1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsRISCV.h" 56 #include "llvm/IR/IntrinsicsX86.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/PatternMatch.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/KnownBits.h" 70 #include "llvm/Support/MathExtras.h" 71 #include <algorithm> 72 #include <array> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace llvm::PatternMatch; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getPointerTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// If true, it is safe to use metadata during simplification. 112 InstrInfoQuery IIQ; 113 114 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 115 const DominatorTree *DT, bool UseInstrInfo, 116 OptimizationRemarkEmitter *ORE = nullptr) 117 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 118 }; 119 120 } // end anonymous namespace 121 122 // Given the provided Value and, potentially, a context instruction, return 123 // the preferred context instruction (if any). 124 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 125 // If we've been provided with a context instruction, then use that (provided 126 // it has been inserted). 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 // If the value is really an already-inserted instruction, then use that. 131 CxtI = dyn_cast<Instruction>(V); 132 if (CxtI && CxtI->getParent()) 133 return CxtI; 134 135 return nullptr; 136 } 137 138 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 139 // If we've been provided with a context instruction, then use that (provided 140 // it has been inserted). 141 if (CxtI && CxtI->getParent()) 142 return CxtI; 143 144 // If the value is really an already-inserted instruction, then use that. 145 CxtI = dyn_cast<Instruction>(V1); 146 if (CxtI && CxtI->getParent()) 147 return CxtI; 148 149 CxtI = dyn_cast<Instruction>(V2); 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 return nullptr; 154 } 155 156 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 157 const APInt &DemandedElts, 158 APInt &DemandedLHS, APInt &DemandedRHS) { 159 // The length of scalable vectors is unknown at compile time, thus we 160 // cannot check their values 161 if (isa<ScalableVectorType>(Shuf->getType())) 162 return false; 163 164 int NumElts = 165 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 166 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 167 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 168 if (DemandedElts.isNullValue()) 169 return true; 170 // Simple case of a shuffle with zeroinitializer. 171 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 172 DemandedLHS.setBit(0); 173 return true; 174 } 175 for (int i = 0; i != NumMaskElts; ++i) { 176 if (!DemandedElts[i]) 177 continue; 178 int M = Shuf->getMaskValue(i); 179 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 180 181 // For undef elements, we don't know anything about the common state of 182 // the shuffle result. 183 if (M == -1) 184 return false; 185 if (M < NumElts) 186 DemandedLHS.setBit(M % NumElts); 187 else 188 DemandedRHS.setBit(M % NumElts); 189 } 190 191 return true; 192 } 193 194 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 195 KnownBits &Known, unsigned Depth, const Query &Q); 196 197 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 198 const Query &Q) { 199 // FIXME: We currently have no way to represent the DemandedElts of a scalable 200 // vector 201 if (isa<ScalableVectorType>(V->getType())) { 202 Known.resetAll(); 203 return; 204 } 205 206 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 207 APInt DemandedElts = 208 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 209 computeKnownBits(V, DemandedElts, Known, Depth, Q); 210 } 211 212 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 213 const DataLayout &DL, unsigned Depth, 214 AssumptionCache *AC, const Instruction *CxtI, 215 const DominatorTree *DT, 216 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 217 ::computeKnownBits(V, Known, Depth, 218 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 219 } 220 221 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 222 KnownBits &Known, const DataLayout &DL, 223 unsigned Depth, AssumptionCache *AC, 224 const Instruction *CxtI, const DominatorTree *DT, 225 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 226 ::computeKnownBits(V, DemandedElts, Known, Depth, 227 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 228 } 229 230 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 231 unsigned Depth, const Query &Q); 232 233 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 234 const Query &Q); 235 236 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 237 unsigned Depth, AssumptionCache *AC, 238 const Instruction *CxtI, 239 const DominatorTree *DT, 240 OptimizationRemarkEmitter *ORE, 241 bool UseInstrInfo) { 242 return ::computeKnownBits( 243 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 244 } 245 246 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 247 const DataLayout &DL, unsigned Depth, 248 AssumptionCache *AC, const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, DemandedElts, Depth, 254 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 255 } 256 257 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 258 const DataLayout &DL, AssumptionCache *AC, 259 const Instruction *CxtI, const DominatorTree *DT, 260 bool UseInstrInfo) { 261 assert(LHS->getType() == RHS->getType() && 262 "LHS and RHS should have the same type"); 263 assert(LHS->getType()->isIntOrIntVectorTy() && 264 "LHS and RHS should be integers"); 265 // Look for an inverted mask: (X & ~M) op (Y & M). 266 Value *M; 267 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 268 match(RHS, m_c_And(m_Specific(M), m_Value()))) 269 return true; 270 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 271 match(LHS, m_c_And(m_Specific(M), m_Value()))) 272 return true; 273 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 274 KnownBits LHSKnown(IT->getBitWidth()); 275 KnownBits RHSKnown(IT->getBitWidth()); 276 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 277 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 278 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 279 } 280 281 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 282 for (const User *U : CxtI->users()) { 283 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 284 if (IC->isEquality()) 285 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 286 if (C->isNullValue()) 287 continue; 288 return false; 289 } 290 return true; 291 } 292 293 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 294 const Query &Q); 295 296 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 297 bool OrZero, unsigned Depth, 298 AssumptionCache *AC, const Instruction *CxtI, 299 const DominatorTree *DT, bool UseInstrInfo) { 300 return ::isKnownToBeAPowerOfTwo( 301 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 302 } 303 304 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 305 unsigned Depth, const Query &Q); 306 307 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 308 309 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 310 AssumptionCache *AC, const Instruction *CxtI, 311 const DominatorTree *DT, bool UseInstrInfo) { 312 return ::isKnownNonZero(V, Depth, 313 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 314 } 315 316 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 317 unsigned Depth, AssumptionCache *AC, 318 const Instruction *CxtI, const DominatorTree *DT, 319 bool UseInstrInfo) { 320 KnownBits Known = 321 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 322 return Known.isNonNegative(); 323 } 324 325 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 326 AssumptionCache *AC, const Instruction *CxtI, 327 const DominatorTree *DT, bool UseInstrInfo) { 328 if (auto *CI = dyn_cast<ConstantInt>(V)) 329 return CI->getValue().isStrictlyPositive(); 330 331 // TODO: We'd doing two recursive queries here. We should factor this such 332 // that only a single query is needed. 333 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 334 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 335 } 336 337 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 338 AssumptionCache *AC, const Instruction *CxtI, 339 const DominatorTree *DT, bool UseInstrInfo) { 340 KnownBits Known = 341 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 342 return Known.isNegative(); 343 } 344 345 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 346 const Query &Q); 347 348 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 349 const DataLayout &DL, AssumptionCache *AC, 350 const Instruction *CxtI, const DominatorTree *DT, 351 bool UseInstrInfo) { 352 return ::isKnownNonEqual(V1, V2, 0, 353 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 354 UseInstrInfo, /*ORE=*/nullptr)); 355 } 356 357 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 358 const Query &Q); 359 360 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 361 const DataLayout &DL, unsigned Depth, 362 AssumptionCache *AC, const Instruction *CxtI, 363 const DominatorTree *DT, bool UseInstrInfo) { 364 return ::MaskedValueIsZero( 365 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 366 } 367 368 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 369 unsigned Depth, const Query &Q); 370 371 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 372 const Query &Q) { 373 // FIXME: We currently have no way to represent the DemandedElts of a scalable 374 // vector 375 if (isa<ScalableVectorType>(V->getType())) 376 return 1; 377 378 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 379 APInt DemandedElts = 380 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 381 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 382 } 383 384 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 385 unsigned Depth, AssumptionCache *AC, 386 const Instruction *CxtI, 387 const DominatorTree *DT, bool UseInstrInfo) { 388 return ::ComputeNumSignBits( 389 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 390 } 391 392 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 393 bool NSW, const APInt &DemandedElts, 394 KnownBits &KnownOut, KnownBits &Known2, 395 unsigned Depth, const Query &Q) { 396 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 397 398 // If one operand is unknown and we have no nowrap information, 399 // the result will be unknown independently of the second operand. 400 if (KnownOut.isUnknown() && !NSW) 401 return; 402 403 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 404 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 405 } 406 407 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 408 const APInt &DemandedElts, KnownBits &Known, 409 KnownBits &Known2, unsigned Depth, 410 const Query &Q) { 411 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 412 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 413 414 bool isKnownNegative = false; 415 bool isKnownNonNegative = false; 416 // If the multiplication is known not to overflow, compute the sign bit. 417 if (NSW) { 418 if (Op0 == Op1) { 419 // The product of a number with itself is non-negative. 420 isKnownNonNegative = true; 421 } else { 422 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 423 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 424 bool isKnownNegativeOp1 = Known.isNegative(); 425 bool isKnownNegativeOp0 = Known2.isNegative(); 426 // The product of two numbers with the same sign is non-negative. 427 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 428 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 429 // The product of a negative number and a non-negative number is either 430 // negative or zero. 431 if (!isKnownNonNegative) 432 isKnownNegative = 433 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 434 Known2.isNonZero()) || 435 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 436 } 437 } 438 439 Known = KnownBits::mul(Known, Known2); 440 441 // Only make use of no-wrap flags if we failed to compute the sign bit 442 // directly. This matters if the multiplication always overflows, in 443 // which case we prefer to follow the result of the direct computation, 444 // though as the program is invoking undefined behaviour we can choose 445 // whatever we like here. 446 if (isKnownNonNegative && !Known.isNegative()) 447 Known.makeNonNegative(); 448 else if (isKnownNegative && !Known.isNonNegative()) 449 Known.makeNegative(); 450 } 451 452 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 453 KnownBits &Known) { 454 unsigned BitWidth = Known.getBitWidth(); 455 unsigned NumRanges = Ranges.getNumOperands() / 2; 456 assert(NumRanges >= 1); 457 458 Known.Zero.setAllBits(); 459 Known.One.setAllBits(); 460 461 for (unsigned i = 0; i < NumRanges; ++i) { 462 ConstantInt *Lower = 463 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 464 ConstantInt *Upper = 465 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 466 ConstantRange Range(Lower->getValue(), Upper->getValue()); 467 468 // The first CommonPrefixBits of all values in Range are equal. 469 unsigned CommonPrefixBits = 470 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 471 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 472 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 473 Known.One &= UnsignedMax & Mask; 474 Known.Zero &= ~UnsignedMax & Mask; 475 } 476 } 477 478 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 479 SmallVector<const Value *, 16> WorkSet(1, I); 480 SmallPtrSet<const Value *, 32> Visited; 481 SmallPtrSet<const Value *, 16> EphValues; 482 483 // The instruction defining an assumption's condition itself is always 484 // considered ephemeral to that assumption (even if it has other 485 // non-ephemeral users). See r246696's test case for an example. 486 if (is_contained(I->operands(), E)) 487 return true; 488 489 while (!WorkSet.empty()) { 490 const Value *V = WorkSet.pop_back_val(); 491 if (!Visited.insert(V).second) 492 continue; 493 494 // If all uses of this value are ephemeral, then so is this value. 495 if (llvm::all_of(V->users(), [&](const User *U) { 496 return EphValues.count(U); 497 })) { 498 if (V == E) 499 return true; 500 501 if (V == I || isSafeToSpeculativelyExecute(V)) { 502 EphValues.insert(V); 503 if (const User *U = dyn_cast<User>(V)) 504 append_range(WorkSet, U->operands()); 505 } 506 } 507 } 508 509 return false; 510 } 511 512 // Is this an intrinsic that cannot be speculated but also cannot trap? 513 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 514 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 515 return CI->isAssumeLikeIntrinsic(); 516 517 return false; 518 } 519 520 bool llvm::isValidAssumeForContext(const Instruction *Inv, 521 const Instruction *CxtI, 522 const DominatorTree *DT) { 523 // There are two restrictions on the use of an assume: 524 // 1. The assume must dominate the context (or the control flow must 525 // reach the assume whenever it reaches the context). 526 // 2. The context must not be in the assume's set of ephemeral values 527 // (otherwise we will use the assume to prove that the condition 528 // feeding the assume is trivially true, thus causing the removal of 529 // the assume). 530 531 if (Inv->getParent() == CxtI->getParent()) { 532 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 533 // in the BB. 534 if (Inv->comesBefore(CxtI)) 535 return true; 536 537 // Don't let an assume affect itself - this would cause the problems 538 // `isEphemeralValueOf` is trying to prevent, and it would also make 539 // the loop below go out of bounds. 540 if (Inv == CxtI) 541 return false; 542 543 // The context comes first, but they're both in the same block. 544 // Make sure there is nothing in between that might interrupt 545 // the control flow, not even CxtI itself. 546 // We limit the scan distance between the assume and its context instruction 547 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 548 // it can be adjusted if needed (could be turned into a cl::opt). 549 unsigned ScanLimit = 15; 550 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 551 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 552 return false; 553 554 return !isEphemeralValueOf(Inv, CxtI); 555 } 556 557 // Inv and CxtI are in different blocks. 558 if (DT) { 559 if (DT->dominates(Inv, CxtI)) 560 return true; 561 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 562 // We don't have a DT, but this trivially dominates. 563 return true; 564 } 565 566 return false; 567 } 568 569 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 570 // v u> y implies v != 0. 571 if (Pred == ICmpInst::ICMP_UGT) 572 return true; 573 574 // Special-case v != 0 to also handle v != null. 575 if (Pred == ICmpInst::ICMP_NE) 576 return match(RHS, m_Zero()); 577 578 // All other predicates - rely on generic ConstantRange handling. 579 const APInt *C; 580 if (!match(RHS, m_APInt(C))) 581 return false; 582 583 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 584 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 585 } 586 587 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 588 // Use of assumptions is context-sensitive. If we don't have a context, we 589 // cannot use them! 590 if (!Q.AC || !Q.CxtI) 591 return false; 592 593 if (Q.CxtI && V->getType()->isPointerTy()) { 594 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 595 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 596 V->getType()->getPointerAddressSpace())) 597 AttrKinds.push_back(Attribute::Dereferenceable); 598 599 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 600 return true; 601 } 602 603 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 604 if (!AssumeVH) 605 continue; 606 CallInst *I = cast<CallInst>(AssumeVH); 607 assert(I->getFunction() == Q.CxtI->getFunction() && 608 "Got assumption for the wrong function!"); 609 610 // Warning: This loop can end up being somewhat performance sensitive. 611 // We're running this loop for once for each value queried resulting in a 612 // runtime of ~O(#assumes * #values). 613 614 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 615 "must be an assume intrinsic"); 616 617 Value *RHS; 618 CmpInst::Predicate Pred; 619 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 620 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 621 return false; 622 623 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 624 return true; 625 } 626 627 return false; 628 } 629 630 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 631 unsigned Depth, const Query &Q) { 632 // Use of assumptions is context-sensitive. If we don't have a context, we 633 // cannot use them! 634 if (!Q.AC || !Q.CxtI) 635 return; 636 637 unsigned BitWidth = Known.getBitWidth(); 638 639 // Refine Known set if the pointer alignment is set by assume bundles. 640 if (V->getType()->isPointerTy()) { 641 if (RetainedKnowledge RK = getKnowledgeValidInContext( 642 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 643 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 644 } 645 } 646 647 // Note that the patterns below need to be kept in sync with the code 648 // in AssumptionCache::updateAffectedValues. 649 650 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 651 if (!AssumeVH) 652 continue; 653 CallInst *I = cast<CallInst>(AssumeVH); 654 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 655 "Got assumption for the wrong function!"); 656 657 // Warning: This loop can end up being somewhat performance sensitive. 658 // We're running this loop for once for each value queried resulting in a 659 // runtime of ~O(#assumes * #values). 660 661 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 662 "must be an assume intrinsic"); 663 664 Value *Arg = I->getArgOperand(0); 665 666 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 667 assert(BitWidth == 1 && "assume operand is not i1?"); 668 Known.setAllOnes(); 669 return; 670 } 671 if (match(Arg, m_Not(m_Specific(V))) && 672 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 673 assert(BitWidth == 1 && "assume operand is not i1?"); 674 Known.setAllZero(); 675 return; 676 } 677 678 // The remaining tests are all recursive, so bail out if we hit the limit. 679 if (Depth == MaxAnalysisRecursionDepth) 680 continue; 681 682 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 683 if (!Cmp) 684 continue; 685 686 // We are attempting to compute known bits for the operands of an assume. 687 // Do not try to use other assumptions for those recursive calls because 688 // that can lead to mutual recursion and a compile-time explosion. 689 // An example of the mutual recursion: computeKnownBits can call 690 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 691 // and so on. 692 Query QueryNoAC = Q; 693 QueryNoAC.AC = nullptr; 694 695 // Note that ptrtoint may change the bitwidth. 696 Value *A, *B; 697 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 698 699 CmpInst::Predicate Pred; 700 uint64_t C; 701 switch (Cmp->getPredicate()) { 702 default: 703 break; 704 case ICmpInst::ICMP_EQ: 705 // assume(v = a) 706 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 KnownBits RHSKnown = 709 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 710 Known.Zero |= RHSKnown.Zero; 711 Known.One |= RHSKnown.One; 712 // assume(v & b = a) 713 } else if (match(Cmp, 714 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 715 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 716 KnownBits RHSKnown = 717 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 718 KnownBits MaskKnown = 719 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 720 721 // For those bits in the mask that are known to be one, we can propagate 722 // known bits from the RHS to V. 723 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 724 Known.One |= RHSKnown.One & MaskKnown.One; 725 // assume(~(v & b) = a) 726 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 727 m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 731 KnownBits MaskKnown = 732 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 733 734 // For those bits in the mask that are known to be one, we can propagate 735 // inverted known bits from the RHS to V. 736 Known.Zero |= RHSKnown.One & MaskKnown.One; 737 Known.One |= RHSKnown.Zero & MaskKnown.One; 738 // assume(v | b = a) 739 } else if (match(Cmp, 740 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 741 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 742 KnownBits RHSKnown = 743 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 744 KnownBits BKnown = 745 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 746 747 // For those bits in B that are known to be zero, we can propagate known 748 // bits from the RHS to V. 749 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 750 Known.One |= RHSKnown.One & BKnown.Zero; 751 // assume(~(v | b) = a) 752 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 753 m_Value(A))) && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 KnownBits RHSKnown = 756 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 757 KnownBits BKnown = 758 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 759 760 // For those bits in B that are known to be zero, we can propagate 761 // inverted known bits from the RHS to V. 762 Known.Zero |= RHSKnown.One & BKnown.Zero; 763 Known.One |= RHSKnown.Zero & BKnown.Zero; 764 // assume(v ^ b = a) 765 } else if (match(Cmp, 766 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 768 KnownBits RHSKnown = 769 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 770 KnownBits BKnown = 771 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 772 773 // For those bits in B that are known to be zero, we can propagate known 774 // bits from the RHS to V. For those bits in B that are known to be one, 775 // we can propagate inverted known bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 Known.Zero |= RHSKnown.One & BKnown.One; 779 Known.One |= RHSKnown.Zero & BKnown.One; 780 // assume(~(v ^ b) = a) 781 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 782 m_Value(A))) && 783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 784 KnownBits RHSKnown = 785 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 786 KnownBits BKnown = 787 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 788 789 // For those bits in B that are known to be zero, we can propagate 790 // inverted known bits from the RHS to V. For those bits in B that are 791 // known to be one, we can propagate known bits from the RHS to V. 792 Known.Zero |= RHSKnown.One & BKnown.Zero; 793 Known.One |= RHSKnown.Zero & BKnown.Zero; 794 Known.Zero |= RHSKnown.Zero & BKnown.One; 795 Known.One |= RHSKnown.One & BKnown.One; 796 // assume(v << c = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 800 KnownBits RHSKnown = 801 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 802 803 // For those bits in RHS that are known, we can propagate them to known 804 // bits in V shifted to the right by C. 805 RHSKnown.Zero.lshrInPlace(C); 806 Known.Zero |= RHSKnown.Zero; 807 RHSKnown.One.lshrInPlace(C); 808 Known.One |= RHSKnown.One; 809 // assume(~(v << c) = a) 810 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 811 m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 813 KnownBits RHSKnown = 814 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 815 // For those bits in RHS that are known, we can propagate them inverted 816 // to known bits in V shifted to the right by C. 817 RHSKnown.One.lshrInPlace(C); 818 Known.Zero |= RHSKnown.One; 819 RHSKnown.Zero.lshrInPlace(C); 820 Known.One |= RHSKnown.Zero; 821 // assume(v >> c = a) 822 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 823 m_Value(A))) && 824 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 825 KnownBits RHSKnown = 826 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 827 // For those bits in RHS that are known, we can propagate them to known 828 // bits in V shifted to the right by C. 829 Known.Zero |= RHSKnown.Zero << C; 830 Known.One |= RHSKnown.One << C; 831 // assume(~(v >> c) = a) 832 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 833 m_Value(A))) && 834 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 835 KnownBits RHSKnown = 836 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 837 // For those bits in RHS that are known, we can propagate them inverted 838 // to known bits in V shifted to the right by C. 839 Known.Zero |= RHSKnown.One << C; 840 Known.One |= RHSKnown.Zero << C; 841 } 842 break; 843 case ICmpInst::ICMP_SGE: 844 // assume(v >=_s c) where c is non-negative 845 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 846 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 847 KnownBits RHSKnown = 848 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 849 850 if (RHSKnown.isNonNegative()) { 851 // We know that the sign bit is zero. 852 Known.makeNonNegative(); 853 } 854 } 855 break; 856 case ICmpInst::ICMP_SGT: 857 // assume(v >_s c) where c is at least -1. 858 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 859 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 860 KnownBits RHSKnown = 861 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 862 863 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 864 // We know that the sign bit is zero. 865 Known.makeNonNegative(); 866 } 867 } 868 break; 869 case ICmpInst::ICMP_SLE: 870 // assume(v <=_s c) where c is negative 871 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 872 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 873 KnownBits RHSKnown = 874 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 875 876 if (RHSKnown.isNegative()) { 877 // We know that the sign bit is one. 878 Known.makeNegative(); 879 } 880 } 881 break; 882 case ICmpInst::ICMP_SLT: 883 // assume(v <_s c) where c is non-positive 884 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 885 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 886 KnownBits RHSKnown = 887 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 888 889 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 890 // We know that the sign bit is one. 891 Known.makeNegative(); 892 } 893 } 894 break; 895 case ICmpInst::ICMP_ULE: 896 // assume(v <=_u c) 897 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 898 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 899 KnownBits RHSKnown = 900 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 901 902 // Whatever high bits in c are zero are known to be zero. 903 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 904 } 905 break; 906 case ICmpInst::ICMP_ULT: 907 // assume(v <_u c) 908 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 909 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 910 KnownBits RHSKnown = 911 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 912 913 // If the RHS is known zero, then this assumption must be wrong (nothing 914 // is unsigned less than zero). Signal a conflict and get out of here. 915 if (RHSKnown.isZero()) { 916 Known.Zero.setAllBits(); 917 Known.One.setAllBits(); 918 break; 919 } 920 921 // Whatever high bits in c are zero are known to be zero (if c is a power 922 // of 2, then one more). 923 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 925 else 926 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 927 } 928 break; 929 } 930 } 931 932 // If assumptions conflict with each other or previous known bits, then we 933 // have a logical fallacy. It's possible that the assumption is not reachable, 934 // so this isn't a real bug. On the other hand, the program may have undefined 935 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 936 // clear out the known bits, try to warn the user, and hope for the best. 937 if (Known.Zero.intersects(Known.One)) { 938 Known.resetAll(); 939 940 if (Q.ORE) 941 Q.ORE->emit([&]() { 942 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 943 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 944 CxtI) 945 << "Detected conflicting code assumptions. Program may " 946 "have undefined behavior, or compiler may have " 947 "internal error."; 948 }); 949 } 950 } 951 952 /// Compute known bits from a shift operator, including those with a 953 /// non-constant shift amount. Known is the output of this function. Known2 is a 954 /// pre-allocated temporary with the same bit width as Known and on return 955 /// contains the known bit of the shift value source. KF is an 956 /// operator-specific function that, given the known-bits and a shift amount, 957 /// compute the implied known-bits of the shift operator's result respectively 958 /// for that shift amount. The results from calling KF are conservatively 959 /// combined for all permitted shift amounts. 960 static void computeKnownBitsFromShiftOperator( 961 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 962 KnownBits &Known2, unsigned Depth, const Query &Q, 963 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 964 unsigned BitWidth = Known.getBitWidth(); 965 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 966 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 967 968 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 969 // BitWidth > 64 and any upper bits are known, we'll end up returning the 970 // limit value (which implies all bits are known). 