1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/MathExtras.h" 32 #include <cstring> 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 const unsigned MaxDepth = 6; 37 38 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 39 /// unknown returns 0). For vector types, returns the element type's bitwidth. 40 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 41 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 42 return BitWidth; 43 44 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; 45 } 46 47 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 48 APInt &KnownZero, APInt &KnownOne, 49 APInt &KnownZero2, APInt &KnownOne2, 50 const DataLayout *TD, unsigned Depth) { 51 if (!Add) { 52 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 53 // We know that the top bits of C-X are clear if X contains less bits 54 // than C (i.e. no wrap-around can happen). For example, 20-X is 55 // positive if we can prove that X is >= 0 and < 16. 56 if (!CLHS->getValue().isNegative()) { 57 unsigned BitWidth = KnownZero.getBitWidth(); 58 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 59 // NLZ can't be BitWidth with no sign bit 60 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 61 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 62 63 // If all of the MaskV bits are known to be zero, then we know the 64 // output top bits are zero, because we now know that the output is 65 // from [0-C]. 66 if ((KnownZero2 & MaskV) == MaskV) { 67 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 68 // Top bits known zero. 69 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 70 } 71 } 72 } 73 } 74 75 unsigned BitWidth = KnownZero.getBitWidth(); 76 77 // If one of the operands has trailing zeros, then the bits that the 78 // other operand has in those bit positions will be preserved in the 79 // result. For an add, this works with either operand. For a subtract, 80 // this only works if the known zeros are in the right operand. 81 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 82 llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); 83 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 84 85 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 86 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 87 88 // Determine which operand has more trailing zeros, and use that 89 // many bits from the other operand. 90 if (LHSKnownZeroOut > RHSKnownZeroOut) { 91 if (Add) { 92 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 93 KnownZero |= KnownZero2 & Mask; 94 KnownOne |= KnownOne2 & Mask; 95 } else { 96 // If the known zeros are in the left operand for a subtract, 97 // fall back to the minimum known zeros in both operands. 98 KnownZero |= APInt::getLowBitsSet(BitWidth, 99 std::min(LHSKnownZeroOut, 100 RHSKnownZeroOut)); 101 } 102 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 103 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 104 KnownZero |= LHSKnownZero & Mask; 105 KnownOne |= LHSKnownOne & Mask; 106 } 107 108 // Are we still trying to solve for the sign bit? 109 if (!KnownZero.isNegative() && !KnownOne.isNegative()) { 110 if (NSW) { 111 if (Add) { 112 // Adding two positive numbers can't wrap into negative 113 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 114 KnownZero |= APInt::getSignBit(BitWidth); 115 // and adding two negative numbers can't wrap into positive. 116 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 117 KnownOne |= APInt::getSignBit(BitWidth); 118 } else { 119 // Subtracting a negative number from a positive one can't wrap 120 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 121 KnownZero |= APInt::getSignBit(BitWidth); 122 // neither can subtracting a positive number from a negative one. 123 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 124 KnownOne |= APInt::getSignBit(BitWidth); 125 } 126 } 127 } 128 } 129 130 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 131 APInt &KnownZero, APInt &KnownOne, 132 APInt &KnownZero2, APInt &KnownOne2, 133 const DataLayout *TD, unsigned Depth) { 134 unsigned BitWidth = KnownZero.getBitWidth(); 135 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1); 136 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); 137 138 bool isKnownNegative = false; 139 bool isKnownNonNegative = false; 140 // If the multiplication is known not to overflow, compute the sign bit. 141 if (NSW) { 142 if (Op0 == Op1) { 143 // The product of a number with itself is non-negative. 144 isKnownNonNegative = true; 145 } else { 146 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 147 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 148 bool isKnownNegativeOp1 = KnownOne.isNegative(); 149 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 150 // The product of two numbers with the same sign is non-negative. 151 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 152 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 153 // The product of a negative number and a non-negative number is either 154 // negative or zero. 155 if (!isKnownNonNegative) 156 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 157 isKnownNonZero(Op0, TD, Depth)) || 158 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 159 isKnownNonZero(Op1, TD, Depth)); 160 } 161 } 162 163 // If low bits are zero in either operand, output low known-0 bits. 164 // Also compute a conserative estimate for high known-0 bits. 165 // More trickiness is possible, but this is sufficient for the 166 // interesting case of alignment computation. 167 KnownOne.clearAllBits(); 168 unsigned TrailZ = KnownZero.countTrailingOnes() + 169 KnownZero2.countTrailingOnes(); 170 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 171 KnownZero2.countLeadingOnes(), 172 BitWidth) - BitWidth; 173 174 TrailZ = std::min(TrailZ, BitWidth); 175 LeadZ = std::min(LeadZ, BitWidth); 176 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 177 APInt::getHighBitsSet(BitWidth, LeadZ); 178 179 // Only make use of no-wrap flags if we failed to compute the sign bit 180 // directly. This matters if the multiplication always overflows, in 181 // which case we prefer to follow the result of the direct computation, 182 // though as the program is invoking undefined behaviour we can choose 183 // whatever we like here. 184 if (isKnownNonNegative && !KnownOne.isNegative()) 185 KnownZero.setBit(BitWidth - 1); 186 else if (isKnownNegative && !KnownZero.isNegative()) 187 KnownOne.setBit(BitWidth - 1); 188 } 189 190 void llvm::computeKnownBitsLoad(const MDNode &Ranges, APInt &KnownZero) { 191 unsigned BitWidth = KnownZero.getBitWidth(); 192 unsigned NumRanges = Ranges.getNumOperands() / 2; 193 assert(NumRanges >= 1); 194 195 // Use the high end of the ranges to find leading zeros. 196 unsigned MinLeadingZeros = BitWidth; 197 for (unsigned i = 0; i < NumRanges; ++i) { 198 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 199 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 200 ConstantRange Range(Lower->getValue(), Upper->getValue()); 201 if (Range.isWrappedSet()) 202 MinLeadingZeros = 0; // -1 has no zeros 203 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 204 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 205 } 206 207 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 208 } 209 210 /// Determine which bits of V are known to be either zero or one and return 211 /// them in the KnownZero/KnownOne bit sets. 212 /// 213 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 214 /// we cannot optimize based on the assumption that it is zero without changing 215 /// it to be an explicit zero. If we don't change it to zero, other code could 216 /// optimized based on the contradictory assumption that it is non-zero. 217 /// Because instcombine aggressively folds operations with undef args anyway, 218 /// this won't lose us code quality. 219 /// 220 /// This function is defined on values with integer type, values with pointer 221 /// type (but only if TD is non-null), and vectors of integers. In the case 222 /// where V is a vector, known zero, and known one values are the 223 /// same width as the vector element, and the bit is set only if it is true 224 /// for all of the elements in the vector. 225 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 226 const DataLayout *TD, unsigned Depth) { 227 assert(V && "No Value?"); 228 assert(Depth <= MaxDepth && "Limit Search Depth"); 229 unsigned BitWidth = KnownZero.getBitWidth(); 230 231 assert((V->getType()->isIntOrIntVectorTy() || 232 V->getType()->getScalarType()->isPointerTy()) && 233 "Not integer or pointer type!"); 234 assert((!TD || 235 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 236 (!V->getType()->isIntOrIntVectorTy() || 237 V->getType()->getScalarSizeInBits() == BitWidth) && 238 KnownZero.getBitWidth() == BitWidth && 239 KnownOne.getBitWidth() == BitWidth && 240 "V, KnownOne and KnownZero should have same BitWidth"); 241 242 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 243 // We know all of the bits for a constant! 244 KnownOne = CI->getValue(); 245 KnownZero = ~KnownOne; 246 return; 247 } 248 // Null and aggregate-zero are all-zeros. 249 if (isa<ConstantPointerNull>(V) || 250 isa<ConstantAggregateZero>(V)) { 251 KnownOne.clearAllBits(); 252 KnownZero = APInt::getAllOnesValue(BitWidth); 253 return; 254 } 255 // Handle a constant vector by taking the intersection of the known bits of 256 // each element. There is no real need to handle ConstantVector here, because 257 // we don't handle undef in any particularly useful way. 258 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 259 // We know that CDS must be a vector of integers. Take the intersection of 260 // each element. 