1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include <algorithm> 43 #include <array> 44 #include <cstring> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 const unsigned MaxDepth = 6; 49 50 // Controls the number of uses of the value searched for possible 51 // dominating comparisons. 52 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 53 cl::Hidden, cl::init(20)); 54 55 // This optimization is known to cause performance regressions is some cases, 56 // keep it under a temporary flag for now. 57 static cl::opt<bool> 58 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 59 cl::Hidden, cl::init(true)); 60 61 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 62 /// 0). For vector types, returns the element type's bitwidth. 63 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 64 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 65 return BitWidth; 66 67 return DL.getPointerTypeSizeInBits(Ty); 68 } 69 70 namespace { 71 // Simplifying using an assume can only be done in a particular control-flow 72 // context (the context instruction provides that context). If an assume and 73 // the context instruction are not in the same block then the DT helps in 74 // figuring out if we can use it. 75 struct Query { 76 const DataLayout &DL; 77 AssumptionCache *AC; 78 const Instruction *CxtI; 79 const DominatorTree *DT; 80 // Unlike the other analyses, this may be a nullptr because not all clients 81 // provide it currently. 82 OptimizationRemarkEmitter *ORE; 83 84 /// Set of assumptions that should be excluded from further queries. 85 /// This is because of the potential for mutual recursion to cause 86 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 87 /// classic case of this is assume(x = y), which will attempt to determine 88 /// bits in x from bits in y, which will attempt to determine bits in y from 89 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 90 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 91 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 92 /// on. 93 std::array<const Value *, MaxDepth> Excluded; 94 unsigned NumExcluded; 95 96 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 97 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 99 100 Query(const Query &Q, const Value *NewExcl) 101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 102 NumExcluded(Q.NumExcluded) { 103 Excluded = Q.Excluded; 104 Excluded[NumExcluded++] = NewExcl; 105 assert(NumExcluded <= Excluded.size()); 106 } 107 108 bool isExcluded(const Value *Value) const { 109 if (NumExcluded == 0) 110 return false; 111 auto End = Excluded.begin() + NumExcluded; 112 return std::find(Excluded.begin(), End, Value) != End; 113 } 114 }; 115 } // end anonymous namespace 116 117 // Given the provided Value and, potentially, a context instruction, return 118 // the preferred context instruction (if any). 119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 120 // If we've been provided with a context instruction, then use that (provided 121 // it has been inserted). 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 // If the value is really an already-inserted instruction, then use that. 126 CxtI = dyn_cast<Instruction>(V); 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 return nullptr; 131 } 132 133 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 134 unsigned Depth, const Query &Q); 135 136 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 137 const DataLayout &DL, unsigned Depth, 138 AssumptionCache *AC, const Instruction *CxtI, 139 const DominatorTree *DT, 140 OptimizationRemarkEmitter *ORE) { 141 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 143 } 144 145 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 146 const DataLayout &DL, 147 AssumptionCache *AC, const Instruction *CxtI, 148 const DominatorTree *DT) { 149 assert(LHS->getType() == RHS->getType() && 150 "LHS and RHS should have the same type"); 151 assert(LHS->getType()->isIntOrIntVectorTy() && 152 "LHS and RHS should be integers"); 153 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 154 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 155 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 157 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 158 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 159 } 160 161 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 162 unsigned Depth, const Query &Q); 163 164 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT) { 168 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 173 const Query &Q); 174 175 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 176 bool OrZero, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT) { 180 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 181 Query(DL, AC, safeCxtI(V, CxtI), DT)); 182 } 183 184 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 185 186 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 190 } 191 192 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 193 unsigned Depth, 194 AssumptionCache *AC, const Instruction *CxtI, 195 const DominatorTree *DT) { 196 bool NonNegative, Negative; 197 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 198 return NonNegative; 199 } 200 201 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 if (auto *CI = dyn_cast<ConstantInt>(V)) 205 return CI->getValue().isStrictlyPositive(); 206 207 // TODO: We'd doing two recursive queries here. We should factor this such 208 // that only a single query is needed. 209 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 210 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 211 } 212 213 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 214 AssumptionCache *AC, const Instruction *CxtI, 215 const DominatorTree *DT) { 216 bool NonNegative, Negative; 217 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 218 return Negative; 219 } 220 221 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 222 223 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 224 const DataLayout &DL, 225 AssumptionCache *AC, const Instruction *CxtI, 226 const DominatorTree *DT) { 227 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 228 safeCxtI(V1, safeCxtI(V2, CxtI)), 229 DT)); 230 } 231 232 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 233 const Query &Q); 234 235 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 236 const DataLayout &DL, 237 unsigned Depth, AssumptionCache *AC, 238 const Instruction *CxtI, const DominatorTree *DT) { 239 return ::MaskedValueIsZero(V, Mask, Depth, 240 Query(DL, AC, safeCxtI(V, CxtI), DT)); 241 } 242 243 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT) { 250 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 251 } 252 253 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 254 bool NSW, 255 APInt &KnownZero, APInt &KnownOne, 256 APInt &KnownZero2, APInt &KnownOne2, 257 unsigned Depth, const Query &Q) { 258 if (!Add) { 259 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 260 // We know that the top bits of C-X are clear if X contains less bits 261 // than C (i.e. no wrap-around can happen). For example, 20-X is 262 // positive if we can prove that X is >= 0 and < 16. 