971 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 972 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 973 bool ShiftAmtIsConstant = Known.isConstant(); 974 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 975 976 if (ShiftAmtIsConstant) { 977 Known = KF(Known2, Known); 978 979 // If the known bits conflict, this must be an overflowing left shift, so 980 // the shift result is poison. We can return anything we want. Choose 0 for 981 // the best folding opportunity. 982 if (Known.hasConflict()) 983 Known.setAllZero(); 984 985 return; 986 } 987 988 // If the shift amount could be greater than or equal to the bit-width of the 989 // LHS, the value could be poison, but bail out because the check below is 990 // expensive. 991 // TODO: Should we just carry on? 992 if (MaxShiftAmtIsOutOfRange) { 993 Known.resetAll(); 994 return; 995 } 996 997 // It would be more-clearly correct to use the two temporaries for this 998 // calculation. Reusing the APInts here to prevent unnecessary allocations. 999 Known.resetAll(); 1000 1001 // If we know the shifter operand is nonzero, we can sometimes infer more 1002 // known bits. However this is expensive to compute, so be lazy about it and 1003 // only compute it when absolutely necessary. 1004 Optional<bool> ShifterOperandIsNonZero; 1005 1006 // Early exit if we can't constrain any well-defined shift amount. 1007 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1008 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1009 ShifterOperandIsNonZero = 1010 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1011 if (!*ShifterOperandIsNonZero) 1012 return; 1013 } 1014 1015 Known.Zero.setAllBits(); 1016 Known.One.setAllBits(); 1017 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1018 // Combine the shifted known input bits only for those shift amounts 1019 // compatible with its known constraints. 1020 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1021 continue; 1022 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1023 continue; 1024 // If we know the shifter is nonzero, we may be able to infer more known 1025 // bits. This check is sunk down as far as possible to avoid the expensive 1026 // call to isKnownNonZero if the cheaper checks above fail. 1027 if (ShiftAmt == 0) { 1028 if (!ShifterOperandIsNonZero.hasValue()) 1029 ShifterOperandIsNonZero = 1030 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1031 if (*ShifterOperandIsNonZero) 1032 continue; 1033 } 1034 1035 Known = KnownBits::commonBits( 1036 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1037 } 1038 1039 // If the known bits conflict, the result is poison. Return a 0 and hope the 1040 // caller can further optimize that. 1041 if (Known.hasConflict()) 1042 Known.setAllZero(); 1043 } 1044 1045 static void computeKnownBitsFromOperator(const Operator *I, 1046 const APInt &DemandedElts, 1047 KnownBits &Known, unsigned Depth, 1048 const Query &Q) { 1049 unsigned BitWidth = Known.getBitWidth(); 1050 1051 KnownBits Known2(BitWidth); 1052 switch (I->getOpcode()) { 1053 default: break; 1054 case Instruction::Load: 1055 if (MDNode *MD = 1056 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1057 computeKnownBitsFromRangeMetadata(*MD, Known); 1058 break; 1059 case Instruction::And: { 1060 // If either the LHS or the RHS are Zero, the result is zero. 1061 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1063 1064 Known &= Known2; 1065 1066 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1067 // here we handle the more general case of adding any odd number by 1068 // matching the form add(x, add(x, y)) where y is odd. 1069 // TODO: This could be generalized to clearing any bit set in y where the 1070 // following bit is known to be unset in y. 1071 Value *X = nullptr, *Y = nullptr; 1072 if (!Known.Zero[0] && !Known.One[0] && 1073 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1074 Known2.resetAll(); 1075 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1076 if (Known2.countMinTrailingOnes() > 0) 1077 Known.Zero.setBit(0); 1078 } 1079 break; 1080 } 1081 case Instruction::Or: 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known |= Known2; 1086 break; 1087 case Instruction::Xor: 1088 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1089 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1090 1091 Known ^= Known2; 1092 break; 1093 case Instruction::Mul: { 1094 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1095 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1096 Known, Known2, Depth, Q); 1097 break; 1098 } 1099 case Instruction::UDiv: { 1100 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1101 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1102 Known = KnownBits::udiv(Known, Known2); 1103 break; 1104 } 1105 case Instruction::Select: { 1106 const Value *LHS = nullptr, *RHS = nullptr; 1107 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1108 if (SelectPatternResult::isMinOrMax(SPF)) { 1109 computeKnownBits(RHS, Known, Depth + 1, Q); 1110 computeKnownBits(LHS, Known2, Depth + 1, Q); 1111 switch (SPF) { 1112 default: 1113 llvm_unreachable("Unhandled select pattern flavor!"); 1114 case SPF_SMAX: 1115 Known = KnownBits::smax(Known, Known2); 1116 break; 1117 case SPF_SMIN: 1118 Known = KnownBits::smin(Known, Known2); 1119 break; 1120 case SPF_UMAX: 1121 Known = KnownBits::umax(Known, Known2); 1122 break; 1123 case SPF_UMIN: 1124 Known = KnownBits::umin(Known, Known2); 1125 break; 1126 } 1127 break; 1128 } 1129 1130 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1131 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1132 1133 // Only known if known in both the LHS and RHS. 1134 Known = KnownBits::commonBits(Known, Known2); 1135 1136 if (SPF == SPF_ABS) { 1137 // RHS from matchSelectPattern returns the negation part of abs pattern. 1138 // If the negate has an NSW flag we can assume the sign bit of the result 1139 // will be 0 because that makes abs(INT_MIN) undefined. 1140 if (match(RHS, m_Neg(m_Specific(LHS))) && 1141 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1142 Known.Zero.setSignBit(); 1143 } 1144 1145 break; 1146 } 1147 case Instruction::FPTrunc: 1148 case Instruction::FPExt: 1149 case Instruction::FPToUI: 1150 case Instruction::FPToSI: 1151 case Instruction::SIToFP: 1152 case Instruction::UIToFP: 1153 break; // Can't work with floating point. 1154 case Instruction::PtrToInt: 1155 case Instruction::IntToPtr: 1156 // Fall through and handle them the same as zext/trunc. 1157 LLVM_FALLTHROUGH; 1158 case Instruction::ZExt: 1159 case Instruction::Trunc: { 1160 Type *SrcTy = I->getOperand(0)->getType(); 1161 1162 unsigned SrcBitWidth; 1163 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1164 // which fall through here. 1165 Type *ScalarTy = SrcTy->getScalarType(); 1166 SrcBitWidth = ScalarTy->isPointerTy() ? 1167 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1168 Q.DL.getTypeSizeInBits(ScalarTy); 1169 1170 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1171 Known = Known.anyextOrTrunc(SrcBitWidth); 1172 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1173 Known = Known.zextOrTrunc(BitWidth); 1174 break; 1175 } 1176 case Instruction::BitCast: { 1177 Type *SrcTy = I->getOperand(0)->getType(); 1178 if (SrcTy->isIntOrPtrTy() && 1179 // TODO: For now, not handling conversions like: 1180 // (bitcast i64 %x to <2 x i32>) 1181 !I->getType()->isVectorTy()) { 1182 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1183 break; 1184 } 1185 break; 1186 } 1187 case Instruction::SExt: { 1188 // Compute the bits in the result that are not present in the input. 1189 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1190 1191 Known = Known.trunc(SrcBitWidth); 1192 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1193 // If the sign bit of the input is known set or clear, then we know the 1194 // top bits of the result. 1195 Known = Known.sext(BitWidth); 1196 break; 1197 } 1198 case Instruction::Shl: { 1199 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1200 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1201 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1202 // If this shift has "nsw" keyword, then the result is either a poison 1203 // value or has the same sign bit as the first operand. 1204 if (NSW) { 1205 if (KnownVal.Zero.isSignBitSet()) 1206 Result.Zero.setSignBit(); 1207 if (KnownVal.One.isSignBitSet()) 1208 Result.One.setSignBit(); 1209 } 1210 return Result; 1211 }; 1212 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1213 KF); 1214 // Trailing zeros of a right-shifted constant never decrease. 1215 const APInt *C; 1216 if (match(I->getOperand(0), m_APInt(C))) 1217 Known.Zero.setLowBits(C->countTrailingZeros()); 1218 break; 1219 } 1220 case Instruction::LShr: { 1221 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1222 return KnownBits::lshr(KnownVal, KnownAmt); 1223 }; 1224 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1225 KF); 1226 // Leading zeros of a left-shifted constant never decrease. 1227 const APInt *C; 1228 if (match(I->getOperand(0), m_APInt(C))) 1229 Known.Zero.setHighBits(C->countLeadingZeros()); 1230 break; 1231 } 1232 case Instruction::AShr: { 1233 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1234 return KnownBits::ashr(KnownVal, KnownAmt); 1235 }; 1236 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1237 KF); 1238 break; 1239 } 1240 case Instruction::Sub: { 1241 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1242 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1243 DemandedElts, Known, Known2, Depth, Q); 1244 break; 1245 } 1246 case Instruction::Add: { 1247 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1248 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1249 DemandedElts, Known, Known2, Depth, Q); 1250 break; 1251 } 1252 case Instruction::SRem: 1253 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1254 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1255 Known = KnownBits::srem(Known, Known2); 1256 break; 1257 1258 case Instruction::URem: 1259 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1260 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1261 Known = KnownBits::urem(Known, Known2); 1262 break; 1263 case Instruction::Alloca: 1264 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1265 break; 1266 case Instruction::GetElementPtr: { 1267 // Analyze all of the subscripts of this getelementptr instruction 1268 // to determine if we can prove known low zero bits. 1269 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1270 // Accumulate the constant indices in a separate variable 1271 // to minimize the number of calls to computeForAddSub. 1272 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1273 1274 gep_type_iterator GTI = gep_type_begin(I); 1275 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1276 // TrailZ can only become smaller, short-circuit if we hit zero. 1277 if (Known.isUnknown()) 1278 break; 1279 1280 Value *Index = I->getOperand(i); 1281 1282 // Handle case when index is zero. 1283 Constant *CIndex = dyn_cast<Constant>(Index); 1284 if (CIndex && CIndex->isZeroValue()) 1285 continue; 1286 1287 if (StructType *STy = GTI.getStructTypeOrNull()) { 1288 // Handle struct member offset arithmetic. 1289 1290 assert(CIndex && 1291 "Access to structure field must be known at compile time"); 1292 1293 if (CIndex->getType()->isVectorTy()) 1294 Index = CIndex->getSplatValue(); 1295 1296 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1297 const StructLayout *SL = Q.DL.getStructLayout(STy); 1298 uint64_t Offset = SL->getElementOffset(Idx); 1299 AccConstIndices += Offset; 1300 continue; 1301 } 1302 1303 // Handle array index arithmetic. 1304 Type *IndexedTy = GTI.getIndexedType(); 1305 if (!IndexedTy->isSized()) { 1306 Known.resetAll(); 1307 break; 1308 } 1309 1310 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1311 KnownBits IndexBits(IndexBitWidth); 1312 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1313 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1314 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1315 KnownBits ScalingFactor(IndexBitWidth); 1316 // Multiply by current sizeof type. 1317 // &A[i] == A + i * sizeof(*A[i]). 1318 if (IndexTypeSize.isScalable()) { 1319 // For scalable types the only thing we know about sizeof is 1320 // that this is a multiple of the minimum size. 1321 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1322 } else if (IndexBits.isConstant()) { 1323 APInt IndexConst = IndexBits.getConstant(); 1324 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1325 IndexConst *= ScalingFactor; 1326 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1327 continue; 1328 } else { 1329 ScalingFactor = 1330 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1331 } 1332 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1333 1334 // If the offsets have a different width from the pointer, according 1335 // to the language reference we need to sign-extend or truncate them 1336 // to the width of the pointer. 1337 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1338 1339 // Note that inbounds does *not* guarantee nsw for the addition, as only 1340 // the offset is signed, while the base address is unsigned. 1341 Known = KnownBits::computeForAddSub( 1342 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1343 } 1344 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1345 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1346 Known = KnownBits::computeForAddSub( 1347 /*Add=*/true, /*NSW=*/false, Known, Index); 1348 } 1349 break; 1350 } 1351 case Instruction::PHI: { 1352 const PHINode *P = cast<PHINode>(I); 1353 BinaryOperator *BO = nullptr; 1354 Value *R = nullptr, *L = nullptr; 1355 if (matchSimpleRecurrence(P, BO, R, L)) { 1356 // Handle the case of a simple two-predecessor recurrence PHI. 1357 // There's a lot more that could theoretically be done here, but 1358 // this is sufficient to catch some interesting cases. 1359 unsigned Opcode = BO->getOpcode(); 1360 1361 // If this is a shift recurrence, we know the bits being shifted in. 1362 // We can combine that with information about the start value of the 1363 // recurrence to conclude facts about the result. 1364 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1365 Opcode == Instruction::Shl) && 1366 BO->getOperand(0) == I) { 1367 1368 // We have matched a recurrence of the form: 1369 // %iv = [R, %entry], [%iv.next, %backedge] 1370 // %iv.next = shift_op %iv, L 1371 1372 // Recurse with the phi context to avoid concern about whether facts 1373 // inferred hold at original context instruction. TODO: It may be 1374 // correct to use the original context. IF warranted, explore and 1375 // add sufficient tests to cover. 1376 Query RecQ = Q; 1377 RecQ.CxtI = P; 1378 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1379 switch (Opcode) { 1380 case Instruction::Shl: 1381 // A shl recurrence will only increase the tailing zeros 1382 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1383 break; 1384 case Instruction::LShr: 1385 // A lshr recurrence will preserve the leading zeros of the 1386 // start value 1387 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1388 break; 1389 case Instruction::AShr: 1390 // An ashr recurrence will extend the initial sign bit 1391 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1392 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1393 break; 1394 }; 1395 } 1396 1397 // Check for operations that have the property that if 1398 // both their operands have low zero bits, the result 1399 // will have low zero bits. 1400 if (Opcode == Instruction::Add || 1401 Opcode == Instruction::Sub || 1402 Opcode == Instruction::And || 1403 Opcode == Instruction::Or || 1404 Opcode == Instruction::Mul) { 1405 // Change the context instruction to the "edge" that flows into the 1406 // phi. This is important because that is where the value is actually 1407 // "evaluated" even though it is used later somewhere else. (see also 1408 // D69571). 1409 Query RecQ = Q; 1410 1411 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1412 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1413 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1414 1415 // Ok, we have a PHI of the form L op= R. Check for low 1416 // zero bits. 1417 RecQ.CxtI = RInst; 1418 computeKnownBits(R, Known2, Depth + 1, RecQ); 1419 1420 // We need to take the minimum number of known bits 1421 KnownBits Known3(BitWidth); 1422 RecQ.CxtI = LInst; 1423 computeKnownBits(L, Known3, Depth + 1, RecQ); 1424 1425 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1426 Known3.countMinTrailingZeros())); 1427 1428 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1429 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1430 // If initial value of recurrence is nonnegative, and we are adding 1431 // a nonnegative number with nsw, the result can only be nonnegative 1432 // or poison value regardless of the number of times we execute the 1433 // add in phi recurrence. If initial value is negative and we are 1434 // adding a negative number with nsw, the result can only be 1435 // negative or poison value. Similar arguments apply to sub and mul. 1436 // 1437 // (add non-negative, non-negative) --> non-negative 1438 // (add negative, negative) --> negative 1439 if (Opcode == Instruction::Add) { 1440 if (Known2.isNonNegative() && Known3.isNonNegative()) 1441 Known.makeNonNegative(); 1442 else if (Known2.isNegative() && Known3.isNegative()) 1443 Known.makeNegative(); 1444 } 1445 1446 // (sub nsw non-negative, negative) --> non-negative 1447 // (sub nsw negative, non-negative) --> negative 1448 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1449 if (Known2.isNonNegative() && Known3.isNegative()) 1450 Known.makeNonNegative(); 1451 else if (Known2.isNegative() && Known3.isNonNegative()) 1452 Known.makeNegative(); 1453 } 1454 1455 // (mul nsw non-negative, non-negative) --> non-negative 1456 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1457 Known3.isNonNegative()) 1458 Known.makeNonNegative(); 1459 } 1460 1461 break; 1462 } 1463 } 1464 1465 // Unreachable blocks may have zero-operand PHI nodes. 1466 if (P->getNumIncomingValues() == 0) 1467 break; 1468 1469 // Otherwise take the unions of the known bit sets of the operands, 1470 // taking conservative care to avoid excessive recursion. 1471 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1472 // Skip if every incoming value references to ourself. 1473 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1474 break; 1475 1476 Known.Zero.setAllBits(); 1477 Known.One.setAllBits(); 1478 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1479 Value *IncValue = P->getIncomingValue(u); 1480 // Skip direct self references. 1481 if (IncValue == P) continue; 1482 1483 // Change the context instruction to the "edge" that flows into the 1484 // phi. This is important because that is where the value is actually 1485 // "evaluated" even though it is used later somewhere else. (see also 1486 // D69571). 1487 Query RecQ = Q; 1488 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1489 1490 Known2 = KnownBits(BitWidth); 1491 // Recurse, but cap the recursion to one level, because we don't 1492 // want to waste time spinning around in loops. 1493 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1494 Known = KnownBits::commonBits(Known, Known2); 1495 // If all bits have been ruled out, there's no need to check 1496 // more operands. 1497 if (Known.isUnknown()) 1498 break; 1499 } 1500 } 1501 break; 1502 } 1503 case Instruction::Call: 1504 case Instruction::Invoke: 1505 // If range metadata is attached to this call, set known bits from that, 1506 // and then intersect with known bits based on other properties of the 1507 // function. 1508 if (MDNode *MD = 1509 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1510 computeKnownBitsFromRangeMetadata(*MD, Known); 1511 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1512 computeKnownBits(RV, Known2, Depth + 1, Q); 1513 Known.Zero |= Known2.Zero; 1514 Known.One |= Known2.One; 1515 } 1516 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1517 switch (II->getIntrinsicID()) { 1518 default: break; 1519 case Intrinsic::abs: { 1520 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1521 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1522 Known = Known2.abs(IntMinIsPoison); 1523 break; 1524 } 1525 case Intrinsic::bitreverse: 1526 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1527 Known.Zero |= Known2.Zero.reverseBits(); 1528 Known.One |= Known2.One.reverseBits(); 1529 break; 1530 case Intrinsic::bswap: 1531 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1532 Known.Zero |= Known2.Zero.byteSwap(); 1533 Known.One |= Known2.One.byteSwap(); 1534 break; 1535 case Intrinsic::ctlz: { 1536 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1537 // If we have a known 1, its position is our upper bound. 1538 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1539 // If this call is undefined for 0, the result will be less than 2^n. 1540 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1541 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1542 unsigned LowBits = Log2_32(PossibleLZ)+1; 1543 Known.Zero.setBitsFrom(LowBits); 1544 break; 1545 } 1546 case Intrinsic::cttz: { 1547 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1548 // If we have a known 1, its position is our upper bound. 1549 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1550 // If this call is undefined for 0, the result will be less than 2^n. 1551 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1552 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1553 unsigned LowBits = Log2_32(PossibleTZ)+1; 1554 Known.Zero.setBitsFrom(LowBits); 1555 break; 1556 } 1557 case Intrinsic::ctpop: { 1558 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1559 // We can bound the space the count needs. Also, bits known to be zero 1560 // can't contribute to the population. 1561 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1562 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1563 Known.Zero.setBitsFrom(LowBits); 1564 // TODO: we could bound KnownOne using the lower bound on the number 1565 // of bits which might be set provided by popcnt KnownOne2. 1566 break; 1567 } 1568 case Intrinsic::fshr: 1569 case Intrinsic::fshl: { 1570 const APInt *SA; 1571 if (!match(I->getOperand(2), m_APInt(SA))) 1572 break; 1573 1574 // Normalize to funnel shift left. 1575 uint64_t ShiftAmt = SA->urem(BitWidth); 1576 if (II->getIntrinsicID() == Intrinsic::fshr) 1577 ShiftAmt = BitWidth - ShiftAmt; 1578 1579 KnownBits Known3(BitWidth); 1580 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1581 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1582 1583 Known.Zero = 1584 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1585 Known.One = 1586 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1587 break; 1588 } 1589 case Intrinsic::uadd_sat: 1590 case Intrinsic::usub_sat: { 1591 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1592 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1593 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1594 1595 // Add: Leading ones of either operand are preserved. 1596 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1597 // as leading zeros in the result. 1598 unsigned LeadingKnown; 1599 if (IsAdd) 1600 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1601 Known2.countMinLeadingOnes()); 1602 else 1603 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1604 Known2.countMinLeadingOnes()); 1605 1606 Known = KnownBits::computeForAddSub( 1607 IsAdd, /* NSW */ false, Known, Known2); 1608 1609 // We select between the operation result and all-ones/zero 1610 // respectively, so we can preserve known ones/zeros. 1611 if (IsAdd) { 1612 Known.One.setHighBits(LeadingKnown); 1613 Known.Zero.clearAllBits(); 1614 } else { 1615 Known.Zero.setHighBits(LeadingKnown); 1616 Known.One.clearAllBits(); 1617 } 1618 break; 1619 } 1620 case Intrinsic::umin: 1621 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1622 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1623 Known = KnownBits::umin(Known, Known2); 1624 break; 1625 case Intrinsic::umax: 1626 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1627 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1628 Known = KnownBits::umax(Known, Known2); 1629 break; 1630 case Intrinsic::smin: 1631 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1632 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1633 Known = KnownBits::smin(Known, Known2); 1634 break; 1635 case Intrinsic::smax: 1636 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1637 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1638 Known = KnownBits::smax(Known, Known2); 1639 break; 1640 case Intrinsic::x86_sse42_crc32_64_64: 1641 Known.Zero.setBitsFrom(32); 1642 break; 1643 case Intrinsic::riscv_vsetvli: 1644 case Intrinsic::riscv_vsetvlimax: 1645 // Assume that VL output is positive and would fit in an int32_t. 1646 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1647 if (BitWidth >= 32) 1648 Known.Zero.setBitsFrom(31); 1649 break; 1650 } 1651 } 1652 break; 1653 case Instruction::ShuffleVector: { 1654 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1655 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1656 if (!Shuf) { 1657 Known.resetAll(); 1658 return; 1659 } 1660 // For undef elements, we don't know anything about the common state of 1661 // the shuffle result. 1662 APInt DemandedLHS, DemandedRHS; 1663 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1664 Known.resetAll(); 1665 return; 1666 } 1667 Known.One.setAllBits(); 1668 Known.Zero.setAllBits(); 1669 if (!!DemandedLHS) { 1670 const Value *LHS = Shuf->getOperand(0); 1671 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1672 // If we don't know any bits, early out. 1673 if (Known.isUnknown()) 1674 break; 1675 } 1676 if (!!DemandedRHS) { 1677 const Value *RHS = Shuf->getOperand(1); 1678 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1679 Known = KnownBits::commonBits(Known, Known2); 1680 } 1681 break; 1682 } 1683 case Instruction::InsertElement: { 1684 const Value *Vec = I->getOperand(0); 1685 const Value *Elt = I->getOperand(1); 1686 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1687 // Early out if the index is non-constant or out-of-range. 1688 unsigned NumElts = DemandedElts.getBitWidth(); 1689 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1690 Known.resetAll(); 1691 return; 1692 } 1693 Known.One.setAllBits(); 1694 Known.Zero.setAllBits(); 1695 unsigned EltIdx = CIdx->getZExtValue(); 1696 // Do we demand the inserted element? 1697 if (DemandedElts[EltIdx]) { 1698 computeKnownBits(Elt, Known, Depth + 1, Q); 1699 // If we don't know any bits, early out. 1700 if (Known.isUnknown()) 1701 break; 1702 } 1703 // We don't need the base vector element that has been inserted. 1704 APInt DemandedVecElts = DemandedElts; 1705 DemandedVecElts.clearBit(EltIdx); 1706 if (!!DemandedVecElts) { 1707 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1708 Known = KnownBits::commonBits(Known, Known2); 1709 } 1710 break; 1711 } 1712 case Instruction::ExtractElement: { 1713 // Look through extract element. If the index is non-constant or 1714 // out-of-range demand all elements, otherwise just the extracted element. 1715 const Value *Vec = I->getOperand(0); 1716 const Value *Idx = I->getOperand(1); 1717 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1718 if (isa<ScalableVectorType>(Vec->getType())) { 1719 // FIXME: there's probably *something* we can do with scalable vectors 1720 Known.resetAll(); 1721 break; 1722 } 1723 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1724 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1725 if (CIdx && CIdx->getValue().ult(NumElts)) 1726 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1727 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1728 break; 1729 } 1730 case Instruction::ExtractValue: 1731 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1732 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1733 if (EVI->getNumIndices() != 1) break; 1734 if (EVI->getIndices()[0] == 0) { 1735 switch (II->getIntrinsicID()) { 1736 default: break; 1737 case Intrinsic::uadd_with_overflow: 1738 case Intrinsic::sadd_with_overflow: 1739 computeKnownBitsAddSub(true, II->getArgOperand(0), 1740 II->getArgOperand(1), false, DemandedElts, 1741 Known, Known2, Depth, Q); 1742 break; 1743 case Intrinsic::usub_with_overflow: 1744 case Intrinsic::ssub_with_overflow: 1745 computeKnownBitsAddSub(false, II->getArgOperand(0), 1746 II->getArgOperand(1), false, DemandedElts, 1747 Known, Known2, Depth, Q); 1748 break; 1749 case Intrinsic::umul_with_overflow: 1750 case Intrinsic::smul_with_overflow: 1751 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1752 DemandedElts, Known, Known2, Depth, Q); 1753 break; 1754 } 1755 } 1756 } 1757 break; 1758 case Instruction::Freeze: 1759 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1760 Depth + 1)) 1761 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1762 break; 1763 } 1764 } 1765 1766 /// Determine which bits of V are known to be either zero or one and return 1767 /// them. 1768 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1769 unsigned Depth, const Query &Q) { 1770 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1771 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1772 return Known; 1773 } 1774 1775 /// Determine which bits of V are known to be either zero or one and return 1776 /// them. 1777 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1778 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1779 computeKnownBits(V, Known, Depth, Q); 1780 return Known; 1781 } 1782 1783 /// Determine which bits of V are known to be either zero or one and return 1784 /// them in the Known bit set. 1785 /// 1786 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1787 /// we cannot optimize based on the assumption that it is zero without changing 1788 /// it to be an explicit zero. If we don't change it to zero, other code could 1789 /// optimized based on the contradictory assumption that it is non-zero. 1790 /// Because instcombine aggressively folds operations with undef args anyway, 1791 /// this won't lose us code quality. 1792 /// 1793 /// This function is defined on values with integer type, values with pointer 1794 /// type, and vectors of integers. In the case 1795 /// where V is a vector, known zero, and known one values are the 1796 /// same width as the vector element, and the bit is set only if it is true 1797 /// for all of the demanded elements in the vector specified by DemandedElts. 