261 KnownZero.setAllBits(); KnownOne.setAllBits(); 262 APInt Elt(KnownZero.getBitWidth(), 0); 263 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 264 Elt = CDS->getElementAsInteger(i); 265 KnownZero &= ~Elt; 266 KnownOne &= Elt; 267 } 268 return; 269 } 270 271 // The address of an aligned GlobalValue has trailing zeros. 272 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 273 unsigned Align = GV->getAlignment(); 274 if (Align == 0 && TD) { 275 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 276 Type *ObjectType = GVar->getType()->getElementType(); 277 if (ObjectType->isSized()) { 278 // If the object is defined in the current Module, we'll be giving 279 // it the preferred alignment. Otherwise, we have to assume that it 280 // may only have the minimum ABI alignment. 281 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 282 Align = TD->getPreferredAlignment(GVar); 283 else 284 Align = TD->getABITypeAlignment(ObjectType); 285 } 286 } 287 } 288 if (Align > 0) 289 KnownZero = APInt::getLowBitsSet(BitWidth, 290 countTrailingZeros(Align)); 291 else 292 KnownZero.clearAllBits(); 293 KnownOne.clearAllBits(); 294 return; 295 } 296 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 297 // the bits of its aliasee. 298 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 299 if (GA->mayBeOverridden()) { 300 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 301 } else { 302 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); 303 } 304 return; 305 } 306 307 if (Argument *A = dyn_cast<Argument>(V)) { 308 unsigned Align = 0; 309 310 if (A->hasByValOrInAllocaAttr()) { 311 // Get alignment information off byval/inalloca arguments if specified in 312 // the IR. 313 Align = A->getParamAlignment(); 314 } else if (TD && A->hasStructRetAttr()) { 315 // An sret parameter has at least the ABI alignment of the return type. 316 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 317 if (EltTy->isSized()) 318 Align = TD->getABITypeAlignment(EltTy); 319 } 320 321 if (Align) 322 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 323 return; 324 } 325 326 // Start out not knowing anything. 327 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 328 329 if (Depth == MaxDepth) 330 return; // Limit search depth. 331 332 Operator *I = dyn_cast<Operator>(V); 333 if (!I) return; 334 335 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 336 switch (I->getOpcode()) { 337 default: break; 338 case Instruction::Load: 339 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 340 computeKnownBitsLoad(*MD, KnownZero); 341 break; 342 case Instruction::And: { 343 // If either the LHS or the RHS are Zero, the result is zero. 344 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 345 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 346 347 // Output known-1 bits are only known if set in both the LHS & RHS. 348 KnownOne &= KnownOne2; 349 // Output known-0 are known to be clear if zero in either the LHS | RHS. 350 KnownZero |= KnownZero2; 351 break; 352 } 353 case Instruction::Or: { 354 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 355 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 356 357 // Output known-0 bits are only known if clear in both the LHS & RHS. 358 KnownZero &= KnownZero2; 359 // Output known-1 are known to be set if set in either the LHS | RHS. 360 KnownOne |= KnownOne2; 361 break; 362 } 363 case Instruction::Xor: { 364 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 365 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 366 367 // Output known-0 bits are known if clear or set in both the LHS & RHS. 368 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 369 // Output known-1 are known to be set if set in only one of the LHS, RHS. 370 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 371 KnownZero = KnownZeroOut; 372 break; 373 } 374 case Instruction::Mul: { 375 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 376 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, 377 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); 378 break; 379 } 380 case Instruction::UDiv: { 381 // For the purposes of computing leading zeros we can conservatively 382 // treat a udiv as a logical right shift by the power of 2 known to 383 // be less than the denominator. 384 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 385 unsigned LeadZ = KnownZero2.countLeadingOnes(); 386 387 KnownOne2.clearAllBits(); 388 KnownZero2.clearAllBits(); 389 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 390 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 391 if (RHSUnknownLeadingOnes != BitWidth) 392 LeadZ = std::min(BitWidth, 393 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 394 395 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 396 break; 397 } 398 case Instruction::Select: 399 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); 400 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, 401 Depth+1); 402 403 // Only known if known in both the LHS and RHS. 404 KnownOne &= KnownOne2; 405 KnownZero &= KnownZero2; 406 break; 407 case Instruction::FPTrunc: 408 case Instruction::FPExt: 409 case Instruction::FPToUI: 410 case Instruction::FPToSI: 411 case Instruction::SIToFP: 412 case Instruction::UIToFP: 413 break; // Can't work with floating point. 414 case Instruction::PtrToInt: 415 case Instruction::IntToPtr: 416 // We can't handle these if we don't know the pointer size. 417 if (!TD) break; 418 // FALL THROUGH and handle them the same as zext/trunc. 419 case Instruction::ZExt: 420 case Instruction::Trunc: { 421 Type *SrcTy = I->getOperand(0)->getType(); 422 423 unsigned SrcBitWidth; 424 // Note that we handle pointer operands here because of inttoptr/ptrtoint 425 // which fall through here. 426 if(TD) { 427 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 428 } else { 429 SrcBitWidth = SrcTy->getScalarSizeInBits(); 430 if (!SrcBitWidth) break; 431 } 432 433 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 434 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 435 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 436 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 437 KnownZero = KnownZero.zextOrTrunc(BitWidth); 438 KnownOne = KnownOne.zextOrTrunc(BitWidth); 439 // Any top bits are known to be zero. 440 if (BitWidth > SrcBitWidth) 441 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 442 break; 443 } 444 case Instruction::BitCast: { 445 Type *SrcTy = I->getOperand(0)->getType(); 446 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 447 // TODO: For now, not handling conversions like: 448 // (bitcast i64 %x to <2 x i32>) 449 !I->getType()->isVectorTy()) { 450 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 451 break; 452 } 453 break; 454 } 455 case Instruction::SExt: { 456 // Compute the bits in the result that are not present in the input. 457 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 458 459 KnownZero = KnownZero.trunc(SrcBitWidth); 460 KnownOne = KnownOne.trunc(SrcBitWidth); 461 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 462 KnownZero = KnownZero.zext(BitWidth); 463 KnownOne = KnownOne.zext(BitWidth); 464 465 // If the sign bit of the input is known set or clear, then we know the 466 // top bits of the result. 467 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 468 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 469 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 470 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 471 break; 472 } 473 case Instruction::Shl: 474 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 475 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 476 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 477 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 478 KnownZero <<= ShiftAmt; 479 KnownOne <<= ShiftAmt; 480 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 481 break; 482 } 483 break; 484 case Instruction::LShr: 485 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 486 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 487 // Compute the new bits that are at the top now. 488 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 489 490 // Unsigned shift right. 491 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); 492 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 493 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 494 // high bits known zero. 495 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 496 break; 497 } 498 break; 499 case Instruction::AShr: 500 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 501 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 502 // Compute the new bits that are at the top now. 503 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 504 505 // Signed shift right. 