1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (Shuf->getType()->isScalable()) 172 return false; 173 174 int NumElts = 175 cast<VectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = Shuf->getType()->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 178 if (DemandedElts.isNullValue()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 Type *Ty = V->getType(); 210 APInt DemandedElts = 211 Ty->isVectorTy() 212 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 213 : APInt(1, 1); 214 computeKnownBits(V, DemandedElts, Known, Depth, Q); 215 } 216 217 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 218 const DataLayout &DL, unsigned Depth, 219 AssumptionCache *AC, const Instruction *CxtI, 220 const DominatorTree *DT, 221 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 222 ::computeKnownBits(V, Known, Depth, 223 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 224 } 225 226 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 227 KnownBits &Known, const DataLayout &DL, 228 unsigned Depth, AssumptionCache *AC, 229 const Instruction *CxtI, const DominatorTree *DT, 230 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 231 ::computeKnownBits(V, DemandedElts, Known, Depth, 232 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 233 } 234 235 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 236 unsigned Depth, const Query &Q); 237 238 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 239 const Query &Q); 240 241 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 242 unsigned Depth, AssumptionCache *AC, 243 const Instruction *CxtI, 244 const DominatorTree *DT, 245 OptimizationRemarkEmitter *ORE, 246 bool UseInstrInfo) { 247 return ::computeKnownBits( 248 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 249 } 250 251 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 252 const DataLayout &DL, unsigned Depth, 253 AssumptionCache *AC, const Instruction *CxtI, 254 const DominatorTree *DT, 255 OptimizationRemarkEmitter *ORE, 256 bool UseInstrInfo) { 257 return ::computeKnownBits( 258 V, DemandedElts, Depth, 259 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 260 } 261 262 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 263 const DataLayout &DL, AssumptionCache *AC, 264 const Instruction *CxtI, const DominatorTree *DT, 265 bool UseInstrInfo) { 266 assert(LHS->getType() == RHS->getType() && 267 "LHS and RHS should have the same type"); 268 assert(LHS->getType()->isIntOrIntVectorTy() && 269 "LHS and RHS should be integers"); 270 // Look for an inverted mask: (X & ~M) op (Y & M). 271 Value *M; 272 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 273 match(RHS, m_c_And(m_Specific(M), m_Value()))) 274 return true; 275 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(LHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 279 KnownBits LHSKnown(IT->getBitWidth()); 280 KnownBits RHSKnown(IT->getBitWidth()); 281 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 282 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 283 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 284 } 285 286 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 287 for (const User *U : CxtI->users()) { 288 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 289 if (IC->isEquality()) 290 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 291 if (C->isNullValue()) 292 continue; 293 return false; 294 } 295 return true; 296 } 297 298 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 299 const Query &Q); 300 301 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 302 bool OrZero, unsigned Depth, 303 AssumptionCache *AC, const Instruction *CxtI, 304 const DominatorTree *DT, bool UseInstrInfo) { 305 return ::isKnownToBeAPowerOfTwo( 306 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 307 } 308 309 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 310 unsigned Depth, const Query &Q); 311 312 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 313 314 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 315 AssumptionCache *AC, const Instruction *CxtI, 316 const DominatorTree *DT, bool UseInstrInfo) { 317 return ::isKnownNonZero(V, Depth, 318 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 319 } 320 321 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 322 unsigned Depth, AssumptionCache *AC, 323 const Instruction *CxtI, const DominatorTree *DT, 324 bool UseInstrInfo) { 325 KnownBits Known = 326 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 327 return Known.isNonNegative(); 328 } 329 330 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 331 AssumptionCache *AC, const Instruction *CxtI, 332 const DominatorTree *DT, bool UseInstrInfo) { 333 if (auto *CI = dyn_cast<ConstantInt>(V)) 334 return CI->getValue().isStrictlyPositive(); 335 336 // TODO: We'd doing two recursive queries here. We should factor this such 337 // that only a single query is needed. 338 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 339 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 340 } 341 342 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 343 AssumptionCache *AC, const Instruction *CxtI, 344 const DominatorTree *DT, bool UseInstrInfo) { 345 KnownBits Known = 346 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 347 return Known.isNegative(); 348 } 349 350 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 351 352 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 353 const DataLayout &DL, AssumptionCache *AC, 354 const Instruction *CxtI, const DominatorTree *DT, 355 bool UseInstrInfo) { 356 return ::isKnownNonEqual(V1, V2, 357 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 358 UseInstrInfo, /*ORE=*/nullptr)); 359 } 360 361 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 362 const Query &Q); 363 364 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 365 const DataLayout &DL, unsigned Depth, 366 AssumptionCache *AC, const Instruction *CxtI, 367 const DominatorTree *DT, bool UseInstrInfo) { 368 return ::MaskedValueIsZero( 369 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 370 } 371 372 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 373 unsigned Depth, const Query &Q); 374 375 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 376 const Query &Q) { 377 Type *Ty = V->getType(); 378 APInt DemandedElts = 379 Ty->isVectorTy() 380 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 381 : APInt(1, 1); 382 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 383 } 384 385 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 386 unsigned Depth, AssumptionCache *AC, 387 const Instruction *CxtI, 388 const DominatorTree *DT, bool UseInstrInfo) { 389 return ::ComputeNumSignBits( 390 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 391 } 392 393 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 394 bool NSW, const APInt &DemandedElts, 395 KnownBits &KnownOut, KnownBits &Known2, 396 unsigned Depth, const Query &Q) { 397 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 398 399 // If one operand is unknown and we have no nowrap information, 400 // the result will be unknown independently of the second operand. 401 if (KnownOut.isUnknown() && !NSW) 402 return; 403 404 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 405 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 406 } 407 408 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 409 const APInt &DemandedElts, KnownBits &Known, 410 KnownBits &Known2, unsigned Depth, 411 const Query &Q) { 412 unsigned BitWidth = Known.getBitWidth(); 413 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 414 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 415 416 bool isKnownNegative = false; 417 bool isKnownNonNegative = false; 418 // If the multiplication is known not to overflow, compute the sign bit. 419 if (NSW) { 420 if (Op0 == Op1) { 421 // The product of a number with itself is non-negative. 422 isKnownNonNegative = true; 423 } else { 424 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 425 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 426 bool isKnownNegativeOp1 = Known.isNegative(); 427 bool isKnownNegativeOp0 = Known2.isNegative(); 428 // The product of two numbers with the same sign is non-negative. 429 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 430 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 431 // The product of a negative number and a non-negative number is either 432 // negative or zero. 433 if (!isKnownNonNegative) 434 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 435 isKnownNonZero(Op0, Depth, Q)) || 436 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 437 isKnownNonZero(Op1, Depth, Q)); 438 } 439 } 440 441 assert(!Known.hasConflict() && !Known2.hasConflict()); 442 // Compute a conservative estimate for high known-0 bits. 443 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 444 Known2.countMinLeadingZeros(), 445 BitWidth) - BitWidth; 446 LeadZ = std::min(LeadZ, BitWidth); 447 448 // The result of the bottom bits of an integer multiply can be 449 // inferred by looking at the bottom bits of both operands and 450 // multiplying them together. 451 // We can infer at least the minimum number of known trailing bits 452 // of both operands. Depending on number of trailing zeros, we can 453 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 454 // a and b are divisible by m and n respectively. 455 // We then calculate how many of those bits are inferrable and set 456 // the output. For example, the i8 mul: 457 // a = XXXX1100 (12) 458 // b = XXXX1110 (14) 459 // We know the bottom 3 bits are zero since the first can be divided by 460 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 461 // Applying the multiplication to the trimmed arguments gets: 462 // XX11 (3) 463 // X111 (7) 464 // ------- 465 // XX11 466 // XX11 467 // XX11 468 // XX11 469 // ------- 470 // XXXXX01 471 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 472 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 473 // The proof for this can be described as: 474 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 475 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 476 // umin(countTrailingZeros(C2), C6) + 477 // umin(C5 - umin(countTrailingZeros(C1), C5), 478 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 479 // %aa = shl i8 %a, C5 480 // %bb = shl i8 %b, C6 481 // %aaa = or i8 %aa, C1 482 // %bbb = or i8 %bb, C2 483 // %mul = mul i8 %aaa, %bbb 484 // %mask = and i8 %mul, C7 485 // => 486 // %mask = i8 ((C1*C2)&C7) 487 // Where C5, C6 describe the known bits of %a, %b 488 // C1, C2 describe the known bottom bits of %a, %b. 489 // C7 describes the mask of the known bits of the result. 490 APInt Bottom0 = Known.One; 491 APInt Bottom1 = Known2.One; 492 493 // How many times we'd be able to divide each argument by 2 (shr by 1). 494 // This gives us the number of trailing zeros on the multiplication result. 495 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 496 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 497 unsigned TrailZero0 = Known.countMinTrailingZeros(); 498 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 499 unsigned TrailZ = TrailZero0 + TrailZero1; 500 501 // Figure out the fewest known-bits operand. 502 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 503 TrailBitsKnown1 - TrailZero1); 504 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 505 506 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 507 Bottom1.getLoBits(TrailBitsKnown1); 508 509 Known.resetAll(); 510 Known.Zero.setHighBits(LeadZ); 511 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 512 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 513 514 // Only make use of no-wrap flags if we failed to compute the sign bit 515 // directly. This matters if the multiplication always overflows, in 516 // which case we prefer to follow the result of the direct computation, 517 // though as the program is invoking undefined behaviour we can choose 518 // whatever we like here. 519 if (isKnownNonNegative && !Known.isNegative()) 520 Known.makeNonNegative(); 521 else if (isKnownNegative && !Known.isNonNegative()) 522 Known.makeNegative(); 523 } 524 525 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 526 KnownBits &Known) { 527 unsigned BitWidth = Known.getBitWidth(); 528 unsigned NumRanges = Ranges.getNumOperands() / 2; 529 assert(NumRanges >= 1); 530 531 Known.Zero.setAllBits(); 532 Known.One.setAllBits(); 533 534 for (unsigned i = 0; i < NumRanges; ++i) { 535 ConstantInt *Lower = 536 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 537 ConstantInt *Upper = 538 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 539 ConstantRange Range(Lower->getValue(), Upper->getValue()); 540 541 // The first CommonPrefixBits of all values in Range are equal. 542 unsigned CommonPrefixBits = 543 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 544 545 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 546 Known.One &= Range.getUnsignedMax() & Mask; 547 Known.Zero &= ~Range.getUnsignedMax() & Mask; 548 } 549 } 550 551 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 552 SmallVector<const Value *, 16> WorkSet(1, I); 553 SmallPtrSet<const Value *, 32> Visited; 554 SmallPtrSet<const Value *, 16> EphValues; 555 556 // The instruction defining an assumption's condition itself is always 557 // considered ephemeral to that assumption (even if it has other 558 // non-ephemeral users). See r246696's test case for an example. 559 if (is_contained(I->operands(), E)) 560 return true; 561 562 while (!WorkSet.empty()) { 563 const Value *V = WorkSet.pop_back_val(); 564 if (!Visited.insert(V).second) 565 continue; 566 567 // If all uses of this value are ephemeral, then so is this value. 568 if (llvm::all_of(V->users(), [&](const User *U) { 569 return EphValues.count(U); 570 })) { 571 if (V == E) 572 return true; 573 574 if (V == I || isSafeToSpeculativelyExecute(V)) { 575 EphValues.insert(V); 576 if (const User *U = dyn_cast<User>(V)) 577 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 578 J != JE; ++J) 579 WorkSet.push_back(*J); 580 } 581 } 582 } 583 584 return false; 585 } 586 587 // Is this an intrinsic that cannot be speculated but also cannot trap? 588 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 589 if (const CallInst *CI = dyn_cast<CallInst>(I)) 590 if (Function *F = CI->getCalledFunction()) 591 switch (F->getIntrinsicID()) { 592 default: break; 593 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 594 case Intrinsic::assume: 595 case Intrinsic::sideeffect: 596 case Intrinsic::dbg_declare: 597 case Intrinsic::dbg_value: 598 case Intrinsic::dbg_label: 599 case Intrinsic::invariant_start: 600 case Intrinsic::invariant_end: 601 case Intrinsic::lifetime_start: 602 case Intrinsic::lifetime_end: 603 case Intrinsic::objectsize: 604 case Intrinsic::ptr_annotation: 605 case Intrinsic::var_annotation: 606 return true; 607 } 608 609 return false; 610 } 611 612 bool llvm::isValidAssumeForContext(const Instruction *Inv, 613 const Instruction *CxtI, 614 const DominatorTree *DT) { 615 // There are two restrictions on the use of an assume: 616 // 1. The assume must dominate the context (or the control flow must 617 // reach the assume whenever it reaches the context). 618 // 2. The context must not be in the assume's set of ephemeral values 619 // (otherwise we will use the assume to prove that the condition 620 // feeding the assume is trivially true, thus causing the removal of 621 // the assume). 622 623 if (Inv->getParent() == CxtI->getParent()) { 624 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 625 // in the BB. 626 if (Inv->comesBefore(CxtI)) 627 return true; 628 629 // Don't let an assume affect itself - this would cause the problems 630 // `isEphemeralValueOf` is trying to prevent, and it would also make 631 // the loop below go out of bounds. 632 if (Inv == CxtI) 633 return false; 634 635 // The context comes first, but they're both in the same block. 636 // Make sure there is nothing in between that might interrupt 637 // the control flow, not even CxtI itself. 638 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 639 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 640 return false; 641 642 return !isEphemeralValueOf(Inv, CxtI); 643 } 644 645 // Inv and CxtI are in different blocks. 646 if (DT) { 647 if (DT->dominates(Inv, CxtI)) 648 return true; 649 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 650 // We don't have a DT, but this trivially dominates. 651 return true; 652 } 653 654 return false; 655 } 656 657 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 658 // Use of assumptions is context-sensitive. If we don't have a context, we 659 // cannot use them! 660 if (!Q.AC || !Q.CxtI) 661 return false; 662 663 // Note that the patterns below need to be kept in sync with the code 664 // in AssumptionCache::updateAffectedValues. 665 666 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 667 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 668 669 Value *RHS; 670 CmpInst::Predicate Pred; 671 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 672 return false; 673 // assume(v u> y) -> assume(v != 0) 674 if (Pred == ICmpInst::ICMP_UGT) 675 return true; 676 677 // assume(v != 0) 678 // We special-case this one to ensure that we handle `assume(v != null)`. 679 if (Pred == ICmpInst::ICMP_NE) 680 return match(RHS, m_Zero()); 681 682 // All other predicates - rely on generic ConstantRange handling. 683 ConstantInt *CI; 684 if (!match(RHS, m_ConstantInt(CI))) 685 return false; 686 ConstantRange RHSRange(CI->getValue()); 687 ConstantRange TrueValues = 688 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 689 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 690 }; 691 692 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 693 if (!AssumeVH) 694 continue; 695 CallInst *I = cast<CallInst>(AssumeVH); 696 assert(I->getFunction() == Q.CxtI->getFunction() && 697 "Got assumption for the wrong function!"); 698 if (Q.isExcluded(I)) 699 continue; 700 701 // Warning: This loop can end up being somewhat performance sensitive. 702 // We're running this loop for once for each value queried resulting in a 703 // runtime of ~O(#assumes * #values). 704 705 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 706 "must be an assume intrinsic"); 707 708 Value *Arg = I->getArgOperand(0); 709 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 710 if (!Cmp) 711 continue; 712 713 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 714 return true; 715 } 716 717 return false; 718 } 719 720 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 721 unsigned Depth, const Query &Q) { 722 // Use of assumptions is context-sensitive. If we don't have a context, we 723 // cannot use them! 724 if (!Q.AC || !Q.CxtI) 725 return; 726 727 unsigned BitWidth = Known.getBitWidth(); 728 729 // Note that the patterns below need to be kept in sync with the code 730 // in AssumptionCache::updateAffectedValues. 731 732 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 733 if (!AssumeVH) 734 continue; 735 CallInst *I = cast<CallInst>(AssumeVH); 736 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 737 "Got assumption for the wrong function!"); 738 if (Q.isExcluded(I)) 739 continue; 740 741 // Warning: This loop can end up being somewhat performance sensitive. 742 // We're running this loop for once for each value queried resulting in a 743 // runtime of ~O(#assumes * #values). 744 745 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 746 "must be an assume intrinsic"); 747 748 Value *Arg = I->getArgOperand(0); 749 750 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 751 assert(BitWidth == 1 && "assume operand is not i1?"); 752 Known.setAllOnes(); 753 return; 754 } 755 if (match(Arg, m_Not(m_Specific(V))) && 756 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 757 assert(BitWidth == 1 && "assume operand is not i1?"); 758 Known.setAllZero(); 759 return; 760 } 761 762 // The remaining tests are all recursive, so bail out if we hit the limit. 763 if (Depth == MaxDepth) 764 continue; 765 766 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 767 if (!Cmp) 768 continue; 769 770 Value *A, *B; 771 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 772 773 CmpInst::Predicate Pred; 774 uint64_t C; 775 switch (Cmp->getPredicate()) { 776 default: 777 break; 778 case ICmpInst::ICMP_EQ: 779 // assume(v = a) 780 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown(BitWidth); 783 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 784 Known.Zero |= RHSKnown.Zero; 785 Known.One |= RHSKnown.One; 786 // assume(v & b = a) 787 } else if (match(Cmp, 788 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 789 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 790 KnownBits RHSKnown(BitWidth); 791 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 792 KnownBits MaskKnown(BitWidth); 793 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 794 795 // For those bits in the mask that are known to be one, we can propagate 796 // known bits from the RHS to V. 797 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 798 Known.One |= RHSKnown.One & MaskKnown.One; 799 // assume(~(v & b) = a) 800 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 801 m_Value(A))) && 802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 803 KnownBits RHSKnown(BitWidth); 804 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 805 KnownBits MaskKnown(BitWidth); 806 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 807 808 // For those bits in the mask that are known to be one, we can propagate 809 // inverted known bits from the RHS to V. 810 Known.Zero |= RHSKnown.One & MaskKnown.One; 811 Known.One |= RHSKnown.Zero & MaskKnown.One; 812 // assume(v | b = a) 813 } else if (match(Cmp, 814 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 816 KnownBits RHSKnown(BitWidth); 817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 818 KnownBits BKnown(BitWidth); 819 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 820 821 // For those bits in B that are known to be zero, we can propagate known 822 // bits from the RHS to V. 823 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 824 Known.One |= RHSKnown.One & BKnown.Zero; 825 // assume(~(v | b) = a) 826 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 827 m_Value(A))) && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 829 KnownBits RHSKnown(BitWidth); 830 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 831 KnownBits BKnown(BitWidth); 832 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 833 834 // For those bits in B that are known to be zero, we can propagate 835 // inverted known bits from the RHS to V. 836 Known.Zero |= RHSKnown.One & BKnown.Zero; 837 Known.One |= RHSKnown.Zero & BKnown.Zero; 838 // assume(v ^ b = a) 839 } else if (match(Cmp, 840 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 841 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 842 KnownBits RHSKnown(BitWidth); 843 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 844 KnownBits BKnown(BitWidth); 845 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 846 847 // For those bits in B that are known to be zero, we can propagate known 848 // bits from the RHS to V. For those bits in B that are known to be one, 849 // we can propagate inverted known bits from the RHS to V. 850 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 851 Known.One |= RHSKnown.One & BKnown.Zero; 852 Known.Zero |= RHSKnown.One & BKnown.One; 853 Known.One |= RHSKnown.Zero & BKnown.One; 854 // assume(~(v ^ b) = a) 855 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 856 m_Value(A))) && 857 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 858 KnownBits RHSKnown(BitWidth); 859 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 860 KnownBits BKnown(BitWidth); 861 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 862 863 // For those bits in B that are known to be zero, we can propagate 864 // inverted known bits from the RHS to V. For those bits in B that are 865 // known to be one, we can propagate known bits from the RHS to V. 866 Known.Zero |= RHSKnown.One & BKnown.Zero; 867 Known.One |= RHSKnown.Zero & BKnown.Zero; 868 Known.Zero |= RHSKnown.Zero & BKnown.One; 869 Known.One |= RHSKnown.One & BKnown.One; 870 // assume(v << c = a) 871 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 872 m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 874 KnownBits RHSKnown(BitWidth); 875 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 876 // For those bits in RHS that are known, we can propagate them to known 877 // bits in V shifted to the right by C. 878 RHSKnown.Zero.lshrInPlace(C); 879 Known.Zero |= RHSKnown.Zero; 880 RHSKnown.One.lshrInPlace(C); 881 Known.One |= RHSKnown.One; 882 // assume(~(v << c) = a) 883 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 884 m_Value(A))) && 885 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 886 KnownBits RHSKnown(BitWidth); 887 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 888 // For those bits in RHS that are known, we can propagate them inverted 889 // to known bits in V shifted to the right by C. 890 RHSKnown.One.lshrInPlace(C); 891 Known.Zero |= RHSKnown.One; 892 RHSKnown.Zero.lshrInPlace(C); 893 Known.One |= RHSKnown.Zero; 894 // assume(v >> c = a) 895 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 896 m_Value(A))) && 897 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 898 KnownBits RHSKnown(BitWidth); 899 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 900 // For those bits in RHS that are known, we can propagate them to known 901 // bits in V shifted to the right by C. 902 Known.Zero |= RHSKnown.Zero << C; 903 Known.One |= RHSKnown.One << C; 904 // assume(~(v >> c) = a) 905 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 906 m_Value(A))) && 907 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 908 KnownBits RHSKnown(BitWidth); 909 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 910 // For those bits in RHS that are known, we can propagate them inverted 911 // to known bits in V shifted to the right by C. 912 Known.Zero |= RHSKnown.One << C; 913 Known.One |= RHSKnown.Zero << C; 914 } 915 break; 916 case ICmpInst::ICMP_SGE: 917 // assume(v >=_s c) where c is non-negative 918 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 919 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 920 KnownBits RHSKnown(BitWidth); 921 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 922 923 if (RHSKnown.isNonNegative()) { 924 // We know that the sign bit is zero. 925 Known.makeNonNegative(); 926 } 927 } 928 break; 929 case ICmpInst::ICMP_SGT: 930 // assume(v >_s c) where c is at least -1. 