1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 55 /// 0). For vector types, returns the element type's bitwidth. 56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 57 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 58 return BitWidth; 59 60 return DL.getPointerTypeSizeInBits(Ty); 61 } 62 63 namespace { 64 // Simplifying using an assume can only be done in a particular control-flow 65 // context (the context instruction provides that context). If an assume and 66 // the context instruction are not in the same block then the DT helps in 67 // figuring out if we can use it. 68 struct Query { 69 const DataLayout &DL; 70 AssumptionCache *AC; 71 const Instruction *CxtI; 72 const DominatorTree *DT; 73 74 /// Set of assumptions that should be excluded from further queries. 75 /// This is because of the potential for mutual recursion to cause 76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 77 /// classic case of this is assume(x = y), which will attempt to determine 78 /// bits in x from bits in y, which will attempt to determine bits in y from 79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 82 /// on. 83 std::array<const Value*, MaxDepth> Excluded; 84 unsigned NumExcluded; 85 86 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 87 const DominatorTree *DT) 88 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 89 90 Query(const Query &Q, const Value *NewExcl) 91 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 92 Excluded = Q.Excluded; 93 Excluded[NumExcluded++] = NewExcl; 94 assert(NumExcluded <= Excluded.size()); 95 } 96 97 bool isExcluded(const Value *Value) const { 98 if (NumExcluded == 0) 99 return false; 100 auto End = Excluded.begin() + NumExcluded; 101 return std::find(Excluded.begin(), End, Value) != End; 102 } 103 }; 104 } // end anonymous namespace 105 106 // Given the provided Value and, potentially, a context instruction, return 107 // the preferred context instruction (if any). 108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 109 // If we've been provided with a context instruction, then use that (provided 110 // it has been inserted). 111 if (CxtI && CxtI->getParent()) 112 return CxtI; 113 114 // If the value is really an already-inserted instruction, then use that. 115 CxtI = dyn_cast<Instruction>(V); 116 if (CxtI && CxtI->getParent()) 117 return CxtI; 118 119 return nullptr; 120 } 121 122 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 123 unsigned Depth, const Query &Q); 124 125 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 126 const DataLayout &DL, unsigned Depth, 127 AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT) { 129 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 130 Query(DL, AC, safeCxtI(V, CxtI), DT)); 131 } 132 133 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 134 const DataLayout &DL, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 assert(LHS->getType() == RHS->getType() && 138 "LHS and RHS should have the same type"); 139 assert(LHS->getType()->isIntOrIntVectorTy() && 140 "LHS and RHS should be integers"); 141 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 142 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 143 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 144 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 145 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 146 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 147 } 148 149 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 150 unsigned Depth, const Query &Q); 151 152 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 153 const DataLayout &DL, unsigned Depth, 154 AssumptionCache *AC, const Instruction *CxtI, 155 const DominatorTree *DT) { 156 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 157 Query(DL, AC, safeCxtI(V, CxtI), DT)); 158 } 159 160 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 161 const Query &Q); 162 163 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 164 bool OrZero, 165 unsigned Depth, AssumptionCache *AC, 166 const Instruction *CxtI, 167 const DominatorTree *DT) { 168 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 173 174 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 175 AssumptionCache *AC, const Instruction *CxtI, 176 const DominatorTree *DT) { 177 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 178 } 179 180 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 181 unsigned Depth, 182 AssumptionCache *AC, const Instruction *CxtI, 183 const DominatorTree *DT) { 184 bool NonNegative, Negative; 185 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 186 return NonNegative; 187 } 188 189 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 190 AssumptionCache *AC, const Instruction *CxtI, 191 const DominatorTree *DT) { 192 if (auto *CI = dyn_cast<ConstantInt>(V)) 193 return CI->getValue().isStrictlyPositive(); 194 195 // TODO: We'd doing two recursive queries here. We should factor this such 196 // that only a single query is needed. 197 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 198 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 199 } 200 201 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 bool NonNegative, Negative; 205 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 206 return Negative; 207 } 208 209 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 210 211 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 212 const DataLayout &DL, 213 AssumptionCache *AC, const Instruction *CxtI, 214 const DominatorTree *DT) { 215 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 216 safeCxtI(V1, safeCxtI(V2, CxtI)), 217 DT)); 218 } 219 220 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 221 const Query &Q); 222 223 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 224 const DataLayout &DL, 225 unsigned Depth, AssumptionCache *AC, 226 const Instruction *CxtI, const DominatorTree *DT) { 227 return ::MaskedValueIsZero(V, Mask, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT)); 229 } 230 231 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 232 const Query &Q); 233 234 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 235 unsigned Depth, AssumptionCache *AC, 236 const Instruction *CxtI, 237 const DominatorTree *DT) { 238 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 239 } 240 241 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 242 bool NSW, 243 APInt &KnownZero, APInt &KnownOne, 244 APInt &KnownZero2, APInt &KnownOne2, 245 unsigned Depth, const Query &Q) { 246 if (!Add) { 247 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 248 // We know that the top bits of C-X are clear if X contains less bits 249 // than C (i.e. no wrap-around can happen). For example, 20-X is 250 // positive if we can prove that X is >= 0 and < 16. 251 if (!CLHS->getValue().isNegative()) { 252 unsigned BitWidth = KnownZero.getBitWidth(); 253 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 254 // NLZ can't be BitWidth with no sign bit 255 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 256 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 257 258 // If all of the MaskV bits are known to be zero, then we know the 259 // output top bits are zero, because we now know that the output is 260 // from [0-C]. 261 if ((KnownZero2 & MaskV) == MaskV) { 262 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 263 // Top bits known zero. 264 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 265 } 266 } 267 } 268 } 269 270 unsigned BitWidth = KnownZero.getBitWidth(); 271 272 // If an initial sequence of bits in the result is not needed, the 273 // corresponding bits in the operands are not needed. 274 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 275 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 276 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 277 278 // Carry in a 1 for a subtract, rather than a 0. 279 APInt CarryIn(BitWidth, 0); 280 if (!Add) { 281 // Sum = LHS + ~RHS + 1 282 std::swap(KnownZero2, KnownOne2); 283 CarryIn.setBit(0); 284 } 285 286 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 287 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 288 289 // Compute known bits of the carry. 290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 292 293 // Compute set of known bits (where all three relevant bits are known). 294 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 295 APInt RHSKnown = KnownZero2 | KnownOne2; 296 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 297 APInt Known = LHSKnown & RHSKnown & CarryKnown; 298 299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 300 "known bits of sum differ"); 301 302 // Compute known bits of the result. 303 KnownZero = ~PossibleSumOne & Known; 304 KnownOne = PossibleSumOne & Known; 305 306 // Are we still trying to solve for the sign bit? 307 if (!Known.isNegative()) { 308 if (NSW) { 309 // Adding two non-negative numbers, or subtracting a negative number from 310 // a non-negative one, can't wrap into negative. 311 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 312 KnownZero |= APInt::getSignBit(BitWidth); 313 // Adding two negative numbers, or subtracting a non-negative number from 314 // a negative one, can't wrap into non-negative. 315 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 316 KnownOne |= APInt::getSignBit(BitWidth); 317 } 318 } 319 } 320 321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 322 APInt &KnownZero, APInt &KnownOne, 323 APInt &KnownZero2, APInt &KnownOne2, 324 unsigned Depth, const Query &Q) { 325 unsigned BitWidth = KnownZero.getBitWidth(); 326 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 327 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 328 329 bool isKnownNegative = false; 330 bool isKnownNonNegative = false; 331 // If the multiplication is known not to overflow, compute the sign bit. 332 if (NSW) { 333 if (Op0 == Op1) { 334 // The product of a number with itself is non-negative. 335 isKnownNonNegative = true; 336 } else { 337 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 338 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 339 bool isKnownNegativeOp1 = KnownOne.isNegative(); 340 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 341 // The product of two numbers with the same sign is non-negative. 342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 344 // The product of a negative number and a non-negative number is either 345 // negative or zero. 346 if (!isKnownNonNegative) 347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 348 isKnownNonZero(Op0, Depth, Q)) || 349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 350 isKnownNonZero(Op1, Depth, Q)); 351 } 352 } 353 354 // If low bits are zero in either operand, output low known-0 bits. 355 // Also compute a conservative estimate for high known-0 bits. 356 // More trickiness is possible, but this is sufficient for the 357 // interesting case of alignment computation. 358 KnownOne.clearAllBits(); 359 unsigned TrailZ = KnownZero.countTrailingOnes() + 360 KnownZero2.countTrailingOnes(); 361 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 362 KnownZero2.countLeadingOnes(), 363 BitWidth) - BitWidth; 364 365 TrailZ = std::min(TrailZ, BitWidth); 366 LeadZ = std::min(LeadZ, BitWidth); 367 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 368 APInt::getHighBitsSet(BitWidth, LeadZ); 369 370 // Only make use of no-wrap flags if we failed to compute the sign bit 371 // directly. This matters if the multiplication always overflows, in 372 // which case we prefer to follow the result of the direct computation, 373 // though as the program is invoking undefined behaviour we can choose 374 // whatever we like here. 375 if (isKnownNonNegative && !KnownOne.isNegative()) 376 KnownZero.setBit(BitWidth - 1); 377 else if (isKnownNegative && !KnownZero.isNegative()) 378 KnownOne.setBit(BitWidth - 1); 379 } 380 381 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 382 APInt &KnownZero, 383 APInt &KnownOne) { 384 unsigned BitWidth = KnownZero.getBitWidth(); 385 unsigned NumRanges = Ranges.getNumOperands() / 2; 386 assert(NumRanges >= 1); 387 388 KnownZero.setAllBits(); 389 KnownOne.setAllBits(); 390 391 for (unsigned i = 0; i < NumRanges; ++i) { 392 ConstantInt *Lower = 393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 394 ConstantInt *Upper = 395 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 396 ConstantRange Range(Lower->getValue(), Upper->getValue()); 397 398 // The first CommonPrefixBits of all values in Range are equal. 399 unsigned CommonPrefixBits = 400 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 401 402 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 403 KnownOne &= Range.getUnsignedMax() & Mask; 404 KnownZero &= ~Range.getUnsignedMax() & Mask; 405 } 406 } 407 408 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 409 SmallVector<const Value *, 16> WorkSet(1, I); 410 SmallPtrSet<const Value *, 32> Visited; 411 SmallPtrSet<const Value *, 16> EphValues; 412 413 // The instruction defining an assumption's condition itself is always 414 // considered ephemeral to that assumption (even if it has other 415 // non-ephemeral users). See r246696's test case for an example. 416 if (is_contained(I->operands(), E)) 417 return true; 418 419 while (!WorkSet.empty()) { 420 const Value *V = WorkSet.pop_back_val(); 421 if (!Visited.insert(V).second) 422 continue; 423 424 // If all uses of this value are ephemeral, then so is this value. 425 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 426 if (V == E) 427 return true; 428 429 EphValues.insert(V); 430 if (const User *U = dyn_cast<User>(V)) 431 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 432 J != JE; ++J) { 433 if (isSafeToSpeculativelyExecute(*J)) 434 WorkSet.push_back(*J); 435 } 436 } 437 } 438 439 return false; 440 } 441 442 // Is this an intrinsic that cannot be speculated but also cannot trap? 443 static bool isAssumeLikeIntrinsic(const Instruction *I) { 444 if (const CallInst *CI = dyn_cast<CallInst>(I)) 445 if (Function *F = CI->getCalledFunction()) 446 switch (F->getIntrinsicID()) { 447 default: break; 448 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 449 case Intrinsic::assume: 450 case Intrinsic::dbg_declare: 451 case Intrinsic::dbg_value: 452 case Intrinsic::invariant_start: 453 case Intrinsic::invariant_end: 454 case Intrinsic::lifetime_start: 455 case Intrinsic::lifetime_end: 456 case Intrinsic::objectsize: 457 case Intrinsic::ptr_annotation: 458 case Intrinsic::var_annotation: 459 return true; 460 } 461 462 return false; 463 } 464 465 bool llvm::isValidAssumeForContext(const Instruction *Inv, 466 const Instruction *CxtI, 467 const DominatorTree *DT) { 468 469 // There are two restrictions on the use of an assume: 470 // 1. The assume must dominate the context (or the control flow must 471 // reach the assume whenever it reaches the context). 472 // 2. The context must not be in the assume's set of ephemeral values 473 // (otherwise we will use the assume to prove that the condition 474 // feeding the assume is trivially true, thus causing the removal of 475 // the assume). 476 477 if (DT) { 478 if (DT->dominates(Inv, CxtI)) 479 return true; 480 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 481 // We don't have a DT, but this trivially dominates. 482 return true; 483 } 484 485 // With or without a DT, the only remaining case we will check is if the 486 // instructions are in the same BB. Give up if that is not the case. 487 if (Inv->getParent() != CxtI->getParent()) 488 return false; 489 490 // If we have a dom tree, then we now know that the assume doens't dominate 491 // the other instruction. If we don't have a dom tree then we can check if 492 // the assume is first in the BB. 493 if (!DT) { 494 // Search forward from the assume until we reach the context (or the end 495 // of the block); the common case is that the assume will come first. 496 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 497 IE = Inv->getParent()->end(); I != IE; ++I) 498 if (&*I == CxtI) 499 return true; 500 } 501 502 // The context comes first, but they're both in the same block. Make sure 503 // there is nothing in between that might interrupt the control flow. 504 for (BasicBlock::const_iterator I = 505 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 506 I != IE; ++I) 507 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 508 return false; 509 510 return !isEphemeralValueOf(Inv, CxtI); 511 } 512 513 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 514 APInt &KnownOne, unsigned Depth, 515 const Query &Q) { 516 // Use of assumptions is context-sensitive. If we don't have a context, we 517 // cannot use them! 518 if (!Q.AC || !Q.CxtI) 519 return; 520 521 unsigned BitWidth = KnownZero.getBitWidth(); 522 523 for (auto &AssumeVH : Q.AC->assumptions()) { 524 if (!AssumeVH) 525 continue; 526 CallInst *I = cast<CallInst>(AssumeVH); 527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 528 "Got assumption for the wrong function!"); 529 if (Q.isExcluded(I)) 530 continue; 531 532 // Warning: This loop can end up being somewhat performance sensetive. 533 // We're running this loop for once for each value queried resulting in a 534 // runtime of ~O(#assumes * #values). 535 536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 537 "must be an assume intrinsic"); 538 539 Value *Arg = I->getArgOperand(0); 540 541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 542 assert(BitWidth == 1 && "assume operand is not i1?"); 543 KnownZero.clearAllBits(); 544 KnownOne.setAllBits(); 545 return; 546 } 547 548 // The remaining tests are all recursive, so bail out if we hit the limit. 