506 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 507 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 508 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 509 510 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 511 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 512 KnownZero |= HighBits; 513 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 514 KnownOne |= HighBits; 515 break; 516 } 517 break; 518 case Instruction::Sub: { 519 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 520 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 521 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 522 Depth); 523 break; 524 } 525 case Instruction::Add: { 526 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 527 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 528 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 529 Depth); 530 break; 531 } 532 case Instruction::SRem: 533 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 534 APInt RA = Rem->getValue().abs(); 535 if (RA.isPowerOf2()) { 536 APInt LowBits = RA - 1; 537 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 538 539 // The low bits of the first operand are unchanged by the srem. 540 KnownZero = KnownZero2 & LowBits; 541 KnownOne = KnownOne2 & LowBits; 542 543 // If the first operand is non-negative or has all low bits zero, then 544 // the upper bits are all zero. 545 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 546 KnownZero |= ~LowBits; 547 548 // If the first operand is negative and not all low bits are zero, then 549 // the upper bits are all one. 550 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 551 KnownOne |= ~LowBits; 552 553 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 554 } 555 } 556 557 // The sign bit is the LHS's sign bit, except when the result of the 558 // remainder is zero. 559 if (KnownZero.isNonNegative()) { 560 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 561 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 562 Depth+1); 563 // If it's known zero, our sign bit is also zero. 564 if (LHSKnownZero.isNegative()) 565 KnownZero.setBit(BitWidth - 1); 566 } 567 568 break; 569 case Instruction::URem: { 570 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 571 APInt RA = Rem->getValue(); 572 if (RA.isPowerOf2()) { 573 APInt LowBits = (RA - 1); 574 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, 575 Depth+1); 576 KnownZero |= ~LowBits; 577 KnownOne &= LowBits; 578 break; 579 } 580 } 581 582 // Since the result is less than or equal to either operand, any leading 583 // zero bits in either operand must also exist in the result. 584 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 585 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 586 587 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 588 KnownZero2.countLeadingOnes()); 589 KnownOne.clearAllBits(); 590 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 591 break; 592 } 593 594 case Instruction::Alloca: { 595 AllocaInst *AI = cast<AllocaInst>(V); 596 unsigned Align = AI->getAlignment(); 597 if (Align == 0 && TD) 598 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 599 600 if (Align > 0) 601 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 602 break; 603 } 604 case Instruction::GetElementPtr: { 605 // Analyze all of the subscripts of this getelementptr instruction 606 // to determine if we can prove known low zero bits. 607 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 608 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 609 Depth+1); 610 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 611 612 gep_type_iterator GTI = gep_type_begin(I); 613 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 614 Value *Index = I->getOperand(i); 615 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 616 // Handle struct member offset arithmetic. 617 if (!TD) { 618 TrailZ = 0; 619 break; 620 } 621 622 // Handle case when index is vector zeroinitializer 623 Constant *CIndex = cast<Constant>(Index); 624 if (CIndex->isZeroValue()) 625 continue; 626 627 if (CIndex->getType()->isVectorTy()) 628 Index = CIndex->getSplatValue(); 629 630 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 631 const StructLayout *SL = TD->getStructLayout(STy); 632 uint64_t Offset = SL->getElementOffset(Idx); 633 TrailZ = std::min<unsigned>(TrailZ, 634 countTrailingZeros(Offset)); 635 } else { 636 // Handle array index arithmetic. 637 Type *IndexedTy = GTI.getIndexedType(); 638 if (!IndexedTy->isSized()) { 639 TrailZ = 0; 640 break; 641 } 642 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 643 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 644 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 645 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); 646 TrailZ = std::min(TrailZ, 647 unsigned(countTrailingZeros(TypeSize) + 648 LocalKnownZero.countTrailingOnes())); 649 } 650 } 651 652 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 653 break; 654 } 655 case Instruction::PHI: { 656 PHINode *P = cast<PHINode>(I); 657 // Handle the case of a simple two-predecessor recurrence PHI. 658 // There's a lot more that could theoretically be done here, but 659 // this is sufficient to catch some interesting cases. 660 if (P->getNumIncomingValues() == 2) { 661 for (unsigned i = 0; i != 2; ++i) { 662 Value *L = P->getIncomingValue(i); 663 Value *R = P->getIncomingValue(!i); 664 Operator *LU = dyn_cast<Operator>(L); 665 if (!LU) 666 continue; 667 unsigned Opcode = LU->getOpcode(); 668 // Check for operations that have the property that if 669 // both their operands have low zero bits, the result 670 // will have low zero bits. 671 if (Opcode == Instruction::Add || 672 Opcode == Instruction::Sub || 673 Opcode == Instruction::And || 674 Opcode == Instruction::Or || 675 Opcode == Instruction::Mul) { 676 Value *LL = LU->getOperand(0); 677 Value *LR = LU->getOperand(1); 678 // Find a recurrence. 679 if (LL == I) 680 L = LR; 681 else if (LR == I) 682 L = LL; 683 else 684 break; 685 // Ok, we have a PHI of the form L op= R. Check for low 686 // zero bits. 687 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1); 688 689 // We need to take the minimum number of known bits 690 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 691 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1); 692 693 KnownZero = APInt::getLowBitsSet(BitWidth, 694 std::min(KnownZero2.countTrailingOnes(), 695 KnownZero3.countTrailingOnes())); 696 break; 697 } 698 } 699 } 700 701 // Unreachable blocks may have zero-operand PHI nodes. 702 if (P->getNumIncomingValues() == 0) 703 break; 704 705 // Otherwise take the unions of the known bit sets of the operands, 706 // taking conservative care to avoid excessive recursion. 707 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 708 // Skip if every incoming value references to ourself. 709 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 710 break; 711 712 KnownZero = APInt::getAllOnesValue(BitWidth); 713 KnownOne = APInt::getAllOnesValue(BitWidth); 714 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 715 // Skip direct self references. 716 if (P->getIncomingValue(i) == P) continue; 717 718 KnownZero2 = APInt(BitWidth, 0); 719 KnownOne2 = APInt(BitWidth, 0); 720 // Recurse, but cap the recursion to one level, because we don't 721 // want to waste time spinning around in loops. 722 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 723 MaxDepth-1); 724 KnownZero &= KnownZero2; 725 KnownOne &= KnownOne2; 726 // If all bits have been ruled out, there's no need to check 727 // more operands. 728 if (!KnownZero && !KnownOne) 729 break; 730 } 731 } 732 break; 733 } 734 case Instruction::Call: 735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 736 switch (II->getIntrinsicID()) { 737 default: break; 738 case Intrinsic::ctlz: 739 case Intrinsic::cttz: { 740 unsigned LowBits = Log2_32(BitWidth)+1; 741 // If this call is undefined for 0, the result will be less than 2^n. 742 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 743 LowBits -= 1; 744 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 745 break; 746 } 747 case Intrinsic::ctpop: { 748 unsigned LowBits = Log2_32(BitWidth)+1; 749 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 750 break; 751 } 752 case Intrinsic::x86_sse42_crc32_64_64: 753 KnownZero = APInt::getHighBitsSet(64, 32); 754 break; 755 } 756 } 757 break; 758 case Instruction::ExtractValue: 759 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 760 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 761 if (EVI->getNumIndices() != 1) break; 762 if (EVI->getIndices()[0] == 0) { 763 switch (II->getIntrinsicID()) { 764 default: break; 765 case Intrinsic::uadd_with_overflow: 766 case Intrinsic::sadd_with_overflow: 767 computeKnownBitsAddSub(true, II->getArgOperand(0), 768 II->getArgOperand(1), false, KnownZero, 769 KnownOne, KnownZero2, KnownOne2, TD, Depth); 770 break; 771 case Intrinsic::usub_with_overflow: 772 case Intrinsic::ssub_with_overflow: 773 computeKnownBitsAddSub(false, II->getArgOperand(0), 774 II->getArgOperand(1), false, KnownZero, 775 KnownOne, KnownZero2, KnownOne2, TD, Depth); 776 break; 777 case Intrinsic::umul_with_overflow: 778 case Intrinsic::smul_with_overflow: 779 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), 780 false, KnownZero, KnownOne, 781 KnownZero2, KnownOne2, TD, Depth); 782 break; 783 } 784 } 785 } 786 } 787 788 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 789 } 790 791 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 792 /// one. Convenience wrapper around computeKnownBits. 