *CxtI, 567 const DominatorTree *DT) { 568 // There are two restrictions on the use of an assume: 569 // 1. The assume must dominate the context (or the control flow must 570 // reach the assume whenever it reaches the context). 571 // 2. The context must not be in the assume's set of ephemeral values 572 // (otherwise we will use the assume to prove that the condition 573 // feeding the assume is trivially true, thus causing the removal of 574 // the assume). 575 576 if (Inv->getParent() == CxtI->getParent()) { 577 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 578 // in the BB. 579 if (Inv->comesBefore(CxtI)) 580 return true; 581 582 // Don't let an assume affect itself - this would cause the problems 583 // `isEphemeralValueOf` is trying to prevent, and it would also make 584 // the loop below go out of bounds. 585 if (Inv == CxtI) 586 return false; 587 588 // The context comes first, but they're both in the same block. 589 // Make sure there is nothing in between that might interrupt 590 // the control flow, not even CxtI itself. 591 // We limit the scan distance between the assume and its context instruction 592 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 593 // it can be adjusted if needed (could be turned into a cl::opt). 594 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 595 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 596 return false; 597 598 return !isEphemeralValueOf(Inv, CxtI); 599 } 600 601 // Inv and CxtI are in different blocks. 602 if (DT) { 603 if (DT->dominates(Inv, CxtI)) 604 return true; 605 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 606 // We don't have a DT, but this trivially dominates. 607 return true; 608 } 609 610 return false; 611 } 612 613 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 614 // v u> y implies v != 0. 615 if (Pred == ICmpInst::ICMP_UGT) 616 return true; 617 618 // Special-case v != 0 to also handle v != null. 619 if (Pred == ICmpInst::ICMP_NE) 620 return match(RHS, m_Zero()); 621 622 // All other predicates - rely on generic ConstantRange handling. 623 const APInt *C; 624 if (!match(RHS, m_APInt(C))) 625 return false; 626 627 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 628 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 629 } 630 631 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 632 // Use of assumptions is context-sensitive. If we don't have a context, we 633 // cannot use them! 634 if (!Q.AC || !Q.CxtI) 635 return false; 636 637 if (Q.CxtI && V->getType()->isPointerTy()) { 638 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 639 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 640 V->getType()->getPointerAddressSpace())) 641 AttrKinds.push_back(Attribute::Dereferenceable); 642 643 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 644 return true; 645 } 646 647 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 648 if (!AssumeVH) 649 continue; 650 CallInst *I = cast<CallInst>(AssumeVH); 651 assert(I->getFunction() == Q.CxtI->getFunction() && 652 "Got assumption for the wrong function!"); 653 654 // Warning: This loop can end up being somewhat performance sensitive. 655 // We're running this loop for once for each value queried resulting in a 656 // runtime of ~O(#assumes * #values). 657 658 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 659 "must be an assume intrinsic"); 660 661 Value *RHS; 662 CmpInst::Predicate Pred; 663 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 664 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 665 return false; 666 667 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 668 return true; 669 } 670 671 return false; 672 } 673 674 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 675 unsigned Depth, const Query &Q) { 676 // Use of assumptions is context-sensitive. If we don't have a context, we 677 // cannot use them! 678 if (!Q.AC || !Q.CxtI) 679 return; 680 681 unsigned BitWidth = Known.getBitWidth(); 682 683 // Refine Known set if the pointer alignment is set by assume bundles. 684 if (V->getType()->isPointerTy()) { 685 if (RetainedKnowledge RK = getKnowledgeValidInContext( 686 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 687 if (isPowerOf2_64(RK.ArgValue)) 688 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 689 } 690 } 691 692 // Note that the patterns below need to be kept in sync with the code 693 // in AssumptionCache::updateAffectedValues. 694 695 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 696 if (!AssumeVH) 697 continue; 698 CallInst *I = cast<CallInst>(AssumeVH); 699 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 700 "Got assumption for the wrong function!"); 701 702 // Warning: This loop can end up being somewhat performance sensitive. 703 // We're running this loop for once for each value queried resulting in a 704 // runtime of ~O(#assumes * #values). 705 706 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 707 "must be an assume intrinsic"); 708 709 Value *Arg = I->getArgOperand(0); 710 711 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 712 assert(BitWidth == 1 && "assume operand is not i1?"); 713 Known.setAllOnes(); 714 return; 715 } 716 if (match(Arg, m_Not(m_Specific(V))) && 717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 718 assert(BitWidth == 1 && "assume operand is not i1?"); 719 Known.setAllZero(); 720 return; 721 } 722 723 // The remaining tests are all recursive, so bail out if we hit the limit. 724 if (Depth == MaxAnalysisRecursionDepth) 725 continue; 726 727 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 728 if (!Cmp) 729 continue; 730 731 // We are attempting to compute known bits for the operands of an assume. 732 // Do not try to use other assumptions for those recursive calls because 733 // that can lead to mutual recursion and a compile-time explosion. 734 // An example of the mutual recursion: computeKnownBits can call 735 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 736 // and so on. 737 Query QueryNoAC = Q; 738 QueryNoAC.AC = nullptr; 739 740 // Note that ptrtoint may change the bitwidth. 741 Value *A, *B; 742 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 743 744 CmpInst::Predicate Pred; 745 uint64_t C; 746 switch (Cmp->getPredicate()) { 747 default: 748 break; 749 case ICmpInst::ICMP_EQ: 750 // assume(v = a) 751 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 752 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 753 KnownBits RHSKnown = 754 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 755 Known.Zero |= RHSKnown.Zero; 756 Known.One |= RHSKnown.One; 757 // assume(v & b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown = 762 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 763 KnownBits MaskKnown = 764 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 765 766 // For those bits in the mask that are known to be one, we can propagate 767 // known bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 769 Known.One |= RHSKnown.One & MaskKnown.One; 770 // assume(~(v & b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown = 775 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 776 KnownBits MaskKnown = 777 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 778 779 // For those bits in the mask that are known to be one, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & MaskKnown.One; 782 Known.One |= RHSKnown.Zero & MaskKnown.One; 783 // assume(v | b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. 794 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 795 Known.One |= RHSKnown.One & BKnown.Zero; 796 // assume(~(v | b) = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown = 801 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 802 KnownBits BKnown = 803 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 804 805 // For those bits in B that are known to be zero, we can propagate 806 // inverted known bits from the RHS to V. 807 Known.Zero |= RHSKnown.One & BKnown.Zero; 808 Known.One |= RHSKnown.Zero & BKnown.Zero; 809 // assume(v ^ b = a) 810 } else if (match(Cmp, 811 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown = 814 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 815 KnownBits BKnown = 816 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 817 818 // For those bits in B that are known to be zero, we can propagate known 819 // bits from the RHS to V. For those bits in B that are known to be one, 820 // we can propagate inverted known bits from the RHS to V. 821 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 822 Known.One |= RHSKnown.One & BKnown.Zero; 823 Known.Zero |= RHSKnown.One & BKnown.One; 824 Known.One |= RHSKnown.Zero & BKnown.One; 825 // assume(~(v ^ b) = a) 826 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 827 m_Value(A))) && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 829 KnownBits RHSKnown = 830 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 831 KnownBits BKnown = 832 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 833 834 // For those bits in B that are known to be zero, we can propagate 835 // inverted known bits from the RHS to V. For those bits in B that are 836 // known to be one, we can propagate known bits from the RHS to V. 837 Known.Zero |= RHSKnown.One & BKnown.Zero; 838 Known.One |= RHSKnown.Zero & BKnown.Zero; 839 Known.Zero |= RHSKnown.Zero & BKnown.One; 840 Known.One |= RHSKnown.One & BKnown.One; 841 // assume(v << c = a) 842 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 843 m_Value(A))) && 844 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 845 KnownBits RHSKnown = 846 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 847 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 RHSKnown.Zero.lshrInPlace(C); 851 Known.Zero |= RHSKnown.Zero; 852 RHSKnown.One.lshrInPlace(C); 853 Known.One |= RHSKnown.One; 854 // assume(~(v << c) = a) 855 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 856 m_Value(A))) && 857 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 858 KnownBits RHSKnown = 859 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 860 // For those bits in RHS that are known, we can propagate them inverted 861 // to known bits in V shifted to the right by C. 862 RHSKnown.One.lshrInPlace(C); 863 Known.Zero |= RHSKnown.One; 864 RHSKnown.Zero.lshrInPlace(C); 865 Known.One |= RHSKnown.Zero; 866 // assume(v >> c = a) 867 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 868 m_Value(A))) && 869 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 870 KnownBits RHSKnown = 871 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 872 // For those bits in RHS that are known, we can propagate them to known 873 // bits in V shifted to the right by C. 874 Known.Zero |= RHSKnown.Zero << C; 875 Known.One |= RHSKnown.One << C; 876 // assume(~(v >> c) = a) 877 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 878 m_Value(A))) && 879 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 880 KnownBits RHSKnown = 881 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 882 // For those bits in RHS that are known, we can propagate them inverted 883 // to known bits in V shifted to the right by C. 884 Known.Zero |= RHSKnown.One << C; 885 Known.One |= RHSKnown.Zero << C; 886 } 887 break; 888 case ICmpInst::ICMP_SGE: 889 // assume(v >=_s c) where c is non-negative 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown = 893 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 894 895 if (RHSKnown.isNonNegative()) { 896 // We know that the sign bit is zero. 897 Known.makeNonNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SGT: 902 // assume(v >_s c) where c is at least -1. 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown = 906 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 907 908 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 909 // We know that the sign bit is zero. 910 Known.makeNonNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_SLE: 915 // assume(v <=_s c) where c is negative 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 920 921 if (RHSKnown.isNegative()) { 922 // We know that the sign bit is one. 923 Known.makeNegative(); 924 } 925 } 926 break; 927 case ICmpInst::ICMP_SLT: 928 // assume(v <_s c) where c is non-positive 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 933 934 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 935 // We know that the sign bit is one. 936 Known.makeNegative(); 937 } 938 } 939 break; 940 case ICmpInst::ICMP_ULE: 941 // assume(v <=_u c) 942 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 943 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 944 KnownBits RHSKnown = 945 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 946 947 // Whatever high bits in c are zero are known to be zero. 948 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 949 } 950 break; 951 case ICmpInst::ICMP_ULT: 952 // assume(v <_u c) 953 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 954 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 955 KnownBits RHSKnown = 956 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 957 958 // If the RHS is known zero, then this assumption must be wrong (nothing 959 // is unsigned less than zero). Signal a conflict and get out of here. 960 if (RHSKnown.isZero()) { 961 Known.Zero.setAllBits(); 962 Known.One.setAllBits(); 963 break; 964 } 965 966 // Whatever high bits in c are zero are known to be zero (if c is a power 967 // of 2, then one more). 968 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 969 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 970 else 971 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 972 } 973 break; 974 } 975 } 976 977 // If assumptions conflict with each other or previous known bits, then we 978 // have a logical fallacy. It's possible that the assumption is not reachable, 979 // so this isn't a real bug. On the other hand, the program may have undefined 980 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 981 // clear out the known bits, try to warn the user, and hope for the best. 982 if (Known.Zero.intersects(Known.One)) { 983 Known.resetAll(); 984 985 if (Q.ORE) 986 Q.ORE->emit([&]() { 987 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 988 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 989 CxtI) 990 << "Detected conflicting code assumptions. Program may " 991 "have undefined behavior, or compiler may have " 992 "internal error."; 993 }); 994 } 995 } 996 997 /// Compute known bits from a shift operator, including those with a 998 /// non-constant shift amount. Known is the output of this function. Known2 is a 999 /// pre-allocated temporary with the same bit width as Known and on return 1000 /// contains the known bit of the shift value source. KF is an 1001 /// operator-specific function that, given the known-bits and a shift amount, 1002 /// compute the implied known-bits of the shift operator's result respectively 1003 /// for that shift amount. The results from calling KF are conservatively 1004 /// combined for all permitted shift amounts. 1005 static void computeKnownBitsFromShiftOperator( 1006 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1007 KnownBits &Known2, unsigned Depth, const Query &Q, 1008 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 1009 unsigned BitWidth = Known.getBitWidth(); 1010 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1011 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1012 1013 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1014 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1015 // limit value (which implies all bits are known). 1016 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1017 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1018 bool ShiftAmtIsConstant = Known.isConstant(); 1019 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1020 1021 if (ShiftAmtIsConstant) { 1022 Known = KF(Known2, Known); 1023 1024 // If the known bits conflict, this must be an overflowing left shift, so 1025 // the shift result is poison. We can return anything we want. Choose 0 for 1026 // the best folding opportunity. 1027 if (Known.hasConflict()) 1028 Known.setAllZero(); 1029 1030 return; 1031 } 1032 1033 // If the shift amount could be greater than or equal to the bit-width of the 1034 // LHS, the value could be poison, but bail out because the check below is 1035 // expensive. 1036 // TODO: Should we just carry on? 1037 if (MaxShiftAmtIsOutOfRange) { 1038 Known.resetAll(); 1039 return; 1040 } 1041 1042 // It would be more-clearly correct to use the two temporaries for this 1043 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1044 Known.resetAll(); 1045 1046 // If we know the shifter operand is nonzero, we can sometimes infer more 1047 // known bits. However this is expensive to compute, so be lazy about it and 1048 // only compute it when absolutely necessary. 1049 Optional<bool> ShifterOperandIsNonZero; 1050 1051 // Early exit if we can't constrain any well-defined shift amount. 1052 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1053 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1054 ShifterOperandIsNonZero = 1055 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1056 if (!*ShifterOperandIsNonZero) 1057 return; 1058 } 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1063 // Combine the shifted known input bits only for those shift amounts 1064 // compatible with its known constraints. 1065 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1066 continue; 1067 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1068 continue; 1069 // If we know the shifter is nonzero, we may be able to infer more known 1070 // bits. This check is sunk down as far as possible to avoid the expensive 1071 // call to isKnownNonZero if the cheaper checks above fail. 1072 if (ShiftAmt == 0) { 1073 if (!ShifterOperandIsNonZero.hasValue()) 1074 ShifterOperandIsNonZero = 1075 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1076 if (*ShifterOperandIsNonZero) 1077 continue; 1078 } 1079 1080 Known = KnownBits::commonBits( 1081 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1082 } 1083 1084 // If the known bits conflict, the result is poison. Return a 0 and hope the 1085 // caller can further optimize that. 1086 if (Known.hasConflict()) 1087 Known.setAllZero(); 1088 } 1089 1090 static void computeKnownBitsFromOperator(const Operator *I, 1091 const APInt &DemandedElts, 1092 KnownBits &Known, unsigned Depth, 1093 const Query &Q) { 1094 unsigned BitWidth = Known.getBitWidth(); 1095 1096 KnownBits Known2(BitWidth); 1097 switch (I->getOpcode()) { 1098 default: break; 1099 case Instruction::Load: 1100 if (MDNode *MD = 1101 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1102 computeKnownBitsFromRangeMetadata(*MD, Known); 1103 break; 1104 case Instruction::And: { 1105 // If either the LHS or the RHS are Zero, the result is zero. 1106 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known &= Known2; 1110 1111 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1112 // here we handle the more general case of adding any odd number by 1113 // matching the form add(x, add(x, y)) where y is odd. 1114 // TODO: This could be generalized to clearing any bit set in y where the 1115 // following bit is known to be unset in y. 1116 Value *X = nullptr, *Y = nullptr; 1117 if (!Known.Zero[0] && !Known.One[0] && 1118 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1119 Known2.resetAll(); 1120 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1121 if (Known2.countMinTrailingOnes() > 0) 1122 Known.Zero.setBit(0); 1123 } 1124 break; 1125 } 1126 case Instruction::Or: 1127 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1128 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1129 1130 Known |= Known2; 1131 break; 1132 case Instruction::Xor: 1133 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1134 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1135 1136 Known ^= Known2; 1137 break; 1138 case Instruction::Mul: { 1139 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1140 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1141 Known, Known2, Depth, Q); 1142 break; 1143 } 1144 case Instruction::UDiv: { 1145 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1146 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1147 Known = KnownBits::udiv(Known, Known2); 1148 break; 1149 } 1150 case Instruction::Select: { 1151 const Value *LHS = nullptr, *RHS = nullptr; 1152 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1153 if (SelectPatternResult::isMinOrMax(SPF)) { 1154 computeKnownBits(RHS, Known, Depth + 1, Q); 1155 computeKnownBits(LHS, Known2, Depth + 1, Q); 1156 switch (SPF) { 1157 default: 1158 llvm_unreachable("Unhandled select pattern flavor!"); 1159 case SPF_SMAX: 1160 Known = KnownBits::smax(Known, Known2); 1161 break; 1162 case SPF_SMIN: 1163 Known = KnownBits::smin(Known, Known2); 1164 break; 1165 case SPF_UMAX: 1166 Known = KnownBits::umax(Known, Known2); 1167 break; 1168 case SPF_UMIN: 1169 Known = KnownBits::umin(Known, Known2); 1170 break; 1171 } 1172 break; 1173 } 1174 1175 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1176 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1177 1178 // Only known if known in both the LHS and RHS. 1179 Known = KnownBits::commonBits(Known, Known2); 1180 1181 if (SPF == SPF_ABS) { 1182 // RHS from matchSelectPattern returns the negation part of abs pattern. 1183 // If the negate has an NSW flag we can assume the sign bit of the result 1184 // will be 0 because that makes abs(INT_MIN) undefined. 1185 if (match(RHS, m_Neg(m_Specific(LHS))) && 1186 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1187 Known.Zero.setSignBit(); 1188 } 1189 1190 break; 1191 } 1192 case Instruction::FPTrunc: 1193 case Instruction::FPExt: 1194 case Instruction::FPToUI: 1195 case Instruction::FPToSI: 1196 case Instruction::SIToFP: 1197 case Instruction::UIToFP: 1198 break; // Can't work with floating point. 1199 case Instruction::PtrToInt: 1200 case Instruction::IntToPtr: 1201 // Fall through and handle them the same as zext/trunc. 1202 LLVM_FALLTHROUGH; 1203 case Instruction::ZExt: 1204 case Instruction::Trunc: { 1205 Type *SrcTy = I->getOperand(0)->getType(); 1206 1207 unsigned SrcBitWidth; 1208 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1209 // which fall through here. 1210 Type *ScalarTy = SrcTy->getScalarType(); 1211 SrcBitWidth = ScalarTy->isPointerTy() ? 1212 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1213 Q.DL.getTypeSizeInBits(ScalarTy); 1214 1215 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1216 Known = Known.anyextOrTrunc(SrcBitWidth); 1217 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1218 Known = Known.zextOrTrunc(BitWidth); 1219 break; 1220 } 1221 case Instruction::BitCast: { 1222 Type *SrcTy = I->getOperand(0)->getType(); 1223 if (SrcTy->isIntOrPtrTy() && 1224 // TODO: For now, not handling conversions like: 1225 // (bitcast i64 %x to <2 x i32>) 1226 !I->getType()->isVectorTy()) { 1227 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1228 break; 1229 } 1230 1231 // Handle cast from vector integer type to scalar or vector integer. 1232 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1233 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1234 !I->getType()->isIntOrIntVectorTy()) 1235 break; 1236 1237 // Look through a cast from narrow vector elements to wider type. 1238 // Examples: v4i32 -> v2i64, v3i8 -> v24 1239 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1240 if (BitWidth % SubBitWidth == 0) { 1241 // Known bits are automatically intersected across demanded elements of a 1242 // vector. So for example, if a bit is computed as known zero, it must be 1243 // zero across all demanded elements of the vector. 1244 // 1245 // For this bitcast, each demanded element of the output is sub-divided 1246 // across a set of smaller vector elements in the source vector. To get 1247 // the known bits for an entire element of the output, compute the known 1248 // bits for each sub-element sequentially. This is done by shifting the 1249 // one-set-bit demanded elements parameter across the sub-elements for 1250 // consecutive calls to computeKnownBits. We are using the demanded 1251 // elements parameter as a mask operator. 1252 // 1253 // The known bits of each sub-element are then inserted into place 1254 // (dependent on endian) to form the full result of known bits. 1255 unsigned NumElts = DemandedElts.getBitWidth(); 1256 unsigned SubScale = BitWidth / SubBitWidth; 1257 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1258 for (unsigned i = 0; i != NumElts; ++i) { 1259 if (DemandedElts[i]) 1260 SubDemandedElts.setBit(i * SubScale); 1261 } 1262 1263 KnownBits KnownSrc(SubBitWidth); 1264 for (unsigned i = 0; i != SubScale; ++i) { 1265 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1266 Depth + 1, Q); 1267 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1268 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1269 } 1270 } 1271 break; 1272 } 1273 case Instruction::SExt: { 1274 // Compute the bits in the result that are not present in the input. 1275 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1276 1277 Known = Known.trunc(SrcBitWidth); 1278 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1279 // If the sign bit of the input is known set or clear, then we know the 1280 // top bits of the result. 1281 Known = Known.sext(BitWidth); 1282 break; 1283 } 1284 case Instruction::Shl: { 1285 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1286 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1287 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1288 // If this shift has "nsw" keyword, then the result is either a poison 1289 // value or has the same sign bit as the first operand. 1290 if (NSW) { 1291 if (KnownVal.Zero.isSignBitSet()) 1292 Result.Zero.setSignBit(); 1293 if (KnownVal.One.isSignBitSet()) 1294 Result.One.setSignBit(); 1295 } 1296 return Result; 1297 }; 1298 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1299 KF); 1300 // Trailing zeros of a right-shifted constant never decrease. 1301 const APInt *C; 1302 if (match(I->getOperand(0), m_APInt(C))) 1303 Known.Zero.setLowBits(C->countTrailingZeros()); 1304 break; 1305 } 1306 case Instruction::LShr: { 1307 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1308 return KnownBits::lshr(KnownVal, KnownAmt); 1309 }; 1310 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1311 KF); 1312 // Leading zeros of a left-shifted constant never decrease. 1313 const APInt *C; 1314 if (match(I->getOperand(0), m_APInt(C))) 1315 Known.Zero.setHighBits(C->countLeadingZeros()); 1316 break; 1317 } 1318 case Instruction::AShr: { 1319 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1320 return KnownBits::ashr(KnownVal, KnownAmt); 1321 }; 1322 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1323 KF); 1324 break; 1325 } 1326 case Instruction::Sub: { 1327 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1328 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1329 DemandedElts, Known, Known2, Depth, Q); 1330 break; 1331 } 1332 case Instruction::Add: { 1333 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1334 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1335 DemandedElts, Known, Known2, Depth, Q); 1336 break; 1337 } 1338 case Instruction::SRem: 1339 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1340 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1341 Known = KnownBits::srem(Known, Known2); 1342 break; 1343 1344 case Instruction::URem: 1345 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1346 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1347 Known = KnownBits::urem(Known, Known2); 1348 break; 1349 case Instruction::Alloca: 1350 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1351 break; 1352 case Instruction::GetElementPtr: { 1353 // Analyze all of the subscripts of this getelementptr instruction 1354 // to determine if we can prove known low zero bits. 1355 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1356 // Accumulate the constant indices in a separate variable 1357 // to minimize the number of calls to computeForAddSub. 1358 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1359 1360 gep_type_iterator GTI = gep_type_begin(I); 1361 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1362 // TrailZ can only become smaller, short-circuit if we hit zero. 1363 if (Known.isUnknown()) 1364 break; 1365 1366 Value *Index = I->getOperand(i); 1367 1368 // Handle case when index is zero. 1369 Constant *CIndex = dyn_cast<Constant>(Index); 1370 if (CIndex && CIndex->isZeroValue()) 1371 continue; 1372 1373 if (StructType *STy = GTI.getStructTypeOrNull()) { 1374 // Handle struct member offset arithmetic. 1375 1376 assert(CIndex && 1377 "Access to structure field must be known at compile time"); 1378 1379 if (CIndex->getType()->isVectorTy()) 1380 Index = CIndex->getSplatValue(); 1381 1382 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1383 const StructLayout *SL = Q.DL.getStructLayout(STy); 1384 uint64_t Offset = SL->getElementOffset(Idx); 1385 AccConstIndices += Offset; 1386 continue; 1387 } 1388 1389 // Handle array index arithmetic. 1390 Type *IndexedTy = GTI.getIndexedType(); 1391 if (!IndexedTy->isSized()) { 1392 Known.resetAll(); 1393 break; 1394 } 1395 1396 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1397 KnownBits IndexBits(IndexBitWidth); 1398 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1399 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1400 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1401 KnownBits ScalingFactor(IndexBitWidth); 1402 // Multiply by current sizeof type. 1403 // &A[i] == A + i * sizeof(*A[i]). 