549 if (Depth == MaxDepth) 550 continue; 551 552 Value *A, *B; 553 auto m_V = m_CombineOr(m_Specific(V), 554 m_CombineOr(m_PtrToInt(m_Specific(V)), 555 m_BitCast(m_Specific(V)))); 556 557 CmpInst::Predicate Pred; 558 ConstantInt *C; 559 // assume(v = a) 560 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 564 KnownZero |= RHSKnownZero; 565 KnownOne |= RHSKnownOne; 566 // assume(v & b = a) 567 } else if (match(Arg, 568 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 569 Pred == ICmpInst::ICMP_EQ && 570 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 573 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 574 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 575 576 // For those bits in the mask that are known to be one, we can propagate 577 // known bits from the RHS to V. 578 KnownZero |= RHSKnownZero & MaskKnownOne; 579 KnownOne |= RHSKnownOne & MaskKnownOne; 580 // assume(~(v & b) = a) 581 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 582 m_Value(A))) && 583 Pred == ICmpInst::ICMP_EQ && 584 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 585 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 586 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 587 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 588 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 589 590 // For those bits in the mask that are known to be one, we can propagate 591 // inverted known bits from the RHS to V. 592 KnownZero |= RHSKnownOne & MaskKnownOne; 593 KnownOne |= RHSKnownZero & MaskKnownOne; 594 // assume(v | b = a) 595 } else if (match(Arg, 596 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 597 Pred == ICmpInst::ICMP_EQ && 598 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 599 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 600 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 601 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 602 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 603 604 // For those bits in B that are known to be zero, we can propagate known 605 // bits from the RHS to V. 606 KnownZero |= RHSKnownZero & BKnownZero; 607 KnownOne |= RHSKnownOne & BKnownZero; 608 // assume(~(v | b) = a) 609 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 610 m_Value(A))) && 611 Pred == ICmpInst::ICMP_EQ && 612 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 613 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 614 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 615 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 616 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 617 618 // For those bits in B that are known to be zero, we can propagate 619 // inverted known bits from the RHS to V. 620 KnownZero |= RHSKnownOne & BKnownZero; 621 KnownOne |= RHSKnownZero & BKnownZero; 622 // assume(v ^ b = a) 623 } else if (match(Arg, 624 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 625 Pred == ICmpInst::ICMP_EQ && 626 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 627 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 628 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 629 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 630 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 631 632 // For those bits in B that are known to be zero, we can propagate known 633 // bits from the RHS to V. For those bits in B that are known to be one, 634 // we can propagate inverted known bits from the RHS to V. 635 KnownZero |= RHSKnownZero & BKnownZero; 636 KnownOne |= RHSKnownOne & BKnownZero; 637 KnownZero |= RHSKnownOne & BKnownOne; 638 KnownOne |= RHSKnownZero & BKnownOne; 639 // assume(~(v ^ b) = a) 640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && 643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 644 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 645 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 646 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 647 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 648 649 // For those bits in B that are known to be zero, we can propagate 650 // inverted known bits from the RHS to V. For those bits in B that are 651 // known to be one, we can propagate known bits from the RHS to V. 652 KnownZero |= RHSKnownOne & BKnownZero; 653 KnownOne |= RHSKnownZero & BKnownZero; 654 KnownZero |= RHSKnownZero & BKnownOne; 655 KnownOne |= RHSKnownOne & BKnownOne; 656 // assume(v << c = a) 657 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 658 m_Value(A))) && 659 Pred == ICmpInst::ICMP_EQ && 660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 661 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 662 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 663 // For those bits in RHS that are known, we can propagate them to known 664 // bits in V shifted to the right by C. 665 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 666 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 667 // assume(~(v << c) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 673 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 674 // For those bits in RHS that are known, we can propagate them inverted 675 // to known bits in V shifted to the right by C. 676 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 677 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 678 // assume(v >> c = a) 679 } else if (match(Arg, 680 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 681 m_AShr(m_V, m_ConstantInt(C))), 682 m_Value(A))) && 683 Pred == ICmpInst::ICMP_EQ && 684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 685 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 686 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 687 // For those bits in RHS that are known, we can propagate them to known 688 // bits in V shifted to the right by C. 689 KnownZero |= RHSKnownZero << C->getZExtValue(); 690 KnownOne |= RHSKnownOne << C->getZExtValue(); 691 // assume(~(v >> c) = a) 692 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 693 m_LShr(m_V, m_ConstantInt(C)), 694 m_AShr(m_V, m_ConstantInt(C)))), 695 m_Value(A))) && 696 Pred == ICmpInst::ICMP_EQ && 697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 700 // For those bits in RHS that are known, we can propagate them inverted 701 // to known bits in V shifted to the right by C. 702 KnownZero |= RHSKnownOne << C->getZExtValue(); 703 KnownOne |= RHSKnownZero << C->getZExtValue(); 704 // assume(v >=_s c) where c is non-negative 705 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 706 Pred == ICmpInst::ICMP_SGE && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 709 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 710 711 if (RHSKnownZero.isNegative()) { 712 // We know that the sign bit is zero. 713 KnownZero |= APInt::getSignBit(BitWidth); 714 } 715 // assume(v >_s c) where c is at least -1. 716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 717 Pred == ICmpInst::ICMP_SGT && 718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 721 722 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 723 // We know that the sign bit is zero. 724 KnownZero |= APInt::getSignBit(BitWidth); 725 } 726 // assume(v <=_s c) where c is negative 727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 728 Pred == ICmpInst::ICMP_SLE && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 732 733 if (RHSKnownOne.isNegative()) { 734 // We know that the sign bit is one. 735 KnownOne |= APInt::getSignBit(BitWidth); 736 } 737 // assume(v <_s c) where c is non-positive 738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 739 Pred == ICmpInst::ICMP_SLT && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 743 744 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 745 // We know that the sign bit is one. 746 KnownOne |= APInt::getSignBit(BitWidth); 747 } 748 // assume(v <=_u c) 749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 750 Pred == ICmpInst::ICMP_ULE && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 754 755 // Whatever high bits in c are zero are known to be zero. 756 KnownZero |= 757 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 758 // assume(v <_u c) 759 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 760 Pred == ICmpInst::ICMP_ULT && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 763 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 764 765 // Whatever high bits in c are zero are known to be zero (if c is a power 766 // of 2, then one more). 767 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 768 KnownZero |= 769 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 770 else 771 KnownZero |= 772 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 773 } 774 } 775 } 776 777 // Compute known bits from a shift operator, including those with a 778 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 779 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 780 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 781 // functors that, given the known-zero or known-one bits respectively, and a 782 // shift amount, compute the implied known-zero or known-one bits of the shift 783 // operator's result respectively for that shift amount. The results from calling 784 // KZF and KOF are conservatively combined for all permitted shift amounts. 785 static void computeKnownBitsFromShiftOperator( 786 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 787 APInt &KnownOne2, unsigned Depth, const Query &Q, 788 function_ref<APInt(const APInt &, unsigned)> KZF, 789 function_ref<APInt(const APInt &, unsigned)> KOF) { 790 unsigned BitWidth = KnownZero.getBitWidth(); 791 792 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 793 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 794 795 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 796 KnownZero = KZF(KnownZero, ShiftAmt); 797 KnownOne = KOF(KnownOne, ShiftAmt); 798 // If there is conflict between KnownZero and KnownOne, this must be an 799 // overflowing left shift, so the shift result is undefined. Clear KnownZero 800 // and KnownOne bits so that other code could propagate this undef. 801 if ((KnownZero & KnownOne) != 0) { 802 KnownZero.clearAllBits(); 803 KnownOne.clearAllBits(); 804 } 805 806 return; 807 } 808 809 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 810 811 // Note: We cannot use KnownZero.getLimitedValue() here, because if 812 // BitWidth > 64 and any upper bits are known, we'll end up returning the 813 // limit value (which implies all bits are known). 814 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 815 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 816 817 // It would be more-clearly correct to use the two temporaries for this 818 // calculation. Reusing the APInts here to prevent unnecessary allocations. 819 KnownZero.clearAllBits(); 820 KnownOne.clearAllBits(); 821 822 // If we know the shifter operand is nonzero, we can sometimes infer more 823 // known bits. However this is expensive to compute, so be lazy about it and 824 // only compute it when absolutely necessary. 825 Optional<bool> ShifterOperandIsNonZero; 826 827 // Early exit if we can't constrain any well-defined shift amount. 828 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 829 ShifterOperandIsNonZero = 830 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 831 if (!*ShifterOperandIsNonZero) 832 return; 833 } 834 835 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 836 837 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 838 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 839 // Combine the shifted known input bits only for those shift amounts 840 // compatible with its known constraints. 841 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 842 continue; 843 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 844 continue; 845 // If we know the shifter is nonzero, we may be able to infer more known 846 // bits. This check is sunk down as far as possible to avoid the expensive 847 // call to isKnownNonZero if the cheaper checks above fail. 848 if (ShiftAmt == 0) { 849 if (!ShifterOperandIsNonZero.hasValue()) 850 ShifterOperandIsNonZero = 851 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 852 if (*ShifterOperandIsNonZero) 853 continue; 854 } 855 856 KnownZero &= KZF(KnownZero2, ShiftAmt); 857 KnownOne &= KOF(KnownOne2, ShiftAmt); 858 } 859 860 // If there are no compatible shift amounts, then we've proven that the shift 861 // amount must be >= the BitWidth, and the result is undefined. We could 862 // return anything we'd like, but we need to make sure the sets of known bits 863 // stay disjoint (it should be better for some other code to actually 864 // propagate the undef than to pick a value here using known bits). 865 if ((KnownZero & KnownOne) != 0) { 866 KnownZero.clearAllBits(); 867 KnownOne.clearAllBits(); 868 } 869 } 870 871 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 872 APInt &KnownOne, unsigned Depth, 873 const Query &Q) { 874 unsigned BitWidth = KnownZero.getBitWidth(); 875 876 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 877 switch (I->getOpcode()) { 878 default: break; 879 case Instruction::Load: 880 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 881 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 882 break; 883 case Instruction::And: { 884 // If either the LHS or the RHS are Zero, the result is zero. 885 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 886 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 887 888 // Output known-1 bits are only known if set in both the LHS & RHS. 889 KnownOne &= KnownOne2; 890 // Output known-0 are known to be clear if zero in either the LHS | RHS. 891 KnownZero |= KnownZero2; 892 893 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 894 // here we handle the more general case of adding any odd number by 895 // matching the form add(x, add(x, y)) where y is odd. 896 // TODO: This could be generalized to clearing any bit set in y where the 897 // following bit is known to be unset in y. 898 Value *Y = nullptr; 899 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 900 m_Value(Y))) || 901 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 902 m_Value(Y)))) { 903 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 904 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 905 if (KnownOne3.countTrailingOnes() > 0) 906 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 907 } 908 break; 909 } 910 case Instruction::Or: { 911 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 912 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 913 914 // Output known-0 bits are only known if clear in both the LHS & RHS. 915 KnownZero &= KnownZero2; 916 // Output known-1 are known to be set if set in either the LHS | RHS. 917 KnownOne |= KnownOne2; 918 break; 919 } 920 case Instruction::Xor: { 921 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 922 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 923 924 // Output known-0 bits are known if clear or set in both the LHS & RHS. 925 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 926 // Output known-1 are known to be set if set in only one of the LHS, RHS. 927 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 928 KnownZero = KnownZeroOut; 929 break; 930 } 931 case Instruction::Mul: { 932 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 933 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 934 KnownOne, KnownZero2, KnownOne2, Depth, Q); 935 break; 936 } 937 case Instruction::UDiv: { 938 // For the purposes of computing leading zeros we can conservatively 939 // treat a udiv as a logical right shift by the power of 2 known to 940 // be less than the denominator. 941 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 942 unsigned LeadZ = KnownZero2.countLeadingOnes(); 943 944 KnownOne2.clearAllBits(); 945 KnownZero2.clearAllBits(); 946 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 947 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 948 if (RHSUnknownLeadingOnes != BitWidth) 949 LeadZ = std::min(BitWidth, 950 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 951 952 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 953 break; 954 } 955 case Instruction::Select: { 956 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 957 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 958 959 const Value *LHS; 960 const Value *RHS; 961 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 962 if (SelectPatternResult::isMinOrMax(SPF)) { 963 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 964 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 965 } else { 966 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 967 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 968 } 969 970 unsigned MaxHighOnes = 0; 971 unsigned MaxHighZeros = 0; 972 if (SPF == SPF_SMAX) { 973 // If both sides are negative, the result is negative. 974 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 975 // We can derive a lower bound on the result by taking the max of the 976 // leading one bits. 977 MaxHighOnes = 978 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 979 // If either side is non-negative, the result is non-negative. 980 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 981 MaxHighZeros = 1; 982 } else if (SPF == SPF_SMIN) { 983 // If both sides are non-negative, the result is non-negative. 984 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 985 // We can derive an upper bound on the result by taking the max of the 986 // leading zero bits. 987 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 988 KnownZero2.countLeadingOnes()); 989 // If either side is negative, the result is negative. 990 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 991 MaxHighOnes = 1; 992 } else if (SPF == SPF_UMAX) { 993 // We can derive a lower bound on the result by taking the max of the 994 // leading one bits. 995 MaxHighOnes = 996 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 997 } else if (SPF == SPF_UMIN) { 998 // We can derive an upper bound on the result by taking the max of the 999 // leading zero bits. 1000 MaxHighZeros = 1001 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1002 } 1003 1004 // Only known if known in both the LHS and RHS. 1005 KnownOne &= KnownOne2; 1006 KnownZero &= KnownZero2; 1007 if (MaxHighOnes > 0) 1008 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1009 if (MaxHighZeros > 0) 1010 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1011 break; 1012 } 1013 case Instruction::FPTrunc: 1014 case Instruction::FPExt: 1015 case Instruction::FPToUI: 1016 case Instruction::FPToSI: 1017 case Instruction::SIToFP: 1018 case Instruction::UIToFP: 1019 break; // Can't work with floating point. 1020 case Instruction::PtrToInt: 1021 case Instruction::IntToPtr: 1022 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1023 // Fall through and handle them the same as zext/trunc. 1024 LLVM_FALLTHROUGH; 1025 case Instruction::ZExt: 1026 case Instruction::Trunc: { 1027 Type *SrcTy = I->getOperand(0)->getType(); 1028 1029 unsigned SrcBitWidth; 1030 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1031 // which fall through here. 1032 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1033 1034 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1035 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1036 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1037 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1038 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1039 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1040 // Any top bits are known to be zero. 1041 if (BitWidth > SrcBitWidth) 1042 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1043 break; 1044 } 1045 case Instruction::BitCast: { 1046 Type *SrcTy = I->getOperand(0)->getType(); 1047 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1048 // TODO: For now, not handling conversions like: 1049 // (bitcast i64 %x to <2 x i32>) 1050 !I->getType()->isVectorTy()) { 1051 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1052 break; 1053 } 1054 break; 1055 } 1056 case Instruction::SExt: { 1057 // Compute the bits in the result that are not present in the input. 