793 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 794 const DataLayout *TD, unsigned Depth) { 795 unsigned BitWidth = getBitWidth(V->getType(), TD); 796 if (!BitWidth) { 797 KnownZero = false; 798 KnownOne = false; 799 return; 800 } 801 APInt ZeroBits(BitWidth, 0); 802 APInt OneBits(BitWidth, 0); 803 computeKnownBits(V, ZeroBits, OneBits, TD, Depth); 804 KnownOne = OneBits[BitWidth - 1]; 805 KnownZero = ZeroBits[BitWidth - 1]; 806 } 807 808 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one 809 /// bit set when defined. For vectors return true if every element is known to 810 /// be a power of two when defined. Supports values with integer or pointer 811 /// types and vectors of integers. 812 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { 813 if (Constant *C = dyn_cast<Constant>(V)) { 814 if (C->isNullValue()) 815 return OrZero; 816 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 817 return CI->getValue().isPowerOf2(); 818 // TODO: Handle vector constants. 819 } 820 821 // 1 << X is clearly a power of two if the one is not shifted off the end. If 822 // it is shifted off the end then the result is undefined. 823 if (match(V, m_Shl(m_One(), m_Value()))) 824 return true; 825 826 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 827 // bottom. If it is shifted off the bottom then the result is undefined. 828 if (match(V, m_LShr(m_SignBit(), m_Value()))) 829 return true; 830 831 // The remaining tests are all recursive, so bail out if we hit the limit. 832 if (Depth++ == MaxDepth) 833 return false; 834 835 Value *X = nullptr, *Y = nullptr; 836 // A shift of a power of two is a power of two or zero. 837 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 838 match(V, m_Shr(m_Value(X), m_Value())))) 839 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth); 840 841 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 842 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth); 843 844 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 845 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) && 846 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth); 847 848 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 849 // A power of two and'd with anything is a power of two or zero. 850 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) || 851 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth)) 852 return true; 853 // X & (-X) is always a power of two or zero. 854 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 855 return true; 856 return false; 857 } 858 859 // Adding a power-of-two or zero to the same power-of-two or zero yields 860 // either the original power-of-two, a larger power-of-two or zero. 861 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 862 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 863 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 864 if (match(X, m_And(m_Specific(Y), m_Value())) || 865 match(X, m_And(m_Value(), m_Specific(Y)))) 866 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth)) 867 return true; 868 if (match(Y, m_And(m_Specific(X), m_Value())) || 869 match(Y, m_And(m_Value(), m_Specific(X)))) 870 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth)) 871 return true; 872 873 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 874 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 875 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth); 876 877 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 878 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth); 879 // If i8 V is a power of two or zero: 880 // ZeroBits: 1 1 1 0 1 1 1 1 881 // ~ZeroBits: 0 0 0 1 0 0 0 0 882 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 883 // If OrZero isn't set, we cannot give back a zero result. 884 // Make sure either the LHS or RHS has a bit set. 885 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 886 return true; 887 } 888 } 889 890 // An exact divide or right shift can only shift off zero bits, so the result 891 // is a power of two only if the first operand is a power of two and not 892 // copying a sign bit (sdiv int_min, 2). 893 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 894 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 895 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth); 896 } 897 898 return false; 899 } 900 901 /// \brief Test whether a GEP's result is known to be non-null. 902 /// 903 /// Uses properties inherent in a GEP to try to determine whether it is known 904 /// to be non-null. 905 /// 906 /// Currently this routine does not support vector GEPs. 907 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 908 unsigned Depth) { 909 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 910 return false; 911 912 // FIXME: Support vector-GEPs. 913 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 914 915 // If the base pointer is non-null, we cannot walk to a null address with an 916 // inbounds GEP in address space zero. 917 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) 918 return true; 919 920 // Past this, if we don't have DataLayout, we can't do much. 921 if (!DL) 922 return false; 923 924 // Walk the GEP operands and see if any operand introduces a non-zero offset. 925 // If so, then the GEP cannot produce a null pointer, as doing so would 926 // inherently violate the inbounds contract within address space zero. 927 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 928 GTI != GTE; ++GTI) { 929 // Struct types are easy -- they must always be indexed by a constant. 930 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 931 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 932 unsigned ElementIdx = OpC->getZExtValue(); 933 const StructLayout *SL = DL->getStructLayout(STy); 934 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 935 if (ElementOffset > 0) 936 return true; 937 continue; 938 } 939 940 // If we have a zero-sized type, the index doesn't matter. Keep looping. 941 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 942 continue; 943 944 // Fast path the constant operand case both for efficiency and so we don't 945 // increment Depth when just zipping down an all-constant GEP. 946 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 947 if (!OpC->isZero()) 948 return true; 949 continue; 950 } 951 952 // We post-increment Depth here because while isKnownNonZero increments it 953 // as well, when we pop back up that increment won't persist. We don't want 954 // to recurse 10k times just because we have 10k GEP operands. We don't 955 // bail completely out because we want to handle constant GEPs regardless 956 // of depth. 957 if (Depth++ >= MaxDepth) 958 continue; 959 960 if (isKnownNonZero(GTI.getOperand(), DL, Depth)) 961 return true; 962 } 963 964 return false; 965 } 966 967 /// isKnownNonZero - Return true if the given value is known to be non-zero 968 /// when defined. For vectors return true if every element is known to be 969 /// non-zero when defined. Supports values with integer or pointer type and 970 /// vectors of integers. 971 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { 972 if (Constant *C = dyn_cast<Constant>(V)) { 973 if (C->isNullValue()) 974 return false; 975 if (isa<ConstantInt>(C)) 976 // Must be non-zero due to null test above. 977 return true; 978 // TODO: Handle vectors 979 return false; 980 } 981 982 // The remaining tests are all recursive, so bail out if we hit the limit. 983 if (Depth++ >= MaxDepth) 984 return false; 985 986 // Check for pointer simplifications. 987 if (V->getType()->isPointerTy()) { 988 if (isKnownNonNull(V)) 989 return true; 990 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 991 if (isGEPKnownNonNull(GEP, TD, Depth)) 992 return true; 993 } 994 995 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 996 997 // X | Y != 0 if X != 0 or Y != 0. 998 Value *X = nullptr, *Y = nullptr; 999 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1000 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 1001 1002 // ext X != 0 if X != 0. 1003 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1004 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 1005 1006 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1007 // if the lowest bit is shifted off the end. 1008 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1009 // shl nuw can't remove any non-zero bits. 1010 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1011 if (BO->hasNoUnsignedWrap()) 1012 return isKnownNonZero(X, TD, Depth); 1013 1014 APInt KnownZero(BitWidth, 0); 1015 APInt KnownOne(BitWidth, 0); 1016 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 1017 if (KnownOne[0]) 1018 return true; 1019 } 1020 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1021 // defined if the sign bit is shifted off the end. 1022 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1023 // shr exact can only shift out zero bits. 1024 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1025 if (BO->isExact()) 1026 return isKnownNonZero(X, TD, Depth); 1027 1028 bool XKnownNonNegative, XKnownNegative; 1029 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1030 if (XKnownNegative) 1031 return true; 1032 } 1033 // div exact can only produce a zero if the dividend is zero. 1034 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1035 return isKnownNonZero(X, TD, Depth); 1036 } 1037 // X + Y. 1038 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1039 bool XKnownNonNegative, XKnownNegative; 1040 bool YKnownNonNegative, YKnownNegative; 1041 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1042 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 