1798 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1799 KnownBits &Known, unsigned Depth, const Query &Q) { 1800 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1801 // No demanded elts or V is a scalable vector, better to assume we don't 1802 // know anything. 1803 Known.resetAll(); 1804 return; 1805 } 1806 1807 assert(V && "No Value?"); 1808 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1809 1810 #ifndef NDEBUG 1811 Type *Ty = V->getType(); 1812 unsigned BitWidth = Known.getBitWidth(); 1813 1814 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1815 "Not integer or pointer type!"); 1816 1817 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1818 assert( 1819 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1820 "DemandedElt width should equal the fixed vector number of elements"); 1821 } else { 1822 assert(DemandedElts == APInt(1, 1) && 1823 "DemandedElt width should be 1 for scalars"); 1824 } 1825 1826 Type *ScalarTy = Ty->getScalarType(); 1827 if (ScalarTy->isPointerTy()) { 1828 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1829 "V and Known should have same BitWidth"); 1830 } else { 1831 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1832 "V and Known should have same BitWidth"); 1833 } 1834 #endif 1835 1836 const APInt *C; 1837 if (match(V, m_APInt(C))) { 1838 // We know all of the bits for a scalar constant or a splat vector constant! 1839 Known = KnownBits::makeConstant(*C); 1840 return; 1841 } 1842 // Null and aggregate-zero are all-zeros. 1843 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1844 Known.setAllZero(); 1845 return; 1846 } 1847 // Handle a constant vector by taking the intersection of the known bits of 1848 // each element. 1849 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1850 // We know that CDV must be a vector of integers. Take the intersection of 1851 // each element. 1852 Known.Zero.setAllBits(); Known.One.setAllBits(); 1853 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1854 if (!DemandedElts[i]) 1855 continue; 1856 APInt Elt = CDV->getElementAsAPInt(i); 1857 Known.Zero &= ~Elt; 1858 Known.One &= Elt; 1859 } 1860 return; 1861 } 1862 1863 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1864 // We know that CV must be a vector of integers. Take the intersection of 1865 // each element. 1866 Known.Zero.setAllBits(); Known.One.setAllBits(); 1867 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1868 if (!DemandedElts[i]) 1869 continue; 1870 Constant *Element = CV->getAggregateElement(i); 1871 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1872 if (!ElementCI) { 1873 Known.resetAll(); 1874 return; 1875 } 1876 const APInt &Elt = ElementCI->getValue(); 1877 Known.Zero &= ~Elt; 1878 Known.One &= Elt; 1879 } 1880 return; 1881 } 1882 1883 // Start out not knowing anything. 1884 Known.resetAll(); 1885 1886 // We can't imply anything about undefs. 1887 if (isa<UndefValue>(V)) 1888 return; 1889 1890 // There's no point in looking through other users of ConstantData for 1891 // assumptions. Confirm that we've handled them all. 1892 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1893 1894 // All recursive calls that increase depth must come after this. 1895 if (Depth == MaxAnalysisRecursionDepth) 1896 return; 1897 1898 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1899 // the bits of its aliasee. 1900 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1901 if (!GA->isInterposable()) 1902 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1903 return; 1904 } 1905 1906 if (const Operator *I = dyn_cast<Operator>(V)) 1907 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1908 1909 // Aligned pointers have trailing zeros - refine Known.Zero set 1910 if (isa<PointerType>(V->getType())) { 1911 Align Alignment = V->getPointerAlignment(Q.DL); 1912 Known.Zero.setLowBits(Log2(Alignment)); 1913 } 1914 1915 // computeKnownBitsFromAssume strictly refines Known. 1916 // Therefore, we run them after computeKnownBitsFromOperator. 1917 1918 // Check whether a nearby assume intrinsic can determine some known bits. 1919 computeKnownBitsFromAssume(V, Known, Depth, Q); 1920 1921 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1922 } 1923 1924 /// Return true if the given value is known to have exactly one 1925 /// bit set when defined. For vectors return true if every element is known to 1926 /// be a power of two when defined. Supports values with integer or pointer 1927 /// types and vectors of integers. 1928 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1929 const Query &Q) { 1930 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1931 1932 // Attempt to match against constants. 1933 if (OrZero && match(V, m_Power2OrZero())) 1934 return true; 1935 if (match(V, m_Power2())) 1936 return true; 1937 1938 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1939 // it is shifted off the end then the result is undefined. 1940 if (match(V, m_Shl(m_One(), m_Value()))) 1941 return true; 1942 1943 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1944 // the bottom. If it is shifted off the bottom then the result is undefined. 1945 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1946 return true; 1947 1948 // The remaining tests are all recursive, so bail out if we hit the limit. 1949 if (Depth++ == MaxAnalysisRecursionDepth) 1950 return false; 1951 1952 Value *X = nullptr, *Y = nullptr; 1953 // A shift left or a logical shift right of a power of two is a power of two 1954 // or zero. 1955 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1956 match(V, m_LShr(m_Value(X), m_Value())))) 1957 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1958 1959 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1960 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1961 1962 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1963 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1964 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1965 1966 // Peek through min/max. 1967 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 1968 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 1969 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 1970 } 1971 1972 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1973 // A power of two and'd with anything is a power of two or zero. 1974 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1975 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1976 return true; 1977 // X & (-X) is always a power of two or zero. 1978 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1979 return true; 1980 return false; 1981 } 1982 1983 // Adding a power-of-two or zero to the same power-of-two or zero yields 1984 // either the original power-of-two, a larger power-of-two or zero. 1985 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1986 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1987 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1988 Q.IIQ.hasNoSignedWrap(VOBO)) { 1989 if (match(X, m_And(m_Specific(Y), m_Value())) || 1990 match(X, m_And(m_Value(), m_Specific(Y)))) 1991 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1992 return true; 1993 if (match(Y, m_And(m_Specific(X), m_Value())) || 1994 match(Y, m_And(m_Value(), m_Specific(X)))) 1995 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1996 return true; 1997 1998 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1999 KnownBits LHSBits(BitWidth); 2000 computeKnownBits(X, LHSBits, Depth, Q); 2001 2002 KnownBits RHSBits(BitWidth); 2003 computeKnownBits(Y, RHSBits, Depth, Q); 2004 // If i8 V is a power of two or zero: 2005 // ZeroBits: 1 1 1 0 1 1 1 1 2006 // ~ZeroBits: 0 0 0 1 0 0 0 0 2007 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2008 // If OrZero isn't set, we cannot give back a zero result. 2009 // Make sure either the LHS or RHS has a bit set. 2010 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2011 return true; 2012 } 2013 } 2014 2015 // An exact divide or right shift can only shift off zero bits, so the result 2016 // is a power of two only if the first operand is a power of two and not 2017 // copying a sign bit (sdiv int_min, 2). 2018 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2019 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2020 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2021 Depth, Q); 2022 } 2023 2024 return false; 2025 } 2026 2027 /// Test whether a GEP's result is known to be non-null. 2028 /// 2029 /// Uses properties inherent in a GEP to try to determine whether it is known 2030 /// to be non-null. 2031 /// 2032 /// Currently this routine does not support vector GEPs. 2033 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2034 const Query &Q) { 2035 const Function *F = nullptr; 2036 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2037 F = I->getFunction(); 2038 2039 if (!GEP->isInBounds() || 2040 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2041 return false; 2042 2043 // FIXME: Support vector-GEPs. 2044 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2045 2046 // If the base pointer is non-null, we cannot walk to a null address with an 2047 // inbounds GEP in address space zero. 2048 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2049 return true; 2050 2051 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2052 // If so, then the GEP cannot produce a null pointer, as doing so would 2053 // inherently violate the inbounds contract within address space zero. 2054 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2055 GTI != GTE; ++GTI) { 2056 // Struct types are easy -- they must always be indexed by a constant. 2057 if (StructType *STy = GTI.getStructTypeOrNull()) { 2058 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2059 unsigned ElementIdx = OpC->getZExtValue(); 2060 const StructLayout *SL = Q.DL.getStructLayout(STy); 2061 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2062 if (ElementOffset > 0) 2063 return true; 2064 continue; 2065 } 2066 2067 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2068 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2069 continue; 2070 2071 // Fast path the constant operand case both for efficiency and so we don't 2072 // increment Depth when just zipping down an all-constant GEP. 2073 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2074 if (!OpC->isZero()) 2075 return true; 2076 continue; 2077 } 2078 2079 // We post-increment Depth here because while isKnownNonZero increments it 2080 // as well, when we pop back up that increment won't persist. We don't want 2081 // to recurse 10k times just because we have 10k GEP operands. We don't 2082 // bail completely out because we want to handle constant GEPs regardless 2083 // of depth. 2084 if (Depth++ >= MaxAnalysisRecursionDepth) 2085 continue; 2086 2087 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2088 return true; 2089 } 2090 2091 return false; 2092 } 2093 2094 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2095 const Instruction *CtxI, 2096 const DominatorTree *DT) { 2097 if (isa<Constant>(V)) 2098 return false; 2099 2100 if (!CtxI || !DT) 2101 return false; 2102 2103 unsigned NumUsesExplored = 0; 2104 for (auto *U : V->users()) { 2105 // Avoid massive lists 2106 if (NumUsesExplored >= DomConditionsMaxUses) 2107 break; 2108 NumUsesExplored++; 2109 2110 // If the value is used as an argument to a call or invoke, then argument 2111 // attributes may provide an answer about null-ness. 2112 if (const auto *CB = dyn_cast<CallBase>(U)) 2113 if (auto *CalledFunc = CB->getCalledFunction()) 2114 for (const Argument &Arg : CalledFunc->args()) 2115 if (CB->getArgOperand(Arg.getArgNo()) == V && 2116 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2117 DT->dominates(CB, CtxI)) 2118 return true; 2119 2120 // If the value is used as a load/store, then the pointer must be non null. 2121 if (V == getLoadStorePointerOperand(U)) { 2122 const Instruction *I = cast<Instruction>(U); 2123 if (!NullPointerIsDefined(I->getFunction(), 2124 V->getType()->getPointerAddressSpace()) && 2125 DT->dominates(I, CtxI)) 2126 return true; 2127 } 2128 2129 // Consider only compare instructions uniquely controlling a branch 2130 Value *RHS; 2131 CmpInst::Predicate Pred; 2132 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2133 continue; 2134 2135 bool NonNullIfTrue; 2136 if (cmpExcludesZero(Pred, RHS)) 2137 NonNullIfTrue = true; 2138 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2139 NonNullIfTrue = false; 2140 else 2141 continue; 2142 2143 SmallVector<const User *, 4> WorkList; 2144 SmallPtrSet<const User *, 4> Visited; 2145 for (auto *CmpU : U->users()) { 2146 assert(WorkList.empty() && "Should be!"); 2147 if (Visited.insert(CmpU).second) 2148 WorkList.push_back(CmpU); 2149 2150 while (!WorkList.empty()) { 2151 auto *Curr = WorkList.pop_back_val(); 2152 2153 // If a user is an AND, add all its users to the work list. We only 2154 // propagate "pred != null" condition through AND because it is only 2155 // correct to assume that all conditions of AND are met in true branch. 2156 // TODO: Support similar logic of OR and EQ predicate? 2157 if (NonNullIfTrue) 2158 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2159 for (auto *CurrU : Curr->users()) 2160 if (Visited.insert(CurrU).second) 2161 WorkList.push_back(CurrU); 2162 continue; 2163 } 2164 2165 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2166 assert(BI->isConditional() && "uses a comparison!"); 2167 2168 BasicBlock *NonNullSuccessor = 2169 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2170 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2171 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2172 return true; 2173 } else if (NonNullIfTrue && isGuard(Curr) && 2174 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2175 return true; 2176 } 2177 } 2178 } 2179 } 2180 2181 return false; 2182 } 2183 2184 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2185 /// ensure that the value it's attached to is never Value? 'RangeType' is 2186 /// is the type of the value described by the range. 2187 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2188 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2189 assert(NumRanges >= 1); 2190 for (unsigned i = 0; i < NumRanges; ++i) { 2191 ConstantInt *Lower = 2192 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2193 ConstantInt *Upper = 2194 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2195 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2196 if (Range.contains(Value)) 2197 return false; 2198 } 2199 return true; 2200 } 2201 2202 /// Try to detect a recurrence that monotonically increases/decreases from a 2203 /// non-zero starting value. These are common as induction variables. 2204 static bool isNonZeroRecurrence(const PHINode *PN) { 2205 BinaryOperator *BO = nullptr; 2206 Value *Start = nullptr, *Step = nullptr; 2207 const APInt *StartC, *StepC; 2208 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2209 !match(Start, m_APInt(StartC)) || StartC->isNullValue()) 2210 return false; 2211 2212 switch (BO->getOpcode()) { 2213 case Instruction::Add: 2214 // Starting from non-zero and stepping away from zero can never wrap back 2215 // to zero. 2216 return BO->hasNoUnsignedWrap() || 2217 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2218 StartC->isNegative() == StepC->isNegative()); 2219 case Instruction::Mul: 2220 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2221 match(Step, m_APInt(StepC)) && !StepC->isNullValue(); 2222 case Instruction::Shl: 2223 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2224 case Instruction::AShr: 2225 case Instruction::LShr: 2226 return BO->isExact(); 2227 default: 2228 return false; 2229 } 2230 } 2231 2232 /// Return true if the given value is known to be non-zero when defined. For 2233 /// vectors, return true if every demanded element is known to be non-zero when 2234 /// defined. For pointers, if the context instruction and dominator tree are 2235 /// specified, perform context-sensitive analysis and return true if the 2236 /// pointer couldn't possibly be null at the specified instruction. 2237 /// Supports values with integer or pointer type and vectors of integers. 2238 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2239 const Query &Q) { 2240 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2241 // vector 2242 if (isa<ScalableVectorType>(V->getType())) 2243 return false; 2244 2245 if (auto *C = dyn_cast<Constant>(V)) { 2246 if (C->isNullValue()) 2247 return false; 2248 if (isa<ConstantInt>(C)) 2249 // Must be non-zero due to null test above. 2250 return true; 2251 2252 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2253 // See the comment for IntToPtr/PtrToInt instructions below. 2254 if (CE->getOpcode() == Instruction::IntToPtr || 2255 CE->getOpcode() == Instruction::PtrToInt) 2256 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2257 .getFixedSize() <= 2258 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2259 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2260 } 2261 2262 // For constant vectors, check that all elements are undefined or known 2263 // non-zero to determine that the whole vector is known non-zero. 2264 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2265 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2266 if (!DemandedElts[i]) 2267 continue; 2268 Constant *Elt = C->getAggregateElement(i); 2269 if (!Elt || Elt->isNullValue()) 2270 return false; 2271 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2272 return false; 2273 } 2274 return true; 2275 } 2276 2277 // A global variable in address space 0 is non null unless extern weak 2278 // or an absolute symbol reference. Other address spaces may have null as a 2279 // valid address for a global, so we can't assume anything. 2280 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2281 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2282 GV->getType()->getAddressSpace() == 0) 2283 return true; 2284 } else 2285 return false; 2286 } 2287 2288 if (auto *I = dyn_cast<Instruction>(V)) { 2289 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2290 // If the possible ranges don't contain zero, then the value is 2291 // definitely non-zero. 2292 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2293 const APInt ZeroValue(Ty->getBitWidth(), 0); 2294 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2295 return true; 2296 } 2297 } 2298 } 2299 2300 if (isKnownNonZeroFromAssume(V, Q)) 2301 return true; 2302 2303 // Some of the tests below are recursive, so bail out if we hit the limit. 2304 if (Depth++ >= MaxAnalysisRecursionDepth) 2305 return false; 2306 2307 // Check for pointer simplifications. 2308 2309 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2310 // Alloca never returns null, malloc might. 2311 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2312 return true; 2313 2314 // A byval, inalloca may not be null in a non-default addres space. A 2315 // nonnull argument is assumed never 0. 2316 if (const Argument *A = dyn_cast<Argument>(V)) { 2317 if (((A->hasPassPointeeByValueCopyAttr() && 2318 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2319 A->hasNonNullAttr())) 2320 return true; 2321 } 2322 2323 // A Load tagged with nonnull metadata is never null. 2324 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2325 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2326 return true; 2327 2328 if (const auto *Call = dyn_cast<CallBase>(V)) { 2329 if (Call->isReturnNonNull()) 2330 return true; 2331 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2332 return isKnownNonZero(RP, Depth, Q); 2333 } 2334 } 2335 2336 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2337 return true; 2338 2339 // Check for recursive pointer simplifications. 2340 if (V->getType()->isPointerTy()) { 2341 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2342 // do not alter the value, or at least not the nullness property of the 2343 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2344 // 2345 // Note that we have to take special care to avoid looking through 2346 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2347 // as casts that can alter the value, e.g., AddrSpaceCasts. 2348 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2349 return isGEPKnownNonNull(GEP, Depth, Q); 2350 2351 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2352 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2353 2354 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2355 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2356 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2357 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2358 } 2359 2360 // Similar to int2ptr above, we can look through ptr2int here if the cast 2361 // is a no-op or an extend and not a truncate. 2362 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2363 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2364 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2365 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2366 2367 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2368 2369 // X | Y != 0 if X != 0 or Y != 0. 2370 Value *X = nullptr, *Y = nullptr; 2371 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2372 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2373 isKnownNonZero(Y, DemandedElts, Depth, Q); 2374 2375 // ext X != 0 if X != 0. 2376 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2377 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2378 2379 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2380 // if the lowest bit is shifted off the end. 2381 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2382 // shl nuw can't remove any non-zero bits. 2383 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2384 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2385 return isKnownNonZero(X, Depth, Q); 2386 2387 KnownBits Known(BitWidth); 2388 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2389 if (Known.One[0]) 2390 return true; 2391 } 2392 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2393 // defined if the sign bit is shifted off the end. 2394 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2395 // shr exact can only shift out zero bits. 2396 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2397 if (BO->isExact()) 2398 return isKnownNonZero(X, Depth, Q); 2399 2400 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2401 if (Known.isNegative()) 2402 return true; 2403 2404 // If the shifter operand is a constant, and all of the bits shifted 2405 // out are known to be zero, and X is known non-zero then at least one 2406 // non-zero bit must remain. 2407 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2408 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2409 // Is there a known one in the portion not shifted out? 2410 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2411 return true; 2412 // Are all the bits to be shifted out known zero? 2413 if (Known.countMinTrailingZeros() >= ShiftVal) 2414 return isKnownNonZero(X, DemandedElts, Depth, Q); 2415 } 2416 } 2417 // div exact can only produce a zero if the dividend is zero. 2418 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2419 return isKnownNonZero(X, DemandedElts, Depth, Q); 2420 } 2421 // X + Y. 2422 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2423 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2424 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2425 2426 // If X and Y are both non-negative (as signed values) then their sum is not 2427 // zero unless both X and Y are zero. 2428 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2429 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2430 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2431 return true; 2432 2433 // If X and Y are both negative (as signed values) then their sum is not 2434 // zero unless both X and Y equal INT_MIN. 2435 if (XKnown.isNegative() && YKnown.isNegative()) { 2436 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2437 // The sign bit of X is set. If some other bit is set then X is not equal 2438 // to INT_MIN. 2439 if (XKnown.One.intersects(Mask)) 2440 return true; 2441 // The sign bit of Y is set. If some other bit is set then Y is not equal 2442 // to INT_MIN. 2443 if (YKnown.One.intersects(Mask)) 2444 return true; 2445 } 2446 2447 // The sum of a non-negative number and a power of two is not zero. 2448 if (XKnown.isNonNegative() && 2449 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2450 return true; 2451 if (YKnown.isNonNegative() && 2452 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2453 return true; 2454 } 2455 // X * Y. 2456 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2457 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2458 // If X and Y are non-zero then so is X * Y as long as the multiplication 2459 // does not overflow. 2460 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2461 isKnownNonZero(X, DemandedElts, Depth, Q) && 2462 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2463 return true; 2464 } 2465 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2466 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2467 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2468 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2469 return true; 2470 } 2471 // PHI 2472 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2473 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2474 return true; 2475 2476 // Check if all incoming values are non-zero using recursion. 2477 Query RecQ = Q; 2478 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2479 return llvm::all_of(PN->operands(), [&](const Use &U) { 2480 if (U.get() == PN) 2481 return true; 2482 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2483 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2484 }); 2485 } 2486 // ExtractElement 2487 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2488 const Value *Vec = EEI->getVectorOperand(); 2489 const Value *Idx = EEI->getIndexOperand(); 2490 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2491 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2492 unsigned NumElts = VecTy->getNumElements(); 2493 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2494 if (CIdx && CIdx->getValue().ult(NumElts)) 2495 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2496 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2497 } 2498 } 2499 // Freeze 2500 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2501 auto *Op = FI->getOperand(0); 2502 if (isKnownNonZero(Op, Depth, Q) && 2503 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2504 return true; 2505 } 2506 2507 KnownBits Known(BitWidth); 2508 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2509 return Known.One != 0; 2510 } 2511 2512 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2513 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2514 // vector 2515 if (isa<ScalableVectorType>(V->getType())) 2516 return false; 2517 2518 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2519 APInt DemandedElts = 2520 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2521 return isKnownNonZero(V, DemandedElts, Depth, Q); 2522 } 2523 2524 /// If the pair of operators are the same invertible function of a single 2525 /// operand return the index of that operand. Otherwise, return None. An 2526 /// invertible function is one that is 1-to-1 and maps every input value 2527 /// to exactly one output value. This is equivalent to saying that Op1 2528 /// and Op2 are equal exactly when the specified pair of operands are equal, 2529 /// (except that Op1 and Op2 may be poison more often.) 2530 static Optional<unsigned> getInvertibleOperand(const Operator *Op1, 2531 const Operator *Op2) { 2532 if (Op1->getOpcode() != Op2->getOpcode()) 2533 return None; 2534 2535 switch (Op1->getOpcode()) { 2536 default: 2537 break; 2538 case Instruction::Add: 2539 case Instruction::Sub: 2540 if (Op1->getOperand(0) == Op2->getOperand(0)) 2541 return 1; 2542 if (Op1->getOperand(1) == Op2->getOperand(1)) 2543 return 0; 2544 break; 2545 case Instruction::Mul: { 2546 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2547 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2548 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2549 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2550 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2551 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2552 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2553 break; 2554 2555 // Assume operand order has been canonicalized 2556 if (Op1->getOperand(1) == Op2->getOperand(1) && 2557 isa<ConstantInt>(Op1->getOperand(1)) && 2558 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2559 return 0; 2560 break; 2561 } 2562 case Instruction::Shl: { 2563 // Same as multiplies, with the difference that we don't need to check 2564 // for a non-zero multiply. Shifts always multiply by non-zero. 2565 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2566 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2567 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2568 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2569 break; 2570 2571 if (Op1->getOperand(1) == Op2->getOperand(1)) 2572 return 0; 2573 break; 2574 } 2575 case Instruction::AShr: 2576 case Instruction::LShr: { 2577 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2578 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2579 if (!PEO1->isExact() || !PEO2->isExact()) 2580 break; 2581 2582 if (Op1->getOperand(1) == Op2->getOperand(1)) 2583 return 0; 2584 break; 2585 } 2586 case Instruction::SExt: 2587 case Instruction::ZExt: 2588 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2589 return 0; 2590 break; 2591 case Instruction::PHI: { 2592 const PHINode *PN1 = cast<PHINode>(Op1); 2593 const PHINode *PN2 = cast<PHINode>(Op2); 2594 2595 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2596 // are a single invertible function of the start values? Note that repeated 2597 // application of an invertible function is also invertible 2598 BinaryOperator *BO1 = nullptr; 2599 Value *Start1 = nullptr, *Step1 = nullptr; 2600 BinaryOperator *BO2 = nullptr; 2601 Value *Start2 = nullptr, *Step2 = nullptr; 2602 if (PN1->getParent() != PN2->getParent() || 2603 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2604 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2605 break; 2606 2607 Optional<unsigned> Idx = getInvertibleOperand(cast<Operator>(BO1), 2608 cast<Operator>(BO2)); 2609 if (!Idx || *Idx != 0) 2610 break; 2611 if (BO1->getOperand(*Idx) != PN1 || BO2->getOperand(*Idx) != PN2) 2612 break; 2613 2614 // Phi operands might not be in the same order. TODO: generalize 2615 // interface to return pair of operands. 