263 if (!CLHS->getValue().isNegative()) { 264 unsigned BitWidth = KnownZero.getBitWidth(); 265 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 266 // NLZ can't be BitWidth with no sign bit 267 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 268 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 269 270 // If all of the MaskV bits are known to be zero, then we know the 271 // output top bits are zero, because we now know that the output is 272 // from [0-C]. 273 if ((KnownZero2 & MaskV) == MaskV) { 274 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 275 // Top bits known zero. 276 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 277 } 278 } 279 } 280 } 281 282 unsigned BitWidth = KnownZero.getBitWidth(); 283 284 // If an initial sequence of bits in the result is not needed, the 285 // corresponding bits in the operands are not needed. 286 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 287 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 288 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 289 290 // Carry in a 1 for a subtract, rather than a 0. 291 APInt CarryIn(BitWidth, 0); 292 if (!Add) { 293 // Sum = LHS + ~RHS + 1 294 std::swap(KnownZero2, KnownOne2); 295 CarryIn.setBit(0); 296 } 297 298 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 299 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 300 301 // Compute known bits of the carry. 302 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 303 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 304 305 // Compute set of known bits (where all three relevant bits are known). 306 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 307 APInt RHSKnown = KnownZero2 | KnownOne2; 308 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 309 APInt Known = LHSKnown & RHSKnown & CarryKnown; 310 311 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 312 "known bits of sum differ"); 313 314 // Compute known bits of the result. 315 KnownZero = ~PossibleSumOne & Known; 316 KnownOne = PossibleSumOne & Known; 317 318 // Are we still trying to solve for the sign bit? 319 if (!Known.isNegative()) { 320 if (NSW) { 321 // Adding two non-negative numbers, or subtracting a negative number from 322 // a non-negative one, can't wrap into negative. 323 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 324 KnownZero |= APInt::getSignBit(BitWidth); 325 // Adding two negative numbers, or subtracting a non-negative number from 326 // a negative one, can't wrap into non-negative. 327 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 328 KnownOne |= APInt::getSignBit(BitWidth); 329 } 330 } 331 } 332 333 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 334 APInt &KnownZero, APInt &KnownOne, 335 APInt &KnownZero2, APInt &KnownOne2, 336 unsigned Depth, const Query &Q) { 337 unsigned BitWidth = KnownZero.getBitWidth(); 338 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 339 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 340 341 bool isKnownNegative = false; 342 bool isKnownNonNegative = false; 343 // If the multiplication is known not to overflow, compute the sign bit. 344 if (NSW) { 345 if (Op0 == Op1) { 346 // The product of a number with itself is non-negative. 347 isKnownNonNegative = true; 348 } else { 349 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 350 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 351 bool isKnownNegativeOp1 = KnownOne.isNegative(); 352 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 353 // The product of two numbers with the same sign is non-negative. 354 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 355 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 356 // The product of a negative number and a non-negative number is either 357 // negative or zero. 358 if (!isKnownNonNegative) 359 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 360 isKnownNonZero(Op0, Depth, Q)) || 361 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 362 isKnownNonZero(Op1, Depth, Q)); 363 } 364 } 365 366 // If low bits are zero in either operand, output low known-0 bits. 367 // Also compute a conservative estimate for high known-0 bits. 368 // More trickiness is possible, but this is sufficient for the 369 // interesting case of alignment computation. 370 KnownOne.clearAllBits(); 371 unsigned TrailZ = KnownZero.countTrailingOnes() + 372 KnownZero2.countTrailingOnes(); 373 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 374 KnownZero2.countLeadingOnes(), 375 BitWidth) - BitWidth; 376 377 TrailZ = std::min(TrailZ, BitWidth); 378 LeadZ = std::min(LeadZ, BitWidth); 379 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 380 APInt::getHighBitsSet(BitWidth, LeadZ); 381 382 // Only make use of no-wrap flags if we failed to compute the sign bit 383 // directly. This matters if the multiplication always overflows, in 384 // which case we prefer to follow the result of the direct computation, 385 // though as the program is invoking undefined behaviour we can choose 386 // whatever we like here. 387 if (isKnownNonNegative && !KnownOne.isNegative()) 388 KnownZero.setBit(BitWidth - 1); 389 else if (isKnownNegative && !KnownZero.isNegative()) 390 KnownOne.setBit(BitWidth - 1); 391 } 392 393 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 394 APInt &KnownZero, 395 APInt &KnownOne) { 396 unsigned BitWidth = KnownZero.getBitWidth(); 397 unsigned NumRanges = Ranges.getNumOperands() / 2; 398 assert(NumRanges >= 1); 399 400 KnownZero.setAllBits(); 401 KnownOne.setAllBits(); 402 403 for (unsigned i = 0; i < NumRanges; ++i) { 404 ConstantInt *Lower = 405 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 406 ConstantInt *Upper = 407 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 408 ConstantRange Range(Lower->getValue(), Upper->getValue()); 409 410 // The first CommonPrefixBits of all values in Range are equal. 411 unsigned CommonPrefixBits = 412 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 413 414 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 415 KnownOne &= Range.getUnsignedMax() & Mask; 416 KnownZero &= ~Range.getUnsignedMax() & Mask; 417 } 418 } 419 420 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 421 SmallVector<const Value *, 16> WorkSet(1, I); 422 SmallPtrSet<const Value *, 32> Visited; 423 SmallPtrSet<const Value *, 16> EphValues; 424 425 // The instruction defining an assumption's condition itself is always 426 // considered ephemeral to that assumption (even if it has other 427 // non-ephemeral users). See r246696's test case for an example. 428 if (is_contained(I->operands(), E)) 429 return true; 430 431 while (!WorkSet.empty()) { 432 const Value *V = WorkSet.pop_back_val(); 433 if (!Visited.insert(V).second) 434 continue; 435 436 // If all uses of this value are ephemeral, then so is this value. 