1058 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1059 1060 KnownZero = KnownZero.trunc(SrcBitWidth); 1061 KnownOne = KnownOne.trunc(SrcBitWidth); 1062 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1063 KnownZero = KnownZero.zext(BitWidth); 1064 KnownOne = KnownOne.zext(BitWidth); 1065 1066 // If the sign bit of the input is known set or clear, then we know the 1067 // top bits of the result. 1068 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1069 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1070 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1071 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1072 break; 1073 } 1074 case Instruction::Shl: { 1075 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1076 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1077 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1078 APInt KZResult = 1079 (KnownZero << ShiftAmt) | 1080 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1081 // If this shift has "nsw" keyword, then the result is either a poison 1082 // value or has the same sign bit as the first operand. 1083 if (NSW && KnownZero.isNegative()) 1084 KZResult.setBit(BitWidth - 1); 1085 return KZResult; 1086 }; 1087 1088 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1089 APInt KOResult = KnownOne << ShiftAmt; 1090 if (NSW && KnownOne.isNegative()) 1091 KOResult.setBit(BitWidth - 1); 1092 return KOResult; 1093 }; 1094 1095 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1096 KnownZero2, KnownOne2, Depth, Q, KZF, 1097 KOF); 1098 break; 1099 } 1100 case Instruction::LShr: { 1101 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1102 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1103 return APIntOps::lshr(KnownZero, ShiftAmt) | 1104 // High bits known zero. 1105 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1106 }; 1107 1108 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1109 return APIntOps::lshr(KnownOne, ShiftAmt); 1110 }; 1111 1112 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1113 KnownZero2, KnownOne2, Depth, Q, KZF, 1114 KOF); 1115 break; 1116 } 1117 case Instruction::AShr: { 1118 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1119 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1120 return APIntOps::ashr(KnownZero, ShiftAmt); 1121 }; 1122 1123 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1124 return APIntOps::ashr(KnownOne, ShiftAmt); 1125 }; 1126 1127 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1128 KnownZero2, KnownOne2, Depth, Q, KZF, 1129 KOF); 1130 break; 1131 } 1132 case Instruction::Sub: { 1133 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1134 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1135 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1136 Q); 1137 break; 1138 } 1139 case Instruction::Add: { 1140 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1141 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1142 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1143 Q); 1144 break; 1145 } 1146 case Instruction::SRem: 1147 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1148 APInt RA = Rem->getValue().abs(); 1149 if (RA.isPowerOf2()) { 1150 APInt LowBits = RA - 1; 1151 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1152 Q); 1153 1154 // The low bits of the first operand are unchanged by the srem. 1155 KnownZero = KnownZero2 & LowBits; 1156 KnownOne = KnownOne2 & LowBits; 1157 1158 // If the first operand is non-negative or has all low bits zero, then 1159 // the upper bits are all zero. 1160 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1161 KnownZero |= ~LowBits; 1162 1163 // If the first operand is negative and not all low bits are zero, then 1164 // the upper bits are all one. 1165 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1166 KnownOne |= ~LowBits; 1167 1168 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1169 } 1170 } 1171 1172 // The sign bit is the LHS's sign bit, except when the result of the 1173 // remainder is zero. 1174 if (KnownZero.isNonNegative()) { 1175 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1176 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1177 Q); 1178 // If it's known zero, our sign bit is also zero. 1179 if (LHSKnownZero.isNegative()) 1180 KnownZero.setBit(BitWidth - 1); 1181 } 1182 1183 break; 1184 case Instruction::URem: { 1185 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1186 const APInt &RA = Rem->getValue(); 1187 if (RA.isPowerOf2()) { 1188 APInt LowBits = (RA - 1); 1189 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1190 KnownZero |= ~LowBits; 1191 KnownOne &= LowBits; 1192 break; 1193 } 1194 } 1195 1196 // Since the result is less than or equal to either operand, any leading 1197 // zero bits in either operand must also exist in the result. 1198 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1199 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1200 1201 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1202 KnownZero2.countLeadingOnes()); 1203 KnownOne.clearAllBits(); 1204 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1205 break; 1206 } 1207 1208 case Instruction::Alloca: { 1209 const AllocaInst *AI = cast<AllocaInst>(I); 1210 unsigned Align = AI->getAlignment(); 1211 if (Align == 0) 1212 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1213 1214 if (Align > 0) 1215 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1216 break; 1217 } 1218 case Instruction::GetElementPtr: { 1219 // Analyze all of the subscripts of this getelementptr instruction 1220 // to determine if we can prove known low zero bits. 1221 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1222 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1223 Q); 1224 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1225 1226 gep_type_iterator GTI = gep_type_begin(I); 1227 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1228 Value *Index = I->getOperand(i); 1229 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1230 // Handle struct member offset arithmetic. 1231 1232 // Handle case when index is vector zeroinitializer 1233 Constant *CIndex = cast<Constant>(Index); 1234 if (CIndex->isZeroValue()) 1235 continue; 1236 1237 if (CIndex->getType()->isVectorTy()) 1238 Index = CIndex->getSplatValue(); 1239 1240 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1241 const StructLayout *SL = Q.DL.getStructLayout(STy); 1242 uint64_t Offset = SL->getElementOffset(Idx); 1243 TrailZ = std::min<unsigned>(TrailZ, 1244 countTrailingZeros(Offset)); 1245 } else { 1246 // Handle array index arithmetic. 1247 Type *IndexedTy = GTI.getIndexedType(); 1248 if (!IndexedTy->isSized()) { 1249 TrailZ = 0; 1250 break; 1251 } 1252 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1253 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1254 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1255 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1256 TrailZ = std::min(TrailZ, 1257 unsigned(countTrailingZeros(TypeSize) + 1258 LocalKnownZero.countTrailingOnes())); 1259 } 1260 } 1261 1262 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1263 break; 1264 } 1265 case Instruction::PHI: { 1266 const PHINode *P = cast<PHINode>(I); 1267 // Handle the case of a simple two-predecessor recurrence PHI. 1268 // There's a lot more that could theoretically be done here, but 1269 // this is sufficient to catch some interesting cases. 1270 if (P->getNumIncomingValues() == 2) { 1271 for (unsigned i = 0; i != 2; ++i) { 1272 Value *L = P->getIncomingValue(i); 1273 Value *R = P->getIncomingValue(!i); 1274 Operator *LU = dyn_cast<Operator>(L); 1275 if (!LU) 1276 continue; 1277 unsigned Opcode = LU->getOpcode(); 1278 // Check for operations that have the property that if 1279 // both their operands have low zero bits, the result 1280 // will have low zero bits. 1281 if (Opcode == Instruction::Add || 1282 Opcode == Instruction::Sub || 1283 Opcode == Instruction::And || 1284 Opcode == Instruction::Or || 1285 Opcode == Instruction::Mul) { 1286 Value *LL = LU->getOperand(0); 1287 Value *LR = LU->getOperand(1); 1288 // Find a recurrence. 1289 if (LL == I) 1290 L = LR; 1291 else if (LR == I) 1292 L = LL; 1293 else 1294 break; 1295 // Ok, we have a PHI of the form L op= R. Check for low 1296 // zero bits. 1297 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1298 1299 // We need to take the minimum number of known bits 1300 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1301 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1302 1303 KnownZero = APInt::getLowBitsSet(BitWidth, 1304 std::min(KnownZero2.countTrailingOnes(), 1305 KnownZero3.countTrailingOnes())); 1306 break; 1307 } 1308 } 1309 } 1310 1311 // Unreachable blocks may have zero-operand PHI nodes. 1312 if (P->getNumIncomingValues() == 0) 1313 break; 1314 1315 // Otherwise take the unions of the known bit sets of the operands, 1316 // taking conservative care to avoid excessive recursion. 1317 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1318 // Skip if every incoming value references to ourself. 1319 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1320 break; 1321 1322 KnownZero = APInt::getAllOnesValue(BitWidth); 1323 KnownOne = APInt::getAllOnesValue(BitWidth); 1324 for (Value *IncValue : P->incoming_values()) { 1325 // Skip direct self references. 1326 if (IncValue == P) continue; 1327 1328 KnownZero2 = APInt(BitWidth, 0); 1329 KnownOne2 = APInt(BitWidth, 0); 1330 // Recurse, but cap the recursion to one level, because we don't 1331 // want to waste time spinning around in loops. 1332 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1333 KnownZero &= KnownZero2; 1334 KnownOne &= KnownOne2; 1335 // If all bits have been ruled out, there's no need to check 1336 // more operands. 1337 if (!KnownZero && !KnownOne) 1338 break; 1339 } 1340 } 1341 break; 1342 } 1343 case Instruction::Call: 1344 case Instruction::Invoke: 1345 // If range metadata is attached to this call, set known bits from that, 1346 // and then intersect with known bits based on other properties of the 1347 // function. 1348 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1349 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1350 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1351 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1352 KnownZero |= KnownZero2; 1353 KnownOne |= KnownOne2; 1354 } 1355 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1356 switch (II->getIntrinsicID()) { 1357 default: break; 1358 case Intrinsic::bswap: 1359 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1360 KnownZero |= KnownZero2.byteSwap(); 1361 KnownOne |= KnownOne2.byteSwap(); 1362 break; 1363 case Intrinsic::ctlz: 1364 case Intrinsic::cttz: { 1365 unsigned LowBits = Log2_32(BitWidth)+1; 1366 // If this call is undefined for 0, the result will be less than 2^n. 1367 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1368 LowBits -= 1; 1369 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1370 break; 1371 } 1372 case Intrinsic::ctpop: { 1373 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1374 // We can bound the space the count needs. Also, bits known to be zero 1375 // can't contribute to the population. 1376 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1377 unsigned LeadingZeros = 1378 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1379 assert(LeadingZeros <= BitWidth); 1380 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1381 KnownOne &= ~KnownZero; 1382 // TODO: we could bound KnownOne using the lower bound on the number 1383 // of bits which might be set provided by popcnt KnownOne2. 1384 break; 1385 } 1386 case Intrinsic::x86_sse42_crc32_64_64: 1387 KnownZero |= APInt::getHighBitsSet(64, 32); 1388 break; 1389 } 1390 } 1391 break; 1392 case Instruction::ExtractValue: 1393 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1394 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1395 if (EVI->getNumIndices() != 1) break; 1396 if (EVI->getIndices()[0] == 0) { 1397 switch (II->getIntrinsicID()) { 1398 default: break; 1399 case Intrinsic::uadd_with_overflow: 1400 case Intrinsic::sadd_with_overflow: 1401 computeKnownBitsAddSub(true, II->getArgOperand(0), 1402 II->getArgOperand(1), false, KnownZero, 1403 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1404 break; 1405 case Intrinsic::usub_with_overflow: 1406 case Intrinsic::ssub_with_overflow: 1407 computeKnownBitsAddSub(false, II->getArgOperand(0), 1408 II->getArgOperand(1), false, KnownZero, 1409 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1410 break; 1411 case Intrinsic::umul_with_overflow: 1412 case Intrinsic::smul_with_overflow: 1413 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1414 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1415 Q); 1416 break; 1417 } 1418 } 1419 } 1420 } 1421 } 1422 1423 /// Determine which bits of V are known to be either zero or one and return 1424 /// them in the KnownZero/KnownOne bit sets. 1425 /// 1426 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1427 /// we cannot optimize based on the assumption that it is zero without changing 1428 /// it to be an explicit zero. If we don't change it to zero, other code could 1429 /// optimized based on the contradictory assumption that it is non-zero. 1430 /// Because instcombine aggressively folds operations with undef args anyway, 1431 /// this won't lose us code quality. 1432 /// 1433 /// This function is defined on values with integer type, values with pointer 1434 /// type, and vectors of integers. In the case 1435 /// where V is a vector, known zero, and known one values are the 1436 /// same width as the vector element, and the bit is set only if it is true 1437 /// for all of the elements in the vector. 1438 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1439 unsigned Depth, const Query &Q) { 1440 assert(V && "No Value?"); 1441 assert(Depth <= MaxDepth && "Limit Search Depth"); 1442 unsigned BitWidth = KnownZero.getBitWidth(); 1443 1444 assert((V->getType()->isIntOrIntVectorTy() || 1445 V->getType()->getScalarType()->isPointerTy()) && 1446 "Not integer or pointer type!"); 1447 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1448 (!V->getType()->isIntOrIntVectorTy() || 1449 V->getType()->getScalarSizeInBits() == BitWidth) && 1450 KnownZero.getBitWidth() == BitWidth && 1451 KnownOne.getBitWidth() == BitWidth && 1452 "V, KnownOne and KnownZero should have same BitWidth"); 1453 1454 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1455 // We know all of the bits for a constant! 1456 KnownOne = CI->getValue(); 1457 KnownZero = ~KnownOne; 1458 return; 1459 } 1460 // Null and aggregate-zero are all-zeros. 1461 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1462 KnownOne.clearAllBits(); 1463 KnownZero = APInt::getAllOnesValue(BitWidth); 1464 return; 1465 } 1466 // Handle a constant vector by taking the intersection of the known bits of 1467 // each element. 1468 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1469 // We know that CDS must be a vector of integers. Take the intersection of 1470 // each element. 1471 KnownZero.setAllBits(); KnownOne.setAllBits(); 1472 APInt Elt(KnownZero.getBitWidth(), 0); 1473 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1474 Elt = CDS->getElementAsInteger(i); 1475 KnownZero &= ~Elt; 1476 KnownOne &= Elt; 1477 } 1478 return; 1479 } 1480 1481 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1482 // We know that CV must be a vector of integers. Take the intersection of 1483 // each element. 1484 KnownZero.setAllBits(); KnownOne.setAllBits(); 1485 APInt Elt(KnownZero.getBitWidth(), 0); 1486 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1487 Constant *Element = CV->getAggregateElement(i); 1488 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1489 if (!ElementCI) { 1490 KnownZero.clearAllBits(); 1491 KnownOne.clearAllBits(); 1492 return; 1493 } 1494 Elt = ElementCI->getValue(); 1495 KnownZero &= ~Elt; 1496 KnownOne &= Elt; 1497 } 1498 return; 1499 } 1500 1501 // Start out not knowing anything. 1502 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1503 1504 // Limit search depth. 1505 // All recursive calls that increase depth must come after this. 1506 if (Depth == MaxDepth) 1507 return; 1508 1509 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1510 // the bits of its aliasee. 1511 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1512 if (!GA->isInterposable()) 1513 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1514 return; 1515 } 1516 1517 if (const Operator *I = dyn_cast<Operator>(V)) 1518 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1519 1520 // Aligned pointers have trailing zeros - refine KnownZero set 1521 if (V->getType()->isPointerTy()) { 1522 unsigned Align = V->getPointerAlignment(Q.DL); 1523 if (Align) 1524 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1525 } 1526 1527 // computeKnownBitsFromAssume strictly refines KnownZero and 1528 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1529 1530 // Check whether a nearby assume intrinsic can determine some known bits. 1531 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1532 1533 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1534 } 1535 1536 /// Determine whether the sign bit is known to be zero or one. 1537 /// Convenience wrapper around computeKnownBits. 1538 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1539 unsigned Depth, const Query &Q) { 1540 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1541 if (!BitWidth) { 1542 KnownZero = false; 1543 KnownOne = false; 1544 return; 1545 } 1546 APInt ZeroBits(BitWidth, 0); 1547 APInt OneBits(BitWidth, 0); 1548 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1549 KnownOne = OneBits[BitWidth - 1]; 1550 KnownZero = ZeroBits[BitWidth - 1]; 1551 } 1552 1553 /// Return true if the given value is known to have exactly one 1554 /// bit set when defined. For vectors return true if every element is known to 1555 /// be a power of two when defined. Supports values with integer or pointer 1556 /// types and vectors of integers. 1557 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1558 const Query &Q) { 1559 if (const Constant *C = dyn_cast<Constant>(V)) { 1560 if (C->isNullValue()) 1561 return OrZero; 1562 1563 const APInt *ConstIntOrConstSplatInt; 1564 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1565 return ConstIntOrConstSplatInt->isPowerOf2(); 1566 } 1567 1568 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1569 // it is shifted off the end then the result is undefined. 1570 if (match(V, m_Shl(m_One(), m_Value()))) 1571 return true; 1572 1573 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1574 // bottom. If it is shifted off the bottom then the result is undefined. 1575 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1576 return true; 1577 1578 // The remaining tests are all recursive, so bail out if we hit the limit. 