931 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 932 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 933 KnownBits RHSKnown(BitWidth); 934 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 935 936 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 937 // We know that the sign bit is zero. 938 Known.makeNonNegative(); 939 } 940 } 941 break; 942 case ICmpInst::ICMP_SLE: 943 // assume(v <=_s c) where c is negative 944 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 945 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 946 KnownBits RHSKnown(BitWidth); 947 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 948 949 if (RHSKnown.isNegative()) { 950 // We know that the sign bit is one. 951 Known.makeNegative(); 952 } 953 } 954 break; 955 case ICmpInst::ICMP_SLT: 956 // assume(v <_s c) where c is non-positive 957 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 958 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 959 KnownBits RHSKnown(BitWidth); 960 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 961 962 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 963 // We know that the sign bit is one. 964 Known.makeNegative(); 965 } 966 } 967 break; 968 case ICmpInst::ICMP_ULE: 969 // assume(v <=_u c) 970 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 971 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 972 KnownBits RHSKnown(BitWidth); 973 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 974 975 // Whatever high bits in c are zero are known to be zero. 976 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 977 } 978 break; 979 case ICmpInst::ICMP_ULT: 980 // assume(v <_u c) 981 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 982 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 983 KnownBits RHSKnown(BitWidth); 984 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 985 986 // If the RHS is known zero, then this assumption must be wrong (nothing 987 // is unsigned less than zero). Signal a conflict and get out of here. 988 if (RHSKnown.isZero()) { 989 Known.Zero.setAllBits(); 990 Known.One.setAllBits(); 991 break; 992 } 993 994 // Whatever high bits in c are zero are known to be zero (if c is a power 995 // of 2, then one more). 996 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 997 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 998 else 999 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1000 } 1001 break; 1002 } 1003 } 1004 1005 // If assumptions conflict with each other or previous known bits, then we 1006 // have a logical fallacy. It's possible that the assumption is not reachable, 1007 // so this isn't a real bug. On the other hand, the program may have undefined 1008 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1009 // clear out the known bits, try to warn the user, and hope for the best. 1010 if (Known.Zero.intersects(Known.One)) { 1011 Known.resetAll(); 1012 1013 if (Q.ORE) 1014 Q.ORE->emit([&]() { 1015 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1016 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1017 CxtI) 1018 << "Detected conflicting code assumptions. Program may " 1019 "have undefined behavior, or compiler may have " 1020 "internal error."; 1021 }); 1022 } 1023 } 1024 1025 /// Compute known bits from a shift operator, including those with a 1026 /// non-constant shift amount. Known is the output of this function. Known2 is a 1027 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1028 /// operator-specific functions that, given the known-zero or known-one bits 1029 /// respectively, and a shift amount, compute the implied known-zero or 1030 /// known-one bits of the shift operator's result respectively for that shift 1031 /// amount. The results from calling KZF and KOF are conservatively combined for 1032 /// all permitted shift amounts. 1033 static void computeKnownBitsFromShiftOperator( 1034 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1035 KnownBits &Known2, unsigned Depth, const Query &Q, 1036 function_ref<APInt(const APInt &, unsigned)> KZF, 1037 function_ref<APInt(const APInt &, unsigned)> KOF) { 1038 unsigned BitWidth = Known.getBitWidth(); 1039 1040 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1041 if (Known.isConstant()) { 1042 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1043 1044 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1045 Known.Zero = KZF(Known.Zero, ShiftAmt); 1046 Known.One = KOF(Known.One, ShiftAmt); 1047 // If the known bits conflict, this must be an overflowing left shift, so 1048 // the shift result is poison. We can return anything we want. Choose 0 for 1049 // the best folding opportunity. 1050 if (Known.hasConflict()) 1051 Known.setAllZero(); 1052 1053 return; 1054 } 1055 1056 // If the shift amount could be greater than or equal to the bit-width of the 1057 // LHS, the value could be poison, but bail out because the check below is 1058 // expensive. 1059 // TODO: Should we just carry on? 1060 if (Known.getMaxValue().uge(BitWidth)) { 1061 Known.resetAll(); 1062 return; 1063 } 1064 1065 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1066 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1067 // limit value (which implies all bits are known). 1068 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1069 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1070 1071 // It would be more-clearly correct to use the two temporaries for this 1072 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1073 Known.resetAll(); 1074 1075 // If we know the shifter operand is nonzero, we can sometimes infer more 1076 // known bits. However this is expensive to compute, so be lazy about it and 1077 // only compute it when absolutely necessary. 1078 Optional<bool> ShifterOperandIsNonZero; 1079 1080 // Early exit if we can't constrain any well-defined shift amount. 1081 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1082 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1083 ShifterOperandIsNonZero = 1084 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1085 if (!*ShifterOperandIsNonZero) 1086 return; 1087 } 1088 1089 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1090 1091 Known.Zero.setAllBits(); 1092 Known.One.setAllBits(); 1093 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1094 // Combine the shifted known input bits only for those shift amounts 1095 // compatible with its known constraints. 1096 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1097 continue; 1098 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1099 continue; 1100 // If we know the shifter is nonzero, we may be able to infer more known 1101 // bits. This check is sunk down as far as possible to avoid the expensive 1102 // call to isKnownNonZero if the cheaper checks above fail. 1103 if (ShiftAmt == 0) { 1104 if (!ShifterOperandIsNonZero.hasValue()) 1105 ShifterOperandIsNonZero = 1106 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1107 if (*ShifterOperandIsNonZero) 1108 continue; 1109 } 1110 1111 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1112 Known.One &= KOF(Known2.One, ShiftAmt); 1113 } 1114 1115 // If the known bits conflict, the result is poison. Return a 0 and hope the 1116 // caller can further optimize that. 1117 if (Known.hasConflict()) 1118 Known.setAllZero(); 1119 } 1120 1121 static void computeKnownBitsFromOperator(const Operator *I, 1122 const APInt &DemandedElts, 1123 KnownBits &Known, unsigned Depth, 1124 const Query &Q) { 1125 unsigned BitWidth = Known.getBitWidth(); 1126 1127 KnownBits Known2(BitWidth); 1128 switch (I->getOpcode()) { 1129 default: break; 1130 case Instruction::Load: 1131 if (MDNode *MD = 1132 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1133 computeKnownBitsFromRangeMetadata(*MD, Known); 1134 break; 1135 case Instruction::And: { 1136 // If either the LHS or the RHS are Zero, the result is zero. 1137 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1138 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1139 1140 Known &= Known2; 1141 1142 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1143 // here we handle the more general case of adding any odd number by 1144 // matching the form add(x, add(x, y)) where y is odd. 1145 // TODO: This could be generalized to clearing any bit set in y where the 1146 // following bit is known to be unset in y. 1147 Value *X = nullptr, *Y = nullptr; 1148 if (!Known.Zero[0] && !Known.One[0] && 1149 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1150 Known2.resetAll(); 1151 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1152 if (Known2.countMinTrailingOnes() > 0) 1153 Known.Zero.setBit(0); 1154 } 1155 break; 1156 } 1157 case Instruction::Or: 1158 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1159 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1160 1161 Known |= Known2; 1162 break; 1163 case Instruction::Xor: 1164 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1165 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1166 1167 Known ^= Known2; 1168 break; 1169 case Instruction::Mul: { 1170 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1171 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1172 Known, Known2, Depth, Q); 1173 break; 1174 } 1175 case Instruction::UDiv: { 1176 // For the purposes of computing leading zeros we can conservatively 1177 // treat a udiv as a logical right shift by the power of 2 known to 1178 // be less than the denominator. 1179 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1180 unsigned LeadZ = Known2.countMinLeadingZeros(); 1181 1182 Known2.resetAll(); 1183 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1184 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1185 if (RHSMaxLeadingZeros != BitWidth) 1186 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1187 1188 Known.Zero.setHighBits(LeadZ); 1189 break; 1190 } 1191 case Instruction::Select: { 1192 const Value *LHS = nullptr, *RHS = nullptr; 1193 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1194 if (SelectPatternResult::isMinOrMax(SPF)) { 1195 computeKnownBits(RHS, Known, Depth + 1, Q); 1196 computeKnownBits(LHS, Known2, Depth + 1, Q); 1197 } else { 1198 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1199 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1200 } 1201 1202 unsigned MaxHighOnes = 0; 1203 unsigned MaxHighZeros = 0; 1204 if (SPF == SPF_SMAX) { 1205 // If both sides are negative, the result is negative. 1206 if (Known.isNegative() && Known2.isNegative()) 1207 // We can derive a lower bound on the result by taking the max of the 1208 // leading one bits. 1209 MaxHighOnes = 1210 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1211 // If either side is non-negative, the result is non-negative. 1212 else if (Known.isNonNegative() || Known2.isNonNegative()) 1213 MaxHighZeros = 1; 1214 } else if (SPF == SPF_SMIN) { 1215 // If both sides are non-negative, the result is non-negative. 1216 if (Known.isNonNegative() && Known2.isNonNegative()) 1217 // We can derive an upper bound on the result by taking the max of the 1218 // leading zero bits. 1219 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1220 Known2.countMinLeadingZeros()); 1221 // If either side is negative, the result is negative. 1222 else if (Known.isNegative() || Known2.isNegative()) 1223 MaxHighOnes = 1; 1224 } else if (SPF == SPF_UMAX) { 1225 // We can derive a lower bound on the result by taking the max of the 1226 // leading one bits. 1227 MaxHighOnes = 1228 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1229 } else if (SPF == SPF_UMIN) { 1230 // We can derive an upper bound on the result by taking the max of the 1231 // leading zero bits. 1232 MaxHighZeros = 1233 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1234 } else if (SPF == SPF_ABS) { 1235 // RHS from matchSelectPattern returns the negation part of abs pattern. 1236 // If the negate has an NSW flag we can assume the sign bit of the result 1237 // will be 0 because that makes abs(INT_MIN) undefined. 1238 if (match(RHS, m_Neg(m_Specific(LHS))) && 1239 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1240 MaxHighZeros = 1; 1241 } 1242 1243 // Only known if known in both the LHS and RHS. 1244 Known.One &= Known2.One; 1245 Known.Zero &= Known2.Zero; 1246 if (MaxHighOnes > 0) 1247 Known.One.setHighBits(MaxHighOnes); 1248 if (MaxHighZeros > 0) 1249 Known.Zero.setHighBits(MaxHighZeros); 1250 break; 1251 } 1252 case Instruction::FPTrunc: 1253 case Instruction::FPExt: 1254 case Instruction::FPToUI: 1255 case Instruction::FPToSI: 1256 case Instruction::SIToFP: 1257 case Instruction::UIToFP: 1258 break; // Can't work with floating point. 1259 case Instruction::PtrToInt: 1260 case Instruction::IntToPtr: 1261 // Fall through and handle them the same as zext/trunc. 1262 LLVM_FALLTHROUGH; 1263 case Instruction::ZExt: 1264 case Instruction::Trunc: { 1265 Type *SrcTy = I->getOperand(0)->getType(); 1266 1267 unsigned SrcBitWidth; 1268 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1269 // which fall through here. 1270 Type *ScalarTy = SrcTy->getScalarType(); 1271 SrcBitWidth = ScalarTy->isPointerTy() ? 1272 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1273 Q.DL.getTypeSizeInBits(ScalarTy); 1274 1275 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1276 Known = Known.anyextOrTrunc(SrcBitWidth); 1277 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1278 Known = Known.zextOrTrunc(BitWidth); 1279 break; 1280 } 1281 case Instruction::BitCast: { 1282 Type *SrcTy = I->getOperand(0)->getType(); 1283 if (SrcTy->isIntOrPtrTy() && 1284 // TODO: For now, not handling conversions like: 1285 // (bitcast i64 %x to <2 x i32>) 1286 !I->getType()->isVectorTy()) { 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 break; 1289 } 1290 break; 1291 } 1292 case Instruction::SExt: { 1293 // Compute the bits in the result that are not present in the input. 1294 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1295 1296 Known = Known.trunc(SrcBitWidth); 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 // If the sign bit of the input is known set or clear, then we know the 1299 // top bits of the result. 1300 Known = Known.sext(BitWidth); 1301 break; 1302 } 1303 case Instruction::Shl: { 1304 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1305 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1306 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1307 APInt KZResult = KnownZero << ShiftAmt; 1308 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1309 // If this shift has "nsw" keyword, then the result is either a poison 1310 // value or has the same sign bit as the first operand. 1311 if (NSW && KnownZero.isSignBitSet()) 1312 KZResult.setSignBit(); 1313 return KZResult; 1314 }; 1315 1316 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1317 APInt KOResult = KnownOne << ShiftAmt; 1318 if (NSW && KnownOne.isSignBitSet()) 1319 KOResult.setSignBit(); 1320 return KOResult; 1321 }; 1322 1323 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1324 KZF, KOF); 1325 break; 1326 } 1327 case Instruction::LShr: { 1328 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1329 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1330 APInt KZResult = KnownZero.lshr(ShiftAmt); 1331 // High bits known zero. 1332 KZResult.setHighBits(ShiftAmt); 1333 return KZResult; 1334 }; 1335 1336 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1337 return KnownOne.lshr(ShiftAmt); 1338 }; 1339 1340 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1341 KZF, KOF); 1342 break; 1343 } 1344 case Instruction::AShr: { 1345 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1346 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1347 return KnownZero.ashr(ShiftAmt); 1348 }; 1349 1350 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1351 return KnownOne.ashr(ShiftAmt); 1352 }; 1353 1354 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1355 KZF, KOF); 1356 break; 1357 } 1358 case Instruction::Sub: { 1359 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1360 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1361 DemandedElts, Known, Known2, Depth, Q); 1362 break; 1363 } 1364 case Instruction::Add: { 1365 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1366 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1367 DemandedElts, Known, Known2, Depth, Q); 1368 break; 1369 } 1370 case Instruction::SRem: 1371 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1372 APInt RA = Rem->getValue().abs(); 1373 if (RA.isPowerOf2()) { 1374 APInt LowBits = RA - 1; 1375 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1376 1377 // The low bits of the first operand are unchanged by the srem. 1378 Known.Zero = Known2.Zero & LowBits; 1379 Known.One = Known2.One & LowBits; 1380 1381 // If the first operand is non-negative or has all low bits zero, then 1382 // the upper bits are all zero. 1383 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1384 Known.Zero |= ~LowBits; 1385 1386 // If the first operand is negative and not all low bits are zero, then 1387 // the upper bits are all one. 1388 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1389 Known.One |= ~LowBits; 1390 1391 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1392 break; 1393 } 1394 } 1395 1396 // The sign bit is the LHS's sign bit, except when the result of the 1397 // remainder is zero. 1398 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1399 // If it's known zero, our sign bit is also zero. 1400 if (Known2.isNonNegative()) 1401 Known.makeNonNegative(); 1402 1403 break; 1404 case Instruction::URem: { 1405 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1406 const APInt &RA = Rem->getValue(); 1407 if (RA.isPowerOf2()) { 1408 APInt LowBits = (RA - 1); 1409 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1410 Known.Zero |= ~LowBits; 1411 Known.One &= LowBits; 1412 break; 1413 } 1414 } 1415 1416 // Since the result is less than or equal to either operand, any leading 1417 // zero bits in either operand must also exist in the result. 1418 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1419 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1420 1421 unsigned Leaders = 1422 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1423 Known.resetAll(); 1424 Known.Zero.setHighBits(Leaders); 1425 break; 1426 } 1427 1428 case Instruction::Alloca: { 1429 const AllocaInst *AI = cast<AllocaInst>(I); 1430 unsigned Align = AI->getAlignment(); 1431 if (Align == 0) 1432 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1433 1434 if (Align > 0) 1435 Known.Zero.setLowBits(countTrailingZeros(Align)); 1436 break; 1437 } 1438 case Instruction::GetElementPtr: { 1439 // Analyze all of the subscripts of this getelementptr instruction 1440 // to determine if we can prove known low zero bits. 1441 KnownBits LocalKnown(BitWidth); 1442 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1443 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1444 1445 gep_type_iterator GTI = gep_type_begin(I); 1446 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1447 Value *Index = I->getOperand(i); 1448 if (StructType *STy = GTI.getStructTypeOrNull()) { 1449 // Handle struct member offset arithmetic. 1450 1451 // Handle case when index is vector zeroinitializer 1452 Constant *CIndex = cast<Constant>(Index); 1453 if (CIndex->isZeroValue()) 1454 continue; 1455 1456 if (CIndex->getType()->isVectorTy()) 1457 Index = CIndex->getSplatValue(); 1458 1459 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1460 const StructLayout *SL = Q.DL.getStructLayout(STy); 1461 uint64_t Offset = SL->getElementOffset(Idx); 1462 TrailZ = std::min<unsigned>(TrailZ, 1463 countTrailingZeros(Offset)); 1464 } else { 1465 // Handle array index arithmetic. 1466 Type *IndexedTy = GTI.getIndexedType(); 1467 if (!IndexedTy->isSized()) { 1468 TrailZ = 0; 1469 break; 1470 } 1471 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1472 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1473 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1474 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1475 TrailZ = std::min(TrailZ, 1476 unsigned(countTrailingZeros(TypeSize) + 1477 LocalKnown.countMinTrailingZeros())); 1478 } 1479 } 1480 1481 Known.Zero.setLowBits(TrailZ); 1482 break; 1483 } 1484 case Instruction::PHI: { 1485 const PHINode *P = cast<PHINode>(I); 1486 // Handle the case of a simple two-predecessor recurrence PHI. 1487 // There's a lot more that could theoretically be done here, but 1488 // this is sufficient to catch some interesting cases. 1489 if (P->getNumIncomingValues() == 2) { 1490 for (unsigned i = 0; i != 2; ++i) { 1491 Value *L = P->getIncomingValue(i); 1492 Value *R = P->getIncomingValue(!i); 1493 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1494 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1495 Operator *LU = dyn_cast<Operator>(L); 1496 if (!LU) 1497 continue; 1498 unsigned Opcode = LU->getOpcode(); 1499 // Check for operations that have the property that if 1500 // both their operands have low zero bits, the result 1501 // will have low zero bits. 1502 if (Opcode == Instruction::Add || 1503 Opcode == Instruction::Sub || 1504 Opcode == Instruction::And || 1505 Opcode == Instruction::Or || 1506 Opcode == Instruction::Mul) { 1507 Value *LL = LU->getOperand(0); 1508 Value *LR = LU->getOperand(1); 1509 // Find a recurrence. 1510 if (LL == I) 1511 L = LR; 1512 else if (LR == I) 1513 L = LL; 1514 else 1515 continue; // Check for recurrence with L and R flipped. 1516 1517 // Change the context instruction to the "edge" that flows into the 1518 // phi. This is important because that is where the value is actually 1519 // "evaluated" even though it is used later somewhere else. (see also 1520 // D69571). 1521 Query RecQ = Q; 1522 1523 // Ok, we have a PHI of the form L op= R. Check for low 1524 // zero bits. 1525 RecQ.CxtI = RInst; 1526 computeKnownBits(R, Known2, Depth + 1, RecQ); 1527 1528 // We need to take the minimum number of known bits 1529 KnownBits Known3(BitWidth); 1530 RecQ.CxtI = LInst; 1531 computeKnownBits(L, Known3, Depth + 1, RecQ); 1532 1533 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1534 Known3.countMinTrailingZeros())); 1535 1536 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1537 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1538 // If initial value of recurrence is nonnegative, and we are adding 1539 // a nonnegative number with nsw, the result can only be nonnegative 1540 // or poison value regardless of the number of times we execute the 1541 // add in phi recurrence. If initial value is negative and we are 1542 // adding a negative number with nsw, the result can only be 1543 // negative or poison value. Similar arguments apply to sub and mul. 1544 // 1545 // (add non-negative, non-negative) --> non-negative 1546 // (add negative, negative) --> negative 1547 if (Opcode == Instruction::Add) { 1548 if (Known2.isNonNegative() && Known3.isNonNegative()) 1549 Known.makeNonNegative(); 1550 else if (Known2.isNegative() && Known3.isNegative()) 1551 Known.makeNegative(); 1552 } 1553 1554 // (sub nsw non-negative, negative) --> non-negative 1555 // (sub nsw negative, non-negative) --> negative 1556 else if (Opcode == Instruction::Sub && LL == I) { 1557 if (Known2.isNonNegative() && Known3.isNegative()) 1558 Known.makeNonNegative(); 1559 else if (Known2.isNegative() && Known3.isNonNegative()) 1560 Known.makeNegative(); 1561 } 1562 1563 // (mul nsw non-negative, non-negative) --> non-negative 1564 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1565 Known3.isNonNegative()) 1566 Known.makeNonNegative(); 1567 } 1568 1569 break; 1570 } 1571 } 1572 } 1573 1574 // Unreachable blocks may have zero-operand PHI nodes. 1575 if (P->getNumIncomingValues() == 0) 1576 break; 1577 1578 // Otherwise take the unions of the known bit sets of the operands, 1579 // taking conservative care to avoid excessive recursion. 1580 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1581 // Skip if every incoming value references to ourself. 1582 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1583 break; 1584 1585 Known.Zero.setAllBits(); 1586 Known.One.setAllBits(); 1587 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1588 Value *IncValue = P->getIncomingValue(u); 1589 // Skip direct self references. 1590 if (IncValue == P) continue; 1591 1592 // Change the context instruction to the "edge" that flows into the 1593 // phi. This is important because that is where the value is actually 1594 // "evaluated" even though it is used later somewhere else. (see also 1595 // D69571). 1596 Query RecQ = Q; 1597 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1598 1599 Known2 = KnownBits(BitWidth); 1600 // Recurse, but cap the recursion to one level, because we don't 1601 // want to waste time spinning around in loops. 1602 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1603 Known.Zero &= Known2.Zero; 1604 Known.One &= Known2.One; 1605 // If all bits have been ruled out, there's no need to check 1606 // more operands. 1607 if (!Known.Zero && !Known.One) 1608 break; 1609 } 1610 } 1611 break; 1612 } 1613 case Instruction::Call: 1614 case Instruction::Invoke: 1615 // If range metadata is attached to this call, set known bits from that, 1616 // and then intersect with known bits based on other properties of the 1617 // function. 1618 if (MDNode *MD = 1619 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1620 computeKnownBitsFromRangeMetadata(*MD, Known); 1621 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1622 computeKnownBits(RV, Known2, Depth + 1, Q); 1623 Known.Zero |= Known2.Zero; 1624 Known.One |= Known2.One; 1625 } 1626 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1627 switch (II->getIntrinsicID()) { 1628 default: break; 1629 case Intrinsic::bitreverse: 1630 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1631 Known.Zero |= Known2.Zero.reverseBits(); 1632 Known.One |= Known2.One.reverseBits(); 1633 break; 1634 case Intrinsic::bswap: 1635 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1636 Known.Zero |= Known2.Zero.byteSwap(); 1637 Known.One |= Known2.One.byteSwap(); 1638 break; 1639 case Intrinsic::ctlz: { 1640 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1641 // If we have a known 1, its position is our upper bound. 1642 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1643 // If this call is undefined for 0, the result will be less than 2^n. 1644 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1645 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1646 unsigned LowBits = Log2_32(PossibleLZ)+1; 1647 Known.Zero.setBitsFrom(LowBits); 1648 break; 1649 } 1650 case Intrinsic::cttz: { 1651 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1652 // If we have a known 1, its position is our upper bound. 1653 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1654 // If this call is undefined for 0, the result will be less than 2^n. 1655 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1656 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1657 unsigned LowBits = Log2_32(PossibleTZ)+1; 1658 Known.Zero.setBitsFrom(LowBits); 1659 break; 1660 } 1661 case Intrinsic::ctpop: { 1662 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1663 // We can bound the space the count needs. Also, bits known to be zero 1664 // can't contribute to the population. 1665 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1666 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1667 Known.Zero.setBitsFrom(LowBits); 1668 // TODO: we could bound KnownOne using the lower bound on the number 1669 // of bits which might be set provided by popcnt KnownOne2. 1670 break; 1671 } 1672 case Intrinsic::fshr: 1673 case Intrinsic::fshl: { 1674 const APInt *SA; 1675 if (!match(I->getOperand(2), m_APInt(SA))) 1676 break; 1677 1678 // Normalize to funnel shift left. 1679 uint64_t ShiftAmt = SA->urem(BitWidth); 1680 if (II->getIntrinsicID() == Intrinsic::fshr) 1681 ShiftAmt = BitWidth - ShiftAmt; 1682 1683 KnownBits Known3(BitWidth); 1684 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1685 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1686 1687 Known.Zero = 1688 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1689 Known.One = 1690 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1691 break; 1692 } 1693 case Intrinsic::uadd_sat: 1694 case Intrinsic::usub_sat: { 1695 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1696 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1697 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1698 1699 // Add: Leading ones of either operand are preserved. 