437 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 438 if (V == E) 439 return true; 440 441 EphValues.insert(V); 442 if (const User *U = dyn_cast<User>(V)) 443 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 444 J != JE; ++J) { 445 if (isSafeToSpeculativelyExecute(*J)) 446 WorkSet.push_back(*J); 447 } 448 } 449 } 450 451 return false; 452 } 453 454 // Is this an intrinsic that cannot be speculated but also cannot trap? 455 static bool isAssumeLikeIntrinsic(const Instruction *I) { 456 if (const CallInst *CI = dyn_cast<CallInst>(I)) 457 if (Function *F = CI->getCalledFunction()) 458 switch (F->getIntrinsicID()) { 459 default: break; 460 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 461 case Intrinsic::assume: 462 case Intrinsic::dbg_declare: 463 case Intrinsic::dbg_value: 464 case Intrinsic::invariant_start: 465 case Intrinsic::invariant_end: 466 case Intrinsic::lifetime_start: 467 case Intrinsic::lifetime_end: 468 case Intrinsic::objectsize: 469 case Intrinsic::ptr_annotation: 470 case Intrinsic::var_annotation: 471 return true; 472 } 473 474 return false; 475 } 476 477 bool llvm::isValidAssumeForContext(const Instruction *Inv, 478 const Instruction *CxtI, 479 const DominatorTree *DT) { 480 481 // There are two restrictions on the use of an assume: 482 // 1. The assume must dominate the context (or the control flow must 483 // reach the assume whenever it reaches the context). 484 // 2. The context must not be in the assume's set of ephemeral values 485 // (otherwise we will use the assume to prove that the condition 486 // feeding the assume is trivially true, thus causing the removal of 487 // the assume). 488 489 if (DT) { 490 if (DT->dominates(Inv, CxtI)) 491 return true; 492 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 493 // We don't have a DT, but this trivially dominates. 494 return true; 495 } 496 497 // With or without a DT, the only remaining case we will check is if the 498 // instructions are in the same BB. Give up if that is not the case. 499 if (Inv->getParent() != CxtI->getParent()) 500 return false; 501 502 // If we have a dom tree, then we now know that the assume doens't dominate 503 // the other instruction. If we don't have a dom tree then we can check if 504 // the assume is first in the BB. 505 if (!DT) { 506 // Search forward from the assume until we reach the context (or the end 507 // of the block); the common case is that the assume will come first. 508 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 509 IE = Inv->getParent()->end(); I != IE; ++I) 510 if (&*I == CxtI) 511 return true; 512 } 513 514 // The context comes first, but they're both in the same block. Make sure 515 // there is nothing in between that might interrupt the control flow. 516 for (BasicBlock::const_iterator I = 517 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 518 I != IE; ++I) 519 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 520 return false; 521 522 return !isEphemeralValueOf(Inv, CxtI); 523 } 524 525 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 526 APInt &KnownOne, unsigned Depth, 527 const Query &Q) { 528 // Use of assumptions is context-sensitive. If we don't have a context, we 529 // cannot use them! 530 if (!Q.AC || !Q.CxtI) 531 return; 532 533 unsigned BitWidth = KnownZero.getBitWidth(); 534 535 // Note that the patterns below need to be kept in sync with the code 536 // in AssumptionCache::updateAffectedValues. 537 538 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 539 if (!AssumeVH) 540 continue; 541 CallInst *I = cast<CallInst>(AssumeVH); 542 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 543 "Got assumption for the wrong function!"); 544 if (Q.isExcluded(I)) 545 continue; 546 547 // Warning: This loop can end up being somewhat performance sensetive. 548 // We're running this loop for once for each value queried resulting in a 549 // runtime of ~O(#assumes * #values). 550 551 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 552 "must be an assume intrinsic"); 553 554 Value *Arg = I->getArgOperand(0); 555 556 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 557 assert(BitWidth == 1 && "assume operand is not i1?"); 558 KnownZero.clearAllBits(); 559 KnownOne.setAllBits(); 560 return; 561 } 562 if (match(Arg, m_Not(m_Specific(V))) && 563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 564 assert(BitWidth == 1 && "assume operand is not i1?"); 565 KnownZero.setAllBits(); 566 KnownOne.clearAllBits(); 567 return; 568 } 569 570 // The remaining tests are all recursive, so bail out if we hit the limit. 571 if (Depth == MaxDepth) 572 continue; 573 574 Value *A, *B; 575 auto m_V = m_CombineOr(m_Specific(V), 576 m_CombineOr(m_PtrToInt(m_Specific(V)), 577 m_BitCast(m_Specific(V)))); 578 579 CmpInst::Predicate Pred; 580 ConstantInt *C; 581 // assume(v = a) 582 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 583 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 586 KnownZero |= RHSKnownZero; 587 KnownOne |= RHSKnownOne; 588 // assume(v & b = a) 589 } else if (match(Arg, 590 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 591 Pred == ICmpInst::ICMP_EQ && 592 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 593 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 594 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 595 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 596 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 597 598 // For those bits in the mask that are known to be one, we can propagate 599 // known bits from the RHS to V. 600 KnownZero |= RHSKnownZero & MaskKnownOne; 601 KnownOne |= RHSKnownOne & MaskKnownOne; 602 // assume(~(v & b) = a) 603 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 604 m_Value(A))) && 605 Pred == ICmpInst::ICMP_EQ && 606 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 607 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 608 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 609 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 610 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 611 612 // For those bits in the mask that are known to be one, we can propagate 613 // inverted known bits from the RHS to V. 614 KnownZero |= RHSKnownOne & MaskKnownOne; 615 KnownOne |= RHSKnownZero & MaskKnownOne; 616 // assume(v | b = a) 617 } else if (match(Arg, 618 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 619 Pred == ICmpInst::ICMP_EQ && 620 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 622 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 623 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 624 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 625 626 // For those bits in B that are known to be zero, we can propagate known 627 // bits from the RHS to V. 628 KnownZero |= RHSKnownZero & BKnownZero; 629 KnownOne |= RHSKnownOne & BKnownZero; 630 // assume(~(v | b) = a) 631 