1579 if (Depth++ == MaxDepth) 1580 return false; 1581 1582 Value *X = nullptr, *Y = nullptr; 1583 // A shift left or a logical shift right of a power of two is a power of two 1584 // or zero. 1585 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1586 match(V, m_LShr(m_Value(X), m_Value())))) 1587 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1588 1589 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1590 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1591 1592 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1593 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1594 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1595 1596 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1597 // A power of two and'd with anything is a power of two or zero. 1598 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1599 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1600 return true; 1601 // X & (-X) is always a power of two or zero. 1602 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1603 return true; 1604 return false; 1605 } 1606 1607 // Adding a power-of-two or zero to the same power-of-two or zero yields 1608 // either the original power-of-two, a larger power-of-two or zero. 1609 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1610 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1611 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1612 if (match(X, m_And(m_Specific(Y), m_Value())) || 1613 match(X, m_And(m_Value(), m_Specific(Y)))) 1614 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1615 return true; 1616 if (match(Y, m_And(m_Specific(X), m_Value())) || 1617 match(Y, m_And(m_Value(), m_Specific(X)))) 1618 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1619 return true; 1620 1621 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1622 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1623 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1624 1625 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1626 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1627 // If i8 V is a power of two or zero: 1628 // ZeroBits: 1 1 1 0 1 1 1 1 1629 // ~ZeroBits: 0 0 0 1 0 0 0 0 1630 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1631 // If OrZero isn't set, we cannot give back a zero result. 1632 // Make sure either the LHS or RHS has a bit set. 1633 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1634 return true; 1635 } 1636 } 1637 1638 // An exact divide or right shift can only shift off zero bits, so the result 1639 // is a power of two only if the first operand is a power of two and not 1640 // copying a sign bit (sdiv int_min, 2). 1641 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1642 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1643 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1644 Depth, Q); 1645 } 1646 1647 return false; 1648 } 1649 1650 /// \brief Test whether a GEP's result is known to be non-null. 1651 /// 1652 /// Uses properties inherent in a GEP to try to determine whether it is known 1653 /// to be non-null. 1654 /// 1655 /// Currently this routine does not support vector GEPs. 1656 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1657 const Query &Q) { 1658 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1659 return false; 1660 1661 // FIXME: Support vector-GEPs. 1662 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1663 1664 // If the base pointer is non-null, we cannot walk to a null address with an 1665 // inbounds GEP in address space zero. 1666 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1667 return true; 1668 1669 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1670 // If so, then the GEP cannot produce a null pointer, as doing so would 1671 // inherently violate the inbounds contract within address space zero. 1672 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1673 GTI != GTE; ++GTI) { 1674 // Struct types are easy -- they must always be indexed by a constant. 1675 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1676 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1677 unsigned ElementIdx = OpC->getZExtValue(); 1678 const StructLayout *SL = Q.DL.getStructLayout(STy); 1679 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1680 if (ElementOffset > 0) 1681 return true; 1682 continue; 1683 } 1684 1685 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1686 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1687 continue; 1688 1689 // Fast path the constant operand case both for efficiency and so we don't 1690 // increment Depth when just zipping down an all-constant GEP. 1691 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1692 if (!OpC->isZero()) 1693 return true; 1694 continue; 1695 } 1696 1697 // We post-increment Depth here because while isKnownNonZero increments it 1698 // as well, when we pop back up that increment won't persist. We don't want 1699 // to recurse 10k times just because we have 10k GEP operands. We don't 1700 // bail completely out because we want to handle constant GEPs regardless 1701 // of depth. 1702 if (Depth++ >= MaxDepth) 1703 continue; 1704 1705 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1706 return true; 1707 } 1708 1709 return false; 1710 } 1711 1712 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1713 /// ensure that the value it's attached to is never Value? 'RangeType' is 1714 /// is the type of the value described by the range. 1715 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1716 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1717 assert(NumRanges >= 1); 1718 for (unsigned i = 0; i < NumRanges; ++i) { 1719 ConstantInt *Lower = 1720 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1721 ConstantInt *Upper = 1722 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1723 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1724 if (Range.contains(Value)) 1725 return false; 1726 } 1727 return true; 1728 } 1729 1730 /// Return true if the given value is known to be non-zero when defined. 1731 /// For vectors return true if every element is known to be non-zero when 1732 /// defined. Supports values with integer or pointer type and vectors of 1733 /// integers. 1734 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1735 if (auto *C = dyn_cast<Constant>(V)) { 1736 if (C->isNullValue()) 1737 return false; 1738 if (isa<ConstantInt>(C)) 1739 // Must be non-zero due to null test above. 1740 return true; 1741 1742 // For constant vectors, check that all elements are undefined or known 1743 // non-zero to determine that the whole vector is known non-zero. 1744 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1745 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1746 Constant *Elt = C->getAggregateElement(i); 1747 if (!Elt || Elt->isNullValue()) 1748 return false; 1749 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1750 return false; 1751 } 1752 return true; 1753 } 1754 1755 return false; 1756 } 1757 1758 if (auto *I = dyn_cast<Instruction>(V)) { 1759 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1760 // If the possible ranges don't contain zero, then the value is 1761 // definitely non-zero. 1762 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1763 const APInt ZeroValue(Ty->getBitWidth(), 0); 1764 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1765 return true; 1766 } 1767 } 1768 } 1769 1770 // The remaining tests are all recursive, so bail out if we hit the limit. 1771 if (Depth++ >= MaxDepth) 1772 return false; 1773 1774 // Check for pointer simplifications. 1775 if (V->getType()->isPointerTy()) { 1776 if (isKnownNonNull(V)) 1777 return true; 1778 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1779 if (isGEPKnownNonNull(GEP, Depth, Q)) 1780 return true; 1781 } 1782 1783 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1784 1785 // X | Y != 0 if X != 0 or Y != 0. 1786 Value *X = nullptr, *Y = nullptr; 1787 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1788 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1789 1790 // ext X != 0 if X != 0. 1791 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1792 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1793 1794 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1795 // if the lowest bit is shifted off the end. 1796 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1797 // shl nuw can't remove any non-zero bits. 1798 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1799 if (BO->hasNoUnsignedWrap()) 1800 return isKnownNonZero(X, Depth, Q); 1801 1802 APInt KnownZero(BitWidth, 0); 1803 APInt KnownOne(BitWidth, 0); 1804 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1805 if (KnownOne[0]) 1806 return true; 1807 } 1808 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1809 // defined if the sign bit is shifted off the end. 1810 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1811 // shr exact can only shift out zero bits. 1812 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1813 if (BO->isExact()) 1814 return isKnownNonZero(X, Depth, Q); 1815 1816 bool XKnownNonNegative, XKnownNegative; 1817 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1818 if (XKnownNegative) 1819 return true; 1820 1821 // If the shifter operand is a constant, and all of the bits shifted 1822 // out are known to be zero, and X is known non-zero then at least one 1823 // non-zero bit must remain. 1824 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1825 APInt KnownZero(BitWidth, 0); 1826 APInt KnownOne(BitWidth, 0); 1827 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1828 1829 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1830 // Is there a known one in the portion not shifted out? 1831 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1832 return true; 1833 // Are all the bits to be shifted out known zero? 1834 if (KnownZero.countTrailingOnes() >= ShiftVal) 1835 return isKnownNonZero(X, Depth, Q); 1836 } 1837 } 1838 // div exact can only produce a zero if the dividend is zero. 1839 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1840 return isKnownNonZero(X, Depth, Q); 1841 } 1842 // X + Y. 1843 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1844 bool XKnownNonNegative, XKnownNegative; 1845 bool YKnownNonNegative, YKnownNegative; 1846 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1847 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1848 1849 // If X and Y are both non-negative (as signed values) then their sum is not 1850 // zero unless both X and Y are zero. 1851 if (XKnownNonNegative && YKnownNonNegative) 1852 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1853 return true; 1854 1855 // If X and Y are both negative (as signed values) then their sum is not 1856 // zero unless both X and Y equal INT_MIN. 1857 if (BitWidth && XKnownNegative && YKnownNegative) { 1858 APInt KnownZero(BitWidth, 0); 1859 APInt KnownOne(BitWidth, 0); 1860 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1861 // The sign bit of X is set. If some other bit is set then X is not equal 1862 // to INT_MIN. 1863 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1864 if ((KnownOne & Mask) != 0) 1865 return true; 1866 // The sign bit of Y is set. If some other bit is set then Y is not equal 1867 // to INT_MIN. 1868 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1869 if ((KnownOne & Mask) != 0) 1870 return true; 1871 } 1872 1873 // The sum of a non-negative number and a power of two is not zero. 1874 if (XKnownNonNegative && 1875 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1876 return true; 1877 if (YKnownNonNegative && 1878 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1879 return true; 1880 } 1881 // X * Y. 1882 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1883 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1884 // If X and Y are non-zero then so is X * Y as long as the multiplication 1885 // does not overflow. 1886 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1887 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1888 return true; 1889 } 1890 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1891 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1892 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1893 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1894 return true; 1895 } 1896 // PHI 1897 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1898 // Try and detect a recurrence that monotonically increases from a 1899 // starting value, as these are common as induction variables. 1900 if (PN->getNumIncomingValues() == 2) { 1901 Value *Start = PN->getIncomingValue(0); 1902 Value *Induction = PN->getIncomingValue(1); 1903 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1904 std::swap(Start, Induction); 1905 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1906 if (!C->isZero() && !C->isNegative()) { 1907 ConstantInt *X; 1908 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1909 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1910 !X->isNegative()) 1911 return true; 1912 } 1913 } 1914 } 1915 // Check if all incoming values are non-zero constant. 1916 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1917 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1918 }); 1919 if (AllNonZeroConstants) 1920 return true; 1921 } 1922 1923 if (!BitWidth) return false; 1924 APInt KnownZero(BitWidth, 0); 1925 APInt KnownOne(BitWidth, 0); 1926 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1927 return KnownOne != 0; 1928 } 1929 1930 /// Return true if V2 == V1 + X, where X is known non-zero. 1931 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1932 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1933 if (!BO || BO->getOpcode() != Instruction::Add) 1934 return false; 1935 Value *Op = nullptr; 1936 if (V2 == BO->getOperand(0)) 1937 Op = BO->getOperand(1); 1938 else if (V2 == BO->getOperand(1)) 1939 Op = BO->getOperand(0); 1940 else 1941 return false; 1942 return isKnownNonZero(Op, 0, Q); 1943 } 1944 1945 /// Return true if it is known that V1 != V2. 1946 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1947 if (V1->getType()->isVectorTy() || V1 == V2) 1948 return false; 1949 if (V1->getType() != V2->getType()) 1950 // We can't look through casts yet. 1951 return false; 1952 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1953 return true; 1954 1955 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1956 // Are any known bits in V1 contradictory to known bits in V2? If V1 1957 // has a known zero where V2 has a known one, they must not be equal. 1958 auto BitWidth = Ty->getBitWidth(); 1959 APInt KnownZero1(BitWidth, 0); 1960 APInt KnownOne1(BitWidth, 0); 1961 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 1962 APInt KnownZero2(BitWidth, 0); 1963 APInt KnownOne2(BitWidth, 0); 1964 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 1965 1966 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 1967 if (OppositeBits.getBoolValue()) 1968 return true; 1969 } 1970 return false; 1971 } 1972 1973 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1974 /// simplify operations downstream. Mask is known to be zero for bits that V 1975 /// cannot have. 1976 /// 1977 /// This function is defined on values with integer type, values with pointer 1978 /// type, and vectors of integers. In the case 1979 /// where V is a vector, the mask, known zero, and known one values are the 1980 /// same width as the vector element, and the bit is set only if it is true 1981 /// for all of the elements in the vector. 1982 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 1983 const Query &Q) { 1984 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1985 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1986 return (KnownZero & Mask) == Mask; 1987 } 1988 1989 /// For vector constants, loop over the elements and find the constant with the 1990 /// minimum number of sign bits. Return 0 if the value is not a vector constant 1991 /// or if any element was not analyzed; otherwise, return the count for the 1992 /// element with the minimum number of sign bits. 1993 static unsigned computeNumSignBitsVectorConstant(const Value *V, 1994 unsigned TyBits) { 1995 const auto *CV = dyn_cast<Constant>(V); 1996 if (!CV || !CV->getType()->isVectorTy()) 1997 return 0; 1998 1999 unsigned MinSignBits = TyBits; 2000 unsigned NumElts = CV->getType()->getVectorNumElements(); 2001 for (unsigned i = 0; i != NumElts; ++i) { 2002 // If we find a non-ConstantInt, bail out. 2003 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2004 if (!Elt) 2005 return 0; 2006 2007 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2008 APInt EltVal = Elt->getValue(); 2009 if (EltVal.isNegative()) 2010 EltVal = ~EltVal; 2011 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2012 } 2013 2014 return MinSignBits; 2015 } 2016 2017 /// Return the number of times the sign bit of the register is replicated into 2018 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2019 /// (itself), but other cases can give us information. For example, immediately 2020 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2021 /// other, so we return 3. For vectors, return the number of sign bits for the 2022 /// vector element with the mininum number of known sign bits. 2023 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2024 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2025 unsigned Tmp, Tmp2; 2026 unsigned FirstAnswer = 1; 2027 2028 // Note that ConstantInt is handled by the general computeKnownBits case 2029 // below. 2030 2031 if (Depth == 6) 2032 return 1; // Limit search depth. 2033 2034 const Operator *U = dyn_cast<Operator>(V); 2035 switch (Operator::getOpcode(V)) { 2036 default: break; 2037 case Instruction::SExt: 2038 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2039 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2040 2041 case Instruction::SDiv: { 2042 const APInt *Denominator; 2043 // sdiv X, C -> adds log(C) sign bits. 2044 if (match(U->getOperand(1), m_APInt(Denominator))) { 2045 2046 // Ignore non-positive denominator. 2047 if (!Denominator->isStrictlyPositive()) 2048 break; 2049 2050 // Calculate the incoming numerator bits. 2051 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2052 2053 // Add floor(log(C)) bits to the numerator bits. 2054 return std::min(TyBits, NumBits + Denominator->logBase2()); 2055 } 2056 break; 2057 } 2058 2059 case Instruction::SRem: { 2060 const APInt *Denominator; 2061 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2062 // positive constant. This let us put a lower bound on the number of sign 2063 // bits. 2064 if (match(U->getOperand(1), m_APInt(Denominator))) { 2065 2066 // Ignore non-positive denominator. 2067 if (!Denominator->isStrictlyPositive()) 2068 break; 2069 2070 // Calculate the incoming numerator bits. SRem by a positive constant 2071 // can't lower the number of sign bits. 2072 unsigned NumrBits = 2073 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2074 2075 // Calculate the leading sign bit constraints by examining the 2076 // denominator. Given that the denominator is positive, there are two 2077 // cases: 2078 // 2079 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2080 // (1 << ceilLogBase2(C)). 