1404 if (IndexTypeSize.isScalable()) { 1405 // For scalable types the only thing we know about sizeof is 1406 // that this is a multiple of the minimum size. 1407 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1408 } else if (IndexBits.isConstant()) { 1409 APInt IndexConst = IndexBits.getConstant(); 1410 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1411 IndexConst *= ScalingFactor; 1412 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1413 continue; 1414 } else { 1415 ScalingFactor = 1416 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1417 } 1418 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1419 1420 // If the offsets have a different width from the pointer, according 1421 // to the language reference we need to sign-extend or truncate them 1422 // to the width of the pointer. 1423 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1424 1425 // Note that inbounds does *not* guarantee nsw for the addition, as only 1426 // the offset is signed, while the base address is unsigned. 1427 Known = KnownBits::computeForAddSub( 1428 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1429 } 1430 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1431 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1432 Known = KnownBits::computeForAddSub( 1433 /*Add=*/true, /*NSW=*/false, Known, Index); 1434 } 1435 break; 1436 } 1437 case Instruction::PHI: { 1438 const PHINode *P = cast<PHINode>(I); 1439 BinaryOperator *BO = nullptr; 1440 Value *R = nullptr, *L = nullptr; 1441 if (matchSimpleRecurrence(P, BO, R, L)) { 1442 // Handle the case of a simple two-predecessor recurrence PHI. 1443 // There's a lot more that could theoretically be done here, but 1444 // this is sufficient to catch some interesting cases. 1445 unsigned Opcode = BO->getOpcode(); 1446 1447 // If this is a shift recurrence, we know the bits being shifted in. 1448 // We can combine that with information about the start value of the 1449 // recurrence to conclude facts about the result. 1450 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1451 Opcode == Instruction::Shl) && 1452 BO->getOperand(0) == I) { 1453 1454 // We have matched a recurrence of the form: 1455 // %iv = [R, %entry], [%iv.next, %backedge] 1456 // %iv.next = shift_op %iv, L 1457 1458 // Recurse with the phi context to avoid concern about whether facts 1459 // inferred hold at original context instruction. TODO: It may be 1460 // correct to use the original context. IF warranted, explore and 1461 // add sufficient tests to cover. 1462 Query RecQ = Q; 1463 RecQ.CxtI = P; 1464 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1465 switch (Opcode) { 1466 case Instruction::Shl: 1467 // A shl recurrence will only increase the tailing zeros 1468 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1469 break; 1470 case Instruction::LShr: 1471 // A lshr recurrence will preserve the leading zeros of the 1472 // start value 1473 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1474 break; 1475 case Instruction::AShr: 1476 // An ashr recurrence will extend the initial sign bit 1477 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1478 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1479 break; 1480 }; 1481 } 1482 1483 // Check for operations that have the property that if 1484 // both their operands have low zero bits, the result 1485 // will have low zero bits. 1486 if (Opcode == Instruction::Add || 1487 Opcode == Instruction::Sub || 1488 Opcode == Instruction::And || 1489 Opcode == Instruction::Or || 1490 Opcode == Instruction::Mul) { 1491 // Change the context instruction to the "edge" that flows into the 1492 // phi. This is important because that is where the value is actually 1493 // "evaluated" even though it is used later somewhere else. (see also 1494 // D69571). 1495 Query RecQ = Q; 1496 1497 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1498 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1499 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1500 1501 // Ok, we have a PHI of the form L op= R. Check for low 1502 // zero bits. 1503 RecQ.CxtI = RInst; 1504 computeKnownBits(R, Known2, Depth + 1, RecQ); 1505 1506 // We need to take the minimum number of known bits 1507 KnownBits Known3(BitWidth); 1508 RecQ.CxtI = LInst; 1509 computeKnownBits(L, Known3, Depth + 1, RecQ); 1510 1511 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1512 Known3.countMinTrailingZeros())); 1513 1514 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1515 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1516 // If initial value of recurrence is nonnegative, and we are adding 1517 // a nonnegative number with nsw, the result can only be nonnegative 1518 // or poison value regardless of the number of times we execute the 1519 // add in phi recurrence. If initial value is negative and we are 1520 // adding a negative number with nsw, the result can only be 1521 // negative or poison value. Similar arguments apply to sub and mul. 1522 // 1523 // (add non-negative, non-negative) --> non-negative 1524 // (add negative, negative) --> negative 1525 if (Opcode == Instruction::Add) { 1526 if (Known2.isNonNegative() && Known3.isNonNegative()) 1527 Known.makeNonNegative(); 1528 else if (Known2.isNegative() && Known3.isNegative()) 1529 Known.makeNegative(); 1530 } 1531 1532 // (sub nsw non-negative, negative) --> non-negative 1533 // (sub nsw negative, non-negative) --> negative 1534 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1535 if (Known2.isNonNegative() && Known3.isNegative()) 1536 Known.makeNonNegative(); 1537 else if (Known2.isNegative() && Known3.isNonNegative()) 1538 Known.makeNegative(); 1539 } 1540 1541 // (mul nsw non-negative, non-negative) --> non-negative 1542 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1543 Known3.isNonNegative()) 1544 Known.makeNonNegative(); 1545 } 1546 1547 break; 1548 } 1549 } 1550 1551 // Unreachable blocks may have zero-operand PHI nodes. 1552 if (P->getNumIncomingValues() == 0) 1553 break; 1554 1555 // Otherwise take the unions of the known bit sets of the operands, 1556 // taking conservative care to avoid excessive recursion. 1557 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1558 // Skip if every incoming value references to ourself. 1559 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1560 break; 1561 1562 Known.Zero.setAllBits(); 1563 Known.One.setAllBits(); 1564 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1565 Value *IncValue = P->getIncomingValue(u); 1566 // Skip direct self references. 1567 if (IncValue == P) continue; 1568 1569 // Change the context instruction to the "edge" that flows into the 1570 // phi. This is important because that is where the value is actually 1571 // "evaluated" even though it is used later somewhere else. (see also 1572 // D69571). 1573 Query RecQ = Q; 1574 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1575 1576 Known2 = KnownBits(BitWidth); 1577 // Recurse, but cap the recursion to one level, because we don't 1578 // want to waste time spinning around in loops. 1579 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1580 Known = KnownBits::commonBits(Known, Known2); 1581 // If all bits have been ruled out, there's no need to check 1582 // more operands. 1583 if (Known.isUnknown()) 1584 break; 1585 } 1586 } 1587 break; 1588 } 1589 case Instruction::Call: 1590 case Instruction::Invoke: 1591 // If range metadata is attached to this call, set known bits from that, 1592 // and then intersect with known bits based on other properties of the 1593 // function. 1594 if (MDNode *MD = 1595 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1596 computeKnownBitsFromRangeMetadata(*MD, Known); 1597 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1598 computeKnownBits(RV, Known2, Depth + 1, Q); 1599 Known.Zero |= Known2.Zero; 1600 Known.One |= Known2.One; 1601 } 1602 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1603 switch (II->getIntrinsicID()) { 1604 default: break; 1605 case Intrinsic::abs: { 1606 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1607 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1608 Known = Known2.abs(IntMinIsPoison); 1609 break; 1610 } 1611 case Intrinsic::bitreverse: 1612 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1613 Known.Zero |= Known2.Zero.reverseBits(); 1614 Known.One |= Known2.One.reverseBits(); 1615 break; 1616 case Intrinsic::bswap: 1617 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1618 Known.Zero |= Known2.Zero.byteSwap(); 1619 Known.One |= Known2.One.byteSwap(); 1620 break; 1621 case Intrinsic::ctlz: { 1622 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1623 // If we have a known 1, its position is our upper bound. 1624 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1625 // If this call is poison for 0 input, the result will be less than 2^n. 1626 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1627 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1628 unsigned LowBits = Log2_32(PossibleLZ)+1; 1629 Known.Zero.setBitsFrom(LowBits); 1630 break; 1631 } 1632 case Intrinsic::cttz: { 1633 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1634 // If we have a known 1, its position is our upper bound. 1635 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1636 // If this call is poison for 0 input, the result will be less than 2^n. 1637 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1638 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1639 unsigned LowBits = Log2_32(PossibleTZ)+1; 1640 Known.Zero.setBitsFrom(LowBits); 1641 break; 1642 } 1643 case Intrinsic::ctpop: { 1644 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1645 // We can bound the space the count needs. Also, bits known to be zero 1646 // can't contribute to the population. 1647 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1648 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1649 Known.Zero.setBitsFrom(LowBits); 1650 // TODO: we could bound KnownOne using the lower bound on the number 1651 // of bits which might be set provided by popcnt KnownOne2. 1652 break; 1653 } 1654 case Intrinsic::fshr: 1655 case Intrinsic::fshl: { 1656 const APInt *SA; 1657 if (!match(I->getOperand(2), m_APInt(SA))) 1658 break; 1659 1660 // Normalize to funnel shift left. 1661 uint64_t ShiftAmt = SA->urem(BitWidth); 1662 if (II->getIntrinsicID() == Intrinsic::fshr) 1663 ShiftAmt = BitWidth - ShiftAmt; 1664 1665 KnownBits Known3(BitWidth); 1666 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1667 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1668 1669 Known.Zero = 1670 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1671 Known.One = 1672 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1673 break; 1674 } 1675 case Intrinsic::uadd_sat: 1676 case Intrinsic::usub_sat: { 1677 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1678 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1679 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1680 1681 // Add: Leading ones of either operand are preserved. 1682 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1683 // as leading zeros in the result. 1684 unsigned LeadingKnown; 1685 if (IsAdd) 1686 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1687 Known2.countMinLeadingOnes()); 1688 else 1689 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1690 Known2.countMinLeadingOnes()); 1691 1692 Known = KnownBits::computeForAddSub( 1693 IsAdd, /* NSW */ false, Known, Known2); 1694 1695 // We select between the operation result and all-ones/zero 1696 // respectively, so we can preserve known ones/zeros. 1697 if (IsAdd) { 1698 Known.One.setHighBits(LeadingKnown); 1699 Known.Zero.clearAllBits(); 1700 } else { 1701 Known.Zero.setHighBits(LeadingKnown); 1702 Known.One.clearAllBits(); 1703 } 1704 break; 1705 } 1706 case Intrinsic::umin: 1707 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1708 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1709 Known = KnownBits::umin(Known, Known2); 1710 break; 1711 case Intrinsic::umax: 1712 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1713 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1714 Known = KnownBits::umax(Known, Known2); 1715 break; 1716 case Intrinsic::smin: 1717 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1718 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1719 Known = KnownBits::smin(Known, Known2); 1720 break; 1721 case Intrinsic::smax: 1722 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1723 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1724 Known = KnownBits::smax(Known, Known2); 1725 break; 1726 case Intrinsic::x86_sse42_crc32_64_64: 1727 Known.Zero.setBitsFrom(32); 1728 break; 1729 case Intrinsic::riscv_vsetvli: 1730 case Intrinsic::riscv_vsetvlimax: 1731 // Assume that VL output is positive and would fit in an int32_t. 1732 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1733 if (BitWidth >= 32) 1734 Known.Zero.setBitsFrom(31); 1735 break; 1736 case Intrinsic::vscale: { 1737 if (!II->getParent() || !II->getFunction() || 1738 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1739 break; 1740 1741 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1742 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1743 1744 if (!VScaleMax) 1745 break; 1746 1747 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1748 1749 // If vscale min = max then we know the exact value at compile time 1750 // and hence we know the exact bits. 1751 if (VScaleMin == VScaleMax) { 1752 Known.One = VScaleMin; 1753 Known.Zero = VScaleMin; 1754 Known.Zero.flipAllBits(); 1755 break; 1756 } 1757 1758 unsigned FirstZeroHighBit = 1759 32 - countLeadingZeros(VScaleMax.getValue()); 1760 if (FirstZeroHighBit < BitWidth) 1761 Known.Zero.setBitsFrom(FirstZeroHighBit); 1762 1763 break; 1764 } 1765 } 1766 } 1767 break; 1768 case Instruction::ShuffleVector: { 1769 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1770 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1771 if (!Shuf) { 1772 Known.resetAll(); 1773 return; 1774 } 1775 // For undef elements, we don't know anything about the common state of 1776 // the shuffle result. 1777 APInt DemandedLHS, DemandedRHS; 1778 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1779 Known.resetAll(); 1780 return; 1781 } 1782 Known.One.setAllBits(); 1783 Known.Zero.setAllBits(); 1784 if (!!DemandedLHS) { 1785 const Value *LHS = Shuf->getOperand(0); 1786 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1787 // If we don't know any bits, early out. 1788 if (Known.isUnknown()) 1789 break; 1790 } 1791 if (!!DemandedRHS) { 1792 const Value *RHS = Shuf->getOperand(1); 1793 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1794 Known = KnownBits::commonBits(Known, Known2); 1795 } 1796 break; 1797 } 1798 case Instruction::InsertElement: { 1799 const Value *Vec = I->getOperand(0); 1800 const Value *Elt = I->getOperand(1); 1801 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1802 // Early out if the index is non-constant or out-of-range. 1803 unsigned NumElts = DemandedElts.getBitWidth(); 1804 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1805 Known.resetAll(); 1806 return; 1807 } 1808 Known.One.setAllBits(); 1809 Known.Zero.setAllBits(); 1810 unsigned EltIdx = CIdx->getZExtValue(); 1811 // Do we demand the inserted element? 1812 if (DemandedElts[EltIdx]) { 1813 computeKnownBits(Elt, Known, Depth + 1, Q); 1814 // If we don't know any bits, early out. 1815 if (Known.isUnknown()) 1816 break; 1817 } 1818 // We don't need the base vector element that has been inserted. 1819 APInt DemandedVecElts = DemandedElts; 1820 DemandedVecElts.clearBit(EltIdx); 1821 if (!!DemandedVecElts) { 1822 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1823 Known = KnownBits::commonBits(Known, Known2); 1824 } 1825 break; 1826 } 1827 case Instruction::ExtractElement: { 1828 // Look through extract element. If the index is non-constant or 1829 // out-of-range demand all elements, otherwise just the extracted element. 1830 const Value *Vec = I->getOperand(0); 1831 const Value *Idx = I->getOperand(1); 1832 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1833 if (isa<ScalableVectorType>(Vec->getType())) { 1834 // FIXME: there's probably *something* we can do with scalable vectors 1835 Known.resetAll(); 1836 break; 1837 } 1838 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1839 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1840 if (CIdx && CIdx->getValue().ult(NumElts)) 1841 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1842 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1843 break; 1844 } 1845 case Instruction::ExtractValue: 1846 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1847 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1848 if (EVI->getNumIndices() != 1) break; 1849 if (EVI->getIndices()[0] == 0) { 1850 switch (II->getIntrinsicID()) { 1851 default: break; 1852 case Intrinsic::uadd_with_overflow: 1853 case Intrinsic::sadd_with_overflow: 1854 computeKnownBitsAddSub(true, II->getArgOperand(0), 1855 II->getArgOperand(1), false, DemandedElts, 1856 Known, Known2, Depth, Q); 1857 break; 1858 case Intrinsic::usub_with_overflow: 1859 case Intrinsic::ssub_with_overflow: 1860 computeKnownBitsAddSub(false, II->getArgOperand(0), 1861 II->getArgOperand(1), false, DemandedElts, 1862 Known, Known2, Depth, Q); 1863 break; 1864 case Intrinsic::umul_with_overflow: 1865 case Intrinsic::smul_with_overflow: 1866 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1867 DemandedElts, Known, Known2, Depth, Q); 1868 break; 1869 } 1870 } 1871 } 1872 break; 1873 case Instruction::Freeze: 1874 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1875 Depth + 1)) 1876 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1877 break; 1878 } 1879 } 1880 1881 /// Determine which bits of V are known to be either zero or one and return 1882 /// them. 1883 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1884 unsigned Depth, const Query &Q) { 1885 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1886 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1887 return Known; 1888 } 1889 1890 /// Determine which bits of V are known to be either zero or one and return 1891 /// them. 1892 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1893 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1894 computeKnownBits(V, Known, Depth, Q); 1895 return Known; 1896 } 1897 1898 /// Determine which bits of V are known to be either zero or one and return 1899 /// them in the Known bit set. 1900 /// 1901 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1902 /// we cannot optimize based on the assumption that it is zero without changing 1903 /// it to be an explicit zero. If we don't change it to zero, other code could 1904 /// optimized based on the contradictory assumption that it is non-zero. 1905 /// Because instcombine aggressively folds operations with undef args anyway, 1906 /// this won't lose us code quality. 1907 /// 1908 /// This function is defined on values with integer type, values with pointer 1909 /// type, and vectors of integers. In the case 1910 /// where V is a vector, known zero, and known one values are the 1911 /// same width as the vector element, and the bit is set only if it is true 1912 /// for all of the demanded elements in the vector specified by DemandedElts. 1913 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1914 KnownBits &Known, unsigned Depth, const Query &Q) { 1915 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1916 // No demanded elts or V is a scalable vector, better to assume we don't 1917 // know anything. 1918 Known.resetAll(); 1919 return; 1920 } 1921 1922 assert(V && "No Value?"); 1923 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1924 1925 #ifndef NDEBUG 1926 Type *Ty = V->getType(); 1927 unsigned BitWidth = Known.getBitWidth(); 1928 1929 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1930 "Not integer or pointer type!"); 1931 1932 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1933 assert( 1934 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1935 "DemandedElt width should equal the fixed vector number of elements"); 1936 } else { 1937 assert(DemandedElts == APInt(1, 1) && 1938 "DemandedElt width should be 1 for scalars"); 1939 } 1940 1941 Type *ScalarTy = Ty->getScalarType(); 1942 if (ScalarTy->isPointerTy()) { 1943 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1944 "V and Known should have same BitWidth"); 1945 } else { 1946 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1947 "V and Known should have same BitWidth"); 1948 } 1949 #endif 1950 1951 const APInt *C; 1952 if (match(V, m_APInt(C))) { 1953 // We know all of the bits for a scalar constant or a splat vector constant! 1954 Known = KnownBits::makeConstant(*C); 1955 return; 1956 } 1957 // Null and aggregate-zero are all-zeros. 1958 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1959 Known.setAllZero(); 1960 return; 1961 } 1962 // Handle a constant vector by taking the intersection of the known bits of 1963 // each element. 1964 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1965 // We know that CDV must be a vector of integers. Take the intersection of 1966 // each element. 1967 Known.Zero.setAllBits(); Known.One.setAllBits(); 1968 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1969 if (!DemandedElts[i]) 1970 continue; 1971 APInt Elt = CDV->getElementAsAPInt(i); 1972 Known.Zero &= ~Elt; 1973 Known.One &= Elt; 1974 } 1975 return; 1976 } 1977 1978 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1979 // We know that CV must be a vector of integers. Take the intersection of 1980 // each element. 1981 Known.Zero.setAllBits(); Known.One.setAllBits(); 1982 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1983 if (!DemandedElts[i]) 1984 continue; 1985 Constant *Element = CV->getAggregateElement(i); 1986 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1987 if (!ElementCI) { 1988 Known.resetAll(); 1989 return; 1990 } 1991 const APInt &Elt = ElementCI->getValue(); 1992 Known.Zero &= ~Elt; 1993 Known.One &= Elt; 1994 } 1995 return; 1996 } 1997 1998 // Start out not knowing anything. 1999 Known.resetAll(); 2000 2001 // We can't imply anything about undefs. 2002 if (isa<UndefValue>(V)) 2003 return; 2004 2005 // There's no point in looking through other users of ConstantData for 2006 // assumptions. Confirm that we've handled them all. 2007 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2008 2009 // All recursive calls that increase depth must come after this. 2010 if (Depth == MaxAnalysisRecursionDepth) 2011 return; 2012 2013 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2014 // the bits of its aliasee. 2015 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2016 if (!GA->isInterposable()) 2017 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2018 return; 2019 } 2020 2021 if (const Operator *I = dyn_cast<Operator>(V)) 2022 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2023 2024 // Aligned pointers have trailing zeros - refine Known.Zero set 2025 if (isa<PointerType>(V->getType())) { 2026 Align Alignment = V->getPointerAlignment(Q.DL); 2027 Known.Zero.setLowBits(Log2(Alignment)); 2028 } 2029 2030 // computeKnownBitsFromAssume strictly refines Known. 2031 // Therefore, we run them after computeKnownBitsFromOperator. 2032 2033 // Check whether a nearby assume intrinsic can determine some known bits. 2034 computeKnownBitsFromAssume(V, Known, Depth, Q); 2035 2036 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2037 } 2038 2039 /// Try to detect a recurrence that the value of the induction variable is 2040 /// always a power of two (or zero). 2041 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, 2042 unsigned Depth, Query &Q) { 2043 BinaryOperator *BO = nullptr; 2044 Value *Start = nullptr, *Step = nullptr; 2045 if (!matchSimpleRecurrence(PN, BO, Start, Step)) 2046 return false; 2047 2048 // Initial value must be a power of two. 2049 for (const Use &U : PN->operands()) { 2050 if (U.get() == Start) { 2051 // Initial value comes from a different BB, need to adjust context 2052 // instruction for analysis. 2053 Q.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2054 if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q)) 2055 return false; 2056 } 2057 } 2058 2059 // Except for Mul, the induction variable must be on the left side of the 2060 // increment expression, otherwise its value can be arbitrary. 2061 if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step) 2062 return false; 2063 2064 Q.CxtI = BO->getParent()->getTerminator(); 2065 switch (BO->getOpcode()) { 2066 case Instruction::Mul: 2067 // Power of two is closed under multiplication. 2068 return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || 2069 Q.IIQ.hasNoSignedWrap(BO)) && 2070 isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q); 2071 case Instruction::SDiv: 2072 // Start value must not be signmask for signed division, so simply being a 2073 // power of two is not sufficient, and it has to be a constant. 2074 if (!match(Start, m_Power2()) || match(Start, m_SignMask())) 2075 return false; 2076 LLVM_FALLTHROUGH; 2077 case Instruction::UDiv: 2078 // Divisor must be a power of two. 2079 // If OrZero is false, cannot guarantee induction variable is non-zero after 2080 // division, same for Shr, unless it is exact division. 2081 return (OrZero || Q.IIQ.isExact(BO)) && 2082 isKnownToBeAPowerOfTwo(Step, false, Depth, Q); 2083 case Instruction::Shl: 2084 return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO); 2085 case Instruction::AShr: 2086 if (!match(Start, m_Power2()) || match(Start, m_SignMask())) 2087 return false; 2088 LLVM_FALLTHROUGH; 2089 case Instruction::LShr: 2090 return OrZero || Q.IIQ.isExact(BO); 2091 default: 2092 return false; 2093 } 2094 } 2095 2096 /// Return true if the given value is known to have exactly one 2097 /// bit set when defined. For vectors return true if every element is known to 2098 /// be a power of two when defined. Supports values with integer or pointer 2099 /// types and vectors of integers. 2100 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2101 const Query &Q) { 2102 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2103 2104 // Attempt to match against constants. 2105 if (OrZero && match(V, m_Power2OrZero())) 2106 return true; 2107 if (match(V, m_Power2())) 2108 return true; 2109 2110 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2111 // it is shifted off the end then the result is undefined. 2112 if (match(V, m_Shl(m_One(), m_Value()))) 2113 return true; 2114 2115 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2116 // the bottom. If it is shifted off the bottom then the result is undefined. 2117 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2118 return true; 2119 2120 // The remaining tests are all recursive, so bail out if we hit the limit. 2121 if (Depth++ == MaxAnalysisRecursionDepth) 2122 return false; 2123 2124 Value *X = nullptr, *Y = nullptr; 2125 // A shift left or a logical shift right of a power of two is a power of two 2126 // or zero. 2127 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2128 match(V, m_LShr(m_Value(X), m_Value())))) 2129 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2130 2131 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2132 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2133 2134 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2135 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2136 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2137 2138 // Peek through min/max. 2139 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2140 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2141 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2142 } 2143 2144 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2145 // A power of two and'd with anything is a power of two or zero. 2146 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2147 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2148 return true; 2149 // X & (-X) is always a power of two or zero. 2150 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2151 return true; 2152 return false; 2153 } 2154 2155 // Adding a power-of-two or zero to the same power-of-two or zero yields 2156 // either the original power-of-two, a larger power-of-two or zero. 2157 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2158 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2159 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2160 Q.IIQ.hasNoSignedWrap(VOBO)) { 2161 if (match(X, m_And(m_Specific(Y), m_Value())) || 2162 match(X, m_And(m_Value(), m_Specific(Y)))) 2163 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2164 return true; 2165 if (match(Y, m_And(m_Specific(X), m_Value())) || 2166 match(Y, m_And(m_Value(), m_Specific(X)))) 2167 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2168 return true; 2169 2170 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2171 KnownBits LHSBits(BitWidth); 2172 computeKnownBits(X, LHSBits, Depth, Q); 2173 2174 KnownBits RHSBits(BitWidth); 2175 computeKnownBits(Y, RHSBits, Depth, Q); 2176 // If i8 V is a power of two or zero: 2177 // ZeroBits: 1 1 1 0 1 1 1 1 2178 // ~ZeroBits: 0 0 0 1 0 0 0 0 2179 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2180 // If OrZero isn't set, we cannot give back a zero result. 2181 // Make sure either the LHS or RHS has a bit set. 2182 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2183 return true; 2184 } 2185 } 2186 2187 // A PHI node is power of two if all incoming values are power of two, or if 2188 // it is an induction variable where in each step its value is a power of two. 2189 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2190 Query RecQ = Q; 2191 2192 // Check if it is an induction variable and always power of two. 2193 if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ)) 2194 return true; 2195 2196 // Recursively check all incoming values. Limit recursion to 2 levels, so 2197 // that search complexity is limited to number of operands^2. 2198 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2199 return llvm::all_of(PN->operands(), [&](const Use &U) { 2200 // Value is power of 2 if it is coming from PHI node itself by induction. 2201 if (U.get() == PN) 2202 return true; 2203 2204 // Change the context instruction to the incoming block where it is 2205 // evaluated. 