1700 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1701 // as leading zeros in the result. 1702 unsigned LeadingKnown; 1703 if (IsAdd) 1704 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1705 Known2.countMinLeadingOnes()); 1706 else 1707 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1708 Known2.countMinLeadingOnes()); 1709 1710 Known = KnownBits::computeForAddSub( 1711 IsAdd, /* NSW */ false, Known, Known2); 1712 1713 // We select between the operation result and all-ones/zero 1714 // respectively, so we can preserve known ones/zeros. 1715 if (IsAdd) { 1716 Known.One.setHighBits(LeadingKnown); 1717 Known.Zero.clearAllBits(); 1718 } else { 1719 Known.Zero.setHighBits(LeadingKnown); 1720 Known.One.clearAllBits(); 1721 } 1722 break; 1723 } 1724 case Intrinsic::x86_sse42_crc32_64_64: 1725 Known.Zero.setBitsFrom(32); 1726 break; 1727 } 1728 } 1729 break; 1730 case Instruction::ShuffleVector: { 1731 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1732 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1733 if (!Shuf) { 1734 Known.resetAll(); 1735 return; 1736 } 1737 // For undef elements, we don't know anything about the common state of 1738 // the shuffle result. 1739 APInt DemandedLHS, DemandedRHS; 1740 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1741 Known.resetAll(); 1742 return; 1743 } 1744 Known.One.setAllBits(); 1745 Known.Zero.setAllBits(); 1746 if (!!DemandedLHS) { 1747 const Value *LHS = Shuf->getOperand(0); 1748 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1749 // If we don't know any bits, early out. 1750 if (Known.isUnknown()) 1751 break; 1752 } 1753 if (!!DemandedRHS) { 1754 const Value *RHS = Shuf->getOperand(1); 1755 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1756 Known.One &= Known2.One; 1757 Known.Zero &= Known2.Zero; 1758 } 1759 break; 1760 } 1761 case Instruction::InsertElement: { 1762 const Value *Vec = I->getOperand(0); 1763 const Value *Elt = I->getOperand(1); 1764 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1765 // Early out if the index is non-constant or out-of-range. 1766 unsigned NumElts = DemandedElts.getBitWidth(); 1767 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1768 Known.resetAll(); 1769 return; 1770 } 1771 Known.One.setAllBits(); 1772 Known.Zero.setAllBits(); 1773 unsigned EltIdx = CIdx->getZExtValue(); 1774 // Do we demand the inserted element? 1775 if (DemandedElts[EltIdx]) { 1776 computeKnownBits(Elt, Known, Depth + 1, Q); 1777 // If we don't know any bits, early out. 1778 if (Known.isUnknown()) 1779 break; 1780 } 1781 // We don't need the base vector element that has been inserted. 1782 APInt DemandedVecElts = DemandedElts; 1783 DemandedVecElts.clearBit(EltIdx); 1784 if (!!DemandedVecElts) { 1785 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1786 Known.One &= Known2.One; 1787 Known.Zero &= Known2.Zero; 1788 } 1789 break; 1790 } 1791 case Instruction::ExtractElement: { 1792 // Look through extract element. If the index is non-constant or 1793 // out-of-range demand all elements, otherwise just the extracted element. 1794 const Value *Vec = I->getOperand(0); 1795 const Value *Idx = I->getOperand(1); 1796 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1797 unsigned NumElts = cast<VectorType>(Vec->getType())->getNumElements(); 1798 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1799 if (CIdx && CIdx->getValue().ult(NumElts)) 1800 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1801 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1802 break; 1803 } 1804 case Instruction::ExtractValue: 1805 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1806 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1807 if (EVI->getNumIndices() != 1) break; 1808 if (EVI->getIndices()[0] == 0) { 1809 switch (II->getIntrinsicID()) { 1810 default: break; 1811 case Intrinsic::uadd_with_overflow: 1812 case Intrinsic::sadd_with_overflow: 1813 computeKnownBitsAddSub(true, II->getArgOperand(0), 1814 II->getArgOperand(1), false, DemandedElts, 1815 Known, Known2, Depth, Q); 1816 break; 1817 case Intrinsic::usub_with_overflow: 1818 case Intrinsic::ssub_with_overflow: 1819 computeKnownBitsAddSub(false, II->getArgOperand(0), 1820 II->getArgOperand(1), false, DemandedElts, 1821 Known, Known2, Depth, Q); 1822 break; 1823 case Intrinsic::umul_with_overflow: 1824 case Intrinsic::smul_with_overflow: 1825 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1826 DemandedElts, Known, Known2, Depth, Q); 1827 break; 1828 } 1829 } 1830 } 1831 break; 1832 } 1833 } 1834 1835 /// Determine which bits of V are known to be either zero or one and return 1836 /// them. 1837 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1838 unsigned Depth, const Query &Q) { 1839 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1840 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1841 return Known; 1842 } 1843 1844 /// Determine which bits of V are known to be either zero or one and return 1845 /// them. 1846 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1847 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1848 computeKnownBits(V, Known, Depth, Q); 1849 return Known; 1850 } 1851 1852 /// Determine which bits of V are known to be either zero or one and return 1853 /// them in the Known bit set. 1854 /// 1855 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1856 /// we cannot optimize based on the assumption that it is zero without changing 1857 /// it to be an explicit zero. If we don't change it to zero, other code could 1858 /// optimized based on the contradictory assumption that it is non-zero. 1859 /// Because instcombine aggressively folds operations with undef args anyway, 1860 /// this won't lose us code quality. 1861 /// 1862 /// This function is defined on values with integer type, values with pointer 1863 /// type, and vectors of integers. In the case 1864 /// where V is a vector, known zero, and known one values are the 1865 /// same width as the vector element, and the bit is set only if it is true 1866 /// for all of the demanded elements in the vector specified by DemandedElts. 1867 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1868 KnownBits &Known, unsigned Depth, const Query &Q) { 1869 assert(V && "No Value?"); 1870 assert(Depth <= MaxDepth && "Limit Search Depth"); 1871 unsigned BitWidth = Known.getBitWidth(); 1872 1873 Type *Ty = V->getType(); 1874 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1875 "Not integer or pointer type!"); 1876 assert(((Ty->isVectorTy() && cast<VectorType>(Ty)->getNumElements() == 1877 DemandedElts.getBitWidth()) || 1878 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1879 "Unexpected vector size"); 1880 1881 Type *ScalarTy = Ty->getScalarType(); 1882 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1883 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1884 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1885 (void)BitWidth; 1886 (void)ExpectedWidth; 1887 1888 if (!DemandedElts) { 1889 // No demanded elts, better to assume we don't know anything. 1890 Known.resetAll(); 1891 return; 1892 } 1893 1894 const APInt *C; 1895 if (match(V, m_APInt(C))) { 1896 // We know all of the bits for a scalar constant or a splat vector constant! 1897 Known.One = *C; 1898 Known.Zero = ~Known.One; 1899 return; 1900 } 1901 // Null and aggregate-zero are all-zeros. 1902 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1903 Known.setAllZero(); 1904 return; 1905 } 1906 // Handle a constant vector by taking the intersection of the known bits of 1907 // each element. 1908 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1909 assert((!Ty->isVectorTy() || 1910 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1911 "Unexpected vector size"); 1912 // We know that CDS must be a vector of integers. Take the intersection of 1913 // each element. 1914 Known.Zero.setAllBits(); Known.One.setAllBits(); 1915 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1916 if (Ty->isVectorTy() && !DemandedElts[i]) 1917 continue; 1918 APInt Elt = CDS->getElementAsAPInt(i); 1919 Known.Zero &= ~Elt; 1920 Known.One &= Elt; 1921 } 1922 return; 1923 } 1924 1925 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1926 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1927 "Unexpected vector size"); 1928 // We know that CV must be a vector of integers. Take the intersection of 1929 // each element. 1930 Known.Zero.setAllBits(); Known.One.setAllBits(); 1931 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1932 if (!DemandedElts[i]) 1933 continue; 1934 Constant *Element = CV->getAggregateElement(i); 1935 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1936 if (!ElementCI) { 1937 Known.resetAll(); 1938 return; 1939 } 1940 const APInt &Elt = ElementCI->getValue(); 1941 Known.Zero &= ~Elt; 1942 Known.One &= Elt; 1943 } 1944 return; 1945 } 1946 1947 // Start out not knowing anything. 1948 Known.resetAll(); 1949 1950 // We can't imply anything about undefs. 1951 if (isa<UndefValue>(V)) 1952 return; 1953 1954 // There's no point in looking through other users of ConstantData for 1955 // assumptions. Confirm that we've handled them all. 1956 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1957 1958 // Limit search depth. 1959 // All recursive calls that increase depth must come after this. 1960 if (Depth == MaxDepth) 1961 return; 1962 1963 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1964 // the bits of its aliasee. 1965 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1966 if (!GA->isInterposable()) 1967 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1968 return; 1969 } 1970 1971 if (const Operator *I = dyn_cast<Operator>(V)) 1972 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1973 1974 // Aligned pointers have trailing zeros - refine Known.Zero set 1975 if (Ty->isPointerTy()) { 1976 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1977 if (Align) 1978 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1979 } 1980 1981 // computeKnownBitsFromAssume strictly refines Known. 1982 // Therefore, we run them after computeKnownBitsFromOperator. 1983 1984 // Check whether a nearby assume intrinsic can determine some known bits. 1985 computeKnownBitsFromAssume(V, Known, Depth, Q); 1986 1987 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1988 } 1989 1990 /// Return true if the given value is known to have exactly one 1991 /// bit set when defined. For vectors return true if every element is known to 1992 /// be a power of two when defined. Supports values with integer or pointer 1993 /// types and vectors of integers. 1994 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1995 const Query &Q) { 1996 assert(Depth <= MaxDepth && "Limit Search Depth"); 1997 1998 // Attempt to match against constants. 1999 if (OrZero && match(V, m_Power2OrZero())) 2000 return true; 2001 if (match(V, m_Power2())) 2002 return true; 2003 2004 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2005 // it is shifted off the end then the result is undefined. 2006 if (match(V, m_Shl(m_One(), m_Value()))) 2007 return true; 2008 2009 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2010 // the bottom. If it is shifted off the bottom then the result is undefined. 2011 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2012 return true; 2013 2014 // The remaining tests are all recursive, so bail out if we hit the limit. 2015 if (Depth++ == MaxDepth) 2016 return false; 2017 2018 Value *X = nullptr, *Y = nullptr; 2019 // A shift left or a logical shift right of a power of two is a power of two 2020 // or zero. 2021 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2022 match(V, m_LShr(m_Value(X), m_Value())))) 2023 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2024 2025 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2026 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2027 2028 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2029 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2030 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2031 2032 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2033 // A power of two and'd with anything is a power of two or zero. 2034 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2035 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2036 return true; 2037 // X & (-X) is always a power of two or zero. 2038 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2039 return true; 2040 return false; 2041 } 2042 2043 // Adding a power-of-two or zero to the same power-of-two or zero yields 2044 // either the original power-of-two, a larger power-of-two or zero. 2045 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2046 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2047 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2048 Q.IIQ.hasNoSignedWrap(VOBO)) { 2049 if (match(X, m_And(m_Specific(Y), m_Value())) || 2050 match(X, m_And(m_Value(), m_Specific(Y)))) 2051 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2052 return true; 2053 if (match(Y, m_And(m_Specific(X), m_Value())) || 2054 match(Y, m_And(m_Value(), m_Specific(X)))) 2055 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2056 return true; 2057 2058 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2059 KnownBits LHSBits(BitWidth); 2060 computeKnownBits(X, LHSBits, Depth, Q); 2061 2062 KnownBits RHSBits(BitWidth); 2063 computeKnownBits(Y, RHSBits, Depth, Q); 2064 // If i8 V is a power of two or zero: 2065 // ZeroBits: 1 1 1 0 1 1 1 1 2066 // ~ZeroBits: 0 0 0 1 0 0 0 0 2067 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2068 // If OrZero isn't set, we cannot give back a zero result. 2069 // Make sure either the LHS or RHS has a bit set. 2070 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2071 return true; 2072 } 2073 } 2074 2075 // An exact divide or right shift can only shift off zero bits, so the result 2076 // is a power of two only if the first operand is a power of two and not 2077 // copying a sign bit (sdiv int_min, 2). 2078 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2079 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2080 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2081 Depth, Q); 2082 } 2083 2084 return false; 2085 } 2086 2087 /// Test whether a GEP's result is known to be non-null. 2088 /// 2089 /// Uses properties inherent in a GEP to try to determine whether it is known 2090 /// to be non-null. 2091 /// 2092 /// Currently this routine does not support vector GEPs. 2093 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2094 const Query &Q) { 2095 const Function *F = nullptr; 2096 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2097 F = I->getFunction(); 2098 2099 if (!GEP->isInBounds() || 2100 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2101 return false; 2102 2103 // FIXME: Support vector-GEPs. 2104 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2105 2106 // If the base pointer is non-null, we cannot walk to a null address with an 2107 // inbounds GEP in address space zero. 2108 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2109 return true; 2110 2111 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2112 // If so, then the GEP cannot produce a null pointer, as doing so would 2113 // inherently violate the inbounds contract within address space zero. 2114 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2115 GTI != GTE; ++GTI) { 2116 // Struct types are easy -- they must always be indexed by a constant. 2117 if (StructType *STy = GTI.getStructTypeOrNull()) { 2118 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2119 unsigned ElementIdx = OpC->getZExtValue(); 2120 const StructLayout *SL = Q.DL.getStructLayout(STy); 2121 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2122 if (ElementOffset > 0) 2123 return true; 2124 continue; 2125 } 2126 2127 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2128 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2129 continue; 2130 2131 // Fast path the constant operand case both for efficiency and so we don't 2132 // increment Depth when just zipping down an all-constant GEP. 2133 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2134 if (!OpC->isZero()) 2135 return true; 2136 continue; 2137 } 2138 2139 // We post-increment Depth here because while isKnownNonZero increments it 2140 // as well, when we pop back up that increment won't persist. We don't want 2141 // to recurse 10k times just because we have 10k GEP operands. We don't 2142 // bail completely out because we want to handle constant GEPs regardless 2143 // of depth. 2144 if (Depth++ >= MaxDepth) 2145 continue; 2146 2147 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2148 return true; 2149 } 2150 2151 return false; 2152 } 2153 2154 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2155 const Instruction *CtxI, 2156 const DominatorTree *DT) { 2157 if (isa<Constant>(V)) 2158 return false; 2159 2160 if (!CtxI || !DT) 2161 return false; 2162 2163 unsigned NumUsesExplored = 0; 2164 for (auto *U : V->users()) { 2165 // Avoid massive lists 2166 if (NumUsesExplored >= DomConditionsMaxUses) 2167 break; 2168 NumUsesExplored++; 2169 2170 // If the value is used as an argument to a call or invoke, then argument 2171 // attributes may provide an answer about null-ness. 2172 if (auto CS = ImmutableCallSite(U)) 2173 if (auto *CalledFunc = CS.getCalledFunction()) 2174 for (const Argument &Arg : CalledFunc->args()) 2175 if (CS.getArgOperand(Arg.getArgNo()) == V && 2176 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2177 return true; 2178 2179 // If the value is used as a load/store, then the pointer must be non null. 2180 if (V == getLoadStorePointerOperand(U)) { 2181 const Instruction *I = cast<Instruction>(U); 2182 if (!NullPointerIsDefined(I->getFunction(), 2183 V->getType()->getPointerAddressSpace()) && 2184 DT->dominates(I, CtxI)) 2185 return true; 2186 } 2187 2188 // Consider only compare instructions uniquely controlling a branch 2189 CmpInst::Predicate Pred; 2190 if (!match(const_cast<User *>(U), 2191 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2192 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2193 continue; 2194 2195 SmallVector<const User *, 4> WorkList; 2196 SmallPtrSet<const User *, 4> Visited; 2197 for (auto *CmpU : U->users()) { 2198 assert(WorkList.empty() && "Should be!"); 2199 if (Visited.insert(CmpU).second) 2200 WorkList.push_back(CmpU); 2201 2202 while (!WorkList.empty()) { 2203 auto *Curr = WorkList.pop_back_val(); 2204 2205 // If a user is an AND, add all its users to the work list. We only 2206 // propagate "pred != null" condition through AND because it is only 2207 // correct to assume that all conditions of AND are met in true branch. 2208 // TODO: Support similar logic of OR and EQ predicate? 2209 if (Pred == ICmpInst::ICMP_NE) 2210 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2211 if (BO->getOpcode() == Instruction::And) { 2212 for (auto *BOU : BO->users()) 2213 if (Visited.insert(BOU).second) 2214 WorkList.push_back(BOU); 2215 continue; 2216 } 2217 2218 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2219 assert(BI->isConditional() && "uses a comparison!"); 2220 2221 BasicBlock *NonNullSuccessor = 2222 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2223 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2224 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2225 return true; 2226 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2227 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2228 return true; 2229 } 2230 } 2231 } 2232 } 2233 2234 return false; 2235 } 2236 2237 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2238 /// ensure that the value it's attached to is never Value? 'RangeType' is 2239 /// is the type of the value described by the range. 2240 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2241 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2242 assert(NumRanges >= 1); 2243 for (unsigned i = 0; i < NumRanges; ++i) { 2244 ConstantInt *Lower = 2245 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2246 ConstantInt *Upper = 2247 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2248 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2249 if (Range.contains(Value)) 2250 return false; 2251 } 2252 return true; 2253 } 2254 2255 /// Return true if the given value is known to be non-zero when defined. For 2256 /// vectors, return true if every demanded element is known to be non-zero when 2257 /// defined. For pointers, if the context instruction and dominator tree are 2258 /// specified, perform context-sensitive analysis and return true if the 2259 /// pointer couldn't possibly be null at the specified instruction. 2260 /// Supports values with integer or pointer type and vectors of integers. 2261 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2262 const Query &Q) { 2263 if (auto *C = dyn_cast<Constant>(V)) { 2264 if (C->isNullValue()) 2265 return false; 2266 if (isa<ConstantInt>(C)) 2267 // Must be non-zero due to null test above. 2268 return true; 2269 2270 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2271 // See the comment for IntToPtr/PtrToInt instructions below. 2272 if (CE->getOpcode() == Instruction::IntToPtr || 2273 CE->getOpcode() == Instruction::PtrToInt) 2274 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2275 Q.DL.getTypeSizeInBits(CE->getType())) 2276 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2277 } 2278 2279 // For constant vectors, check that all elements are undefined or known 2280 // non-zero to determine that the whole vector is known non-zero. 2281 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2282 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2283 if (!DemandedElts[i]) 2284 continue; 2285 Constant *Elt = C->getAggregateElement(i); 2286 if (!Elt || Elt->isNullValue()) 2287 return false; 2288 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2289 return false; 2290 } 2291 return true; 2292 } 2293 2294 // A global variable in address space 0 is non null unless extern weak 2295 // or an absolute symbol reference. Other address spaces may have null as a 2296 // valid address for a global, so we can't assume anything. 2297 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2298 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2299 GV->getType()->getAddressSpace() == 0) 2300 return true; 2301 } else 2302 return false; 2303 } 2304 2305 if (auto *I = dyn_cast<Instruction>(V)) { 2306 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2307 // If the possible ranges don't contain zero, then the value is 2308 // definitely non-zero. 2309 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2310 const APInt ZeroValue(Ty->getBitWidth(), 0); 2311 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2312 return true; 2313 } 2314 } 2315 } 2316 2317 if (isKnownNonZeroFromAssume(V, Q)) 2318 return true; 2319 2320 // Some of the tests below are recursive, so bail out if we hit the limit. 2321 if (Depth++ >= MaxDepth) 2322 return false; 2323 2324 // Check for pointer simplifications. 2325 if (V->getType()->isPointerTy()) { 2326 // Alloca never returns null, malloc might. 2327 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2328 return true; 2329 2330 // A byval, inalloca, or nonnull argument is never null. 2331 if (const Argument *A = dyn_cast<Argument>(V)) 2332 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2333 return true; 2334 2335 // A Load tagged with nonnull metadata is never null. 2336 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2337 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2338 return true; 2339 2340 if (const auto *Call = dyn_cast<CallBase>(V)) { 2341 if (Call->isReturnNonNull()) 2342 return true; 2343 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2344 return isKnownNonZero(RP, Depth, Q); 2345 } 2346 } 2347 2348 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2349 return true; 2350 2351 // Check for recursive pointer simplifications. 2352 if (V->getType()->isPointerTy()) { 2353 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2354 // do not alter the value, or at least not the nullness property of the 2355 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2356 // 2357 // Note that we have to take special care to avoid looking through 2358 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2359 // as casts that can alter the value, e.g., AddrSpaceCasts. 2360 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2361 if (isGEPKnownNonNull(GEP, Depth, Q)) 2362 return true; 2363 2364 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2365 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2366 2367 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2368 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2369 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2370 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2371 } 2372 2373 // Similar to int2ptr above, we can look through ptr2int here if the cast 2374 // is a no-op or an extend and not a truncate. 2375 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2376 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2377 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2378 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2379 2380 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2381 2382 // X | Y != 0 if X != 0 or Y != 0. 2383 Value *X = nullptr, *Y = nullptr; 2384 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2385 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2386 isKnownNonZero(Y, DemandedElts, Depth, Q); 2387 2388 // ext X != 0 if X != 0. 2389 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2390 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2391 2392 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2393 // if the lowest bit is shifted off the end. 2394 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2395 // shl nuw can't remove any non-zero bits. 2396 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2397 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2398 return isKnownNonZero(X, Depth, Q); 2399 2400 KnownBits Known(BitWidth); 2401 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2402 if (Known.One[0]) 2403 return true; 2404 } 2405 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2406 // defined if the sign bit is shifted off the end. 2407 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2408 // shr exact can only shift out zero bits. 2409 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2410 if (BO->isExact()) 2411 return isKnownNonZero(X, Depth, Q); 2412 2413 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2414 if (Known.isNegative()) 2415 return true; 2416 2417 // If the shifter operand is a constant, and all of the bits shifted 2418 // out are known to be zero, and X is known non-zero then at least one 2419 // non-zero bit must remain. 