2081 // 2082 // 2. the numerator is negative. Then the result range is (-C,0] and 2083 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2084 // 2085 // Thus a lower bound on the number of sign bits is `TyBits - 2086 // ceilLogBase2(C)`. 2087 2088 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2089 return std::max(NumrBits, ResBits); 2090 } 2091 break; 2092 } 2093 2094 case Instruction::AShr: { 2095 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2096 // ashr X, C -> adds C sign bits. Vectors too. 2097 const APInt *ShAmt; 2098 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2099 Tmp += ShAmt->getZExtValue(); 2100 if (Tmp > TyBits) Tmp = TyBits; 2101 } 2102 return Tmp; 2103 } 2104 case Instruction::Shl: { 2105 const APInt *ShAmt; 2106 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2107 // shl destroys sign bits. 2108 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2109 Tmp2 = ShAmt->getZExtValue(); 2110 if (Tmp2 >= TyBits || // Bad shift. 2111 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2112 return Tmp - Tmp2; 2113 } 2114 break; 2115 } 2116 case Instruction::And: 2117 case Instruction::Or: 2118 case Instruction::Xor: // NOT is handled here. 2119 // Logical binary ops preserve the number of sign bits at the worst. 2120 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2121 if (Tmp != 1) { 2122 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2123 FirstAnswer = std::min(Tmp, Tmp2); 2124 // We computed what we know about the sign bits as our first 2125 // answer. Now proceed to the generic code that uses 2126 // computeKnownBits, and pick whichever answer is better. 2127 } 2128 break; 2129 2130 case Instruction::Select: 2131 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2132 if (Tmp == 1) return 1; // Early out. 2133 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2134 return std::min(Tmp, Tmp2); 2135 2136 case Instruction::Add: 2137 // Add can have at most one carry bit. Thus we know that the output 2138 // is, at worst, one more bit than the inputs. 2139 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2140 if (Tmp == 1) return 1; // Early out. 2141 2142 // Special case decrementing a value (ADD X, -1): 2143 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2144 if (CRHS->isAllOnesValue()) { 2145 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2146 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2147 2148 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2149 // sign bits set. 2150 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2151 return TyBits; 2152 2153 // If we are subtracting one from a positive number, there is no carry 2154 // out of the result. 2155 if (KnownZero.isNegative()) 2156 return Tmp; 2157 } 2158 2159 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2160 if (Tmp2 == 1) return 1; 2161 return std::min(Tmp, Tmp2)-1; 2162 2163 case Instruction::Sub: 2164 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2165 if (Tmp2 == 1) return 1; 2166 2167 // Handle NEG. 2168 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2169 if (CLHS->isNullValue()) { 2170 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2171 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2172 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2173 // sign bits set. 2174 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2175 return TyBits; 2176 2177 // If the input is known to be positive (the sign bit is known clear), 2178 // the output of the NEG has the same number of sign bits as the input. 2179 if (KnownZero.isNegative()) 2180 return Tmp2; 2181 2182 // Otherwise, we treat this like a SUB. 2183 } 2184 2185 // Sub can have at most one carry bit. Thus we know that the output 2186 // is, at worst, one more bit than the inputs. 2187 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2188 if (Tmp == 1) return 1; // Early out. 2189 return std::min(Tmp, Tmp2)-1; 2190 2191 case Instruction::PHI: { 2192 const PHINode *PN = cast<PHINode>(U); 2193 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2194 // Don't analyze large in-degree PHIs. 2195 if (NumIncomingValues > 4) break; 2196 // Unreachable blocks may have zero-operand PHI nodes. 2197 if (NumIncomingValues == 0) break; 2198 2199 // Take the minimum of all incoming values. This can't infinitely loop 2200 // because of our depth threshold. 2201 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2202 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2203 if (Tmp == 1) return Tmp; 2204 Tmp = std::min( 2205 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2206 } 2207 return Tmp; 2208 } 2209 2210 case Instruction::Trunc: 2211 // FIXME: it's tricky to do anything useful for this, but it is an important 2212 // case for targets like X86. 2213 break; 2214 } 2215 2216 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2217 // use this information. 2218 2219 // If we can examine all elements of a vector constant successfully, we're 2220 // done (we can't do any better than that). If not, keep trying. 2221 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2222 return VecSignBits; 2223 2224 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2225 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2226 2227 // If we know that the sign bit is either zero or one, determine the number of 2228 // identical bits in the top of the input value. 2229 if (KnownZero.isNegative()) 2230 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2231 2232 if (KnownOne.isNegative()) 2233 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2234 2235 // computeKnownBits gave us no extra information about the top bits. 2236 return FirstAnswer; 2237 } 2238 2239 /// This function computes the integer multiple of Base that equals V. 2240 /// If successful, it returns true and returns the multiple in 2241 /// Multiple. If unsuccessful, it returns false. It looks 2242 /// through SExt instructions only if LookThroughSExt is true. 2243 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2244 bool LookThroughSExt, unsigned Depth) { 2245 const unsigned MaxDepth = 6; 2246 2247 assert(V && "No Value?"); 2248 assert(Depth <= MaxDepth && "Limit Search Depth"); 2249 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2250 2251 Type *T = V->getType(); 2252 2253 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2254 2255 if (Base == 0) 2256 return false; 2257 2258 if (Base == 1) { 2259 Multiple = V; 2260 return true; 2261 } 2262 2263 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2264 Constant *BaseVal = ConstantInt::get(T, Base); 2265 if (CO && CO == BaseVal) { 2266 // Multiple is 1. 2267 Multiple = ConstantInt::get(T, 1); 2268 return true; 2269 } 2270 2271 if (CI && CI->getZExtValue() % Base == 0) { 2272 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2273 return true; 2274 } 2275 2276 if (Depth == MaxDepth) return false; // Limit search depth. 2277 2278 Operator *I = dyn_cast<Operator>(V); 2279 if (!I) return false; 2280 2281 switch (I->getOpcode()) { 2282 default: break; 2283 case Instruction::SExt: 2284 if (!LookThroughSExt) return false; 2285 // otherwise fall through to ZExt 2286 case Instruction::ZExt: 2287 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2288 LookThroughSExt, Depth+1); 2289 case Instruction::Shl: 2290 case Instruction::Mul: { 2291 Value *Op0 = I->getOperand(0); 2292 Value *Op1 = I->getOperand(1); 2293 2294 if (I->getOpcode() == Instruction::Shl) { 2295 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2296 if (!Op1CI) return false; 2297 // Turn Op0 << Op1 into Op0 * 2^Op1 2298 APInt Op1Int = Op1CI->getValue(); 2299 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2300 APInt API(Op1Int.getBitWidth(), 0); 2301 API.setBit(BitToSet); 2302 Op1 = ConstantInt::get(V->getContext(), API); 2303 } 2304 2305 Value *Mul0 = nullptr; 2306 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2307 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2308 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2309 if (Op1C->getType()->getPrimitiveSizeInBits() < 2310 MulC->getType()->getPrimitiveSizeInBits()) 2311 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2312 if (Op1C->getType()->getPrimitiveSizeInBits() > 2313 MulC->getType()->getPrimitiveSizeInBits()) 2314 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2315 2316 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2317 Multiple = ConstantExpr::getMul(MulC, Op1C); 2318 return true; 2319 } 2320 2321 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2322 if (Mul0CI->getValue() == 1) { 2323 // V == Base * Op1, so return Op1 2324 Multiple = Op1; 2325 return true; 2326 } 2327 } 2328 2329 Value *Mul1 = nullptr; 2330 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2331 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2332 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2333 if (Op0C->getType()->getPrimitiveSizeInBits() < 2334 MulC->getType()->getPrimitiveSizeInBits()) 2335 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2336 if (Op0C->getType()->getPrimitiveSizeInBits() > 2337 MulC->getType()->getPrimitiveSizeInBits()) 2338 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2339 2340 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2341 Multiple = ConstantExpr::getMul(MulC, Op0C); 2342 return true; 2343 } 2344 2345 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2346 if (Mul1CI->getValue() == 1) { 2347 // V == Base * Op0, so return Op0 2348 Multiple = Op0; 2349 return true; 2350 } 2351 } 2352 } 2353 } 2354 2355 // We could not determine if V is a multiple of Base. 2356 return false; 2357 } 2358 2359 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2360 const TargetLibraryInfo *TLI) { 2361 const Function *F = ICS.getCalledFunction(); 2362 if (!F) 2363 return Intrinsic::not_intrinsic; 2364 2365 if (F->isIntrinsic()) 2366 return F->getIntrinsicID(); 2367 2368 if (!TLI) 2369 return Intrinsic::not_intrinsic; 2370 2371 LibFunc::Func Func; 2372 // We're going to make assumptions on the semantics of the functions, check 2373 // that the target knows that it's available in this environment and it does 2374 // not have local linkage. 2375 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2376 return Intrinsic::not_intrinsic; 2377 2378 if (!ICS.onlyReadsMemory()) 2379 return Intrinsic::not_intrinsic; 2380 2381 // Otherwise check if we have a call to a function that can be turned into a 2382 // vector intrinsic. 2383 switch (Func) { 2384 default: 2385 break; 2386 case LibFunc::sin: 2387 case LibFunc::sinf: 2388 case LibFunc::sinl: 2389 return Intrinsic::sin; 2390 case LibFunc::cos: 2391 case LibFunc::cosf: 2392 case LibFunc::cosl: 2393 return Intrinsic::cos; 2394 case LibFunc::exp: 2395 case LibFunc::expf: 2396 case LibFunc::expl: 2397 return Intrinsic::exp; 2398 case LibFunc::exp2: 2399 case LibFunc::exp2f: 2400 case LibFunc::exp2l: 2401 return Intrinsic::exp2; 2402 case LibFunc::log: 2403 case LibFunc::logf: 2404 case LibFunc::logl: 2405 return Intrinsic::log; 2406 case LibFunc::log10: 2407 case LibFunc::log10f: 2408 case LibFunc::log10l: 2409 return Intrinsic::log10; 2410 case LibFunc::log2: 2411 case LibFunc::log2f: 2412 case LibFunc::log2l: 2413 return Intrinsic::log2; 2414 case LibFunc::fabs: 2415 case LibFunc::fabsf: 2416 case LibFunc::fabsl: 2417 return Intrinsic::fabs; 2418 case LibFunc::fmin: 2419 case LibFunc::fminf: 2420 case LibFunc::fminl: 2421 return Intrinsic::minnum; 2422 case LibFunc::fmax: 2423 case LibFunc::fmaxf: 2424 case LibFunc::fmaxl: 2425 return Intrinsic::maxnum; 2426 case LibFunc::copysign: 2427 case LibFunc::copysignf: 2428 case LibFunc::copysignl: 2429 return Intrinsic::copysign; 2430 case LibFunc::floor: 2431 case LibFunc::floorf: 2432 case LibFunc::floorl: 2433 return Intrinsic::floor; 2434 case LibFunc::ceil: 2435 case LibFunc::ceilf: 2436 case LibFunc::ceill: 2437 return Intrinsic::ceil; 2438 case LibFunc::trunc: 2439 case LibFunc::truncf: 2440 case LibFunc::truncl: 2441 return Intrinsic::trunc; 2442 case LibFunc::rint: 2443 case LibFunc::rintf: 2444 case LibFunc::rintl: 2445 return Intrinsic::rint; 2446 case LibFunc::nearbyint: 2447 case LibFunc::nearbyintf: 2448 case LibFunc::nearbyintl: 2449 return Intrinsic::nearbyint; 2450 case LibFunc::round: 2451 case LibFunc::roundf: 2452 case LibFunc::roundl: 2453 return Intrinsic::round; 2454 case LibFunc::pow: 2455 case LibFunc::powf: 2456 case LibFunc::powl: 2457 return Intrinsic::pow; 2458 case LibFunc::sqrt: 2459 case LibFunc::sqrtf: 2460 case LibFunc::sqrtl: 2461 if (ICS->hasNoNaNs()) 2462 return Intrinsic::sqrt; 2463 return Intrinsic::not_intrinsic; 2464 } 2465 2466 return Intrinsic::not_intrinsic; 2467 } 2468 2469 /// Return true if we can prove that the specified FP value is never equal to 2470 /// -0.0. 2471 /// 2472 /// NOTE: this function will need to be revisited when we support non-default 2473 /// rounding modes! 2474 /// 2475 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2476 unsigned Depth) { 2477 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2478 return !CFP->getValueAPF().isNegZero(); 2479 2480 // FIXME: Magic number! At the least, this should be given a name because it's 2481 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2482 // expose it as a parameter, so it can be used for testing / experimenting. 2483 if (Depth == 6) 2484 return false; // Limit search depth. 2485 2486 const Operator *I = dyn_cast<Operator>(V); 2487 if (!I) return false; 2488 2489 // Check if the nsz fast-math flag is set 2490 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2491 if (FPO->hasNoSignedZeros()) 2492 return true; 2493 2494 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2495 if (I->getOpcode() == Instruction::FAdd) 2496 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2497 if (CFP->isNullValue()) 2498 return true; 2499 2500 // sitofp and uitofp turn into +0.0 for zero. 2501 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2502 return true; 2503 2504 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2505 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2506 switch (IID) { 2507 default: 2508 break; 2509 // sqrt(-0.0) = -0.0, no other negative results are possible. 2510 case Intrinsic::sqrt: 2511 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2512 // fabs(x) != -0.0 2513 case Intrinsic::fabs: 2514 return true; 2515 } 2516 } 2517 2518 return false; 2519 } 2520 2521 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2522 const TargetLibraryInfo *TLI, 2523 unsigned Depth) { 2524 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2525 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2526 2527 // FIXME: Magic number! At the least, this should be given a name because it's 2528 // used similarly in CannotBeNegativeZero(). A better fix may be to 2529 // expose it as a parameter, so it can be used for testing / experimenting. 2530 if (Depth == 6) 2531 return false; // Limit search depth. 2532 2533 const Operator *I = dyn_cast<Operator>(V); 2534 if (!I) return false; 2535 2536 switch (I->getOpcode()) { 2537 default: break; 2538 // Unsigned integers are always nonnegative. 2539 case Instruction::UIToFP: 2540 return true; 2541 case Instruction::FMul: 2542 // x*x is always non-negative or a NaN. 2543 if (I->getOperand(0) == I->getOperand(1)) 2544 return true; 2545 LLVM_FALLTHROUGH; 2546 case Instruction::FAdd: 2547 case Instruction::FDiv: 2548 case Instruction::FRem: 2549 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2550 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2551 case Instruction::Select: 2552 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && 2553 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2554 case Instruction::FPExt: 2555 case Instruction::FPTrunc: 2556 // Widening/narrowing never change sign. 2557 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2558 case Instruction::Call: 2559 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); 2560 switch (IID) { 2561 default: 2562 break; 2563 case Intrinsic::maxnum: 2564 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || 2565 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2566 case Intrinsic::minnum: 2567 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2568 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2569 case Intrinsic::exp: 2570 case Intrinsic::exp2: 2571 case Intrinsic::fabs: 2572 case Intrinsic::sqrt: 2573 return true; 2574 case Intrinsic::powi: 2575 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2576 // powi(x,n) is non-negative if n is even. 2577 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2578 return true; 2579 } 2580 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2581 case Intrinsic::fma: 2582 case Intrinsic::fmuladd: 2583 // x*x+y is non-negative if y is non-negative. 2584 return I->getOperand(0) == I->getOperand(1) && 2585 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2586 } 2587 break; 2588 } 2589 return false; 2590 } 2591 2592 /// If the specified value can be set by repeating the same byte in memory, 2593 /// return the i8 value that it is represented with. This is 2594 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2595 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2596 /// byte store (e.g. i16 0x1234), return null. 2597 Value *llvm::isBytewiseValue(Value *V) { 2598 // All byte-wide stores are splatable, even of arbitrary variables. 2599 if (V->getType()->isIntegerTy(8)) return V; 2600 2601 // Handle 'null' ConstantArrayZero etc. 2602 if (Constant *C = dyn_cast<Constant>(V)) 2603 if (C->isNullValue()) 2604 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2605 2606 // Constant float and double values can be handled as integer values if the 2607 // corresponding integer value is "byteable". An important case is 0.0. 2608 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2609 if (CFP->getType()->isFloatTy()) 2610 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2611 if (CFP->getType()->isDoubleTy()) 2612 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2613 // Don't handle long double formats, which have strange constraints. 2614 } 2615 2616 // We can handle constant integers that are multiple of 8 bits. 2617 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2618 if (CI->getBitWidth() % 8 == 0) { 2619 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2620 2621 if (!CI->getValue().isSplat(8)) 2622 return nullptr; 2623 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2624 } 2625 } 2626 2627 // A ConstantDataArray/Vector is splatable if all its members are equal and 2628 // also splatable. 