2206 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2207 return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ); 2208 }); 2209 } 2210 2211 // An exact divide or right shift can only shift off zero bits, so the result 2212 // is a power of two only if the first operand is a power of two and not 2213 // copying a sign bit (sdiv int_min, 2). 2214 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2215 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2216 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2217 Depth, Q); 2218 } 2219 2220 return false; 2221 } 2222 2223 /// Test whether a GEP's result is known to be non-null. 2224 /// 2225 /// Uses properties inherent in a GEP to try to determine whether it is known 2226 /// to be non-null. 2227 /// 2228 /// Currently this routine does not support vector GEPs. 2229 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2230 const Query &Q) { 2231 const Function *F = nullptr; 2232 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2233 F = I->getFunction(); 2234 2235 if (!GEP->isInBounds() || 2236 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2237 return false; 2238 2239 // FIXME: Support vector-GEPs. 2240 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2241 2242 // If the base pointer is non-null, we cannot walk to a null address with an 2243 // inbounds GEP in address space zero. 2244 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2245 return true; 2246 2247 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2248 // If so, then the GEP cannot produce a null pointer, as doing so would 2249 // inherently violate the inbounds contract within address space zero. 2250 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2251 GTI != GTE; ++GTI) { 2252 // Struct types are easy -- they must always be indexed by a constant. 2253 if (StructType *STy = GTI.getStructTypeOrNull()) { 2254 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2255 unsigned ElementIdx = OpC->getZExtValue(); 2256 const StructLayout *SL = Q.DL.getStructLayout(STy); 2257 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2258 if (ElementOffset > 0) 2259 return true; 2260 continue; 2261 } 2262 2263 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2264 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2265 continue; 2266 2267 // Fast path the constant operand case both for efficiency and so we don't 2268 // increment Depth when just zipping down an all-constant GEP. 2269 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2270 if (!OpC->isZero()) 2271 return true; 2272 continue; 2273 } 2274 2275 // We post-increment Depth here because while isKnownNonZero increments it 2276 // as well, when we pop back up that increment won't persist. We don't want 2277 // to recurse 10k times just because we have 10k GEP operands. We don't 2278 // bail completely out because we want to handle constant GEPs regardless 2279 // of depth. 2280 if (Depth++ >= MaxAnalysisRecursionDepth) 2281 continue; 2282 2283 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2284 return true; 2285 } 2286 2287 return false; 2288 } 2289 2290 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2291 const Instruction *CtxI, 2292 const DominatorTree *DT) { 2293 if (isa<Constant>(V)) 2294 return false; 2295 2296 if (!CtxI || !DT) 2297 return false; 2298 2299 unsigned NumUsesExplored = 0; 2300 for (auto *U : V->users()) { 2301 // Avoid massive lists 2302 if (NumUsesExplored >= DomConditionsMaxUses) 2303 break; 2304 NumUsesExplored++; 2305 2306 // If the value is used as an argument to a call or invoke, then argument 2307 // attributes may provide an answer about null-ness. 2308 if (const auto *CB = dyn_cast<CallBase>(U)) 2309 if (auto *CalledFunc = CB->getCalledFunction()) 2310 for (const Argument &Arg : CalledFunc->args()) 2311 if (CB->getArgOperand(Arg.getArgNo()) == V && 2312 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2313 DT->dominates(CB, CtxI)) 2314 return true; 2315 2316 // If the value is used as a load/store, then the pointer must be non null. 2317 if (V == getLoadStorePointerOperand(U)) { 2318 const Instruction *I = cast<Instruction>(U); 2319 if (!NullPointerIsDefined(I->getFunction(), 2320 V->getType()->getPointerAddressSpace()) && 2321 DT->dominates(I, CtxI)) 2322 return true; 2323 } 2324 2325 // Consider only compare instructions uniquely controlling a branch 2326 Value *RHS; 2327 CmpInst::Predicate Pred; 2328 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2329 continue; 2330 2331 bool NonNullIfTrue; 2332 if (cmpExcludesZero(Pred, RHS)) 2333 NonNullIfTrue = true; 2334 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2335 NonNullIfTrue = false; 2336 else 2337 continue; 2338 2339 SmallVector<const User *, 4> WorkList; 2340 SmallPtrSet<const User *, 4> Visited; 2341 for (auto *CmpU : U->users()) { 2342 assert(WorkList.empty() && "Should be!"); 2343 if (Visited.insert(CmpU).second) 2344 WorkList.push_back(CmpU); 2345 2346 while (!WorkList.empty()) { 2347 auto *Curr = WorkList.pop_back_val(); 2348 2349 // If a user is an AND, add all its users to the work list. We only 2350 // propagate "pred != null" condition through AND because it is only 2351 // correct to assume that all conditions of AND are met in true branch. 2352 // TODO: Support similar logic of OR and EQ predicate? 2353 if (NonNullIfTrue) 2354 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2355 for (auto *CurrU : Curr->users()) 2356 if (Visited.insert(CurrU).second) 2357 WorkList.push_back(CurrU); 2358 continue; 2359 } 2360 2361 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2362 assert(BI->isConditional() && "uses a comparison!"); 2363 2364 BasicBlock *NonNullSuccessor = 2365 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2366 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2367 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2368 return true; 2369 } else if (NonNullIfTrue && isGuard(Curr) && 2370 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2371 return true; 2372 } 2373 } 2374 } 2375 } 2376 2377 return false; 2378 } 2379 2380 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2381 /// ensure that the value it's attached to is never Value? 'RangeType' is 2382 /// is the type of the value described by the range. 2383 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2384 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2385 assert(NumRanges >= 1); 2386 for (unsigned i = 0; i < NumRanges; ++i) { 2387 ConstantInt *Lower = 2388 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2389 ConstantInt *Upper = 2390 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2391 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2392 if (Range.contains(Value)) 2393 return false; 2394 } 2395 return true; 2396 } 2397 2398 /// Try to detect a recurrence that monotonically increases/decreases from a 2399 /// non-zero starting value. These are common as induction variables. 2400 static bool isNonZeroRecurrence(const PHINode *PN) { 2401 BinaryOperator *BO = nullptr; 2402 Value *Start = nullptr, *Step = nullptr; 2403 const APInt *StartC, *StepC; 2404 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2405 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2406 return false; 2407 2408 switch (BO->getOpcode()) { 2409 case Instruction::Add: 2410 // Starting from non-zero and stepping away from zero can never wrap back 2411 // to zero. 2412 return BO->hasNoUnsignedWrap() || 2413 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2414 StartC->isNegative() == StepC->isNegative()); 2415 case Instruction::Mul: 2416 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2417 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2418 case Instruction::Shl: 2419 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2420 case Instruction::AShr: 2421 case Instruction::LShr: 2422 return BO->isExact(); 2423 default: 2424 return false; 2425 } 2426 } 2427 2428 /// Return true if the given value is known to be non-zero when defined. For 2429 /// vectors, return true if every demanded element is known to be non-zero when 2430 /// defined. For pointers, if the context instruction and dominator tree are 2431 /// specified, perform context-sensitive analysis and return true if the 2432 /// pointer couldn't possibly be null at the specified instruction. 2433 /// Supports values with integer or pointer type and vectors of integers. 2434 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2435 const Query &Q) { 2436 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2437 // vector 2438 if (isa<ScalableVectorType>(V->getType())) 2439 return false; 2440 2441 if (auto *C = dyn_cast<Constant>(V)) { 2442 if (C->isNullValue()) 2443 return false; 2444 if (isa<ConstantInt>(C)) 2445 // Must be non-zero due to null test above. 2446 return true; 2447 2448 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2449 // See the comment for IntToPtr/PtrToInt instructions below. 2450 if (CE->getOpcode() == Instruction::IntToPtr || 2451 CE->getOpcode() == Instruction::PtrToInt) 2452 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2453 .getFixedSize() <= 2454 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2455 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2456 } 2457 2458 // For constant vectors, check that all elements are undefined or known 2459 // non-zero to determine that the whole vector is known non-zero. 2460 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2461 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2462 if (!DemandedElts[i]) 2463 continue; 2464 Constant *Elt = C->getAggregateElement(i); 2465 if (!Elt || Elt->isNullValue()) 2466 return false; 2467 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2468 return false; 2469 } 2470 return true; 2471 } 2472 2473 // A global variable in address space 0 is non null unless extern weak 2474 // or an absolute symbol reference. Other address spaces may have null as a 2475 // valid address for a global, so we can't assume anything. 2476 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2477 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2478 GV->getType()->getAddressSpace() == 0) 2479 return true; 2480 } else 2481 return false; 2482 } 2483 2484 if (auto *I = dyn_cast<Instruction>(V)) { 2485 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2486 // If the possible ranges don't contain zero, then the value is 2487 // definitely non-zero. 2488 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2489 const APInt ZeroValue(Ty->getBitWidth(), 0); 2490 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2491 return true; 2492 } 2493 } 2494 } 2495 2496 if (isKnownNonZeroFromAssume(V, Q)) 2497 return true; 2498 2499 // Some of the tests below are recursive, so bail out if we hit the limit. 2500 if (Depth++ >= MaxAnalysisRecursionDepth) 2501 return false; 2502 2503 // Check for pointer simplifications. 2504 2505 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2506 // Alloca never returns null, malloc might. 2507 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2508 return true; 2509 2510 // A byval, inalloca may not be null in a non-default addres space. A 2511 // nonnull argument is assumed never 0. 2512 if (const Argument *A = dyn_cast<Argument>(V)) { 2513 if (((A->hasPassPointeeByValueCopyAttr() && 2514 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2515 A->hasNonNullAttr())) 2516 return true; 2517 } 2518 2519 // A Load tagged with nonnull metadata is never null. 2520 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2521 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2522 return true; 2523 2524 if (const auto *Call = dyn_cast<CallBase>(V)) { 2525 if (Call->isReturnNonNull()) 2526 return true; 2527 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2528 return isKnownNonZero(RP, Depth, Q); 2529 } 2530 } 2531 2532 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2533 return true; 2534 2535 // Check for recursive pointer simplifications. 2536 if (V->getType()->isPointerTy()) { 2537 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2538 // do not alter the value, or at least not the nullness property of the 2539 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2540 // 2541 // Note that we have to take special care to avoid looking through 2542 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2543 // as casts that can alter the value, e.g., AddrSpaceCasts. 2544 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2545 return isGEPKnownNonNull(GEP, Depth, Q); 2546 2547 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2548 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2549 2550 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2551 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2552 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2553 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2554 } 2555 2556 // Similar to int2ptr above, we can look through ptr2int here if the cast 2557 // is a no-op or an extend and not a truncate. 2558 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2559 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2560 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2561 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2562 2563 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2564 2565 // X | Y != 0 if X != 0 or Y != 0. 2566 Value *X = nullptr, *Y = nullptr; 2567 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2568 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2569 isKnownNonZero(Y, DemandedElts, Depth, Q); 2570 2571 // ext X != 0 if X != 0. 2572 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2573 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2574 2575 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2576 // if the lowest bit is shifted off the end. 2577 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2578 // shl nuw can't remove any non-zero bits. 2579 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2580 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2581 return isKnownNonZero(X, Depth, Q); 2582 2583 KnownBits Known(BitWidth); 2584 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2585 if (Known.One[0]) 2586 return true; 2587 } 2588 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2589 // defined if the sign bit is shifted off the end. 2590 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2591 // shr exact can only shift out zero bits. 2592 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2593 if (BO->isExact()) 2594 return isKnownNonZero(X, Depth, Q); 2595 2596 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2597 if (Known.isNegative()) 2598 return true; 2599 2600 // If the shifter operand is a constant, and all of the bits shifted 2601 // out are known to be zero, and X is known non-zero then at least one 2602 // non-zero bit must remain. 2603 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2604 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2605 // Is there a known one in the portion not shifted out? 2606 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2607 return true; 2608 // Are all the bits to be shifted out known zero? 2609 if (Known.countMinTrailingZeros() >= ShiftVal) 2610 return isKnownNonZero(X, DemandedElts, Depth, Q); 2611 } 2612 } 2613 // div exact can only produce a zero if the dividend is zero. 2614 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2615 return isKnownNonZero(X, DemandedElts, Depth, Q); 2616 } 2617 // X + Y. 2618 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2619 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2620 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2621 2622 // If X and Y are both non-negative (as signed values) then their sum is not 2623 // zero unless both X and Y are zero. 2624 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2625 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2626 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2627 return true; 2628 2629 // If X and Y are both negative (as signed values) then their sum is not 2630 // zero unless both X and Y equal INT_MIN. 2631 if (XKnown.isNegative() && YKnown.isNegative()) { 2632 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2633 // The sign bit of X is set. If some other bit is set then X is not equal 2634 // to INT_MIN. 2635 if (XKnown.One.intersects(Mask)) 2636 return true; 2637 // The sign bit of Y is set. If some other bit is set then Y is not equal 2638 // to INT_MIN. 2639 if (YKnown.One.intersects(Mask)) 2640 return true; 2641 } 2642 2643 // The sum of a non-negative number and a power of two is not zero. 2644 if (XKnown.isNonNegative() && 2645 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2646 return true; 2647 if (YKnown.isNonNegative() && 2648 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2649 return true; 2650 } 2651 // X * Y. 2652 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2653 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2654 // If X and Y are non-zero then so is X * Y as long as the multiplication 2655 // does not overflow. 2656 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2657 isKnownNonZero(X, DemandedElts, Depth, Q) && 2658 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2659 return true; 2660 } 2661 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2662 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2663 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2664 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2665 return true; 2666 } 2667 // PHI 2668 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2669 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2670 return true; 2671 2672 // Check if all incoming values are non-zero using recursion. 2673 Query RecQ = Q; 2674 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2675 return llvm::all_of(PN->operands(), [&](const Use &U) { 2676 if (U.get() == PN) 2677 return true; 2678 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2679 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2680 }); 2681 } 2682 // ExtractElement 2683 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2684 const Value *Vec = EEI->getVectorOperand(); 2685 const Value *Idx = EEI->getIndexOperand(); 2686 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2687 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2688 unsigned NumElts = VecTy->getNumElements(); 2689 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2690 if (CIdx && CIdx->getValue().ult(NumElts)) 2691 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2692 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2693 } 2694 } 2695 // Freeze 2696 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2697 auto *Op = FI->getOperand(0); 2698 if (isKnownNonZero(Op, Depth, Q) && 2699 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2700 return true; 2701 } 2702 2703 KnownBits Known(BitWidth); 2704 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2705 return Known.One != 0; 2706 } 2707 2708 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2709 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2710 // vector 2711 if (isa<ScalableVectorType>(V->getType())) 2712 return false; 2713 2714 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2715 APInt DemandedElts = 2716 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2717 return isKnownNonZero(V, DemandedElts, Depth, Q); 2718 } 2719 2720 /// If the pair of operators are the same invertible function, return the 2721 /// the operands of the function corresponding to each input. Otherwise, 2722 /// return None. An invertible function is one that is 1-to-1 and maps 2723 /// every input value to exactly one output value. This is equivalent to 2724 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2725 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2726 static Optional<std::pair<Value*, Value*>> 2727 getInvertibleOperands(const Operator *Op1, 2728 const Operator *Op2) { 2729 if (Op1->getOpcode() != Op2->getOpcode()) 2730 return None; 2731 2732 auto getOperands = [&](unsigned OpNum) -> auto { 2733 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2734 }; 2735 2736 switch (Op1->getOpcode()) { 2737 default: 2738 break; 2739 case Instruction::Add: 2740 case Instruction::Sub: 2741 if (Op1->getOperand(0) == Op2->getOperand(0)) 2742 return getOperands(1); 2743 if (Op1->getOperand(1) == Op2->getOperand(1)) 2744 return getOperands(0); 2745 break; 2746 case Instruction::Mul: { 2747 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2748 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2749 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2750 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2751 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2752 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2753 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2754 break; 2755 2756 // Assume operand order has been canonicalized 2757 if (Op1->getOperand(1) == Op2->getOperand(1) && 2758 isa<ConstantInt>(Op1->getOperand(1)) && 2759 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2760 return getOperands(0); 2761 break; 2762 } 2763 case Instruction::Shl: { 2764 // Same as multiplies, with the difference that we don't need to check 2765 // for a non-zero multiply. Shifts always multiply by non-zero. 2766 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2767 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2768 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2769 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2770 break; 2771 2772 if (Op1->getOperand(1) == Op2->getOperand(1)) 2773 return getOperands(0); 2774 break; 2775 } 2776 case Instruction::AShr: 2777 case Instruction::LShr: { 2778 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2779 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2780 if (!PEO1->isExact() || !PEO2->isExact()) 2781 break; 2782 2783 if (Op1->getOperand(1) == Op2->getOperand(1)) 2784 return getOperands(0); 2785 break; 2786 } 2787 case Instruction::SExt: 2788 case Instruction::ZExt: 2789 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2790 return getOperands(0); 2791 break; 2792 case Instruction::PHI: { 2793 const PHINode *PN1 = cast<PHINode>(Op1); 2794 const PHINode *PN2 = cast<PHINode>(Op2); 2795 2796 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2797 // are a single invertible function of the start values? Note that repeated 2798 // application of an invertible function is also invertible 2799 BinaryOperator *BO1 = nullptr; 2800 Value *Start1 = nullptr, *Step1 = nullptr; 2801 BinaryOperator *BO2 = nullptr; 2802 Value *Start2 = nullptr, *Step2 = nullptr; 2803 if (PN1->getParent() != PN2->getParent() || 2804 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2805 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2806 break; 2807 2808 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2809 cast<Operator>(BO2)); 2810 if (!Values) 2811 break; 2812 2813 // We have to be careful of mutually defined recurrences here. Ex: 2814 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2815 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2816 // The invertibility of these is complicated, and not worth reasoning 2817 // about (yet?). 2818 if (Values->first != PN1 || Values->second != PN2) 2819 break; 2820 2821 return std::make_pair(Start1, Start2); 2822 } 2823 } 2824 return None; 2825 } 2826 2827 /// Return true if V2 == V1 + X, where X is known non-zero. 2828 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2829 const Query &Q) { 2830 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2831 if (!BO || BO->getOpcode() != Instruction::Add) 2832 return false; 2833 Value *Op = nullptr; 2834 if (V2 == BO->getOperand(0)) 2835 Op = BO->getOperand(1); 2836 else if (V2 == BO->getOperand(1)) 2837 Op = BO->getOperand(0); 2838 else 2839 return false; 2840 return isKnownNonZero(Op, Depth + 1, Q); 2841 } 2842 2843 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2844 /// the multiplication is nuw or nsw. 2845 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2846 const Query &Q) { 2847 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2848 const APInt *C; 2849 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2850 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2851 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2852 } 2853 return false; 2854 } 2855 2856 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2857 /// the shift is nuw or nsw. 2858 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2859 const Query &Q) { 2860 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2861 const APInt *C; 2862 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2863 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2864 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2865 } 2866 return false; 2867 } 2868 2869 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2870 unsigned Depth, const Query &Q) { 2871 // Check two PHIs are in same block. 2872 if (PN1->getParent() != PN2->getParent()) 2873 return false; 2874 2875 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2876 bool UsedFullRecursion = false; 2877 for (const BasicBlock *IncomBB : PN1->blocks()) { 2878 if (!VisitedBBs.insert(IncomBB).second) 2879 continue; // Don't reprocess blocks that we have dealt with already. 2880 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2881 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2882 const APInt *C1, *C2; 2883 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2884 continue; 2885 2886 // Only one pair of phi operands is allowed for full recursion. 2887 if (UsedFullRecursion) 2888 return false; 2889 2890 Query RecQ = Q; 2891 RecQ.CxtI = IncomBB->getTerminator(); 2892 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2893 return false; 2894 UsedFullRecursion = true; 2895 } 2896 return true; 2897 } 2898 2899 /// Return true if it is known that V1 != V2. 2900 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2901 const Query &Q) { 2902 if (V1 == V2) 2903 return false; 2904 if (V1->getType() != V2->getType()) 2905 // We can't look through casts yet. 2906 return false; 2907 2908 if (Depth >= MaxAnalysisRecursionDepth) 2909 return false; 2910 2911 // See if we can recurse through (exactly one of) our operands. This 2912 // requires our operation be 1-to-1 and map every input value to exactly 2913 // one output value. Such an operation is invertible. 2914 auto *O1 = dyn_cast<Operator>(V1); 2915 auto *O2 = dyn_cast<Operator>(V2); 2916 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2917 if (auto Values = getInvertibleOperands(O1, O2)) 2918 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2919 2920 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2921 const PHINode *PN2 = cast<PHINode>(V2); 2922 // FIXME: This is missing a generalization to handle the case where one is 2923 // a PHI and another one isn't. 2924 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2925 return true; 2926 }; 2927 } 2928 2929 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2930 return true; 2931 2932 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2933 return true; 2934 2935 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2936 return true; 2937 2938 if (V1->getType()->isIntOrIntVectorTy()) { 2939 // Are any known bits in V1 contradictory to known bits in V2? If V1 2940 // has a known zero where V2 has a known one, they must not be equal. 2941 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2942 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2943 2944 if (Known1.Zero.intersects(Known2.One) || 2945 Known2.Zero.intersects(Known1.One)) 2946 return true; 2947 } 2948 return false; 2949 } 2950 2951 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2952 /// simplify operations downstream. Mask is known to be zero for bits that V 2953 /// cannot have. 2954 /// 2955 /// This function is defined on values with integer type, values with pointer 2956 /// type, and vectors of integers. In the case 2957 /// where V is a vector, the mask, known zero, and known one values are the 2958 /// same width as the vector element, and the bit is set only if it is true 2959 /// for all of the elements in the vector. 2960 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2961 const Query &Q) { 2962 KnownBits Known(Mask.getBitWidth()); 2963 computeKnownBits(V, Known, Depth, Q); 2964 return Mask.isSubsetOf(Known.Zero); 2965 } 2966 2967 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2968 // Returns the input and lower/upper bounds. 