2420 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2421 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2422 // Is there a known one in the portion not shifted out? 2423 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2424 return true; 2425 // Are all the bits to be shifted out known zero? 2426 if (Known.countMinTrailingZeros() >= ShiftVal) 2427 return isKnownNonZero(X, DemandedElts, Depth, Q); 2428 } 2429 } 2430 // div exact can only produce a zero if the dividend is zero. 2431 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2432 return isKnownNonZero(X, DemandedElts, Depth, Q); 2433 } 2434 // X + Y. 2435 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2436 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2437 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2438 2439 // If X and Y are both non-negative (as signed values) then their sum is not 2440 // zero unless both X and Y are zero. 2441 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2442 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2443 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2444 return true; 2445 2446 // If X and Y are both negative (as signed values) then their sum is not 2447 // zero unless both X and Y equal INT_MIN. 2448 if (XKnown.isNegative() && YKnown.isNegative()) { 2449 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2450 // The sign bit of X is set. If some other bit is set then X is not equal 2451 // to INT_MIN. 2452 if (XKnown.One.intersects(Mask)) 2453 return true; 2454 // The sign bit of Y is set. If some other bit is set then Y is not equal 2455 // to INT_MIN. 2456 if (YKnown.One.intersects(Mask)) 2457 return true; 2458 } 2459 2460 // The sum of a non-negative number and a power of two is not zero. 2461 if (XKnown.isNonNegative() && 2462 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2463 return true; 2464 if (YKnown.isNonNegative() && 2465 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2466 return true; 2467 } 2468 // X * Y. 2469 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2470 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2471 // If X and Y are non-zero then so is X * Y as long as the multiplication 2472 // does not overflow. 2473 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2474 isKnownNonZero(X, DemandedElts, Depth, Q) && 2475 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2476 return true; 2477 } 2478 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2479 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2480 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2481 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2482 return true; 2483 } 2484 // PHI 2485 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2486 // Try and detect a recurrence that monotonically increases from a 2487 // starting value, as these are common as induction variables. 2488 if (PN->getNumIncomingValues() == 2) { 2489 Value *Start = PN->getIncomingValue(0); 2490 Value *Induction = PN->getIncomingValue(1); 2491 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2492 std::swap(Start, Induction); 2493 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2494 if (!C->isZero() && !C->isNegative()) { 2495 ConstantInt *X; 2496 if (Q.IIQ.UseInstrInfo && 2497 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2498 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2499 !X->isNegative()) 2500 return true; 2501 } 2502 } 2503 } 2504 // Check if all incoming values are non-zero constant. 2505 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2506 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2507 }); 2508 if (AllNonZeroConstants) 2509 return true; 2510 } 2511 // ExtractElement 2512 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2513 const Value *Vec = EEI->getVectorOperand(); 2514 const Value *Idx = EEI->getIndexOperand(); 2515 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2516 unsigned NumElts = cast<VectorType>(Vec->getType())->getNumElements(); 2517 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2518 if (CIdx && CIdx->getValue().ult(NumElts)) 2519 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2520 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2521 } 2522 2523 KnownBits Known(BitWidth); 2524 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2525 return Known.One != 0; 2526 } 2527 2528 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2529 Type *Ty = V->getType(); 2530 APInt DemandedElts = 2531 Ty->isVectorTy() 2532 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 2533 : APInt(1, 1); 2534 return isKnownNonZero(V, DemandedElts, Depth, Q); 2535 } 2536 2537 /// Return true if V2 == V1 + X, where X is known non-zero. 2538 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2539 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2540 if (!BO || BO->getOpcode() != Instruction::Add) 2541 return false; 2542 Value *Op = nullptr; 2543 if (V2 == BO->getOperand(0)) 2544 Op = BO->getOperand(1); 2545 else if (V2 == BO->getOperand(1)) 2546 Op = BO->getOperand(0); 2547 else 2548 return false; 2549 return isKnownNonZero(Op, 0, Q); 2550 } 2551 2552 /// Return true if it is known that V1 != V2. 2553 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2554 if (V1 == V2) 2555 return false; 2556 if (V1->getType() != V2->getType()) 2557 // We can't look through casts yet. 2558 return false; 2559 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2560 return true; 2561 2562 if (V1->getType()->isIntOrIntVectorTy()) { 2563 // Are any known bits in V1 contradictory to known bits in V2? If V1 2564 // has a known zero where V2 has a known one, they must not be equal. 2565 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2566 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2567 2568 if (Known1.Zero.intersects(Known2.One) || 2569 Known2.Zero.intersects(Known1.One)) 2570 return true; 2571 } 2572 return false; 2573 } 2574 2575 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2576 /// simplify operations downstream. Mask is known to be zero for bits that V 2577 /// cannot have. 2578 /// 2579 /// This function is defined on values with integer type, values with pointer 2580 /// type, and vectors of integers. In the case 2581 /// where V is a vector, the mask, known zero, and known one values are the 2582 /// same width as the vector element, and the bit is set only if it is true 2583 /// for all of the elements in the vector. 2584 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2585 const Query &Q) { 2586 KnownBits Known(Mask.getBitWidth()); 2587 computeKnownBits(V, Known, Depth, Q); 2588 return Mask.isSubsetOf(Known.Zero); 2589 } 2590 2591 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2592 // Returns the input and lower/upper bounds. 2593 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2594 const APInt *&CLow, const APInt *&CHigh) { 2595 assert(isa<Operator>(Select) && 2596 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2597 "Input should be a Select!"); 2598 2599 const Value *LHS = nullptr, *RHS = nullptr; 2600 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2601 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2602 return false; 2603 2604 if (!match(RHS, m_APInt(CLow))) 2605 return false; 2606 2607 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2608 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2609 if (getInverseMinMaxFlavor(SPF) != SPF2) 2610 return false; 2611 2612 if (!match(RHS2, m_APInt(CHigh))) 2613 return false; 2614 2615 if (SPF == SPF_SMIN) 2616 std::swap(CLow, CHigh); 2617 2618 In = LHS2; 2619 return CLow->sle(*CHigh); 2620 } 2621 2622 /// For vector constants, loop over the elements and find the constant with the 2623 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2624 /// or if any element was not analyzed; otherwise, return the count for the 2625 /// element with the minimum number of sign bits. 2626 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2627 const APInt &DemandedElts, 2628 unsigned TyBits) { 2629 const auto *CV = dyn_cast<Constant>(V); 2630 if (!CV || !CV->getType()->isVectorTy()) 2631 return 0; 2632 2633 unsigned MinSignBits = TyBits; 2634 unsigned NumElts = cast<VectorType>(CV->getType())->getNumElements(); 2635 for (unsigned i = 0; i != NumElts; ++i) { 2636 if (!DemandedElts[i]) 2637 continue; 2638 // If we find a non-ConstantInt, bail out. 2639 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2640 if (!Elt) 2641 return 0; 2642 2643 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2644 } 2645 2646 return MinSignBits; 2647 } 2648 2649 static unsigned ComputeNumSignBitsImpl(const Value *V, 2650 const APInt &DemandedElts, 2651 unsigned Depth, const Query &Q); 2652 2653 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2654 unsigned Depth, const Query &Q) { 2655 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2656 assert(Result > 0 && "At least one sign bit needs to be present!"); 2657 return Result; 2658 } 2659 2660 /// Return the number of times the sign bit of the register is replicated into 2661 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2662 /// (itself), but other cases can give us information. For example, immediately 2663 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2664 /// other, so we return 3. For vectors, return the number of sign bits for the 2665 /// vector element with the minimum number of known sign bits of the demanded 2666 /// elements in the vector specified by DemandedElts. 2667 static unsigned ComputeNumSignBitsImpl(const Value *V, 2668 const APInt &DemandedElts, 2669 unsigned Depth, const Query &Q) { 2670 assert(Depth <= MaxDepth && "Limit Search Depth"); 2671 2672 // We return the minimum number of sign bits that are guaranteed to be present 2673 // in V, so for undef we have to conservatively return 1. We don't have the 2674 // same behavior for poison though -- that's a FIXME today. 2675 2676 Type *Ty = V->getType(); 2677 assert(((Ty->isVectorTy() && cast<VectorType>(Ty)->getNumElements() == 2678 DemandedElts.getBitWidth()) || 2679 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2680 "Unexpected vector size"); 2681 2682 Type *ScalarTy = Ty->getScalarType(); 2683 unsigned TyBits = ScalarTy->isPointerTy() ? 2684 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2685 Q.DL.getTypeSizeInBits(ScalarTy); 2686 2687 unsigned Tmp, Tmp2; 2688 unsigned FirstAnswer = 1; 2689 2690 // Note that ConstantInt is handled by the general computeKnownBits case 2691 // below. 2692 2693 if (Depth == MaxDepth) 2694 return 1; // Limit search depth. 2695 2696 if (auto *U = dyn_cast<Operator>(V)) { 2697 switch (Operator::getOpcode(V)) { 2698 default: break; 2699 case Instruction::SExt: 2700 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2701 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2702 2703 case Instruction::SDiv: { 2704 const APInt *Denominator; 2705 // sdiv X, C -> adds log(C) sign bits. 2706 if (match(U->getOperand(1), m_APInt(Denominator))) { 2707 2708 // Ignore non-positive denominator. 2709 if (!Denominator->isStrictlyPositive()) 2710 break; 2711 2712 // Calculate the incoming numerator bits. 2713 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2714 2715 // Add floor(log(C)) bits to the numerator bits. 2716 return std::min(TyBits, NumBits + Denominator->logBase2()); 2717 } 2718 break; 2719 } 2720 2721 case Instruction::SRem: { 2722 const APInt *Denominator; 2723 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2724 // positive constant. This let us put a lower bound on the number of sign 2725 // bits. 2726 if (match(U->getOperand(1), m_APInt(Denominator))) { 2727 2728 // Ignore non-positive denominator. 2729 if (!Denominator->isStrictlyPositive()) 2730 break; 2731 2732 // Calculate the incoming numerator bits. SRem by a positive constant 2733 // can't lower the number of sign bits. 2734 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2735 2736 // Calculate the leading sign bit constraints by examining the 2737 // denominator. Given that the denominator is positive, there are two 2738 // cases: 2739 // 2740 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2741 // (1 << ceilLogBase2(C)). 2742 // 2743 // 2. the numerator is negative. Then the result range is (-C,0] and 2744 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2745 // 2746 // Thus a lower bound on the number of sign bits is `TyBits - 2747 // ceilLogBase2(C)`. 2748 2749 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2750 return std::max(NumrBits, ResBits); 2751 } 2752 break; 2753 } 2754 2755 case Instruction::AShr: { 2756 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2757 // ashr X, C -> adds C sign bits. Vectors too. 2758 const APInt *ShAmt; 2759 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2760 if (ShAmt->uge(TyBits)) 2761 break; // Bad shift. 2762 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2763 Tmp += ShAmtLimited; 2764 if (Tmp > TyBits) Tmp = TyBits; 2765 } 2766 return Tmp; 2767 } 2768 case Instruction::Shl: { 2769 const APInt *ShAmt; 2770 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2771 // shl destroys sign bits. 2772 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2773 if (ShAmt->uge(TyBits) || // Bad shift. 2774 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2775 Tmp2 = ShAmt->getZExtValue(); 2776 return Tmp - Tmp2; 2777 } 2778 break; 2779 } 2780 case Instruction::And: 2781 case Instruction::Or: 2782 case Instruction::Xor: // NOT is handled here. 2783 // Logical binary ops preserve the number of sign bits at the worst. 2784 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2785 if (Tmp != 1) { 2786 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2787 FirstAnswer = std::min(Tmp, Tmp2); 2788 // We computed what we know about the sign bits as our first 2789 // answer. Now proceed to the generic code that uses 2790 // computeKnownBits, and pick whichever answer is better. 2791 } 2792 break; 2793 2794 case Instruction::Select: { 2795 // If we have a clamp pattern, we know that the number of sign bits will 2796 // be the minimum of the clamp min/max range. 2797 const Value *X; 2798 const APInt *CLow, *CHigh; 2799 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2800 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2801 2802 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2803 if (Tmp == 1) break; 2804 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2805 return std::min(Tmp, Tmp2); 2806 } 2807 2808 case Instruction::Add: 2809 // Add can have at most one carry bit. Thus we know that the output 2810 // is, at worst, one more bit than the inputs. 2811 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2812 if (Tmp == 1) break; 2813 2814 // Special case decrementing a value (ADD X, -1): 2815 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2816 if (CRHS->isAllOnesValue()) { 2817 KnownBits Known(TyBits); 2818 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2819 2820 // If the input is known to be 0 or 1, the output is 0/-1, which is 2821 // all sign bits set. 2822 if ((Known.Zero | 1).isAllOnesValue()) 2823 return TyBits; 2824 2825 // If we are subtracting one from a positive number, there is no carry 2826 // out of the result. 2827 if (Known.isNonNegative()) 2828 return Tmp; 2829 } 2830 2831 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2832 if (Tmp2 == 1) break; 2833 return std::min(Tmp, Tmp2) - 1; 2834 2835 case Instruction::Sub: 2836 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2837 if (Tmp2 == 1) break; 2838 2839 // Handle NEG. 2840 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2841 if (CLHS->isNullValue()) { 2842 KnownBits Known(TyBits); 2843 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2844 // If the input is known to be 0 or 1, the output is 0/-1, which is 2845 // all sign bits set. 2846 if ((Known.Zero | 1).isAllOnesValue()) 2847 return TyBits; 2848 2849 // If the input is known to be positive (the sign bit is known clear), 2850 // the output of the NEG has the same number of sign bits as the 2851 // input. 2852 if (Known.isNonNegative()) 2853 return Tmp2; 2854 2855 // Otherwise, we treat this like a SUB. 2856 } 2857 2858 // Sub can have at most one carry bit. Thus we know that the output 2859 // is, at worst, one more bit than the inputs. 2860 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2861 if (Tmp == 1) break; 2862 return std::min(Tmp, Tmp2) - 1; 2863 2864 case Instruction::Mul: { 2865 // The output of the Mul can be at most twice the valid bits in the 2866 // inputs. 2867 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2868 if (SignBitsOp0 == 1) break; 2869 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2870 if (SignBitsOp1 == 1) break; 2871 unsigned OutValidBits = 2872 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2873 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2874 } 2875 2876 case Instruction::PHI: { 2877 const PHINode *PN = cast<PHINode>(U); 2878 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2879 // Don't analyze large in-degree PHIs. 2880 if (NumIncomingValues > 4) break; 2881 // Unreachable blocks may have zero-operand PHI nodes. 2882 if (NumIncomingValues == 0) break; 2883 2884 // Take the minimum of all incoming values. This can't infinitely loop 2885 // because of our depth threshold. 2886 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2887 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2888 if (Tmp == 1) return Tmp; 2889 Tmp = std::min( 2890 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2891 } 2892 return Tmp; 2893 } 2894 2895 case Instruction::Trunc: 2896 // FIXME: it's tricky to do anything useful for this, but it is an 2897 // important case for targets like X86. 2898 break; 2899 2900 case Instruction::ExtractElement: 2901 // Look through extract element. At the moment we keep this simple and 2902 // skip tracking the specific element. But at least we might find 2903 // information valid for all elements of the vector (for example if vector 2904 // is sign extended, shifted, etc). 2905 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2906 2907 case Instruction::ShuffleVector: { 2908 // Collect the minimum number of sign bits that are shared by every vector 2909 // element referenced by the shuffle. 2910 auto *Shuf = cast<ShuffleVectorInst>(U); 2911 APInt DemandedLHS, DemandedRHS; 2912 // For undef elements, we don't know anything about the common state of 2913 // the shuffle result. 2914 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2915 return 1; 2916 Tmp = std::numeric_limits<unsigned>::max(); 2917 if (!!DemandedLHS) { 2918 const Value *LHS = Shuf->getOperand(0); 2919 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2920 } 2921 // If we don't know anything, early out and try computeKnownBits 2922 // fall-back. 2923 if (Tmp == 1) 2924 break; 2925 if (!!DemandedRHS) { 2926 const Value *RHS = Shuf->getOperand(1); 2927 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2928 Tmp = std::min(Tmp, Tmp2); 2929 } 2930 // If we don't know anything, early out and try computeKnownBits 2931 // fall-back. 2932 if (Tmp == 1) 2933 break; 2934 assert(Tmp <= Ty->getScalarSizeInBits() && 2935 "Failed to determine minimum sign bits"); 2936 return Tmp; 2937 } 2938 } 2939 } 2940 2941 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2942 // use this information. 2943 2944 // If we can examine all elements of a vector constant successfully, we're 2945 // done (we can't do any better than that). If not, keep trying. 2946 if (unsigned VecSignBits = 2947 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2948 return VecSignBits; 2949 2950 KnownBits Known(TyBits); 2951 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2952 2953 // If we know that the sign bit is either zero or one, determine the number of 2954 // identical bits in the top of the input value. 2955 return std::max(FirstAnswer, Known.countMinSignBits()); 2956 } 2957 2958 /// This function computes the integer multiple of Base that equals V. 2959 /// If successful, it returns true and returns the multiple in 2960 /// Multiple. If unsuccessful, it returns false. It looks 2961 /// through SExt instructions only if LookThroughSExt is true. 2962 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2963 bool LookThroughSExt, unsigned Depth) { 2964 assert(V && "No Value?"); 2965 assert(Depth <= MaxDepth && "Limit Search Depth"); 2966 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2967 2968 Type *T = V->getType(); 2969 2970 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2971 2972 if (Base == 0) 2973 return false; 2974 2975 if (Base == 1) { 2976 Multiple = V; 2977 return true; 2978 } 2979 2980 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2981 Constant *BaseVal = ConstantInt::get(T, Base); 2982 if (CO && CO == BaseVal) { 2983 // Multiple is 1. 2984 Multiple = ConstantInt::get(T, 1); 2985 return true; 2986 } 2987 2988 if (CI && CI->getZExtValue() % Base == 0) { 2989 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2990 return true; 2991 } 2992 2993 if (Depth == MaxDepth) return false; // Limit search depth. 2994 2995 Operator *I = dyn_cast<Operator>(V); 2996 if (!I) return false; 2997 2998 switch (I->getOpcode()) { 2999 default: break; 3000 case Instruction::SExt: 3001 if (!LookThroughSExt) return false; 3002 // otherwise fall through to ZExt 3003 LLVM_FALLTHROUGH; 3004 case Instruction::ZExt: 3005 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3006 LookThroughSExt, Depth+1); 3007 case Instruction::Shl: 3008 case Instruction::Mul: { 3009 Value *Op0 = I->getOperand(0); 3010 Value *Op1 = I->getOperand(1); 3011 3012 if (I->getOpcode() == Instruction::Shl) { 3013 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3014 if (!Op1CI) return false; 3015 // Turn Op0 << Op1 into Op0 * 2^Op1 3016 APInt Op1Int = Op1CI->getValue(); 3017 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3018 APInt API(Op1Int.getBitWidth(), 0); 3019 API.setBit(BitToSet); 3020 Op1 = ConstantInt::get(V->getContext(), API); 3021 } 3022 3023 Value *Mul0 = nullptr; 3024 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3025 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3026 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3027 if (Op1C->getType()->getPrimitiveSizeInBits() < 3028 MulC->getType()->getPrimitiveSizeInBits()) 3029 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3030 if (Op1C->getType()->getPrimitiveSizeInBits() > 3031 MulC->getType()->getPrimitiveSizeInBits()) 3032 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3033 3034 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3035 Multiple = ConstantExpr::getMul(MulC, Op1C); 3036 return true; 3037 } 3038 3039 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3040 if (Mul0CI->getValue() == 1) { 3041 // V == Base * Op1, so return Op1 3042 Multiple = Op1; 3043 return true; 3044 } 3045 } 3046 3047 Value *Mul1 = nullptr; 3048 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3049 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3050 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3051 if (Op0C->getType()->getPrimitiveSizeInBits() < 3052 MulC->getType()->getPrimitiveSizeInBits()) 3053 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3054 if (Op0C->getType()->getPrimitiveSizeInBits() > 3055 MulC->getType()->getPrimitiveSizeInBits()) 3056 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3057 3058 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3059 Multiple = ConstantExpr::getMul(MulC, Op0C); 3060 return true; 3061 } 3062 3063 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3064 if (Mul1CI->getValue() == 1) { 3065 // V == Base * Op0, so return Op0 3066 Multiple = Op0; 3067 return true; 3068 } 3069 } 3070 } 3071 } 3072 3073 // We could not determine if V is a multiple of Base. 3074 return false; 3075 } 3076 3077 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 3078 const TargetLibraryInfo *TLI) { 3079 const Function *F = ICS.getCalledFunction(); 3080 if (!F) 3081 return Intrinsic::not_intrinsic; 3082 3083 if (F->isIntrinsic()) 3084 return F->getIntrinsicID(); 3085 3086 if (!TLI) 3087 return Intrinsic::not_intrinsic; 3088 3089 LibFunc Func; 3090 // We're going to make assumptions on the semantics of the functions, check 3091 // that the target knows that it's available in this environment and it does 3092 // not have local linkage. 3093 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3094 return Intrinsic::not_intrinsic; 3095 3096 if (!ICS.onlyReadsMemory()) 3097 return Intrinsic::not_intrinsic; 3098 3099 // Otherwise check if we have a call to a function that can be turned into a 3100 // vector intrinsic. 3101 switch (Func) { 3102 default: 3103 break; 3104 case LibFunc_sin: 3105 case LibFunc_sinf: 3106 case LibFunc_sinl: 3107 return Intrinsic::sin; 3108 case LibFunc_cos: 3109 case LibFunc_cosf: 3110 case LibFunc_cosl: 3111 return Intrinsic::cos; 3112 case LibFunc_exp: 3113 case LibFunc_expf: 3114 case LibFunc_expl: 3115 return Intrinsic::exp; 3116 case LibFunc_exp2: 3117 case LibFunc_exp2f: 3118 case LibFunc_exp2l: 3119 return Intrinsic::exp2; 3120 case LibFunc_log: 3121 case LibFunc_logf: 3122 case LibFunc_logl: 3123 return Intrinsic::log; 3124 case LibFunc_log10: 3125 case LibFunc_log10f: 3126 case LibFunc_log10l: 3127 return Intrinsic::log10; 3128 case LibFunc_log2: 3129 case LibFunc_log2f: 3130 case LibFunc_log2l: 3131 return Intrinsic::log2; 3132 case LibFunc_fabs: 3133 case LibFunc_fabsf: 3134 case LibFunc_fabsl: 3135 return Intrinsic::fabs; 3136 case LibFunc_fmin: 3137 case LibFunc_fminf: 3138 case LibFunc_fminl: 3139 return Intrinsic::minnum; 3140 case LibFunc_fmax: 3141 case LibFunc_fmaxf: 3142 case LibFunc_fmaxl: 3143 return Intrinsic::maxnum; 3144 case LibFunc_copysign: 3145 case LibFunc_copysignf: 3146 case LibFunc_copysignl: 3147 return Intrinsic::copysign; 3148 case LibFunc_floor: 3149 case LibFunc_floorf: 3150 case LibFunc_floorl: 3151 return Intrinsic::floor; 3152 case LibFunc_ceil: 3153 case LibFunc_ceilf: 3154 case LibFunc_ceill: 3155 return Intrinsic::ceil; 3156 case LibFunc_trunc: 3157 case LibFunc_truncf: 3158 case LibFunc_truncl: 3159 return Intrinsic::trunc; 3160 case LibFunc_rint: 3161 case LibFunc_rintf: 3162 case LibFunc_rintl: 3163 return Intrinsic::rint; 3164 case LibFunc_nearbyint: 3165 case LibFunc_nearbyintf: 3166 case LibFunc_nearbyintl: 3167 return Intrinsic::nearbyint; 3168 case LibFunc_round: 3169 case LibFunc_roundf: 3170 case LibFunc_roundl: 3171 return Intrinsic::round; 3172 case LibFunc_pow: 3173 case LibFunc_powf: 3174 case LibFunc_powl: 3175 return Intrinsic::pow; 3176 case LibFunc_sqrt: 3177 case LibFunc_sqrtf: 3178 case LibFunc_sqrtl: 3179 return Intrinsic::sqrt; 3180 } 3181 3182 return Intrinsic::not_intrinsic; 3183 } 3184 3185 /// Return true if we can prove that the specified FP value is never equal to 3186 /// -0.0. 3187 /// 3188 /// NOTE: this function will need to be revisited when we support non-default 3189 /// rounding modes! 3190 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3191 unsigned Depth) { 3192 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3193 return !CFP->getValueAPF().isNegZero(); 3194 3195 // Limit search depth. 3196 if (Depth == MaxDepth) 3197 return false; 3198 3199 auto *Op = dyn_cast<Operator>(V); 3200 if (!Op) 3201 return false; 3202 3203 // Check if the nsz fast-math flag is set. 3204 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3205 if (FPO->hasNoSignedZeros()) 3206 return true; 3207 3208 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3209 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3210 return true; 3211 3212 // sitofp and uitofp turn into +0.0 for zero. 3213 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3214 return true; 3215 3216 if (auto *Call = dyn_cast<CallInst>(Op)) { 3217 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3218 switch (IID) { 3219 default: 3220 break; 3221 // sqrt(-0.0) = -0.0, no other negative results are possible. 