1043 1044 // If X and Y are both non-negative (as signed values) then their sum is not 1045 // zero unless both X and Y are zero. 1046 if (XKnownNonNegative && YKnownNonNegative) 1047 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 1048 return true; 1049 1050 // If X and Y are both negative (as signed values) then their sum is not 1051 // zero unless both X and Y equal INT_MIN. 1052 if (BitWidth && XKnownNegative && YKnownNegative) { 1053 APInt KnownZero(BitWidth, 0); 1054 APInt KnownOne(BitWidth, 0); 1055 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1056 // The sign bit of X is set. If some other bit is set then X is not equal 1057 // to INT_MIN. 1058 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 1059 if ((KnownOne & Mask) != 0) 1060 return true; 1061 // The sign bit of Y is set. If some other bit is set then Y is not equal 1062 // to INT_MIN. 1063 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth); 1064 if ((KnownOne & Mask) != 0) 1065 return true; 1066 } 1067 1068 // The sum of a non-negative number and a power of two is not zero. 1069 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth)) 1070 return true; 1071 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth)) 1072 return true; 1073 } 1074 // X * Y. 1075 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1076 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1077 // If X and Y are non-zero then so is X * Y as long as the multiplication 1078 // does not overflow. 1079 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1080 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 1081 return true; 1082 } 1083 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1084 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1085 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 1086 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 1087 return true; 1088 } 1089 1090 if (!BitWidth) return false; 1091 APInt KnownZero(BitWidth, 0); 1092 APInt KnownOne(BitWidth, 0); 1093 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1094 return KnownOne != 0; 1095 } 1096 1097 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1098 /// this predicate to simplify operations downstream. Mask is known to be zero 1099 /// for bits that V cannot have. 1100 /// 1101 /// This function is defined on values with integer type, values with pointer 1102 /// type (but only if TD is non-null), and vectors of integers. In the case 1103 /// where V is a vector, the mask, known zero, and known one values are the 1104 /// same width as the vector element, and the bit is set only if it is true 1105 /// for all of the elements in the vector. 1106 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 1107 const DataLayout *TD, unsigned Depth) { 1108 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1109 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1110 return (KnownZero & Mask) == Mask; 1111 } 1112 1113 1114 1115 /// ComputeNumSignBits - Return the number of times the sign bit of the 1116 /// register is replicated into the other bits. We know that at least 1 bit 1117 /// is always equal to the sign bit (itself), but other cases can give us 1118 /// information. For example, immediately after an "ashr X, 2", we know that 1119 /// the top 3 bits are all equal to each other, so we return 3. 1120 /// 1121 /// 'Op' must have a scalar integer type. 1122 /// 1123 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 1124 unsigned Depth) { 1125 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1126 "ComputeNumSignBits requires a DataLayout object to operate " 1127 "on non-integer values!"); 1128 Type *Ty = V->getType(); 1129 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1130 Ty->getScalarSizeInBits(); 1131 unsigned Tmp, Tmp2; 1132 unsigned FirstAnswer = 1; 1133 1134 // Note that ConstantInt is handled by the general computeKnownBits case 1135 // below. 1136 1137 if (Depth == 6) 1138 return 1; // Limit search depth. 1139 1140 Operator *U = dyn_cast<Operator>(V); 1141 switch (Operator::getOpcode(V)) { 1142 default: break; 1143 case Instruction::SExt: 1144 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1145 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1146 1147 case Instruction::AShr: { 1148 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1149 // ashr X, C -> adds C sign bits. Vectors too. 1150 const APInt *ShAmt; 1151 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1152 Tmp += ShAmt->getZExtValue(); 1153 if (Tmp > TyBits) Tmp = TyBits; 1154 } 1155 return Tmp; 1156 } 1157 case Instruction::Shl: { 1158 const APInt *ShAmt; 1159 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1160 // shl destroys sign bits. 1161 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1162 Tmp2 = ShAmt->getZExtValue(); 1163 if (Tmp2 >= TyBits || // Bad shift. 1164 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1165 return Tmp - Tmp2; 1166 } 1167 break; 1168 } 1169 case Instruction::And: 1170 case Instruction::Or: 1171 case Instruction::Xor: // NOT is handled here. 1172 // Logical binary ops preserve the number of sign bits at the worst. 1173 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1174 if (Tmp != 1) { 1175 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1176 FirstAnswer = std::min(Tmp, Tmp2); 1177 // We computed what we know about the sign bits as our first 1178 // answer. Now proceed to the generic code that uses 1179 // computeKnownBits, and pick whichever answer is better. 1180 } 1181 break; 1182 1183 case Instruction::Select: 1184 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1185 if (Tmp == 1) return 1; // Early out. 1186 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1187 return std::min(Tmp, Tmp2); 1188 1189 case Instruction::Add: 1190 // Add can have at most one carry bit. Thus we know that the output 1191 // is, at worst, one more bit than the inputs. 1192 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1193 if (Tmp == 1) return 1; // Early out. 1194 1195 // Special case decrementing a value (ADD X, -1): 1196 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1197 if (CRHS->isAllOnesValue()) { 1198 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1199 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 1200 1201 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1202 // sign bits set. 1203 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1204 return TyBits; 1205 1206 // If we are subtracting one from a positive number, there is no carry 1207 // out of the result. 1208 if (KnownZero.isNegative()) 1209 return Tmp; 1210 } 1211 1212 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1213 if (Tmp2 == 1) return 1; 1214 return std::min(Tmp, Tmp2)-1; 1215 1216 case Instruction::Sub: 1217 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1218 if (Tmp2 == 1) return 1; 1219 1220 // Handle NEG. 1221 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1222 if (CLHS->isNullValue()) { 1223 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1224 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 1225 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1226 // sign bits set. 1227 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1228 return TyBits; 1229 1230 // If the input is known to be positive (the sign bit is known clear), 1231 // the output of the NEG has the same number of sign bits as the input. 1232 if (KnownZero.isNegative()) 1233 return Tmp2; 1234 1235 // Otherwise, we treat this like a SUB. 1236 } 1237 1238 // Sub can have at most one carry bit. Thus we know that the output 1239 // is, at worst, one more bit than the inputs. 1240 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1241 if (Tmp == 1) return 1; // Early out. 1242 return std::min(Tmp, Tmp2)-1; 1243 1244 case Instruction::PHI: { 1245 PHINode *PN = cast<PHINode>(U); 1246 // Don't analyze large in-degree PHIs. 1247 if (PN->getNumIncomingValues() > 4) break; 1248 1249 // Take the minimum of all incoming values. This can't infinitely loop 1250 // because of our depth threshold. 1251 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1252 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1253 if (Tmp == 1) return Tmp; 1254 Tmp = std::min(Tmp, 1255 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1256 } 1257 return Tmp; 1258 } 1259 1260 case Instruction::Trunc: 1261 // FIXME: it's tricky to do anything useful for this, but it is an important 1262 // case for targets like X86. 1263 break; 1264 } 1265 1266 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1267 // use this information. 1268 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1269 APInt Mask; 1270 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1271 1272 if (KnownZero.isNegative()) { // sign bit is 0 1273 Mask = KnownZero; 1274 } else if (KnownOne.isNegative()) { // sign bit is 1; 1275 Mask = KnownOne; 1276 } else { 1277 // Nothing known. 1278 return FirstAnswer; 1279 } 1280 1281 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1282 // the number of identical bits in the top of the input value. 1283 Mask = ~Mask; 1284 Mask <<= Mask.getBitWidth()-TyBits; 1285 // Return # leading zeros. We use 'min' here in case Val was zero before 1286 // shifting. We don't want to return '64' as for an i32 "0". 