2969 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2970 const APInt *&CLow, const APInt *&CHigh) { 2971 assert(isa<Operator>(Select) && 2972 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2973 "Input should be a Select!"); 2974 2975 const Value *LHS = nullptr, *RHS = nullptr; 2976 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2977 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2978 return false; 2979 2980 if (!match(RHS, m_APInt(CLow))) 2981 return false; 2982 2983 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2984 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2985 if (getInverseMinMaxFlavor(SPF) != SPF2) 2986 return false; 2987 2988 if (!match(RHS2, m_APInt(CHigh))) 2989 return false; 2990 2991 if (SPF == SPF_SMIN) 2992 std::swap(CLow, CHigh); 2993 2994 In = LHS2; 2995 return CLow->sle(*CHigh); 2996 } 2997 2998 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, 2999 const APInt *&CLow, 3000 const APInt *&CHigh) { 3001 assert((II->getIntrinsicID() == Intrinsic::smin || 3002 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); 3003 3004 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 3005 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 3006 if (!InnerII || InnerII->getIntrinsicID() != InverseID || 3007 !match(II->getArgOperand(1), m_APInt(CLow)) || 3008 !match(InnerII->getArgOperand(1), m_APInt(CHigh))) 3009 return false; 3010 3011 if (II->getIntrinsicID() == Intrinsic::smin) 3012 std::swap(CLow, CHigh); 3013 return CLow->sle(*CHigh); 3014 } 3015 3016 /// For vector constants, loop over the elements and find the constant with the 3017 /// minimum number of sign bits. Return 0 if the value is not a vector constant 3018 /// or if any element was not analyzed; otherwise, return the count for the 3019 /// element with the minimum number of sign bits. 3020 static unsigned computeNumSignBitsVectorConstant(const Value *V, 3021 const APInt &DemandedElts, 3022 unsigned TyBits) { 3023 const auto *CV = dyn_cast<Constant>(V); 3024 if (!CV || !isa<FixedVectorType>(CV->getType())) 3025 return 0; 3026 3027 unsigned MinSignBits = TyBits; 3028 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 3029 for (unsigned i = 0; i != NumElts; ++i) { 3030 if (!DemandedElts[i]) 3031 continue; 3032 // If we find a non-ConstantInt, bail out. 3033 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 3034 if (!Elt) 3035 return 0; 3036 3037 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 3038 } 3039 3040 return MinSignBits; 3041 } 3042 3043 static unsigned ComputeNumSignBitsImpl(const Value *V, 3044 const APInt &DemandedElts, 3045 unsigned Depth, const Query &Q); 3046 3047 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 3048 unsigned Depth, const Query &Q) { 3049 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 3050 assert(Result > 0 && "At least one sign bit needs to be present!"); 3051 return Result; 3052 } 3053 3054 /// Return the number of times the sign bit of the register is replicated into 3055 /// the other bits. We know that at least 1 bit is always equal to the sign bit 3056 /// (itself), but other cases can give us information. For example, immediately 3057 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 3058 /// other, so we return 3. For vectors, return the number of sign bits for the 3059 /// vector element with the minimum number of known sign bits of the demanded 3060 /// elements in the vector specified by DemandedElts. 3061 static unsigned ComputeNumSignBitsImpl(const Value *V, 3062 const APInt &DemandedElts, 3063 unsigned Depth, const Query &Q) { 3064 Type *Ty = V->getType(); 3065 3066 // FIXME: We currently have no way to represent the DemandedElts of a scalable 3067 // vector 3068 if (isa<ScalableVectorType>(Ty)) 3069 return 1; 3070 3071 #ifndef NDEBUG 3072 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3073 3074 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 3075 assert( 3076 FVTy->getNumElements() == DemandedElts.getBitWidth() && 3077 "DemandedElt width should equal the fixed vector number of elements"); 3078 } else { 3079 assert(DemandedElts == APInt(1, 1) && 3080 "DemandedElt width should be 1 for scalars"); 3081 } 3082 #endif 3083 3084 // We return the minimum number of sign bits that are guaranteed to be present 3085 // in V, so for undef we have to conservatively return 1. We don't have the 3086 // same behavior for poison though -- that's a FIXME today. 3087 3088 Type *ScalarTy = Ty->getScalarType(); 3089 unsigned TyBits = ScalarTy->isPointerTy() ? 3090 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 3091 Q.DL.getTypeSizeInBits(ScalarTy); 3092 3093 unsigned Tmp, Tmp2; 3094 unsigned FirstAnswer = 1; 3095 3096 // Note that ConstantInt is handled by the general computeKnownBits case 3097 // below. 3098 3099 if (Depth == MaxAnalysisRecursionDepth) 3100 return 1; 3101 3102 if (auto *U = dyn_cast<Operator>(V)) { 3103 switch (Operator::getOpcode(V)) { 3104 default: break; 3105 case Instruction::SExt: 3106 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 3107 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 3108 3109 case Instruction::SDiv: { 3110 const APInt *Denominator; 3111 // sdiv X, C -> adds log(C) sign bits. 3112 if (match(U->getOperand(1), m_APInt(Denominator))) { 3113 3114 // Ignore non-positive denominator. 3115 if (!Denominator->isStrictlyPositive()) 3116 break; 3117 3118 // Calculate the incoming numerator bits. 3119 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3120 3121 // Add floor(log(C)) bits to the numerator bits. 3122 return std::min(TyBits, NumBits + Denominator->logBase2()); 3123 } 3124 break; 3125 } 3126 3127 case Instruction::SRem: { 3128 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3129 3130 const APInt *Denominator; 3131 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3132 // positive constant. This let us put a lower bound on the number of sign 3133 // bits. 3134 if (match(U->getOperand(1), m_APInt(Denominator))) { 3135 3136 // Ignore non-positive denominator. 3137 if (Denominator->isStrictlyPositive()) { 3138 // Calculate the leading sign bit constraints by examining the 3139 // denominator. Given that the denominator is positive, there are two 3140 // cases: 3141 // 3142 // 1. The numerator is positive. The result range is [0,C) and 3143 // [0,C) u< (1 << ceilLogBase2(C)). 3144 // 3145 // 2. The numerator is negative. Then the result range is (-C,0] and 3146 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3147 // 3148 // Thus a lower bound on the number of sign bits is `TyBits - 3149 // ceilLogBase2(C)`. 3150 3151 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3152 Tmp = std::max(Tmp, ResBits); 3153 } 3154 } 3155 return Tmp; 3156 } 3157 3158 case Instruction::AShr: { 3159 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3160 // ashr X, C -> adds C sign bits. Vectors too. 3161 const APInt *ShAmt; 3162 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3163 if (ShAmt->uge(TyBits)) 3164 break; // Bad shift. 3165 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3166 Tmp += ShAmtLimited; 3167 if (Tmp > TyBits) Tmp = TyBits; 3168 } 3169 return Tmp; 3170 } 3171 case Instruction::Shl: { 3172 const APInt *ShAmt; 3173 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3174 // shl destroys sign bits. 3175 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3176 if (ShAmt->uge(TyBits) || // Bad shift. 3177 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3178 Tmp2 = ShAmt->getZExtValue(); 3179 return Tmp - Tmp2; 3180 } 3181 break; 3182 } 3183 case Instruction::And: 3184 case Instruction::Or: 3185 case Instruction::Xor: // NOT is handled here. 3186 // Logical binary ops preserve the number of sign bits at the worst. 3187 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3188 if (Tmp != 1) { 3189 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3190 FirstAnswer = std::min(Tmp, Tmp2); 3191 // We computed what we know about the sign bits as our first 3192 // answer. Now proceed to the generic code that uses 3193 // computeKnownBits, and pick whichever answer is better. 3194 } 3195 break; 3196 3197 case Instruction::Select: { 3198 // If we have a clamp pattern, we know that the number of sign bits will 3199 // be the minimum of the clamp min/max range. 3200 const Value *X; 3201 const APInt *CLow, *CHigh; 3202 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3203 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3204 3205 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3206 if (Tmp == 1) break; 3207 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3208 return std::min(Tmp, Tmp2); 3209 } 3210 3211 case Instruction::Add: 3212 // Add can have at most one carry bit. Thus we know that the output 3213 // is, at worst, one more bit than the inputs. 3214 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3215 if (Tmp == 1) break; 3216 3217 // Special case decrementing a value (ADD X, -1): 3218 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3219 if (CRHS->isAllOnesValue()) { 3220 KnownBits Known(TyBits); 3221 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3222 3223 // If the input is known to be 0 or 1, the output is 0/-1, which is 3224 // all sign bits set. 3225 if ((Known.Zero | 1).isAllOnes()) 3226 return TyBits; 3227 3228 // If we are subtracting one from a positive number, there is no carry 3229 // out of the result. 3230 if (Known.isNonNegative()) 3231 return Tmp; 3232 } 3233 3234 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3235 if (Tmp2 == 1) break; 3236 return std::min(Tmp, Tmp2) - 1; 3237 3238 case Instruction::Sub: 3239 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3240 if (Tmp2 == 1) break; 3241 3242 // Handle NEG. 3243 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3244 if (CLHS->isNullValue()) { 3245 KnownBits Known(TyBits); 3246 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3247 // If the input is known to be 0 or 1, the output is 0/-1, which is 3248 // all sign bits set. 3249 if ((Known.Zero | 1).isAllOnes()) 3250 return TyBits; 3251 3252 // If the input is known to be positive (the sign bit is known clear), 3253 // the output of the NEG has the same number of sign bits as the 3254 // input. 3255 if (Known.isNonNegative()) 3256 return Tmp2; 3257 3258 // Otherwise, we treat this like a SUB. 3259 } 3260 3261 // Sub can have at most one carry bit. Thus we know that the output 3262 // is, at worst, one more bit than the inputs. 3263 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3264 if (Tmp == 1) break; 3265 return std::min(Tmp, Tmp2) - 1; 3266 3267 case Instruction::Mul: { 3268 // The output of the Mul can be at most twice the valid bits in the 3269 // inputs. 3270 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3271 if (SignBitsOp0 == 1) break; 3272 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3273 if (SignBitsOp1 == 1) break; 3274 unsigned OutValidBits = 3275 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3276 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3277 } 3278 3279 case Instruction::PHI: { 3280 const PHINode *PN = cast<PHINode>(U); 3281 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3282 // Don't analyze large in-degree PHIs. 3283 if (NumIncomingValues > 4) break; 3284 // Unreachable blocks may have zero-operand PHI nodes. 3285 if (NumIncomingValues == 0) break; 3286 3287 // Take the minimum of all incoming values. This can't infinitely loop 3288 // because of our depth threshold. 3289 Query RecQ = Q; 3290 Tmp = TyBits; 3291 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3292 if (Tmp == 1) return Tmp; 3293 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3294 Tmp = std::min( 3295 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3296 } 3297 return Tmp; 3298 } 3299 3300 case Instruction::Trunc: 3301 // FIXME: it's tricky to do anything useful for this, but it is an 3302 // important case for targets like X86. 3303 break; 3304 3305 case Instruction::ExtractElement: 3306 // Look through extract element. At the moment we keep this simple and 3307 // skip tracking the specific element. But at least we might find 3308 // information valid for all elements of the vector (for example if vector 3309 // is sign extended, shifted, etc). 3310 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3311 3312 case Instruction::ShuffleVector: { 3313 // Collect the minimum number of sign bits that are shared by every vector 3314 // element referenced by the shuffle. 3315 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3316 if (!Shuf) { 3317 // FIXME: Add support for shufflevector constant expressions. 3318 return 1; 3319 } 3320 APInt DemandedLHS, DemandedRHS; 3321 // For undef elements, we don't know anything about the common state of 3322 // the shuffle result. 3323 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3324 return 1; 3325 Tmp = std::numeric_limits<unsigned>::max(); 3326 if (!!DemandedLHS) { 3327 const Value *LHS = Shuf->getOperand(0); 3328 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3329 } 3330 // If we don't know anything, early out and try computeKnownBits 3331 // fall-back. 3332 if (Tmp == 1) 3333 break; 3334 if (!!DemandedRHS) { 3335 const Value *RHS = Shuf->getOperand(1); 3336 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3337 Tmp = std::min(Tmp, Tmp2); 3338 } 3339 // If we don't know anything, early out and try computeKnownBits 3340 // fall-back. 3341 if (Tmp == 1) 3342 break; 3343 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3344 return Tmp; 3345 } 3346 case Instruction::Call: { 3347 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3348 switch (II->getIntrinsicID()) { 3349 default: break; 3350 case Intrinsic::abs: 3351 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3352 if (Tmp == 1) break; 3353 3354 // Absolute value reduces number of sign bits by at most 1. 3355 return Tmp - 1; 3356 case Intrinsic::smin: 3357 case Intrinsic::smax: { 3358 const APInt *CLow, *CHigh; 3359 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 3360 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3361 } 3362 } 3363 } 3364 } 3365 } 3366 } 3367 3368 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3369 // use this information. 3370 3371 // If we can examine all elements of a vector constant successfully, we're 3372 // done (we can't do any better than that). If not, keep trying. 3373 if (unsigned VecSignBits = 3374 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3375 return VecSignBits; 3376 3377 KnownBits Known(TyBits); 3378 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3379 3380 // If we know that the sign bit is either zero or one, determine the number of 3381 // identical bits in the top of the input value. 3382 return std::max(FirstAnswer, Known.countMinSignBits()); 3383 } 3384 3385 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3386 const TargetLibraryInfo *TLI) { 3387 const Function *F = CB.getCalledFunction(); 3388 if (!F) 3389 return Intrinsic::not_intrinsic; 3390 3391 if (F->isIntrinsic()) 3392 return F->getIntrinsicID(); 3393 3394 // We are going to infer semantics of a library function based on mapping it 3395 // to an LLVM intrinsic. Check that the library function is available from 3396 // this callbase and in this environment. 3397 LibFunc Func; 3398 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3399 !CB.onlyReadsMemory()) 3400 return Intrinsic::not_intrinsic; 3401 3402 switch (Func) { 3403 default: 3404 break; 3405 case LibFunc_sin: 3406 case LibFunc_sinf: 3407 case LibFunc_sinl: 3408 return Intrinsic::sin; 3409 case LibFunc_cos: 3410 case LibFunc_cosf: 3411 case LibFunc_cosl: 3412 return Intrinsic::cos; 3413 case LibFunc_exp: 3414 case LibFunc_expf: 3415 case LibFunc_expl: 3416 return Intrinsic::exp; 3417 case LibFunc_exp2: 3418 case LibFunc_exp2f: 3419 case LibFunc_exp2l: 3420 return Intrinsic::exp2; 3421 case LibFunc_log: 3422 case LibFunc_logf: 3423 case LibFunc_logl: 3424 return Intrinsic::log; 3425 case LibFunc_log10: 3426 case LibFunc_log10f: 3427 case LibFunc_log10l: 3428 return Intrinsic::log10; 3429 case LibFunc_log2: 3430 case LibFunc_log2f: 3431 case LibFunc_log2l: 3432 return Intrinsic::log2; 3433 case LibFunc_fabs: 3434 case LibFunc_fabsf: 3435 case LibFunc_fabsl: 3436 return Intrinsic::fabs; 3437 case LibFunc_fmin: 3438 case LibFunc_fminf: 3439 case LibFunc_fminl: 3440 return Intrinsic::minnum; 3441 case LibFunc_fmax: 3442 case LibFunc_fmaxf: 3443 case LibFunc_fmaxl: 3444 return Intrinsic::maxnum; 3445 case LibFunc_copysign: 3446 case LibFunc_copysignf: 3447 case LibFunc_copysignl: 3448 return Intrinsic::copysign; 3449 case LibFunc_floor: 3450 case LibFunc_floorf: 3451 case LibFunc_floorl: 3452 return Intrinsic::floor; 3453 case LibFunc_ceil: 3454 case LibFunc_ceilf: 3455 case LibFunc_ceill: 3456 return Intrinsic::ceil; 3457 case LibFunc_trunc: 3458 case LibFunc_truncf: 3459 case LibFunc_truncl: 3460 return Intrinsic::trunc; 3461 case LibFunc_rint: 3462 case LibFunc_rintf: 3463 case LibFunc_rintl: 3464 return Intrinsic::rint; 3465 case LibFunc_nearbyint: 3466 case LibFunc_nearbyintf: 3467 case LibFunc_nearbyintl: 3468 return Intrinsic::nearbyint; 3469 case LibFunc_round: 3470 case LibFunc_roundf: 3471 case LibFunc_roundl: 3472 return Intrinsic::round; 3473 case LibFunc_roundeven: 3474 case LibFunc_roundevenf: 3475 case LibFunc_roundevenl: 3476 return Intrinsic::roundeven; 3477 case LibFunc_pow: 3478 case LibFunc_powf: 3479 case LibFunc_powl: 3480 return Intrinsic::pow; 3481 case LibFunc_sqrt: 3482 case LibFunc_sqrtf: 3483 case LibFunc_sqrtl: 3484 return Intrinsic::sqrt; 3485 } 3486 3487 return Intrinsic::not_intrinsic; 3488 } 3489 3490 /// Return true if we can prove that the specified FP value is never equal to 3491 /// -0.0. 3492 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3493 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3494 /// the same as +0.0 in floating-point ops. 3495 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3496 unsigned Depth) { 3497 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3498 return !CFP->getValueAPF().isNegZero(); 3499 3500 if (Depth == MaxAnalysisRecursionDepth) 3501 return false; 3502 3503 auto *Op = dyn_cast<Operator>(V); 3504 if (!Op) 3505 return false; 3506 3507 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3508 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3509 return true; 3510 3511 // sitofp and uitofp turn into +0.0 for zero. 3512 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3513 return true; 3514 3515 if (auto *Call = dyn_cast<CallInst>(Op)) { 3516 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3517 switch (IID) { 3518 default: 3519 break; 3520 // sqrt(-0.0) = -0.0, no other negative results are possible. 3521 case Intrinsic::sqrt: 3522 case Intrinsic::canonicalize: 3523 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3524 case Intrinsic::experimental_constrained_sqrt: { 3525 // NOTE: This rounding mode restriction may be too strict. 3526 const auto *CI = cast<ConstrainedFPIntrinsic>(Call); 3527 if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven) 3528 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3529 else 3530 return false; 3531 } 3532 // fabs(x) != -0.0 3533 case Intrinsic::fabs: 3534 return true; 3535 // sitofp and uitofp turn into +0.0 for zero. 3536 case Intrinsic::experimental_constrained_sitofp: 3537 case Intrinsic::experimental_constrained_uitofp: 3538 return true; 3539 } 3540 } 3541 3542 return false; 3543 } 3544 3545 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3546 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3547 /// bit despite comparing equal. 3548 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3549 const TargetLibraryInfo *TLI, 3550 bool SignBitOnly, 3551 unsigned Depth) { 3552 // TODO: This function does not do the right thing when SignBitOnly is true 3553 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3554 // which flips the sign bits of NaNs. See 3555 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3556 3557 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3558 return !CFP->getValueAPF().isNegative() || 3559 (!SignBitOnly && CFP->getValueAPF().isZero()); 3560 } 3561 3562 // Handle vector of constants. 3563 if (auto *CV = dyn_cast<Constant>(V)) { 3564 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3565 unsigned NumElts = CVFVTy->getNumElements(); 3566 for (unsigned i = 0; i != NumElts; ++i) { 3567 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3568 if (!CFP) 3569 return false; 3570 if (CFP->getValueAPF().isNegative() && 3571 (SignBitOnly || !CFP->getValueAPF().isZero())) 3572 return false; 3573 } 3574 3575 // All non-negative ConstantFPs. 3576 return true; 3577 } 3578 } 3579 3580 if (Depth == MaxAnalysisRecursionDepth) 3581 return false; 3582 3583 const Operator *I = dyn_cast<Operator>(V); 3584 if (!I) 3585 return false; 3586 3587 switch (I->getOpcode()) { 3588 default: 3589 break; 3590 // Unsigned integers are always nonnegative. 3591 case Instruction::UIToFP: 3592 return true; 3593 case Instruction::FMul: 3594 case Instruction::FDiv: 3595 // X * X is always non-negative or a NaN. 3596 // X / X is always exactly 1.0 or a NaN. 3597 if (I->getOperand(0) == I->getOperand(1) && 3598 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3599 return true; 3600 3601 LLVM_FALLTHROUGH; 3602 case Instruction::FAdd: 3603 case Instruction::FRem: 3604 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3605 Depth + 1) && 3606 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3607 Depth + 1); 3608 case Instruction::Select: 3609 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3610 Depth + 1) && 3611 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3612 Depth + 1); 3613 case Instruction::FPExt: 3614 case Instruction::FPTrunc: 3615 // Widening/narrowing never change sign. 3616 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3617 Depth + 1); 3618 case Instruction::ExtractElement: 3619 // Look through extract element. At the moment we keep this simple and skip 3620 // tracking the specific element. But at least we might find information 3621 // valid for all elements of the vector. 3622 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3623 Depth + 1); 3624 case Instruction::Call: 3625 const auto *CI = cast<CallInst>(I); 3626 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3627 switch (IID) { 3628 default: 3629 break; 3630 case Intrinsic::maxnum: { 3631 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3632 auto isPositiveNum = [&](Value *V) { 3633 if (SignBitOnly) { 3634 // With SignBitOnly, this is tricky because the result of 3635 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3636 // a constant strictly greater than 0.0. 3637 const APFloat *C; 3638 return match(V, m_APFloat(C)) && 3639 *C > APFloat::getZero(C->getSemantics()); 3640 } 3641 3642 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3643 // maxnum can't be ordered-less-than-zero. 3644 return isKnownNeverNaN(V, TLI) && 3645 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3646 }; 3647 3648 // TODO: This could be improved. We could also check that neither operand 3649 // has its sign bit set (and at least 1 is not-NAN?). 3650 return isPositiveNum(V0) || isPositiveNum(V1); 3651 } 3652 3653 case Intrinsic::maximum: 3654 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3655 Depth + 1) || 3656 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3657 Depth + 1); 3658 case Intrinsic::minnum: 3659 case Intrinsic::minimum: 3660 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3661 Depth + 1) && 3662 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3663 Depth + 1); 3664 case Intrinsic::exp: 3665 case Intrinsic::exp2: 3666 case Intrinsic::fabs: 3667 return true; 3668 3669 case Intrinsic::sqrt: 3670 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3671 if (!SignBitOnly) 3672 return true; 3673 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3674 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3675 3676 case Intrinsic::powi: 3677 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3678 // powi(x,n) is non-negative if n is even. 3679 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3680 return true; 3681 } 3682 // TODO: This is not correct. Given that exp is an integer, here are the 3683 // ways that pow can return a negative value: 3684 // 3685 // pow(x, exp) --> negative if exp is odd and x is negative. 3686 // pow(-0, exp) --> -inf if exp is negative odd. 3687 // pow(-0, exp) --> -0 if exp is positive odd. 3688 // pow(-inf, exp) --> -0 if exp is negative odd. 3689 // pow(-inf, exp) --> -inf if exp is positive odd. 3690 // 3691 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3692 // but we must return false if x == -0. Unfortunately we do not currently 3693 // have a way of expressing this constraint. See details in 3694 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3695 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3696 Depth + 1); 3697 3698 case Intrinsic::fma: 3699 case Intrinsic::fmuladd: 3700 // x*x+y is non-negative if y is non-negative. 3701 return I->getOperand(0) == I->getOperand(1) && 3702 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3703 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3704 Depth + 1); 3705 } 3706 break; 3707 } 3708 return false; 3709 } 3710 3711 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3712 const TargetLibraryInfo *TLI) { 3713 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3714 } 3715 3716 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3717 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3718 } 3719 3720 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3721 unsigned Depth) { 3722 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3723 3724 // If we're told that infinities won't happen, assume they won't. 3725 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3726 if (FPMathOp->hasNoInfs()) 3727 return true; 3728 3729 // Handle scalar constants. 3730 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3731 return !CFP->isInfinity(); 3732 3733 if (Depth == MaxAnalysisRecursionDepth) 3734 return false; 3735 3736 if (auto *Inst = dyn_cast<Instruction>(V)) { 3737 switch (Inst->getOpcode()) { 3738 case Instruction::Select: { 3739 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3740 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3741 } 3742 case Instruction::SIToFP: 3743 case Instruction::UIToFP: { 3744 // Get width of largest magnitude integer (remove a bit if signed). 3745 // This still works for a signed minimum value because the largest FP 3746 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3747 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3748 if (Inst->getOpcode() == Instruction::SIToFP) 3749 --IntSize; 3750 3751 // If the exponent of the largest finite FP value can hold the largest 3752 // integer, the result of the cast must be finite. 3753 Type *FPTy = Inst->getType()->getScalarType(); 3754 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3755 } 3756 default: 3757 break; 3758 } 3759 } 3760 3761 // try to handle fixed width vector constants 3762 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3763 if (VFVTy && isa<Constant>(V)) { 3764 // For vectors, verify that each element is not infinity. 3765 unsigned NumElts = VFVTy->getNumElements(); 3766 for (unsigned i = 0; i != NumElts; ++i) { 3767 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3768 if (!Elt) 3769 return false; 3770 if (isa<UndefValue>(Elt)) 3771 continue; 3772 auto *CElt = dyn_cast<ConstantFP>(Elt); 3773 if (!CElt || CElt->isInfinity()) 3774 return false; 3775 } 3776 // All elements were confirmed non-infinity or undefined. 3777 return true; 3778 } 3779 3780 // was not able to prove that V never contains infinity 3781 return false; 3782 } 3783 3784 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3785 unsigned Depth) { 3786 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3787 3788 // If we're told that NaNs won't happen, assume they won't. 3789 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3790 if (FPMathOp->hasNoNaNs()) 3791 return true; 3792 3793 // Handle scalar constants. 3794 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3795 return !CFP->isNaN(); 3796 3797 if (Depth == MaxAnalysisRecursionDepth) 3798 return false; 3799 3800 if (auto *Inst = dyn_cast<Instruction>(V)) { 3801 switch (Inst->getOpcode()) { 3802 case Instruction::FAdd: 3803 case Instruction::FSub: 3804 // Adding positive and negative infinity produces NaN. 3805 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3806 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3807 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3808 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3809 3810 case Instruction::FMul: 3811 // Zero multiplied with infinity produces NaN. 3812 // FIXME: If neither side can be zero fmul never produces NaN. 3813 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3814 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3815 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3816 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3817 3818 case Instruction::FDiv: 3819 case Instruction::FRem: 3820 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3821 return false; 3822 3823 case Instruction::Select: { 3824 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3825 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3826 } 3827 case Instruction::SIToFP: 3828 case Instruction::UIToFP: 3829 return true; 3830 case Instruction::FPTrunc: 3831 case Instruction::FPExt: 3832 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3833 default: 3834 break; 3835 } 3836 } 3837 3838 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3839 switch (II->getIntrinsicID()) { 3840 case Intrinsic::canonicalize: 3841 case Intrinsic::fabs: 3842 case Intrinsic::copysign: 3843 case Intrinsic::exp: 3844 case Intrinsic::exp2: 3845 case Intrinsic::floor: 3846 case Intrinsic::ceil: 3847 case Intrinsic::trunc: 3848 case Intrinsic::rint: 3849 case Intrinsic::nearbyint: 3850 case Intrinsic::round: 3851 case Intrinsic::roundeven: 3852 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3853 case Intrinsic::sqrt: 3854 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3855 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3856 case Intrinsic::minnum: 3857 case Intrinsic::maxnum: 3858 // If either operand is not NaN, the result is not NaN. 3859 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3860 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3861 default: 3862 return false; 3863 } 3864 } 3865 3866 // Try to handle fixed width vector constants 3867 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3868 if (VFVTy && isa<Constant>(V)) { 3869 // For vectors, verify that each element is not NaN. 3870 unsigned NumElts = VFVTy->getNumElements(); 3871 for (unsigned i = 0; i != NumElts; ++i) { 3872 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3873 if (!Elt) 3874 return false; 3875 if (isa<UndefValue>(Elt)) 3876 continue; 3877 auto *CElt = dyn_cast<ConstantFP>(Elt); 3878 if (!CElt || CElt->isNaN()) 3879 return false; 3880 } 3881 // All elements were confirmed not-NaN or undefined. 3882 return true; 3883 } 3884 3885 // Was not able to prove that V never contains NaN 3886 return false; 3887 } 3888 3889 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3890 3891 // All byte-wide stores are splatable, even of arbitrary variables. 