2629 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2630 Value *Elt = CA->getElementAsConstant(0); 2631 Value *Val = isBytewiseValue(Elt); 2632 if (!Val) 2633 return nullptr; 2634 2635 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2636 if (CA->getElementAsConstant(I) != Elt) 2637 return nullptr; 2638 2639 return Val; 2640 } 2641 2642 // Conceptually, we could handle things like: 2643 // %a = zext i8 %X to i16 2644 // %b = shl i16 %a, 8 2645 // %c = or i16 %a, %b 2646 // but until there is an example that actually needs this, it doesn't seem 2647 // worth worrying about. 2648 return nullptr; 2649 } 2650 2651 2652 // This is the recursive version of BuildSubAggregate. It takes a few different 2653 // arguments. Idxs is the index within the nested struct From that we are 2654 // looking at now (which is of type IndexedType). IdxSkip is the number of 2655 // indices from Idxs that should be left out when inserting into the resulting 2656 // struct. To is the result struct built so far, new insertvalue instructions 2657 // build on that. 2658 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2659 SmallVectorImpl<unsigned> &Idxs, 2660 unsigned IdxSkip, 2661 Instruction *InsertBefore) { 2662 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2663 if (STy) { 2664 // Save the original To argument so we can modify it 2665 Value *OrigTo = To; 2666 // General case, the type indexed by Idxs is a struct 2667 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2668 // Process each struct element recursively 2669 Idxs.push_back(i); 2670 Value *PrevTo = To; 2671 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2672 InsertBefore); 2673 Idxs.pop_back(); 2674 if (!To) { 2675 // Couldn't find any inserted value for this index? Cleanup 2676 while (PrevTo != OrigTo) { 2677 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2678 PrevTo = Del->getAggregateOperand(); 2679 Del->eraseFromParent(); 2680 } 2681 // Stop processing elements 2682 break; 2683 } 2684 } 2685 // If we successfully found a value for each of our subaggregates 2686 if (To) 2687 return To; 2688 } 2689 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2690 // the struct's elements had a value that was inserted directly. In the latter 2691 // case, perhaps we can't determine each of the subelements individually, but 2692 // we might be able to find the complete struct somewhere. 2693 2694 // Find the value that is at that particular spot 2695 Value *V = FindInsertedValue(From, Idxs); 2696 2697 if (!V) 2698 return nullptr; 2699 2700 // Insert the value in the new (sub) aggregrate 2701 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2702 "tmp", InsertBefore); 2703 } 2704 2705 // This helper takes a nested struct and extracts a part of it (which is again a 2706 // struct) into a new value. For example, given the struct: 2707 // { a, { b, { c, d }, e } } 2708 // and the indices "1, 1" this returns 2709 // { c, d }. 2710 // 2711 // It does this by inserting an insertvalue for each element in the resulting 2712 // struct, as opposed to just inserting a single struct. This will only work if 2713 // each of the elements of the substruct are known (ie, inserted into From by an 2714 // insertvalue instruction somewhere). 2715 // 2716 // All inserted insertvalue instructions are inserted before InsertBefore 2717 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2718 Instruction *InsertBefore) { 2719 assert(InsertBefore && "Must have someplace to insert!"); 2720 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2721 idx_range); 2722 Value *To = UndefValue::get(IndexedType); 2723 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2724 unsigned IdxSkip = Idxs.size(); 2725 2726 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2727 } 2728 2729 /// Given an aggregrate and an sequence of indices, see if 2730 /// the scalar value indexed is already around as a register, for example if it 2731 /// were inserted directly into the aggregrate. 2732 /// 2733 /// If InsertBefore is not null, this function will duplicate (modified) 2734 /// insertvalues when a part of a nested struct is extracted. 2735 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2736 Instruction *InsertBefore) { 2737 // Nothing to index? Just return V then (this is useful at the end of our 2738 // recursion). 2739 if (idx_range.empty()) 2740 return V; 2741 // We have indices, so V should have an indexable type. 2742 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2743 "Not looking at a struct or array?"); 2744 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2745 "Invalid indices for type?"); 2746 2747 if (Constant *C = dyn_cast<Constant>(V)) { 2748 C = C->getAggregateElement(idx_range[0]); 2749 if (!C) return nullptr; 2750 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2751 } 2752 2753 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2754 // Loop the indices for the insertvalue instruction in parallel with the 2755 // requested indices 2756 const unsigned *req_idx = idx_range.begin(); 2757 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2758 i != e; ++i, ++req_idx) { 2759 if (req_idx == idx_range.end()) { 2760 // We can't handle this without inserting insertvalues 2761 if (!InsertBefore) 2762 return nullptr; 2763 2764 // The requested index identifies a part of a nested aggregate. Handle 2765 // this specially. For example, 2766 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2767 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2768 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2769 // This can be changed into 2770 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2771 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2772 // which allows the unused 0,0 element from the nested struct to be 2773 // removed. 2774 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2775 InsertBefore); 2776 } 2777 2778 // This insert value inserts something else than what we are looking for. 2779 // See if the (aggregate) value inserted into has the value we are 2780 // looking for, then. 2781 if (*req_idx != *i) 2782 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2783 InsertBefore); 2784 } 2785 // If we end up here, the indices of the insertvalue match with those 2786 // requested (though possibly only partially). Now we recursively look at 2787 // the inserted value, passing any remaining indices. 2788 return FindInsertedValue(I->getInsertedValueOperand(), 2789 makeArrayRef(req_idx, idx_range.end()), 2790 InsertBefore); 2791 } 2792 2793 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2794 // If we're extracting a value from an aggregate that was extracted from 2795 // something else, we can extract from that something else directly instead. 2796 // However, we will need to chain I's indices with the requested indices. 2797 2798 // Calculate the number of indices required 2799 unsigned size = I->getNumIndices() + idx_range.size(); 2800 // Allocate some space to put the new indices in 2801 SmallVector<unsigned, 5> Idxs; 2802 Idxs.reserve(size); 2803 // Add indices from the extract value instruction 2804 Idxs.append(I->idx_begin(), I->idx_end()); 2805 2806 // Add requested indices 2807 Idxs.append(idx_range.begin(), idx_range.end()); 2808 2809 assert(Idxs.size() == size 2810 && "Number of indices added not correct?"); 2811 2812 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2813 } 2814 // Otherwise, we don't know (such as, extracting from a function return value 2815 // or load instruction) 2816 return nullptr; 2817 } 2818 2819 /// Analyze the specified pointer to see if it can be expressed as a base 2820 /// pointer plus a constant offset. Return the base and offset to the caller. 2821 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2822 const DataLayout &DL) { 2823 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2824 APInt ByteOffset(BitWidth, 0); 2825 2826 // We walk up the defs but use a visited set to handle unreachable code. In 2827 // that case, we stop after accumulating the cycle once (not that it 2828 // matters). 2829 SmallPtrSet<Value *, 16> Visited; 2830 while (Visited.insert(Ptr).second) { 2831 if (Ptr->getType()->isVectorTy()) 2832 break; 2833 2834 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2835 APInt GEPOffset(BitWidth, 0); 2836 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2837 break; 2838 2839 ByteOffset += GEPOffset; 2840 2841 Ptr = GEP->getPointerOperand(); 2842 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2843 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2844 Ptr = cast<Operator>(Ptr)->getOperand(0); 2845 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2846 if (GA->isInterposable()) 2847 break; 2848 Ptr = GA->getAliasee(); 2849 } else { 2850 break; 2851 } 2852 } 2853 Offset = ByteOffset.getSExtValue(); 2854 return Ptr; 2855 } 2856 2857 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2858 // Make sure the GEP has exactly three arguments. 2859 if (GEP->getNumOperands() != 3) 2860 return false; 2861 2862 // Make sure the index-ee is a pointer to array of i8. 2863 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2864 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2865 return false; 2866 2867 // Check to make sure that the first operand of the GEP is an integer and 2868 // has value 0 so that we are sure we're indexing into the initializer. 2869 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2870 if (!FirstIdx || !FirstIdx->isZero()) 2871 return false; 2872 2873 return true; 2874 } 2875 2876 /// This function computes the length of a null-terminated C string pointed to 2877 /// by V. If successful, it returns true and returns the string in Str. 2878 /// If unsuccessful, it returns false. 2879 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2880 uint64_t Offset, bool TrimAtNul) { 2881 assert(V); 2882 2883 // Look through bitcast instructions and geps. 2884 V = V->stripPointerCasts(); 2885 2886 // If the value is a GEP instruction or constant expression, treat it as an 2887 // offset. 2888 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2889 // The GEP operator should be based on a pointer to string constant, and is 2890 // indexing into the string constant. 2891 if (!isGEPBasedOnPointerToString(GEP)) 2892 return false; 2893 2894 // If the second index isn't a ConstantInt, then this is a variable index 2895 // into the array. If this occurs, we can't say anything meaningful about 2896 // the string. 2897 uint64_t StartIdx = 0; 2898 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2899 StartIdx = CI->getZExtValue(); 2900 else 2901 return false; 2902 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2903 TrimAtNul); 2904 } 2905 2906 // The GEP instruction, constant or instruction, must reference a global 2907 // variable that is a constant and is initialized. The referenced constant 2908 // initializer is the array that we'll use for optimization. 2909 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2910 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2911 return false; 2912 2913 // Handle the all-zeros case. 2914 if (GV->getInitializer()->isNullValue()) { 2915 // This is a degenerate case. The initializer is constant zero so the 2916 // length of the string must be zero. 2917 Str = ""; 2918 return true; 2919 } 2920 2921 // This must be a ConstantDataArray. 2922 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 2923 if (!Array || !Array->isString()) 2924 return false; 2925 2926 // Get the number of elements in the array. 2927 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2928 2929 // Start out with the entire array in the StringRef. 2930 Str = Array->getAsString(); 2931 2932 if (Offset > NumElts) 2933 return false; 2934 2935 // Skip over 'offset' bytes. 2936 Str = Str.substr(Offset); 2937 2938 if (TrimAtNul) { 2939 // Trim off the \0 and anything after it. If the array is not nul 2940 // terminated, we just return the whole end of string. The client may know 2941 // some other way that the string is length-bound. 2942 Str = Str.substr(0, Str.find('\0')); 2943 } 2944 return true; 2945 } 2946 2947 // These next two are very similar to the above, but also look through PHI 2948 // nodes. 2949 // TODO: See if we can integrate these two together. 2950 2951 /// If we can compute the length of the string pointed to by 2952 /// the specified pointer, return 'len+1'. If we can't, return 0. 2953 static uint64_t GetStringLengthH(const Value *V, 2954 SmallPtrSetImpl<const PHINode*> &PHIs) { 2955 // Look through noop bitcast instructions. 2956 V = V->stripPointerCasts(); 2957 2958 // If this is a PHI node, there are two cases: either we have already seen it 2959 // or we haven't. 2960 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2961 if (!PHIs.insert(PN).second) 2962 return ~0ULL; // already in the set. 2963 2964 // If it was new, see if all the input strings are the same length. 2965 uint64_t LenSoFar = ~0ULL; 2966 for (Value *IncValue : PN->incoming_values()) { 2967 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2968 if (Len == 0) return 0; // Unknown length -> unknown. 2969 2970 if (Len == ~0ULL) continue; 2971 2972 if (Len != LenSoFar && LenSoFar != ~0ULL) 2973 return 0; // Disagree -> unknown. 2974 LenSoFar = Len; 2975 } 2976 2977 // Success, all agree. 2978 return LenSoFar; 2979 } 2980 2981 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2982 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2983 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2984 if (Len1 == 0) return 0; 2985 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2986 if (Len2 == 0) return 0; 2987 if (Len1 == ~0ULL) return Len2; 2988 if (Len2 == ~0ULL) return Len1; 2989 if (Len1 != Len2) return 0; 2990 return Len1; 2991 } 2992 2993 // Otherwise, see if we can read the string. 2994 StringRef StrData; 2995 if (!getConstantStringInfo(V, StrData)) 2996 return 0; 2997 2998 return StrData.size()+1; 2999 } 3000 3001 /// If we can compute the length of the string pointed to by 3002 /// the specified pointer, return 'len+1'. If we can't, return 0. 3003 uint64_t llvm::GetStringLength(const Value *V) { 3004 if (!V->getType()->isPointerTy()) return 0; 3005 3006 SmallPtrSet<const PHINode*, 32> PHIs; 3007 uint64_t Len = GetStringLengthH(V, PHIs); 3008 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3009 // an empty string as a length. 3010 return Len == ~0ULL ? 1 : Len; 3011 } 3012 3013 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3014 /// previous iteration of the loop was referring to the same object as \p PN. 3015 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3016 const LoopInfo *LI) { 3017 // Find the loop-defined value. 3018 Loop *L = LI->getLoopFor(PN->getParent()); 3019 if (PN->getNumIncomingValues() != 2) 3020 return true; 3021 3022 // Find the value from previous iteration. 3023 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3024 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3025 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3026 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3027 return true; 3028 3029 // If a new pointer is loaded in the loop, the pointer references a different 3030 // object in every iteration. E.g.: 3031 // for (i) 3032 // int *p = a[i]; 3033 // ... 3034 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3035 if (!L->isLoopInvariant(Load->getPointerOperand())) 3036 return false; 3037 return true; 3038 } 3039 3040 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3041 unsigned MaxLookup) { 3042 if (!V->getType()->isPointerTy()) 3043 return V; 3044 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3045 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3046 V = GEP->getPointerOperand(); 3047 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3048 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3049 V = cast<Operator>(V)->getOperand(0); 3050 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3051 if (GA->isInterposable()) 3052 return V; 3053 V = GA->getAliasee(); 3054 } else { 3055 if (auto CS = CallSite(V)) 3056 if (Value *RV = CS.getReturnedArgOperand()) { 3057 V = RV; 3058 continue; 3059 } 3060 3061 // See if InstructionSimplify knows any relevant tricks. 3062 if (Instruction *I = dyn_cast<Instruction>(V)) 3063 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3064 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3065 V = Simplified; 3066 continue; 3067 } 3068 3069 return V; 3070 } 3071 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3072 } 3073 return V; 3074 } 3075 3076 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3077 const DataLayout &DL, LoopInfo *LI, 3078 unsigned MaxLookup) { 3079 SmallPtrSet<Value *, 4> Visited; 3080 SmallVector<Value *, 4> Worklist; 3081 Worklist.push_back(V); 3082 do { 3083 Value *P = Worklist.pop_back_val(); 3084 P = GetUnderlyingObject(P, DL, MaxLookup); 3085 3086 if (!Visited.insert(P).second) 3087 continue; 3088 3089 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3090 Worklist.push_back(SI->getTrueValue()); 3091 Worklist.push_back(SI->getFalseValue()); 3092 continue; 3093 } 3094 3095 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3096 // If this PHI changes the underlying object in every iteration of the 3097 // loop, don't look through it. Consider: 3098 // int **A; 3099 // for (i) { 3100 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3101 // Curr = A[i]; 3102 // *Prev, *Curr; 3103 // 3104 // Prev is tracking Curr one iteration behind so they refer to different 3105 // underlying objects. 3106 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3107 isSameUnderlyingObjectInLoop(PN, LI)) 3108 for (Value *IncValue : PN->incoming_values()) 3109 Worklist.push_back(IncValue); 3110 continue; 3111 } 3112 3113 Objects.push_back(P); 3114 } while (!Worklist.empty()); 3115 } 3116 3117 /// Return true if the only users of this pointer are lifetime markers. 3118 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3119 for (const User *U : V->users()) { 3120 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3121 if (!II) return false; 3122 3123 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3124 II->getIntrinsicID() != Intrinsic::lifetime_end) 3125 return false; 3126 } 3127 return true; 3128 } 3129 3130 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3131 const Instruction *CtxI, 3132 const DominatorTree *DT) { 3133 const Operator *Inst = dyn_cast<Operator>(V); 3134 if (!Inst) 3135 return false; 3136 3137 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3138 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3139 if (C->canTrap()) 3140 return false; 3141 3142 switch (Inst->getOpcode()) { 3143 default: 3144 return true; 3145 case Instruction::UDiv: 3146 case Instruction::URem: { 3147 // x / y is undefined if y == 0. 3148 const APInt *V; 3149 if (match(Inst->getOperand(1), m_APInt(V))) 3150 return *V != 0; 3151 return false; 3152 } 3153 case Instruction::SDiv: 3154 case Instruction::SRem: { 3155 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3156 const APInt *Numerator, *Denominator; 3157 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3158 return false; 3159 // We cannot hoist this division if the denominator is 0. 