1287 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1288 } 1289 1290 /// ComputeMultiple - This function computes the integer multiple of Base that 1291 /// equals V. If successful, it returns true and returns the multiple in 1292 /// Multiple. If unsuccessful, it returns false. It looks 1293 /// through SExt instructions only if LookThroughSExt is true. 1294 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1295 bool LookThroughSExt, unsigned Depth) { 1296 const unsigned MaxDepth = 6; 1297 1298 assert(V && "No Value?"); 1299 assert(Depth <= MaxDepth && "Limit Search Depth"); 1300 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1301 1302 Type *T = V->getType(); 1303 1304 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1305 1306 if (Base == 0) 1307 return false; 1308 1309 if (Base == 1) { 1310 Multiple = V; 1311 return true; 1312 } 1313 1314 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1315 Constant *BaseVal = ConstantInt::get(T, Base); 1316 if (CO && CO == BaseVal) { 1317 // Multiple is 1. 1318 Multiple = ConstantInt::get(T, 1); 1319 return true; 1320 } 1321 1322 if (CI && CI->getZExtValue() % Base == 0) { 1323 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1324 return true; 1325 } 1326 1327 if (Depth == MaxDepth) return false; // Limit search depth. 1328 1329 Operator *I = dyn_cast<Operator>(V); 1330 if (!I) return false; 1331 1332 switch (I->getOpcode()) { 1333 default: break; 1334 case Instruction::SExt: 1335 if (!LookThroughSExt) return false; 1336 // otherwise fall through to ZExt 1337 case Instruction::ZExt: 1338 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1339 LookThroughSExt, Depth+1); 1340 case Instruction::Shl: 1341 case Instruction::Mul: { 1342 Value *Op0 = I->getOperand(0); 1343 Value *Op1 = I->getOperand(1); 1344 1345 if (I->getOpcode() == Instruction::Shl) { 1346 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1347 if (!Op1CI) return false; 1348 // Turn Op0 << Op1 into Op0 * 2^Op1 1349 APInt Op1Int = Op1CI->getValue(); 1350 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1351 APInt API(Op1Int.getBitWidth(), 0); 1352 API.setBit(BitToSet); 1353 Op1 = ConstantInt::get(V->getContext(), API); 1354 } 1355 1356 Value *Mul0 = nullptr; 1357 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1358 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1359 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1360 if (Op1C->getType()->getPrimitiveSizeInBits() < 1361 MulC->getType()->getPrimitiveSizeInBits()) 1362 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1363 if (Op1C->getType()->getPrimitiveSizeInBits() > 1364 MulC->getType()->getPrimitiveSizeInBits()) 1365 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1366 1367 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1368 Multiple = ConstantExpr::getMul(MulC, Op1C); 1369 return true; 1370 } 1371 1372 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1373 if (Mul0CI->getValue() == 1) { 1374 // V == Base * Op1, so return Op1 1375 Multiple = Op1; 1376 return true; 1377 } 1378 } 1379 1380 Value *Mul1 = nullptr; 1381 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1382 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1383 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1384 if (Op0C->getType()->getPrimitiveSizeInBits() < 1385 MulC->getType()->getPrimitiveSizeInBits()) 1386 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1387 if (Op0C->getType()->getPrimitiveSizeInBits() > 1388 MulC->getType()->getPrimitiveSizeInBits()) 1389 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1390 1391 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1392 Multiple = ConstantExpr::getMul(MulC, Op0C); 1393 return true; 1394 } 1395 1396 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1397 if (Mul1CI->getValue() == 1) { 1398 // V == Base * Op0, so return Op0 1399 Multiple = Op0; 1400 return true; 1401 } 1402 } 1403 } 1404 } 1405 1406 // We could not determine if V is a multiple of Base. 1407 return false; 1408 } 1409 1410 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1411 /// value is never equal to -0.0. 1412 /// 1413 /// NOTE: this function will need to be revisited when we support non-default 1414 /// rounding modes! 1415 /// 1416 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1417 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1418 return !CFP->getValueAPF().isNegZero(); 1419 1420 if (Depth == 6) 1421 return 1; // Limit search depth. 1422 1423 const Operator *I = dyn_cast<Operator>(V); 1424 if (!I) return false; 1425 1426 // Check if the nsz fast-math flag is set 1427 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 1428 if (FPO->hasNoSignedZeros()) 1429 return true; 1430 1431 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1432 if (I->getOpcode() == Instruction::FAdd) 1433 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 1434 if (CFP->isNullValue()) 1435 return true; 1436 1437 // sitofp and uitofp turn into +0.0 for zero. 1438 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1439 return true; 1440 1441 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1442 // sqrt(-0.0) = -0.0, no other negative results are possible. 1443 if (II->getIntrinsicID() == Intrinsic::sqrt) 1444 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1445 1446 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1447 if (const Function *F = CI->getCalledFunction()) { 1448 if (F->isDeclaration()) { 1449 // abs(x) != -0.0 1450 if (F->getName() == "abs") return true; 1451 // fabs[lf](x) != -0.0 1452 if (F->getName() == "fabs") return true; 1453 if (F->getName() == "fabsf") return true; 1454 if (F->getName() == "fabsl") return true; 1455 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1456 F->getName() == "sqrtl") 1457 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1458 } 1459 } 1460 1461 return false; 1462 } 1463 1464 /// isBytewiseValue - If the specified value can be set by repeating the same 1465 /// byte in memory, return the i8 value that it is represented with. This is 1466 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1467 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1468 /// byte store (e.g. i16 0x1234), return null. 1469 Value *llvm::isBytewiseValue(Value *V) { 1470 // All byte-wide stores are splatable, even of arbitrary variables. 1471 if (V->getType()->isIntegerTy(8)) return V; 1472 1473 // Handle 'null' ConstantArrayZero etc. 1474 if (Constant *C = dyn_cast<Constant>(V)) 1475 if (C->isNullValue()) 1476 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1477 1478 // Constant float and double values can be handled as integer values if the 1479 // corresponding integer value is "byteable". An important case is 0.0. 1480 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1481 if (CFP->getType()->isFloatTy()) 1482 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1483 if (CFP->getType()->isDoubleTy()) 1484 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1485 // Don't handle long double formats, which have strange constraints. 1486 } 1487 1488 // We can handle constant integers that are power of two in size and a 1489 // multiple of 8 bits. 1490 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1491 unsigned Width = CI->getBitWidth(); 1492 if (isPowerOf2_32(Width) && Width > 8) { 1493 // We can handle this value if the recursive binary decomposition is the 1494 // same at all levels. 1495 APInt Val = CI->getValue(); 1496 APInt Val2; 1497 while (Val.getBitWidth() != 8) { 1498 unsigned NextWidth = Val.getBitWidth()/2; 1499 Val2 = Val.lshr(NextWidth); 1500 Val2 = Val2.trunc(Val.getBitWidth()/2); 1501 Val = Val.trunc(Val.getBitWidth()/2); 1502 1503 // If the top/bottom halves aren't the same, reject it. 1504 if (Val != Val2) 1505 return nullptr; 1506 } 1507 return ConstantInt::get(V->getContext(), Val); 1508 } 1509 } 1510 1511 // A ConstantDataArray/Vector is splatable if all its members are equal and 1512 // also splatable. 1513 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1514 Value *Elt = CA->getElementAsConstant(0); 1515 Value *Val = isBytewiseValue(Elt); 1516 if (!Val) 1517 return nullptr; 1518 1519 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1520 if (CA->getElementAsConstant(I) != Elt) 1521 return nullptr; 1522 1523 return Val; 1524 } 1525 1526 // Conceptually, we could handle things like: 1527 // %a = zext i8 %X to i16 1528 // %b = shl i16 %a, 8 1529 // %c = or i16 %a, %b 1530 // but until there is an example that actually needs this, it doesn't seem 1531 // worth worrying about. 1532 return nullptr; 1533 } 1534 1535 1536 // This is the recursive version of BuildSubAggregate. It takes a few different 1537 // arguments. Idxs is the index within the nested struct From that we are 1538 // looking at now (which is of type IndexedType). IdxSkip is the number of 1539 // indices from Idxs that should be left out when inserting into the resulting 1540 // struct. To is the result struct built so far, new insertvalue instructions 1541 // build on that. 1542 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1543 SmallVectorImpl<unsigned> &Idxs, 1544 unsigned IdxSkip, 1545 Instruction *InsertBefore) { 1546 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 1547 if (STy) { 1548 // Save the original To argument so we can modify it 1549 Value *OrigTo = To; 1550 // General case, the type indexed by Idxs is a struct 1551 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1552 // Process each struct element recursively 1553 Idxs.push_back(i); 1554 Value *PrevTo = To; 1555 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1556 InsertBefore); 1557 Idxs.pop_back(); 1558 if (!To) { 1559 // Couldn't find any inserted value for this index? Cleanup 1560 while (PrevTo != OrigTo) { 1561 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1562 PrevTo = Del->getAggregateOperand(); 1563 Del->eraseFromParent(); 1564 } 1565 // Stop processing elements 1566 break; 1567 } 1568 } 1569 // If we successfully found a value for each of our subaggregates 1570 if (To) 1571 return To; 1572 } 1573 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1574 // the struct's elements had a value that was inserted directly. In the latter 1575 // case, perhaps we can't determine each of the subelements individually, but 1576 // we might be able to find the complete struct somewhere. 