3892 if (V->getType()->isIntegerTy(8)) 3893 return V; 3894 3895 LLVMContext &Ctx = V->getContext(); 3896 3897 // Undef don't care. 3898 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3899 if (isa<UndefValue>(V)) 3900 return UndefInt8; 3901 3902 // Return Undef for zero-sized type. 3903 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3904 return UndefInt8; 3905 3906 Constant *C = dyn_cast<Constant>(V); 3907 if (!C) { 3908 // Conceptually, we could handle things like: 3909 // %a = zext i8 %X to i16 3910 // %b = shl i16 %a, 8 3911 // %c = or i16 %a, %b 3912 // but until there is an example that actually needs this, it doesn't seem 3913 // worth worrying about. 3914 return nullptr; 3915 } 3916 3917 // Handle 'null' ConstantArrayZero etc. 3918 if (C->isNullValue()) 3919 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3920 3921 // Constant floating-point values can be handled as integer values if the 3922 // corresponding integer value is "byteable". An important case is 0.0. 3923 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3924 Type *Ty = nullptr; 3925 if (CFP->getType()->isHalfTy()) 3926 Ty = Type::getInt16Ty(Ctx); 3927 else if (CFP->getType()->isFloatTy()) 3928 Ty = Type::getInt32Ty(Ctx); 3929 else if (CFP->getType()->isDoubleTy()) 3930 Ty = Type::getInt64Ty(Ctx); 3931 // Don't handle long double formats, which have strange constraints. 3932 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3933 : nullptr; 3934 } 3935 3936 // We can handle constant integers that are multiple of 8 bits. 3937 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3938 if (CI->getBitWidth() % 8 == 0) { 3939 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3940 if (!CI->getValue().isSplat(8)) 3941 return nullptr; 3942 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3943 } 3944 } 3945 3946 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3947 if (CE->getOpcode() == Instruction::IntToPtr) { 3948 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3949 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3950 return isBytewiseValue( 3951 ConstantExpr::getIntegerCast(CE->getOperand(0), 3952 Type::getIntNTy(Ctx, BitWidth), false), 3953 DL); 3954 } 3955 } 3956 } 3957 3958 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3959 if (LHS == RHS) 3960 return LHS; 3961 if (!LHS || !RHS) 3962 return nullptr; 3963 if (LHS == UndefInt8) 3964 return RHS; 3965 if (RHS == UndefInt8) 3966 return LHS; 3967 return nullptr; 3968 }; 3969 3970 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3971 Value *Val = UndefInt8; 3972 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3973 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3974 return nullptr; 3975 return Val; 3976 } 3977 3978 if (isa<ConstantAggregate>(C)) { 3979 Value *Val = UndefInt8; 3980 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3981 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3982 return nullptr; 3983 return Val; 3984 } 3985 3986 // Don't try to handle the handful of other constants. 3987 return nullptr; 3988 } 3989 3990 // This is the recursive version of BuildSubAggregate. It takes a few different 3991 // arguments. Idxs is the index within the nested struct From that we are 3992 // looking at now (which is of type IndexedType). IdxSkip is the number of 3993 // indices from Idxs that should be left out when inserting into the resulting 3994 // struct. To is the result struct built so far, new insertvalue instructions 3995 // build on that. 3996 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3997 SmallVectorImpl<unsigned> &Idxs, 3998 unsigned IdxSkip, 3999 Instruction *InsertBefore) { 4000 StructType *STy = dyn_cast<StructType>(IndexedType); 4001 if (STy) { 4002 // Save the original To argument so we can modify it 4003 Value *OrigTo = To; 4004 // General case, the type indexed by Idxs is a struct 4005 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4006 // Process each struct element recursively 4007 Idxs.push_back(i); 4008 Value *PrevTo = To; 4009 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 4010 InsertBefore); 4011 Idxs.pop_back(); 4012 if (!To) { 4013 // Couldn't find any inserted value for this index? Cleanup 4014 while (PrevTo != OrigTo) { 4015 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 4016 PrevTo = Del->getAggregateOperand(); 4017 Del->eraseFromParent(); 4018 } 4019 // Stop processing elements 4020 break; 4021 } 4022 } 4023 // If we successfully found a value for each of our subaggregates 4024 if (To) 4025 return To; 4026 } 4027 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 4028 // the struct's elements had a value that was inserted directly. In the latter 4029 // case, perhaps we can't determine each of the subelements individually, but 4030 // we might be able to find the complete struct somewhere. 4031 4032 // Find the value that is at that particular spot 4033 Value *V = FindInsertedValue(From, Idxs); 4034 4035 if (!V) 4036 return nullptr; 4037 4038 // Insert the value in the new (sub) aggregate 4039 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 4040 "tmp", InsertBefore); 4041 } 4042 4043 // This helper takes a nested struct and extracts a part of it (which is again a 4044 // struct) into a new value. For example, given the struct: 4045 // { a, { b, { c, d }, e } } 4046 // and the indices "1, 1" this returns 4047 // { c, d }. 4048 // 4049 // It does this by inserting an insertvalue for each element in the resulting 4050 // struct, as opposed to just inserting a single struct. This will only work if 4051 // each of the elements of the substruct are known (ie, inserted into From by an 4052 // insertvalue instruction somewhere). 4053 // 4054 // All inserted insertvalue instructions are inserted before InsertBefore 4055 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 4056 Instruction *InsertBefore) { 4057 assert(InsertBefore && "Must have someplace to insert!"); 4058 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 4059 idx_range); 4060 Value *To = UndefValue::get(IndexedType); 4061 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 4062 unsigned IdxSkip = Idxs.size(); 4063 4064 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 4065 } 4066 4067 /// Given an aggregate and a sequence of indices, see if the scalar value 4068 /// indexed is already around as a register, for example if it was inserted 4069 /// directly into the aggregate. 4070 /// 4071 /// If InsertBefore is not null, this function will duplicate (modified) 4072 /// insertvalues when a part of a nested struct is extracted. 4073 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 4074 Instruction *InsertBefore) { 4075 // Nothing to index? Just return V then (this is useful at the end of our 4076 // recursion). 4077 if (idx_range.empty()) 4078 return V; 4079 // We have indices, so V should have an indexable type. 4080 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4081 "Not looking at a struct or array?"); 4082 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4083 "Invalid indices for type?"); 4084 4085 if (Constant *C = dyn_cast<Constant>(V)) { 4086 C = C->getAggregateElement(idx_range[0]); 4087 if (!C) return nullptr; 4088 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4089 } 4090 4091 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4092 // Loop the indices for the insertvalue instruction in parallel with the 4093 // requested indices 4094 const unsigned *req_idx = idx_range.begin(); 4095 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4096 i != e; ++i, ++req_idx) { 4097 if (req_idx == idx_range.end()) { 4098 // We can't handle this without inserting insertvalues 4099 if (!InsertBefore) 4100 return nullptr; 4101 4102 // The requested index identifies a part of a nested aggregate. Handle 4103 // this specially. For example, 4104 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4105 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4106 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4107 // This can be changed into 4108 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4109 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4110 // which allows the unused 0,0 element from the nested struct to be 4111 // removed. 4112 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4113 InsertBefore); 4114 } 4115 4116 // This insert value inserts something else than what we are looking for. 4117 // See if the (aggregate) value inserted into has the value we are 4118 // looking for, then. 4119 if (*req_idx != *i) 4120 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4121 InsertBefore); 4122 } 4123 // If we end up here, the indices of the insertvalue match with those 4124 // requested (though possibly only partially). Now we recursively look at 4125 // the inserted value, passing any remaining indices. 4126 return FindInsertedValue(I->getInsertedValueOperand(), 4127 makeArrayRef(req_idx, idx_range.end()), 4128 InsertBefore); 4129 } 4130 4131 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4132 // If we're extracting a value from an aggregate that was extracted from 4133 // something else, we can extract from that something else directly instead. 4134 // However, we will need to chain I's indices with the requested indices. 4135 4136 // Calculate the number of indices required 4137 unsigned size = I->getNumIndices() + idx_range.size(); 4138 // Allocate some space to put the new indices in 4139 SmallVector<unsigned, 5> Idxs; 4140 Idxs.reserve(size); 4141 // Add indices from the extract value instruction 4142 Idxs.append(I->idx_begin(), I->idx_end()); 4143 4144 // Add requested indices 4145 Idxs.append(idx_range.begin(), idx_range.end()); 4146 4147 assert(Idxs.size() == size 4148 && "Number of indices added not correct?"); 4149 4150 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4151 } 4152 // Otherwise, we don't know (such as, extracting from a function return value 4153 // or load instruction) 4154 return nullptr; 4155 } 4156 4157 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4158 unsigned CharSize) { 4159 // Make sure the GEP has exactly three arguments. 4160 if (GEP->getNumOperands() != 3) 4161 return false; 4162 4163 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4164 // CharSize. 4165 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4166 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4167 return false; 4168 4169 // Check to make sure that the first operand of the GEP is an integer and 4170 // has value 0 so that we are sure we're indexing into the initializer. 4171 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4172 if (!FirstIdx || !FirstIdx->isZero()) 4173 return false; 4174 4175 return true; 4176 } 4177 4178 bool llvm::getConstantDataArrayInfo(const Value *V, 4179 ConstantDataArraySlice &Slice, 4180 unsigned ElementSize, uint64_t Offset) { 4181 assert(V); 4182 4183 // Look through bitcast instructions and geps. 4184 V = V->stripPointerCasts(); 4185 4186 // If the value is a GEP instruction or constant expression, treat it as an 4187 // offset. 4188 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4189 // The GEP operator should be based on a pointer to string constant, and is 4190 // indexing into the string constant. 4191 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4192 return false; 4193 4194 // If the second index isn't a ConstantInt, then this is a variable index 4195 // into the array. If this occurs, we can't say anything meaningful about 4196 // the string. 4197 uint64_t StartIdx = 0; 4198 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4199 StartIdx = CI->getZExtValue(); 4200 else 4201 return false; 4202 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4203 StartIdx + Offset); 4204 } 4205 4206 // The GEP instruction, constant or instruction, must reference a global 4207 // variable that is a constant and is initialized. The referenced constant 4208 // initializer is the array that we'll use for optimization. 4209 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4210 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4211 return false; 4212 4213 const ConstantDataArray *Array; 4214 ArrayType *ArrayTy; 4215 if (GV->getInitializer()->isNullValue()) { 4216 Type *GVTy = GV->getValueType(); 4217 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4218 // A zeroinitializer for the array; there is no ConstantDataArray. 4219 Array = nullptr; 4220 } else { 4221 const DataLayout &DL = GV->getParent()->getDataLayout(); 4222 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4223 uint64_t Length = SizeInBytes / (ElementSize / 8); 4224 if (Length <= Offset) 4225 return false; 4226 4227 Slice.Array = nullptr; 4228 Slice.Offset = 0; 4229 Slice.Length = Length - Offset; 4230 return true; 4231 } 4232 } else { 4233 // This must be a ConstantDataArray. 4234 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4235 if (!Array) 4236 return false; 4237 ArrayTy = Array->getType(); 4238 } 4239 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4240 return false; 4241 4242 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4243 if (Offset > NumElts) 4244 return false; 4245 4246 Slice.Array = Array; 4247 Slice.Offset = Offset; 4248 Slice.Length = NumElts - Offset; 4249 return true; 4250 } 4251 4252 /// This function computes the length of a null-terminated C string pointed to 4253 /// by V. If successful, it returns true and returns the string in Str. 4254 /// If unsuccessful, it returns false. 4255 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4256 uint64_t Offset, bool TrimAtNul) { 4257 ConstantDataArraySlice Slice; 4258 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4259 return false; 4260 4261 if (Slice.Array == nullptr) { 4262 if (TrimAtNul) { 4263 Str = StringRef(); 4264 return true; 4265 } 4266 if (Slice.Length == 1) { 4267 Str = StringRef("", 1); 4268 return true; 4269 } 4270 // We cannot instantiate a StringRef as we do not have an appropriate string 4271 // of 0s at hand. 4272 return false; 4273 } 4274 4275 // Start out with the entire array in the StringRef. 4276 Str = Slice.Array->getAsString(); 4277 // Skip over 'offset' bytes. 4278 Str = Str.substr(Slice.Offset); 4279 4280 if (TrimAtNul) { 4281 // Trim off the \0 and anything after it. If the array is not nul 4282 // terminated, we just return the whole end of string. The client may know 4283 // some other way that the string is length-bound. 4284 Str = Str.substr(0, Str.find('\0')); 4285 } 4286 return true; 4287 } 4288 4289 // These next two are very similar to the above, but also look through PHI 4290 // nodes. 4291 // TODO: See if we can integrate these two together. 4292 4293 /// If we can compute the length of the string pointed to by 4294 /// the specified pointer, return 'len+1'. If we can't, return 0. 4295 static uint64_t GetStringLengthH(const Value *V, 4296 SmallPtrSetImpl<const PHINode*> &PHIs, 4297 unsigned CharSize) { 4298 // Look through noop bitcast instructions. 4299 V = V->stripPointerCasts(); 4300 4301 // If this is a PHI node, there are two cases: either we have already seen it 4302 // or we haven't. 4303 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4304 if (!PHIs.insert(PN).second) 4305 return ~0ULL; // already in the set. 4306 4307 // If it was new, see if all the input strings are the same length. 4308 uint64_t LenSoFar = ~0ULL; 4309 for (Value *IncValue : PN->incoming_values()) { 4310 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4311 if (Len == 0) return 0; // Unknown length -> unknown. 4312 4313 if (Len == ~0ULL) continue; 4314 4315 if (Len != LenSoFar && LenSoFar != ~0ULL) 4316 return 0; // Disagree -> unknown. 4317 LenSoFar = Len; 4318 } 4319 4320 // Success, all agree. 4321 return LenSoFar; 4322 } 4323 4324 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4325 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4326 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4327 if (Len1 == 0) return 0; 4328 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4329 if (Len2 == 0) return 0; 4330 if (Len1 == ~0ULL) return Len2; 4331 if (Len2 == ~0ULL) return Len1; 4332 if (Len1 != Len2) return 0; 4333 return Len1; 4334 } 4335 4336 // Otherwise, see if we can read the string. 4337 ConstantDataArraySlice Slice; 4338 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4339 return 0; 4340 4341 if (Slice.Array == nullptr) 4342 return 1; 4343 4344 // Search for nul characters 4345 unsigned NullIndex = 0; 4346 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4347 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4348 break; 4349 } 4350 4351 return NullIndex + 1; 4352 } 4353 4354 /// If we can compute the length of the string pointed to by 4355 /// the specified pointer, return 'len+1'. If we can't, return 0. 4356 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4357 if (!V->getType()->isPointerTy()) 4358 return 0; 4359 4360 SmallPtrSet<const PHINode*, 32> PHIs; 4361 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4362 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4363 // an empty string as a length. 4364 return Len == ~0ULL ? 1 : Len; 4365 } 4366 4367 const Value * 4368 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4369 bool MustPreserveNullness) { 4370 assert(Call && 4371 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4372 if (const Value *RV = Call->getReturnedArgOperand()) 4373 return RV; 4374 // This can be used only as a aliasing property. 4375 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4376 Call, MustPreserveNullness)) 4377 return Call->getArgOperand(0); 4378 return nullptr; 4379 } 4380 4381 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4382 const CallBase *Call, bool MustPreserveNullness) { 4383 switch (Call->getIntrinsicID()) { 4384 case Intrinsic::launder_invariant_group: 4385 case Intrinsic::strip_invariant_group: 4386 case Intrinsic::aarch64_irg: 4387 case Intrinsic::aarch64_tagp: 4388 return true; 4389 case Intrinsic::ptrmask: 4390 return !MustPreserveNullness; 4391 default: 4392 return false; 4393 } 4394 } 4395 4396 /// \p PN defines a loop-variant pointer to an object. Check if the 4397 /// previous iteration of the loop was referring to the same object as \p PN. 4398 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4399 const LoopInfo *LI) { 4400 // Find the loop-defined value. 4401 Loop *L = LI->getLoopFor(PN->getParent()); 4402 if (PN->getNumIncomingValues() != 2) 4403 return true; 4404 4405 // Find the value from previous iteration. 4406 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4407 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4408 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4409 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4410 return true; 4411 4412 // If a new pointer is loaded in the loop, the pointer references a different 4413 // object in every iteration. E.g.: 4414 // for (i) 4415 // int *p = a[i]; 4416 // ... 4417 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4418 if (!L->isLoopInvariant(Load->getPointerOperand())) 4419 return false; 4420 return true; 4421 } 4422 4423 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4424 if (!V->getType()->isPointerTy()) 4425 return V; 4426 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4427 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4428 V = GEP->getPointerOperand(); 4429 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4430 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4431 V = cast<Operator>(V)->getOperand(0); 4432 if (!V->getType()->isPointerTy()) 4433 return V; 4434 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4435 if (GA->isInterposable()) 4436 return V; 4437 V = GA->getAliasee(); 4438 } else { 4439 if (auto *PHI = dyn_cast<PHINode>(V)) { 4440 // Look through single-arg phi nodes created by LCSSA. 4441 if (PHI->getNumIncomingValues() == 1) { 4442 V = PHI->getIncomingValue(0); 4443 continue; 4444 } 4445 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4446 // CaptureTracking can know about special capturing properties of some 4447 // intrinsics like launder.invariant.group, that can't be expressed with 4448 // the attributes, but have properties like returning aliasing pointer. 4449 // Because some analysis may assume that nocaptured pointer is not 4450 // returned from some special intrinsic (because function would have to 4451 // be marked with returns attribute), it is crucial to use this function 4452 // because it should be in sync with CaptureTracking. Not using it may 4453 // cause weird miscompilations where 2 aliasing pointers are assumed to 4454 // noalias. 4455 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4456 V = RP; 4457 continue; 4458 } 4459 } 4460 4461 return V; 4462 } 4463 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4464 } 4465 return V; 4466 } 4467 4468 void llvm::getUnderlyingObjects(const Value *V, 4469 SmallVectorImpl<const Value *> &Objects, 4470 LoopInfo *LI, unsigned MaxLookup) { 4471 SmallPtrSet<const Value *, 4> Visited; 4472 SmallVector<const Value *, 4> Worklist; 4473 Worklist.push_back(V); 4474 do { 4475 const Value *P = Worklist.pop_back_val(); 4476 P = getUnderlyingObject(P, MaxLookup); 4477 4478 if (!Visited.insert(P).second) 4479 continue; 4480 4481 if (auto *SI = dyn_cast<SelectInst>(P)) { 4482 Worklist.push_back(SI->getTrueValue()); 4483 Worklist.push_back(SI->getFalseValue()); 4484 continue; 4485 } 4486 4487 if (auto *PN = dyn_cast<PHINode>(P)) { 4488 // If this PHI changes the underlying object in every iteration of the 4489 // loop, don't look through it. Consider: 4490 // int **A; 4491 // for (i) { 4492 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4493 // Curr = A[i]; 4494 // *Prev, *Curr; 4495 // 4496 // Prev is tracking Curr one iteration behind so they refer to different 4497 // underlying objects. 4498 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4499 isSameUnderlyingObjectInLoop(PN, LI)) 4500 append_range(Worklist, PN->incoming_values()); 4501 continue; 4502 } 4503 4504 Objects.push_back(P); 4505 } while (!Worklist.empty()); 4506 } 4507 4508 /// This is the function that does the work of looking through basic 4509 /// ptrtoint+arithmetic+inttoptr sequences. 4510 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4511 do { 4512 if (const Operator *U = dyn_cast<Operator>(V)) { 4513 // If we find a ptrtoint, we can transfer control back to the 4514 // regular getUnderlyingObjectFromInt. 4515 if (U->getOpcode() == Instruction::PtrToInt) 4516 return U->getOperand(0); 4517 // If we find an add of a constant, a multiplied value, or a phi, it's 4518 // likely that the other operand will lead us to the base 4519 // object. We don't have to worry about the case where the 4520 // object address is somehow being computed by the multiply, 4521 // because our callers only care when the result is an 4522 // identifiable object. 4523 if (U->getOpcode() != Instruction::Add || 4524 (!isa<ConstantInt>(U->getOperand(1)) && 4525 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4526 !isa<PHINode>(U->getOperand(1)))) 4527 return V; 4528 V = U->getOperand(0); 4529 } else { 4530 return V; 4531 } 4532 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4533 } while (true); 4534 } 4535 4536 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4537 /// ptrtoint+arithmetic+inttoptr sequences. 4538 /// It returns false if unidentified object is found in getUnderlyingObjects. 4539 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4540 SmallVectorImpl<Value *> &Objects) { 4541 SmallPtrSet<const Value *, 16> Visited; 4542 SmallVector<const Value *, 4> Working(1, V); 4543 do { 4544 V = Working.pop_back_val(); 4545 4546 SmallVector<const Value *, 4> Objs; 4547 getUnderlyingObjects(V, Objs); 4548 4549 for (const Value *V : Objs) { 4550 if (!Visited.insert(V).second) 4551 continue; 4552 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4553 const Value *O = 4554 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4555 if (O->getType()->isPointerTy()) { 4556 Working.push_back(O); 4557 continue; 4558 } 4559 } 4560 // If getUnderlyingObjects fails to find an identifiable object, 4561 // getUnderlyingObjectsForCodeGen also fails for safety. 4562 if (!isIdentifiedObject(V)) { 4563 Objects.clear(); 4564 return false; 4565 } 4566 Objects.push_back(const_cast<Value *>(V)); 4567 } 4568 } while (!Working.empty()); 4569 return true; 4570 } 4571 4572 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4573 AllocaInst *Result = nullptr; 4574 SmallPtrSet<Value *, 4> Visited; 4575 SmallVector<Value *, 4> Worklist; 4576 4577 auto AddWork = [&](Value *V) { 4578 if (Visited.insert(V).second) 4579 Worklist.push_back(V); 4580 }; 4581 4582 AddWork(V); 4583 do { 4584 V = Worklist.pop_back_val(); 4585 assert(Visited.count(V)); 4586 4587 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4588 if (Result && Result != AI) 4589 return nullptr; 4590 Result = AI; 4591 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4592 AddWork(CI->getOperand(0)); 4593 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4594 for (Value *IncValue : PN->incoming_values()) 4595 AddWork(IncValue); 4596 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4597 AddWork(SI->getTrueValue()); 4598 AddWork(SI->getFalseValue()); 4599 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4600 if (OffsetZero && !GEP->hasAllZeroIndices()) 4601 return nullptr; 4602 AddWork(GEP->getPointerOperand()); 4603 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4604 Value *Returned = CB->getReturnedArgOperand(); 4605 if (Returned) 4606 AddWork(Returned); 4607 else 4608 return nullptr; 4609 } else { 4610 return nullptr; 4611 } 4612 } while (!Worklist.empty()); 4613 4614 return Result; 4615 } 4616 4617 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4618 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4619 for (const User *U : V->users()) { 4620 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4621 if (!II) 4622 return false; 4623 4624 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4625 continue; 4626 4627 if (AllowDroppable && II->isDroppable()) 4628 continue; 4629 4630 return false; 4631 } 4632 return true; 4633 } 4634 4635 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4636 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4637 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4638 } 4639 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4640 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4641 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4642 } 4643 4644 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4645 if (!LI.isUnordered()) 4646 return true; 4647 const Function &F = *LI.getFunction(); 4648 // Speculative load may create a race that did not exist in the source. 4649 return F.hasFnAttribute(Attribute::SanitizeThread) || 4650 // Speculative load may load data from dirty regions. 4651 F.hasFnAttribute(Attribute::SanitizeAddress) || 4652 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4653 } 4654 4655 4656 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4657 const Instruction *CtxI, 4658 const DominatorTree *DT, 4659 const TargetLibraryInfo *TLI) { 4660 const Operator *Inst = dyn_cast<Operator>(V); 4661 if (!Inst) 4662 return false; 4663 return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, DT, TLI); 4664 } 4665 4666 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, 4667 const Operator *Inst, 4668 const Instruction *CtxI, 4669 const DominatorTree *DT, 4670 const TargetLibraryInfo *TLI) { 4671 #ifndef NDEBUG 4672 if (Inst->getOpcode() != Opcode) { 4673 // Check that the operands are actually compatible with the Opcode override. 4674 auto hasEqualReturnAndLeadingOperandTypes = 4675 [](const Operator *Inst, unsigned NumLeadingOperands) { 4676 if (Inst->getNumOperands() < NumLeadingOperands) 4677 return false; 4678 const Type *ExpectedType = Inst->getType(); 4679 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp) 4680 if (Inst->getOperand(ItOp)->getType() != ExpectedType) 4681 return false; 4682 return true; 4683 }; 4684 assert(!Instruction::isBinaryOp(Opcode) || 4685 hasEqualReturnAndLeadingOperandTypes(Inst, 2)); 4686 assert(!Instruction::isUnaryOp(Opcode) || 4687 hasEqualReturnAndLeadingOperandTypes(Inst, 1)); 4688 } 4689 #endif 4690 4691 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4692 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4693 if (C->canTrap()) 4694 return false; 4695 4696 switch (Opcode) { 4697 default: 4698 return true; 4699 case Instruction::UDiv: 4700 case Instruction::URem: { 4701 // x / y is undefined if y == 0. 4702 const APInt *V; 4703 if (match(Inst->getOperand(1), m_APInt(V))) 4704 return *V != 0; 4705 return false; 4706 } 4707 case Instruction::SDiv: 4708 case Instruction::SRem: { 4709 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4710 const APInt *Numerator, *Denominator; 4711 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4712 return false; 4713 // We cannot hoist this division if the denominator is 0. 4714 if (*Denominator == 0) 4715 return false; 4716 // It's safe to hoist if the denominator is not 0 or -1. 4717 if (!Denominator->isAllOnes()) 4718 return true; 4719 // At this point we know that the denominator is -1. It is safe to hoist as 4720 // long we know that the numerator is not INT_MIN. 4721 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4722 return !Numerator->isMinSignedValue(); 4723 // The numerator *might* be MinSignedValue. 4724 return false; 4725 } 4726 case Instruction::Load: { 4727 const LoadInst *LI = dyn_cast<LoadInst>(Inst); 4728 if (!LI) 4729 return false; 4730 if (mustSuppressSpeculation(*LI)) 4731 return false; 4732 const DataLayout &DL = LI->getModule()->getDataLayout(); 4733 return isDereferenceableAndAlignedPointer( 4734 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, 4735 TLI); 4736 } 4737 case Instruction::Call: { 4738 auto *CI = dyn_cast<const CallInst>(Inst); 4739 if (!CI) 4740 return false; 4741 const Function *Callee = CI->getCalledFunction(); 4742 4743 // The called function could have undefined behavior or side-effects, even 4744 // if marked readnone nounwind. 