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 632 m_Value(A))) && 633 Pred == ICmpInst::ICMP_EQ && 634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 635 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 636 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 637 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 638 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 639 640 // For those bits in B that are known to be zero, we can propagate 641 // inverted known bits from the RHS to V. 642 KnownZero |= RHSKnownOne & BKnownZero; 643 KnownOne |= RHSKnownZero & BKnownZero; 644 // assume(v ^ b = a) 645 } else if (match(Arg, 646 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 647 Pred == ICmpInst::ICMP_EQ && 648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 649 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 650 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 651 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 652 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 653 654 // For those bits in B that are known to be zero, we can propagate known 655 // bits from the RHS to V. For those bits in B that are known to be one, 656 // we can propagate inverted known bits from the RHS to V. 657 KnownZero |= RHSKnownZero & BKnownZero; 658 KnownOne |= RHSKnownOne & BKnownZero; 659 KnownZero |= RHSKnownOne & BKnownOne; 660 KnownOne |= RHSKnownZero & BKnownOne; 661 // assume(~(v ^ b) = a) 662 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 663 m_Value(A))) && 664 Pred == ICmpInst::ICMP_EQ && 665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 666 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 667 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 668 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 669 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 670 671 // For those bits in B that are known to be zero, we can propagate 672 // inverted known bits from the RHS to V. For those bits in B that are 673 // known to be one, we can propagate known bits from the RHS to V. 674 KnownZero |= RHSKnownOne & BKnownZero; 675 KnownOne |= RHSKnownZero & BKnownZero; 676 KnownZero |= RHSKnownZero & BKnownOne; 677 KnownOne |= RHSKnownOne & BKnownOne; 678 // assume(v << c = a) 679 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 680 m_Value(A))) && 681 Pred == ICmpInst::ICMP_EQ && 682 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 683 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 684 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 685 // For those bits in RHS that are known, we can propagate them to known 686 // bits in V shifted to the right by C. 687 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 688 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 689 // assume(~(v << c) = a) 690 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 691 m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 695 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 696 // For those bits in RHS that are known, we can propagate them inverted 697 // to known bits in V shifted to the right by C. 698 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 699 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 700 // assume(v >> c = a) 701 } else if (match(Arg, 702 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 703 m_AShr(m_V, m_ConstantInt(C))), 704 m_Value(A))) && 705 Pred == ICmpInst::ICMP_EQ && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 708 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 709 // For those bits in RHS that are known, we can propagate them to known 710 // bits in V shifted to the right by C. 711 KnownZero |= RHSKnownZero << C->getZExtValue(); 712 KnownOne |= RHSKnownOne << C->getZExtValue(); 713 // assume(~(v >> c) = a) 714 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 715 m_LShr(m_V, m_ConstantInt(C)), 716 m_AShr(m_V, m_ConstantInt(C)))), 717 m_Value(A))) && 718 Pred == ICmpInst::ICMP_EQ && 719 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 720 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 721 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 722 // For those bits in RHS that are known, we can propagate them inverted 723 // to known bits in V shifted to the right by C. 724 KnownZero |= RHSKnownOne << C->getZExtValue(); 725 KnownOne |= RHSKnownZero << C->getZExtValue(); 726 // assume(v >=_s c) where c is non-negative 727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 728 Pred == ICmpInst::ICMP_SGE && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 732 733 if (RHSKnownZero.isNegative()) { 734 // We know that the sign bit is zero. 735 KnownZero |= APInt::getSignBit(BitWidth); 736 } 737 // assume(v >_s c) where c is at least -1. 738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 739 Pred == ICmpInst::ICMP_SGT && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 743 744 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 745 // We know that the sign bit is zero. 746 KnownZero |= APInt::getSignBit(BitWidth); 747 } 748 // assume(v <=_s c) where c is negative 749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 750 Pred == ICmpInst::ICMP_SLE && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 754 755 if (RHSKnownOne.isNegative()) { 756 // We know that the sign bit is one. 757 KnownOne |= APInt::getSignBit(BitWidth); 758 } 759 // assume(v <_s c) where c is non-positive 760 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 761 Pred == ICmpInst::ICMP_SLT && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 764 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 765 766 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 767 // We know that the sign bit is one. 768 KnownOne |= APInt::getSignBit(BitWidth); 769 } 770 // assume(v <=_u c) 771 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 772 Pred == ICmpInst::ICMP_ULE && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 775 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 776 777 // Whatever high bits in c are zero are known to be zero. 778 KnownZero |= 779 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 780 // assume(v <_u c) 781 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 782 Pred == ICmpInst::ICMP_ULT && 783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 784 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 785 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 786 787 // Whatever high bits in c are zero are known to be zero (if c is a power 788 // of 2, then one more). 