1577 1578 // Find the value that is at that particular spot 1579 Value *V = FindInsertedValue(From, Idxs); 1580 1581 if (!V) 1582 return nullptr; 1583 1584 // Insert the value in the new (sub) aggregrate 1585 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1586 "tmp", InsertBefore); 1587 } 1588 1589 // This helper takes a nested struct and extracts a part of it (which is again a 1590 // struct) into a new value. For example, given the struct: 1591 // { a, { b, { c, d }, e } } 1592 // and the indices "1, 1" this returns 1593 // { c, d }. 1594 // 1595 // It does this by inserting an insertvalue for each element in the resulting 1596 // struct, as opposed to just inserting a single struct. This will only work if 1597 // each of the elements of the substruct are known (ie, inserted into From by an 1598 // insertvalue instruction somewhere). 1599 // 1600 // All inserted insertvalue instructions are inserted before InsertBefore 1601 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1602 Instruction *InsertBefore) { 1603 assert(InsertBefore && "Must have someplace to insert!"); 1604 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1605 idx_range); 1606 Value *To = UndefValue::get(IndexedType); 1607 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1608 unsigned IdxSkip = Idxs.size(); 1609 1610 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1611 } 1612 1613 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1614 /// the scalar value indexed is already around as a register, for example if it 1615 /// were inserted directly into the aggregrate. 1616 /// 1617 /// If InsertBefore is not null, this function will duplicate (modified) 1618 /// insertvalues when a part of a nested struct is extracted. 1619 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1620 Instruction *InsertBefore) { 1621 // Nothing to index? Just return V then (this is useful at the end of our 1622 // recursion). 1623 if (idx_range.empty()) 1624 return V; 1625 // We have indices, so V should have an indexable type. 1626 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1627 "Not looking at a struct or array?"); 1628 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1629 "Invalid indices for type?"); 1630 1631 if (Constant *C = dyn_cast<Constant>(V)) { 1632 C = C->getAggregateElement(idx_range[0]); 1633 if (!C) return nullptr; 1634 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1635 } 1636 1637 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1638 // Loop the indices for the insertvalue instruction in parallel with the 1639 // requested indices 1640 const unsigned *req_idx = idx_range.begin(); 1641 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1642 i != e; ++i, ++req_idx) { 1643 if (req_idx == idx_range.end()) { 1644 // We can't handle this without inserting insertvalues 1645 if (!InsertBefore) 1646 return nullptr; 1647 1648 // The requested index identifies a part of a nested aggregate. Handle 1649 // this specially. For example, 1650 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1651 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1652 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1653 // This can be changed into 1654 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1655 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1656 // which allows the unused 0,0 element from the nested struct to be 1657 // removed. 1658 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1659 InsertBefore); 1660 } 1661 1662 // This insert value inserts something else than what we are looking for. 1663 // See if the (aggregrate) value inserted into has the value we are 1664 // looking for, then. 1665 if (*req_idx != *i) 1666 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1667 InsertBefore); 1668 } 1669 // If we end up here, the indices of the insertvalue match with those 1670 // requested (though possibly only partially). Now we recursively look at 1671 // the inserted value, passing any remaining indices. 1672 return FindInsertedValue(I->getInsertedValueOperand(), 1673 makeArrayRef(req_idx, idx_range.end()), 1674 InsertBefore); 1675 } 1676 1677 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1678 // If we're extracting a value from an aggregrate that was extracted from 1679 // something else, we can extract from that something else directly instead. 1680 // However, we will need to chain I's indices with the requested indices. 1681 1682 // Calculate the number of indices required 1683 unsigned size = I->getNumIndices() + idx_range.size(); 1684 // Allocate some space to put the new indices in 1685 SmallVector<unsigned, 5> Idxs; 1686 Idxs.reserve(size); 1687 // Add indices from the extract value instruction 1688 Idxs.append(I->idx_begin(), I->idx_end()); 1689 1690 // Add requested indices 1691 Idxs.append(idx_range.begin(), idx_range.end()); 1692 1693 assert(Idxs.size() == size 1694 && "Number of indices added not correct?"); 1695 1696 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1697 } 1698 // Otherwise, we don't know (such as, extracting from a function return value 1699 // or load instruction) 1700 return nullptr; 1701 } 1702 1703 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1704 /// it can be expressed as a base pointer plus a constant offset. Return the 1705 /// base and offset to the caller. 1706 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1707 const DataLayout *DL) { 1708 // Without DataLayout, conservatively assume 64-bit offsets, which is 1709 // the widest we support. 1710 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64; 1711 APInt ByteOffset(BitWidth, 0); 1712 while (1) { 1713 if (Ptr->getType()->isVectorTy()) 1714 break; 1715 1716 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1717 if (DL) { 1718 APInt GEPOffset(BitWidth, 0); 1719 if (!GEP->accumulateConstantOffset(*DL, GEPOffset)) 1720 break; 1721 1722 ByteOffset += GEPOffset; 1723 } 1724 1725 Ptr = GEP->getPointerOperand(); 1726 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1727 Ptr = cast<Operator>(Ptr)->getOperand(0); 1728 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1729 if (GA->mayBeOverridden()) 1730 break; 1731 Ptr = GA->getAliasee(); 1732 } else { 1733 break; 1734 } 1735 } 1736 Offset = ByteOffset.getSExtValue(); 1737 return Ptr; 1738 } 1739 1740 1741 /// getConstantStringInfo - This function computes the length of a 1742 /// null-terminated C string pointed to by V. If successful, it returns true 1743 /// and returns the string in Str. If unsuccessful, it returns false. 1744 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1745 uint64_t Offset, bool TrimAtNul) { 1746 assert(V); 1747 1748 // Look through bitcast instructions and geps. 1749 V = V->stripPointerCasts(); 1750 1751 // If the value is a GEP instructionor constant expression, treat it as an 1752 // offset. 1753 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1754 // Make sure the GEP has exactly three arguments. 1755 if (GEP->getNumOperands() != 3) 1756 return false; 1757 1758 // Make sure the index-ee is a pointer to array of i8. 1759 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1760 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1761 if (!AT || !AT->getElementType()->isIntegerTy(8)) 1762 return false; 1763 1764 // Check to make sure that the first operand of the GEP is an integer and 1765 // has value 0 so that we are sure we're indexing into the initializer. 1766 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1767 if (!FirstIdx || !FirstIdx->isZero()) 1768 return false; 1769 1770 // If the second index isn't a ConstantInt, then this is a variable index 1771 // into the array. If this occurs, we can't say anything meaningful about 1772 // the string. 1773 uint64_t StartIdx = 0; 1774 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1775 StartIdx = CI->getZExtValue(); 1776 else 1777 return false; 1778 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1779 } 1780 1781 // The GEP instruction, constant or instruction, must reference a global 1782 // variable that is a constant and is initialized. The referenced constant 1783 // initializer is the array that we'll use for optimization. 1784 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1785 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1786 return false; 1787 1788 // Handle the all-zeros case 1789 if (GV->getInitializer()->isNullValue()) { 1790 // This is a degenerate case. The initializer is constant zero so the 1791 // length of the string must be zero. 1792 Str = ""; 1793 return true; 1794 } 1795 1796 // Must be a Constant Array 1797 const ConstantDataArray *Array = 1798 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1799 if (!Array || !Array->isString()) 1800 return false; 1801 1802 // Get the number of elements in the array 1803 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1804 1805 // Start out with the entire array in the StringRef. 