3222 case Intrinsic::sqrt: 3223 case Intrinsic::canonicalize: 3224 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3225 // fabs(x) != -0.0 3226 case Intrinsic::fabs: 3227 return true; 3228 } 3229 } 3230 3231 return false; 3232 } 3233 3234 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3235 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3236 /// bit despite comparing equal. 3237 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3238 const TargetLibraryInfo *TLI, 3239 bool SignBitOnly, 3240 unsigned Depth) { 3241 // TODO: This function does not do the right thing when SignBitOnly is true 3242 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3243 // which flips the sign bits of NaNs. See 3244 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3245 3246 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3247 return !CFP->getValueAPF().isNegative() || 3248 (!SignBitOnly && CFP->getValueAPF().isZero()); 3249 } 3250 3251 // Handle vector of constants. 3252 if (auto *CV = dyn_cast<Constant>(V)) { 3253 if (auto *CVVTy = dyn_cast<VectorType>(CV->getType())) { 3254 unsigned NumElts = CVVTy->getNumElements(); 3255 for (unsigned i = 0; i != NumElts; ++i) { 3256 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3257 if (!CFP) 3258 return false; 3259 if (CFP->getValueAPF().isNegative() && 3260 (SignBitOnly || !CFP->getValueAPF().isZero())) 3261 return false; 3262 } 3263 3264 // All non-negative ConstantFPs. 3265 return true; 3266 } 3267 } 3268 3269 if (Depth == MaxDepth) 3270 return false; // Limit search depth. 3271 3272 const Operator *I = dyn_cast<Operator>(V); 3273 if (!I) 3274 return false; 3275 3276 switch (I->getOpcode()) { 3277 default: 3278 break; 3279 // Unsigned integers are always nonnegative. 3280 case Instruction::UIToFP: 3281 return true; 3282 case Instruction::FMul: 3283 // x*x is always non-negative or a NaN. 3284 if (I->getOperand(0) == I->getOperand(1) && 3285 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3286 return true; 3287 3288 LLVM_FALLTHROUGH; 3289 case Instruction::FAdd: 3290 case Instruction::FDiv: 3291 case Instruction::FRem: 3292 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3293 Depth + 1) && 3294 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3295 Depth + 1); 3296 case Instruction::Select: 3297 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3298 Depth + 1) && 3299 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3300 Depth + 1); 3301 case Instruction::FPExt: 3302 case Instruction::FPTrunc: 3303 // Widening/narrowing never change sign. 3304 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3305 Depth + 1); 3306 case Instruction::ExtractElement: 3307 // Look through extract element. At the moment we keep this simple and skip 3308 // tracking the specific element. But at least we might find information 3309 // valid for all elements of the vector. 3310 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3311 Depth + 1); 3312 case Instruction::Call: 3313 const auto *CI = cast<CallInst>(I); 3314 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3315 switch (IID) { 3316 default: 3317 break; 3318 case Intrinsic::maxnum: 3319 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3320 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3321 SignBitOnly, Depth + 1)) || 3322 (isKnownNeverNaN(I->getOperand(1), TLI) && 3323 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3324 SignBitOnly, Depth + 1)); 3325 3326 case Intrinsic::maximum: 3327 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3328 Depth + 1) || 3329 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3330 Depth + 1); 3331 case Intrinsic::minnum: 3332 case Intrinsic::minimum: 3333 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3334 Depth + 1) && 3335 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3336 Depth + 1); 3337 case Intrinsic::exp: 3338 case Intrinsic::exp2: 3339 case Intrinsic::fabs: 3340 return true; 3341 3342 case Intrinsic::sqrt: 3343 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3344 if (!SignBitOnly) 3345 return true; 3346 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3347 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3348 3349 case Intrinsic::powi: 3350 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3351 // powi(x,n) is non-negative if n is even. 3352 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3353 return true; 3354 } 3355 // TODO: This is not correct. Given that exp is an integer, here are the 3356 // ways that pow can return a negative value: 3357 // 3358 // pow(x, exp) --> negative if exp is odd and x is negative. 3359 // pow(-0, exp) --> -inf if exp is negative odd. 3360 // pow(-0, exp) --> -0 if exp is positive odd. 3361 // pow(-inf, exp) --> -0 if exp is negative odd. 3362 // pow(-inf, exp) --> -inf if exp is positive odd. 3363 // 3364 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3365 // but we must return false if x == -0. Unfortunately we do not currently 3366 // have a way of expressing this constraint. See details in 3367 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3368 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3369 Depth + 1); 3370 3371 case Intrinsic::fma: 3372 case Intrinsic::fmuladd: 3373 // x*x+y is non-negative if y is non-negative. 3374 return I->getOperand(0) == I->getOperand(1) && 3375 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3376 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3377 Depth + 1); 3378 } 3379 break; 3380 } 3381 return false; 3382 } 3383 3384 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3385 const TargetLibraryInfo *TLI) { 3386 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3387 } 3388 3389 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3390 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3391 } 3392 3393 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3394 unsigned Depth) { 3395 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3396 3397 // If we're told that infinities won't happen, assume they won't. 3398 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3399 if (FPMathOp->hasNoInfs()) 3400 return true; 3401 3402 // Handle scalar constants. 3403 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3404 return !CFP->isInfinity(); 3405 3406 if (Depth == MaxDepth) 3407 return false; 3408 3409 if (auto *Inst = dyn_cast<Instruction>(V)) { 3410 switch (Inst->getOpcode()) { 3411 case Instruction::Select: { 3412 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3413 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3414 } 3415 case Instruction::UIToFP: 3416 // If the input type fits into the floating type the result is finite. 3417 return ilogb(APFloat::getLargest( 3418 Inst->getType()->getScalarType()->getFltSemantics())) >= 3419 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3420 default: 3421 break; 3422 } 3423 } 3424 3425 // Bail out for constant expressions, but try to handle vector constants. 3426 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3427 return false; 3428 3429 // For vectors, verify that each element is not infinity. 3430 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3431 for (unsigned i = 0; i != NumElts; ++i) { 3432 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3433 if (!Elt) 3434 return false; 3435 if (isa<UndefValue>(Elt)) 3436 continue; 3437 auto *CElt = dyn_cast<ConstantFP>(Elt); 3438 if (!CElt || CElt->isInfinity()) 3439 return false; 3440 } 3441 // All elements were confirmed non-infinity or undefined. 3442 return true; 3443 } 3444 3445 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3446 unsigned Depth) { 3447 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3448 3449 // If we're told that NaNs won't happen, assume they won't. 3450 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3451 if (FPMathOp->hasNoNaNs()) 3452 return true; 3453 3454 // Handle scalar constants. 3455 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3456 return !CFP->isNaN(); 3457 3458 if (Depth == MaxDepth) 3459 return false; 3460 3461 if (auto *Inst = dyn_cast<Instruction>(V)) { 3462 switch (Inst->getOpcode()) { 3463 case Instruction::FAdd: 3464 case Instruction::FSub: 3465 // Adding positive and negative infinity produces NaN. 3466 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3467 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3468 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3469 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3470 3471 case Instruction::FMul: 3472 // Zero multiplied with infinity produces NaN. 3473 // FIXME: If neither side can be zero fmul never produces NaN. 3474 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3475 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3476 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3477 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3478 3479 case Instruction::FDiv: 3480 case Instruction::FRem: 3481 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3482 return false; 3483 3484 case Instruction::Select: { 3485 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3486 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3487 } 3488 case Instruction::SIToFP: 3489 case Instruction::UIToFP: 3490 return true; 3491 case Instruction::FPTrunc: 3492 case Instruction::FPExt: 3493 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3494 default: 3495 break; 3496 } 3497 } 3498 3499 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3500 switch (II->getIntrinsicID()) { 3501 case Intrinsic::canonicalize: 3502 case Intrinsic::fabs: 3503 case Intrinsic::copysign: 3504 case Intrinsic::exp: 3505 case Intrinsic::exp2: 3506 case Intrinsic::floor: 3507 case Intrinsic::ceil: 3508 case Intrinsic::trunc: 3509 case Intrinsic::rint: 3510 case Intrinsic::nearbyint: 3511 case Intrinsic::round: 3512 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3513 case Intrinsic::sqrt: 3514 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3515 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3516 case Intrinsic::minnum: 3517 case Intrinsic::maxnum: 3518 // If either operand is not NaN, the result is not NaN. 3519 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3520 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3521 default: 3522 return false; 3523 } 3524 } 3525 3526 // Bail out for constant expressions, but try to handle vector constants. 3527 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3528 return false; 3529 3530 // For vectors, verify that each element is not NaN. 3531 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3532 for (unsigned i = 0; i != NumElts; ++i) { 3533 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3534 if (!Elt) 3535 return false; 3536 if (isa<UndefValue>(Elt)) 3537 continue; 3538 auto *CElt = dyn_cast<ConstantFP>(Elt); 3539 if (!CElt || CElt->isNaN()) 3540 return false; 3541 } 3542 // All elements were confirmed not-NaN or undefined. 3543 return true; 3544 } 3545 3546 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3547 3548 // All byte-wide stores are splatable, even of arbitrary variables. 3549 if (V->getType()->isIntegerTy(8)) 3550 return V; 3551 3552 LLVMContext &Ctx = V->getContext(); 3553 3554 // Undef don't care. 3555 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3556 if (isa<UndefValue>(V)) 3557 return UndefInt8; 3558 3559 // Return Undef for zero-sized type. 3560 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3561 return UndefInt8; 3562 3563 Constant *C = dyn_cast<Constant>(V); 3564 if (!C) { 3565 // Conceptually, we could handle things like: 3566 // %a = zext i8 %X to i16 3567 // %b = shl i16 %a, 8 3568 // %c = or i16 %a, %b 3569 // but until there is an example that actually needs this, it doesn't seem 3570 // worth worrying about. 3571 return nullptr; 3572 } 3573 3574 // Handle 'null' ConstantArrayZero etc. 3575 if (C->isNullValue()) 3576 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3577 3578 // Constant floating-point values can be handled as integer values if the 3579 // corresponding integer value is "byteable". An important case is 0.0. 3580 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3581 Type *Ty = nullptr; 3582 if (CFP->getType()->isHalfTy()) 3583 Ty = Type::getInt16Ty(Ctx); 3584 else if (CFP->getType()->isFloatTy()) 3585 Ty = Type::getInt32Ty(Ctx); 3586 else if (CFP->getType()->isDoubleTy()) 3587 Ty = Type::getInt64Ty(Ctx); 3588 // Don't handle long double formats, which have strange constraints. 3589 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3590 : nullptr; 3591 } 3592 3593 // We can handle constant integers that are multiple of 8 bits. 3594 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3595 if (CI->getBitWidth() % 8 == 0) { 3596 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3597 if (!CI->getValue().isSplat(8)) 3598 return nullptr; 3599 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3600 } 3601 } 3602 3603 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3604 if (CE->getOpcode() == Instruction::IntToPtr) { 3605 auto PS = DL.getPointerSizeInBits( 3606 cast<PointerType>(CE->getType())->getAddressSpace()); 3607 return isBytewiseValue( 3608 ConstantExpr::getIntegerCast(CE->getOperand(0), 3609 Type::getIntNTy(Ctx, PS), false), 3610 DL); 3611 } 3612 } 3613 3614 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3615 if (LHS == RHS) 3616 return LHS; 3617 if (!LHS || !RHS) 3618 return nullptr; 3619 if (LHS == UndefInt8) 3620 return RHS; 3621 if (RHS == UndefInt8) 3622 return LHS; 3623 return nullptr; 3624 }; 3625 3626 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3627 Value *Val = UndefInt8; 3628 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3629 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3630 return nullptr; 3631 return Val; 3632 } 3633 3634 if (isa<ConstantAggregate>(C)) { 3635 Value *Val = UndefInt8; 3636 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3637 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3638 return nullptr; 3639 return Val; 3640 } 3641 3642 // Don't try to handle the handful of other constants. 3643 return nullptr; 3644 } 3645 3646 // This is the recursive version of BuildSubAggregate. It takes a few different 3647 // arguments. Idxs is the index within the nested struct From that we are 3648 // looking at now (which is of type IndexedType). IdxSkip is the number of 3649 // indices from Idxs that should be left out when inserting into the resulting 3650 // struct. To is the result struct built so far, new insertvalue instructions 3651 // build on that. 3652 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3653 SmallVectorImpl<unsigned> &Idxs, 3654 unsigned IdxSkip, 3655 Instruction *InsertBefore) { 3656 StructType *STy = dyn_cast<StructType>(IndexedType); 3657 if (STy) { 3658 // Save the original To argument so we can modify it 3659 Value *OrigTo = To; 3660 // General case, the type indexed by Idxs is a struct 3661 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3662 // Process each struct element recursively 3663 Idxs.push_back(i); 3664 Value *PrevTo = To; 3665 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3666 InsertBefore); 3667 Idxs.pop_back(); 3668 if (!To) { 3669 // Couldn't find any inserted value for this index? Cleanup 3670 while (PrevTo != OrigTo) { 3671 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3672 PrevTo = Del->getAggregateOperand(); 3673 Del->eraseFromParent(); 3674 } 3675 // Stop processing elements 3676 break; 3677 } 3678 } 3679 // If we successfully found a value for each of our subaggregates 3680 if (To) 3681 return To; 3682 } 3683 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3684 // the struct's elements had a value that was inserted directly. In the latter 3685 // case, perhaps we can't determine each of the subelements individually, but 3686 // we might be able to find the complete struct somewhere. 3687 3688 // Find the value that is at that particular spot 3689 Value *V = FindInsertedValue(From, Idxs); 3690 3691 if (!V) 3692 return nullptr; 3693 3694 // Insert the value in the new (sub) aggregate 3695 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3696 "tmp", InsertBefore); 3697 } 3698 3699 // This helper takes a nested struct and extracts a part of it (which is again a 3700 // struct) into a new value. For example, given the struct: 3701 // { a, { b, { c, d }, e } } 3702 // and the indices "1, 1" this returns 3703 // { c, d }. 3704 // 3705 // It does this by inserting an insertvalue for each element in the resulting 3706 // struct, as opposed to just inserting a single struct. This will only work if 3707 // each of the elements of the substruct are known (ie, inserted into From by an 3708 // insertvalue instruction somewhere). 3709 // 3710 // All inserted insertvalue instructions are inserted before InsertBefore 3711 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3712 Instruction *InsertBefore) { 3713 assert(InsertBefore && "Must have someplace to insert!"); 3714 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3715 idx_range); 3716 Value *To = UndefValue::get(IndexedType); 3717 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3718 unsigned IdxSkip = Idxs.size(); 3719 3720 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3721 } 3722 3723 /// Given an aggregate and a sequence of indices, see if the scalar value 3724 /// indexed is already around as a register, for example if it was inserted 3725 /// directly into the aggregate. 3726 /// 3727 /// If InsertBefore is not null, this function will duplicate (modified) 3728 /// insertvalues when a part of a nested struct is extracted. 3729 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3730 Instruction *InsertBefore) { 3731 // Nothing to index? Just return V then (this is useful at the end of our 3732 // recursion). 3733 if (idx_range.empty()) 3734 return V; 3735 // We have indices, so V should have an indexable type. 3736 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3737 "Not looking at a struct or array?"); 3738 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3739 "Invalid indices for type?"); 3740 3741 if (Constant *C = dyn_cast<Constant>(V)) { 3742 C = C->getAggregateElement(idx_range[0]); 3743 if (!C) return nullptr; 3744 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3745 } 3746 3747 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3748 // Loop the indices for the insertvalue instruction in parallel with the 3749 // requested indices 3750 const unsigned *req_idx = idx_range.begin(); 3751 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3752 i != e; ++i, ++req_idx) { 3753 if (req_idx == idx_range.end()) { 3754 // We can't handle this without inserting insertvalues 3755 if (!InsertBefore) 3756 return nullptr; 3757 3758 // The requested index identifies a part of a nested aggregate. Handle 3759 // this specially. For example, 3760 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3761 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3762 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3763 // This can be changed into 3764 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3765 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3766 // which allows the unused 0,0 element from the nested struct to be 3767 // removed. 3768 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3769 InsertBefore); 3770 } 3771 3772 // This insert value inserts something else than what we are looking for. 3773 // See if the (aggregate) value inserted into has the value we are 3774 // looking for, then. 3775 if (*req_idx != *i) 3776 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3777 InsertBefore); 3778 } 3779 // If we end up here, the indices of the insertvalue match with those 3780 // requested (though possibly only partially). Now we recursively look at 3781 // the inserted value, passing any remaining indices. 3782 return FindInsertedValue(I->getInsertedValueOperand(), 3783 makeArrayRef(req_idx, idx_range.end()), 3784 InsertBefore); 3785 } 3786 3787 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3788 // If we're extracting a value from an aggregate that was extracted from 3789 // something else, we can extract from that something else directly instead. 3790 // However, we will need to chain I's indices with the requested indices. 3791 3792 // Calculate the number of indices required 3793 unsigned size = I->getNumIndices() + idx_range.size(); 3794 // Allocate some space to put the new indices in 3795 SmallVector<unsigned, 5> Idxs; 3796 Idxs.reserve(size); 3797 // Add indices from the extract value instruction 3798 Idxs.append(I->idx_begin(), I->idx_end()); 3799 3800 // Add requested indices 3801 Idxs.append(idx_range.begin(), idx_range.end()); 3802 3803 assert(Idxs.size() == size 3804 && "Number of indices added not correct?"); 3805 3806 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3807 } 3808 // Otherwise, we don't know (such as, extracting from a function return value 3809 // or load instruction) 3810 return nullptr; 3811 } 3812 3813 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3814 unsigned CharSize) { 3815 // Make sure the GEP has exactly three arguments. 3816 if (GEP->getNumOperands() != 3) 3817 return false; 3818 3819 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3820 // CharSize. 3821 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3822 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3823 return false; 3824 3825 // Check to make sure that the first operand of the GEP is an integer and 3826 // has value 0 so that we are sure we're indexing into the initializer. 3827 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3828 if (!FirstIdx || !FirstIdx->isZero()) 3829 return false; 3830 3831 return true; 3832 } 3833 3834 bool llvm::getConstantDataArrayInfo(const Value *V, 3835 ConstantDataArraySlice &Slice, 3836 unsigned ElementSize, uint64_t Offset) { 3837 assert(V); 3838 3839 // Look through bitcast instructions and geps. 3840 V = V->stripPointerCasts(); 3841 3842 // If the value is a GEP instruction or constant expression, treat it as an 3843 // offset. 3844 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3845 // The GEP operator should be based on a pointer to string constant, and is 3846 // indexing into the string constant. 3847 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3848 return false; 3849 3850 // If the second index isn't a ConstantInt, then this is a variable index 3851 // into the array. If this occurs, we can't say anything meaningful about 3852 // the string. 3853 uint64_t StartIdx = 0; 3854 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3855 StartIdx = CI->getZExtValue(); 3856 else 3857 return false; 3858 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3859 StartIdx + Offset); 3860 } 3861 3862 // The GEP instruction, constant or instruction, must reference a global 3863 // variable that is a constant and is initialized. The referenced constant 3864 // initializer is the array that we'll use for optimization. 3865 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3866 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3867 return false; 3868 3869 const ConstantDataArray *Array; 3870 ArrayType *ArrayTy; 3871 if (GV->getInitializer()->isNullValue()) { 3872 Type *GVTy = GV->getValueType(); 3873 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3874 // A zeroinitializer for the array; there is no ConstantDataArray. 3875 Array = nullptr; 3876 } else { 3877 const DataLayout &DL = GV->getParent()->getDataLayout(); 3878 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3879 uint64_t Length = SizeInBytes / (ElementSize / 8); 3880 if (Length <= Offset) 3881 return false; 3882 3883 Slice.Array = nullptr; 3884 Slice.Offset = 0; 3885 Slice.Length = Length - Offset; 3886 return true; 3887 } 3888 } else { 3889 // This must be a ConstantDataArray. 3890 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3891 if (!Array) 3892 return false; 3893 ArrayTy = Array->getType(); 3894 } 3895 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3896 return false; 3897 3898 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3899 if (Offset > NumElts) 3900 return false; 3901 3902 Slice.Array = Array; 3903 Slice.Offset = Offset; 3904 Slice.Length = NumElts - Offset; 3905 return true; 3906 } 3907 3908 /// This function computes the length of a null-terminated C string pointed to 3909 /// by V. If successful, it returns true and returns the string in Str. 3910 /// If unsuccessful, it returns false. 3911 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3912 uint64_t Offset, bool TrimAtNul) { 3913 ConstantDataArraySlice Slice; 3914 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3915 return false; 3916 3917 if (Slice.Array == nullptr) { 3918 if (TrimAtNul) { 3919 Str = StringRef(); 3920 return true; 3921 } 3922 if (Slice.Length == 1) { 3923 Str = StringRef("", 1); 3924 return true; 3925 } 3926 // We cannot instantiate a StringRef as we do not have an appropriate string 3927 // of 0s at hand. 3928 return false; 3929 } 3930 3931 // Start out with the entire array in the StringRef. 3932 Str = Slice.Array->getAsString(); 3933 // Skip over 'offset' bytes. 3934 Str = Str.substr(Slice.Offset); 3935 3936 if (TrimAtNul) { 3937 // Trim off the \0 and anything after it. If the array is not nul 3938 // terminated, we just return the whole end of string. The client may know 3939 // some other way that the string is length-bound. 3940 Str = Str.substr(0, Str.find('\0')); 3941 } 3942 return true; 3943 } 3944 3945 // These next two are very similar to the above, but also look through PHI 3946 // nodes. 3947 // TODO: See if we can integrate these two together. 3948 3949 /// If we can compute the length of the string pointed to by 3950 /// the specified pointer, return 'len+1'. If we can't, return 0. 3951 static uint64_t GetStringLengthH(const Value *V, 3952 SmallPtrSetImpl<const PHINode*> &PHIs, 3953 unsigned CharSize) { 3954 // Look through noop bitcast instructions. 3955 V = V->stripPointerCasts(); 3956 3957 // If this is a PHI node, there are two cases: either we have already seen it 3958 // or we haven't. 3959 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3960 if (!PHIs.insert(PN).second) 3961 return ~0ULL; // already in the set. 3962 3963 // If it was new, see if all the input strings are the same length. 3964 uint64_t LenSoFar = ~0ULL; 3965 for (Value *IncValue : PN->incoming_values()) { 3966 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3967 if (Len == 0) return 0; // Unknown length -> unknown. 3968 3969 if (Len == ~0ULL) continue; 3970 3971 if (Len != LenSoFar && LenSoFar != ~0ULL) 3972 return 0; // Disagree -> unknown. 3973 LenSoFar = Len; 3974 } 3975 3976 // Success, all agree. 3977 return LenSoFar; 3978 } 3979 3980 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3981 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3982 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3983 if (Len1 == 0) return 0; 3984 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3985 if (Len2 == 0) return 0; 3986 if (Len1 == ~0ULL) return Len2; 3987 if (Len2 == ~0ULL) return Len1; 3988 if (Len1 != Len2) return 0; 3989 return Len1; 3990 } 3991 3992 // Otherwise, see if we can read the string. 