2616 if (PN1->getOperand(0) == BO1 && PN2->getOperand(0) == BO2) 2617 return 1; 2618 if (PN1->getOperand(1) == BO1 && PN2->getOperand(1) == BO2) 2619 return 0; 2620 } 2621 } 2622 return None; 2623 } 2624 2625 /// Return true if V2 == V1 + X, where X is known non-zero. 2626 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2627 const Query &Q) { 2628 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2629 if (!BO || BO->getOpcode() != Instruction::Add) 2630 return false; 2631 Value *Op = nullptr; 2632 if (V2 == BO->getOperand(0)) 2633 Op = BO->getOperand(1); 2634 else if (V2 == BO->getOperand(1)) 2635 Op = BO->getOperand(0); 2636 else 2637 return false; 2638 return isKnownNonZero(Op, Depth + 1, Q); 2639 } 2640 2641 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2642 /// the multiplication is nuw or nsw. 2643 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2644 const Query &Q) { 2645 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2646 const APInt *C; 2647 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2648 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2649 !C->isNullValue() && !C->isOneValue() && 2650 isKnownNonZero(V1, Depth + 1, Q); 2651 } 2652 return false; 2653 } 2654 2655 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2656 /// the shift is nuw or nsw. 2657 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2658 const Query &Q) { 2659 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2660 const APInt *C; 2661 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2662 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2663 !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q); 2664 } 2665 return false; 2666 } 2667 2668 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2669 unsigned Depth, const Query &Q) { 2670 // Check two PHIs are in same block. 2671 if (PN1->getParent() != PN2->getParent()) 2672 return false; 2673 2674 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2675 bool UsedFullRecursion = false; 2676 for (const BasicBlock *IncomBB : PN1->blocks()) { 2677 if (!VisitedBBs.insert(IncomBB).second) 2678 continue; // Don't reprocess blocks that we have dealt with already. 2679 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2680 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2681 const APInt *C1, *C2; 2682 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2683 continue; 2684 2685 // Only one pair of phi operands is allowed for full recursion. 2686 if (UsedFullRecursion) 2687 return false; 2688 2689 Query RecQ = Q; 2690 RecQ.CxtI = IncomBB->getTerminator(); 2691 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2692 return false; 2693 UsedFullRecursion = true; 2694 } 2695 return true; 2696 } 2697 2698 /// Return true if it is known that V1 != V2. 2699 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2700 const Query &Q) { 2701 if (V1 == V2) 2702 return false; 2703 if (V1->getType() != V2->getType()) 2704 // We can't look through casts yet. 2705 return false; 2706 2707 if (Depth >= MaxAnalysisRecursionDepth) 2708 return false; 2709 2710 // See if we can recurse through (exactly one of) our operands. This 2711 // requires our operation be 1-to-1 and map every input value to exactly 2712 // one output value. Such an operation is invertible. 2713 auto *O1 = dyn_cast<Operator>(V1); 2714 auto *O2 = dyn_cast<Operator>(V2); 2715 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2716 if (Optional<unsigned> Opt = getInvertibleOperand(O1, O2)) { 2717 unsigned Idx = *Opt; 2718 return isKnownNonEqual(O1->getOperand(Idx), O2->getOperand(Idx), 2719 Depth + 1, Q); 2720 } 2721 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2722 const PHINode *PN2 = cast<PHINode>(V2); 2723 // FIXME: This is missing a generalization to handle the case where one is 2724 // a PHI and another one isn't. 2725 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2726 return true; 2727 }; 2728 } 2729 2730 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2731 return true; 2732 2733 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2734 return true; 2735 2736 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2737 return true; 2738 2739 if (V1->getType()->isIntOrIntVectorTy()) { 2740 // Are any known bits in V1 contradictory to known bits in V2? If V1 2741 // has a known zero where V2 has a known one, they must not be equal. 2742 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2743 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2744 2745 if (Known1.Zero.intersects(Known2.One) || 2746 Known2.Zero.intersects(Known1.One)) 2747 return true; 2748 } 2749 return false; 2750 } 2751 2752 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2753 /// simplify operations downstream. Mask is known to be zero for bits that V 2754 /// cannot have. 2755 /// 2756 /// This function is defined on values with integer type, values with pointer 2757 /// type, and vectors of integers. In the case 2758 /// where V is a vector, the mask, known zero, and known one values are the 2759 /// same width as the vector element, and the bit is set only if it is true 2760 /// for all of the elements in the vector. 2761 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2762 const Query &Q) { 2763 KnownBits Known(Mask.getBitWidth()); 2764 computeKnownBits(V, Known, Depth, Q); 2765 return Mask.isSubsetOf(Known.Zero); 2766 } 2767 2768 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2769 // Returns the input and lower/upper bounds. 2770 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2771 const APInt *&CLow, const APInt *&CHigh) { 2772 assert(isa<Operator>(Select) && 2773 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2774 "Input should be a Select!"); 2775 2776 const Value *LHS = nullptr, *RHS = nullptr; 2777 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2778 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2779 return false; 2780 2781 if (!match(RHS, m_APInt(CLow))) 2782 return false; 2783 2784 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2785 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2786 if (getInverseMinMaxFlavor(SPF) != SPF2) 2787 return false; 2788 2789 if (!match(RHS2, m_APInt(CHigh))) 2790 return false; 2791 2792 if (SPF == SPF_SMIN) 2793 std::swap(CLow, CHigh); 2794 2795 In = LHS2; 2796 return CLow->sle(*CHigh); 2797 } 2798 2799 /// For vector constants, loop over the elements and find the constant with the 2800 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2801 /// or if any element was not analyzed; otherwise, return the count for the 2802 /// element with the minimum number of sign bits. 2803 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2804 const APInt &DemandedElts, 2805 unsigned TyBits) { 2806 const auto *CV = dyn_cast<Constant>(V); 2807 if (!CV || !isa<FixedVectorType>(CV->getType())) 2808 return 0; 2809 2810 unsigned MinSignBits = TyBits; 2811 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2812 for (unsigned i = 0; i != NumElts; ++i) { 2813 if (!DemandedElts[i]) 2814 continue; 2815 // If we find a non-ConstantInt, bail out. 2816 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2817 if (!Elt) 2818 return 0; 2819 2820 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2821 } 2822 2823 return MinSignBits; 2824 } 2825 2826 static unsigned ComputeNumSignBitsImpl(const Value *V, 2827 const APInt &DemandedElts, 2828 unsigned Depth, const Query &Q); 2829 2830 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2831 unsigned Depth, const Query &Q) { 2832 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2833 assert(Result > 0 && "At least one sign bit needs to be present!"); 2834 return Result; 2835 } 2836 2837 /// Return the number of times the sign bit of the register is replicated into 2838 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2839 /// (itself), but other cases can give us information. For example, immediately 2840 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2841 /// other, so we return 3. For vectors, return the number of sign bits for the 2842 /// vector element with the minimum number of known sign bits of the demanded 2843 /// elements in the vector specified by DemandedElts. 2844 static unsigned ComputeNumSignBitsImpl(const Value *V, 2845 const APInt &DemandedElts, 2846 unsigned Depth, const Query &Q) { 2847 Type *Ty = V->getType(); 2848 2849 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2850 // vector 2851 if (isa<ScalableVectorType>(Ty)) 2852 return 1; 2853 2854 #ifndef NDEBUG 2855 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2856 2857 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2858 assert( 2859 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2860 "DemandedElt width should equal the fixed vector number of elements"); 2861 } else { 2862 assert(DemandedElts == APInt(1, 1) && 2863 "DemandedElt width should be 1 for scalars"); 2864 } 2865 #endif 2866 2867 // We return the minimum number of sign bits that are guaranteed to be present 2868 // in V, so for undef we have to conservatively return 1. We don't have the 2869 // same behavior for poison though -- that's a FIXME today. 2870 2871 Type *ScalarTy = Ty->getScalarType(); 2872 unsigned TyBits = ScalarTy->isPointerTy() ? 2873 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2874 Q.DL.getTypeSizeInBits(ScalarTy); 2875 2876 unsigned Tmp, Tmp2; 2877 unsigned FirstAnswer = 1; 2878 2879 // Note that ConstantInt is handled by the general computeKnownBits case 2880 // below. 2881 2882 if (Depth == MaxAnalysisRecursionDepth) 2883 return 1; 2884 2885 if (auto *U = dyn_cast<Operator>(V)) { 2886 switch (Operator::getOpcode(V)) { 2887 default: break; 2888 case Instruction::SExt: 2889 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2890 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2891 2892 case Instruction::SDiv: { 2893 const APInt *Denominator; 2894 // sdiv X, C -> adds log(C) sign bits. 2895 if (match(U->getOperand(1), m_APInt(Denominator))) { 2896 2897 // Ignore non-positive denominator. 2898 if (!Denominator->isStrictlyPositive()) 2899 break; 2900 2901 // Calculate the incoming numerator bits. 2902 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2903 2904 // Add floor(log(C)) bits to the numerator bits. 2905 return std::min(TyBits, NumBits + Denominator->logBase2()); 2906 } 2907 break; 2908 } 2909 2910 case Instruction::SRem: { 2911 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2912 2913 const APInt *Denominator; 2914 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2915 // positive constant. This let us put a lower bound on the number of sign 2916 // bits. 2917 if (match(U->getOperand(1), m_APInt(Denominator))) { 2918 2919 // Ignore non-positive denominator. 2920 if (Denominator->isStrictlyPositive()) { 2921 // Calculate the leading sign bit constraints by examining the 2922 // denominator. Given that the denominator is positive, there are two 2923 // cases: 2924 // 2925 // 1. The numerator is positive. The result range is [0,C) and 2926 // [0,C) u< (1 << ceilLogBase2(C)). 2927 // 2928 // 2. The numerator is negative. Then the result range is (-C,0] and 2929 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2930 // 2931 // Thus a lower bound on the number of sign bits is `TyBits - 2932 // ceilLogBase2(C)`. 2933 2934 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2935 Tmp = std::max(Tmp, ResBits); 2936 } 2937 } 2938 return Tmp; 2939 } 2940 2941 case Instruction::AShr: { 2942 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2943 // ashr X, C -> adds C sign bits. Vectors too. 2944 const APInt *ShAmt; 2945 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2946 if (ShAmt->uge(TyBits)) 2947 break; // Bad shift. 2948 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2949 Tmp += ShAmtLimited; 2950 if (Tmp > TyBits) Tmp = TyBits; 2951 } 2952 return Tmp; 2953 } 2954 case Instruction::Shl: { 2955 const APInt *ShAmt; 2956 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2957 // shl destroys sign bits. 2958 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2959 if (ShAmt->uge(TyBits) || // Bad shift. 2960 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2961 Tmp2 = ShAmt->getZExtValue(); 2962 return Tmp - Tmp2; 2963 } 2964 break; 2965 } 2966 case Instruction::And: 2967 case Instruction::Or: 2968 case Instruction::Xor: // NOT is handled here. 2969 // Logical binary ops preserve the number of sign bits at the worst. 2970 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2971 if (Tmp != 1) { 2972 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2973 FirstAnswer = std::min(Tmp, Tmp2); 2974 // We computed what we know about the sign bits as our first 2975 // answer. Now proceed to the generic code that uses 2976 // computeKnownBits, and pick whichever answer is better. 2977 } 2978 break; 2979 2980 case Instruction::Select: { 2981 // If we have a clamp pattern, we know that the number of sign bits will 2982 // be the minimum of the clamp min/max range. 2983 const Value *X; 2984 const APInt *CLow, *CHigh; 2985 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2986 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2987 2988 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2989 if (Tmp == 1) break; 2990 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2991 return std::min(Tmp, Tmp2); 2992 } 2993 2994 case Instruction::Add: 2995 // Add can have at most one carry bit. Thus we know that the output 2996 // is, at worst, one more bit than the inputs. 2997 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2998 if (Tmp == 1) break; 2999 3000 // Special case decrementing a value (ADD X, -1): 3001 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3002 if (CRHS->isAllOnesValue()) { 3003 KnownBits Known(TyBits); 3004 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3005 3006 // If the input is known to be 0 or 1, the output is 0/-1, which is 3007 // all sign bits set. 3008 if ((Known.Zero | 1).isAllOnesValue()) 3009 return TyBits; 3010 3011 // If we are subtracting one from a positive number, there is no carry 3012 // out of the result. 3013 if (Known.isNonNegative()) 3014 return Tmp; 3015 } 3016 3017 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3018 if (Tmp2 == 1) break; 3019 return std::min(Tmp, Tmp2) - 1; 3020 3021 case Instruction::Sub: 3022 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3023 if (Tmp2 == 1) break; 3024 3025 // Handle NEG. 3026 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3027 if (CLHS->isNullValue()) { 3028 KnownBits Known(TyBits); 3029 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3030 // If the input is known to be 0 or 1, the output is 0/-1, which is 3031 // all sign bits set. 3032 if ((Known.Zero | 1).isAllOnesValue()) 3033 return TyBits; 3034 3035 // If the input is known to be positive (the sign bit is known clear), 3036 // the output of the NEG has the same number of sign bits as the 3037 // input. 3038 if (Known.isNonNegative()) 3039 return Tmp2; 3040 3041 // Otherwise, we treat this like a SUB. 3042 } 3043 3044 // Sub can have at most one carry bit. Thus we know that the output 3045 // is, at worst, one more bit than the inputs. 3046 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3047 if (Tmp == 1) break; 3048 return std::min(Tmp, Tmp2) - 1; 3049 3050 case Instruction::Mul: { 3051 // The output of the Mul can be at most twice the valid bits in the 3052 // inputs. 3053 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3054 if (SignBitsOp0 == 1) break; 3055 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3056 if (SignBitsOp1 == 1) break; 3057 unsigned OutValidBits = 3058 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3059 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3060 } 3061 3062 case Instruction::PHI: { 3063 const PHINode *PN = cast<PHINode>(U); 3064 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3065 // Don't analyze large in-degree PHIs. 3066 if (NumIncomingValues > 4) break; 3067 // Unreachable blocks may have zero-operand PHI nodes. 3068 if (NumIncomingValues == 0) break; 3069 3070 // Take the minimum of all incoming values. This can't infinitely loop 3071 // because of our depth threshold. 3072 Query RecQ = Q; 3073 Tmp = TyBits; 3074 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3075 if (Tmp == 1) return Tmp; 3076 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3077 Tmp = std::min( 3078 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3079 } 3080 return Tmp; 3081 } 3082 3083 case Instruction::Trunc: 3084 // FIXME: it's tricky to do anything useful for this, but it is an 3085 // important case for targets like X86. 3086 break; 3087 3088 case Instruction::ExtractElement: 3089 // Look through extract element. At the moment we keep this simple and 3090 // skip tracking the specific element. But at least we might find 3091 // information valid for all elements of the vector (for example if vector 3092 // is sign extended, shifted, etc). 3093 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3094 3095 case Instruction::ShuffleVector: { 3096 // Collect the minimum number of sign bits that are shared by every vector 3097 // element referenced by the shuffle. 3098 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3099 if (!Shuf) { 3100 // FIXME: Add support for shufflevector constant expressions. 3101 return 1; 3102 } 3103 APInt DemandedLHS, DemandedRHS; 3104 // For undef elements, we don't know anything about the common state of 3105 // the shuffle result. 3106 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3107 return 1; 3108 Tmp = std::numeric_limits<unsigned>::max(); 3109 if (!!DemandedLHS) { 3110 const Value *LHS = Shuf->getOperand(0); 3111 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3112 } 3113 // If we don't know anything, early out and try computeKnownBits 3114 // fall-back. 3115 if (Tmp == 1) 3116 break; 3117 if (!!DemandedRHS) { 3118 const Value *RHS = Shuf->getOperand(1); 3119 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3120 Tmp = std::min(Tmp, Tmp2); 3121 } 3122 // If we don't know anything, early out and try computeKnownBits 3123 // fall-back. 3124 if (Tmp == 1) 3125 break; 3126 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3127 return Tmp; 3128 } 3129 case Instruction::Call: { 3130 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3131 switch (II->getIntrinsicID()) { 3132 default: break; 3133 case Intrinsic::abs: 3134 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3135 if (Tmp == 1) break; 3136 3137 // Absolute value reduces number of sign bits by at most 1. 3138 return Tmp - 1; 3139 } 3140 } 3141 } 3142 } 3143 } 3144 3145 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3146 // use this information. 3147 3148 // If we can examine all elements of a vector constant successfully, we're 3149 // done (we can't do any better than that). If not, keep trying. 3150 if (unsigned VecSignBits = 3151 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3152 return VecSignBits; 3153 3154 KnownBits Known(TyBits); 3155 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3156 3157 // If we know that the sign bit is either zero or one, determine the number of 3158 // identical bits in the top of the input value. 3159 return std::max(FirstAnswer, Known.countMinSignBits()); 3160 } 3161 3162 /// This function computes the integer multiple of Base that equals V. 3163 /// If successful, it returns true and returns the multiple in 3164 /// Multiple. If unsuccessful, it returns false. It looks 3165 /// through SExt instructions only if LookThroughSExt is true. 3166 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3167 bool LookThroughSExt, unsigned Depth) { 3168 assert(V && "No Value?"); 3169 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3170 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3171 3172 Type *T = V->getType(); 3173 3174 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3175 3176 if (Base == 0) 3177 return false; 3178 3179 if (Base == 1) { 3180 Multiple = V; 3181 return true; 3182 } 3183 3184 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3185 Constant *BaseVal = ConstantInt::get(T, Base); 3186 if (CO && CO == BaseVal) { 3187 // Multiple is 1. 3188 Multiple = ConstantInt::get(T, 1); 3189 return true; 3190 } 3191 3192 if (CI && CI->getZExtValue() % Base == 0) { 3193 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3194 return true; 3195 } 3196 3197 if (Depth == MaxAnalysisRecursionDepth) return false; 3198 3199 Operator *I = dyn_cast<Operator>(V); 3200 if (!I) return false; 3201 3202 switch (I->getOpcode()) { 3203 default: break; 3204 case Instruction::SExt: 3205 if (!LookThroughSExt) return false; 3206 // otherwise fall through to ZExt 3207 LLVM_FALLTHROUGH; 3208 case Instruction::ZExt: 3209 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3210 LookThroughSExt, Depth+1); 3211 case Instruction::Shl: 3212 case Instruction::Mul: { 3213 Value *Op0 = I->getOperand(0); 3214 Value *Op1 = I->getOperand(1); 3215 3216 if (I->getOpcode() == Instruction::Shl) { 3217 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3218 if (!Op1CI) return false; 3219 // Turn Op0 << Op1 into Op0 * 2^Op1 3220 APInt Op1Int = Op1CI->getValue(); 3221 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3222 APInt API(Op1Int.getBitWidth(), 0); 3223 API.setBit(BitToSet); 3224 Op1 = ConstantInt::get(V->getContext(), API); 3225 } 3226 3227 Value *Mul0 = nullptr; 3228 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3229 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3230 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3231 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3232 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3233 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3234 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3235 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3236 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3237 3238 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3239 Multiple = ConstantExpr::getMul(MulC, Op1C); 3240 return true; 3241 } 3242 3243 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3244 if (Mul0CI->getValue() == 1) { 3245 // V == Base * Op1, so return Op1 3246 Multiple = Op1; 3247 return true; 3248 } 3249 } 3250 3251 Value *Mul1 = nullptr; 3252 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3253 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3254 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3255 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3256 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3257 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3258 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3259 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3260 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3261 3262 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3263 Multiple = ConstantExpr::getMul(MulC, Op0C); 3264 return true; 3265 } 3266 3267 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3268 if (Mul1CI->getValue() == 1) { 3269 // V == Base * Op0, so return Op0 3270 Multiple = Op0; 3271 return true; 3272 } 3273 } 3274 } 3275 } 3276 3277 // We could not determine if V is a multiple of Base. 3278 return false; 3279 } 3280 3281 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3282 const TargetLibraryInfo *TLI) { 3283 const Function *F = CB.getCalledFunction(); 3284 if (!F) 3285 return Intrinsic::not_intrinsic; 3286 3287 if (F->isIntrinsic()) 3288 return F->getIntrinsicID(); 3289 3290 // We are going to infer semantics of a library function based on mapping it 3291 // to an LLVM intrinsic. Check that the library function is available from 3292 // this callbase and in this environment. 3293 LibFunc Func; 3294 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3295 !CB.onlyReadsMemory()) 3296 return Intrinsic::not_intrinsic; 3297 3298 switch (Func) { 3299 default: 3300 break; 3301 case LibFunc_sin: 3302 case LibFunc_sinf: 3303 case LibFunc_sinl: 3304 return Intrinsic::sin; 3305 case LibFunc_cos: 3306 case LibFunc_cosf: 3307 case LibFunc_cosl: 3308 return Intrinsic::cos; 3309 case LibFunc_exp: 3310 case LibFunc_expf: 3311 case LibFunc_expl: 3312 return Intrinsic::exp; 3313 case LibFunc_exp2: 3314 case LibFunc_exp2f: 3315 case LibFunc_exp2l: 3316 return Intrinsic::exp2; 3317 case LibFunc_log: 3318 case LibFunc_logf: 3319 case LibFunc_logl: 3320 return Intrinsic::log; 3321 case LibFunc_log10: 3322 case LibFunc_log10f: 3323 case LibFunc_log10l: 3324 return Intrinsic::log10; 3325 case LibFunc_log2: 3326 case LibFunc_log2f: 3327 case LibFunc_log2l: 3328 return Intrinsic::log2; 3329 case LibFunc_fabs: 3330 case LibFunc_fabsf: 3331 case LibFunc_fabsl: 3332 return Intrinsic::fabs; 3333 case LibFunc_fmin: 3334 case LibFunc_fminf: 3335 case LibFunc_fminl: 3336 return Intrinsic::minnum; 3337 case LibFunc_fmax: 3338 case LibFunc_fmaxf: 3339 case LibFunc_fmaxl: 3340 return Intrinsic::maxnum; 3341 case LibFunc_copysign: 3342 case LibFunc_copysignf: 3343 case LibFunc_copysignl: 3344 return Intrinsic::copysign; 3345 case LibFunc_floor: 3346 case LibFunc_floorf: 3347 case LibFunc_floorl: 3348 return Intrinsic::floor; 3349 case LibFunc_ceil: 3350 case LibFunc_ceilf: 3351 case LibFunc_ceill: 3352 return Intrinsic::ceil; 3353 case LibFunc_trunc: 3354 case LibFunc_truncf: 3355 case LibFunc_truncl: 3356 return Intrinsic::trunc; 3357 case LibFunc_rint: 3358 case LibFunc_rintf: 3359 case LibFunc_rintl: 3360 return Intrinsic::rint; 3361 case LibFunc_nearbyint: 3362 case LibFunc_nearbyintf: 3363 case LibFunc_nearbyintl: 3364 return Intrinsic::nearbyint; 3365 case LibFunc_round: 3366 case LibFunc_roundf: 3367 case LibFunc_roundl: 3368 return Intrinsic::round; 3369 case LibFunc_roundeven: 3370 case LibFunc_roundevenf: 3371 case LibFunc_roundevenl: 3372 return Intrinsic::roundeven; 3373 case LibFunc_pow: 3374 case LibFunc_powf: 3375 case LibFunc_powl: 3376 return Intrinsic::pow; 3377 case LibFunc_sqrt: 3378 case LibFunc_sqrtf: 3379 case LibFunc_sqrtl: 3380 return Intrinsic::sqrt; 3381 } 3382 3383 return Intrinsic::not_intrinsic; 3384 } 3385 3386 /// Return true if we can prove that the specified FP value is never equal to 3387 /// -0.0. 3388 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3389 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3390 /// the same as +0.0 in floating-point ops. 3391 /// 3392 /// NOTE: this function will need to be revisited when we support non-default 3393 /// rounding modes! 3394 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3395 unsigned Depth) { 3396 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3397 return !CFP->getValueAPF().isNegZero(); 3398 3399 if (Depth == MaxAnalysisRecursionDepth) 3400 return false; 3401 3402 auto *Op = dyn_cast<Operator>(V); 3403 if (!Op) 3404 return false; 3405 3406 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3407 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3408 return true; 3409 3410 // sitofp and uitofp turn into +0.0 for zero. 3411 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3412 return true; 3413 3414 if (auto *Call = dyn_cast<CallInst>(Op)) { 3415 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3416 switch (IID) { 3417 default: 3418 break; 3419 // sqrt(-0.0) = -0.0, no other negative results are possible. 3420 case Intrinsic::sqrt: 3421 case Intrinsic::canonicalize: 3422 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3423 // fabs(x) != -0.0 3424 case Intrinsic::fabs: 3425 return true; 3426 } 3427 } 3428 3429 return false; 3430 } 3431 3432 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3433 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3434 /// bit despite comparing equal. 3435 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3436 const TargetLibraryInfo *TLI, 3437 bool SignBitOnly, 3438 unsigned Depth) { 3439 // TODO: This function does not do the right thing when SignBitOnly is true 3440 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3441 // which flips the sign bits of NaNs. See 3442 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3443 3444 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3445 return !CFP->getValueAPF().isNegative() || 3446 (!SignBitOnly && CFP->getValueAPF().isZero()); 3447 } 3448 3449 // Handle vector of constants. 3450 if (auto *CV = dyn_cast<Constant>(V)) { 3451 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3452 unsigned NumElts = CVFVTy->getNumElements(); 3453 for (unsigned i = 0; i != NumElts; ++i) { 3454 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3455 if (!CFP) 3456 return false; 3457 if (CFP->getValueAPF().isNegative() && 3458 (SignBitOnly || !CFP->getValueAPF().isZero())) 3459 return false; 3460 } 3461 3462 // All non-negative ConstantFPs. 3463 return true; 3464 } 3465 } 3466 3467 if (Depth == MaxAnalysisRecursionDepth) 3468 return false; 3469 3470 const Operator *I = dyn_cast<Operator>(V); 3471 if (!I) 3472 return false; 3473 3474 switch (I->getOpcode()) { 3475 default: 3476 break; 3477 // Unsigned integers are always nonnegative. 3478 case Instruction::UIToFP: 3479 return true; 3480 case Instruction::FMul: 3481 case Instruction::FDiv: 3482 // X * X is always non-negative or a NaN. 3483 // X / X is always exactly 1.0 or a NaN. 3484 if (I->getOperand(0) == I->getOperand(1) && 3485 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3486 return true; 3487 3488 LLVM_FALLTHROUGH; 3489 case Instruction::FAdd: 3490 case Instruction::FRem: 3491 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3492 Depth + 1) && 3493 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3494 Depth + 1); 3495 case Instruction::Select: 3496 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3497 Depth + 1) && 3498 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3499 Depth + 1); 3500 case Instruction::FPExt: 3501 case Instruction::FPTrunc: 3502 // Widening/narrowing never change sign. 3503 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3504 Depth + 1); 3505 case Instruction::ExtractElement: 3506 // Look through extract element. At the moment we keep this simple and skip 3507 // tracking the specific element. But at least we might find information 3508 // valid for all elements of the vector. 3509 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3510 Depth + 1); 3511 case Instruction::Call: 3512 const auto *CI = cast<CallInst>(I); 3513 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3514 switch (IID) { 3515 default: 3516 break; 3517 case Intrinsic::maxnum: { 3518 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3519 auto isPositiveNum = [&](Value *V) { 3520 if (SignBitOnly) { 3521 // With SignBitOnly, this is tricky because the result of 3522 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3523 // a constant strictly greater than 0.0. 3524 const APFloat *C; 3525 return match(V, m_APFloat(C)) && 3526 *C > APFloat::getZero(C->getSemantics()); 3527 } 3528 3529 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3530 // maxnum can't be ordered-less-than-zero. 3531 return isKnownNeverNaN(V, TLI) && 3532 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3533 }; 3534 3535 // TODO: This could be improved. We could also check that neither operand 3536 // has its sign bit set (and at least 1 is not-NAN?). 