789 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 790 KnownZero |= 791 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 792 else 793 KnownZero |= 794 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 795 } 796 } 797 798 // If assumptions conflict with each other or previous known bits, then we 799 // have a logical fallacy. It's possible that the assumption is not reachable, 800 // so this isn't a real bug. On the other hand, the program may have undefined 801 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 802 // clear out the known bits, try to warn the user, and hope for the best. 803 if ((KnownZero & KnownOne) != 0) { 804 KnownZero.clearAllBits(); 805 KnownOne.clearAllBits(); 806 807 if (Q.ORE) { 808 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 809 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 810 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 811 "have undefined behavior, or compiler may have " 812 "internal error."); 813 } 814 } 815 } 816 817 // Compute known bits from a shift operator, including those with a 818 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 819 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 820 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 821 // functors that, given the known-zero or known-one bits respectively, and a 822 // shift amount, compute the implied known-zero or known-one bits of the shift 823 // operator's result respectively for that shift amount. The results from calling 824 // KZF and KOF are conservatively combined for all permitted shift amounts. 825 static void computeKnownBitsFromShiftOperator( 826 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 827 APInt &KnownOne2, unsigned Depth, const Query &Q, 828 function_ref<APInt(const APInt &, unsigned)> KZF, 829 function_ref<APInt(const APInt &, unsigned)> KOF) { 830 unsigned BitWidth = KnownZero.getBitWidth(); 831 832 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 833 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 834 835 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 836 KnownZero = KZF(KnownZero, ShiftAmt); 837 KnownOne = KOF(KnownOne, ShiftAmt); 838 // If there is conflict between KnownZero and KnownOne, this must be an 839 // overflowing left shift, so the shift result is undefined. Clear KnownZero 840 // and KnownOne bits so that other code could propagate this undef. 841 if ((KnownZero & KnownOne) != 0) { 842 KnownZero.clearAllBits(); 843 KnownOne.clearAllBits(); 844 } 845 846 return; 847 } 848 849 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 850 851 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 852 // value could be undef, so we don't know anything about it. 853 if ((~KnownZero).uge(BitWidth)) { 854 KnownZero.clearAllBits(); 855 KnownOne.clearAllBits(); 856 return; 857 } 858 859 // Note: We cannot use KnownZero.getLimitedValue() here, because if 860 // BitWidth > 64 and any upper bits are known, we'll end up returning the 861 // limit value (which implies all bits are known). 862 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 863 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 864 865 // It would be more-clearly correct to use the two temporaries for this 866 // calculation. Reusing the APInts here to prevent unnecessary allocations. 867 KnownZero.clearAllBits(); 868 KnownOne.clearAllBits(); 869 870 // If we know the shifter operand is nonzero, we can sometimes infer more 871 // known bits. However this is expensive to compute, so be lazy about it and 872 // only compute it when absolutely necessary. 873 Optional<bool> ShifterOperandIsNonZero; 874 875 // Early exit if we can't constrain any well-defined shift amount. 876 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 877 ShifterOperandIsNonZero = 878 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 879 if (!*ShifterOperandIsNonZero) 880 return; 881 } 882 883 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 884 885 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 886 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 887 // Combine the shifted known input bits only for those shift amounts 888 // compatible with its known constraints. 889 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 890 continue; 891 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 892 continue; 893 // If we know the shifter is nonzero, we may be able to infer more known 894 // bits. This check is sunk down as far as possible to avoid the expensive 895 // call to isKnownNonZero if the cheaper checks above fail. 896 if (ShiftAmt == 0) { 897 if (!ShifterOperandIsNonZero.hasValue()) 898 ShifterOperandIsNonZero = 899 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 900 if (*ShifterOperandIsNonZero) 901 continue; 902 } 903 904 KnownZero &= KZF(KnownZero2, ShiftAmt); 905 KnownOne &= KOF(KnownOne2, ShiftAmt); 906 } 907 908 // If there are no compatible shift amounts, then we've proven that the shift 909 // amount must be >= the BitWidth, and the result is undefined. We could 910 // return anything we'd like, but we need to make sure the sets of known bits 911 // stay disjoint (it should be better for some other code to actually 912 // propagate the undef than to pick a value here using known bits). 913 if ((KnownZero & KnownOne) != 0) { 914 KnownZero.clearAllBits(); 915 KnownOne.clearAllBits(); 916 } 917 } 918 919 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 920 APInt &KnownOne, unsigned Depth, 921 const Query &Q) { 922 unsigned BitWidth = KnownZero.getBitWidth(); 923 924 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 925 switch (I->getOpcode()) { 926 default: break; 927 case Instruction::Load: 928 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 929 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 930 break; 931 case Instruction::And: { 932 // If either the LHS or the RHS are Zero, the result is zero. 933 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 934 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 935 936 // Output known-1 bits are only known if set in both the LHS & RHS. 937 KnownOne &= KnownOne2; 938 // Output known-0 are known to be clear if zero in either the LHS | RHS. 939 KnownZero |= KnownZero2; 940 941 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 942 // here we handle the more general case of adding any odd number by 943 // matching the form add(x, add(x, y)) where y is odd. 944 // TODO: This could be generalized to clearing any bit set in y where the 945 // following bit is known to be unset in y. 946 Value *Y = nullptr; 947 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 948 m_Value(Y))) || 949 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 950 m_Value(Y)))) { 951 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 952 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 953 if (KnownOne3.countTrailingOnes() > 0) 954 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 955 } 956 break; 957 } 958 case Instruction::Or: { 959 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 960 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 961 962 // Output known-0 bits are only known if clear in both the LHS & RHS. 963 KnownZero &= KnownZero2; 964 // Output known-1 are known to be set if set in either the LHS | RHS. 965 KnownOne |= KnownOne2; 966 break; 967 } 968 case Instruction::Xor: { 969 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 970 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 971 972 // Output known-0 bits are known if clear or set in both the LHS & RHS. 973 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 974 // Output known-1 are known to be set if set in only one of the LHS, RHS. 975 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 976 KnownZero = KnownZeroOut; 977 break; 978 } 979 case Instruction::Mul: { 980 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 981 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 982 KnownOne, KnownZero2, KnownOne2, Depth, Q); 983 break; 984 } 985 case Instruction::UDiv: { 986 // For the purposes of computing leading zeros we can conservatively 987 // treat a udiv as a logical right shift by the power of 2 known to 988 // be less than the denominator. 