3993 ConstantDataArraySlice Slice; 3994 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3995 return 0; 3996 3997 if (Slice.Array == nullptr) 3998 return 1; 3999 4000 // Search for nul characters 4001 unsigned NullIndex = 0; 4002 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4003 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4004 break; 4005 } 4006 4007 return NullIndex + 1; 4008 } 4009 4010 /// If we can compute the length of the string pointed to by 4011 /// the specified pointer, return 'len+1'. If we can't, return 0. 4012 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4013 if (!V->getType()->isPointerTy()) 4014 return 0; 4015 4016 SmallPtrSet<const PHINode*, 32> PHIs; 4017 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4018 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4019 // an empty string as a length. 4020 return Len == ~0ULL ? 1 : Len; 4021 } 4022 4023 const Value * 4024 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4025 bool MustPreserveNullness) { 4026 assert(Call && 4027 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4028 if (const Value *RV = Call->getReturnedArgOperand()) 4029 return RV; 4030 // This can be used only as a aliasing property. 4031 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4032 Call, MustPreserveNullness)) 4033 return Call->getArgOperand(0); 4034 return nullptr; 4035 } 4036 4037 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4038 const CallBase *Call, bool MustPreserveNullness) { 4039 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4040 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4041 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4042 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4043 (!MustPreserveNullness && 4044 Call->getIntrinsicID() == Intrinsic::ptrmask); 4045 } 4046 4047 /// \p PN defines a loop-variant pointer to an object. Check if the 4048 /// previous iteration of the loop was referring to the same object as \p PN. 4049 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4050 const LoopInfo *LI) { 4051 // Find the loop-defined value. 4052 Loop *L = LI->getLoopFor(PN->getParent()); 4053 if (PN->getNumIncomingValues() != 2) 4054 return true; 4055 4056 // Find the value from previous iteration. 4057 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4058 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4059 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4060 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4061 return true; 4062 4063 // If a new pointer is loaded in the loop, the pointer references a different 4064 // object in every iteration. E.g.: 4065 // for (i) 4066 // int *p = a[i]; 4067 // ... 4068 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4069 if (!L->isLoopInvariant(Load->getPointerOperand())) 4070 return false; 4071 return true; 4072 } 4073 4074 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4075 unsigned MaxLookup) { 4076 if (!V->getType()->isPointerTy()) 4077 return V; 4078 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4079 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4080 V = GEP->getPointerOperand(); 4081 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4082 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4083 V = cast<Operator>(V)->getOperand(0); 4084 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4085 if (GA->isInterposable()) 4086 return V; 4087 V = GA->getAliasee(); 4088 } else if (isa<AllocaInst>(V)) { 4089 // An alloca can't be further simplified. 4090 return V; 4091 } else { 4092 if (auto *Call = dyn_cast<CallBase>(V)) { 4093 // CaptureTracking can know about special capturing properties of some 4094 // intrinsics like launder.invariant.group, that can't be expressed with 4095 // the attributes, but have properties like returning aliasing pointer. 4096 // Because some analysis may assume that nocaptured pointer is not 4097 // returned from some special intrinsic (because function would have to 4098 // be marked with returns attribute), it is crucial to use this function 4099 // because it should be in sync with CaptureTracking. Not using it may 4100 // cause weird miscompilations where 2 aliasing pointers are assumed to 4101 // noalias. 4102 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4103 V = RP; 4104 continue; 4105 } 4106 } 4107 4108 // See if InstructionSimplify knows any relevant tricks. 4109 if (Instruction *I = dyn_cast<Instruction>(V)) 4110 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4111 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4112 V = Simplified; 4113 continue; 4114 } 4115 4116 return V; 4117 } 4118 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4119 } 4120 return V; 4121 } 4122 4123 void llvm::GetUnderlyingObjects(const Value *V, 4124 SmallVectorImpl<const Value *> &Objects, 4125 const DataLayout &DL, LoopInfo *LI, 4126 unsigned MaxLookup) { 4127 SmallPtrSet<const Value *, 4> Visited; 4128 SmallVector<const Value *, 4> Worklist; 4129 Worklist.push_back(V); 4130 do { 4131 const Value *P = Worklist.pop_back_val(); 4132 P = GetUnderlyingObject(P, DL, MaxLookup); 4133 4134 if (!Visited.insert(P).second) 4135 continue; 4136 4137 if (auto *SI = dyn_cast<SelectInst>(P)) { 4138 Worklist.push_back(SI->getTrueValue()); 4139 Worklist.push_back(SI->getFalseValue()); 4140 continue; 4141 } 4142 4143 if (auto *PN = dyn_cast<PHINode>(P)) { 4144 // If this PHI changes the underlying object in every iteration of the 4145 // loop, don't look through it. Consider: 4146 // int **A; 4147 // for (i) { 4148 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4149 // Curr = A[i]; 4150 // *Prev, *Curr; 4151 // 4152 // Prev is tracking Curr one iteration behind so they refer to different 4153 // underlying objects. 4154 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4155 isSameUnderlyingObjectInLoop(PN, LI)) 4156 for (Value *IncValue : PN->incoming_values()) 4157 Worklist.push_back(IncValue); 4158 continue; 4159 } 4160 4161 Objects.push_back(P); 4162 } while (!Worklist.empty()); 4163 } 4164 4165 /// This is the function that does the work of looking through basic 4166 /// ptrtoint+arithmetic+inttoptr sequences. 4167 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4168 do { 4169 if (const Operator *U = dyn_cast<Operator>(V)) { 4170 // If we find a ptrtoint, we can transfer control back to the 4171 // regular getUnderlyingObjectFromInt. 4172 if (U->getOpcode() == Instruction::PtrToInt) 4173 return U->getOperand(0); 4174 // If we find an add of a constant, a multiplied value, or a phi, it's 4175 // likely that the other operand will lead us to the base 4176 // object. We don't have to worry about the case where the 4177 // object address is somehow being computed by the multiply, 4178 // because our callers only care when the result is an 4179 // identifiable object. 4180 if (U->getOpcode() != Instruction::Add || 4181 (!isa<ConstantInt>(U->getOperand(1)) && 4182 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4183 !isa<PHINode>(U->getOperand(1)))) 4184 return V; 4185 V = U->getOperand(0); 4186 } else { 4187 return V; 4188 } 4189 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4190 } while (true); 4191 } 4192 4193 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4194 /// ptrtoint+arithmetic+inttoptr sequences. 4195 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4196 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4197 SmallVectorImpl<Value *> &Objects, 4198 const DataLayout &DL) { 4199 SmallPtrSet<const Value *, 16> Visited; 4200 SmallVector<const Value *, 4> Working(1, V); 4201 do { 4202 V = Working.pop_back_val(); 4203 4204 SmallVector<const Value *, 4> Objs; 4205 GetUnderlyingObjects(V, Objs, DL); 4206 4207 for (const Value *V : Objs) { 4208 if (!Visited.insert(V).second) 4209 continue; 4210 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4211 const Value *O = 4212 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4213 if (O->getType()->isPointerTy()) { 4214 Working.push_back(O); 4215 continue; 4216 } 4217 } 4218 // If GetUnderlyingObjects fails to find an identifiable object, 4219 // getUnderlyingObjectsForCodeGen also fails for safety. 4220 if (!isIdentifiedObject(V)) { 4221 Objects.clear(); 4222 return false; 4223 } 4224 Objects.push_back(const_cast<Value *>(V)); 4225 } 4226 } while (!Working.empty()); 4227 return true; 4228 } 4229 4230 /// Return true if the only users of this pointer are lifetime markers. 4231 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4232 for (const User *U : V->users()) { 4233 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4234 if (!II) return false; 4235 4236 if (!II->isLifetimeStartOrEnd()) 4237 return false; 4238 } 4239 return true; 4240 } 4241 4242 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4243 if (!LI.isUnordered()) 4244 return true; 4245 const Function &F = *LI.getFunction(); 4246 // Speculative load may create a race that did not exist in the source. 4247 return F.hasFnAttribute(Attribute::SanitizeThread) || 4248 // Speculative load may load data from dirty regions. 4249 F.hasFnAttribute(Attribute::SanitizeAddress) || 4250 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4251 } 4252 4253 4254 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4255 const Instruction *CtxI, 4256 const DominatorTree *DT) { 4257 const Operator *Inst = dyn_cast<Operator>(V); 4258 if (!Inst) 4259 return false; 4260 4261 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4262 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4263 if (C->canTrap()) 4264 return false; 4265 4266 switch (Inst->getOpcode()) { 4267 default: 4268 return true; 4269 case Instruction::UDiv: 4270 case Instruction::URem: { 4271 // x / y is undefined if y == 0. 4272 const APInt *V; 4273 if (match(Inst->getOperand(1), m_APInt(V))) 4274 return *V != 0; 4275 return false; 4276 } 4277 case Instruction::SDiv: 4278 case Instruction::SRem: { 4279 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4280 const APInt *Numerator, *Denominator; 4281 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4282 return false; 4283 // We cannot hoist this division if the denominator is 0. 4284 if (*Denominator == 0) 4285 return false; 4286 // It's safe to hoist if the denominator is not 0 or -1. 4287 if (*Denominator != -1) 4288 return true; 4289 // At this point we know that the denominator is -1. It is safe to hoist as 4290 // long we know that the numerator is not INT_MIN. 4291 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4292 return !Numerator->isMinSignedValue(); 4293 // The numerator *might* be MinSignedValue. 4294 return false; 4295 } 4296 case Instruction::Load: { 4297 const LoadInst *LI = cast<LoadInst>(Inst); 4298 if (mustSuppressSpeculation(*LI)) 4299 return false; 4300 const DataLayout &DL = LI->getModule()->getDataLayout(); 4301 return isDereferenceableAndAlignedPointer( 4302 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4303 DL, CtxI, DT); 4304 } 4305 case Instruction::Call: { 4306 auto *CI = cast<const CallInst>(Inst); 4307 const Function *Callee = CI->getCalledFunction(); 4308 4309 // The called function could have undefined behavior or side-effects, even 4310 // if marked readnone nounwind. 4311 return Callee && Callee->isSpeculatable(); 4312 } 4313 case Instruction::VAArg: 4314 case Instruction::Alloca: 4315 case Instruction::Invoke: 4316 case Instruction::CallBr: 4317 case Instruction::PHI: 4318 case Instruction::Store: 4319 case Instruction::Ret: 4320 case Instruction::Br: 4321 case Instruction::IndirectBr: 4322 case Instruction::Switch: 4323 case Instruction::Unreachable: 4324 case Instruction::Fence: 4325 case Instruction::AtomicRMW: 4326 case Instruction::AtomicCmpXchg: 4327 case Instruction::LandingPad: 4328 case Instruction::Resume: 4329 case Instruction::CatchSwitch: 4330 case Instruction::CatchPad: 4331 case Instruction::CatchRet: 4332 case Instruction::CleanupPad: 4333 case Instruction::CleanupRet: 4334 return false; // Misc instructions which have effects 4335 } 4336 } 4337 4338 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4339 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4340 } 4341 4342 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4343 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4344 switch (OR) { 4345 case ConstantRange::OverflowResult::MayOverflow: 4346 return OverflowResult::MayOverflow; 4347 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4348 return OverflowResult::AlwaysOverflowsLow; 4349 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4350 return OverflowResult::AlwaysOverflowsHigh; 4351 case ConstantRange::OverflowResult::NeverOverflows: 4352 return OverflowResult::NeverOverflows; 4353 } 4354 llvm_unreachable("Unknown OverflowResult"); 4355 } 4356 4357 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4358 static ConstantRange computeConstantRangeIncludingKnownBits( 4359 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4360 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4361 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4362 KnownBits Known = computeKnownBits( 4363 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4364 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4365 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4366 ConstantRange::PreferredRangeType RangeType = 4367 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4368 return CR1.intersectWith(CR2, RangeType); 4369 } 4370 4371 OverflowResult llvm::computeOverflowForUnsignedMul( 4372 const Value *LHS, const Value *RHS, const DataLayout &DL, 4373 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4374 bool UseInstrInfo) { 4375 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4376 nullptr, UseInstrInfo); 4377 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4378 nullptr, UseInstrInfo); 4379 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4380 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4381 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4382 } 4383 4384 OverflowResult 4385 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4386 const DataLayout &DL, AssumptionCache *AC, 4387 const Instruction *CxtI, 4388 const DominatorTree *DT, bool UseInstrInfo) { 4389 // Multiplying n * m significant bits yields a result of n + m significant 4390 // bits. If the total number of significant bits does not exceed the 4391 // result bit width (minus 1), there is no overflow. 4392 // This means if we have enough leading sign bits in the operands 4393 // we can guarantee that the result does not overflow. 4394 // Ref: "Hacker's Delight" by Henry Warren 4395 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4396 4397 // Note that underestimating the number of sign bits gives a more 4398 // conservative answer. 4399 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4400 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4401 4402 // First handle the easy case: if we have enough sign bits there's 4403 // definitely no overflow. 4404 if (SignBits > BitWidth + 1) 4405 return OverflowResult::NeverOverflows; 4406 4407 // There are two ambiguous cases where there can be no overflow: 4408 // SignBits == BitWidth + 1 and 4409 // SignBits == BitWidth 4410 // The second case is difficult to check, therefore we only handle the 4411 // first case. 4412 if (SignBits == BitWidth + 1) { 4413 // It overflows only when both arguments are negative and the true 4414 // product is exactly the minimum negative number. 4415 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4416 // For simplicity we just check if at least one side is not negative. 4417 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4418 nullptr, UseInstrInfo); 4419 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4420 nullptr, UseInstrInfo); 4421 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4422 return OverflowResult::NeverOverflows; 4423 } 4424 return OverflowResult::MayOverflow; 4425 } 4426 4427 OverflowResult llvm::computeOverflowForUnsignedAdd( 4428 const Value *LHS, const Value *RHS, const DataLayout &DL, 4429 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4430 bool UseInstrInfo) { 4431 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4432 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4433 nullptr, UseInstrInfo); 4434 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4435 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4436 nullptr, UseInstrInfo); 4437 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4438 } 4439 4440 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4441 const Value *RHS, 4442 const AddOperator *Add, 4443 const DataLayout &DL, 4444 AssumptionCache *AC, 4445 const Instruction *CxtI, 4446 const DominatorTree *DT) { 4447 if (Add && Add->hasNoSignedWrap()) { 4448 return OverflowResult::NeverOverflows; 4449 } 4450 4451 // If LHS and RHS each have at least two sign bits, the addition will look 4452 // like 4453 // 4454 // XX..... + 4455 // YY..... 4456 // 4457 // If the carry into the most significant position is 0, X and Y can't both 4458 // be 1 and therefore the carry out of the addition is also 0. 4459 // 4460 // If the carry into the most significant position is 1, X and Y can't both 4461 // be 0 and therefore the carry out of the addition is also 1. 4462 // 4463 // Since the carry into the most significant position is always equal to 4464 // the carry out of the addition, there is no signed overflow. 4465 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4466 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4467 return OverflowResult::NeverOverflows; 4468 4469 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4470 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4471 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4472 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4473 OverflowResult OR = 4474 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4475 if (OR != OverflowResult::MayOverflow) 4476 return OR; 4477 4478 // The remaining code needs Add to be available. Early returns if not so. 4479 if (!Add) 4480 return OverflowResult::MayOverflow; 4481 4482 // If the sign of Add is the same as at least one of the operands, this add 4483 // CANNOT overflow. If this can be determined from the known bits of the 4484 // operands the above signedAddMayOverflow() check will have already done so. 4485 // The only other way to improve on the known bits is from an assumption, so 4486 // call computeKnownBitsFromAssume() directly. 4487 bool LHSOrRHSKnownNonNegative = 4488 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4489 bool LHSOrRHSKnownNegative = 4490 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4491 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4492 KnownBits AddKnown(LHSRange.getBitWidth()); 4493 computeKnownBitsFromAssume( 4494 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4495 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4496 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4497 return OverflowResult::NeverOverflows; 4498 } 4499 4500 return OverflowResult::MayOverflow; 4501 } 4502 4503 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4504 const Value *RHS, 4505 const DataLayout &DL, 4506 AssumptionCache *AC, 4507 const Instruction *CxtI, 4508 const DominatorTree *DT) { 4509 // Checking for conditions implied by dominating conditions may be expensive. 4510 // Limit it to usub_with_overflow calls for now. 4511 if (match(CxtI, 4512 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4513 if (auto C = 4514 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4515 if (*C) 4516 return OverflowResult::NeverOverflows; 4517 return OverflowResult::AlwaysOverflowsLow; 4518 } 4519 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4520 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4521 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4522 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4523 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4524 } 4525 4526 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4527 const Value *RHS, 4528 const DataLayout &DL, 4529 AssumptionCache *AC, 4530 const Instruction *CxtI, 4531 const DominatorTree *DT) { 4532 // If LHS and RHS each have at least two sign bits, the subtraction 4533 // cannot overflow. 4534 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4535 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4536 return OverflowResult::NeverOverflows; 4537 4538 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4539 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4540 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4541 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4542 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4543 } 4544 4545 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4546 const DominatorTree &DT) { 4547 SmallVector<const BranchInst *, 2> GuardingBranches; 4548 SmallVector<const ExtractValueInst *, 2> Results; 4549 4550 for (const User *U : WO->users()) { 4551 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4552 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4553 4554 if (EVI->getIndices()[0] == 0) 4555 Results.push_back(EVI); 4556 else { 4557 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4558 4559 for (const auto *U : EVI->users()) 4560 if (const auto *B = dyn_cast<BranchInst>(U)) { 4561 assert(B->isConditional() && "How else is it using an i1?"); 4562 GuardingBranches.push_back(B); 4563 } 4564 } 4565 } else { 4566 // We are using the aggregate directly in a way we don't want to analyze 4567 // here (storing it to a global, say). 4568 return false; 4569 } 4570 } 4571 4572 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4573 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4574 if (!NoWrapEdge.isSingleEdge()) 4575 return false; 4576 4577 // Check if all users of the add are provably no-wrap. 4578 for (const auto *Result : Results) { 4579 // If the extractvalue itself is not executed on overflow, the we don't 4580 // need to check each use separately, since domination is transitive. 4581 if (DT.dominates(NoWrapEdge, Result->getParent())) 4582 continue; 4583 4584 for (auto &RU : Result->uses()) 4585 if (!DT.dominates(NoWrapEdge, RU)) 4586 return false; 4587 } 4588 4589 return true; 4590 }; 4591 4592 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4593 } 4594 4595 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4596 const Instruction *CtxI, 4597 const DominatorTree *DT) { 4598 // If the value is a freeze instruction, then it can never 4599 // be undef or poison. 4600 if (isa<FreezeInst>(V)) 4601 return true; 4602 // TODO: Some instructions are guaranteed to return neither undef 4603 // nor poison if their arguments are not poison/undef. 4604 4605 if (auto *C = dyn_cast<Constant>(V)) { 4606 // TODO: We can analyze ConstExpr by opcode to determine if there is any 4607 // possibility of poison. 4608 if (isa<UndefValue>(C) || isa<ConstantExpr>(C)) 4609 return false; 4610 4611 // TODO: Add ConstantFP and pointers. 4612 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) ) 4613 return true; 4614 4615 if (C->getType()->isVectorTy()) 4616 return !C->containsUndefElement() && !C->containsConstantExpression(); 4617 4618 // TODO: Recursively analyze aggregates or other constants. 4619 return false; 4620 } 4621 4622 if (auto PN = dyn_cast<PHINode>(V)) { 4623 if (llvm::all_of(PN->incoming_values(), [](const Use &U) { 4624 return isa<ConstantInt>(U.get()); 4625 })) 4626 return true; 4627 } 4628 4629 if (auto II = dyn_cast<ICmpInst>(V)) { 4630 if (llvm::all_of(II->operands(), [](const Value *V) { 4631 return isGuaranteedNotToBeUndefOrPoison(V); 4632 })) 4633 return true; 4634 } 4635 4636 if (auto I = dyn_cast<Instruction>(V)) { 4637 if (programUndefinedIfFullPoison(I) && I->getType()->isIntegerTy(1)) 4638 // Note: once we have an agreement that poison is a value-wise concept, 4639 // we can remove the isIntegerTy(1) constraint. 4640 return true; 4641 } 4642 4643 // CxtI may be null or a cloned instruction. 4644 if (!CtxI || !CtxI->getParent() || !DT) 4645 return false; 4646 4647 // If V is used as a branch condition before reaching CtxI, V cannot be 4648 // undef or poison. 4649 // br V, BB1, BB2 4650 // BB1: 4651 // CtxI ; V cannot be undef or poison here 4652 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4653 while (Dominator) { 4654 auto *TI = Dominator->getBlock()->getTerminator(); 4655 4656 if (auto BI = dyn_cast<BranchInst>(TI)) { 4657 if (BI->isConditional() && BI->getCondition() == V) 4658 return true; 4659 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4660 if (SI->getCondition() == V) 4661 return true; 4662 } 4663 4664 Dominator = Dominator->getIDom(); 4665 } 4666 4667 return false; 4668 } 4669 4670 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4671 const DataLayout &DL, 4672 AssumptionCache *AC, 4673 const Instruction *CxtI, 4674 const DominatorTree *DT) { 4675 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4676 Add, DL, AC, CxtI, DT); 4677 } 4678 4679 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4680 const Value *RHS, 4681 const DataLayout &DL, 4682 AssumptionCache *AC, 4683 const Instruction *CxtI, 4684 const DominatorTree *DT) { 4685 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4686 } 4687 4688 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4689 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4690 // of time because it's possible for another thread to interfere with it for an 4691 // arbitrary length of time, but programs aren't allowed to rely on that. 4692 4693 // If there is no successor, then execution can't transfer to it. 4694 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4695 return !CRI->unwindsToCaller(); 4696 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4697 return !CatchSwitch->unwindsToCaller(); 4698 if (isa<ResumeInst>(I)) 4699 return false; 4700 if (isa<ReturnInst>(I)) 4701 return false; 4702 if (isa<UnreachableInst>(I)) 4703 return false; 4704 4705 // Calls can throw, or contain an infinite loop, or kill the process. 4706 if (auto CS = ImmutableCallSite(I)) { 4707 // Call sites that throw have implicit non-local control flow. 4708 if (!CS.doesNotThrow()) 4709 return false; 4710 4711 // A function which doens't throw and has "willreturn" attribute will 4712 // always return. 4713 if (CS.hasFnAttr(Attribute::WillReturn)) 4714 return true; 4715 4716 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4717 // etc. and thus not return. However, LLVM already assumes that 4718 // 4719 // - Thread exiting actions are modeled as writes to memory invisible to 4720 // the program. 4721 // 4722 // - Loops that don't have side effects (side effects are volatile/atomic 4723 // stores and IO) always terminate (see http://llvm.org/PR965). 4724 // Furthermore IO itself is also modeled as writes to memory invisible to 4725 // the program. 4726 // 4727 // We rely on those assumptions here, and use the memory effects of the call 4728 // target as a proxy for checking that it always returns. 4729 4730 // FIXME: This isn't aggressive enough; a call which only writes to a global 4731 // is guaranteed to return. 4732 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4733 } 4734 4735 // Other instructions return normally. 4736 return true; 4737 } 4738 4739 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4740 // TODO: This is slightly conservative for invoke instruction since exiting 4741 // via an exception *is* normal control for them. 4742 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4743 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4744 return false; 4745 return true; 4746 } 4747 4748 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4749 const Loop *L) { 4750 // The loop header is guaranteed to be executed for every iteration. 