4745 return Callee && Callee->isSpeculatable(); 4746 } 4747 case Instruction::VAArg: 4748 case Instruction::Alloca: 4749 case Instruction::Invoke: 4750 case Instruction::CallBr: 4751 case Instruction::PHI: 4752 case Instruction::Store: 4753 case Instruction::Ret: 4754 case Instruction::Br: 4755 case Instruction::IndirectBr: 4756 case Instruction::Switch: 4757 case Instruction::Unreachable: 4758 case Instruction::Fence: 4759 case Instruction::AtomicRMW: 4760 case Instruction::AtomicCmpXchg: 4761 case Instruction::LandingPad: 4762 case Instruction::Resume: 4763 case Instruction::CatchSwitch: 4764 case Instruction::CatchPad: 4765 case Instruction::CatchRet: 4766 case Instruction::CleanupPad: 4767 case Instruction::CleanupRet: 4768 return false; // Misc instructions which have effects 4769 } 4770 } 4771 4772 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { 4773 if (I.mayReadOrWriteMemory()) 4774 // Memory dependency possible 4775 return true; 4776 if (!isSafeToSpeculativelyExecute(&I)) 4777 // Can't move above a maythrow call or infinite loop. Or if an 4778 // inalloca alloca, above a stacksave call. 4779 return true; 4780 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4781 // 1) Can't reorder two inf-loop calls, even if readonly 4782 // 2) Also can't reorder an inf-loop call below a instruction which isn't 4783 // safe to speculative execute. (Inverse of above) 4784 return true; 4785 return false; 4786 } 4787 4788 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4789 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4790 switch (OR) { 4791 case ConstantRange::OverflowResult::MayOverflow: 4792 return OverflowResult::MayOverflow; 4793 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4794 return OverflowResult::AlwaysOverflowsLow; 4795 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4796 return OverflowResult::AlwaysOverflowsHigh; 4797 case ConstantRange::OverflowResult::NeverOverflows: 4798 return OverflowResult::NeverOverflows; 4799 } 4800 llvm_unreachable("Unknown OverflowResult"); 4801 } 4802 4803 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4804 static ConstantRange computeConstantRangeIncludingKnownBits( 4805 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4806 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4807 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4808 KnownBits Known = computeKnownBits( 4809 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4810 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4811 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4812 ConstantRange::PreferredRangeType RangeType = 4813 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4814 return CR1.intersectWith(CR2, RangeType); 4815 } 4816 4817 OverflowResult llvm::computeOverflowForUnsignedMul( 4818 const Value *LHS, const Value *RHS, const DataLayout &DL, 4819 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4820 bool UseInstrInfo) { 4821 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4822 nullptr, UseInstrInfo); 4823 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4824 nullptr, UseInstrInfo); 4825 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4826 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4827 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4828 } 4829 4830 OverflowResult 4831 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4832 const DataLayout &DL, AssumptionCache *AC, 4833 const Instruction *CxtI, 4834 const DominatorTree *DT, bool UseInstrInfo) { 4835 // Multiplying n * m significant bits yields a result of n + m significant 4836 // bits. If the total number of significant bits does not exceed the 4837 // result bit width (minus 1), there is no overflow. 4838 // This means if we have enough leading sign bits in the operands 4839 // we can guarantee that the result does not overflow. 4840 // Ref: "Hacker's Delight" by Henry Warren 4841 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4842 4843 // Note that underestimating the number of sign bits gives a more 4844 // conservative answer. 4845 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4846 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4847 4848 // First handle the easy case: if we have enough sign bits there's 4849 // definitely no overflow. 4850 if (SignBits > BitWidth + 1) 4851 return OverflowResult::NeverOverflows; 4852 4853 // There are two ambiguous cases where there can be no overflow: 4854 // SignBits == BitWidth + 1 and 4855 // SignBits == BitWidth 4856 // The second case is difficult to check, therefore we only handle the 4857 // first case. 4858 if (SignBits == BitWidth + 1) { 4859 // It overflows only when both arguments are negative and the true 4860 // product is exactly the minimum negative number. 4861 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4862 // For simplicity we just check if at least one side is not negative. 4863 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4864 nullptr, UseInstrInfo); 4865 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4866 nullptr, UseInstrInfo); 4867 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4868 return OverflowResult::NeverOverflows; 4869 } 4870 return OverflowResult::MayOverflow; 4871 } 4872 4873 OverflowResult llvm::computeOverflowForUnsignedAdd( 4874 const Value *LHS, const Value *RHS, const DataLayout &DL, 4875 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4876 bool UseInstrInfo) { 4877 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4878 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4879 nullptr, UseInstrInfo); 4880 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4881 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4882 nullptr, UseInstrInfo); 4883 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4884 } 4885 4886 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4887 const Value *RHS, 4888 const AddOperator *Add, 4889 const DataLayout &DL, 4890 AssumptionCache *AC, 4891 const Instruction *CxtI, 4892 const DominatorTree *DT) { 4893 if (Add && Add->hasNoSignedWrap()) { 4894 return OverflowResult::NeverOverflows; 4895 } 4896 4897 // If LHS and RHS each have at least two sign bits, the addition will look 4898 // like 4899 // 4900 // XX..... + 4901 // YY..... 4902 // 4903 // If the carry into the most significant position is 0, X and Y can't both 4904 // be 1 and therefore the carry out of the addition is also 0. 4905 // 4906 // If the carry into the most significant position is 1, X and Y can't both 4907 // be 0 and therefore the carry out of the addition is also 1. 4908 // 4909 // Since the carry into the most significant position is always equal to 4910 // the carry out of the addition, there is no signed overflow. 4911 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4912 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4913 return OverflowResult::NeverOverflows; 4914 4915 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4916 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4917 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4918 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4919 OverflowResult OR = 4920 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4921 if (OR != OverflowResult::MayOverflow) 4922 return OR; 4923 4924 // The remaining code needs Add to be available. Early returns if not so. 4925 if (!Add) 4926 return OverflowResult::MayOverflow; 4927 4928 // If the sign of Add is the same as at least one of the operands, this add 4929 // CANNOT overflow. If this can be determined from the known bits of the 4930 // operands the above signedAddMayOverflow() check will have already done so. 4931 // The only other way to improve on the known bits is from an assumption, so 4932 // call computeKnownBitsFromAssume() directly. 4933 bool LHSOrRHSKnownNonNegative = 4934 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4935 bool LHSOrRHSKnownNegative = 4936 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4937 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4938 KnownBits AddKnown(LHSRange.getBitWidth()); 4939 computeKnownBitsFromAssume( 4940 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4941 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4942 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4943 return OverflowResult::NeverOverflows; 4944 } 4945 4946 return OverflowResult::MayOverflow; 4947 } 4948 4949 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4950 const Value *RHS, 4951 const DataLayout &DL, 4952 AssumptionCache *AC, 4953 const Instruction *CxtI, 4954 const DominatorTree *DT) { 4955 // X - (X % ?) 4956 // The remainder of a value can't have greater magnitude than itself, 4957 // so the subtraction can't overflow. 4958 // TODO: There are other patterns like this. 4959 // See simplifyICmpWithBinOpOnLHS() for candidates. 4960 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) && 4961 isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 4962 return OverflowResult::NeverOverflows; 4963 4964 // Checking for conditions implied by dominating conditions may be expensive. 4965 // Limit it to usub_with_overflow calls for now. 4966 if (match(CxtI, 4967 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4968 if (auto C = 4969 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4970 if (*C) 4971 return OverflowResult::NeverOverflows; 4972 return OverflowResult::AlwaysOverflowsLow; 4973 } 4974 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4975 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4976 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4977 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4978 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4979 } 4980 4981 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4982 const Value *RHS, 4983 const DataLayout &DL, 4984 AssumptionCache *AC, 4985 const Instruction *CxtI, 4986 const DominatorTree *DT) { 4987 // X - (X % ?) 4988 // The remainder of a value can't have greater magnitude than itself, 4989 // so the subtraction can't overflow. 4990 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) && 4991 isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 4992 return OverflowResult::NeverOverflows; 4993 4994 // If LHS and RHS each have at least two sign bits, the subtraction 4995 // cannot overflow. 4996 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4997 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4998 return OverflowResult::NeverOverflows; 4999 5000 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 5001 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 5002 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 5003 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 5004 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 5005 } 5006 5007 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 5008 const DominatorTree &DT) { 5009 SmallVector<const BranchInst *, 2> GuardingBranches; 5010 SmallVector<const ExtractValueInst *, 2> Results; 5011 5012 for (const User *U : WO->users()) { 5013 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 5014 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 5015 5016 if (EVI->getIndices()[0] == 0) 5017 Results.push_back(EVI); 5018 else { 5019 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 5020 5021 for (const auto *U : EVI->users()) 5022 if (const auto *B = dyn_cast<BranchInst>(U)) { 5023 assert(B->isConditional() && "How else is it using an i1?"); 5024 GuardingBranches.push_back(B); 5025 } 5026 } 5027 } else { 5028 // We are using the aggregate directly in a way we don't want to analyze 5029 // here (storing it to a global, say). 5030 return false; 5031 } 5032 } 5033 5034 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 5035 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 5036 if (!NoWrapEdge.isSingleEdge()) 5037 return false; 5038 5039 // Check if all users of the add are provably no-wrap. 5040 for (const auto *Result : Results) { 5041 // If the extractvalue itself is not executed on overflow, the we don't 5042 // need to check each use separately, since domination is transitive. 5043 if (DT.dominates(NoWrapEdge, Result->getParent())) 5044 continue; 5045 5046 for (auto &RU : Result->uses()) 5047 if (!DT.dominates(NoWrapEdge, RU)) 5048 return false; 5049 } 5050 5051 return true; 5052 }; 5053 5054 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 5055 } 5056 5057 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 5058 bool ConsiderFlags) { 5059 5060 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 5061 return true; 5062 5063 unsigned Opcode = Op->getOpcode(); 5064 5065 // Check whether opcode is a poison/undef-generating operation 5066 switch (Opcode) { 5067 case Instruction::Shl: 5068 case Instruction::AShr: 5069 case Instruction::LShr: { 5070 // Shifts return poison if shiftwidth is larger than the bitwidth. 5071 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 5072 SmallVector<Constant *, 4> ShiftAmounts; 5073 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 5074 unsigned NumElts = FVTy->getNumElements(); 5075 for (unsigned i = 0; i < NumElts; ++i) 5076 ShiftAmounts.push_back(C->getAggregateElement(i)); 5077 } else if (isa<ScalableVectorType>(C->getType())) 5078 return true; // Can't tell, just return true to be safe 5079 else 5080 ShiftAmounts.push_back(C); 5081 5082 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 5083 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5084 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 5085 }); 5086 return !Safe; 5087 } 5088 return true; 5089 } 5090 case Instruction::FPToSI: 5091 case Instruction::FPToUI: 5092 // fptosi/ui yields poison if the resulting value does not fit in the 5093 // destination type. 5094 return true; 5095 case Instruction::Call: 5096 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 5097 switch (II->getIntrinsicID()) { 5098 // TODO: Add more intrinsics. 5099 case Intrinsic::ctpop: 5100 case Intrinsic::sadd_with_overflow: 5101 case Intrinsic::ssub_with_overflow: 5102 case Intrinsic::smul_with_overflow: 5103 case Intrinsic::uadd_with_overflow: 5104 case Intrinsic::usub_with_overflow: 5105 case Intrinsic::umul_with_overflow: 5106 return false; 5107 } 5108 } 5109 LLVM_FALLTHROUGH; 5110 case Instruction::CallBr: 5111 case Instruction::Invoke: { 5112 const auto *CB = cast<CallBase>(Op); 5113 return !CB->hasRetAttr(Attribute::NoUndef); 5114 } 5115 case Instruction::InsertElement: 5116 case Instruction::ExtractElement: { 5117 // If index exceeds the length of the vector, it returns poison 5118 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 5119 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 5120 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 5121 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 5122 return true; 5123 return false; 5124 } 5125 case Instruction::ShuffleVector: { 5126 // shufflevector may return undef. 5127 if (PoisonOnly) 5128 return false; 5129 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5130 ? cast<ConstantExpr>(Op)->getShuffleMask() 5131 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5132 return is_contained(Mask, UndefMaskElem); 5133 } 5134 case Instruction::FNeg: 5135 case Instruction::PHI: 5136 case Instruction::Select: 5137 case Instruction::URem: 5138 case Instruction::SRem: 5139 case Instruction::ExtractValue: 5140 case Instruction::InsertValue: 5141 case Instruction::Freeze: 5142 case Instruction::ICmp: 5143 case Instruction::FCmp: 5144 return false; 5145 case Instruction::GetElementPtr: 5146 // inbounds is handled above 5147 // TODO: what about inrange on constexpr? 5148 return false; 5149 default: { 5150 const auto *CE = dyn_cast<ConstantExpr>(Op); 5151 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5152 return false; 5153 else if (Instruction::isBinaryOp(Opcode)) 5154 return false; 5155 // Be conservative and return true. 5156 return true; 5157 } 5158 } 5159 } 5160 5161 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 5162 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 5163 } 5164 5165 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 5166 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 5167 } 5168 5169 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5170 const Value *V, unsigned Depth) { 5171 if (ValAssumedPoison == V) 5172 return true; 5173 5174 const unsigned MaxDepth = 2; 5175 if (Depth >= MaxDepth) 5176 return false; 5177 5178 if (const auto *I = dyn_cast<Instruction>(V)) { 5179 if (propagatesPoison(cast<Operator>(I))) 5180 return any_of(I->operands(), [=](const Value *Op) { 5181 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5182 }); 5183 5184 // 'select ValAssumedPoison, _, _' is poison. 5185 if (const auto *SI = dyn_cast<SelectInst>(I)) 5186 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5187 Depth + 1); 5188 // V = extractvalue V0, idx 5189 // V2 = extractvalue V0, idx2 5190 // V0's elements are all poison or not. (e.g., add_with_overflow) 5191 const WithOverflowInst *II; 5192 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5193 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5194 llvm::is_contained(II->args(), ValAssumedPoison))) 5195 return true; 5196 } 5197 return false; 5198 } 5199 5200 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5201 unsigned Depth) { 5202 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5203 return true; 5204 5205 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5206 return true; 5207 5208 const unsigned MaxDepth = 2; 5209 if (Depth >= MaxDepth) 5210 return false; 5211 5212 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5213 if (I && !canCreatePoison(cast<Operator>(I))) { 5214 return all_of(I->operands(), [=](const Value *Op) { 5215 return impliesPoison(Op, V, Depth + 1); 5216 }); 5217 } 5218 return false; 5219 } 5220 5221 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5222 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5223 } 5224 5225 static bool programUndefinedIfUndefOrPoison(const Value *V, 5226 bool PoisonOnly); 5227 5228 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5229 AssumptionCache *AC, 5230 const Instruction *CtxI, 5231 const DominatorTree *DT, 5232 unsigned Depth, bool PoisonOnly) { 5233 if (Depth >= MaxAnalysisRecursionDepth) 5234 return false; 5235 5236 if (isa<MetadataAsValue>(V)) 5237 return false; 5238 5239 if (const auto *A = dyn_cast<Argument>(V)) { 5240 if (A->hasAttribute(Attribute::NoUndef)) 5241 return true; 5242 } 5243 5244 if (auto *C = dyn_cast<Constant>(V)) { 5245 if (isa<UndefValue>(C)) 5246 return PoisonOnly && !isa<PoisonValue>(C); 5247 5248 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5249 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5250 return true; 5251 5252 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5253 return (PoisonOnly ? !C->containsPoisonElement() 5254 : !C->containsUndefOrPoisonElement()) && 5255 !C->containsConstantExpression(); 5256 } 5257 5258 // Strip cast operations from a pointer value. 5259 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5260 // inbounds with zero offset. To guarantee that the result isn't poison, the 5261 // stripped pointer is checked as it has to be pointing into an allocated 5262 // object or be null `null` to ensure `inbounds` getelement pointers with a 5263 // zero offset could not produce poison. 5264 // It can strip off addrspacecast that do not change bit representation as 5265 // well. We believe that such addrspacecast is equivalent to no-op. 5266 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5267 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5268 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5269 return true; 5270 5271 auto OpCheck = [&](const Value *V) { 5272 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5273 PoisonOnly); 5274 }; 5275 5276 if (auto *Opr = dyn_cast<Operator>(V)) { 5277 // If the value is a freeze instruction, then it can never 5278 // be undef or poison. 5279 if (isa<FreezeInst>(V)) 5280 return true; 5281 5282 if (const auto *CB = dyn_cast<CallBase>(V)) { 5283 if (CB->hasRetAttr(Attribute::NoUndef)) 5284 return true; 5285 } 5286 5287 if (const auto *PN = dyn_cast<PHINode>(V)) { 5288 unsigned Num = PN->getNumIncomingValues(); 5289 bool IsWellDefined = true; 5290 for (unsigned i = 0; i < Num; ++i) { 5291 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5292 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5293 DT, Depth + 1, PoisonOnly)) { 5294 IsWellDefined = false; 5295 break; 5296 } 5297 } 5298 if (IsWellDefined) 5299 return true; 5300 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5301 return true; 5302 } 5303 5304 if (auto *I = dyn_cast<LoadInst>(V)) 5305 if (I->hasMetadata(LLVMContext::MD_noundef) || 5306 I->hasMetadata(LLVMContext::MD_dereferenceable) || 5307 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null)) 5308 return true; 5309 5310 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5311 return true; 5312 5313 // CxtI may be null or a cloned instruction. 5314 if (!CtxI || !CtxI->getParent() || !DT) 5315 return false; 5316 5317 auto *DNode = DT->getNode(CtxI->getParent()); 5318 if (!DNode) 5319 // Unreachable block 5320 return false; 5321 5322 // If V is used as a branch condition before reaching CtxI, V cannot be 5323 // undef or poison. 5324 // br V, BB1, BB2 5325 // BB1: 5326 // CtxI ; V cannot be undef or poison here 5327 auto *Dominator = DNode->getIDom(); 5328 while (Dominator) { 5329 auto *TI = Dominator->getBlock()->getTerminator(); 5330 5331 Value *Cond = nullptr; 5332 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5333 if (BI->isConditional()) 5334 Cond = BI->getCondition(); 5335 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5336 Cond = SI->getCondition(); 5337 } 5338 5339 if (Cond) { 5340 if (Cond == V) 5341 return true; 5342 else if (PoisonOnly && isa<Operator>(Cond)) { 5343 // For poison, we can analyze further 5344 auto *Opr = cast<Operator>(Cond); 5345 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5346 return true; 5347 } 5348 } 5349 5350 Dominator = Dominator->getIDom(); 5351 } 5352 5353 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5354 return true; 5355 5356 return false; 5357 } 5358 5359 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5360 const Instruction *CtxI, 5361 const DominatorTree *DT, 5362 unsigned Depth) { 5363 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5364 } 5365 5366 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5367 const Instruction *CtxI, 5368 const DominatorTree *DT, unsigned Depth) { 5369 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5370 } 5371 5372 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5373 const DataLayout &DL, 5374 AssumptionCache *AC, 5375 const Instruction *CxtI, 5376 const DominatorTree *DT) { 5377 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5378 Add, DL, AC, CxtI, DT); 5379 } 5380 5381 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5382 const Value *RHS, 5383 const DataLayout &DL, 5384 AssumptionCache *AC, 5385 const Instruction *CxtI, 5386 const DominatorTree *DT) { 5387 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5388 } 5389 5390 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5391 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5392 // of time because it's possible for another thread to interfere with it for an 5393 // arbitrary length of time, but programs aren't allowed to rely on that. 5394 5395 // If there is no successor, then execution can't transfer to it. 5396 if (isa<ReturnInst>(I)) 5397 return false; 5398 if (isa<UnreachableInst>(I)) 5399 return false; 5400 5401 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5402 // Instruction::willReturn. 5403 // 5404 // FIXME: Move this check into Instruction::willReturn. 5405 if (isa<CatchPadInst>(I)) { 5406 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5407 default: 5408 // A catchpad may invoke exception object constructors and such, which 5409 // in some languages can be arbitrary code, so be conservative by default. 5410 return false; 5411 case EHPersonality::CoreCLR: 5412 // For CoreCLR, it just involves a type test. 5413 return true; 5414 } 5415 } 5416 5417 // An instruction that returns without throwing must transfer control flow 5418 // to a successor. 5419 return !I->mayThrow() && I->willReturn(); 5420 } 5421 5422 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5423 // TODO: This is slightly conservative for invoke instruction since exiting 5424 // via an exception *is* normal control for them. 5425 for (const Instruction &I : *BB) 5426 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5427 return false; 5428 return true; 5429 } 5430 5431 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5432 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5433 unsigned ScanLimit) { 5434 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5435 ScanLimit); 5436 } 5437 5438 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5439 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5440 assert(ScanLimit && "scan limit must be non-zero"); 5441 for (const Instruction &I : Range) { 5442 if (isa<DbgInfoIntrinsic>(I)) 5443 continue; 5444 if (--ScanLimit == 0) 5445 return false; 5446 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5447 return false; 5448 } 5449 return true; 5450 } 5451 5452 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5453 const Loop *L) { 5454 // The loop header is guaranteed to be executed for every iteration. 5455 // 5456 // FIXME: Relax this constraint to cover all basic blocks that are 5457 // guaranteed to be executed at every iteration. 5458 if (I->getParent() != L->getHeader()) return false; 5459 5460 for (const Instruction &LI : *L->getHeader()) { 5461 if (&LI == I) return true; 5462 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5463 } 5464 llvm_unreachable("Instruction not contained in its own parent basic block."); 5465 } 5466 5467 bool llvm::propagatesPoison(const Operator *I) { 5468 switch (I->getOpcode()) { 5469 case Instruction::Freeze: 5470 case Instruction::Select: 5471 case Instruction::PHI: 5472 case Instruction::Invoke: 5473 return false; 5474 case Instruction::Call: 5475 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5476 switch (II->getIntrinsicID()) { 5477 // TODO: Add more intrinsics. 5478 case Intrinsic::sadd_with_overflow: 5479 case Intrinsic::ssub_with_overflow: 5480 case Intrinsic::smul_with_overflow: 5481 case Intrinsic::uadd_with_overflow: 5482 case Intrinsic::usub_with_overflow: 5483 case Intrinsic::umul_with_overflow: 5484 // If an input is a vector containing a poison element, the 5485 // two output vectors (calculated results, overflow bits)' 5486 // corresponding lanes are poison. 5487 return true; 5488 case Intrinsic::ctpop: 5489 return true; 5490 } 5491 } 5492 return false; 5493 case Instruction::ICmp: 5494 case Instruction::FCmp: 5495 case Instruction::GetElementPtr: 5496 return true; 5497 default: 5498 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5499 return true; 5500 5501 // Be conservative and return false. 5502 return false; 5503 } 5504 } 5505 5506 void llvm::getGuaranteedWellDefinedOps( 5507 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5508 switch (I->getOpcode()) { 5509 case Instruction::Store: 5510 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5511 break; 5512 5513 case Instruction::Load: 5514 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5515 break; 5516 5517 // Since dereferenceable attribute imply noundef, atomic operations 5518 // also implicitly have noundef pointers too 5519 case Instruction::AtomicCmpXchg: 5520 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5521 break; 5522 5523 case Instruction::AtomicRMW: 5524 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5525 break; 5526 5527 case Instruction::Call: 5528 case Instruction::Invoke: { 5529 const CallBase *CB = cast<CallBase>(I); 5530 if (CB->isIndirectCall()) 5531 Operands.insert(CB->getCalledOperand()); 5532 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5533 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5534 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5535 Operands.insert(CB->getArgOperand(i)); 5536 } 5537 break; 5538 } 5539 case Instruction::Ret: 5540 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5541 Operands.insert(I->getOperand(0)); 5542 break; 5543 default: 5544 break; 5545 } 5546 } 5547 5548 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5549 SmallPtrSetImpl<const Value *> &Operands) { 5550 getGuaranteedWellDefinedOps(I, Operands); 5551 switch (I->getOpcode()) { 5552 // Divisors of these operations are allowed to be partially undef. 5553 case Instruction::UDiv: 5554 case Instruction::SDiv: 5555 case Instruction::URem: 5556 case Instruction::SRem: 5557 Operands.insert(I->getOperand(1)); 5558 break; 5559 case Instruction::Switch: 5560 if (BranchOnPoisonAsUB) 5561 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5562 break; 5563 case Instruction::Br: { 5564 auto *BR = cast<BranchInst>(I); 5565 if (BranchOnPoisonAsUB && BR->isConditional()) 5566 Operands.insert(BR->getCondition()); 5567 break; 5568 } 5569 default: 5570 break; 5571 } 5572 } 5573 5574 bool llvm::mustTriggerUB(const Instruction *I, 5575 const SmallSet<const Value *, 16>& KnownPoison) { 5576 SmallPtrSet<const Value *, 4> NonPoisonOps; 5577 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5578 5579 for (const auto *V : NonPoisonOps) 5580 if (KnownPoison.count(V)) 5581 return true; 5582 5583 return false; 5584 } 5585 5586 static bool programUndefinedIfUndefOrPoison(const Value *V, 5587 bool PoisonOnly) { 5588 // We currently only look for uses of values within the same basic 5589 // block, as that makes it easier to guarantee that the uses will be 5590 // executed given that Inst is executed. 5591 // 5592 // FIXME: Expand this to consider uses beyond the same basic block. To do 5593 // this, look out for the distinction between post-dominance and strong 5594 // post-dominance. 