3537 return isPositiveNum(V0) || isPositiveNum(V1); 3538 } 3539 3540 case Intrinsic::maximum: 3541 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3542 Depth + 1) || 3543 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3544 Depth + 1); 3545 case Intrinsic::minnum: 3546 case Intrinsic::minimum: 3547 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3548 Depth + 1) && 3549 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3550 Depth + 1); 3551 case Intrinsic::exp: 3552 case Intrinsic::exp2: 3553 case Intrinsic::fabs: 3554 return true; 3555 3556 case Intrinsic::sqrt: 3557 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3558 if (!SignBitOnly) 3559 return true; 3560 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3561 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3562 3563 case Intrinsic::powi: 3564 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3565 // powi(x,n) is non-negative if n is even. 3566 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3567 return true; 3568 } 3569 // TODO: This is not correct. Given that exp is an integer, here are the 3570 // ways that pow can return a negative value: 3571 // 3572 // pow(x, exp) --> negative if exp is odd and x is negative. 3573 // pow(-0, exp) --> -inf if exp is negative odd. 3574 // pow(-0, exp) --> -0 if exp is positive odd. 3575 // pow(-inf, exp) --> -0 if exp is negative odd. 3576 // pow(-inf, exp) --> -inf if exp is positive odd. 3577 // 3578 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3579 // but we must return false if x == -0. Unfortunately we do not currently 3580 // have a way of expressing this constraint. See details in 3581 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3582 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3583 Depth + 1); 3584 3585 case Intrinsic::fma: 3586 case Intrinsic::fmuladd: 3587 // x*x+y is non-negative if y is non-negative. 3588 return I->getOperand(0) == I->getOperand(1) && 3589 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3590 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3591 Depth + 1); 3592 } 3593 break; 3594 } 3595 return false; 3596 } 3597 3598 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3599 const TargetLibraryInfo *TLI) { 3600 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3601 } 3602 3603 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3604 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3605 } 3606 3607 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3608 unsigned Depth) { 3609 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3610 3611 // If we're told that infinities won't happen, assume they won't. 3612 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3613 if (FPMathOp->hasNoInfs()) 3614 return true; 3615 3616 // Handle scalar constants. 3617 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3618 return !CFP->isInfinity(); 3619 3620 if (Depth == MaxAnalysisRecursionDepth) 3621 return false; 3622 3623 if (auto *Inst = dyn_cast<Instruction>(V)) { 3624 switch (Inst->getOpcode()) { 3625 case Instruction::Select: { 3626 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3627 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3628 } 3629 case Instruction::SIToFP: 3630 case Instruction::UIToFP: { 3631 // Get width of largest magnitude integer (remove a bit if signed). 3632 // This still works for a signed minimum value because the largest FP 3633 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3634 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3635 if (Inst->getOpcode() == Instruction::SIToFP) 3636 --IntSize; 3637 3638 // If the exponent of the largest finite FP value can hold the largest 3639 // integer, the result of the cast must be finite. 3640 Type *FPTy = Inst->getType()->getScalarType(); 3641 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3642 } 3643 default: 3644 break; 3645 } 3646 } 3647 3648 // try to handle fixed width vector constants 3649 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3650 if (VFVTy && isa<Constant>(V)) { 3651 // For vectors, verify that each element is not infinity. 3652 unsigned NumElts = VFVTy->getNumElements(); 3653 for (unsigned i = 0; i != NumElts; ++i) { 3654 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3655 if (!Elt) 3656 return false; 3657 if (isa<UndefValue>(Elt)) 3658 continue; 3659 auto *CElt = dyn_cast<ConstantFP>(Elt); 3660 if (!CElt || CElt->isInfinity()) 3661 return false; 3662 } 3663 // All elements were confirmed non-infinity or undefined. 3664 return true; 3665 } 3666 3667 // was not able to prove that V never contains infinity 3668 return false; 3669 } 3670 3671 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3672 unsigned Depth) { 3673 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3674 3675 // If we're told that NaNs won't happen, assume they won't. 3676 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3677 if (FPMathOp->hasNoNaNs()) 3678 return true; 3679 3680 // Handle scalar constants. 3681 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3682 return !CFP->isNaN(); 3683 3684 if (Depth == MaxAnalysisRecursionDepth) 3685 return false; 3686 3687 if (auto *Inst = dyn_cast<Instruction>(V)) { 3688 switch (Inst->getOpcode()) { 3689 case Instruction::FAdd: 3690 case Instruction::FSub: 3691 // Adding positive and negative infinity produces NaN. 3692 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3693 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3694 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3695 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3696 3697 case Instruction::FMul: 3698 // Zero multiplied with infinity produces NaN. 3699 // FIXME: If neither side can be zero fmul never produces NaN. 3700 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3701 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3702 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3703 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3704 3705 case Instruction::FDiv: 3706 case Instruction::FRem: 3707 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3708 return false; 3709 3710 case Instruction::Select: { 3711 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3712 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3713 } 3714 case Instruction::SIToFP: 3715 case Instruction::UIToFP: 3716 return true; 3717 case Instruction::FPTrunc: 3718 case Instruction::FPExt: 3719 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3720 default: 3721 break; 3722 } 3723 } 3724 3725 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3726 switch (II->getIntrinsicID()) { 3727 case Intrinsic::canonicalize: 3728 case Intrinsic::fabs: 3729 case Intrinsic::copysign: 3730 case Intrinsic::exp: 3731 case Intrinsic::exp2: 3732 case Intrinsic::floor: 3733 case Intrinsic::ceil: 3734 case Intrinsic::trunc: 3735 case Intrinsic::rint: 3736 case Intrinsic::nearbyint: 3737 case Intrinsic::round: 3738 case Intrinsic::roundeven: 3739 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3740 case Intrinsic::sqrt: 3741 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3742 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3743 case Intrinsic::minnum: 3744 case Intrinsic::maxnum: 3745 // If either operand is not NaN, the result is not NaN. 3746 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3747 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3748 default: 3749 return false; 3750 } 3751 } 3752 3753 // Try to handle fixed width vector constants 3754 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3755 if (VFVTy && isa<Constant>(V)) { 3756 // For vectors, verify that each element is not NaN. 3757 unsigned NumElts = VFVTy->getNumElements(); 3758 for (unsigned i = 0; i != NumElts; ++i) { 3759 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3760 if (!Elt) 3761 return false; 3762 if (isa<UndefValue>(Elt)) 3763 continue; 3764 auto *CElt = dyn_cast<ConstantFP>(Elt); 3765 if (!CElt || CElt->isNaN()) 3766 return false; 3767 } 3768 // All elements were confirmed not-NaN or undefined. 3769 return true; 3770 } 3771 3772 // Was not able to prove that V never contains NaN 3773 return false; 3774 } 3775 3776 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3777 3778 // All byte-wide stores are splatable, even of arbitrary variables. 3779 if (V->getType()->isIntegerTy(8)) 3780 return V; 3781 3782 LLVMContext &Ctx = V->getContext(); 3783 3784 // Undef don't care. 3785 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3786 if (isa<UndefValue>(V)) 3787 return UndefInt8; 3788 3789 // Return Undef for zero-sized type. 3790 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3791 return UndefInt8; 3792 3793 Constant *C = dyn_cast<Constant>(V); 3794 if (!C) { 3795 // Conceptually, we could handle things like: 3796 // %a = zext i8 %X to i16 3797 // %b = shl i16 %a, 8 3798 // %c = or i16 %a, %b 3799 // but until there is an example that actually needs this, it doesn't seem 3800 // worth worrying about. 3801 return nullptr; 3802 } 3803 3804 // Handle 'null' ConstantArrayZero etc. 3805 if (C->isNullValue()) 3806 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3807 3808 // Constant floating-point values can be handled as integer values if the 3809 // corresponding integer value is "byteable". An important case is 0.0. 3810 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3811 Type *Ty = nullptr; 3812 if (CFP->getType()->isHalfTy()) 3813 Ty = Type::getInt16Ty(Ctx); 3814 else if (CFP->getType()->isFloatTy()) 3815 Ty = Type::getInt32Ty(Ctx); 3816 else if (CFP->getType()->isDoubleTy()) 3817 Ty = Type::getInt64Ty(Ctx); 3818 // Don't handle long double formats, which have strange constraints. 3819 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3820 : nullptr; 3821 } 3822 3823 // We can handle constant integers that are multiple of 8 bits. 3824 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3825 if (CI->getBitWidth() % 8 == 0) { 3826 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3827 if (!CI->getValue().isSplat(8)) 3828 return nullptr; 3829 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3830 } 3831 } 3832 3833 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3834 if (CE->getOpcode() == Instruction::IntToPtr) { 3835 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3836 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3837 return isBytewiseValue( 3838 ConstantExpr::getIntegerCast(CE->getOperand(0), 3839 Type::getIntNTy(Ctx, BitWidth), false), 3840 DL); 3841 } 3842 } 3843 } 3844 3845 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3846 if (LHS == RHS) 3847 return LHS; 3848 if (!LHS || !RHS) 3849 return nullptr; 3850 if (LHS == UndefInt8) 3851 return RHS; 3852 if (RHS == UndefInt8) 3853 return LHS; 3854 return nullptr; 3855 }; 3856 3857 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3858 Value *Val = UndefInt8; 3859 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3860 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3861 return nullptr; 3862 return Val; 3863 } 3864 3865 if (isa<ConstantAggregate>(C)) { 3866 Value *Val = UndefInt8; 3867 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3868 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3869 return nullptr; 3870 return Val; 3871 } 3872 3873 // Don't try to handle the handful of other constants. 3874 return nullptr; 3875 } 3876 3877 // This is the recursive version of BuildSubAggregate. It takes a few different 3878 // arguments. Idxs is the index within the nested struct From that we are 3879 // looking at now (which is of type IndexedType). IdxSkip is the number of 3880 // indices from Idxs that should be left out when inserting into the resulting 3881 // struct. To is the result struct built so far, new insertvalue instructions 3882 // build on that. 3883 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3884 SmallVectorImpl<unsigned> &Idxs, 3885 unsigned IdxSkip, 3886 Instruction *InsertBefore) { 3887 StructType *STy = dyn_cast<StructType>(IndexedType); 3888 if (STy) { 3889 // Save the original To argument so we can modify it 3890 Value *OrigTo = To; 3891 // General case, the type indexed by Idxs is a struct 3892 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3893 // Process each struct element recursively 3894 Idxs.push_back(i); 3895 Value *PrevTo = To; 3896 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3897 InsertBefore); 3898 Idxs.pop_back(); 3899 if (!To) { 3900 // Couldn't find any inserted value for this index? Cleanup 3901 while (PrevTo != OrigTo) { 3902 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3903 PrevTo = Del->getAggregateOperand(); 3904 Del->eraseFromParent(); 3905 } 3906 // Stop processing elements 3907 break; 3908 } 3909 } 3910 // If we successfully found a value for each of our subaggregates 3911 if (To) 3912 return To; 3913 } 3914 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3915 // the struct's elements had a value that was inserted directly. In the latter 3916 // case, perhaps we can't determine each of the subelements individually, but 3917 // we might be able to find the complete struct somewhere. 3918 3919 // Find the value that is at that particular spot 3920 Value *V = FindInsertedValue(From, Idxs); 3921 3922 if (!V) 3923 return nullptr; 3924 3925 // Insert the value in the new (sub) aggregate 3926 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3927 "tmp", InsertBefore); 3928 } 3929 3930 // This helper takes a nested struct and extracts a part of it (which is again a 3931 // struct) into a new value. For example, given the struct: 3932 // { a, { b, { c, d }, e } } 3933 // and the indices "1, 1" this returns 3934 // { c, d }. 3935 // 3936 // It does this by inserting an insertvalue for each element in the resulting 3937 // struct, as opposed to just inserting a single struct. This will only work if 3938 // each of the elements of the substruct are known (ie, inserted into From by an 3939 // insertvalue instruction somewhere). 3940 // 3941 // All inserted insertvalue instructions are inserted before InsertBefore 3942 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3943 Instruction *InsertBefore) { 3944 assert(InsertBefore && "Must have someplace to insert!"); 3945 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3946 idx_range); 3947 Value *To = UndefValue::get(IndexedType); 3948 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3949 unsigned IdxSkip = Idxs.size(); 3950 3951 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3952 } 3953 3954 /// Given an aggregate and a sequence of indices, see if the scalar value 3955 /// indexed is already around as a register, for example if it was inserted 3956 /// directly into the aggregate. 3957 /// 3958 /// If InsertBefore is not null, this function will duplicate (modified) 3959 /// insertvalues when a part of a nested struct is extracted. 3960 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3961 Instruction *InsertBefore) { 3962 // Nothing to index? Just return V then (this is useful at the end of our 3963 // recursion). 3964 if (idx_range.empty()) 3965 return V; 3966 // We have indices, so V should have an indexable type. 3967 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3968 "Not looking at a struct or array?"); 3969 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3970 "Invalid indices for type?"); 3971 3972 if (Constant *C = dyn_cast<Constant>(V)) { 3973 C = C->getAggregateElement(idx_range[0]); 3974 if (!C) return nullptr; 3975 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3976 } 3977 3978 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3979 // Loop the indices for the insertvalue instruction in parallel with the 3980 // requested indices 3981 const unsigned *req_idx = idx_range.begin(); 3982 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3983 i != e; ++i, ++req_idx) { 3984 if (req_idx == idx_range.end()) { 3985 // We can't handle this without inserting insertvalues 3986 if (!InsertBefore) 3987 return nullptr; 3988 3989 // The requested index identifies a part of a nested aggregate. Handle 3990 // this specially. For example, 3991 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3992 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3993 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3994 // This can be changed into 3995 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3996 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3997 // which allows the unused 0,0 element from the nested struct to be 3998 // removed. 3999 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4000 InsertBefore); 4001 } 4002 4003 // This insert value inserts something else than what we are looking for. 4004 // See if the (aggregate) value inserted into has the value we are 4005 // looking for, then. 4006 if (*req_idx != *i) 4007 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4008 InsertBefore); 4009 } 4010 // If we end up here, the indices of the insertvalue match with those 4011 // requested (though possibly only partially). Now we recursively look at 4012 // the inserted value, passing any remaining indices. 4013 return FindInsertedValue(I->getInsertedValueOperand(), 4014 makeArrayRef(req_idx, idx_range.end()), 4015 InsertBefore); 4016 } 4017 4018 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4019 // If we're extracting a value from an aggregate that was extracted from 4020 // something else, we can extract from that something else directly instead. 4021 // However, we will need to chain I's indices with the requested indices. 4022 4023 // Calculate the number of indices required 4024 unsigned size = I->getNumIndices() + idx_range.size(); 4025 // Allocate some space to put the new indices in 4026 SmallVector<unsigned, 5> Idxs; 4027 Idxs.reserve(size); 4028 // Add indices from the extract value instruction 4029 Idxs.append(I->idx_begin(), I->idx_end()); 4030 4031 // Add requested indices 4032 Idxs.append(idx_range.begin(), idx_range.end()); 4033 4034 assert(Idxs.size() == size 4035 && "Number of indices added not correct?"); 4036 4037 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4038 } 4039 // Otherwise, we don't know (such as, extracting from a function return value 4040 // or load instruction) 4041 return nullptr; 4042 } 4043 4044 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4045 unsigned CharSize) { 4046 // Make sure the GEP has exactly three arguments. 4047 if (GEP->getNumOperands() != 3) 4048 return false; 4049 4050 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4051 // CharSize. 4052 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4053 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4054 return false; 4055 4056 // Check to make sure that the first operand of the GEP is an integer and 4057 // has value 0 so that we are sure we're indexing into the initializer. 4058 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4059 if (!FirstIdx || !FirstIdx->isZero()) 4060 return false; 4061 4062 return true; 4063 } 4064 4065 bool llvm::getConstantDataArrayInfo(const Value *V, 4066 ConstantDataArraySlice &Slice, 4067 unsigned ElementSize, uint64_t Offset) { 4068 assert(V); 4069 4070 // Look through bitcast instructions and geps. 4071 V = V->stripPointerCasts(); 4072 4073 // If the value is a GEP instruction or constant expression, treat it as an 4074 // offset. 4075 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4076 // The GEP operator should be based on a pointer to string constant, and is 4077 // indexing into the string constant. 4078 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4079 return false; 4080 4081 // If the second index isn't a ConstantInt, then this is a variable index 4082 // into the array. If this occurs, we can't say anything meaningful about 4083 // the string. 4084 uint64_t StartIdx = 0; 4085 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4086 StartIdx = CI->getZExtValue(); 4087 else 4088 return false; 4089 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4090 StartIdx + Offset); 4091 } 4092 4093 // The GEP instruction, constant or instruction, must reference a global 4094 // variable that is a constant and is initialized. The referenced constant 4095 // initializer is the array that we'll use for optimization. 4096 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4097 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4098 return false; 4099 4100 const ConstantDataArray *Array; 4101 ArrayType *ArrayTy; 4102 if (GV->getInitializer()->isNullValue()) { 4103 Type *GVTy = GV->getValueType(); 4104 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4105 // A zeroinitializer for the array; there is no ConstantDataArray. 4106 Array = nullptr; 4107 } else { 4108 const DataLayout &DL = GV->getParent()->getDataLayout(); 4109 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4110 uint64_t Length = SizeInBytes / (ElementSize / 8); 4111 if (Length <= Offset) 4112 return false; 4113 4114 Slice.Array = nullptr; 4115 Slice.Offset = 0; 4116 Slice.Length = Length - Offset; 4117 return true; 4118 } 4119 } else { 4120 // This must be a ConstantDataArray. 4121 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4122 if (!Array) 4123 return false; 4124 ArrayTy = Array->getType(); 4125 } 4126 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4127 return false; 4128 4129 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4130 if (Offset > NumElts) 4131 return false; 4132 4133 Slice.Array = Array; 4134 Slice.Offset = Offset; 4135 Slice.Length = NumElts - Offset; 4136 return true; 4137 } 4138 4139 /// This function computes the length of a null-terminated C string pointed to 4140 /// by V. If successful, it returns true and returns the string in Str. 4141 /// If unsuccessful, it returns false. 4142 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4143 uint64_t Offset, bool TrimAtNul) { 4144 ConstantDataArraySlice Slice; 4145 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4146 return false; 4147 4148 if (Slice.Array == nullptr) { 4149 if (TrimAtNul) { 4150 Str = StringRef(); 4151 return true; 4152 } 4153 if (Slice.Length == 1) { 4154 Str = StringRef("", 1); 4155 return true; 4156 } 4157 // We cannot instantiate a StringRef as we do not have an appropriate string 4158 // of 0s at hand. 4159 return false; 4160 } 4161 4162 // Start out with the entire array in the StringRef. 4163 Str = Slice.Array->getAsString(); 4164 // Skip over 'offset' bytes. 4165 Str = Str.substr(Slice.Offset); 4166 4167 if (TrimAtNul) { 4168 // Trim off the \0 and anything after it. If the array is not nul 4169 // terminated, we just return the whole end of string. The client may know 4170 // some other way that the string is length-bound. 4171 Str = Str.substr(0, Str.find('\0')); 4172 } 4173 return true; 4174 } 4175 4176 // These next two are very similar to the above, but also look through PHI 4177 // nodes. 4178 // TODO: See if we can integrate these two together. 4179 4180 /// If we can compute the length of the string pointed to by 4181 /// the specified pointer, return 'len+1'. If we can't, return 0. 4182 static uint64_t GetStringLengthH(const Value *V, 4183 SmallPtrSetImpl<const PHINode*> &PHIs, 4184 unsigned CharSize) { 4185 // Look through noop bitcast instructions. 4186 V = V->stripPointerCasts(); 4187 4188 // If this is a PHI node, there are two cases: either we have already seen it 4189 // or we haven't. 4190 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4191 if (!PHIs.insert(PN).second) 4192 return ~0ULL; // already in the set. 4193 4194 // If it was new, see if all the input strings are the same length. 4195 uint64_t LenSoFar = ~0ULL; 4196 for (Value *IncValue : PN->incoming_values()) { 4197 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4198 if (Len == 0) return 0; // Unknown length -> unknown. 4199 4200 if (Len == ~0ULL) continue; 4201 4202 if (Len != LenSoFar && LenSoFar != ~0ULL) 4203 return 0; // Disagree -> unknown. 4204 LenSoFar = Len; 4205 } 4206 4207 // Success, all agree. 4208 return LenSoFar; 4209 } 4210 4211 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4212 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4213 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4214 if (Len1 == 0) return 0; 4215 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4216 if (Len2 == 0) return 0; 4217 if (Len1 == ~0ULL) return Len2; 4218 if (Len2 == ~0ULL) return Len1; 4219 if (Len1 != Len2) return 0; 4220 return Len1; 4221 } 4222 4223 // Otherwise, see if we can read the string. 4224 ConstantDataArraySlice Slice; 4225 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4226 return 0; 4227 4228 if (Slice.Array == nullptr) 4229 return 1; 4230 4231 // Search for nul characters 4232 unsigned NullIndex = 0; 4233 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4234 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4235 break; 4236 } 4237 4238 return NullIndex + 1; 4239 } 4240 4241 /// If we can compute the length of the string pointed to by 4242 /// the specified pointer, return 'len+1'. If we can't, return 0. 4243 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4244 if (!V->getType()->isPointerTy()) 4245 return 0; 4246 4247 SmallPtrSet<const PHINode*, 32> PHIs; 4248 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4249 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4250 // an empty string as a length. 4251 return Len == ~0ULL ? 1 : Len; 4252 } 4253 4254 const Value * 4255 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4256 bool MustPreserveNullness) { 4257 assert(Call && 4258 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4259 if (const Value *RV = Call->getReturnedArgOperand()) 4260 return RV; 4261 // This can be used only as a aliasing property. 4262 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4263 Call, MustPreserveNullness)) 4264 return Call->getArgOperand(0); 4265 return nullptr; 4266 } 4267 4268 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4269 const CallBase *Call, bool MustPreserveNullness) { 4270 switch (Call->getIntrinsicID()) { 4271 case Intrinsic::launder_invariant_group: 4272 case Intrinsic::strip_invariant_group: 4273 case Intrinsic::aarch64_irg: 4274 case Intrinsic::aarch64_tagp: 4275 return true; 4276 case Intrinsic::ptrmask: 4277 return !MustPreserveNullness; 4278 default: 4279 return false; 4280 } 4281 } 4282 4283 /// \p PN defines a loop-variant pointer to an object. Check if the 4284 /// previous iteration of the loop was referring to the same object as \p PN. 4285 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4286 const LoopInfo *LI) { 4287 // Find the loop-defined value. 4288 Loop *L = LI->getLoopFor(PN->getParent()); 4289 if (PN->getNumIncomingValues() != 2) 4290 return true; 4291 4292 // Find the value from previous iteration. 4293 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4294 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4295 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4296 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4297 return true; 4298 4299 // If a new pointer is loaded in the loop, the pointer references a different 4300 // object in every iteration. E.g.: 4301 // for (i) 4302 // int *p = a[i]; 4303 // ... 4304 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4305 if (!L->isLoopInvariant(Load->getPointerOperand())) 4306 return false; 4307 return true; 4308 } 4309 4310 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4311 if (!V->getType()->isPointerTy()) 4312 return V; 4313 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4314 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4315 V = GEP->getPointerOperand(); 4316 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4317 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4318 V = cast<Operator>(V)->getOperand(0); 4319 if (!V->getType()->isPointerTy()) 4320 return V; 4321 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4322 if (GA->isInterposable()) 4323 return V; 4324 V = GA->getAliasee(); 4325 } else { 4326 if (auto *PHI = dyn_cast<PHINode>(V)) { 4327 // Look through single-arg phi nodes created by LCSSA. 4328 if (PHI->getNumIncomingValues() == 1) { 4329 V = PHI->getIncomingValue(0); 4330 continue; 4331 } 4332 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4333 // CaptureTracking can know about special capturing properties of some 4334 // intrinsics like launder.invariant.group, that can't be expressed with 4335 // the attributes, but have properties like returning aliasing pointer. 4336 // Because some analysis may assume that nocaptured pointer is not 4337 // returned from some special intrinsic (because function would have to 4338 // be marked with returns attribute), it is crucial to use this function 4339 // because it should be in sync with CaptureTracking. Not using it may 4340 // cause weird miscompilations where 2 aliasing pointers are assumed to 4341 // noalias. 4342 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4343 V = RP; 4344 continue; 4345 } 4346 } 4347 4348 return V; 4349 } 4350 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4351 } 4352 return V; 4353 } 4354 4355 void llvm::getUnderlyingObjects(const Value *V, 4356 SmallVectorImpl<const Value *> &Objects, 4357 LoopInfo *LI, unsigned MaxLookup) { 4358 SmallPtrSet<const Value *, 4> Visited; 4359 SmallVector<const Value *, 4> Worklist; 4360 Worklist.push_back(V); 4361 do { 4362 const Value *P = Worklist.pop_back_val(); 4363 P = getUnderlyingObject(P, MaxLookup); 4364 4365 if (!Visited.insert(P).second) 4366 continue; 4367 4368 if (auto *SI = dyn_cast<SelectInst>(P)) { 4369 Worklist.push_back(SI->getTrueValue()); 4370 Worklist.push_back(SI->getFalseValue()); 4371 continue; 4372 } 4373 4374 if (auto *PN = dyn_cast<PHINode>(P)) { 4375 // If this PHI changes the underlying object in every iteration of the 4376 // loop, don't look through it. Consider: 4377 // int **A; 4378 // for (i) { 4379 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4380 // Curr = A[i]; 4381 // *Prev, *Curr; 4382 // 4383 // Prev is tracking Curr one iteration behind so they refer to different 4384 // underlying objects. 4385 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4386 isSameUnderlyingObjectInLoop(PN, LI)) 4387 append_range(Worklist, PN->incoming_values()); 4388 continue; 4389 } 4390 4391 Objects.push_back(P); 4392 } while (!Worklist.empty()); 4393 } 4394 4395 /// This is the function that does the work of looking through basic 4396 /// ptrtoint+arithmetic+inttoptr sequences. 4397 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4398 do { 4399 if (const Operator *U = dyn_cast<Operator>(V)) { 4400 // If we find a ptrtoint, we can transfer control back to the 4401 // regular getUnderlyingObjectFromInt. 