989 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 990 unsigned LeadZ = KnownZero2.countLeadingOnes(); 991 992 KnownOne2.clearAllBits(); 993 KnownZero2.clearAllBits(); 994 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 995 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 996 if (RHSUnknownLeadingOnes != BitWidth) 997 LeadZ = std::min(BitWidth, 998 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 999 1000 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1001 break; 1002 } 1003 case Instruction::Select: { 1004 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 1005 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1006 1007 const Value *LHS; 1008 const Value *RHS; 1009 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1010 if (SelectPatternResult::isMinOrMax(SPF)) { 1011 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 1012 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 1013 } else { 1014 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 1015 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1016 } 1017 1018 unsigned MaxHighOnes = 0; 1019 unsigned MaxHighZeros = 0; 1020 if (SPF == SPF_SMAX) { 1021 // If both sides are negative, the result is negative. 1022 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 1023 // We can derive a lower bound on the result by taking the max of the 1024 // leading one bits. 1025 MaxHighOnes = 1026 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1027 // If either side is non-negative, the result is non-negative. 1028 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 1029 MaxHighZeros = 1; 1030 } else if (SPF == SPF_SMIN) { 1031 // If both sides are non-negative, the result is non-negative. 1032 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 1033 // We can derive an upper bound on the result by taking the max of the 1034 // leading zero bits. 1035 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 1036 KnownZero2.countLeadingOnes()); 1037 // If either side is negative, the result is negative. 1038 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 1039 MaxHighOnes = 1; 1040 } else if (SPF == SPF_UMAX) { 1041 // We can derive a lower bound on the result by taking the max of the 1042 // leading one bits. 1043 MaxHighOnes = 1044 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1045 } else if (SPF == SPF_UMIN) { 1046 // We can derive an upper bound on the result by taking the max of the 1047 // leading zero bits. 1048 MaxHighZeros = 1049 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1050 } 1051 1052 // Only known if known in both the LHS and RHS. 1053 KnownOne &= KnownOne2; 1054 KnownZero &= KnownZero2; 1055 if (MaxHighOnes > 0) 1056 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1057 if (MaxHighZeros > 0) 1058 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1059 break; 1060 } 1061 case Instruction::FPTrunc: 1062 case Instruction::FPExt: 1063 case Instruction::FPToUI: 1064 case Instruction::FPToSI: 1065 case Instruction::SIToFP: 1066 case Instruction::UIToFP: 1067 break; // Can't work with floating point. 1068 case Instruction::PtrToInt: 1069 case Instruction::IntToPtr: 1070 // Fall through and handle them the same as zext/trunc. 1071 LLVM_FALLTHROUGH; 1072 case Instruction::ZExt: 1073 case Instruction::Trunc: { 1074 Type *SrcTy = I->getOperand(0)->getType(); 1075 1076 unsigned SrcBitWidth; 1077 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1078 // which fall through here. 1079 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1080 1081 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1082 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1083 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1084 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1085 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1086 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1087 // Any top bits are known to be zero. 1088 if (BitWidth > SrcBitWidth) 1089 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1090 break; 1091 } 1092 case Instruction::BitCast: { 1093 Type *SrcTy = I->getOperand(0)->getType(); 1094 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1095 // TODO: For now, not handling conversions like: 1096 // (bitcast i64 %x to <2 x i32>) 1097 !I->getType()->isVectorTy()) { 1098 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1099 break; 1100 } 1101 break; 1102 } 1103 case Instruction::SExt: { 1104 // Compute the bits in the result that are not present in the input. 1105 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1106 1107 KnownZero = KnownZero.trunc(SrcBitWidth); 1108 KnownOne = KnownOne.trunc(SrcBitWidth); 1109 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1110 KnownZero = KnownZero.zext(BitWidth); 1111 KnownOne = KnownOne.zext(BitWidth); 1112 1113 // If the sign bit of the input is known set or clear, then we know the 1114 // top bits of the result. 1115 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1116 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1117 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1118 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1119 break; 1120 } 1121 case Instruction::Shl: { 1122 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1123 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1124 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1125 APInt KZResult = 1126 (KnownZero << ShiftAmt) | 1127 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1128 // If this shift has "nsw" keyword, then the result is either a poison 1129 // value or has the same sign bit as the first operand. 