5595 const BasicBlock *BB = nullptr; 5596 BasicBlock::const_iterator Begin; 5597 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5598 BB = Inst->getParent(); 5599 Begin = Inst->getIterator(); 5600 Begin++; 5601 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5602 BB = &Arg->getParent()->getEntryBlock(); 5603 Begin = BB->begin(); 5604 } else { 5605 return false; 5606 } 5607 5608 // Limit number of instructions we look at, to avoid scanning through large 5609 // blocks. The current limit is chosen arbitrarily. 5610 unsigned ScanLimit = 32; 5611 BasicBlock::const_iterator End = BB->end(); 5612 5613 if (!PoisonOnly) { 5614 // Since undef does not propagate eagerly, be conservative & just check 5615 // whether a value is directly passed to an instruction that must take 5616 // well-defined operands. 5617 5618 for (auto &I : make_range(Begin, End)) { 5619 if (isa<DbgInfoIntrinsic>(I)) 5620 continue; 5621 if (--ScanLimit == 0) 5622 break; 5623 5624 SmallPtrSet<const Value *, 4> WellDefinedOps; 5625 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5626 if (WellDefinedOps.contains(V)) 5627 return true; 5628 5629 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5630 break; 5631 } 5632 return false; 5633 } 5634 5635 // Set of instructions that we have proved will yield poison if Inst 5636 // does. 5637 SmallSet<const Value *, 16> YieldsPoison; 5638 SmallSet<const BasicBlock *, 4> Visited; 5639 5640 YieldsPoison.insert(V); 5641 auto Propagate = [&](const User *User) { 5642 if (propagatesPoison(cast<Operator>(User))) 5643 YieldsPoison.insert(User); 5644 }; 5645 for_each(V->users(), Propagate); 5646 Visited.insert(BB); 5647 5648 while (true) { 5649 for (auto &I : make_range(Begin, End)) { 5650 if (isa<DbgInfoIntrinsic>(I)) 5651 continue; 5652 if (--ScanLimit == 0) 5653 return false; 5654 if (mustTriggerUB(&I, YieldsPoison)) 5655 return true; 5656 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5657 return false; 5658 5659 // Mark poison that propagates from I through uses of I. 5660 if (YieldsPoison.count(&I)) 5661 for_each(I.users(), Propagate); 5662 } 5663 5664 BB = BB->getSingleSuccessor(); 5665 if (!BB || !Visited.insert(BB).second) 5666 break; 5667 5668 Begin = BB->getFirstNonPHI()->getIterator(); 5669 End = BB->end(); 5670 } 5671 return false; 5672 } 5673 5674 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5675 return ::programUndefinedIfUndefOrPoison(Inst, false); 5676 } 5677 5678 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5679 return ::programUndefinedIfUndefOrPoison(Inst, true); 5680 } 5681 5682 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5683 if (FMF.noNaNs()) 5684 return true; 5685 5686 if (auto *C = dyn_cast<ConstantFP>(V)) 5687 return !C->isNaN(); 5688 5689 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5690 if (!C->getElementType()->isFloatingPointTy()) 5691 return false; 5692 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5693 if (C->getElementAsAPFloat(I).isNaN()) 5694 return false; 5695 } 5696 return true; 5697 } 5698 5699 if (isa<ConstantAggregateZero>(V)) 5700 return true; 5701 5702 return false; 5703 } 5704 5705 static bool isKnownNonZero(const Value *V) { 5706 if (auto *C = dyn_cast<ConstantFP>(V)) 5707 return !C->isZero(); 5708 5709 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5710 if (!C->getElementType()->isFloatingPointTy()) 5711 return false; 5712 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5713 if (C->getElementAsAPFloat(I).isZero()) 5714 return false; 5715 } 5716 return true; 5717 } 5718 5719 return false; 5720 } 5721 5722 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5723 /// Given non-min/max outer cmp/select from the clamp pattern this 5724 /// function recognizes if it can be substitued by a "canonical" min/max 5725 /// pattern. 5726 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5727 Value *CmpLHS, Value *CmpRHS, 5728 Value *TrueVal, Value *FalseVal, 5729 Value *&LHS, Value *&RHS) { 5730 // Try to match 5731 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5732 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5733 // and return description of the outer Max/Min. 5734 5735 // First, check if select has inverse order: 5736 if (CmpRHS == FalseVal) { 5737 std::swap(TrueVal, FalseVal); 5738 Pred = CmpInst::getInversePredicate(Pred); 5739 } 5740 5741 // Assume success now. If there's no match, callers should not use these anyway. 5742 LHS = TrueVal; 5743 RHS = FalseVal; 5744 5745 const APFloat *FC1; 5746 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5747 return {SPF_UNKNOWN, SPNB_NA, false}; 5748 5749 const APFloat *FC2; 5750 switch (Pred) { 5751 case CmpInst::FCMP_OLT: 5752 case CmpInst::FCMP_OLE: 5753 case CmpInst::FCMP_ULT: 5754 case CmpInst::FCMP_ULE: 5755 if (match(FalseVal, 5756 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5757 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5758 *FC1 < *FC2) 5759 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5760 break; 5761 case CmpInst::FCMP_OGT: 5762 case CmpInst::FCMP_OGE: 5763 case CmpInst::FCMP_UGT: 5764 case CmpInst::FCMP_UGE: 5765 if (match(FalseVal, 5766 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5767 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5768 *FC1 > *FC2) 5769 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5770 break; 5771 default: 5772 break; 5773 } 5774 5775 return {SPF_UNKNOWN, SPNB_NA, false}; 5776 } 5777 5778 /// Recognize variations of: 5779 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5780 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5781 Value *CmpLHS, Value *CmpRHS, 5782 Value *TrueVal, Value *FalseVal) { 5783 // Swap the select operands and predicate to match the patterns below. 5784 if (CmpRHS != TrueVal) { 5785 Pred = ICmpInst::getSwappedPredicate(Pred); 5786 std::swap(TrueVal, FalseVal); 5787 } 5788 const APInt *C1; 5789 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5790 const APInt *C2; 5791 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5792 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5793 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5794 return {SPF_SMAX, SPNB_NA, false}; 5795 5796 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5797 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5798 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5799 return {SPF_SMIN, SPNB_NA, false}; 5800 5801 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5802 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5803 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5804 return {SPF_UMAX, SPNB_NA, false}; 5805 5806 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5807 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5808 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5809 return {SPF_UMIN, SPNB_NA, false}; 5810 } 5811 return {SPF_UNKNOWN, SPNB_NA, false}; 5812 } 5813 5814 /// Recognize variations of: 5815 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5816 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5817 Value *CmpLHS, Value *CmpRHS, 5818 Value *TVal, Value *FVal, 5819 unsigned Depth) { 5820 // TODO: Allow FP min/max with nnan/nsz. 5821 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5822 5823 Value *A = nullptr, *B = nullptr; 5824 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5825 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5826 return {SPF_UNKNOWN, SPNB_NA, false}; 5827 5828 Value *C = nullptr, *D = nullptr; 5829 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5830 if (L.Flavor != R.Flavor) 5831 return {SPF_UNKNOWN, SPNB_NA, false}; 5832 5833 // We have something like: x Pred y ? min(a, b) : min(c, d). 5834 // Try to match the compare to the min/max operations of the select operands. 5835 // First, make sure we have the right compare predicate. 5836 switch (L.Flavor) { 5837 case SPF_SMIN: 5838 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5839 Pred = ICmpInst::getSwappedPredicate(Pred); 5840 std::swap(CmpLHS, CmpRHS); 5841 } 5842 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5843 break; 5844 return {SPF_UNKNOWN, SPNB_NA, false}; 5845 case SPF_SMAX: 5846 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5847 Pred = ICmpInst::getSwappedPredicate(Pred); 5848 std::swap(CmpLHS, CmpRHS); 5849 } 5850 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5851 break; 5852 return {SPF_UNKNOWN, SPNB_NA, false}; 5853 case SPF_UMIN: 5854 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5855 Pred = ICmpInst::getSwappedPredicate(Pred); 5856 std::swap(CmpLHS, CmpRHS); 5857 } 5858 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5859 break; 5860 return {SPF_UNKNOWN, SPNB_NA, false}; 5861 case SPF_UMAX: 5862 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5863 Pred = ICmpInst::getSwappedPredicate(Pred); 5864 std::swap(CmpLHS, CmpRHS); 5865 } 5866 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5867 break; 5868 return {SPF_UNKNOWN, SPNB_NA, false}; 5869 default: 5870 return {SPF_UNKNOWN, SPNB_NA, false}; 5871 } 5872 5873 // If there is a common operand in the already matched min/max and the other 5874 // min/max operands match the compare operands (either directly or inverted), 5875 // then this is min/max of the same flavor. 5876 5877 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5878 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5879 if (D == B) { 5880 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5881 match(A, m_Not(m_Specific(CmpRHS))))) 5882 return {L.Flavor, SPNB_NA, false}; 5883 } 5884 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5885 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5886 if (C == B) { 5887 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5888 match(A, m_Not(m_Specific(CmpRHS))))) 5889 return {L.Flavor, SPNB_NA, false}; 5890 } 5891 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5892 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5893 if (D == A) { 5894 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5895 match(B, m_Not(m_Specific(CmpRHS))))) 5896 return {L.Flavor, SPNB_NA, false}; 5897 } 5898 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5899 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5900 if (C == A) { 5901 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5902 match(B, m_Not(m_Specific(CmpRHS))))) 5903 return {L.Flavor, SPNB_NA, false}; 5904 } 5905 5906 return {SPF_UNKNOWN, SPNB_NA, false}; 5907 } 5908 5909 /// If the input value is the result of a 'not' op, constant integer, or vector 5910 /// splat of a constant integer, return the bitwise-not source value. 5911 /// TODO: This could be extended to handle non-splat vector integer constants. 5912 static Value *getNotValue(Value *V) { 5913 Value *NotV; 5914 if (match(V, m_Not(m_Value(NotV)))) 5915 return NotV; 5916 5917 const APInt *C; 5918 if (match(V, m_APInt(C))) 5919 return ConstantInt::get(V->getType(), ~(*C)); 5920 5921 return nullptr; 5922 } 5923 5924 /// Match non-obvious integer minimum and maximum sequences. 5925 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5926 Value *CmpLHS, Value *CmpRHS, 5927 Value *TrueVal, Value *FalseVal, 5928 Value *&LHS, Value *&RHS, 5929 unsigned Depth) { 5930 // Assume success. If there's no match, callers should not use these anyway. 5931 LHS = TrueVal; 5932 RHS = FalseVal; 5933 5934 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5935 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5936 return SPR; 5937 5938 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5939 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5940 return SPR; 5941 5942 // Look through 'not' ops to find disguised min/max. 5943 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5944 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5945 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5946 switch (Pred) { 5947 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5948 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5949 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5950 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5951 default: break; 5952 } 5953 } 5954 5955 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5956 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5957 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5958 switch (Pred) { 5959 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5960 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5961 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5962 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5963 default: break; 5964 } 5965 } 5966 5967 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5968 return {SPF_UNKNOWN, SPNB_NA, false}; 5969 5970 const APInt *C1; 5971 if (!match(CmpRHS, m_APInt(C1))) 5972 return {SPF_UNKNOWN, SPNB_NA, false}; 5973 5974 // An unsigned min/max can be written with a signed compare. 5975 const APInt *C2; 5976 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5977 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5978 // Is the sign bit set? 5979 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5980 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5981 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5982 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5983 5984 // Is the sign bit clear? 5985 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5986 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5987 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5988 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5989 } 5990 5991 return {SPF_UNKNOWN, SPNB_NA, false}; 5992 } 5993 5994 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5995 assert(X && Y && "Invalid operand"); 5996 5997 // X = sub (0, Y) || X = sub nsw (0, Y) 5998 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5999 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 6000 return true; 6001 6002 // Y = sub (0, X) || Y = sub nsw (0, X) 6003 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 6004 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 6005 return true; 6006 6007 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 6008 Value *A, *B; 6009 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 6010 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 6011 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 6012 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 6013 } 6014 6015 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 6016 FastMathFlags FMF, 6017 Value *CmpLHS, Value *CmpRHS, 6018 Value *TrueVal, Value *FalseVal, 6019 Value *&LHS, Value *&RHS, 6020 unsigned Depth) { 6021 if (CmpInst::isFPPredicate(Pred)) { 6022 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 6023 // 0.0 operand, set the compare's 0.0 operands to that same value for the 6024 // purpose of identifying min/max. Disregard vector constants with undefined 6025 // elements because those can not be back-propagated for analysis. 6026 Value *OutputZeroVal = nullptr; 6027 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 6028 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 6029 OutputZeroVal = TrueVal; 6030 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 6031 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 6032 OutputZeroVal = FalseVal; 6033 6034 if (OutputZeroVal) { 6035 if (match(CmpLHS, m_AnyZeroFP())) 6036 CmpLHS = OutputZeroVal; 6037 if (match(CmpRHS, m_AnyZeroFP())) 6038 CmpRHS = OutputZeroVal; 6039 } 6040 } 6041 6042 LHS = CmpLHS; 6043 RHS = CmpRHS; 6044 6045 // Signed zero may return inconsistent results between implementations. 6046 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 6047 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 6048 // Therefore, we behave conservatively and only proceed if at least one of the 6049 // operands is known to not be zero or if we don't care about signed zero. 6050 switch (Pred) { 6051 default: break; 6052 // FIXME: Include OGT/OLT/UGT/ULT. 6053 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 6054 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 6055 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6056 !isKnownNonZero(CmpRHS)) 6057 return {SPF_UNKNOWN, SPNB_NA, false}; 6058 } 6059 6060 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 6061 bool Ordered = false; 6062 6063 // When given one NaN and one non-NaN input: 6064 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 6065 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 6066 // ordered comparison fails), which could be NaN or non-NaN. 6067 // so here we discover exactly what NaN behavior is required/accepted. 6068 if (CmpInst::isFPPredicate(Pred)) { 6069 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 6070 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 6071 6072 if (LHSSafe && RHSSafe) { 6073 // Both operands are known non-NaN. 6074 NaNBehavior = SPNB_RETURNS_ANY; 6075 } else if (CmpInst::isOrdered(Pred)) { 6076 // An ordered comparison will return false when given a NaN, so it 6077 // returns the RHS. 6078 Ordered = true; 6079 if (LHSSafe) 6080 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 6081 NaNBehavior = SPNB_RETURNS_NAN; 6082 else if (RHSSafe) 6083 NaNBehavior = SPNB_RETURNS_OTHER; 6084 else 6085 // Completely unsafe. 6086 return {SPF_UNKNOWN, SPNB_NA, false}; 6087 } else { 6088 Ordered = false; 6089 // An unordered comparison will return true when given a NaN, so it 6090 // returns the LHS. 6091 if (LHSSafe) 6092 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 6093 NaNBehavior = SPNB_RETURNS_OTHER; 6094 else if (RHSSafe) 6095 NaNBehavior = SPNB_RETURNS_NAN; 6096 else 6097 // Completely unsafe. 6098 return {SPF_UNKNOWN, SPNB_NA, false}; 6099 } 6100 } 6101 6102 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 6103 std::swap(CmpLHS, CmpRHS); 6104 Pred = CmpInst::getSwappedPredicate(Pred); 6105 if (NaNBehavior == SPNB_RETURNS_NAN) 6106 NaNBehavior = SPNB_RETURNS_OTHER; 6107 else if (NaNBehavior == SPNB_RETURNS_OTHER) 6108 NaNBehavior = SPNB_RETURNS_NAN; 6109 Ordered = !Ordered; 6110 } 6111 6112 // ([if]cmp X, Y) ? X : Y 6113 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 6114 switch (Pred) { 6115 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 6116 case ICmpInst::ICMP_UGT: 6117 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 6118 case ICmpInst::ICMP_SGT: 6119 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 6120 case ICmpInst::ICMP_ULT: 6121 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 6122 case ICmpInst::ICMP_SLT: 6123 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 6124 case FCmpInst::FCMP_UGT: 6125 case FCmpInst::FCMP_UGE: 6126 case FCmpInst::FCMP_OGT: 6127 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 6128 case FCmpInst::FCMP_ULT: 6129 case FCmpInst::FCMP_ULE: 6130 case FCmpInst::FCMP_OLT: 6131 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 6132 } 6133 } 6134 6135 if (isKnownNegation(TrueVal, FalseVal)) { 6136 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 6137 // match against either LHS or sext(LHS). 6138 auto MaybeSExtCmpLHS = 6139 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 6140 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 6141 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 6142 if (match(TrueVal, MaybeSExtCmpLHS)) { 6143 // Set the return values. If the compare uses the negated value (-X >s 0), 6144 // swap the return values because the negated value is always 'RHS'. 6145 LHS = TrueVal; 6146 RHS = FalseVal; 6147 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6148 std::swap(LHS, RHS); 6149 6150 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6151 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6152 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6153 return {SPF_ABS, SPNB_NA, false}; 6154 6155 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6156 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6157 return {SPF_ABS, SPNB_NA, false}; 6158 6159 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6160 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6161 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6162 return {SPF_NABS, SPNB_NA, false}; 6163 } 6164 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6165 // Set the return values. If the compare uses the negated value (-X >s 0), 6166 // swap the return values because the negated value is always 'RHS'. 6167 LHS = FalseVal; 6168 RHS = TrueVal; 6169 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6170 std::swap(LHS, RHS); 6171 6172 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6173 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6174 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6175 return {SPF_NABS, SPNB_NA, false}; 6176 6177 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6178 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6179 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6180 return {SPF_ABS, SPNB_NA, false}; 6181 } 6182 } 6183 6184 if (CmpInst::isIntPredicate(Pred)) 6185 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6186 6187 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6188 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6189 // semantics than minNum. Be conservative in such case. 6190 if (NaNBehavior != SPNB_RETURNS_ANY || 6191 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6192 !isKnownNonZero(CmpRHS))) 6193 return {SPF_UNKNOWN, SPNB_NA, false}; 6194 6195 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6196 } 6197 6198 /// Helps to match a select pattern in case of a type mismatch. 6199 /// 6200 /// The function processes the case when type of true and false values of a 6201 /// select instruction differs from type of the cmp instruction operands because 6202 /// of a cast instruction. The function checks if it is legal to move the cast 6203 /// operation after "select". If yes, it returns the new second value of 6204 /// "select" (with the assumption that cast is moved): 6205 /// 1. As operand of cast instruction when both values of "select" are same cast 6206 /// instructions. 6207 /// 2. As restored constant (by applying reverse cast operation) when the first 6208 /// value of the "select" is a cast operation and the second value is a 6209 /// constant. 6210 /// NOTE: We return only the new second value because the first value could be 6211 /// accessed as operand of cast instruction. 6212 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6213 Instruction::CastOps *CastOp) { 6214 auto *Cast1 = dyn_cast<CastInst>(V1); 6215 if (!Cast1) 6216 return nullptr; 6217 6218 *CastOp = Cast1->getOpcode(); 6219 Type *SrcTy = Cast1->getSrcTy(); 6220 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6221 // If V1 and V2 are both the same cast from the same type, look through V1. 6222 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6223 return Cast2->getOperand(0); 6224 return nullptr; 6225 } 6226 6227 auto *C = dyn_cast<Constant>(V2); 6228 if (!C) 6229 return nullptr; 6230 6231 Constant *CastedTo = nullptr; 6232 switch (*CastOp) { 6233 case Instruction::ZExt: 6234 if (CmpI->isUnsigned()) 6235 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6236 break; 6237 case Instruction::SExt: 6238 if (CmpI->isSigned()) 6239 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6240 break; 6241 case Instruction::Trunc: 6242 Constant *CmpConst; 6243 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6244 CmpConst->getType() == SrcTy) { 6245 // Here we have the following case: 6246 // 6247 // %cond = cmp iN %x, CmpConst 6248 // %tr = trunc iN %x to iK 6249 // %narrowsel = select i1 %cond, iK %t, iK C 6250 // 6251 // We can always move trunc after select operation: 6252 // 6253 // %cond = cmp iN %x, CmpConst 6254 // %widesel = select i1 %cond, iN %x, iN CmpConst 6255 // %tr = trunc iN %widesel to iK 6256 // 6257 // Note that C could be extended in any way because we don't care about 6258 // upper bits after truncation. It can't be abs pattern, because it would 6259 // look like: 6260 // 6261 // select i1 %cond, x, -x. 6262 // 6263 // So only min/max pattern could be matched. Such match requires widened C 6264 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6265 // CmpConst == C is checked below. 6266 CastedTo = CmpConst; 6267 } else { 6268 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6269 } 6270 break; 6271 case Instruction::FPTrunc: 6272 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6273 break; 6274 case Instruction::FPExt: 6275 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6276 break; 6277 case Instruction::FPToUI: 6278 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6279 break; 6280 case Instruction::FPToSI: 6281 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6282 break; 6283 case Instruction::UIToFP: 6284 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6285 break; 6286 case Instruction::SIToFP: 6287 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6288 break; 6289 default: 6290 break; 6291 } 6292 6293 if (!CastedTo) 6294 return nullptr; 6295 6296 // Make sure the cast doesn't lose any information. 6297 Constant *CastedBack = 6298 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6299 if (CastedBack != C) 6300 return nullptr; 6301 6302 return CastedTo; 6303 } 6304 6305 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6306 Instruction::CastOps *CastOp, 6307 unsigned Depth) { 6308 if (Depth >= MaxAnalysisRecursionDepth) 6309 return {SPF_UNKNOWN, SPNB_NA, false}; 6310 6311 SelectInst *SI = dyn_cast<SelectInst>(V); 6312 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6313 6314 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6315 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6316 6317 Value *TrueVal = SI->getTrueValue(); 6318 Value *FalseVal = SI->getFalseValue(); 6319 6320 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6321 CastOp, Depth); 6322 } 6323 6324 SelectPatternResult llvm::matchDecomposedSelectPattern( 6325 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6326 Instruction::CastOps *CastOp, unsigned Depth) { 6327 CmpInst::Predicate Pred = CmpI->getPredicate(); 6328 Value *CmpLHS = CmpI->getOperand(0); 6329 Value *CmpRHS = CmpI->getOperand(1); 6330 FastMathFlags FMF; 6331 if (isa<FPMathOperator>(CmpI)) 6332 FMF = CmpI->getFastMathFlags(); 6333 6334 // Bail out early. 6335 if (CmpI->isEquality()) 6336 return {SPF_UNKNOWN, SPNB_NA, false}; 6337 6338 // Deal with type mismatches. 6339 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6340 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6341 // If this is a potential fmin/fmax with a cast to integer, then ignore 6342 // -0.0 because there is no corresponding integer value. 6343 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6344 FMF.setNoSignedZeros(); 6345 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6346 cast<CastInst>(TrueVal)->getOperand(0), C, 6347 LHS, RHS, Depth); 6348 } 6349 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6350 // If this is a potential fmin/fmax with a cast to integer, then ignore 6351 // -0.0 because there is no corresponding integer value. 6352 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6353 FMF.setNoSignedZeros(); 6354 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6355 C, cast<CastInst>(FalseVal)->getOperand(0), 6356 LHS, RHS, Depth); 6357 } 6358 } 6359 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6360 LHS, RHS, Depth); 6361 } 6362 6363 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6364 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6365 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6366 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6367 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6368 if (SPF == SPF_FMINNUM) 6369 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6370 if (SPF == SPF_FMAXNUM) 6371 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6372 llvm_unreachable("unhandled!"); 6373 } 6374 6375 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6376 if (SPF == SPF_SMIN) return SPF_SMAX; 6377 if (SPF == SPF_UMIN) return SPF_UMAX; 6378 if (SPF == SPF_SMAX) return SPF_SMIN; 6379 if (SPF == SPF_UMAX) return SPF_UMIN; 6380 llvm_unreachable("unhandled!"); 6381 } 6382 6383 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6384 switch (MinMaxID) { 6385 case Intrinsic::smax: return Intrinsic::smin; 6386 case Intrinsic::smin: return Intrinsic::smax; 6387 case Intrinsic::umax: return Intrinsic::umin; 6388 case Intrinsic::umin: return Intrinsic::umax; 6389 default: llvm_unreachable("Unexpected intrinsic"); 6390 } 6391 } 6392 6393 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6394 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6395 } 6396 6397 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6398 switch (SPF) { 6399 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6400 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6401 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6402 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6403 default: llvm_unreachable("Unexpected flavor"); 6404 } 6405 } 6406 6407 std::pair<Intrinsic::ID, bool> 6408 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6409 // Check if VL contains select instructions that can be folded into a min/max 6410 // vector intrinsic and return the intrinsic if it is possible. 6411 // TODO: Support floating point min/max. 6412 bool AllCmpSingleUse = true; 6413 SelectPatternResult SelectPattern; 6414 SelectPattern.Flavor = SPF_UNKNOWN; 6415 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6416 Value *LHS, *RHS; 6417 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6418 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6419 CurrentPattern.Flavor == SPF_FMINNUM || 6420 CurrentPattern.Flavor == SPF_FMAXNUM || 6421 !I->getType()->isIntOrIntVectorTy()) 6422 return false; 6423 if (SelectPattern.Flavor != SPF_UNKNOWN && 6424 SelectPattern.Flavor != CurrentPattern.Flavor) 6425 return false; 6426 SelectPattern = CurrentPattern; 6427 AllCmpSingleUse &= 6428 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6429 return true; 6430 })) { 6431 switch (SelectPattern.Flavor) { 6432 case SPF_SMIN: 6433 return {Intrinsic::smin, AllCmpSingleUse}; 6434 case SPF_UMIN: 6435 return {Intrinsic::umin, AllCmpSingleUse}; 6436 case SPF_SMAX: 6437 return {Intrinsic::smax, AllCmpSingleUse}; 6438 case SPF_UMAX: 6439 return {Intrinsic::umax, AllCmpSingleUse}; 6440 default: 6441 llvm_unreachable("unexpected select pattern flavor"); 6442 } 6443 } 6444 return {Intrinsic::not_intrinsic, false}; 6445 } 6446 6447 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6448 Value *&Start, Value *&Step) { 6449 // Handle the case of a simple two-predecessor recurrence PHI. 6450 // There's a lot more that could theoretically be done here, but 6451 // this is sufficient to catch some interesting cases. 