4751 // 4752 // FIXME: Relax this constraint to cover all basic blocks that are 4753 // guaranteed to be executed at every iteration. 4754 if (I->getParent() != L->getHeader()) return false; 4755 4756 for (const Instruction &LI : *L->getHeader()) { 4757 if (&LI == I) return true; 4758 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4759 } 4760 llvm_unreachable("Instruction not contained in its own parent basic block."); 4761 } 4762 4763 bool llvm::propagatesFullPoison(const Instruction *I) { 4764 // TODO: This should include all instructions apart from phis, selects and 4765 // call-like instructions. 4766 switch (I->getOpcode()) { 4767 case Instruction::Add: 4768 case Instruction::Sub: 4769 case Instruction::Xor: 4770 case Instruction::Trunc: 4771 case Instruction::BitCast: 4772 case Instruction::AddrSpaceCast: 4773 case Instruction::Mul: 4774 case Instruction::Shl: 4775 case Instruction::GetElementPtr: 4776 // These operations all propagate poison unconditionally. Note that poison 4777 // is not any particular value, so xor or subtraction of poison with 4778 // itself still yields poison, not zero. 4779 return true; 4780 4781 case Instruction::AShr: 4782 case Instruction::SExt: 4783 // For these operations, one bit of the input is replicated across 4784 // multiple output bits. A replicated poison bit is still poison. 4785 return true; 4786 4787 case Instruction::ICmp: 4788 // Comparing poison with any value yields poison. This is why, for 4789 // instance, x s< (x +nsw 1) can be folded to true. 4790 return true; 4791 4792 default: 4793 return false; 4794 } 4795 } 4796 4797 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4798 switch (I->getOpcode()) { 4799 case Instruction::Store: 4800 return cast<StoreInst>(I)->getPointerOperand(); 4801 4802 case Instruction::Load: 4803 return cast<LoadInst>(I)->getPointerOperand(); 4804 4805 case Instruction::AtomicCmpXchg: 4806 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4807 4808 case Instruction::AtomicRMW: 4809 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4810 4811 case Instruction::UDiv: 4812 case Instruction::SDiv: 4813 case Instruction::URem: 4814 case Instruction::SRem: 4815 return I->getOperand(1); 4816 4817 case Instruction::Call: 4818 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4819 switch (II->getIntrinsicID()) { 4820 case Intrinsic::assume: 4821 return II->getArgOperand(0); 4822 default: 4823 return nullptr; 4824 } 4825 } 4826 return nullptr; 4827 4828 default: 4829 return nullptr; 4830 } 4831 } 4832 4833 bool llvm::mustTriggerUB(const Instruction *I, 4834 const SmallSet<const Value *, 16>& KnownPoison) { 4835 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4836 return (NotPoison && KnownPoison.count(NotPoison)); 4837 } 4838 4839 4840 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4841 // We currently only look for uses of poison values within the same basic 4842 // block, as that makes it easier to guarantee that the uses will be 4843 // executed given that PoisonI is executed. 4844 // 4845 // FIXME: Expand this to consider uses beyond the same basic block. To do 4846 // this, look out for the distinction between post-dominance and strong 4847 // post-dominance. 4848 const BasicBlock *BB = PoisonI->getParent(); 4849 4850 // Set of instructions that we have proved will yield poison if PoisonI 4851 // does. 4852 SmallSet<const Value *, 16> YieldsPoison; 4853 SmallSet<const BasicBlock *, 4> Visited; 4854 YieldsPoison.insert(PoisonI); 4855 Visited.insert(PoisonI->getParent()); 4856 4857 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4858 4859 unsigned Iter = 0; 4860 while (Iter++ < MaxDepth) { 4861 for (auto &I : make_range(Begin, End)) { 4862 if (&I != PoisonI) { 4863 if (mustTriggerUB(&I, YieldsPoison)) 4864 return true; 4865 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4866 return false; 4867 } 4868 4869 // Mark poison that propagates from I through uses of I. 4870 if (YieldsPoison.count(&I)) { 4871 for (const User *User : I.users()) { 4872 const Instruction *UserI = cast<Instruction>(User); 4873 if (propagatesFullPoison(UserI)) 4874 YieldsPoison.insert(User); 4875 } 4876 } 4877 } 4878 4879 if (auto *NextBB = BB->getSingleSuccessor()) { 4880 if (Visited.insert(NextBB).second) { 4881 BB = NextBB; 4882 Begin = BB->getFirstNonPHI()->getIterator(); 4883 End = BB->end(); 4884 continue; 4885 } 4886 } 4887 4888 break; 4889 } 4890 return false; 4891 } 4892 4893 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4894 if (FMF.noNaNs()) 4895 return true; 4896 4897 if (auto *C = dyn_cast<ConstantFP>(V)) 4898 return !C->isNaN(); 4899 4900 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4901 if (!C->getElementType()->isFloatingPointTy()) 4902 return false; 4903 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4904 if (C->getElementAsAPFloat(I).isNaN()) 4905 return false; 4906 } 4907 return true; 4908 } 4909 4910 if (isa<ConstantAggregateZero>(V)) 4911 return true; 4912 4913 return false; 4914 } 4915 4916 static bool isKnownNonZero(const Value *V) { 4917 if (auto *C = dyn_cast<ConstantFP>(V)) 4918 return !C->isZero(); 4919 4920 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4921 if (!C->getElementType()->isFloatingPointTy()) 4922 return false; 4923 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4924 if (C->getElementAsAPFloat(I).isZero()) 4925 return false; 4926 } 4927 return true; 4928 } 4929 4930 return false; 4931 } 4932 4933 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4934 /// Given non-min/max outer cmp/select from the clamp pattern this 4935 /// function recognizes if it can be substitued by a "canonical" min/max 4936 /// pattern. 4937 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4938 Value *CmpLHS, Value *CmpRHS, 4939 Value *TrueVal, Value *FalseVal, 4940 Value *&LHS, Value *&RHS) { 4941 // Try to match 4942 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4943 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4944 // and return description of the outer Max/Min. 4945 4946 // First, check if select has inverse order: 4947 if (CmpRHS == FalseVal) { 4948 std::swap(TrueVal, FalseVal); 4949 Pred = CmpInst::getInversePredicate(Pred); 4950 } 4951 4952 // Assume success now. If there's no match, callers should not use these anyway. 4953 LHS = TrueVal; 4954 RHS = FalseVal; 4955 4956 const APFloat *FC1; 4957 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4958 return {SPF_UNKNOWN, SPNB_NA, false}; 4959 4960 const APFloat *FC2; 4961 switch (Pred) { 4962 case CmpInst::FCMP_OLT: 4963 case CmpInst::FCMP_OLE: 4964 case CmpInst::FCMP_ULT: 4965 case CmpInst::FCMP_ULE: 4966 if (match(FalseVal, 4967 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4968 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4969 *FC1 < *FC2) 4970 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4971 break; 4972 case CmpInst::FCMP_OGT: 4973 case CmpInst::FCMP_OGE: 4974 case CmpInst::FCMP_UGT: 4975 case CmpInst::FCMP_UGE: 4976 if (match(FalseVal, 4977 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4978 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4979 *FC1 > *FC2) 4980 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4981 break; 4982 default: 4983 break; 4984 } 4985 4986 return {SPF_UNKNOWN, SPNB_NA, false}; 4987 } 4988 4989 /// Recognize variations of: 4990 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4991 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4992 Value *CmpLHS, Value *CmpRHS, 4993 Value *TrueVal, Value *FalseVal) { 4994 // Swap the select operands and predicate to match the patterns below. 4995 if (CmpRHS != TrueVal) { 4996 Pred = ICmpInst::getSwappedPredicate(Pred); 4997 std::swap(TrueVal, FalseVal); 4998 } 4999 const APInt *C1; 5000 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5001 const APInt *C2; 5002 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5003 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5004 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5005 return {SPF_SMAX, SPNB_NA, false}; 5006 5007 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5008 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5009 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5010 return {SPF_SMIN, SPNB_NA, false}; 5011 5012 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5013 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5014 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5015 return {SPF_UMAX, SPNB_NA, false}; 5016 5017 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5018 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5019 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5020 return {SPF_UMIN, SPNB_NA, false}; 5021 } 5022 return {SPF_UNKNOWN, SPNB_NA, false}; 5023 } 5024 5025 /// Recognize variations of: 5026 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5027 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5028 Value *CmpLHS, Value *CmpRHS, 5029 Value *TVal, Value *FVal, 5030 unsigned Depth) { 5031 // TODO: Allow FP min/max with nnan/nsz. 5032 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5033 5034 Value *A = nullptr, *B = nullptr; 5035 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5036 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5037 return {SPF_UNKNOWN, SPNB_NA, false}; 5038 5039 Value *C = nullptr, *D = nullptr; 5040 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5041 if (L.Flavor != R.Flavor) 5042 return {SPF_UNKNOWN, SPNB_NA, false}; 5043 5044 // We have something like: x Pred y ? min(a, b) : min(c, d). 5045 // Try to match the compare to the min/max operations of the select operands. 5046 // First, make sure we have the right compare predicate. 5047 switch (L.Flavor) { 5048 case SPF_SMIN: 5049 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5050 Pred = ICmpInst::getSwappedPredicate(Pred); 5051 std::swap(CmpLHS, CmpRHS); 5052 } 5053 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5054 break; 5055 return {SPF_UNKNOWN, SPNB_NA, false}; 5056 case SPF_SMAX: 5057 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5058 Pred = ICmpInst::getSwappedPredicate(Pred); 5059 std::swap(CmpLHS, CmpRHS); 5060 } 5061 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5062 break; 5063 return {SPF_UNKNOWN, SPNB_NA, false}; 5064 case SPF_UMIN: 5065 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5066 Pred = ICmpInst::getSwappedPredicate(Pred); 5067 std::swap(CmpLHS, CmpRHS); 5068 } 5069 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5070 break; 5071 return {SPF_UNKNOWN, SPNB_NA, false}; 5072 case SPF_UMAX: 5073 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5074 Pred = ICmpInst::getSwappedPredicate(Pred); 5075 std::swap(CmpLHS, CmpRHS); 5076 } 5077 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5078 break; 5079 return {SPF_UNKNOWN, SPNB_NA, false}; 5080 default: 5081 return {SPF_UNKNOWN, SPNB_NA, false}; 5082 } 5083 5084 // If there is a common operand in the already matched min/max and the other 5085 // min/max operands match the compare operands (either directly or inverted), 5086 // then this is min/max of the same flavor. 5087 5088 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5089 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5090 if (D == B) { 5091 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5092 match(A, m_Not(m_Specific(CmpRHS))))) 5093 return {L.Flavor, SPNB_NA, false}; 5094 } 5095 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5096 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5097 if (C == B) { 5098 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5099 match(A, m_Not(m_Specific(CmpRHS))))) 5100 return {L.Flavor, SPNB_NA, false}; 5101 } 5102 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5103 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5104 if (D == A) { 5105 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5106 match(B, m_Not(m_Specific(CmpRHS))))) 5107 return {L.Flavor, SPNB_NA, false}; 5108 } 5109 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5110 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5111 if (C == A) { 5112 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5113 match(B, m_Not(m_Specific(CmpRHS))))) 5114 return {L.Flavor, SPNB_NA, false}; 5115 } 5116 5117 return {SPF_UNKNOWN, SPNB_NA, false}; 5118 } 5119 5120 /// If the input value is the result of a 'not' op, constant integer, or vector 5121 /// splat of a constant integer, return the bitwise-not source value. 5122 /// TODO: This could be extended to handle non-splat vector integer constants. 5123 static Value *getNotValue(Value *V) { 5124 Value *NotV; 5125 if (match(V, m_Not(m_Value(NotV)))) 5126 return NotV; 5127 5128 const APInt *C; 5129 if (match(V, m_APInt(C))) 5130 return ConstantInt::get(V->getType(), ~(*C)); 5131 5132 return nullptr; 5133 } 5134 5135 /// Match non-obvious integer minimum and maximum sequences. 5136 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5137 Value *CmpLHS, Value *CmpRHS, 5138 Value *TrueVal, Value *FalseVal, 5139 Value *&LHS, Value *&RHS, 5140 unsigned Depth) { 5141 // Assume success. If there's no match, callers should not use these anyway. 5142 LHS = TrueVal; 5143 RHS = FalseVal; 5144 5145 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5146 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5147 return SPR; 5148 5149 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5150 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5151 return SPR; 5152 5153 // Look through 'not' ops to find disguised min/max. 5154 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5155 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5156 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5157 switch (Pred) { 5158 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5159 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5160 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5161 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5162 default: break; 5163 } 5164 } 5165 5166 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5167 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5168 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5169 switch (Pred) { 5170 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5171 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5172 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5173 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5174 default: break; 5175 } 5176 } 5177 5178 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5179 return {SPF_UNKNOWN, SPNB_NA, false}; 5180 5181 // Z = X -nsw Y 5182 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5183 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5184 if (match(TrueVal, m_Zero()) && 5185 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5186 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5187 5188 // Z = X -nsw Y 5189 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5190 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5191 if (match(FalseVal, m_Zero()) && 5192 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5193 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5194 5195 const APInt *C1; 5196 if (!match(CmpRHS, m_APInt(C1))) 5197 return {SPF_UNKNOWN, SPNB_NA, false}; 5198 5199 // An unsigned min/max can be written with a signed compare. 5200 const APInt *C2; 5201 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5202 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5203 // Is the sign bit set? 5204 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5205 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5206 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5207 C2->isMaxSignedValue()) 5208 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5209 5210 // Is the sign bit clear? 5211 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5212 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5213 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5214 C2->isMinSignedValue()) 5215 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5216 } 5217 5218 return {SPF_UNKNOWN, SPNB_NA, false}; 5219 } 5220 5221 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5222 assert(X && Y && "Invalid operand"); 5223 5224 // X = sub (0, Y) || X = sub nsw (0, Y) 5225 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5226 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5227 return true; 5228 5229 // Y = sub (0, X) || Y = sub nsw (0, X) 5230 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5231 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5232 return true; 5233 5234 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5235 Value *A, *B; 5236 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5237 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5238 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5239 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5240 } 5241 5242 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5243 FastMathFlags FMF, 5244 Value *CmpLHS, Value *CmpRHS, 5245 Value *TrueVal, Value *FalseVal, 5246 Value *&LHS, Value *&RHS, 5247 unsigned Depth) { 5248 if (CmpInst::isFPPredicate(Pred)) { 5249 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5250 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5251 // purpose of identifying min/max. Disregard vector constants with undefined 5252 // elements because those can not be back-propagated for analysis. 5253 Value *OutputZeroVal = nullptr; 5254 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5255 !cast<Constant>(TrueVal)->containsUndefElement()) 5256 OutputZeroVal = TrueVal; 5257 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5258 !cast<Constant>(FalseVal)->containsUndefElement()) 5259 OutputZeroVal = FalseVal; 5260 5261 if (OutputZeroVal) { 5262 if (match(CmpLHS, m_AnyZeroFP())) 5263 CmpLHS = OutputZeroVal; 5264 if (match(CmpRHS, m_AnyZeroFP())) 5265 CmpRHS = OutputZeroVal; 5266 } 5267 } 5268 5269 LHS = CmpLHS; 5270 RHS = CmpRHS; 5271 5272 // Signed zero may return inconsistent results between implementations. 5273 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5274 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5275 // Therefore, we behave conservatively and only proceed if at least one of the 5276 // operands is known to not be zero or if we don't care about signed zero. 5277 switch (Pred) { 5278 default: break; 5279 // FIXME: Include OGT/OLT/UGT/ULT. 5280 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5281 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5282 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5283 !isKnownNonZero(CmpRHS)) 5284 return {SPF_UNKNOWN, SPNB_NA, false}; 5285 } 5286 5287 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5288 bool Ordered = false; 5289 5290 // When given one NaN and one non-NaN input: 5291 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5292 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5293 // ordered comparison fails), which could be NaN or non-NaN. 5294 // so here we discover exactly what NaN behavior is required/accepted. 5295 if (CmpInst::isFPPredicate(Pred)) { 5296 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5297 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5298 5299 if (LHSSafe && RHSSafe) { 5300 // Both operands are known non-NaN. 5301 NaNBehavior = SPNB_RETURNS_ANY; 5302 } else if (CmpInst::isOrdered(Pred)) { 5303 // An ordered comparison will return false when given a NaN, so it 5304 // returns the RHS. 5305 Ordered = true; 5306 if (LHSSafe) 5307 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5308 NaNBehavior = SPNB_RETURNS_NAN; 5309 else if (RHSSafe) 5310 NaNBehavior = SPNB_RETURNS_OTHER; 5311 else 5312 // Completely unsafe. 5313 return {SPF_UNKNOWN, SPNB_NA, false}; 5314 } else { 5315 Ordered = false; 5316 // An unordered comparison will return true when given a NaN, so it 5317 // returns the LHS. 5318 if (LHSSafe) 5319 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5320 NaNBehavior = SPNB_RETURNS_OTHER; 5321 else if (RHSSafe) 5322 NaNBehavior = SPNB_RETURNS_NAN; 5323 else 5324 // Completely unsafe. 5325 return {SPF_UNKNOWN, SPNB_NA, false}; 5326 } 5327 } 5328 5329 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5330 std::swap(CmpLHS, CmpRHS); 5331 Pred = CmpInst::getSwappedPredicate(Pred); 5332 if (NaNBehavior == SPNB_RETURNS_NAN) 5333 NaNBehavior = SPNB_RETURNS_OTHER; 5334 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5335 NaNBehavior = SPNB_RETURNS_NAN; 5336 Ordered = !Ordered; 5337 } 5338 5339 // ([if]cmp X, Y) ? X : Y 5340 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5341 switch (Pred) { 5342 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5343 case ICmpInst::ICMP_UGT: 5344 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5345 case ICmpInst::ICMP_SGT: 5346 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5347 case ICmpInst::ICMP_ULT: 5348 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5349 case ICmpInst::ICMP_SLT: 5350 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5351 case FCmpInst::FCMP_UGT: 5352 case FCmpInst::FCMP_UGE: 5353 case FCmpInst::FCMP_OGT: 5354 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5355 case FCmpInst::FCMP_ULT: 5356 case FCmpInst::FCMP_ULE: 5357 case FCmpInst::FCMP_OLT: 5358 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5359 } 5360 } 5361 5362 if (isKnownNegation(TrueVal, FalseVal)) { 5363 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5364 // match against either LHS or sext(LHS). 5365 auto MaybeSExtCmpLHS = 5366 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5367 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5368 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5369 if (match(TrueVal, MaybeSExtCmpLHS)) { 5370 // Set the return values. If the compare uses the negated value (-X >s 0), 5371 // swap the return values because the negated value is always 'RHS'. 5372 LHS = TrueVal; 5373 RHS = FalseVal; 5374 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5375 std::swap(LHS, RHS); 5376 5377 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5378 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5379 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5380 return {SPF_ABS, SPNB_NA, false}; 5381 5382 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5383 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5384 return {SPF_ABS, SPNB_NA, false}; 5385 5386 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5387 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5388 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5389 return {SPF_NABS, SPNB_NA, false}; 5390 } 5391 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5392 // Set the return values. If the compare uses the negated value (-X >s 0), 5393 // swap the return values because the negated value is always 'RHS'. 5394 LHS = FalseVal; 5395 RHS = TrueVal; 5396 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5397 std::swap(LHS, RHS); 5398 5399 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5400 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5401 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5402 return {SPF_NABS, SPNB_NA, false}; 5403 5404 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5405 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5406 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5407 return {SPF_ABS, SPNB_NA, false}; 5408 } 5409 } 5410 5411 if (CmpInst::isIntPredicate(Pred)) 5412 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5413 5414 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5415 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5416 // semantics than minNum. Be conservative in such case. 5417 if (NaNBehavior != SPNB_RETURNS_ANY || 5418 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5419 !isKnownNonZero(CmpRHS))) 5420 return {SPF_UNKNOWN, SPNB_NA, false}; 5421 5422 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5423 } 5424 5425 /// Helps to match a select pattern in case of a type mismatch. 5426 /// 5427 /// The function processes the case when type of true and false values of a 5428 /// select instruction differs from type of the cmp instruction operands because 5429 /// of a cast instruction. The function checks if it is legal to move the cast 5430 /// operation after "select". If yes, it returns the new second value of 5431 /// "select" (with the assumption that cast is moved): 5432 /// 1. As operand of cast instruction when both values of "select" are same cast 5433 /// instructions. 5434 /// 2. As restored constant (by applying reverse cast operation) when the first 5435 /// value of the "select" is a cast operation and the second value is a 5436 /// constant. 5437 /// NOTE: We return only the new second value because the first value could be 5438 /// accessed as operand of cast instruction. 5439 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5440 Instruction::CastOps *CastOp) { 5441 auto *Cast1 = dyn_cast<CastInst>(V1); 5442 if (!Cast1) 5443 return nullptr; 5444 5445 *CastOp = Cast1->getOpcode(); 5446 Type *SrcTy = Cast1->getSrcTy(); 5447 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5448 // If V1 and V2 are both the same cast from the same type, look through V1. 5449 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5450 return Cast2->getOperand(0); 5451 return nullptr; 5452 } 5453 5454 auto *C = dyn_cast<Constant>(V2); 5455 if (!C) 5456 return nullptr; 5457 5458 Constant *CastedTo = nullptr; 5459 switch (*CastOp) { 5460 case Instruction::ZExt: 5461 if (CmpI->isUnsigned()) 5462 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5463 break; 5464 case Instruction::SExt: 5465 if (CmpI->isSigned()) 5466 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5467 break; 5468 case Instruction::Trunc: 5469 Constant *CmpConst; 5470 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5471 CmpConst->getType() == SrcTy) { 5472 // Here we have the following case: 5473 // 5474 // %cond = cmp iN %x, CmpConst 5475 // %tr = trunc iN %x to iK 5476 // %narrowsel = select i1 %cond, iK %t, iK C 5477 // 5478 // We can always move trunc after select operation: 5479 // 5480 // %cond = cmp iN %x, CmpConst 5481 // %widesel = select i1 %cond, iN %x, iN CmpConst 5482 // %tr = trunc iN %widesel to iK 5483 // 5484 // Note that C could be extended in any way because we don't care about 5485 // upper bits after truncation. It can't be abs pattern, because it would 5486 // look like: 5487 // 5488 // select i1 %cond, x, -x. 5489 // 5490 // So only min/max pattern could be matched. Such match requires widened C 5491 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5492 // CmpConst == C is checked below. 5493 CastedTo = CmpConst; 5494 } else { 5495 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5496 } 5497 break; 5498 case Instruction::FPTrunc: 5499 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5500 break; 5501 case Instruction::FPExt: 5502 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5503 break; 5504 case Instruction::FPToUI: 5505 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5506 break; 5507 case Instruction::FPToSI: 5508 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5509 break; 5510 case Instruction::UIToFP: 5511 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5512 break; 5513 case Instruction::SIToFP: 5514 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5515 break; 5516 default: 5517 break; 5518 } 5519 5520 if (!CastedTo) 5521 return nullptr; 5522 5523 // Make sure the cast doesn't lose any information. 