1806 Str = Array->getAsString(); 1807 1808 if (Offset > NumElts) 1809 return false; 1810 1811 // Skip over 'offset' bytes. 1812 Str = Str.substr(Offset); 1813 1814 if (TrimAtNul) { 1815 // Trim off the \0 and anything after it. If the array is not nul 1816 // terminated, we just return the whole end of string. The client may know 1817 // some other way that the string is length-bound. 1818 Str = Str.substr(0, Str.find('\0')); 1819 } 1820 return true; 1821 } 1822 1823 // These next two are very similar to the above, but also look through PHI 1824 // nodes. 1825 // TODO: See if we can integrate these two together. 1826 1827 /// GetStringLengthH - If we can compute the length of the string pointed to by 1828 /// the specified pointer, return 'len+1'. If we can't, return 0. 1829 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1830 // Look through noop bitcast instructions. 1831 V = V->stripPointerCasts(); 1832 1833 // If this is a PHI node, there are two cases: either we have already seen it 1834 // or we haven't. 1835 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1836 if (!PHIs.insert(PN)) 1837 return ~0ULL; // already in the set. 1838 1839 // If it was new, see if all the input strings are the same length. 1840 uint64_t LenSoFar = ~0ULL; 1841 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1842 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1843 if (Len == 0) return 0; // Unknown length -> unknown. 1844 1845 if (Len == ~0ULL) continue; 1846 1847 if (Len != LenSoFar && LenSoFar != ~0ULL) 1848 return 0; // Disagree -> unknown. 1849 LenSoFar = Len; 1850 } 1851 1852 // Success, all agree. 1853 return LenSoFar; 1854 } 1855 1856 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1857 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1858 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1859 if (Len1 == 0) return 0; 1860 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1861 if (Len2 == 0) return 0; 1862 if (Len1 == ~0ULL) return Len2; 1863 if (Len2 == ~0ULL) return Len1; 1864 if (Len1 != Len2) return 0; 1865 return Len1; 1866 } 1867 1868 // Otherwise, see if we can read the string. 1869 StringRef StrData; 1870 if (!getConstantStringInfo(V, StrData)) 1871 return 0; 1872 1873 return StrData.size()+1; 1874 } 1875 1876 /// GetStringLength - If we can compute the length of the string pointed to by 1877 /// the specified pointer, return 'len+1'. If we can't, return 0. 1878 uint64_t llvm::GetStringLength(Value *V) { 1879 if (!V->getType()->isPointerTy()) return 0; 1880 1881 SmallPtrSet<PHINode*, 32> PHIs; 1882 uint64_t Len = GetStringLengthH(V, PHIs); 1883 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1884 // an empty string as a length. 1885 return Len == ~0ULL ? 1 : Len; 1886 } 1887 1888 Value * 1889 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 1890 if (!V->getType()->isPointerTy()) 1891 return V; 1892 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1893 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1894 V = GEP->getPointerOperand(); 1895 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1896 V = cast<Operator>(V)->getOperand(0); 1897 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1898 if (GA->mayBeOverridden()) 1899 return V; 1900 V = GA->getAliasee(); 1901 } else { 1902 // See if InstructionSimplify knows any relevant tricks. 1903 if (Instruction *I = dyn_cast<Instruction>(V)) 1904 // TODO: Acquire a DominatorTree and use it. 1905 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) { 1906 V = Simplified; 1907 continue; 1908 } 1909 1910 return V; 1911 } 1912 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1913 } 1914 return V; 1915 } 1916 1917 void 1918 llvm::GetUnderlyingObjects(Value *V, 1919 SmallVectorImpl<Value *> &Objects, 1920 const DataLayout *TD, 1921 unsigned MaxLookup) { 1922 SmallPtrSet<Value *, 4> Visited; 1923 SmallVector<Value *, 4> Worklist; 1924 Worklist.push_back(V); 1925 do { 1926 Value *P = Worklist.pop_back_val(); 1927 P = GetUnderlyingObject(P, TD, MaxLookup); 1928 1929 if (!Visited.insert(P)) 1930 continue; 1931 1932 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 1933 Worklist.push_back(SI->getTrueValue()); 1934 Worklist.push_back(SI->getFalseValue()); 1935 continue; 1936 } 1937 1938 if (PHINode *PN = dyn_cast<PHINode>(P)) { 1939 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1940 Worklist.push_back(PN->getIncomingValue(i)); 1941 continue; 1942 } 1943 1944 Objects.push_back(P); 1945 } while (!Worklist.empty()); 1946 } 1947 1948 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1949 /// are lifetime markers. 1950 /// 1951 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1952 for (const User *U : V->users()) { 1953 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1954 if (!II) return false; 1955 1956 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1957 II->getIntrinsicID() != Intrinsic::lifetime_end) 1958 return false; 1959 } 1960 return true; 1961 } 1962 1963 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1964 const DataLayout *TD) { 1965 const Operator *Inst = dyn_cast<Operator>(V); 1966 if (!Inst) 1967 return false; 1968 1969 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1970 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1971 if (C->canTrap()) 1972 return false; 1973 1974 switch (Inst->getOpcode()) { 1975 default: 1976 return true; 1977 case Instruction::UDiv: 1978 case Instruction::URem: 1979 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1980 return isKnownNonZero(Inst->getOperand(1), TD); 1981 case Instruction::SDiv: 1982 case Instruction::SRem: { 1983 Value *Op = Inst->getOperand(1); 1984 // x / y is undefined if y == 0 1985 if (!isKnownNonZero(Op, TD)) 1986 return false; 1987 // x / y might be undefined if y == -1 1988 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1989 if (BitWidth == 0) 1990 return false; 1991 APInt KnownZero(BitWidth, 0); 1992 APInt KnownOne(BitWidth, 0); 1993 computeKnownBits(Op, KnownZero, KnownOne, TD); 1994 return !!KnownZero; 1995 } 1996 case Instruction::Load: { 1997 const LoadInst *LI = cast<LoadInst>(Inst); 1998 if (!LI->isUnordered() || 1999 // Speculative load may create a race that did not exist in the source. 2000 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 2001 return false; 2002 return LI->getPointerOperand()->isDereferenceablePointer(); 2003 } 2004 case Instruction::Call: { 2005 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2006 switch (II->getIntrinsicID()) { 2007 // These synthetic intrinsics have no side-effects, and just mark 2008 // information about their operands. 2009 // FIXME: There are other no-op synthetic instructions that potentially 2010 // should be considered at least *safe* to speculate... 2011 case Intrinsic::dbg_declare: 2012 case Intrinsic::dbg_value: 2013 return true; 2014 2015 case Intrinsic::bswap: 2016 case Intrinsic::ctlz: 2017 case Intrinsic::ctpop: 2018 case Intrinsic::cttz: 2019 case Intrinsic::objectsize: 2020 case Intrinsic::sadd_with_overflow: 2021 case Intrinsic::smul_with_overflow: 2022 case Intrinsic::ssub_with_overflow: 2023 case Intrinsic::uadd_with_overflow: 2024 case Intrinsic::umul_with_overflow: 2025 case Intrinsic::usub_with_overflow: 2026 return true; 2027 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2028 // errno like libm sqrt would. 2029 case Intrinsic::sqrt: 2030 case Intrinsic::fma: 2031 case Intrinsic::fmuladd: 2032 return true; 2033 // TODO: some fp intrinsics are marked as having the same error handling 2034 // as libm. They're safe to speculate when they won't error. 2035 // TODO: are convert_{from,to}_fp16 safe? 2036 // TODO: can we list target-specific intrinsics here? 2037 default: break; 2038 } 2039 } 2040 return false; // The called function could have undefined behavior or 2041 // side-effects, even if marked readnone nounwind. 2042 } 2043 case Instruction::VAArg: 2044 case Instruction::Alloca: 2045 case Instruction::Invoke: 2046 case Instruction::PHI: 2047 case Instruction::Store: 2048 case Instruction::Ret: 2049 case Instruction::Br: 2050 case Instruction::IndirectBr: 2051 case Instruction::Switch: 2052 case Instruction::Unreachable: 2053 case Instruction::Fence: 2054 case Instruction::LandingPad: 2055 case Instruction::AtomicRMW: 2056 case Instruction::AtomicCmpXchg: 2057 case Instruction::Resume: 2058 return false; // Misc instructions which have effects 2059 } 2060 } 2061 2062 /// isKnownNonNull - Return true if we know that the specified value is never 2063 /// null. 2064 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2065 // Alloca never returns null, malloc might. 2066 if (isa<AllocaInst>(V)) return true; 2067 2068 // A byval or inalloca argument is never null. 2069 if (const Argument *A = dyn_cast<Argument>(V)) 2070 return A->hasByValOrInAllocaAttr(); 2071 2072 // Global values are not null unless extern weak. 2073 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2074 return !GV->hasExternalWeakLinkage(); 2075 2076 // operator new never returns null. 2077 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2078 return true; 2079 2080 return false; 2081 } 2082