6452 if (P->getNumIncomingValues() != 2) 6453 return false; 6454 6455 for (unsigned i = 0; i != 2; ++i) { 6456 Value *L = P->getIncomingValue(i); 6457 Value *R = P->getIncomingValue(!i); 6458 Operator *LU = dyn_cast<Operator>(L); 6459 if (!LU) 6460 continue; 6461 unsigned Opcode = LU->getOpcode(); 6462 6463 switch (Opcode) { 6464 default: 6465 continue; 6466 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6467 case Instruction::LShr: 6468 case Instruction::AShr: 6469 case Instruction::Shl: 6470 case Instruction::Add: 6471 case Instruction::Sub: 6472 case Instruction::And: 6473 case Instruction::Or: 6474 case Instruction::Mul: { 6475 Value *LL = LU->getOperand(0); 6476 Value *LR = LU->getOperand(1); 6477 // Find a recurrence. 6478 if (LL == P) 6479 L = LR; 6480 else if (LR == P) 6481 L = LL; 6482 else 6483 continue; // Check for recurrence with L and R flipped. 6484 6485 break; // Match! 6486 } 6487 }; 6488 6489 // We have matched a recurrence of the form: 6490 // %iv = [R, %entry], [%iv.next, %backedge] 6491 // %iv.next = binop %iv, L 6492 // OR 6493 // %iv = [R, %entry], [%iv.next, %backedge] 6494 // %iv.next = binop L, %iv 6495 BO = cast<BinaryOperator>(LU); 6496 Start = R; 6497 Step = L; 6498 return true; 6499 } 6500 return false; 6501 } 6502 6503 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6504 Value *&Start, Value *&Step) { 6505 BinaryOperator *BO = nullptr; 6506 P = dyn_cast<PHINode>(I->getOperand(0)); 6507 if (!P) 6508 P = dyn_cast<PHINode>(I->getOperand(1)); 6509 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6510 } 6511 6512 /// Return true if "icmp Pred LHS RHS" is always true. 6513 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6514 const Value *RHS, const DataLayout &DL, 6515 unsigned Depth) { 6516 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6517 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6518 return true; 6519 6520 switch (Pred) { 6521 default: 6522 return false; 6523 6524 case CmpInst::ICMP_SLE: { 6525 const APInt *C; 6526 6527 // LHS s<= LHS +_{nsw} C if C >= 0 6528 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6529 return !C->isNegative(); 6530 return false; 6531 } 6532 6533 case CmpInst::ICMP_ULE: { 6534 const APInt *C; 6535 6536 // LHS u<= LHS +_{nuw} C for any C 6537 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6538 return true; 6539 6540 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6541 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6542 const Value *&X, 6543 const APInt *&CA, const APInt *&CB) { 6544 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6545 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6546 return true; 6547 6548 // If X & C == 0 then (X | C) == X +_{nuw} C 6549 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6550 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6551 KnownBits Known(CA->getBitWidth()); 6552 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6553 /*CxtI*/ nullptr, /*DT*/ nullptr); 6554 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6555 return true; 6556 } 6557 6558 return false; 6559 }; 6560 6561 const Value *X; 6562 const APInt *CLHS, *CRHS; 6563 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6564 return CLHS->ule(*CRHS); 6565 6566 return false; 6567 } 6568 } 6569 } 6570 6571 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6572 /// ALHS ARHS" is true. Otherwise, return None. 6573 static Optional<bool> 6574 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6575 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6576 const DataLayout &DL, unsigned Depth) { 6577 switch (Pred) { 6578 default: 6579 return None; 6580 6581 case CmpInst::ICMP_SLT: 6582 case CmpInst::ICMP_SLE: 6583 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6584 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6585 return true; 6586 return None; 6587 6588 case CmpInst::ICMP_ULT: 6589 case CmpInst::ICMP_ULE: 6590 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6591 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6592 return true; 6593 return None; 6594 } 6595 } 6596 6597 /// Return true if the operands of the two compares match. IsSwappedOps is true 6598 /// when the operands match, but are swapped. 6599 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6600 const Value *BLHS, const Value *BRHS, 6601 bool &IsSwappedOps) { 6602 6603 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6604 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6605 return IsMatchingOps || IsSwappedOps; 6606 } 6607 6608 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6609 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6610 /// Otherwise, return None if we can't infer anything. 6611 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6612 CmpInst::Predicate BPred, 6613 bool AreSwappedOps) { 6614 // Canonicalize the predicate as if the operands were not commuted. 6615 if (AreSwappedOps) 6616 BPred = ICmpInst::getSwappedPredicate(BPred); 6617 6618 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6619 return true; 6620 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6621 return false; 6622 6623 return None; 6624 } 6625 6626 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6627 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6628 /// Otherwise, return None if we can't infer anything. 6629 static Optional<bool> 6630 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6631 const ConstantInt *C1, 6632 CmpInst::Predicate BPred, 6633 const ConstantInt *C2) { 6634 ConstantRange DomCR = 6635 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6636 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6637 ConstantRange Intersection = DomCR.intersectWith(CR); 6638 ConstantRange Difference = DomCR.difference(CR); 6639 if (Intersection.isEmptySet()) 6640 return false; 6641 if (Difference.isEmptySet()) 6642 return true; 6643 return None; 6644 } 6645 6646 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6647 /// false. Otherwise, return None if we can't infer anything. 6648 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6649 CmpInst::Predicate BPred, 6650 const Value *BLHS, const Value *BRHS, 6651 const DataLayout &DL, bool LHSIsTrue, 6652 unsigned Depth) { 6653 Value *ALHS = LHS->getOperand(0); 6654 Value *ARHS = LHS->getOperand(1); 6655 6656 // The rest of the logic assumes the LHS condition is true. If that's not the 6657 // case, invert the predicate to make it so. 6658 CmpInst::Predicate APred = 6659 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6660 6661 // Can we infer anything when the two compares have matching operands? 6662 bool AreSwappedOps; 6663 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6664 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6665 APred, BPred, AreSwappedOps)) 6666 return Implication; 6667 // No amount of additional analysis will infer the second condition, so 6668 // early exit. 6669 return None; 6670 } 6671 6672 // Can we infer anything when the LHS operands match and the RHS operands are 6673 // constants (not necessarily matching)? 6674 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6675 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6676 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6677 return Implication; 6678 // No amount of additional analysis will infer the second condition, so 6679 // early exit. 6680 return None; 6681 } 6682 6683 if (APred == BPred) 6684 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6685 return None; 6686 } 6687 6688 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6689 /// false. Otherwise, return None if we can't infer anything. We expect the 6690 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6691 static Optional<bool> 6692 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6693 const Value *RHSOp0, const Value *RHSOp1, 6694 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6695 // The LHS must be an 'or', 'and', or a 'select' instruction. 6696 assert((LHS->getOpcode() == Instruction::And || 6697 LHS->getOpcode() == Instruction::Or || 6698 LHS->getOpcode() == Instruction::Select) && 6699 "Expected LHS to be 'and', 'or', or 'select'."); 6700 6701 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6702 6703 // If the result of an 'or' is false, then we know both legs of the 'or' are 6704 // false. Similarly, if the result of an 'and' is true, then we know both 6705 // legs of the 'and' are true. 6706 const Value *ALHS, *ARHS; 6707 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6708 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6709 // FIXME: Make this non-recursion. 6710 if (Optional<bool> Implication = isImpliedCondition( 6711 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6712 return Implication; 6713 if (Optional<bool> Implication = isImpliedCondition( 6714 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6715 return Implication; 6716 return None; 6717 } 6718 return None; 6719 } 6720 6721 Optional<bool> 6722 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6723 const Value *RHSOp0, const Value *RHSOp1, 6724 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6725 // Bail out when we hit the limit. 6726 if (Depth == MaxAnalysisRecursionDepth) 6727 return None; 6728 6729 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6730 // example. 6731 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6732 return None; 6733 6734 Type *OpTy = LHS->getType(); 6735 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6736 6737 // FIXME: Extending the code below to handle vectors. 6738 if (OpTy->isVectorTy()) 6739 return None; 6740 6741 assert(OpTy->isIntegerTy(1) && "implied by above"); 6742 6743 // Both LHS and RHS are icmps. 6744 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6745 if (LHSCmp) 6746 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6747 Depth); 6748 6749 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6750 /// the RHS to be an icmp. 6751 /// FIXME: Add support for and/or/select on the RHS. 6752 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6753 if ((LHSI->getOpcode() == Instruction::And || 6754 LHSI->getOpcode() == Instruction::Or || 6755 LHSI->getOpcode() == Instruction::Select)) 6756 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6757 Depth); 6758 } 6759 return None; 6760 } 6761 6762 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6763 const DataLayout &DL, bool LHSIsTrue, 6764 unsigned Depth) { 6765 // LHS ==> RHS by definition 6766 if (LHS == RHS) 6767 return LHSIsTrue; 6768 6769 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) 6770 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6771 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6772 LHSIsTrue, Depth); 6773 6774 if (Depth == MaxAnalysisRecursionDepth) 6775 return None; 6776 6777 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2 6778 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2 6779 const Value *RHS1, *RHS2; 6780 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) { 6781 if (Optional<bool> Imp = 6782 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6783 if (*Imp == true) 6784 return true; 6785 if (Optional<bool> Imp = 6786 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6787 if (*Imp == true) 6788 return true; 6789 } 6790 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) { 6791 if (Optional<bool> Imp = 6792 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6793 if (*Imp == false) 6794 return false; 6795 if (Optional<bool> Imp = 6796 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6797 if (*Imp == false) 6798 return false; 6799 } 6800 6801 return None; 6802 } 6803 6804 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6805 // condition dominating ContextI or nullptr, if no condition is found. 6806 static std::pair<Value *, bool> 6807 getDomPredecessorCondition(const Instruction *ContextI) { 6808 if (!ContextI || !ContextI->getParent()) 6809 return {nullptr, false}; 6810 6811 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6812 // dominator tree (eg, from a SimplifyQuery) instead? 6813 const BasicBlock *ContextBB = ContextI->getParent(); 6814 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6815 if (!PredBB) 6816 return {nullptr, false}; 6817 6818 // We need a conditional branch in the predecessor. 6819 Value *PredCond; 6820 BasicBlock *TrueBB, *FalseBB; 6821 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6822 return {nullptr, false}; 6823 6824 // The branch should get simplified. Don't bother simplifying this condition. 6825 if (TrueBB == FalseBB) 6826 return {nullptr, false}; 6827 6828 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6829 "Predecessor block does not point to successor?"); 6830 6831 // Is this condition implied by the predecessor condition? 6832 return {PredCond, TrueBB == ContextBB}; 6833 } 6834 6835 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6836 const Instruction *ContextI, 6837 const DataLayout &DL) { 6838 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6839 auto PredCond = getDomPredecessorCondition(ContextI); 6840 if (PredCond.first) 6841 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6842 return None; 6843 } 6844 6845 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6846 const Value *LHS, const Value *RHS, 6847 const Instruction *ContextI, 6848 const DataLayout &DL) { 6849 auto PredCond = getDomPredecessorCondition(ContextI); 6850 if (PredCond.first) 6851 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6852 PredCond.second); 6853 return None; 6854 } 6855 6856 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6857 APInt &Upper, const InstrInfoQuery &IIQ, 6858 bool PreferSignedRange) { 6859 unsigned Width = Lower.getBitWidth(); 6860 const APInt *C; 6861 switch (BO.getOpcode()) { 6862 case Instruction::Add: 6863 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6864 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 6865 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 6866 6867 // If the caller expects a signed compare, then try to use a signed range. 6868 // Otherwise if both no-wraps are set, use the unsigned range because it 6869 // is never larger than the signed range. Example: 6870 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 6871 if (PreferSignedRange && HasNSW && HasNUW) 6872 HasNUW = false; 6873 6874 if (HasNUW) { 6875 // 'add nuw x, C' produces [C, UINT_MAX]. 6876 Lower = *C; 6877 } else if (HasNSW) { 6878 if (C->isNegative()) { 6879 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6880 Lower = APInt::getSignedMinValue(Width); 6881 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6882 } else { 6883 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6884 Lower = APInt::getSignedMinValue(Width) + *C; 6885 Upper = APInt::getSignedMaxValue(Width) + 1; 6886 } 6887 } 6888 } 6889 break; 6890 6891 case Instruction::And: 6892 if (match(BO.getOperand(1), m_APInt(C))) 6893 // 'and x, C' produces [0, C]. 6894 Upper = *C + 1; 6895 break; 6896 6897 case Instruction::Or: 6898 if (match(BO.getOperand(1), m_APInt(C))) 6899 // 'or x, C' produces [C, UINT_MAX]. 6900 Lower = *C; 6901 break; 6902 6903 case Instruction::AShr: 6904 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6905 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6906 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6907 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6908 } else if (match(BO.getOperand(0), m_APInt(C))) { 6909 unsigned ShiftAmount = Width - 1; 6910 if (!C->isZero() && IIQ.isExact(&BO)) 6911 ShiftAmount = C->countTrailingZeros(); 6912 if (C->isNegative()) { 6913 // 'ashr C, x' produces [C, C >> (Width-1)] 6914 Lower = *C; 6915 Upper = C->ashr(ShiftAmount) + 1; 6916 } else { 6917 // 'ashr C, x' produces [C >> (Width-1), C] 6918 Lower = C->ashr(ShiftAmount); 6919 Upper = *C + 1; 6920 } 6921 } 6922 break; 6923 6924 case Instruction::LShr: 6925 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6926 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6927 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6928 } else if (match(BO.getOperand(0), m_APInt(C))) { 6929 // 'lshr C, x' produces [C >> (Width-1), C]. 6930 unsigned ShiftAmount = Width - 1; 6931 if (!C->isZero() && IIQ.isExact(&BO)) 6932 ShiftAmount = C->countTrailingZeros(); 6933 Lower = C->lshr(ShiftAmount); 6934 Upper = *C + 1; 6935 } 6936 break; 6937 6938 case Instruction::Shl: 6939 if (match(BO.getOperand(0), m_APInt(C))) { 6940 if (IIQ.hasNoUnsignedWrap(&BO)) { 6941 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6942 Lower = *C; 6943 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6944 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6945 if (C->isNegative()) { 6946 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6947 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6948 Lower = C->shl(ShiftAmount); 6949 Upper = *C + 1; 6950 } else { 6951 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6952 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6953 Lower = *C; 6954 Upper = C->shl(ShiftAmount) + 1; 6955 } 6956 } 6957 } 6958 break; 6959 6960 case Instruction::SDiv: 6961 if (match(BO.getOperand(1), m_APInt(C))) { 6962 APInt IntMin = APInt::getSignedMinValue(Width); 6963 APInt IntMax = APInt::getSignedMaxValue(Width); 6964 if (C->isAllOnes()) { 6965 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6966 // where C != -1 and C != 0 and C != 1 6967 Lower = IntMin + 1; 6968 Upper = IntMax + 1; 6969 } else if (C->countLeadingZeros() < Width - 1) { 6970 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6971 // where C != -1 and C != 0 and C != 1 6972 Lower = IntMin.sdiv(*C); 6973 Upper = IntMax.sdiv(*C); 6974 if (Lower.sgt(Upper)) 6975 std::swap(Lower, Upper); 6976 Upper = Upper + 1; 6977 assert(Upper != Lower && "Upper part of range has wrapped!"); 6978 } 6979 } else if (match(BO.getOperand(0), m_APInt(C))) { 6980 if (C->isMinSignedValue()) { 6981 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6982 Lower = *C; 6983 Upper = Lower.lshr(1) + 1; 6984 } else { 6985 // 'sdiv C, x' produces [-|C|, |C|]. 6986 Upper = C->abs() + 1; 6987 Lower = (-Upper) + 1; 6988 } 6989 } 6990 break; 6991 6992 case Instruction::UDiv: 6993 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6994 // 'udiv x, C' produces [0, UINT_MAX / C]. 6995 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6996 } else if (match(BO.getOperand(0), m_APInt(C))) { 6997 // 'udiv C, x' produces [0, C]. 6998 Upper = *C + 1; 6999 } 7000 break; 7001 7002 case Instruction::SRem: 7003 if (match(BO.getOperand(1), m_APInt(C))) { 7004 // 'srem x, C' produces (-|C|, |C|). 7005 Upper = C->abs(); 7006 Lower = (-Upper) + 1; 7007 } 7008 break; 7009 7010 case Instruction::URem: 7011 if (match(BO.getOperand(1), m_APInt(C))) 7012 // 'urem x, C' produces [0, C). 7013 Upper = *C; 7014 break; 7015 7016 default: 7017 break; 7018 } 7019 } 7020 7021 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 7022 APInt &Upper) { 7023 unsigned Width = Lower.getBitWidth(); 7024 const APInt *C; 7025 switch (II.getIntrinsicID()) { 7026 case Intrinsic::ctpop: 7027 case Intrinsic::ctlz: 7028 case Intrinsic::cttz: 7029 // Maximum of set/clear bits is the bit width. 7030 assert(Lower == 0 && "Expected lower bound to be zero"); 7031 Upper = Width + 1; 7032 break; 7033 case Intrinsic::uadd_sat: 7034 // uadd.sat(x, C) produces [C, UINT_MAX]. 7035 if (match(II.getOperand(0), m_APInt(C)) || 7036 match(II.getOperand(1), m_APInt(C))) 7037 Lower = *C; 7038 break; 7039 case Intrinsic::sadd_sat: 7040 if (match(II.getOperand(0), m_APInt(C)) || 7041 match(II.getOperand(1), m_APInt(C))) { 7042 if (C->isNegative()) { 7043 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 7044 Lower = APInt::getSignedMinValue(Width); 7045 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 7046 } else { 7047 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 7048 Lower = APInt::getSignedMinValue(Width) + *C; 7049 Upper = APInt::getSignedMaxValue(Width) + 1; 7050 } 7051 } 7052 break; 7053 case Intrinsic::usub_sat: 7054 // usub.sat(C, x) produces [0, C]. 7055 if (match(II.getOperand(0), m_APInt(C))) 7056 Upper = *C + 1; 7057 // usub.sat(x, C) produces [0, UINT_MAX - C]. 7058 else if (match(II.getOperand(1), m_APInt(C))) 7059 Upper = APInt::getMaxValue(Width) - *C + 1; 7060 break; 7061 case Intrinsic::ssub_sat: 7062 if (match(II.getOperand(0), m_APInt(C))) { 7063 if (C->isNegative()) { 7064 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 7065 Lower = APInt::getSignedMinValue(Width); 7066 Upper = *C - APInt::getSignedMinValue(Width) + 1; 7067 } else { 7068 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 7069 Lower = *C - APInt::getSignedMaxValue(Width); 7070 Upper = APInt::getSignedMaxValue(Width) + 1; 7071 } 7072 } else if (match(II.getOperand(1), m_APInt(C))) { 7073 if (C->isNegative()) { 7074 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 7075 Lower = APInt::getSignedMinValue(Width) - *C; 7076 Upper = APInt::getSignedMaxValue(Width) + 1; 7077 } else { 7078 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 7079 Lower = APInt::getSignedMinValue(Width); 7080 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 7081 } 7082 } 7083 break; 7084 case Intrinsic::umin: 7085 case Intrinsic::umax: 7086 case Intrinsic::smin: 7087 case Intrinsic::smax: 7088 if (!match(II.getOperand(0), m_APInt(C)) && 7089 !match(II.getOperand(1), m_APInt(C))) 7090 break; 7091 7092 switch (II.getIntrinsicID()) { 7093 case Intrinsic::umin: 7094 Upper = *C + 1; 7095 break; 7096 case Intrinsic::umax: 7097 Lower = *C; 7098 break; 7099 case Intrinsic::smin: 7100 Lower = APInt::getSignedMinValue(Width); 7101 Upper = *C + 1; 7102 break; 7103 case Intrinsic::smax: 7104 Lower = *C; 7105 Upper = APInt::getSignedMaxValue(Width) + 1; 7106 break; 7107 default: 7108 llvm_unreachable("Must be min/max intrinsic"); 7109 } 7110 break; 7111 case Intrinsic::abs: 7112 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 7113 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7114 if (match(II.getOperand(1), m_One())) 7115 Upper = APInt::getSignedMaxValue(Width) + 1; 7116 else 7117 Upper = APInt::getSignedMinValue(Width) + 1; 7118 break; 7119 default: 7120 break; 7121 } 7122 } 7123 7124 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 7125 APInt &Upper, const InstrInfoQuery &IIQ) { 7126 const Value *LHS = nullptr, *RHS = nullptr; 7127 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 7128 if (R.Flavor == SPF_UNKNOWN) 7129 return; 7130 7131 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 7132 7133 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 7134 // If the negation part of the abs (in RHS) has the NSW flag, 7135 // then the result of abs(X) is [0..SIGNED_MAX], 7136 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7137 Lower = APInt::getZero(BitWidth); 7138 if (match(RHS, m_Neg(m_Specific(LHS))) && 7139 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 7140 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7141 else 7142 Upper = APInt::getSignedMinValue(BitWidth) + 1; 7143 return; 7144 } 7145 7146 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 7147 // The result of -abs(X) is <= 0. 7148 Lower = APInt::getSignedMinValue(BitWidth); 7149 Upper = APInt(BitWidth, 1); 7150 return; 7151 } 7152 7153 const APInt *C; 7154 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 7155 return; 7156 7157 switch (R.Flavor) { 7158 case SPF_UMIN: 7159 Upper = *C + 1; 7160 break; 7161 case SPF_UMAX: 7162 Lower = *C; 7163 break; 7164 case SPF_SMIN: 7165 Lower = APInt::getSignedMinValue(BitWidth); 7166 Upper = *C + 1; 7167 break; 7168 case SPF_SMAX: 7169 Lower = *C; 7170 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7171 break; 7172 default: 7173 break; 7174 } 7175 } 7176 7177 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 7178 // The maximum representable value of a half is 65504. For floats the maximum 7179 // value is 3.4e38 which requires roughly 129 bits. 7180 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 7181 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 7182 return; 7183 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 7184 Lower = APInt(BitWidth, -65504); 7185 Upper = APInt(BitWidth, 65505); 7186 } 7187 7188 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 7189 // For a fptoui the lower limit is left as 0. 7190 Upper = APInt(BitWidth, 65505); 7191 } 7192 } 7193 7194 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 7195 bool UseInstrInfo, AssumptionCache *AC, 7196 const Instruction *CtxI, 7197 const DominatorTree *DT, 7198 unsigned Depth) { 7199 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7200 7201 if (Depth == MaxAnalysisRecursionDepth) 7202 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7203 7204 const APInt *C; 7205 if (match(V, m_APInt(C))) 7206 return ConstantRange(*C); 7207 7208 InstrInfoQuery IIQ(UseInstrInfo); 7209 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7210 APInt Lower = APInt(BitWidth, 0); 7211 APInt Upper = APInt(BitWidth, 0); 7212 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7213 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7214 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7215 setLimitsForIntrinsic(*II, Lower, Upper); 7216 else if (auto *SI = dyn_cast<SelectInst>(V)) 7217 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7218 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7219 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7220 7221 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7222 7223 if (auto *I = dyn_cast<Instruction>(V)) 7224 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7225 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7226 7227 if (CtxI && AC) { 7228 // Try to restrict the range based on information from assumptions. 7229 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7230 if (!AssumeVH) 7231 continue; 7232 CallInst *I = cast<CallInst>(AssumeVH); 7233 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7234 "Got assumption for the wrong function!"); 7235 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7236 "must be an assume intrinsic"); 7237 7238 if (!isValidAssumeForContext(I, CtxI, DT)) 7239 continue; 7240 Value *Arg = I->getArgOperand(0); 7241 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7242 // Currently we just use information from comparisons. 7243 if (!Cmp || Cmp->getOperand(0) != V) 7244 continue; 7245 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7246 ConstantRange RHS = 7247 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7248 UseInstrInfo, AC, I, DT, Depth + 1); 7249 CR = CR.intersectWith( 7250 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7251 } 7252 } 7253 7254 return CR; 7255 } 7256 7257 static Optional<int64_t> 7258 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7259 // Skip over the first indices. 7260 gep_type_iterator GTI = gep_type_begin(GEP); 7261 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7262 /*skip along*/; 7263 7264 // Compute the offset implied by the rest of the indices. 7265 int64_t Offset = 0; 7266 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7267 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7268 if (!OpC) 7269 return None; 7270 if (OpC->isZero()) 7271 continue; // No offset. 7272 7273 // Handle struct indices, which add their field offset to the pointer. 7274 if (StructType *STy = GTI.getStructTypeOrNull()) { 7275 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7276 continue; 7277 } 7278 7279 // Otherwise, we have a sequential type like an array or fixed-length 7280 // vector. Multiply the index by the ElementSize. 7281 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7282 if (Size.isScalable()) 7283 return None; 7284 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7285 } 7286 7287 return Offset; 7288 } 7289 7290 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7291 const DataLayout &DL) { 7292 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 7293 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 7294 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 7295 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 7296 7297 // Handle the trivial case first. 7298 if (Ptr1 == Ptr2) 7299 return Offset2.getSExtValue() - Offset1.getSExtValue(); 7300 7301 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7302 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7303 7304 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7305 // base. After that base, they may have some number of common (and 7306 // potentially variable) indices. After that they handle some constant 7307 // offset, which determines their offset from each other. At this point, we 7308 // handle no other case. 7309 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7310 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7311 return None; 7312 7313 // Skip any common indices and track the GEP types. 7314 unsigned Idx = 1; 7315 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7316 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7317 break; 7318 7319 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 7320 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 7321 if (!IOffset1 || !IOffset2) 7322 return None; 7323 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 7324 Offset1.getSExtValue(); 7325 } 7326