5524 Constant *CastedBack = 5525 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5526 if (CastedBack != C) 5527 return nullptr; 5528 5529 return CastedTo; 5530 } 5531 5532 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5533 Instruction::CastOps *CastOp, 5534 unsigned Depth) { 5535 if (Depth >= MaxDepth) 5536 return {SPF_UNKNOWN, SPNB_NA, false}; 5537 5538 SelectInst *SI = dyn_cast<SelectInst>(V); 5539 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5540 5541 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5542 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5543 5544 Value *TrueVal = SI->getTrueValue(); 5545 Value *FalseVal = SI->getFalseValue(); 5546 5547 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5548 CastOp, Depth); 5549 } 5550 5551 SelectPatternResult llvm::matchDecomposedSelectPattern( 5552 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5553 Instruction::CastOps *CastOp, unsigned Depth) { 5554 CmpInst::Predicate Pred = CmpI->getPredicate(); 5555 Value *CmpLHS = CmpI->getOperand(0); 5556 Value *CmpRHS = CmpI->getOperand(1); 5557 FastMathFlags FMF; 5558 if (isa<FPMathOperator>(CmpI)) 5559 FMF = CmpI->getFastMathFlags(); 5560 5561 // Bail out early. 5562 if (CmpI->isEquality()) 5563 return {SPF_UNKNOWN, SPNB_NA, false}; 5564 5565 // Deal with type mismatches. 5566 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5567 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5568 // If this is a potential fmin/fmax with a cast to integer, then ignore 5569 // -0.0 because there is no corresponding integer value. 5570 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5571 FMF.setNoSignedZeros(); 5572 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5573 cast<CastInst>(TrueVal)->getOperand(0), C, 5574 LHS, RHS, Depth); 5575 } 5576 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5577 // If this is a potential fmin/fmax with a cast to integer, then ignore 5578 // -0.0 because there is no corresponding integer value. 5579 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5580 FMF.setNoSignedZeros(); 5581 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5582 C, cast<CastInst>(FalseVal)->getOperand(0), 5583 LHS, RHS, Depth); 5584 } 5585 } 5586 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5587 LHS, RHS, Depth); 5588 } 5589 5590 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5591 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5592 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5593 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5594 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5595 if (SPF == SPF_FMINNUM) 5596 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5597 if (SPF == SPF_FMAXNUM) 5598 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5599 llvm_unreachable("unhandled!"); 5600 } 5601 5602 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5603 if (SPF == SPF_SMIN) return SPF_SMAX; 5604 if (SPF == SPF_UMIN) return SPF_UMAX; 5605 if (SPF == SPF_SMAX) return SPF_SMIN; 5606 if (SPF == SPF_UMAX) return SPF_UMIN; 5607 llvm_unreachable("unhandled!"); 5608 } 5609 5610 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5611 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5612 } 5613 5614 /// Return true if "icmp Pred LHS RHS" is always true. 5615 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5616 const Value *RHS, const DataLayout &DL, 5617 unsigned Depth) { 5618 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5619 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5620 return true; 5621 5622 switch (Pred) { 5623 default: 5624 return false; 5625 5626 case CmpInst::ICMP_SLE: { 5627 const APInt *C; 5628 5629 // LHS s<= LHS +_{nsw} C if C >= 0 5630 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5631 return !C->isNegative(); 5632 return false; 5633 } 5634 5635 case CmpInst::ICMP_ULE: { 5636 const APInt *C; 5637 5638 // LHS u<= LHS +_{nuw} C for any C 5639 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5640 return true; 5641 5642 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5643 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5644 const Value *&X, 5645 const APInt *&CA, const APInt *&CB) { 5646 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5647 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5648 return true; 5649 5650 // If X & C == 0 then (X | C) == X +_{nuw} C 5651 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5652 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5653 KnownBits Known(CA->getBitWidth()); 5654 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5655 /*CxtI*/ nullptr, /*DT*/ nullptr); 5656 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5657 return true; 5658 } 5659 5660 return false; 5661 }; 5662 5663 const Value *X; 5664 const APInt *CLHS, *CRHS; 5665 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5666 return CLHS->ule(*CRHS); 5667 5668 return false; 5669 } 5670 } 5671 } 5672 5673 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5674 /// ALHS ARHS" is true. Otherwise, return None. 5675 static Optional<bool> 5676 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5677 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5678 const DataLayout &DL, unsigned Depth) { 5679 switch (Pred) { 5680 default: 5681 return None; 5682 5683 case CmpInst::ICMP_SLT: 5684 case CmpInst::ICMP_SLE: 5685 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5686 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5687 return true; 5688 return None; 5689 5690 case CmpInst::ICMP_ULT: 5691 case CmpInst::ICMP_ULE: 5692 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5693 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5694 return true; 5695 return None; 5696 } 5697 } 5698 5699 /// Return true if the operands of the two compares match. IsSwappedOps is true 5700 /// when the operands match, but are swapped. 5701 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5702 const Value *BLHS, const Value *BRHS, 5703 bool &IsSwappedOps) { 5704 5705 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5706 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5707 return IsMatchingOps || IsSwappedOps; 5708 } 5709 5710 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5711 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5712 /// Otherwise, return None if we can't infer anything. 5713 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5714 CmpInst::Predicate BPred, 5715 bool AreSwappedOps) { 5716 // Canonicalize the predicate as if the operands were not commuted. 5717 if (AreSwappedOps) 5718 BPred = ICmpInst::getSwappedPredicate(BPred); 5719 5720 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5721 return true; 5722 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5723 return false; 5724 5725 return None; 5726 } 5727 5728 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5729 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5730 /// Otherwise, return None if we can't infer anything. 5731 static Optional<bool> 5732 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5733 const ConstantInt *C1, 5734 CmpInst::Predicate BPred, 5735 const ConstantInt *C2) { 5736 ConstantRange DomCR = 5737 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5738 ConstantRange CR = 5739 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5740 ConstantRange Intersection = DomCR.intersectWith(CR); 5741 ConstantRange Difference = DomCR.difference(CR); 5742 if (Intersection.isEmptySet()) 5743 return false; 5744 if (Difference.isEmptySet()) 5745 return true; 5746 return None; 5747 } 5748 5749 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5750 /// false. Otherwise, return None if we can't infer anything. 5751 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5752 CmpInst::Predicate BPred, 5753 const Value *BLHS, const Value *BRHS, 5754 const DataLayout &DL, bool LHSIsTrue, 5755 unsigned Depth) { 5756 Value *ALHS = LHS->getOperand(0); 5757 Value *ARHS = LHS->getOperand(1); 5758 5759 // The rest of the logic assumes the LHS condition is true. If that's not the 5760 // case, invert the predicate to make it so. 5761 CmpInst::Predicate APred = 5762 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5763 5764 // Can we infer anything when the two compares have matching operands? 5765 bool AreSwappedOps; 5766 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5767 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5768 APred, BPred, AreSwappedOps)) 5769 return Implication; 5770 // No amount of additional analysis will infer the second condition, so 5771 // early exit. 5772 return None; 5773 } 5774 5775 // Can we infer anything when the LHS operands match and the RHS operands are 5776 // constants (not necessarily matching)? 5777 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5778 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5779 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5780 return Implication; 5781 // No amount of additional analysis will infer the second condition, so 5782 // early exit. 5783 return None; 5784 } 5785 5786 if (APred == BPred) 5787 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5788 return None; 5789 } 5790 5791 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5792 /// false. Otherwise, return None if we can't infer anything. We expect the 5793 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5794 static Optional<bool> 5795 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5796 const Value *RHSOp0, const Value *RHSOp1, 5797 5798 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5799 // The LHS must be an 'or' or an 'and' instruction. 5800 assert((LHS->getOpcode() == Instruction::And || 5801 LHS->getOpcode() == Instruction::Or) && 5802 "Expected LHS to be 'and' or 'or'."); 5803 5804 assert(Depth <= MaxDepth && "Hit recursion limit"); 5805 5806 // If the result of an 'or' is false, then we know both legs of the 'or' are 5807 // false. Similarly, if the result of an 'and' is true, then we know both 5808 // legs of the 'and' are true. 5809 Value *ALHS, *ARHS; 5810 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5811 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5812 // FIXME: Make this non-recursion. 5813 if (Optional<bool> Implication = isImpliedCondition( 5814 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5815 return Implication; 5816 if (Optional<bool> Implication = isImpliedCondition( 5817 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5818 return Implication; 5819 return None; 5820 } 5821 return None; 5822 } 5823 5824 Optional<bool> 5825 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5826 const Value *RHSOp0, const Value *RHSOp1, 5827 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5828 // Bail out when we hit the limit. 5829 if (Depth == MaxDepth) 5830 return None; 5831 5832 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5833 // example. 5834 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5835 return None; 5836 5837 Type *OpTy = LHS->getType(); 5838 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5839 5840 // FIXME: Extending the code below to handle vectors. 5841 if (OpTy->isVectorTy()) 5842 return None; 5843 5844 assert(OpTy->isIntegerTy(1) && "implied by above"); 5845 5846 // Both LHS and RHS are icmps. 5847 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5848 if (LHSCmp) 5849 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5850 Depth); 5851 5852 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5853 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5854 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5855 if (LHSBO) { 5856 if ((LHSBO->getOpcode() == Instruction::And || 5857 LHSBO->getOpcode() == Instruction::Or)) 5858 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5859 Depth); 5860 } 5861 return None; 5862 } 5863 5864 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5865 const DataLayout &DL, bool LHSIsTrue, 5866 unsigned Depth) { 5867 // LHS ==> RHS by definition 5868 if (LHS == RHS) 5869 return LHSIsTrue; 5870 5871 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5872 if (RHSCmp) 5873 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 5874 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 5875 LHSIsTrue, Depth); 5876 return None; 5877 } 5878 5879 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 5880 // condition dominating ContextI or nullptr, if no condition is found. 5881 static std::pair<Value *, bool> 5882 getDomPredecessorCondition(const Instruction *ContextI) { 5883 if (!ContextI || !ContextI->getParent()) 5884 return {nullptr, false}; 5885 5886 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5887 // dominator tree (eg, from a SimplifyQuery) instead? 5888 const BasicBlock *ContextBB = ContextI->getParent(); 5889 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5890 if (!PredBB) 5891 return {nullptr, false}; 5892 5893 // We need a conditional branch in the predecessor. 5894 Value *PredCond; 5895 BasicBlock *TrueBB, *FalseBB; 5896 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5897 return {nullptr, false}; 5898 5899 // The branch should get simplified. Don't bother simplifying this condition. 5900 if (TrueBB == FalseBB) 5901 return {nullptr, false}; 5902 5903 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5904 "Predecessor block does not point to successor?"); 5905 5906 // Is this condition implied by the predecessor condition? 5907 return {PredCond, TrueBB == ContextBB}; 5908 } 5909 5910 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5911 const Instruction *ContextI, 5912 const DataLayout &DL) { 5913 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5914 auto PredCond = getDomPredecessorCondition(ContextI); 5915 if (PredCond.first) 5916 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 5917 return None; 5918 } 5919 5920 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 5921 const Value *LHS, const Value *RHS, 5922 const Instruction *ContextI, 5923 const DataLayout &DL) { 5924 auto PredCond = getDomPredecessorCondition(ContextI); 5925 if (PredCond.first) 5926 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 5927 PredCond.second); 5928 return None; 5929 } 5930 5931 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5932 APInt &Upper, const InstrInfoQuery &IIQ) { 5933 unsigned Width = Lower.getBitWidth(); 5934 const APInt *C; 5935 switch (BO.getOpcode()) { 5936 case Instruction::Add: 5937 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5938 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5939 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5940 // 'add nuw x, C' produces [C, UINT_MAX]. 5941 Lower = *C; 5942 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5943 if (C->isNegative()) { 5944 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5945 Lower = APInt::getSignedMinValue(Width); 5946 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5947 } else { 5948 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5949 Lower = APInt::getSignedMinValue(Width) + *C; 5950 Upper = APInt::getSignedMaxValue(Width) + 1; 5951 } 5952 } 5953 } 5954 break; 5955 5956 case Instruction::And: 5957 if (match(BO.getOperand(1), m_APInt(C))) 5958 // 'and x, C' produces [0, C]. 5959 Upper = *C + 1; 5960 break; 5961 5962 case Instruction::Or: 5963 if (match(BO.getOperand(1), m_APInt(C))) 5964 // 'or x, C' produces [C, UINT_MAX]. 5965 Lower = *C; 5966 break; 5967 5968 case Instruction::AShr: 5969 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5970 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5971 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5972 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5973 } else if (match(BO.getOperand(0), m_APInt(C))) { 5974 unsigned ShiftAmount = Width - 1; 5975 if (!C->isNullValue() && IIQ.isExact(&BO)) 5976 ShiftAmount = C->countTrailingZeros(); 5977 if (C->isNegative()) { 5978 // 'ashr C, x' produces [C, C >> (Width-1)] 5979 Lower = *C; 5980 Upper = C->ashr(ShiftAmount) + 1; 5981 } else { 5982 // 'ashr C, x' produces [C >> (Width-1), C] 5983 Lower = C->ashr(ShiftAmount); 5984 Upper = *C + 1; 5985 } 5986 } 5987 break; 5988 5989 case Instruction::LShr: 5990 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5991 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5992 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5993 } else if (match(BO.getOperand(0), m_APInt(C))) { 5994 // 'lshr C, x' produces [C >> (Width-1), C]. 5995 unsigned ShiftAmount = Width - 1; 5996 if (!C->isNullValue() && IIQ.isExact(&BO)) 5997 ShiftAmount = C->countTrailingZeros(); 5998 Lower = C->lshr(ShiftAmount); 5999 Upper = *C + 1; 6000 } 6001 break; 6002 6003 case Instruction::Shl: 6004 if (match(BO.getOperand(0), m_APInt(C))) { 6005 if (IIQ.hasNoUnsignedWrap(&BO)) { 6006 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6007 Lower = *C; 6008 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6009 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6010 if (C->isNegative()) { 6011 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6012 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6013 Lower = C->shl(ShiftAmount); 6014 Upper = *C + 1; 6015 } else { 6016 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6017 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6018 Lower = *C; 6019 Upper = C->shl(ShiftAmount) + 1; 6020 } 6021 } 6022 } 6023 break; 6024 6025 case Instruction::SDiv: 6026 if (match(BO.getOperand(1), m_APInt(C))) { 6027 APInt IntMin = APInt::getSignedMinValue(Width); 6028 APInt IntMax = APInt::getSignedMaxValue(Width); 6029 if (C->isAllOnesValue()) { 6030 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6031 // where C != -1 and C != 0 and C != 1 6032 Lower = IntMin + 1; 6033 Upper = IntMax + 1; 6034 } else if (C->countLeadingZeros() < Width - 1) { 6035 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6036 // where C != -1 and C != 0 and C != 1 6037 Lower = IntMin.sdiv(*C); 6038 Upper = IntMax.sdiv(*C); 6039 if (Lower.sgt(Upper)) 6040 std::swap(Lower, Upper); 6041 Upper = Upper + 1; 6042 assert(Upper != Lower && "Upper part of range has wrapped!"); 6043 } 6044 } else if (match(BO.getOperand(0), m_APInt(C))) { 6045 if (C->isMinSignedValue()) { 6046 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6047 Lower = *C; 6048 Upper = Lower.lshr(1) + 1; 6049 } else { 6050 // 'sdiv C, x' produces [-|C|, |C|]. 6051 Upper = C->abs() + 1; 6052 Lower = (-Upper) + 1; 6053 } 6054 } 6055 break; 6056 6057 case Instruction::UDiv: 6058 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6059 // 'udiv x, C' produces [0, UINT_MAX / C]. 6060 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6061 } else if (match(BO.getOperand(0), m_APInt(C))) { 6062 // 'udiv C, x' produces [0, C]. 6063 Upper = *C + 1; 6064 } 6065 break; 6066 6067 case Instruction::SRem: 6068 if (match(BO.getOperand(1), m_APInt(C))) { 6069 // 'srem x, C' produces (-|C|, |C|). 6070 Upper = C->abs(); 6071 Lower = (-Upper) + 1; 6072 } 6073 break; 6074 6075 case Instruction::URem: 6076 if (match(BO.getOperand(1), m_APInt(C))) 6077 // 'urem x, C' produces [0, C). 6078 Upper = *C; 6079 break; 6080 6081 default: 6082 break; 6083 } 6084 } 6085 6086 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6087 APInt &Upper) { 6088 unsigned Width = Lower.getBitWidth(); 6089 const APInt *C; 6090 switch (II.getIntrinsicID()) { 6091 case Intrinsic::uadd_sat: 6092 // uadd.sat(x, C) produces [C, UINT_MAX]. 6093 if (match(II.getOperand(0), m_APInt(C)) || 6094 match(II.getOperand(1), m_APInt(C))) 6095 Lower = *C; 6096 break; 6097 case Intrinsic::sadd_sat: 6098 if (match(II.getOperand(0), m_APInt(C)) || 6099 match(II.getOperand(1), m_APInt(C))) { 6100 if (C->isNegative()) { 6101 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6102 Lower = APInt::getSignedMinValue(Width); 6103 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6104 } else { 6105 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6106 Lower = APInt::getSignedMinValue(Width) + *C; 6107 Upper = APInt::getSignedMaxValue(Width) + 1; 6108 } 6109 } 6110 break; 6111 case Intrinsic::usub_sat: 6112 // usub.sat(C, x) produces [0, C]. 6113 if (match(II.getOperand(0), m_APInt(C))) 6114 Upper = *C + 1; 6115 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6116 else if (match(II.getOperand(1), m_APInt(C))) 6117 Upper = APInt::getMaxValue(Width) - *C + 1; 6118 break; 6119 case Intrinsic::ssub_sat: 6120 if (match(II.getOperand(0), m_APInt(C))) { 6121 if (C->isNegative()) { 6122 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6123 Lower = APInt::getSignedMinValue(Width); 6124 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6125 } else { 6126 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6127 Lower = *C - APInt::getSignedMaxValue(Width); 6128 Upper = APInt::getSignedMaxValue(Width) + 1; 6129 } 6130 } else if (match(II.getOperand(1), m_APInt(C))) { 6131 if (C->isNegative()) { 6132 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6133 Lower = APInt::getSignedMinValue(Width) - *C; 6134 Upper = APInt::getSignedMaxValue(Width) + 1; 6135 } else { 6136 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6137 Lower = APInt::getSignedMinValue(Width); 6138 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6139 } 6140 } 6141 break; 6142 default: 6143 break; 6144 } 6145 } 6146 6147 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6148 APInt &Upper, const InstrInfoQuery &IIQ) { 6149 const Value *LHS = nullptr, *RHS = nullptr; 6150 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6151 if (R.Flavor == SPF_UNKNOWN) 6152 return; 6153 6154 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6155 6156 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6157 // If the negation part of the abs (in RHS) has the NSW flag, 6158 // then the result of abs(X) is [0..SIGNED_MAX], 6159 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6160 Lower = APInt::getNullValue(BitWidth); 6161 if (match(RHS, m_Neg(m_Specific(LHS))) && 6162 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6163 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6164 else 6165 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6166 return; 6167 } 6168 6169 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6170 // The result of -abs(X) is <= 0. 6171 Lower = APInt::getSignedMinValue(BitWidth); 6172 Upper = APInt(BitWidth, 1); 6173 return; 6174 } 6175 6176 const APInt *C; 6177 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6178 return; 6179 6180 switch (R.Flavor) { 6181 case SPF_UMIN: 6182 Upper = *C + 1; 6183 break; 6184 case SPF_UMAX: 6185 Lower = *C; 6186 break; 6187 case SPF_SMIN: 6188 Lower = APInt::getSignedMinValue(BitWidth); 6189 Upper = *C + 1; 6190 break; 6191 case SPF_SMAX: 6192 Lower = *C; 6193 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6194 break; 6195 default: 6196 break; 6197 } 6198 } 6199 6200 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6201 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6202 6203 const APInt *C; 6204 if (match(V, m_APInt(C))) 6205 return ConstantRange(*C); 6206 6207 InstrInfoQuery IIQ(UseInstrInfo); 6208 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6209 APInt Lower = APInt(BitWidth, 0); 6210 APInt Upper = APInt(BitWidth, 0); 6211 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6212 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6213 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6214 setLimitsForIntrinsic(*II, Lower, Upper); 6215 else if (auto *SI = dyn_cast<SelectInst>(V)) 6216 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6217 6218 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6219 6220 if (auto *I = dyn_cast<Instruction>(V)) 6221 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6222 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6223 6224 return CR; 6225 } 6226 6227 static Optional<int64_t> 6228 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6229 // Skip over the first indices. 6230 gep_type_iterator GTI = gep_type_begin(GEP); 6231 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6232 /*skip along*/; 6233 6234 // Compute the offset implied by the rest of the indices. 6235 int64_t Offset = 0; 6236 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6237 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6238 if (!OpC) 6239 return None; 6240 if (OpC->isZero()) 6241 continue; // No offset. 6242 6243 // Handle struct indices, which add their field offset to the pointer. 6244 if (StructType *STy = GTI.getStructTypeOrNull()) { 6245 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6246 continue; 6247 } 6248 6249 // Otherwise, we have a sequential type like an array or fixed-length 6250 // vector. Multiply the index by the ElementSize. 6251 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6252 if (Size.isScalable()) 6253 return None; 6254 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6255 } 6256 6257 return Offset; 6258 } 6259 6260 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6261 const DataLayout &DL) { 6262 Ptr1 = Ptr1->stripPointerCasts(); 6263 Ptr2 = Ptr2->stripPointerCasts(); 6264 6265 // Handle the trivial case first. 6266 if (Ptr1 == Ptr2) { 6267 return 0; 6268 } 6269 6270 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6271 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6272 6273 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6274 // as in "P" and "gep P, 1". 6275 // Also do this iteratively to handle the the following case: 6276 // Ptr_t1 = GEP Ptr1, c1 6277 // Ptr_t2 = GEP Ptr_t1, c2 6278 // Ptr2 = GEP Ptr_t2, c3 6279 // where we will return c1+c2+c3. 6280 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6281 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6282 // are the same, and return the difference between offsets. 6283 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6284 const Value *Ptr) -> Optional<int64_t> { 6285 const GEPOperator *GEP_T = GEP; 6286 int64_t OffsetVal = 0; 6287 bool HasSameBase = false; 6288 while (GEP_T) { 6289 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6290 if (!Offset) 6291 return None; 6292 OffsetVal += *Offset; 6293 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6294 if (Op0 == Ptr) { 6295 HasSameBase = true; 6296 break; 6297 } 6298 GEP_T = dyn_cast<GEPOperator>(Op0); 6299 } 6300 if (!HasSameBase) 6301 return None; 6302 return OffsetVal; 6303 }; 6304 6305 if (GEP1) { 6306 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6307 if (Offset) 6308 return -*Offset; 6309 } 6310 if (GEP2) { 6311 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6312 if (Offset) 6313 return Offset; 6314 } 6315 6316 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6317 // base. After that base, they may have some number of common (and 6318 // potentially variable) indices. After that they handle some constant 6319 // offset, which determines their offset from each other. At this point, we 6320 // handle no other case. 6321 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6322 return None; 6323 6324 // Skip any common indices and track the GEP types. 6325 unsigned Idx = 1; 6326 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6327 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6328 break; 6329 6330 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6331 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6332 if (!Offset1 || !Offset2) 6333 return None; 6334 return *Offset2 - *Offset1; 6335 } 6336