3160 if (*Denominator == 0) 3161 return false; 3162 // It's safe to hoist if the denominator is not 0 or -1. 3163 if (*Denominator != -1) 3164 return true; 3165 // At this point we know that the denominator is -1. It is safe to hoist as 3166 // long we know that the numerator is not INT_MIN. 3167 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3168 return !Numerator->isMinSignedValue(); 3169 // The numerator *might* be MinSignedValue. 3170 return false; 3171 } 3172 case Instruction::Load: { 3173 const LoadInst *LI = cast<LoadInst>(Inst); 3174 if (!LI->isUnordered() || 3175 // Speculative load may create a race that did not exist in the source. 3176 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3177 // Speculative load may load data from dirty regions. 3178 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3179 return false; 3180 const DataLayout &DL = LI->getModule()->getDataLayout(); 3181 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3182 LI->getAlignment(), DL, CtxI, DT); 3183 } 3184 case Instruction::Call: { 3185 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3186 switch (II->getIntrinsicID()) { 3187 // These synthetic intrinsics have no side-effects and just mark 3188 // information about their operands. 3189 // FIXME: There are other no-op synthetic instructions that potentially 3190 // should be considered at least *safe* to speculate... 3191 case Intrinsic::dbg_declare: 3192 case Intrinsic::dbg_value: 3193 return true; 3194 3195 case Intrinsic::bswap: 3196 case Intrinsic::ctlz: 3197 case Intrinsic::ctpop: 3198 case Intrinsic::cttz: 3199 case Intrinsic::objectsize: 3200 case Intrinsic::sadd_with_overflow: 3201 case Intrinsic::smul_with_overflow: 3202 case Intrinsic::ssub_with_overflow: 3203 case Intrinsic::uadd_with_overflow: 3204 case Intrinsic::umul_with_overflow: 3205 case Intrinsic::usub_with_overflow: 3206 return true; 3207 // These intrinsics are defined to have the same behavior as libm 3208 // functions except for setting errno. 3209 case Intrinsic::sqrt: 3210 case Intrinsic::fma: 3211 case Intrinsic::fmuladd: 3212 return true; 3213 // These intrinsics are defined to have the same behavior as libm 3214 // functions, and the corresponding libm functions never set errno. 3215 case Intrinsic::trunc: 3216 case Intrinsic::copysign: 3217 case Intrinsic::fabs: 3218 case Intrinsic::minnum: 3219 case Intrinsic::maxnum: 3220 return true; 3221 // These intrinsics are defined to have the same behavior as libm 3222 // functions, which never overflow when operating on the IEEE754 types 3223 // that we support, and never set errno otherwise. 3224 case Intrinsic::ceil: 3225 case Intrinsic::floor: 3226 case Intrinsic::nearbyint: 3227 case Intrinsic::rint: 3228 case Intrinsic::round: 3229 return true; 3230 // TODO: are convert_{from,to}_fp16 safe? 3231 // TODO: can we list target-specific intrinsics here? 3232 default: break; 3233 } 3234 } 3235 return false; // The called function could have undefined behavior or 3236 // side-effects, even if marked readnone nounwind. 3237 } 3238 case Instruction::VAArg: 3239 case Instruction::Alloca: 3240 case Instruction::Invoke: 3241 case Instruction::PHI: 3242 case Instruction::Store: 3243 case Instruction::Ret: 3244 case Instruction::Br: 3245 case Instruction::IndirectBr: 3246 case Instruction::Switch: 3247 case Instruction::Unreachable: 3248 case Instruction::Fence: 3249 case Instruction::AtomicRMW: 3250 case Instruction::AtomicCmpXchg: 3251 case Instruction::LandingPad: 3252 case Instruction::Resume: 3253 case Instruction::CatchSwitch: 3254 case Instruction::CatchPad: 3255 case Instruction::CatchRet: 3256 case Instruction::CleanupPad: 3257 case Instruction::CleanupRet: 3258 return false; // Misc instructions which have effects 3259 } 3260 } 3261 3262 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3263 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3264 } 3265 3266 /// Return true if we know that the specified value is never null. 3267 bool llvm::isKnownNonNull(const Value *V) { 3268 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3269 3270 // Alloca never returns null, malloc might. 3271 if (isa<AllocaInst>(V)) return true; 3272 3273 // A byval, inalloca, or nonnull argument is never null. 3274 if (const Argument *A = dyn_cast<Argument>(V)) 3275 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3276 3277 // A global variable in address space 0 is non null unless extern weak. 3278 // Other address spaces may have null as a valid address for a global, 3279 // so we can't assume anything. 3280 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3281 return !GV->hasExternalWeakLinkage() && 3282 GV->getType()->getAddressSpace() == 0; 3283 3284 // A Load tagged with nonnull metadata is never null. 3285 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3286 return LI->getMetadata(LLVMContext::MD_nonnull); 3287 3288 if (auto CS = ImmutableCallSite(V)) 3289 if (CS.isReturnNonNull()) 3290 return true; 3291 3292 return false; 3293 } 3294 3295 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3296 const Instruction *CtxI, 3297 const DominatorTree *DT) { 3298 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3299 3300 unsigned NumUsesExplored = 0; 3301 for (auto *U : V->users()) { 3302 // Avoid massive lists 3303 if (NumUsesExplored >= DomConditionsMaxUses) 3304 break; 3305 NumUsesExplored++; 3306 // Consider only compare instructions uniquely controlling a branch 3307 CmpInst::Predicate Pred; 3308 if (!match(const_cast<User *>(U), 3309 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3310 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3311 continue; 3312 3313 for (auto *CmpU : U->users()) { 3314 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3315 assert(BI->isConditional() && "uses a comparison!"); 3316 3317 BasicBlock *NonNullSuccessor = 3318 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3319 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3320 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3321 return true; 3322 } else if (Pred == ICmpInst::ICMP_NE && 3323 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3324 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3325 return true; 3326 } 3327 } 3328 } 3329 3330 return false; 3331 } 3332 3333 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3334 const DominatorTree *DT) { 3335 if (isKnownNonNull(V)) 3336 return true; 3337 3338 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3339 } 3340 3341 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3342 const Value *RHS, 3343 const DataLayout &DL, 3344 AssumptionCache *AC, 3345 const Instruction *CxtI, 3346 const DominatorTree *DT) { 3347 // Multiplying n * m significant bits yields a result of n + m significant 3348 // bits. If the total number of significant bits does not exceed the 3349 // result bit width (minus 1), there is no overflow. 3350 // This means if we have enough leading zero bits in the operands 3351 // we can guarantee that the result does not overflow. 3352 // Ref: "Hacker's Delight" by Henry Warren 3353 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3354 APInt LHSKnownZero(BitWidth, 0); 3355 APInt LHSKnownOne(BitWidth, 0); 3356 APInt RHSKnownZero(BitWidth, 0); 3357 APInt RHSKnownOne(BitWidth, 0); 3358 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3359 DT); 3360 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3361 DT); 3362 // Note that underestimating the number of zero bits gives a more 3363 // conservative answer. 3364 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3365 RHSKnownZero.countLeadingOnes(); 3366 // First handle the easy case: if we have enough zero bits there's 3367 // definitely no overflow. 3368 if (ZeroBits >= BitWidth) 3369 return OverflowResult::NeverOverflows; 3370 3371 // Get the largest possible values for each operand. 3372 APInt LHSMax = ~LHSKnownZero; 3373 APInt RHSMax = ~RHSKnownZero; 3374 3375 // We know the multiply operation doesn't overflow if the maximum values for 3376 // each operand will not overflow after we multiply them together. 3377 bool MaxOverflow; 3378 LHSMax.umul_ov(RHSMax, MaxOverflow); 3379 if (!MaxOverflow) 3380 return OverflowResult::NeverOverflows; 3381 3382 // We know it always overflows if multiplying the smallest possible values for 3383 // the operands also results in overflow. 3384 bool MinOverflow; 3385 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3386 if (MinOverflow) 3387 return OverflowResult::AlwaysOverflows; 3388 3389 return OverflowResult::MayOverflow; 3390 } 3391 3392 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3393 const Value *RHS, 3394 const DataLayout &DL, 3395 AssumptionCache *AC, 3396 const Instruction *CxtI, 3397 const DominatorTree *DT) { 3398 bool LHSKnownNonNegative, LHSKnownNegative; 3399 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3400 AC, CxtI, DT); 3401 if (LHSKnownNonNegative || LHSKnownNegative) { 3402 bool RHSKnownNonNegative, RHSKnownNegative; 3403 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3404 AC, CxtI, DT); 3405 3406 if (LHSKnownNegative && RHSKnownNegative) { 3407 // The sign bit is set in both cases: this MUST overflow. 3408 // Create a simple add instruction, and insert it into the struct. 3409 return OverflowResult::AlwaysOverflows; 3410 } 3411 3412 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3413 // The sign bit is clear in both cases: this CANNOT overflow. 3414 // Create a simple add instruction, and insert it into the struct. 3415 return OverflowResult::NeverOverflows; 3416 } 3417 } 3418 3419 return OverflowResult::MayOverflow; 3420 } 3421 3422 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3423 const Value *RHS, 3424 const AddOperator *Add, 3425 const DataLayout &DL, 3426 AssumptionCache *AC, 3427 const Instruction *CxtI, 3428 const DominatorTree *DT) { 3429 if (Add && Add->hasNoSignedWrap()) { 3430 return OverflowResult::NeverOverflows; 3431 } 3432 3433 bool LHSKnownNonNegative, LHSKnownNegative; 3434 bool RHSKnownNonNegative, RHSKnownNegative; 3435 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3436 AC, CxtI, DT); 3437 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3438 AC, CxtI, DT); 3439 3440 if ((LHSKnownNonNegative && RHSKnownNegative) || 3441 (LHSKnownNegative && RHSKnownNonNegative)) { 3442 // The sign bits are opposite: this CANNOT overflow. 3443 return OverflowResult::NeverOverflows; 3444 } 3445 3446 // The remaining code needs Add to be available. Early returns if not so. 3447 if (!Add) 3448 return OverflowResult::MayOverflow; 3449 3450 // If the sign of Add is the same as at least one of the operands, this add 3451 // CANNOT overflow. This is particularly useful when the sum is 3452 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3453 // operands. 3454 bool LHSOrRHSKnownNonNegative = 3455 (LHSKnownNonNegative || RHSKnownNonNegative); 3456 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3457 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3458 bool AddKnownNonNegative, AddKnownNegative; 3459 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3460 /*Depth=*/0, AC, CxtI, DT); 3461 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3462 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3463 return OverflowResult::NeverOverflows; 3464 } 3465 } 3466 3467 return OverflowResult::MayOverflow; 3468 } 3469 3470 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3471 const DominatorTree &DT) { 3472 #ifndef NDEBUG 3473 auto IID = II->getIntrinsicID(); 3474 assert((IID == Intrinsic::sadd_with_overflow || 3475 IID == Intrinsic::uadd_with_overflow || 3476 IID == Intrinsic::ssub_with_overflow || 3477 IID == Intrinsic::usub_with_overflow || 3478 IID == Intrinsic::smul_with_overflow || 3479 IID == Intrinsic::umul_with_overflow) && 3480 "Not an overflow intrinsic!"); 3481 #endif 3482 3483 SmallVector<const BranchInst *, 2> GuardingBranches; 3484 SmallVector<const ExtractValueInst *, 2> Results; 3485 3486 for (const User *U : II->users()) { 3487 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3488 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3489 3490 if (EVI->getIndices()[0] == 0) 3491 Results.push_back(EVI); 3492 else { 3493 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3494 3495 for (const auto *U : EVI->users()) 3496 if (const auto *B = dyn_cast<BranchInst>(U)) { 3497 assert(B->isConditional() && "How else is it using an i1?"); 3498 GuardingBranches.push_back(B); 3499 } 3500 } 3501 } else { 3502 // We are using the aggregate directly in a way we don't want to analyze 3503 // here (storing it to a global, say). 3504 return false; 3505 } 3506 } 3507 3508 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3509 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3510 if (!NoWrapEdge.isSingleEdge()) 3511 return false; 3512 3513 // Check if all users of the add are provably no-wrap. 3514 for (const auto *Result : Results) { 3515 // If the extractvalue itself is not executed on overflow, the we don't 3516 // need to check each use separately, since domination is transitive. 3517 if (DT.dominates(NoWrapEdge, Result->getParent())) 3518 continue; 3519 3520 for (auto &RU : Result->uses()) 3521 if (!DT.dominates(NoWrapEdge, RU)) 3522 return false; 3523 } 3524 3525 return true; 3526 }; 3527 3528 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3529 } 3530 3531 3532 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3533 const DataLayout &DL, 3534 AssumptionCache *AC, 3535 const Instruction *CxtI, 3536 const DominatorTree *DT) { 3537 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3538 Add, DL, AC, CxtI, DT); 3539 } 3540 3541 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3542 const Value *RHS, 3543 const DataLayout &DL, 3544 AssumptionCache *AC, 3545 const Instruction *CxtI, 3546 const DominatorTree *DT) { 3547 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3548 } 3549 3550 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3551 // A memory operation returns normally if it isn't volatile. A volatile 3552 // operation is allowed to trap. 3553 // 3554 // An atomic operation isn't guaranteed to return in a reasonable amount of 3555 // time because it's possible for another thread to interfere with it for an 3556 // arbitrary length of time, but programs aren't allowed to rely on that. 3557 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3558 return !LI->isVolatile(); 3559 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3560 return !SI->isVolatile(); 3561 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3562 return !CXI->isVolatile(); 3563 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3564 return !RMWI->isVolatile(); 3565 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3566 return !MII->isVolatile(); 3567 3568 // If there is no successor, then execution can't transfer to it. 3569 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3570 return !CRI->unwindsToCaller(); 3571 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3572 return !CatchSwitch->unwindsToCaller(); 3573 if (isa<ResumeInst>(I)) 3574 return false; 3575 if (isa<ReturnInst>(I)) 3576 return false; 3577 3578 // Calls can throw, or contain an infinite loop, or kill the process. 3579 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) { 3580 // Calls which don't write to arbitrary memory are safe. 3581 // FIXME: Ignoring infinite loops without any side-effects is too aggressive, 3582 // but it's consistent with other passes. See http://llvm.org/PR965 . 3583 // FIXME: This isn't aggressive enough; a call which only writes to a 3584 // global is guaranteed to return. 3585 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3586 match(I, m_Intrinsic<Intrinsic::assume>()); 3587 } 3588 3589 // Other instructions return normally. 3590 return true; 3591 } 3592 3593 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3594 const Loop *L) { 3595 // The loop header is guaranteed to be executed for every iteration. 3596 // 3597 // FIXME: Relax this constraint to cover all basic blocks that are 3598 // guaranteed to be executed at every iteration. 3599 if (I->getParent() != L->getHeader()) return false; 3600 3601 for (const Instruction &LI : *L->getHeader()) { 3602 if (&LI == I) return true; 3603 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3604 } 3605 llvm_unreachable("Instruction not contained in its own parent basic block."); 3606 } 3607 3608 bool llvm::propagatesFullPoison(const Instruction *I) { 3609 switch (I->getOpcode()) { 3610 case Instruction::Add: 3611 case Instruction::Sub: 3612 case Instruction::Xor: 3613 case Instruction::Trunc: 3614 case Instruction::BitCast: 3615 case Instruction::AddrSpaceCast: 3616 // These operations all propagate poison unconditionally. Note that poison 3617 // is not any particular value, so xor or subtraction of poison with 3618 // itself still yields poison, not zero. 3619 return true; 3620 3621 case Instruction::AShr: 3622 case Instruction::SExt: 3623 // For these operations, one bit of the input is replicated across 3624 // multiple output bits. A replicated poison bit is still poison. 3625 return true; 3626 3627 case Instruction::Shl: { 3628 // Left shift *by* a poison value is poison. The number of 3629 // positions to shift is unsigned, so no negative values are 3630 // possible there. Left shift by zero places preserves poison. So 3631 // it only remains to consider left shift of poison by a positive 3632 // number of places. 3633 // 3634 // A left shift by a positive number of places leaves the lowest order bit 3635 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3636 // make the poison operand violate that flag, yielding a fresh full-poison 3637 // value. 3638 auto *OBO = cast<OverflowingBinaryOperator>(I); 3639 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3640 } 3641 3642 case Instruction::Mul: { 3643 // A multiplication by zero yields a non-poison zero result, so we need to 3644 // rule out zero as an operand. Conservatively, multiplication by a 3645 // non-zero constant is not multiplication by zero. 3646 // 3647 // Multiplication by a non-zero constant can leave some bits 3648 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3649 // order bit unpoisoned. So we need to consider that. 3650 // 3651 // Multiplication by 1 preserves poison. If the multiplication has a 3652 // no-wrap flag, then we can make the poison operand violate that flag 3653 // when multiplied by any integer other than 0 and 1. 3654 auto *OBO = cast<OverflowingBinaryOperator>(I); 3655 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3656 for (Value *V : OBO->operands()) { 3657 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3658 // A ConstantInt cannot yield poison, so we can assume that it is 3659 // the other operand that is poison. 