1130 if (NSW && KnownZero.isNegative()) 1131 KZResult.setBit(BitWidth - 1); 1132 return KZResult; 1133 }; 1134 1135 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1136 APInt KOResult = KnownOne << ShiftAmt; 1137 if (NSW && KnownOne.isNegative()) 1138 KOResult.setBit(BitWidth - 1); 1139 return KOResult; 1140 }; 1141 1142 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1143 KnownZero2, KnownOne2, Depth, Q, KZF, 1144 KOF); 1145 break; 1146 } 1147 case Instruction::LShr: { 1148 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1149 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1150 return APIntOps::lshr(KnownZero, ShiftAmt) | 1151 // High bits known zero. 1152 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1153 }; 1154 1155 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1156 return APIntOps::lshr(KnownOne, ShiftAmt); 1157 }; 1158 1159 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1160 KnownZero2, KnownOne2, Depth, Q, KZF, 1161 KOF); 1162 break; 1163 } 1164 case Instruction::AShr: { 1165 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1166 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1167 return APIntOps::ashr(KnownZero, ShiftAmt); 1168 }; 1169 1170 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1171 return APIntOps::ashr(KnownOne, ShiftAmt); 1172 }; 1173 1174 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1175 KnownZero2, KnownOne2, Depth, Q, KZF, 1176 KOF); 1177 break; 1178 } 1179 case Instruction::Sub: { 1180 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1181 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1182 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1183 Q); 1184 break; 1185 } 1186 case Instruction::Add: { 1187 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1188 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1189 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1190 Q); 1191 break; 1192 } 1193 case Instruction::SRem: 1194 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1195 APInt RA = Rem->getValue().abs(); 1196 if (RA.isPowerOf2()) { 1197 APInt LowBits = RA - 1; 1198 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1199 Q); 1200 1201 // The low bits of the first operand are unchanged by the srem. 1202 KnownZero = KnownZero2 & LowBits; 1203 KnownOne = KnownOne2 & LowBits; 1204 1205 // If the first operand is non-negative or has all low bits zero, then 1206 // the upper bits are all zero. 1207 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1208 KnownZero |= ~LowBits; 1209 1210 // If the first operand is negative and not all low bits are zero, then 1211 // the upper bits are all one. 1212 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1213 KnownOne |= ~LowBits; 1214 1215 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1216 } 1217 } 1218 1219 // The sign bit is the LHS's sign bit, except when the result of the 1220 // remainder is zero. 1221 if (KnownZero.isNonNegative()) { 1222 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1223 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1224 Q); 1225 // If it's known zero, our sign bit is also zero. 1226 if (LHSKnownZero.isNegative()) 1227 KnownZero.setBit(BitWidth - 1); 1228 } 1229 1230 break; 1231 case Instruction::URem: { 1232 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1233 const APInt &RA = Rem->getValue(); 1234 if (RA.isPowerOf2()) { 1235 APInt LowBits = (RA - 1); 1236 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1237 KnownZero |= ~LowBits; 1238 KnownOne &= LowBits; 1239 break; 1240 } 1241 } 1242 1243 // Since the result is less than or equal to either operand, any leading 1244 // zero bits in either operand must also exist in the result. 1245 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1246 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1247 1248 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1249 KnownZero2.countLeadingOnes()); 1250 KnownOne.clearAllBits(); 1251 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1252 break; 1253 } 1254 1255 case Instruction::Alloca: { 1256 const AllocaInst *AI = cast<AllocaInst>(I); 1257 unsigned Align = AI->getAlignment(); 1258 if (Align == 0) 1259 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1260 1261 if (Align > 0) 1262 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1263 break; 1264 } 1265 case Instruction::GetElementPtr: { 1266 // Analyze all of the subscripts of this getelementptr instruction 1267 // to determine if we can prove known low zero bits. 1268 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1269 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1270 Q); 1271 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1272 1273 gep_type_iterator GTI = gep_type_begin(I); 1274 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1275 Value *Index = I->getOperand(i); 1276 if (StructType *STy = GTI.getStructTypeOrNull()) { 1277 // Handle struct member offset arithmetic. 1278 1279 // Handle case when index is vector zeroinitializer 1280 Constant *CIndex = cast<Constant>(Index); 1281 if (CIndex->isZeroValue()) 1282 continue; 1283 1284 if (CIndex->getType()->isVectorTy()) 1285 Index = CIndex->getSplatValue(); 1286 1287 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1288 const StructLayout *SL = Q.DL.getStructLayout(STy); 1289 uint64_t Offset = SL->getElementOffset(Idx); 1290 TrailZ = std::min<unsigned>(TrailZ, 1291 countTrailingZeros(Offset)); 1292 } else { 1293 // Handle array index arithmetic. 1294 Type *IndexedTy = GTI.getIndexedType(); 1295 if (!IndexedTy->isSized()) { 1296 TrailZ = 0; 1297 break; 1298 } 1299 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1300 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1301 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1302 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1303 TrailZ = std::min(TrailZ, 1304 unsigned(countTrailingZeros(TypeSize) + 1305 LocalKnownZero.countTrailingOnes())); 1306 } 1307 } 1308 1309 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1310 break; 1311 } 1312 case Instruction::PHI: { 1313 const PHINode *P = cast<PHINode>(I); 1314 // Handle the case of a simple two-predecessor recurrence PHI. 1315 // There's a lot more that could theoretically be done here, but 1316 // this is sufficient to catch some interesting cases. 1317 if (P->getNumIncomingValues() == 2) { 1318 for (unsigned i = 0; i != 2; ++i) { 1319 Value *L = P->getIncomingValue(i); 1320 Value *R = P->getIncomingValue(!i); 1321 Operator *LU = dyn_cast<Operator>(L); 1322 if (!LU) 1323 continue; 1324 unsigned Opcode = LU->getOpcode(); 1325 // Check for operations that have the property that if 1326 // both their operands have low zero bits, the result 1327 // will have low zero bits. 1328 if (Opcode == Instruction::Add || 1329 Opcode == Instruction::Sub || 1330 Opcode == Instruction::And || 1331 Opcode == Instruction::Or || 1332 Opcode == Instruction::Mul) { 1333 Value *LL = LU->getOperand(0); 1334 Value *LR = LU->getOperand(1); 1335 // Find a recurrence. 