4402 if (U->getOpcode() == Instruction::PtrToInt) 4403 return U->getOperand(0); 4404 // If we find an add of a constant, a multiplied value, or a phi, it's 4405 // likely that the other operand will lead us to the base 4406 // object. We don't have to worry about the case where the 4407 // object address is somehow being computed by the multiply, 4408 // because our callers only care when the result is an 4409 // identifiable object. 4410 if (U->getOpcode() != Instruction::Add || 4411 (!isa<ConstantInt>(U->getOperand(1)) && 4412 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4413 !isa<PHINode>(U->getOperand(1)))) 4414 return V; 4415 V = U->getOperand(0); 4416 } else { 4417 return V; 4418 } 4419 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4420 } while (true); 4421 } 4422 4423 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4424 /// ptrtoint+arithmetic+inttoptr sequences. 4425 /// It returns false if unidentified object is found in getUnderlyingObjects. 4426 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4427 SmallVectorImpl<Value *> &Objects) { 4428 SmallPtrSet<const Value *, 16> Visited; 4429 SmallVector<const Value *, 4> Working(1, V); 4430 do { 4431 V = Working.pop_back_val(); 4432 4433 SmallVector<const Value *, 4> Objs; 4434 getUnderlyingObjects(V, Objs); 4435 4436 for (const Value *V : Objs) { 4437 if (!Visited.insert(V).second) 4438 continue; 4439 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4440 const Value *O = 4441 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4442 if (O->getType()->isPointerTy()) { 4443 Working.push_back(O); 4444 continue; 4445 } 4446 } 4447 // If getUnderlyingObjects fails to find an identifiable object, 4448 // getUnderlyingObjectsForCodeGen also fails for safety. 4449 if (!isIdentifiedObject(V)) { 4450 Objects.clear(); 4451 return false; 4452 } 4453 Objects.push_back(const_cast<Value *>(V)); 4454 } 4455 } while (!Working.empty()); 4456 return true; 4457 } 4458 4459 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4460 AllocaInst *Result = nullptr; 4461 SmallPtrSet<Value *, 4> Visited; 4462 SmallVector<Value *, 4> Worklist; 4463 4464 auto AddWork = [&](Value *V) { 4465 if (Visited.insert(V).second) 4466 Worklist.push_back(V); 4467 }; 4468 4469 AddWork(V); 4470 do { 4471 V = Worklist.pop_back_val(); 4472 assert(Visited.count(V)); 4473 4474 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4475 if (Result && Result != AI) 4476 return nullptr; 4477 Result = AI; 4478 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4479 AddWork(CI->getOperand(0)); 4480 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4481 for (Value *IncValue : PN->incoming_values()) 4482 AddWork(IncValue); 4483 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4484 AddWork(SI->getTrueValue()); 4485 AddWork(SI->getFalseValue()); 4486 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4487 if (OffsetZero && !GEP->hasAllZeroIndices()) 4488 return nullptr; 4489 AddWork(GEP->getPointerOperand()); 4490 } else { 4491 return nullptr; 4492 } 4493 } while (!Worklist.empty()); 4494 4495 return Result; 4496 } 4497 4498 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4499 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4500 for (const User *U : V->users()) { 4501 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4502 if (!II) 4503 return false; 4504 4505 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4506 continue; 4507 4508 if (AllowDroppable && II->isDroppable()) 4509 continue; 4510 4511 return false; 4512 } 4513 return true; 4514 } 4515 4516 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4517 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4518 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4519 } 4520 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4521 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4522 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4523 } 4524 4525 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4526 if (!LI.isUnordered()) 4527 return true; 4528 const Function &F = *LI.getFunction(); 4529 // Speculative load may create a race that did not exist in the source. 4530 return F.hasFnAttribute(Attribute::SanitizeThread) || 4531 // Speculative load may load data from dirty regions. 4532 F.hasFnAttribute(Attribute::SanitizeAddress) || 4533 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4534 } 4535 4536 4537 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4538 const Instruction *CtxI, 4539 const DominatorTree *DT, 4540 const TargetLibraryInfo *TLI) { 4541 const Operator *Inst = dyn_cast<Operator>(V); 4542 if (!Inst) 4543 return false; 4544 4545 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4546 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4547 if (C->canTrap()) 4548 return false; 4549 4550 switch (Inst->getOpcode()) { 4551 default: 4552 return true; 4553 case Instruction::UDiv: 4554 case Instruction::URem: { 4555 // x / y is undefined if y == 0. 4556 const APInt *V; 4557 if (match(Inst->getOperand(1), m_APInt(V))) 4558 return *V != 0; 4559 return false; 4560 } 4561 case Instruction::SDiv: 4562 case Instruction::SRem: { 4563 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4564 const APInt *Numerator, *Denominator; 4565 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4566 return false; 4567 // We cannot hoist this division if the denominator is 0. 4568 if (*Denominator == 0) 4569 return false; 4570 // It's safe to hoist if the denominator is not 0 or -1. 4571 if (!Denominator->isAllOnesValue()) 4572 return true; 4573 // At this point we know that the denominator is -1. It is safe to hoist as 4574 // long we know that the numerator is not INT_MIN. 4575 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4576 return !Numerator->isMinSignedValue(); 4577 // The numerator *might* be MinSignedValue. 4578 return false; 4579 } 4580 case Instruction::Load: { 4581 const LoadInst *LI = cast<LoadInst>(Inst); 4582 if (mustSuppressSpeculation(*LI)) 4583 return false; 4584 const DataLayout &DL = LI->getModule()->getDataLayout(); 4585 return isDereferenceableAndAlignedPointer( 4586 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4587 DL, CtxI, DT, TLI); 4588 } 4589 case Instruction::Call: { 4590 auto *CI = cast<const CallInst>(Inst); 4591 const Function *Callee = CI->getCalledFunction(); 4592 4593 // The called function could have undefined behavior or side-effects, even 4594 // if marked readnone nounwind. 4595 return Callee && Callee->isSpeculatable(); 4596 } 4597 case Instruction::VAArg: 4598 case Instruction::Alloca: 4599 case Instruction::Invoke: 4600 case Instruction::CallBr: 4601 case Instruction::PHI: 4602 case Instruction::Store: 4603 case Instruction::Ret: 4604 case Instruction::Br: 4605 case Instruction::IndirectBr: 4606 case Instruction::Switch: 4607 case Instruction::Unreachable: 4608 case Instruction::Fence: 4609 case Instruction::AtomicRMW: 4610 case Instruction::AtomicCmpXchg: 4611 case Instruction::LandingPad: 4612 case Instruction::Resume: 4613 case Instruction::CatchSwitch: 4614 case Instruction::CatchPad: 4615 case Instruction::CatchRet: 4616 case Instruction::CleanupPad: 4617 case Instruction::CleanupRet: 4618 return false; // Misc instructions which have effects 4619 } 4620 } 4621 4622 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4623 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4624 } 4625 4626 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4627 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4628 switch (OR) { 4629 case ConstantRange::OverflowResult::MayOverflow: 4630 return OverflowResult::MayOverflow; 4631 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4632 return OverflowResult::AlwaysOverflowsLow; 4633 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4634 return OverflowResult::AlwaysOverflowsHigh; 4635 case ConstantRange::OverflowResult::NeverOverflows: 4636 return OverflowResult::NeverOverflows; 4637 } 4638 llvm_unreachable("Unknown OverflowResult"); 4639 } 4640 4641 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4642 static ConstantRange computeConstantRangeIncludingKnownBits( 4643 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4644 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4645 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4646 KnownBits Known = computeKnownBits( 4647 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4648 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4649 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4650 ConstantRange::PreferredRangeType RangeType = 4651 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4652 return CR1.intersectWith(CR2, RangeType); 4653 } 4654 4655 OverflowResult llvm::computeOverflowForUnsignedMul( 4656 const Value *LHS, const Value *RHS, const DataLayout &DL, 4657 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4658 bool UseInstrInfo) { 4659 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4660 nullptr, UseInstrInfo); 4661 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4662 nullptr, UseInstrInfo); 4663 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4664 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4665 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4666 } 4667 4668 OverflowResult 4669 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4670 const DataLayout &DL, AssumptionCache *AC, 4671 const Instruction *CxtI, 4672 const DominatorTree *DT, bool UseInstrInfo) { 4673 // Multiplying n * m significant bits yields a result of n + m significant 4674 // bits. If the total number of significant bits does not exceed the 4675 // result bit width (minus 1), there is no overflow. 4676 // This means if we have enough leading sign bits in the operands 4677 // we can guarantee that the result does not overflow. 4678 // Ref: "Hacker's Delight" by Henry Warren 4679 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4680 4681 // Note that underestimating the number of sign bits gives a more 4682 // conservative answer. 4683 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4684 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4685 4686 // First handle the easy case: if we have enough sign bits there's 4687 // definitely no overflow. 4688 if (SignBits > BitWidth + 1) 4689 return OverflowResult::NeverOverflows; 4690 4691 // There are two ambiguous cases where there can be no overflow: 4692 // SignBits == BitWidth + 1 and 4693 // SignBits == BitWidth 4694 // The second case is difficult to check, therefore we only handle the 4695 // first case. 4696 if (SignBits == BitWidth + 1) { 4697 // It overflows only when both arguments are negative and the true 4698 // product is exactly the minimum negative number. 4699 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4700 // For simplicity we just check if at least one side is not negative. 4701 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4702 nullptr, UseInstrInfo); 4703 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4704 nullptr, UseInstrInfo); 4705 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4706 return OverflowResult::NeverOverflows; 4707 } 4708 return OverflowResult::MayOverflow; 4709 } 4710 4711 OverflowResult llvm::computeOverflowForUnsignedAdd( 4712 const Value *LHS, const Value *RHS, const DataLayout &DL, 4713 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4714 bool UseInstrInfo) { 4715 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4716 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4717 nullptr, UseInstrInfo); 4718 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4719 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4720 nullptr, UseInstrInfo); 4721 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4722 } 4723 4724 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4725 const Value *RHS, 4726 const AddOperator *Add, 4727 const DataLayout &DL, 4728 AssumptionCache *AC, 4729 const Instruction *CxtI, 4730 const DominatorTree *DT) { 4731 if (Add && Add->hasNoSignedWrap()) { 4732 return OverflowResult::NeverOverflows; 4733 } 4734 4735 // If LHS and RHS each have at least two sign bits, the addition will look 4736 // like 4737 // 4738 // XX..... + 4739 // YY..... 4740 // 4741 // If the carry into the most significant position is 0, X and Y can't both 4742 // be 1 and therefore the carry out of the addition is also 0. 4743 // 4744 // If the carry into the most significant position is 1, X and Y can't both 4745 // be 0 and therefore the carry out of the addition is also 1. 4746 // 4747 // Since the carry into the most significant position is always equal to 4748 // the carry out of the addition, there is no signed overflow. 4749 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4750 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4751 return OverflowResult::NeverOverflows; 4752 4753 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4754 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4755 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4756 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4757 OverflowResult OR = 4758 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4759 if (OR != OverflowResult::MayOverflow) 4760 return OR; 4761 4762 // The remaining code needs Add to be available. Early returns if not so. 4763 if (!Add) 4764 return OverflowResult::MayOverflow; 4765 4766 // If the sign of Add is the same as at least one of the operands, this add 4767 // CANNOT overflow. If this can be determined from the known bits of the 4768 // operands the above signedAddMayOverflow() check will have already done so. 4769 // The only other way to improve on the known bits is from an assumption, so 4770 // call computeKnownBitsFromAssume() directly. 4771 bool LHSOrRHSKnownNonNegative = 4772 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4773 bool LHSOrRHSKnownNegative = 4774 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4775 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4776 KnownBits AddKnown(LHSRange.getBitWidth()); 4777 computeKnownBitsFromAssume( 4778 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4779 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4780 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4781 return OverflowResult::NeverOverflows; 4782 } 4783 4784 return OverflowResult::MayOverflow; 4785 } 4786 4787 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4788 const Value *RHS, 4789 const DataLayout &DL, 4790 AssumptionCache *AC, 4791 const Instruction *CxtI, 4792 const DominatorTree *DT) { 4793 // Checking for conditions implied by dominating conditions may be expensive. 4794 // Limit it to usub_with_overflow calls for now. 4795 if (match(CxtI, 4796 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4797 if (auto C = 4798 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4799 if (*C) 4800 return OverflowResult::NeverOverflows; 4801 return OverflowResult::AlwaysOverflowsLow; 4802 } 4803 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4804 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4805 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4806 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4807 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4808 } 4809 4810 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4811 const Value *RHS, 4812 const DataLayout &DL, 4813 AssumptionCache *AC, 4814 const Instruction *CxtI, 4815 const DominatorTree *DT) { 4816 // If LHS and RHS each have at least two sign bits, the subtraction 4817 // cannot overflow. 4818 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4819 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4820 return OverflowResult::NeverOverflows; 4821 4822 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4823 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4824 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4825 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4826 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4827 } 4828 4829 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4830 const DominatorTree &DT) { 4831 SmallVector<const BranchInst *, 2> GuardingBranches; 4832 SmallVector<const ExtractValueInst *, 2> Results; 4833 4834 for (const User *U : WO->users()) { 4835 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4836 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4837 4838 if (EVI->getIndices()[0] == 0) 4839 Results.push_back(EVI); 4840 else { 4841 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4842 4843 for (const auto *U : EVI->users()) 4844 if (const auto *B = dyn_cast<BranchInst>(U)) { 4845 assert(B->isConditional() && "How else is it using an i1?"); 4846 GuardingBranches.push_back(B); 4847 } 4848 } 4849 } else { 4850 // We are using the aggregate directly in a way we don't want to analyze 4851 // here (storing it to a global, say). 4852 return false; 4853 } 4854 } 4855 4856 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4857 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4858 if (!NoWrapEdge.isSingleEdge()) 4859 return false; 4860 4861 // Check if all users of the add are provably no-wrap. 4862 for (const auto *Result : Results) { 4863 // If the extractvalue itself is not executed on overflow, the we don't 4864 // need to check each use separately, since domination is transitive. 4865 if (DT.dominates(NoWrapEdge, Result->getParent())) 4866 continue; 4867 4868 for (auto &RU : Result->uses()) 4869 if (!DT.dominates(NoWrapEdge, RU)) 4870 return false; 4871 } 4872 4873 return true; 4874 }; 4875 4876 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4877 } 4878 4879 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4880 // See whether I has flags that may create poison 4881 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4882 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4883 return true; 4884 } 4885 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4886 if (ExactOp->isExact()) 4887 return true; 4888 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4889 auto FMF = FP->getFastMathFlags(); 4890 if (FMF.noNaNs() || FMF.noInfs()) 4891 return true; 4892 } 4893 4894 unsigned Opcode = Op->getOpcode(); 4895 4896 // Check whether opcode is a poison/undef-generating operation 4897 switch (Opcode) { 4898 case Instruction::Shl: 4899 case Instruction::AShr: 4900 case Instruction::LShr: { 4901 // Shifts return poison if shiftwidth is larger than the bitwidth. 4902 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4903 SmallVector<Constant *, 4> ShiftAmounts; 4904 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4905 unsigned NumElts = FVTy->getNumElements(); 4906 for (unsigned i = 0; i < NumElts; ++i) 4907 ShiftAmounts.push_back(C->getAggregateElement(i)); 4908 } else if (isa<ScalableVectorType>(C->getType())) 4909 return true; // Can't tell, just return true to be safe 4910 else 4911 ShiftAmounts.push_back(C); 4912 4913 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4914 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4915 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4916 }); 4917 return !Safe; 4918 } 4919 return true; 4920 } 4921 case Instruction::FPToSI: 4922 case Instruction::FPToUI: 4923 // fptosi/ui yields poison if the resulting value does not fit in the 4924 // destination type. 4925 return true; 4926 case Instruction::Call: 4927 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4928 switch (II->getIntrinsicID()) { 4929 // TODO: Add more intrinsics. 4930 case Intrinsic::ctpop: 4931 case Intrinsic::sadd_with_overflow: 4932 case Intrinsic::ssub_with_overflow: 4933 case Intrinsic::smul_with_overflow: 4934 case Intrinsic::uadd_with_overflow: 4935 case Intrinsic::usub_with_overflow: 4936 case Intrinsic::umul_with_overflow: 4937 return false; 4938 } 4939 } 4940 LLVM_FALLTHROUGH; 4941 case Instruction::CallBr: 4942 case Instruction::Invoke: { 4943 const auto *CB = cast<CallBase>(Op); 4944 return !CB->hasRetAttr(Attribute::NoUndef); 4945 } 4946 case Instruction::InsertElement: 4947 case Instruction::ExtractElement: { 4948 // If index exceeds the length of the vector, it returns poison 4949 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4950 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4951 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4952 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4953 return true; 4954 return false; 4955 } 4956 case Instruction::ShuffleVector: { 4957 // shufflevector may return undef. 4958 if (PoisonOnly) 4959 return false; 4960 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4961 ? cast<ConstantExpr>(Op)->getShuffleMask() 4962 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4963 return is_contained(Mask, UndefMaskElem); 4964 } 4965 case Instruction::FNeg: 4966 case Instruction::PHI: 4967 case Instruction::Select: 4968 case Instruction::URem: 4969 case Instruction::SRem: 4970 case Instruction::ExtractValue: 4971 case Instruction::InsertValue: 4972 case Instruction::Freeze: 4973 case Instruction::ICmp: 4974 case Instruction::FCmp: 4975 return false; 4976 case Instruction::GetElementPtr: { 4977 const auto *GEP = cast<GEPOperator>(Op); 4978 return GEP->isInBounds(); 4979 } 4980 default: { 4981 const auto *CE = dyn_cast<ConstantExpr>(Op); 4982 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4983 return false; 4984 else if (Instruction::isBinaryOp(Opcode)) 4985 return false; 4986 // Be conservative and return true. 4987 return true; 4988 } 4989 } 4990 } 4991 4992 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4993 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4994 } 4995 4996 bool llvm::canCreatePoison(const Operator *Op) { 4997 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4998 } 4999 5000 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5001 const Value *V, unsigned Depth) { 5002 if (ValAssumedPoison == V) 5003 return true; 5004 5005 const unsigned MaxDepth = 2; 5006 if (Depth >= MaxDepth) 5007 return false; 5008 5009 if (const auto *I = dyn_cast<Instruction>(V)) { 5010 if (propagatesPoison(cast<Operator>(I))) 5011 return any_of(I->operands(), [=](const Value *Op) { 5012 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5013 }); 5014 5015 // 'select ValAssumedPoison, _, _' is poison. 5016 if (const auto *SI = dyn_cast<SelectInst>(I)) 5017 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5018 Depth + 1); 5019 // V = extractvalue V0, idx 5020 // V2 = extractvalue V0, idx2 5021 // V0's elements are all poison or not. (e.g., add_with_overflow) 5022 const WithOverflowInst *II; 5023 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5024 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5025 llvm::is_contained(II->arg_operands(), ValAssumedPoison))) 5026 return true; 5027 } 5028 return false; 5029 } 5030 5031 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5032 unsigned Depth) { 5033 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5034 return true; 5035 5036 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5037 return true; 5038 5039 const unsigned MaxDepth = 2; 5040 if (Depth >= MaxDepth) 5041 return false; 5042 5043 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5044 if (I && !canCreatePoison(cast<Operator>(I))) { 5045 return all_of(I->operands(), [=](const Value *Op) { 5046 return impliesPoison(Op, V, Depth + 1); 5047 }); 5048 } 5049 return false; 5050 } 5051 5052 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5053 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5054 } 5055 5056 static bool programUndefinedIfUndefOrPoison(const Value *V, 5057 bool PoisonOnly); 5058 5059 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5060 AssumptionCache *AC, 5061 const Instruction *CtxI, 5062 const DominatorTree *DT, 5063 unsigned Depth, bool PoisonOnly) { 5064 if (Depth >= MaxAnalysisRecursionDepth) 5065 return false; 5066 5067 if (isa<MetadataAsValue>(V)) 5068 return false; 5069 5070 if (const auto *A = dyn_cast<Argument>(V)) { 5071 if (A->hasAttribute(Attribute::NoUndef)) 5072 return true; 5073 } 5074 5075 if (auto *C = dyn_cast<Constant>(V)) { 5076 if (isa<UndefValue>(C)) 5077 return PoisonOnly && !isa<PoisonValue>(C); 5078 5079 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5080 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5081 return true; 5082 5083 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5084 return (PoisonOnly ? !C->containsPoisonElement() 5085 : !C->containsUndefOrPoisonElement()) && 5086 !C->containsConstantExpression(); 5087 } 5088 5089 // Strip cast operations from a pointer value. 5090 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5091 // inbounds with zero offset. To guarantee that the result isn't poison, the 5092 // stripped pointer is checked as it has to be pointing into an allocated 5093 // object or be null `null` to ensure `inbounds` getelement pointers with a 5094 // zero offset could not produce poison. 5095 // It can strip off addrspacecast that do not change bit representation as 5096 // well. We believe that such addrspacecast is equivalent to no-op. 5097 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5098 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5099 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5100 return true; 5101 5102 auto OpCheck = [&](const Value *V) { 5103 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5104 PoisonOnly); 5105 }; 5106 5107 if (auto *Opr = dyn_cast<Operator>(V)) { 5108 // If the value is a freeze instruction, then it can never 5109 // be undef or poison. 5110 if (isa<FreezeInst>(V)) 5111 return true; 5112 5113 if (const auto *CB = dyn_cast<CallBase>(V)) { 5114 if (CB->hasRetAttr(Attribute::NoUndef)) 5115 return true; 5116 } 5117 5118 if (const auto *PN = dyn_cast<PHINode>(V)) { 5119 unsigned Num = PN->getNumIncomingValues(); 5120 bool IsWellDefined = true; 5121 for (unsigned i = 0; i < Num; ++i) { 5122 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5123 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5124 DT, Depth + 1, PoisonOnly)) { 5125 IsWellDefined = false; 5126 break; 5127 } 5128 } 5129 if (IsWellDefined) 5130 return true; 5131 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5132 return true; 5133 } 5134 5135 if (auto *I = dyn_cast<LoadInst>(V)) 5136 if (I->getMetadata(LLVMContext::MD_noundef)) 5137 return true; 5138 5139 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5140 return true; 5141 5142 // CxtI may be null or a cloned instruction. 5143 if (!CtxI || !CtxI->getParent() || !DT) 5144 return false; 5145 5146 auto *DNode = DT->getNode(CtxI->getParent()); 5147 if (!DNode) 5148 // Unreachable block 5149 return false; 5150 5151 // If V is used as a branch condition before reaching CtxI, V cannot be 5152 // undef or poison. 5153 // br V, BB1, BB2 5154 // BB1: 5155 // CtxI ; V cannot be undef or poison here 5156 auto *Dominator = DNode->getIDom(); 5157 while (Dominator) { 5158 auto *TI = Dominator->getBlock()->getTerminator(); 5159 5160 Value *Cond = nullptr; 5161 if (auto BI = dyn_cast<BranchInst>(TI)) { 5162 if (BI->isConditional()) 5163 Cond = BI->getCondition(); 5164 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5165 Cond = SI->getCondition(); 5166 } 5167 5168 if (Cond) { 5169 if (Cond == V) 5170 return true; 5171 else if (PoisonOnly && isa<Operator>(Cond)) { 5172 // For poison, we can analyze further 5173 auto *Opr = cast<Operator>(Cond); 5174 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5175 return true; 5176 } 5177 } 5178 5179 Dominator = Dominator->getIDom(); 5180 } 5181 5182 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5183 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5184 return true; 5185 5186 return false; 5187 } 5188 5189 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5190 const Instruction *CtxI, 5191 const DominatorTree *DT, 5192 unsigned Depth) { 5193 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5194 } 5195 5196 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5197 const Instruction *CtxI, 5198 const DominatorTree *DT, unsigned Depth) { 5199 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5200 } 5201 5202 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5203 const DataLayout &DL, 5204 AssumptionCache *AC, 5205 const Instruction *CxtI, 5206 const DominatorTree *DT) { 5207 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5208 Add, DL, AC, CxtI, DT); 5209 } 5210 5211 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5212 const Value *RHS, 5213 const DataLayout &DL, 5214 AssumptionCache *AC, 5215 const Instruction *CxtI, 5216 const DominatorTree *DT) { 5217 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5218 } 5219 5220 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5221 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5222 // of time because it's possible for another thread to interfere with it for an 5223 // arbitrary length of time, but programs aren't allowed to rely on that. 5224 5225 // If there is no successor, then execution can't transfer to it. 5226 if (isa<ReturnInst>(I)) 5227 return false; 5228 if (isa<UnreachableInst>(I)) 5229 return false; 5230 5231 // An instruction that returns without throwing must transfer control flow 5232 // to a successor. 5233 return !I->mayThrow() && I->willReturn(); 5234 } 5235 5236 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5237 // TODO: This is slightly conservative for invoke instruction since exiting 5238 // via an exception *is* normal control for them. 5239 for (const Instruction &I : *BB) 5240 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5241 return false; 5242 return true; 5243 } 5244 5245 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5246 const Loop *L) { 5247 // The loop header is guaranteed to be executed for every iteration. 5248 // 5249 // FIXME: Relax this constraint to cover all basic blocks that are 5250 // guaranteed to be executed at every iteration. 5251 if (I->getParent() != L->getHeader()) return false; 5252 5253 for (const Instruction &LI : *L->getHeader()) { 5254 if (&LI == I) return true; 5255 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5256 } 5257 llvm_unreachable("Instruction not contained in its own parent basic block."); 5258 } 5259 5260 bool llvm::propagatesPoison(const Operator *I) { 5261 switch (I->getOpcode()) { 5262 case Instruction::Freeze: 5263 case Instruction::Select: 5264 case Instruction::PHI: 5265 case Instruction::Invoke: 5266 return false; 5267 case Instruction::Call: 5268 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5269 switch (II->getIntrinsicID()) { 5270 // TODO: Add more intrinsics. 5271 case Intrinsic::sadd_with_overflow: 5272 case Intrinsic::ssub_with_overflow: 5273 case Intrinsic::smul_with_overflow: 5274 case Intrinsic::uadd_with_overflow: 5275 case Intrinsic::usub_with_overflow: 5276 case Intrinsic::umul_with_overflow: 5277 // If an input is a vector containing a poison element, the 5278 // two output vectors (calculated results, overflow bits)' 5279 // corresponding lanes are poison. 5280 return true; 5281 case Intrinsic::ctpop: 5282 return true; 5283 } 5284 } 5285 return false; 5286 case Instruction::ICmp: 5287 case Instruction::FCmp: 5288 case Instruction::GetElementPtr: 5289 return true; 5290 default: 5291 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5292 return true; 5293 5294 // Be conservative and return false. 