3660 return !CI->isZero(); 3661 } 3662 } 3663 } 3664 return false; 3665 } 3666 3667 case Instruction::ICmp: 3668 // Comparing poison with any value yields poison. This is why, for 3669 // instance, x s< (x +nsw 1) can be folded to true. 3670 return true; 3671 3672 case Instruction::GetElementPtr: 3673 // A GEP implicitly represents a sequence of additions, subtractions, 3674 // truncations, sign extensions and multiplications. The multiplications 3675 // are by the non-zero sizes of some set of types, so we do not have to be 3676 // concerned with multiplication by zero. If the GEP is in-bounds, then 3677 // these operations are implicitly no-signed-wrap so poison is propagated 3678 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3679 return cast<GEPOperator>(I)->isInBounds(); 3680 3681 default: 3682 return false; 3683 } 3684 } 3685 3686 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3687 switch (I->getOpcode()) { 3688 case Instruction::Store: 3689 return cast<StoreInst>(I)->getPointerOperand(); 3690 3691 case Instruction::Load: 3692 return cast<LoadInst>(I)->getPointerOperand(); 3693 3694 case Instruction::AtomicCmpXchg: 3695 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3696 3697 case Instruction::AtomicRMW: 3698 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3699 3700 case Instruction::UDiv: 3701 case Instruction::SDiv: 3702 case Instruction::URem: 3703 case Instruction::SRem: 3704 return I->getOperand(1); 3705 3706 default: 3707 return nullptr; 3708 } 3709 } 3710 3711 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3712 // We currently only look for uses of poison values within the same basic 3713 // block, as that makes it easier to guarantee that the uses will be 3714 // executed given that PoisonI is executed. 3715 // 3716 // FIXME: Expand this to consider uses beyond the same basic block. To do 3717 // this, look out for the distinction between post-dominance and strong 3718 // post-dominance. 3719 const BasicBlock *BB = PoisonI->getParent(); 3720 3721 // Set of instructions that we have proved will yield poison if PoisonI 3722 // does. 3723 SmallSet<const Value *, 16> YieldsPoison; 3724 SmallSet<const BasicBlock *, 4> Visited; 3725 YieldsPoison.insert(PoisonI); 3726 Visited.insert(PoisonI->getParent()); 3727 3728 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3729 3730 unsigned Iter = 0; 3731 while (Iter++ < MaxDepth) { 3732 for (auto &I : make_range(Begin, End)) { 3733 if (&I != PoisonI) { 3734 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3735 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3736 return true; 3737 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3738 return false; 3739 } 3740 3741 // Mark poison that propagates from I through uses of I. 3742 if (YieldsPoison.count(&I)) { 3743 for (const User *User : I.users()) { 3744 const Instruction *UserI = cast<Instruction>(User); 3745 if (propagatesFullPoison(UserI)) 3746 YieldsPoison.insert(User); 3747 } 3748 } 3749 } 3750 3751 if (auto *NextBB = BB->getSingleSuccessor()) { 3752 if (Visited.insert(NextBB).second) { 3753 BB = NextBB; 3754 Begin = BB->getFirstNonPHI()->getIterator(); 3755 End = BB->end(); 3756 continue; 3757 } 3758 } 3759 3760 break; 3761 }; 3762 return false; 3763 } 3764 3765 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3766 if (FMF.noNaNs()) 3767 return true; 3768 3769 if (auto *C = dyn_cast<ConstantFP>(V)) 3770 return !C->isNaN(); 3771 return false; 3772 } 3773 3774 static bool isKnownNonZero(const Value *V) { 3775 if (auto *C = dyn_cast<ConstantFP>(V)) 3776 return !C->isZero(); 3777 return false; 3778 } 3779 3780 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3781 FastMathFlags FMF, 3782 Value *CmpLHS, Value *CmpRHS, 3783 Value *TrueVal, Value *FalseVal, 3784 Value *&LHS, Value *&RHS) { 3785 LHS = CmpLHS; 3786 RHS = CmpRHS; 3787 3788 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3789 // return inconsistent results between implementations. 3790 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3791 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3792 // Therefore we behave conservatively and only proceed if at least one of the 3793 // operands is known to not be zero, or if we don't care about signed zeroes. 3794 switch (Pred) { 3795 default: break; 3796 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3797 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3798 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3799 !isKnownNonZero(CmpRHS)) 3800 return {SPF_UNKNOWN, SPNB_NA, false}; 3801 } 3802 3803 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3804 bool Ordered = false; 3805 3806 // When given one NaN and one non-NaN input: 3807 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3808 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3809 // ordered comparison fails), which could be NaN or non-NaN. 3810 // so here we discover exactly what NaN behavior is required/accepted. 3811 if (CmpInst::isFPPredicate(Pred)) { 3812 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3813 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3814 3815 if (LHSSafe && RHSSafe) { 3816 // Both operands are known non-NaN. 3817 NaNBehavior = SPNB_RETURNS_ANY; 3818 } else if (CmpInst::isOrdered(Pred)) { 3819 // An ordered comparison will return false when given a NaN, so it 3820 // returns the RHS. 3821 Ordered = true; 3822 if (LHSSafe) 3823 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3824 NaNBehavior = SPNB_RETURNS_NAN; 3825 else if (RHSSafe) 3826 NaNBehavior = SPNB_RETURNS_OTHER; 3827 else 3828 // Completely unsafe. 3829 return {SPF_UNKNOWN, SPNB_NA, false}; 3830 } else { 3831 Ordered = false; 3832 // An unordered comparison will return true when given a NaN, so it 3833 // returns the LHS. 3834 if (LHSSafe) 3835 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3836 NaNBehavior = SPNB_RETURNS_OTHER; 3837 else if (RHSSafe) 3838 NaNBehavior = SPNB_RETURNS_NAN; 3839 else 3840 // Completely unsafe. 3841 return {SPF_UNKNOWN, SPNB_NA, false}; 3842 } 3843 } 3844 3845 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3846 std::swap(CmpLHS, CmpRHS); 3847 Pred = CmpInst::getSwappedPredicate(Pred); 3848 if (NaNBehavior == SPNB_RETURNS_NAN) 3849 NaNBehavior = SPNB_RETURNS_OTHER; 3850 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3851 NaNBehavior = SPNB_RETURNS_NAN; 3852 Ordered = !Ordered; 3853 } 3854 3855 // ([if]cmp X, Y) ? X : Y 3856 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3857 switch (Pred) { 3858 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3859 case ICmpInst::ICMP_UGT: 3860 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3861 case ICmpInst::ICMP_SGT: 3862 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3863 case ICmpInst::ICMP_ULT: 3864 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3865 case ICmpInst::ICMP_SLT: 3866 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3867 case FCmpInst::FCMP_UGT: 3868 case FCmpInst::FCMP_UGE: 3869 case FCmpInst::FCMP_OGT: 3870 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3871 case FCmpInst::FCMP_ULT: 3872 case FCmpInst::FCMP_ULE: 3873 case FCmpInst::FCMP_OLT: 3874 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3875 } 3876 } 3877 3878 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3879 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3880 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3881 3882 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3883 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3884 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3885 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3886 } 3887 3888 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3889 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3890 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3891 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3892 } 3893 } 3894 3895 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3896 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3897 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() && 3898 ~C1->getValue() == C2->getValue() && 3899 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3900 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3901 LHS = TrueVal; 3902 RHS = FalseVal; 3903 return {SPF_SMIN, SPNB_NA, false}; 3904 } 3905 } 3906 } 3907 3908 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3909 3910 return {SPF_UNKNOWN, SPNB_NA, false}; 3911 } 3912 3913 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3914 Instruction::CastOps *CastOp) { 3915 CastInst *CI = dyn_cast<CastInst>(V1); 3916 Constant *C = dyn_cast<Constant>(V2); 3917 if (!CI) 3918 return nullptr; 3919 *CastOp = CI->getOpcode(); 3920 3921 if (auto *CI2 = dyn_cast<CastInst>(V2)) { 3922 // If V1 and V2 are both the same cast from the same type, we can look 3923 // through V1. 3924 if (CI2->getOpcode() == CI->getOpcode() && 3925 CI2->getSrcTy() == CI->getSrcTy()) 3926 return CI2->getOperand(0); 3927 return nullptr; 3928 } else if (!C) { 3929 return nullptr; 3930 } 3931 3932 Constant *CastedTo = nullptr; 3933 3934 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3935 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3936 3937 if (isa<SExtInst>(CI) && CmpI->isSigned()) 3938 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); 3939 3940 if (isa<TruncInst>(CI)) 3941 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3942 3943 if (isa<FPTruncInst>(CI)) 3944 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3945 3946 if (isa<FPExtInst>(CI)) 3947 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3948 3949 if (isa<FPToUIInst>(CI)) 3950 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3951 3952 if (isa<FPToSIInst>(CI)) 3953 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3954 3955 if (isa<UIToFPInst>(CI)) 3956 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3957 3958 if (isa<SIToFPInst>(CI)) 3959 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3960 3961 if (!CastedTo) 3962 return nullptr; 3963 3964 Constant *CastedBack = 3965 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); 3966 // Make sure the cast doesn't lose any information. 3967 if (CastedBack != C) 3968 return nullptr; 3969 3970 return CastedTo; 3971 } 3972 3973 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 3974 Instruction::CastOps *CastOp) { 3975 SelectInst *SI = dyn_cast<SelectInst>(V); 3976 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3977 3978 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3979 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3980 3981 CmpInst::Predicate Pred = CmpI->getPredicate(); 3982 Value *CmpLHS = CmpI->getOperand(0); 3983 Value *CmpRHS = CmpI->getOperand(1); 3984 Value *TrueVal = SI->getTrueValue(); 3985 Value *FalseVal = SI->getFalseValue(); 3986 FastMathFlags FMF; 3987 if (isa<FPMathOperator>(CmpI)) 3988 FMF = CmpI->getFastMathFlags(); 3989 3990 // Bail out early. 3991 if (CmpI->isEquality()) 3992 return {SPF_UNKNOWN, SPNB_NA, false}; 3993 3994 // Deal with type mismatches. 3995 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3996 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3997 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3998 cast<CastInst>(TrueVal)->getOperand(0), C, 3999 LHS, RHS); 4000 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4001 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4002 C, cast<CastInst>(FalseVal)->getOperand(0), 4003 LHS, RHS); 4004 } 4005 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4006 LHS, RHS); 4007 } 4008 4009 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 4010 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4011 assert(NumRanges >= 1 && "Must have at least one range!"); 4012 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4013 4014 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4015 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4016 4017 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4018 4019 for (unsigned i = 1; i < NumRanges; ++i) { 4020 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4021 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4022 4023 // Note: unionWith will potentially create a range that contains values not 4024 // contained in any of the original N ranges. 4025 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4026 } 4027 4028 return CR; 4029 } 4030 4031 /// Return true if "icmp Pred LHS RHS" is always true. 4032 static bool isTruePredicate(CmpInst::Predicate Pred, 4033 const Value *LHS, const Value *RHS, 4034 const DataLayout &DL, unsigned Depth, 4035 AssumptionCache *AC, const Instruction *CxtI, 4036 const DominatorTree *DT) { 4037 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4038 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4039 return true; 4040 4041 switch (Pred) { 4042 default: 4043 return false; 4044 4045 case CmpInst::ICMP_SLE: { 4046 const APInt *C; 4047 4048 // LHS s<= LHS +_{nsw} C if C >= 0 4049 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4050 return !C->isNegative(); 4051 return false; 4052 } 4053 4054 case CmpInst::ICMP_ULE: { 4055 const APInt *C; 4056 4057 // LHS u<= LHS +_{nuw} C for any C 4058 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4059 return true; 4060 4061 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4062 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4063 const Value *&X, 4064 const APInt *&CA, const APInt *&CB) { 4065 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4066 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4067 return true; 4068 4069 // If X & C == 0 then (X | C) == X +_{nuw} C 4070 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4071 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4072 unsigned BitWidth = CA->getBitWidth(); 4073 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4074 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4075 4076 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4077 return true; 4078 } 4079 4080 return false; 4081 }; 4082 4083 const Value *X; 4084 const APInt *CLHS, *CRHS; 4085 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4086 return CLHS->ule(*CRHS); 4087 4088 return false; 4089 } 4090 } 4091 } 4092 4093 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4094 /// ALHS ARHS" is true. Otherwise, return None. 4095 static Optional<bool> 4096 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4097 const Value *ARHS, const Value *BLHS, 4098 const Value *BRHS, const DataLayout &DL, 4099 unsigned Depth, AssumptionCache *AC, 4100 const Instruction *CxtI, const DominatorTree *DT) { 4101 switch (Pred) { 4102 default: 4103 return None; 4104 4105 case CmpInst::ICMP_SLT: 4106 case CmpInst::ICMP_SLE: 4107 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4108 DT) && 4109 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4110 return true; 4111 return None; 4112 4113 case CmpInst::ICMP_ULT: 4114 case CmpInst::ICMP_ULE: 4115 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4116 DT) && 4117 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4118 return true; 4119 return None; 4120 } 4121 } 4122 4123 /// Return true if the operands of the two compares match. IsSwappedOps is true 4124 /// when the operands match, but are swapped. 4125 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4126 const Value *BLHS, const Value *BRHS, 4127 bool &IsSwappedOps) { 4128 4129 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4130 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4131 return IsMatchingOps || IsSwappedOps; 4132 } 4133 4134 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4135 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4136 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4137 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4138 const Value *ALHS, 4139 const Value *ARHS, 4140 CmpInst::Predicate BPred, 4141 const Value *BLHS, 4142 const Value *BRHS, 4143 bool IsSwappedOps) { 4144 // Canonicalize the operands so they're matching. 4145 if (IsSwappedOps) { 4146 std::swap(BLHS, BRHS); 4147 BPred = ICmpInst::getSwappedPredicate(BPred); 4148 } 4149 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4150 return true; 4151 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4152 return false; 4153 4154 return None; 4155 } 4156 4157 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4158 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4159 /// C2" is false. Otherwise, return None if we can't infer anything. 4160 static Optional<bool> 4161 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4162 const ConstantInt *C1, 4163 CmpInst::Predicate BPred, 4164 const Value *BLHS, const ConstantInt *C2) { 4165 assert(ALHS == BLHS && "LHS operands must match."); 4166 ConstantRange DomCR = 4167 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4168 ConstantRange CR = 4169 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4170 ConstantRange Intersection = DomCR.intersectWith(CR); 4171 ConstantRange Difference = DomCR.difference(CR); 4172 if (Intersection.isEmptySet()) 4173 return false; 4174 if (Difference.isEmptySet()) 4175 return true; 4176 return None; 4177 } 4178 4179 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4180 const DataLayout &DL, bool InvertAPred, 4181 unsigned Depth, AssumptionCache *AC, 4182 const Instruction *CxtI, 4183 const DominatorTree *DT) { 4184 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4185 if (LHS->getType() != RHS->getType()) 4186 return None; 4187 4188 Type *OpTy = LHS->getType(); 4189 assert(OpTy->getScalarType()->isIntegerTy(1)); 4190 4191 // LHS ==> RHS by definition 4192 if (!InvertAPred && LHS == RHS) 4193 return true; 4194 4195 if (OpTy->isVectorTy()) 4196 // TODO: extending the code below to handle vectors 4197 return None; 4198 assert(OpTy->isIntegerTy(1) && "implied by above"); 4199 4200 ICmpInst::Predicate APred, BPred; 4201 Value *ALHS, *ARHS; 4202 Value *BLHS, *BRHS; 4203 4204 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4205 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4206 return None; 4207 4208 if (InvertAPred) 4209 APred = CmpInst::getInversePredicate(APred); 4210 4211 // Can we infer anything when the two compares have matching operands? 4212 bool IsSwappedOps; 4213 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4214 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4215 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4216 return Implication; 4217 // No amount of additional analysis will infer the second condition, so 4218 // early exit. 4219 return None; 4220 } 4221 4222 // Can we infer anything when the LHS operands match and the RHS operands are 4223 // constants (not necessarily matching)? 4224 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4225 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4226 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4227 cast<ConstantInt>(BRHS))) 4228 return Implication; 4229 // No amount of additional analysis will infer the second condition, so 4230 // early exit. 4231 return None; 4232 } 4233 4234 if (APred == BPred) 4235 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4236 CxtI, DT); 4237 4238 return None; 4239 } 4240