5295 return false; 5296 } 5297 } 5298 5299 void llvm::getGuaranteedWellDefinedOps( 5300 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5301 switch (I->getOpcode()) { 5302 case Instruction::Store: 5303 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5304 break; 5305 5306 case Instruction::Load: 5307 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5308 break; 5309 5310 // Since dereferenceable attribute imply noundef, atomic operations 5311 // also implicitly have noundef pointers too 5312 case Instruction::AtomicCmpXchg: 5313 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5314 break; 5315 5316 case Instruction::AtomicRMW: 5317 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5318 break; 5319 5320 case Instruction::Call: 5321 case Instruction::Invoke: { 5322 const CallBase *CB = cast<CallBase>(I); 5323 if (CB->isIndirectCall()) 5324 Operands.insert(CB->getCalledOperand()); 5325 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5326 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5327 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5328 Operands.insert(CB->getArgOperand(i)); 5329 } 5330 break; 5331 } 5332 5333 default: 5334 break; 5335 } 5336 } 5337 5338 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5339 SmallPtrSetImpl<const Value *> &Operands) { 5340 getGuaranteedWellDefinedOps(I, Operands); 5341 switch (I->getOpcode()) { 5342 // Divisors of these operations are allowed to be partially undef. 5343 case Instruction::UDiv: 5344 case Instruction::SDiv: 5345 case Instruction::URem: 5346 case Instruction::SRem: 5347 Operands.insert(I->getOperand(1)); 5348 break; 5349 5350 default: 5351 break; 5352 } 5353 } 5354 5355 bool llvm::mustTriggerUB(const Instruction *I, 5356 const SmallSet<const Value *, 16>& KnownPoison) { 5357 SmallPtrSet<const Value *, 4> NonPoisonOps; 5358 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5359 5360 for (const auto *V : NonPoisonOps) 5361 if (KnownPoison.count(V)) 5362 return true; 5363 5364 return false; 5365 } 5366 5367 static bool programUndefinedIfUndefOrPoison(const Value *V, 5368 bool PoisonOnly) { 5369 // We currently only look for uses of values within the same basic 5370 // block, as that makes it easier to guarantee that the uses will be 5371 // executed given that Inst is executed. 5372 // 5373 // FIXME: Expand this to consider uses beyond the same basic block. To do 5374 // this, look out for the distinction between post-dominance and strong 5375 // post-dominance. 5376 const BasicBlock *BB = nullptr; 5377 BasicBlock::const_iterator Begin; 5378 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5379 BB = Inst->getParent(); 5380 Begin = Inst->getIterator(); 5381 Begin++; 5382 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5383 BB = &Arg->getParent()->getEntryBlock(); 5384 Begin = BB->begin(); 5385 } else { 5386 return false; 5387 } 5388 5389 // Limit number of instructions we look at, to avoid scanning through large 5390 // blocks. The current limit is chosen arbitrarily. 5391 unsigned ScanLimit = 32; 5392 BasicBlock::const_iterator End = BB->end(); 5393 5394 if (!PoisonOnly) { 5395 // Since undef does not propagate eagerly, be conservative & just check 5396 // whether a value is directly passed to an instruction that must take 5397 // well-defined operands. 5398 5399 for (auto &I : make_range(Begin, End)) { 5400 if (isa<DbgInfoIntrinsic>(I)) 5401 continue; 5402 if (--ScanLimit == 0) 5403 break; 5404 5405 SmallPtrSet<const Value *, 4> WellDefinedOps; 5406 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5407 if (WellDefinedOps.contains(V)) 5408 return true; 5409 5410 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5411 break; 5412 } 5413 return false; 5414 } 5415 5416 // Set of instructions that we have proved will yield poison if Inst 5417 // does. 5418 SmallSet<const Value *, 16> YieldsPoison; 5419 SmallSet<const BasicBlock *, 4> Visited; 5420 5421 YieldsPoison.insert(V); 5422 auto Propagate = [&](const User *User) { 5423 if (propagatesPoison(cast<Operator>(User))) 5424 YieldsPoison.insert(User); 5425 }; 5426 for_each(V->users(), Propagate); 5427 Visited.insert(BB); 5428 5429 while (true) { 5430 for (auto &I : make_range(Begin, End)) { 5431 if (isa<DbgInfoIntrinsic>(I)) 5432 continue; 5433 if (--ScanLimit == 0) 5434 return false; 5435 if (mustTriggerUB(&I, YieldsPoison)) 5436 return true; 5437 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5438 return false; 5439 5440 // Mark poison that propagates from I through uses of I. 5441 if (YieldsPoison.count(&I)) 5442 for_each(I.users(), Propagate); 5443 } 5444 5445 BB = BB->getSingleSuccessor(); 5446 if (!BB || !Visited.insert(BB).second) 5447 break; 5448 5449 Begin = BB->getFirstNonPHI()->getIterator(); 5450 End = BB->end(); 5451 } 5452 return false; 5453 } 5454 5455 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5456 return ::programUndefinedIfUndefOrPoison(Inst, false); 5457 } 5458 5459 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5460 return ::programUndefinedIfUndefOrPoison(Inst, true); 5461 } 5462 5463 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5464 if (FMF.noNaNs()) 5465 return true; 5466 5467 if (auto *C = dyn_cast<ConstantFP>(V)) 5468 return !C->isNaN(); 5469 5470 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5471 if (!C->getElementType()->isFloatingPointTy()) 5472 return false; 5473 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5474 if (C->getElementAsAPFloat(I).isNaN()) 5475 return false; 5476 } 5477 return true; 5478 } 5479 5480 if (isa<ConstantAggregateZero>(V)) 5481 return true; 5482 5483 return false; 5484 } 5485 5486 static bool isKnownNonZero(const Value *V) { 5487 if (auto *C = dyn_cast<ConstantFP>(V)) 5488 return !C->isZero(); 5489 5490 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5491 if (!C->getElementType()->isFloatingPointTy()) 5492 return false; 5493 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5494 if (C->getElementAsAPFloat(I).isZero()) 5495 return false; 5496 } 5497 return true; 5498 } 5499 5500 return false; 5501 } 5502 5503 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5504 /// Given non-min/max outer cmp/select from the clamp pattern this 5505 /// function recognizes if it can be substitued by a "canonical" min/max 5506 /// pattern. 5507 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5508 Value *CmpLHS, Value *CmpRHS, 5509 Value *TrueVal, Value *FalseVal, 5510 Value *&LHS, Value *&RHS) { 5511 // Try to match 5512 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5513 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5514 // and return description of the outer Max/Min. 5515 5516 // First, check if select has inverse order: 5517 if (CmpRHS == FalseVal) { 5518 std::swap(TrueVal, FalseVal); 5519 Pred = CmpInst::getInversePredicate(Pred); 5520 } 5521 5522 // Assume success now. If there's no match, callers should not use these anyway. 5523 LHS = TrueVal; 5524 RHS = FalseVal; 5525 5526 const APFloat *FC1; 5527 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5528 return {SPF_UNKNOWN, SPNB_NA, false}; 5529 5530 const APFloat *FC2; 5531 switch (Pred) { 5532 case CmpInst::FCMP_OLT: 5533 case CmpInst::FCMP_OLE: 5534 case CmpInst::FCMP_ULT: 5535 case CmpInst::FCMP_ULE: 5536 if (match(FalseVal, 5537 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5538 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5539 *FC1 < *FC2) 5540 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5541 break; 5542 case CmpInst::FCMP_OGT: 5543 case CmpInst::FCMP_OGE: 5544 case CmpInst::FCMP_UGT: 5545 case CmpInst::FCMP_UGE: 5546 if (match(FalseVal, 5547 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5548 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5549 *FC1 > *FC2) 5550 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5551 break; 5552 default: 5553 break; 5554 } 5555 5556 return {SPF_UNKNOWN, SPNB_NA, false}; 5557 } 5558 5559 /// Recognize variations of: 5560 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5561 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5562 Value *CmpLHS, Value *CmpRHS, 5563 Value *TrueVal, Value *FalseVal) { 5564 // Swap the select operands and predicate to match the patterns below. 5565 if (CmpRHS != TrueVal) { 5566 Pred = ICmpInst::getSwappedPredicate(Pred); 5567 std::swap(TrueVal, FalseVal); 5568 } 5569 const APInt *C1; 5570 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5571 const APInt *C2; 5572 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5573 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5574 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5575 return {SPF_SMAX, SPNB_NA, false}; 5576 5577 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5578 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5579 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5580 return {SPF_SMIN, SPNB_NA, false}; 5581 5582 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5583 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5584 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5585 return {SPF_UMAX, SPNB_NA, false}; 5586 5587 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5588 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5589 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5590 return {SPF_UMIN, SPNB_NA, false}; 5591 } 5592 return {SPF_UNKNOWN, SPNB_NA, false}; 5593 } 5594 5595 /// Recognize variations of: 5596 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5597 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5598 Value *CmpLHS, Value *CmpRHS, 5599 Value *TVal, Value *FVal, 5600 unsigned Depth) { 5601 // TODO: Allow FP min/max with nnan/nsz. 5602 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5603 5604 Value *A = nullptr, *B = nullptr; 5605 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5606 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5607 return {SPF_UNKNOWN, SPNB_NA, false}; 5608 5609 Value *C = nullptr, *D = nullptr; 5610 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5611 if (L.Flavor != R.Flavor) 5612 return {SPF_UNKNOWN, SPNB_NA, false}; 5613 5614 // We have something like: x Pred y ? min(a, b) : min(c, d). 5615 // Try to match the compare to the min/max operations of the select operands. 5616 // First, make sure we have the right compare predicate. 5617 switch (L.Flavor) { 5618 case SPF_SMIN: 5619 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5620 Pred = ICmpInst::getSwappedPredicate(Pred); 5621 std::swap(CmpLHS, CmpRHS); 5622 } 5623 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5624 break; 5625 return {SPF_UNKNOWN, SPNB_NA, false}; 5626 case SPF_SMAX: 5627 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5628 Pred = ICmpInst::getSwappedPredicate(Pred); 5629 std::swap(CmpLHS, CmpRHS); 5630 } 5631 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5632 break; 5633 return {SPF_UNKNOWN, SPNB_NA, false}; 5634 case SPF_UMIN: 5635 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5636 Pred = ICmpInst::getSwappedPredicate(Pred); 5637 std::swap(CmpLHS, CmpRHS); 5638 } 5639 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5640 break; 5641 return {SPF_UNKNOWN, SPNB_NA, false}; 5642 case SPF_UMAX: 5643 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5644 Pred = ICmpInst::getSwappedPredicate(Pred); 5645 std::swap(CmpLHS, CmpRHS); 5646 } 5647 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5648 break; 5649 return {SPF_UNKNOWN, SPNB_NA, false}; 5650 default: 5651 return {SPF_UNKNOWN, SPNB_NA, false}; 5652 } 5653 5654 // If there is a common operand in the already matched min/max and the other 5655 // min/max operands match the compare operands (either directly or inverted), 5656 // then this is min/max of the same flavor. 5657 5658 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5659 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5660 if (D == B) { 5661 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5662 match(A, m_Not(m_Specific(CmpRHS))))) 5663 return {L.Flavor, SPNB_NA, false}; 5664 } 5665 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5666 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5667 if (C == B) { 5668 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5669 match(A, m_Not(m_Specific(CmpRHS))))) 5670 return {L.Flavor, SPNB_NA, false}; 5671 } 5672 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5673 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5674 if (D == A) { 5675 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5676 match(B, m_Not(m_Specific(CmpRHS))))) 5677 return {L.Flavor, SPNB_NA, false}; 5678 } 5679 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5680 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5681 if (C == A) { 5682 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5683 match(B, m_Not(m_Specific(CmpRHS))))) 5684 return {L.Flavor, SPNB_NA, false}; 5685 } 5686 5687 return {SPF_UNKNOWN, SPNB_NA, false}; 5688 } 5689 5690 /// If the input value is the result of a 'not' op, constant integer, or vector 5691 /// splat of a constant integer, return the bitwise-not source value. 5692 /// TODO: This could be extended to handle non-splat vector integer constants. 5693 static Value *getNotValue(Value *V) { 5694 Value *NotV; 5695 if (match(V, m_Not(m_Value(NotV)))) 5696 return NotV; 5697 5698 const APInt *C; 5699 if (match(V, m_APInt(C))) 5700 return ConstantInt::get(V->getType(), ~(*C)); 5701 5702 return nullptr; 5703 } 5704 5705 /// Match non-obvious integer minimum and maximum sequences. 5706 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5707 Value *CmpLHS, Value *CmpRHS, 5708 Value *TrueVal, Value *FalseVal, 5709 Value *&LHS, Value *&RHS, 5710 unsigned Depth) { 5711 // Assume success. If there's no match, callers should not use these anyway. 5712 LHS = TrueVal; 5713 RHS = FalseVal; 5714 5715 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5716 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5717 return SPR; 5718 5719 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5720 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5721 return SPR; 5722 5723 // Look through 'not' ops to find disguised min/max. 5724 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5725 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5726 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5727 switch (Pred) { 5728 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5729 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5730 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5731 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5732 default: break; 5733 } 5734 } 5735 5736 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5737 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5738 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5739 switch (Pred) { 5740 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5741 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5742 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5743 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5744 default: break; 5745 } 5746 } 5747 5748 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5749 return {SPF_UNKNOWN, SPNB_NA, false}; 5750 5751 // Z = X -nsw Y 5752 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5753 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5754 if (match(TrueVal, m_Zero()) && 5755 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5756 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5757 5758 // Z = X -nsw Y 5759 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5760 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5761 if (match(FalseVal, m_Zero()) && 5762 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5763 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5764 5765 const APInt *C1; 5766 if (!match(CmpRHS, m_APInt(C1))) 5767 return {SPF_UNKNOWN, SPNB_NA, false}; 5768 5769 // An unsigned min/max can be written with a signed compare. 5770 const APInt *C2; 5771 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5772 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5773 // Is the sign bit set? 5774 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5775 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5776 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5777 C2->isMaxSignedValue()) 5778 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5779 5780 // Is the sign bit clear? 5781 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5782 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5783 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5784 C2->isMinSignedValue()) 5785 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5786 } 5787 5788 return {SPF_UNKNOWN, SPNB_NA, false}; 5789 } 5790 5791 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5792 assert(X && Y && "Invalid operand"); 5793 5794 // X = sub (0, Y) || X = sub nsw (0, Y) 5795 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5796 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5797 return true; 5798 5799 // Y = sub (0, X) || Y = sub nsw (0, X) 5800 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5801 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5802 return true; 5803 5804 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5805 Value *A, *B; 5806 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5807 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5808 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5809 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5810 } 5811 5812 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5813 FastMathFlags FMF, 5814 Value *CmpLHS, Value *CmpRHS, 5815 Value *TrueVal, Value *FalseVal, 5816 Value *&LHS, Value *&RHS, 5817 unsigned Depth) { 5818 if (CmpInst::isFPPredicate(Pred)) { 5819 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5820 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5821 // purpose of identifying min/max. Disregard vector constants with undefined 5822 // elements because those can not be back-propagated for analysis. 5823 Value *OutputZeroVal = nullptr; 5824 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5825 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5826 OutputZeroVal = TrueVal; 5827 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5828 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5829 OutputZeroVal = FalseVal; 5830 5831 if (OutputZeroVal) { 5832 if (match(CmpLHS, m_AnyZeroFP())) 5833 CmpLHS = OutputZeroVal; 5834 if (match(CmpRHS, m_AnyZeroFP())) 5835 CmpRHS = OutputZeroVal; 5836 } 5837 } 5838 5839 LHS = CmpLHS; 5840 RHS = CmpRHS; 5841 5842 // Signed zero may return inconsistent results between implementations. 5843 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5844 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5845 // Therefore, we behave conservatively and only proceed if at least one of the 5846 // operands is known to not be zero or if we don't care about signed zero. 5847 switch (Pred) { 5848 default: break; 5849 // FIXME: Include OGT/OLT/UGT/ULT. 5850 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5851 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5852 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5853 !isKnownNonZero(CmpRHS)) 5854 return {SPF_UNKNOWN, SPNB_NA, false}; 5855 } 5856 5857 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5858 bool Ordered = false; 5859 5860 // When given one NaN and one non-NaN input: 5861 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5862 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5863 // ordered comparison fails), which could be NaN or non-NaN. 5864 // so here we discover exactly what NaN behavior is required/accepted. 5865 if (CmpInst::isFPPredicate(Pred)) { 5866 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5867 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5868 5869 if (LHSSafe && RHSSafe) { 5870 // Both operands are known non-NaN. 5871 NaNBehavior = SPNB_RETURNS_ANY; 5872 } else if (CmpInst::isOrdered(Pred)) { 5873 // An ordered comparison will return false when given a NaN, so it 5874 // returns the RHS. 5875 Ordered = true; 5876 if (LHSSafe) 5877 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5878 NaNBehavior = SPNB_RETURNS_NAN; 5879 else if (RHSSafe) 5880 NaNBehavior = SPNB_RETURNS_OTHER; 5881 else 5882 // Completely unsafe. 5883 return {SPF_UNKNOWN, SPNB_NA, false}; 5884 } else { 5885 Ordered = false; 5886 // An unordered comparison will return true when given a NaN, so it 5887 // returns the LHS. 5888 if (LHSSafe) 5889 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5890 NaNBehavior = SPNB_RETURNS_OTHER; 5891 else if (RHSSafe) 5892 NaNBehavior = SPNB_RETURNS_NAN; 5893 else 5894 // Completely unsafe. 5895 return {SPF_UNKNOWN, SPNB_NA, false}; 5896 } 5897 } 5898 5899 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5900 std::swap(CmpLHS, CmpRHS); 5901 Pred = CmpInst::getSwappedPredicate(Pred); 5902 if (NaNBehavior == SPNB_RETURNS_NAN) 5903 NaNBehavior = SPNB_RETURNS_OTHER; 5904 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5905 NaNBehavior = SPNB_RETURNS_NAN; 5906 Ordered = !Ordered; 5907 } 5908 5909 // ([if]cmp X, Y) ? X : Y 5910 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5911 switch (Pred) { 5912 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5913 case ICmpInst::ICMP_UGT: 5914 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5915 case ICmpInst::ICMP_SGT: 5916 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5917 case ICmpInst::ICMP_ULT: 5918 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5919 case ICmpInst::ICMP_SLT: 5920 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5921 case FCmpInst::FCMP_UGT: 5922 case FCmpInst::FCMP_UGE: 5923 case FCmpInst::FCMP_OGT: 5924 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5925 case FCmpInst::FCMP_ULT: 5926 case FCmpInst::FCMP_ULE: 5927 case FCmpInst::FCMP_OLT: 5928 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5929 } 5930 } 5931 5932 if (isKnownNegation(TrueVal, FalseVal)) { 5933 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5934 // match against either LHS or sext(LHS). 5935 auto MaybeSExtCmpLHS = 5936 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5937 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5938 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5939 if (match(TrueVal, MaybeSExtCmpLHS)) { 5940 // Set the return values. If the compare uses the negated value (-X >s 0), 5941 // swap the return values because the negated value is always 'RHS'. 5942 LHS = TrueVal; 5943 RHS = FalseVal; 5944 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5945 std::swap(LHS, RHS); 5946 5947 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5948 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5949 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5950 return {SPF_ABS, SPNB_NA, false}; 5951 5952 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5953 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5954 return {SPF_ABS, SPNB_NA, false}; 5955 5956 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5957 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5958 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5959 return {SPF_NABS, SPNB_NA, false}; 5960 } 5961 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5962 // Set the return values. If the compare uses the negated value (-X >s 0), 5963 // swap the return values because the negated value is always 'RHS'. 5964 LHS = FalseVal; 5965 RHS = TrueVal; 5966 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5967 std::swap(LHS, RHS); 5968 5969 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5970 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5971 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5972 return {SPF_NABS, SPNB_NA, false}; 5973 5974 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5975 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5976 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5977 return {SPF_ABS, SPNB_NA, false}; 5978 } 5979 } 5980 5981 if (CmpInst::isIntPredicate(Pred)) 5982 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5983 5984 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5985 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5986 // semantics than minNum. Be conservative in such case. 5987 if (NaNBehavior != SPNB_RETURNS_ANY || 5988 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5989 !isKnownNonZero(CmpRHS))) 5990 return {SPF_UNKNOWN, SPNB_NA, false}; 5991 5992 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5993 } 5994 5995 /// Helps to match a select pattern in case of a type mismatch. 5996 /// 5997 /// The function processes the case when type of true and false values of a 5998 /// select instruction differs from type of the cmp instruction operands because 5999 /// of a cast instruction. The function checks if it is legal to move the cast 6000 /// operation after "select". If yes, it returns the new second value of 6001 /// "select" (with the assumption that cast is moved): 6002 /// 1. As operand of cast instruction when both values of "select" are same cast 6003 /// instructions. 6004 /// 2. As restored constant (by applying reverse cast operation) when the first 6005 /// value of the "select" is a cast operation and the second value is a 6006 /// constant. 6007 /// NOTE: We return only the new second value because the first value could be 6008 /// accessed as operand of cast instruction. 6009 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6010 Instruction::CastOps *CastOp) { 6011 auto *Cast1 = dyn_cast<CastInst>(V1); 6012 if (!Cast1) 6013 return nullptr; 6014 6015 *CastOp = Cast1->getOpcode(); 6016 Type *SrcTy = Cast1->getSrcTy(); 6017 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6018 // If V1 and V2 are both the same cast from the same type, look through V1. 6019 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6020 return Cast2->getOperand(0); 6021 return nullptr; 6022 } 6023 6024 auto *C = dyn_cast<Constant>(V2); 6025 if (!C) 6026 return nullptr; 6027 6028 Constant *CastedTo = nullptr; 6029 switch (*CastOp) { 6030 case Instruction::ZExt: 6031 if (CmpI->isUnsigned()) 6032 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6033 break; 6034 case Instruction::SExt: 6035 if (CmpI->isSigned()) 6036 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6037 break; 6038 case Instruction::Trunc: 6039 Constant *CmpConst; 6040 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6041 CmpConst->getType() == SrcTy) { 6042 // Here we have the following case: 6043 // 6044 // %cond = cmp iN %x, CmpConst 6045 // %tr = trunc iN %x to iK 6046 // %narrowsel = select i1 %cond, iK %t, iK C 6047 // 6048 // We can always move trunc after select operation: 6049 // 6050 // %cond = cmp iN %x, CmpConst 6051 // %widesel = select i1 %cond, iN %x, iN CmpConst 6052 // %tr = trunc iN %widesel to iK 6053 // 6054 // Note that C could be extended in any way because we don't care about 6055 // upper bits after truncation. It can't be abs pattern, because it would 6056 // look like: 6057 // 6058 // select i1 %cond, x, -x. 6059 // 6060 // So only min/max pattern could be matched. Such match requires widened C 6061 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6062 // CmpConst == C is checked below. 6063 CastedTo = CmpConst; 6064 } else { 6065 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6066 } 6067 break; 6068 case Instruction::FPTrunc: 6069 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6070 break; 6071 case Instruction::FPExt: 6072 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6073 break; 6074 case Instruction::FPToUI: 6075 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6076 break; 6077 case Instruction::FPToSI: 6078 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6079 break; 6080 case Instruction::UIToFP: 6081 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6082 break; 6083 case Instruction::SIToFP: 6084 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6085 break; 6086 default: 6087 break; 6088 } 6089 6090 if (!CastedTo) 6091 return nullptr; 6092 6093 // Make sure the cast doesn't lose any information. 6094 Constant *CastedBack = 6095 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6096 if (CastedBack != C) 6097 return nullptr; 6098 6099 return CastedTo; 6100 } 6101 6102 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6103 Instruction::CastOps *CastOp, 6104 unsigned Depth) { 6105 if (Depth >= MaxAnalysisRecursionDepth) 6106 return {SPF_UNKNOWN, SPNB_NA, false}; 6107 6108 SelectInst *SI = dyn_cast<SelectInst>(V); 6109 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6110 6111 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6112 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6113 6114 Value *TrueVal = SI->getTrueValue(); 6115 Value *FalseVal = SI->getFalseValue(); 6116 6117 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6118 CastOp, Depth); 6119 } 6120 6121 SelectPatternResult llvm::matchDecomposedSelectPattern( 6122 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6123 Instruction::CastOps *CastOp, unsigned Depth) { 6124 CmpInst::Predicate Pred = CmpI->getPredicate(); 6125 Value *CmpLHS = CmpI->getOperand(0); 6126 Value *CmpRHS = CmpI->getOperand(1); 6127 FastMathFlags FMF; 6128 if (isa<FPMathOperator>(CmpI)) 6129 FMF = CmpI->getFastMathFlags(); 6130 6131 // Bail out early. 6132 if (CmpI->isEquality()) 6133 return {SPF_UNKNOWN, SPNB_NA, false}; 6134 6135 // Deal with type mismatches. 6136 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6137 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6138 // If this is a potential fmin/fmax with a cast to integer, then ignore 6139 // -0.0 because there is no corresponding integer value. 6140 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6141 FMF.setNoSignedZeros(); 6142 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6143 cast<CastInst>(TrueVal)->getOperand(0), C, 6144 LHS, RHS, Depth); 6145 } 6146 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6147 // If this is a potential fmin/fmax with a cast to integer, then ignore 6148 // -0.0 because there is no corresponding integer value. 6149 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6150 FMF.setNoSignedZeros(); 6151 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6152 C, cast<CastInst>(FalseVal)->getOperand(0), 6153 LHS, RHS, Depth); 6154 } 6155 } 6156 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6157 LHS, RHS, Depth); 6158 } 6159 6160 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6161 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6162 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6163 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6164 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6165 if (SPF == SPF_FMINNUM) 6166 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6167 if (SPF == SPF_FMAXNUM) 6168 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6169 llvm_unreachable("unhandled!"); 6170 } 6171 6172 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6173 if (SPF == SPF_SMIN) return SPF_SMAX; 6174 if (SPF == SPF_UMIN) return SPF_UMAX; 6175 if (SPF == SPF_SMAX) return SPF_SMIN; 6176 if (SPF == SPF_UMAX) return SPF_UMIN; 6177 llvm_unreachable("unhandled!"); 6178 } 6179 6180 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6181 switch (MinMaxID) { 6182 case Intrinsic::smax: return Intrinsic::smin; 6183 case Intrinsic::smin: return Intrinsic::smax; 6184 case Intrinsic::umax: return Intrinsic::umin; 6185 case Intrinsic::umin: return Intrinsic::umax; 6186 default: llvm_unreachable("Unexpected intrinsic"); 6187 } 6188 } 6189 6190 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6191 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6192 } 6193 6194 std::pair<Intrinsic::ID, bool> 6195 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6196 // Check if VL contains select instructions that can be folded into a min/max 6197 // vector intrinsic and return the intrinsic if it is possible. 6198 // TODO: Support floating point min/max. 6199 bool AllCmpSingleUse = true; 6200 SelectPatternResult SelectPattern; 6201 SelectPattern.Flavor = SPF_UNKNOWN; 6202 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6203 Value *LHS, *RHS; 6204 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6205 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6206 CurrentPattern.Flavor == SPF_FMINNUM || 6207 CurrentPattern.Flavor == SPF_FMAXNUM || 6208 !I->getType()->isIntOrIntVectorTy()) 6209 return false; 6210 if (SelectPattern.Flavor != SPF_UNKNOWN && 6211 SelectPattern.Flavor != CurrentPattern.Flavor) 6212 return false; 6213 SelectPattern = CurrentPattern; 6214 AllCmpSingleUse &= 6215 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6216 return true; 6217 })) { 6218 switch (SelectPattern.Flavor) { 6219 case SPF_SMIN: 6220 return {Intrinsic::smin, AllCmpSingleUse}; 6221 case SPF_UMIN: 6222 return {Intrinsic::umin, AllCmpSingleUse}; 6223 case SPF_SMAX: 6224 return {Intrinsic::smax, AllCmpSingleUse}; 6225 case SPF_UMAX: 6226 return {Intrinsic::umax, AllCmpSingleUse}; 6227 default: 6228 llvm_unreachable("unexpected select pattern flavor"); 6229 } 6230 } 6231 return {Intrinsic::not_intrinsic, false}; 6232 } 6233 6234 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6235 Value *&Start, Value *&Step) { 6236 // Handle the case of a simple two-predecessor recurrence PHI. 6237 // There's a lot more that could theoretically be done here, but 6238 // this is sufficient to catch some interesting cases. 6239 if (P->getNumIncomingValues() != 2) 6240 return false; 6241 6242 for (unsigned i = 0; i != 2; ++i) { 6243 Value *L = P->getIncomingValue(i); 6244 Value *R = P->getIncomingValue(!i); 6245 Operator *LU = dyn_cast<Operator>(L); 6246 if (!LU) 6247 continue; 6248 unsigned Opcode = LU->getOpcode(); 6249 6250 switch (Opcode) { 6251 default: 6252 continue; 6253 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6254 case Instruction::LShr: 6255 case Instruction::AShr: 6256 case Instruction::Shl: 6257 case Instruction::Add: 6258 case Instruction::Sub: 6259 case Instruction::And: 6260 case Instruction::Or: 6261 case Instruction::Mul: { 6262 Value *LL = LU->getOperand(0); 6263 Value *LR = LU->getOperand(1); 6264 // Find a recurrence. 6265 if (LL == P) 6266 L = LR; 6267 else if (LR == P) 6268 L = LL; 6269 else 6270 continue; // Check for recurrence with L and R flipped. 6271 6272 break; // Match! 6273 } 6274 }; 6275 6276 // We have matched a recurrence of the form: 6277 // %iv = [R, %entry], [%iv.next, %backedge] 6278 // %iv.next = binop %iv, L 6279 // OR 6280 // %iv = [R, %entry], [%iv.next, %backedge] 6281 // %iv.next = binop L, %iv 6282 BO = cast<BinaryOperator>(LU); 6283 Start = R; 6284 Step = L; 6285 return true; 6286 } 6287 return false; 6288 } 6289 6290 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6291 Value *&Start, Value *&Step) { 6292 BinaryOperator *BO = nullptr; 6293 P = dyn_cast<PHINode>(I->getOperand(0)); 6294 if (!P) 6295 P = dyn_cast<PHINode>(I->getOperand(1)); 6296 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6297 } 6298 6299 /// Return true if "icmp Pred LHS RHS" is always true. 6300 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6301 const Value *RHS, const DataLayout &DL, 6302 unsigned Depth) { 6303 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6304 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6305 return true; 6306 6307 switch (Pred) { 6308 default: 6309 return false; 6310 6311 case CmpInst::ICMP_SLE: { 6312 const APInt *C; 6313 6314 // LHS s<= LHS +_{nsw} C if C >= 0 6315 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6316 return !C->isNegative(); 6317 return false; 6318 } 6319 6320 case CmpInst::ICMP_ULE: { 6321 const APInt *C; 6322 6323 // LHS u<= LHS +_{nuw} C for any C 6324 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6325 return true; 6326 6327 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6328 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6329 const Value *&X, 6330 const APInt *&CA, const APInt *&CB) { 6331 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6332 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6333 return true; 6334 6335 // If X & C == 0 then (X | C) == X +_{nuw} C 6336 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6337 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6338 KnownBits Known(CA->getBitWidth()); 6339 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6340 /*CxtI*/ nullptr, /*DT*/ nullptr); 6341 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6342 return true; 6343 } 6344 6345 return false; 6346 }; 6347 6348 const Value *X; 6349 const APInt *CLHS, *CRHS; 6350 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6351 return CLHS->ule(*CRHS); 6352 6353 return false; 6354 } 6355 } 6356 } 6357 6358 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6359 /// ALHS ARHS" is true. Otherwise, return None. 6360 static Optional<bool> 6361 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6362 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6363 const DataLayout &DL, unsigned Depth) { 6364 switch (Pred) { 6365 default: 6366 return None; 6367 6368 case CmpInst::ICMP_SLT: 6369 case CmpInst::ICMP_SLE: 6370 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6371 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6372 return true; 6373 return None; 6374 6375 case CmpInst::ICMP_ULT: 6376 case CmpInst::ICMP_ULE: 6377 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6378 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6379 return true; 6380 return None; 6381 } 6382 } 6383 6384 /// Return true if the operands of the two compares match. IsSwappedOps is true 6385 /// when the operands match, but are swapped. 6386 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6387 const Value *BLHS, const Value *BRHS, 6388 bool &IsSwappedOps) { 6389 6390 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6391 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6392 return IsMatchingOps || IsSwappedOps; 6393 } 6394 6395 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6396 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6397 /// Otherwise, return None if we can't infer anything. 6398 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6399 CmpInst::Predicate BPred, 6400 bool AreSwappedOps) { 6401 // Canonicalize the predicate as if the operands were not commuted. 6402 if (AreSwappedOps) 6403 BPred = ICmpInst::getSwappedPredicate(BPred); 6404 6405 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6406 return true; 6407 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6408 return false; 6409 6410 return None; 6411 } 6412 6413 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6414 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6415 /// Otherwise, return None if we can't infer anything. 6416 static Optional<bool> 6417 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6418 const ConstantInt *C1, 6419 CmpInst::Predicate BPred, 6420 const ConstantInt *C2) { 6421 ConstantRange DomCR = 6422 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6423 ConstantRange CR = 6424 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6425 ConstantRange Intersection = DomCR.intersectWith(CR); 6426 ConstantRange Difference = DomCR.difference(CR); 6427 if (Intersection.isEmptySet()) 6428 return false; 6429 if (Difference.isEmptySet()) 6430 return true; 6431 return None; 6432 } 6433 6434 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6435 /// false. Otherwise, return None if we can't infer anything. 6436 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6437 CmpInst::Predicate BPred, 6438 const Value *BLHS, const Value *BRHS, 6439 const DataLayout &DL, bool LHSIsTrue, 6440 unsigned Depth) { 6441 Value *ALHS = LHS->getOperand(0); 6442 Value *ARHS = LHS->getOperand(1); 6443 6444 // The rest of the logic assumes the LHS condition is true. If that's not the 6445 // case, invert the predicate to make it so. 6446 CmpInst::Predicate APred = 6447 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6448 6449 // Can we infer anything when the two compares have matching operands? 6450 bool AreSwappedOps; 6451 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6452 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6453 APred, BPred, AreSwappedOps)) 6454 return Implication; 6455 // No amount of additional analysis will infer the second condition, so 6456 // early exit. 6457 return None; 6458 } 6459 6460 // Can we infer anything when the LHS operands match and the RHS operands are 6461 // constants (not necessarily matching)? 6462 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6463 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6464 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6465 return Implication; 6466 // No amount of additional analysis will infer the second condition, so 6467 // early exit. 6468 return None; 6469 } 6470 6471 if (APred == BPred) 6472 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6473 return None; 6474 } 6475 6476 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6477 /// false. Otherwise, return None if we can't infer anything. We expect the 6478 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6479 static Optional<bool> 6480 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6481 const Value *RHSOp0, const Value *RHSOp1, 6482 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6483 // The LHS must be an 'or', 'and', or a 'select' instruction. 6484 assert((LHS->getOpcode() == Instruction::And || 6485 LHS->getOpcode() == Instruction::Or || 6486 LHS->getOpcode() == Instruction::Select) && 6487 "Expected LHS to be 'and', 'or', or 'select'."); 6488 6489 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6490 6491 // If the result of an 'or' is false, then we know both legs of the 'or' are 6492 // false. Similarly, if the result of an 'and' is true, then we know both 6493 // legs of the 'and' are true. 6494 const Value *ALHS, *ARHS; 6495 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6496 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6497 // FIXME: Make this non-recursion. 6498 if (Optional<bool> Implication = isImpliedCondition( 6499 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6500 return Implication; 6501 if (Optional<bool> Implication = isImpliedCondition( 6502 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6503 return Implication; 6504 return None; 6505 } 6506 return None; 6507 } 6508 6509 Optional<bool> 6510 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6511 const Value *RHSOp0, const Value *RHSOp1, 6512 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6513 // Bail out when we hit the limit. 6514 if (Depth == MaxAnalysisRecursionDepth) 6515 return None; 6516 6517 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6518 // example. 6519 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6520 return None; 6521 6522 Type *OpTy = LHS->getType(); 6523 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6524 6525 // FIXME: Extending the code below to handle vectors. 6526 if (OpTy->isVectorTy()) 6527 return None; 6528 6529 assert(OpTy->isIntegerTy(1) && "implied by above"); 6530 6531 // Both LHS and RHS are icmps. 6532 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6533 if (LHSCmp) 6534 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6535 Depth); 6536 6537 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6538 /// the RHS to be an icmp. 6539 /// FIXME: Add support for and/or/select on the RHS. 6540 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6541 if ((LHSI->getOpcode() == Instruction::And || 6542 LHSI->getOpcode() == Instruction::Or || 6543 LHSI->getOpcode() == Instruction::Select)) 6544 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6545 Depth); 6546 } 6547 return None; 6548 } 6549 6550 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6551 const DataLayout &DL, bool LHSIsTrue, 6552 unsigned Depth) { 6553 // LHS ==> RHS by definition 6554 if (LHS == RHS) 6555 return LHSIsTrue; 6556 6557 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6558 if (RHSCmp) 6559 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6560 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6561 LHSIsTrue, Depth); 6562 return None; 6563 } 6564 6565 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6566 // condition dominating ContextI or nullptr, if no condition is found. 6567 static std::pair<Value *, bool> 6568 getDomPredecessorCondition(const Instruction *ContextI) { 6569 if (!ContextI || !ContextI->getParent()) 6570 return {nullptr, false}; 6571 6572 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6573 // dominator tree (eg, from a SimplifyQuery) instead? 6574 const BasicBlock *ContextBB = ContextI->getParent(); 6575 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6576 if (!PredBB) 6577 return {nullptr, false}; 6578 6579 // We need a conditional branch in the predecessor. 6580 Value *PredCond; 6581 BasicBlock *TrueBB, *FalseBB; 6582 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6583 return {nullptr, false}; 6584 6585 // The branch should get simplified. Don't bother simplifying this condition. 6586 if (TrueBB == FalseBB) 6587 return {nullptr, false}; 6588 6589 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6590 "Predecessor block does not point to successor?"); 6591 6592 // Is this condition implied by the predecessor condition? 6593 return {PredCond, TrueBB == ContextBB}; 6594 } 6595 6596 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6597 const Instruction *ContextI, 6598 const DataLayout &DL) { 6599 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6600 auto PredCond = getDomPredecessorCondition(ContextI); 6601 if (PredCond.first) 6602 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6603 return None; 6604 } 6605 6606 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6607 const Value *LHS, const Value *RHS, 6608 const Instruction *ContextI, 6609 const DataLayout &DL) { 6610 auto PredCond = getDomPredecessorCondition(ContextI); 6611 if (PredCond.first) 6612 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6613 PredCond.second); 6614 return None; 6615 } 6616 6617 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6618 APInt &Upper, const InstrInfoQuery &IIQ) { 6619 unsigned Width = Lower.getBitWidth(); 6620 const APInt *C; 6621 switch (BO.getOpcode()) { 6622 case Instruction::Add: 6623 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6624 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6625 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6626 // 'add nuw x, C' produces [C, UINT_MAX]. 6627 Lower = *C; 6628 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6629 if (C->isNegative()) { 6630 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6631 Lower = APInt::getSignedMinValue(Width); 6632 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6633 } else { 6634 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6635 Lower = APInt::getSignedMinValue(Width) + *C; 6636 Upper = APInt::getSignedMaxValue(Width) + 1; 6637 } 6638 } 6639 } 6640 break; 6641 6642 case Instruction::And: 6643 if (match(BO.getOperand(1), m_APInt(C))) 6644 // 'and x, C' produces [0, C]. 6645 Upper = *C + 1; 6646 break; 6647 6648 case Instruction::Or: 6649 if (match(BO.getOperand(1), m_APInt(C))) 6650 // 'or x, C' produces [C, UINT_MAX]. 6651 Lower = *C; 6652 break; 6653 6654 case Instruction::AShr: 6655 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6656 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6657 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6658 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6659 } else if (match(BO.getOperand(0), m_APInt(C))) { 6660 unsigned ShiftAmount = Width - 1; 6661 if (!C->isNullValue() && IIQ.isExact(&BO)) 6662 ShiftAmount = C->countTrailingZeros(); 6663 if (C->isNegative()) { 6664 // 'ashr C, x' produces [C, C >> (Width-1)] 6665 Lower = *C; 6666 Upper = C->ashr(ShiftAmount) + 1; 6667 } else { 6668 // 'ashr C, x' produces [C >> (Width-1), C] 6669 Lower = C->ashr(ShiftAmount); 6670 Upper = *C + 1; 6671 } 6672 } 6673 break; 6674 6675 case Instruction::LShr: 6676 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6677 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6678 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6679 } else if (match(BO.getOperand(0), m_APInt(C))) { 6680 // 'lshr C, x' produces [C >> (Width-1), C]. 6681 unsigned ShiftAmount = Width - 1; 6682 if (!C->isNullValue() && IIQ.isExact(&BO)) 6683 ShiftAmount = C->countTrailingZeros(); 6684 Lower = C->lshr(ShiftAmount); 6685 Upper = *C + 1; 6686 } 6687 break; 6688 6689 case Instruction::Shl: 6690 if (match(BO.getOperand(0), m_APInt(C))) { 6691 if (IIQ.hasNoUnsignedWrap(&BO)) { 6692 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6693 Lower = *C; 6694 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6695 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6696 if (C->isNegative()) { 6697 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6698 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6699 Lower = C->shl(ShiftAmount); 6700 Upper = *C + 1; 6701 } else { 6702 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6703 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6704 Lower = *C; 6705 Upper = C->shl(ShiftAmount) + 1; 6706 } 6707 } 6708 } 6709 break; 6710 6711 case Instruction::SDiv: 6712 if (match(BO.getOperand(1), m_APInt(C))) { 6713 APInt IntMin = APInt::getSignedMinValue(Width); 6714 APInt IntMax = APInt::getSignedMaxValue(Width); 6715 if (C->isAllOnesValue()) { 6716 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6717 // where C != -1 and C != 0 and C != 1 6718 Lower = IntMin + 1; 6719 Upper = IntMax + 1; 6720 } else if (C->countLeadingZeros() < Width - 1) { 6721 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6722 // where C != -1 and C != 0 and C != 1 6723 Lower = IntMin.sdiv(*C); 6724 Upper = IntMax.sdiv(*C); 6725 if (Lower.sgt(Upper)) 6726 std::swap(Lower, Upper); 6727 Upper = Upper + 1; 6728 assert(Upper != Lower && "Upper part of range has wrapped!"); 6729 } 6730 } else if (match(BO.getOperand(0), m_APInt(C))) { 6731 if (C->isMinSignedValue()) { 6732 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6733 Lower = *C; 6734 Upper = Lower.lshr(1) + 1; 6735 } else { 6736 // 'sdiv C, x' produces [-|C|, |C|]. 6737 Upper = C->abs() + 1; 6738 Lower = (-Upper) + 1; 6739 } 6740 } 6741 break; 6742 6743 case Instruction::UDiv: 6744 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6745 // 'udiv x, C' produces [0, UINT_MAX / C]. 6746 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6747 } else if (match(BO.getOperand(0), m_APInt(C))) { 6748 // 'udiv C, x' produces [0, C]. 6749 Upper = *C + 1; 6750 } 6751 break; 6752 6753 case Instruction::SRem: 6754 if (match(BO.getOperand(1), m_APInt(C))) { 6755 // 'srem x, C' produces (-|C|, |C|). 6756 Upper = C->abs(); 6757 Lower = (-Upper) + 1; 6758 } 6759 break; 6760 6761 case Instruction::URem: 6762 if (match(BO.getOperand(1), m_APInt(C))) 6763 // 'urem x, C' produces [0, C). 6764 Upper = *C; 6765 break; 6766 6767 default: 6768 break; 6769 } 6770 } 6771 6772 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6773 APInt &Upper) { 6774 unsigned Width = Lower.getBitWidth(); 6775 const APInt *C; 6776 switch (II.getIntrinsicID()) { 6777 case Intrinsic::ctpop: 6778 case Intrinsic::ctlz: 6779 case Intrinsic::cttz: 6780 // Maximum of set/clear bits is the bit width. 6781 assert(Lower == 0 && "Expected lower bound to be zero"); 6782 Upper = Width + 1; 6783 break; 6784 case Intrinsic::uadd_sat: 6785 // uadd.sat(x, C) produces [C, UINT_MAX]. 6786 if (match(II.getOperand(0), m_APInt(C)) || 6787 match(II.getOperand(1), m_APInt(C))) 6788 Lower = *C; 6789 break; 6790 case Intrinsic::sadd_sat: 6791 if (match(II.getOperand(0), m_APInt(C)) || 6792 match(II.getOperand(1), m_APInt(C))) { 6793 if (C->isNegative()) { 6794 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6795 Lower = APInt::getSignedMinValue(Width); 6796 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6797 } else { 6798 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6799 Lower = APInt::getSignedMinValue(Width) + *C; 6800 Upper = APInt::getSignedMaxValue(Width) + 1; 6801 } 6802 } 6803 break; 6804 case Intrinsic::usub_sat: 6805 // usub.sat(C, x) produces [0, C]. 6806 if (match(II.getOperand(0), m_APInt(C))) 6807 Upper = *C + 1; 6808 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6809 else if (match(II.getOperand(1), m_APInt(C))) 6810 Upper = APInt::getMaxValue(Width) - *C + 1; 6811 break; 6812 case Intrinsic::ssub_sat: 6813 if (match(II.getOperand(0), m_APInt(C))) { 6814 if (C->isNegative()) { 6815 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6816 Lower = APInt::getSignedMinValue(Width); 6817 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6818 } else { 6819 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6820 Lower = *C - APInt::getSignedMaxValue(Width); 6821 Upper = APInt::getSignedMaxValue(Width) + 1; 6822 } 6823 } else if (match(II.getOperand(1), m_APInt(C))) { 6824 if (C->isNegative()) { 6825 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6826 Lower = APInt::getSignedMinValue(Width) - *C; 6827 Upper = APInt::getSignedMaxValue(Width) + 1; 6828 } else { 6829 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6830 Lower = APInt::getSignedMinValue(Width); 6831 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6832 } 6833 } 6834 break; 6835 case Intrinsic::umin: 6836 case Intrinsic::umax: 6837 case Intrinsic::smin: 6838 case Intrinsic::smax: 6839 if (!match(II.getOperand(0), m_APInt(C)) && 6840 !match(II.getOperand(1), m_APInt(C))) 6841 break; 6842 6843 switch (II.getIntrinsicID()) { 6844 case Intrinsic::umin: 6845 Upper = *C + 1; 6846 break; 6847 case Intrinsic::umax: 6848 Lower = *C; 6849 break; 6850 case Intrinsic::smin: 6851 Lower = APInt::getSignedMinValue(Width); 6852 Upper = *C + 1; 6853 break; 6854 case Intrinsic::smax: 6855 Lower = *C; 6856 Upper = APInt::getSignedMaxValue(Width) + 1; 6857 break; 6858 default: 6859 llvm_unreachable("Must be min/max intrinsic"); 6860 } 6861 break; 6862 case Intrinsic::abs: 6863 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6864 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6865 if (match(II.getOperand(1), m_One())) 6866 Upper = APInt::getSignedMaxValue(Width) + 1; 6867 else 6868 Upper = APInt::getSignedMinValue(Width) + 1; 6869 break; 6870 default: 6871 break; 6872 } 6873 } 6874 6875 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6876 APInt &Upper, const InstrInfoQuery &IIQ) { 6877 const Value *LHS = nullptr, *RHS = nullptr; 6878 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6879 if (R.Flavor == SPF_UNKNOWN) 6880 return; 6881 6882 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6883 6884 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6885 // If the negation part of the abs (in RHS) has the NSW flag, 6886 // then the result of abs(X) is [0..SIGNED_MAX], 6887 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6888 Lower = APInt::getNullValue(BitWidth); 6889 if (match(RHS, m_Neg(m_Specific(LHS))) && 6890 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6891 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6892 else 6893 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6894 return; 6895 } 6896 6897 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6898 // The result of -abs(X) is <= 0. 6899 Lower = APInt::getSignedMinValue(BitWidth); 6900 Upper = APInt(BitWidth, 1); 6901 return; 6902 } 6903 6904 const APInt *C; 6905 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6906 return; 6907 6908 switch (R.Flavor) { 6909 case SPF_UMIN: 6910 Upper = *C + 1; 6911 break; 6912 case SPF_UMAX: 6913 Lower = *C; 6914 break; 6915 case SPF_SMIN: 6916 Lower = APInt::getSignedMinValue(BitWidth); 6917 Upper = *C + 1; 6918 break; 6919 case SPF_SMAX: 6920 Lower = *C; 6921 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6922 break; 6923 default: 6924 break; 6925 } 6926 } 6927 6928 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6929 AssumptionCache *AC, 6930 const Instruction *CtxI, 6931 unsigned Depth) { 6932 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6933 6934 if (Depth == MaxAnalysisRecursionDepth) 6935 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6936 6937 const APInt *C; 6938 if (match(V, m_APInt(C))) 6939 return ConstantRange(*C); 6940 6941 InstrInfoQuery IIQ(UseInstrInfo); 6942 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6943 APInt Lower = APInt(BitWidth, 0); 6944 APInt Upper = APInt(BitWidth, 0); 6945 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6946 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6947 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6948 setLimitsForIntrinsic(*II, Lower, Upper); 6949 else if (auto *SI = dyn_cast<SelectInst>(V)) 6950 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6951 6952 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6953 6954 if (auto *I = dyn_cast<Instruction>(V)) 6955 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6956 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6957 6958 if (CtxI && AC) { 6959 // Try to restrict the range based on information from assumptions. 6960 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6961 if (!AssumeVH) 6962 continue; 6963 CallInst *I = cast<CallInst>(AssumeVH); 6964 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6965 "Got assumption for the wrong function!"); 6966 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6967 "must be an assume intrinsic"); 6968 6969 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6970 continue; 6971 Value *Arg = I->getArgOperand(0); 6972 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6973 // Currently we just use information from comparisons. 6974 if (!Cmp || Cmp->getOperand(0) != V) 6975 continue; 6976 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6977 AC, I, Depth + 1); 6978 CR = CR.intersectWith( 6979 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6980 } 6981 } 6982 6983 return CR; 6984 } 6985 6986 static Optional<int64_t> 6987 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6988 // Skip over the first indices. 6989 gep_type_iterator GTI = gep_type_begin(GEP); 6990 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6991 /*skip along*/; 6992 6993 // Compute the offset implied by the rest of the indices. 6994 int64_t Offset = 0; 6995 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6996 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6997 if (!OpC) 6998 return None; 6999 if (OpC->isZero()) 7000 continue; // No offset. 7001 7002 // Handle struct indices, which add their field offset to the pointer. 7003 if (StructType *STy = GTI.getStructTypeOrNull()) { 7004 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7005 continue; 7006 } 7007 7008 // Otherwise, we have a sequential type like an array or fixed-length 7009 // vector. Multiply the index by the ElementSize. 7010 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7011 if (Size.isScalable()) 7012 return None; 7013 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7014 } 7015 7016 return Offset; 7017 } 7018 7019 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7020 const DataLayout &DL) { 7021 Ptr1 = Ptr1->stripPointerCasts(); 7022 Ptr2 = Ptr2->stripPointerCasts(); 7023 7024 // Handle the trivial case first. 7025 if (Ptr1 == Ptr2) { 7026 return 0; 7027 } 7028 7029 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7030 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7031 7032 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7033 // as in "P" and "gep P, 1". 7034 // Also do this iteratively to handle the the following case: 7035 // Ptr_t1 = GEP Ptr1, c1 7036 // Ptr_t2 = GEP Ptr_t1, c2 7037 // Ptr2 = GEP Ptr_t2, c3 7038 // where we will return c1+c2+c3. 7039 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7040 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7041 // are the same, and return the difference between offsets. 7042 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7043 const Value *Ptr) -> Optional<int64_t> { 7044 const GEPOperator *GEP_T = GEP; 7045 int64_t OffsetVal = 0; 7046 bool HasSameBase = false; 7047 while (GEP_T) { 7048 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7049 if (!Offset) 7050 return None; 7051 OffsetVal += *Offset; 7052 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7053 if (Op0 == Ptr) { 7054 HasSameBase = true; 7055 break; 7056 } 7057 GEP_T = dyn_cast<GEPOperator>(Op0); 7058 } 7059 if (!HasSameBase) 7060 return None; 7061 return OffsetVal; 7062 }; 7063 7064 if (GEP1) { 7065 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7066 if (Offset) 7067 return -*Offset; 7068 } 7069 if (GEP2) { 7070 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7071 if (Offset) 7072 return Offset; 7073 } 7074 7075 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7076 // base. After that base, they may have some number of common (and 7077 // potentially variable) indices. After that they handle some constant 7078 // offset, which determines their offset from each other. At this point, we 7079 // handle no other case. 7080 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7081 return None; 7082 7083 // Skip any common indices and track the GEP types. 7084 unsigned Idx = 1; 7085 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7086 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7087 break; 7088 7089 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7090 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7091 if (!Offset1 || !Offset2) 7092 return None; 7093 return *Offset2 - *Offset1; 7094 } 7095