1336 if (LL == I) 1337 L = LR; 1338 else if (LR == I) 1339 L = LL; 1340 else 1341 break; 1342 // Ok, we have a PHI of the form L op= R. Check for low 1343 // zero bits. 1344 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1345 1346 // We need to take the minimum number of known bits 1347 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1348 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1349 1350 KnownZero = APInt::getLowBitsSet( 1351 BitWidth, std::min(KnownZero2.countTrailingOnes(), 1352 KnownZero3.countTrailingOnes())); 1353 1354 if (DontImproveNonNegativePhiBits) 1355 break; 1356 1357 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1358 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1359 // If initial value of recurrence is nonnegative, and we are adding 1360 // a nonnegative number with nsw, the result can only be nonnegative 1361 // or poison value regardless of the number of times we execute the 1362 // add in phi recurrence. If initial value is negative and we are 1363 // adding a negative number with nsw, the result can only be 1364 // negative or poison value. Similar arguments apply to sub and mul. 1365 // 1366 // (add non-negative, non-negative) --> non-negative 1367 // (add negative, negative) --> negative 1368 if (Opcode == Instruction::Add) { 1369 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1370 KnownZero.setBit(BitWidth - 1); 1371 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1372 KnownOne.setBit(BitWidth - 1); 1373 } 1374 1375 // (sub nsw non-negative, negative) --> non-negative 1376 // (sub nsw negative, non-negative) --> negative 1377 else if (Opcode == Instruction::Sub && LL == I) { 1378 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1379 KnownZero.setBit(BitWidth - 1); 1380 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1381 KnownOne.setBit(BitWidth - 1); 1382 } 1383 1384 // (mul nsw non-negative, non-negative) --> non-negative 1385 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1386 KnownZero3.isNegative()) 1387 KnownZero.setBit(BitWidth - 1); 1388 } 1389 1390 break; 1391 } 1392 } 1393 } 1394 1395 // Unreachable blocks may have zero-operand PHI nodes. 1396 if (P->getNumIncomingValues() == 0) 1397 break; 1398 1399 // Otherwise take the unions of the known bit sets of the operands, 1400 // taking conservative care to avoid excessive recursion. 1401 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1402 // Skip if every incoming value references to ourself. 1403 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1404 break; 1405 1406 KnownZero = APInt::getAllOnesValue(BitWidth); 1407 KnownOne = APInt::getAllOnesValue(BitWidth); 1408 for (Value *IncValue : P->incoming_values()) { 1409 // Skip direct self references. 1410 if (IncValue == P) continue; 1411 1412 KnownZero2 = APInt(BitWidth, 0); 1413 KnownOne2 = APInt(BitWidth, 0); 1414 // Recurse, but cap the recursion to one level, because we don't 1415 // want to waste time spinning around in loops. 1416 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1417 KnownZero &= KnownZero2; 1418 KnownOne &= KnownOne2; 1419 // If all bits have been ruled out, there's no need to check 1420 // more operands. 1421 if (!KnownZero && !KnownOne) 1422 break; 1423 } 1424 } 1425 break; 1426 } 1427 case Instruction::Call: 1428 case Instruction::Invoke: 1429 // If range metadata is attached to this call, set known bits from that, 1430 // and then intersect with known bits based on other properties of the 1431 // function. 1432 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1433 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1434 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1435 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1436 KnownZero |= KnownZero2; 1437 KnownOne |= KnownOne2; 1438 } 1439 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1440 switch (II->getIntrinsicID()) { 1441 default: break; 1442 case Intrinsic::bitreverse: 1443 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1444 KnownZero = KnownZero2.reverseBits(); 1445 KnownOne = KnownOne2.reverseBits(); 1446 break; 1447 case Intrinsic::bswap: 1448 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1449 KnownZero |= KnownZero2.byteSwap(); 1450 KnownOne |= KnownOne2.byteSwap(); 1451 break; 1452 case Intrinsic::ctlz: 1453 case Intrinsic::cttz: { 1454 unsigned LowBits = Log2_32(BitWidth)+1; 1455 // If this call is undefined for 0, the result will be less than 2^n. 1456 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1457 LowBits -= 1; 1458 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1459 break; 1460 } 1461 case Intrinsic::ctpop: { 1462 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1463 // We can bound the space the count needs. Also, bits known to be zero 1464 // can't contribute to the population. 1465 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1466 unsigned LeadingZeros = 1467 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1468 assert(LeadingZeros <= BitWidth); 1469 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1470 KnownOne &= ~KnownZero; 1471 // TODO: we could bound KnownOne using the lower bound on the number 1472 // of bits which might be set provided by popcnt KnownOne2. 1473 break; 1474 } 1475 case Intrinsic::x86_sse42_crc32_64_64: 1476 KnownZero |= APInt::getHighBitsSet(64, 32); 1477 break; 1478 } 1479 } 1480 break; 1481 case Instruction::ExtractElement: 1482 // Look through extract element. At the moment we keep this simple and skip 1483 // tracking the specific element. But at least we might find information 1484 // valid for all elements of the vector (for example if vector is sign 1485 // extended, shifted, etc). 1486 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1487 break; 1488 case Instruction::ExtractValue: 1489 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1490 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1491 if (EVI->getNumIndices() != 1) break; 1492 if (EVI->getIndices()[0] == 0) { 1493 switch (II->getIntrinsicID()) { 1494 default: break; 1495 case Intrinsic::uadd_with_overflow: 1496 case Intrinsic::sadd_with_overflow: 1497 computeKnownBitsAddSub(true, II->getArgOperand(0), 1498 II->getArgOperand(1), false, KnownZero, 1499 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1500 break; 1501 case Intrinsic::usub_with_overflow: 1502 case Intrinsic::ssub_with_overflow: 1503 computeKnownBitsAddSub(false, II->getArgOperand(0), 1504 II->getArgOperand(1), false, KnownZero, 1505 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1506 break; 1507 case Intrinsic::umul_with_overflow: 1508 case Intrinsic::smul_with_overflow: 1509 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1510 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1511 Q); 1512 break; 1513 } 1514 } 1515 } 1516 } 1517 } 1518 1519 /// Determine which bits of V are known to be either zero or one and return 1520 /// them in the KnownZero/KnownOne bit sets. 1521 /// 1522 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1523 /// we cannot optimize based on the assumption that it is zero without changing 1524 /// it to be an explicit zero. If we don't change it to zero, other code could 1525 /// optimized based on the contradictory assumption that it is non-zero. 1526 /// Because instcombine aggressively folds operations with undef args anyway, 1527 /// this won't lose us code quality. 1528 /// 1529 /// This function is defined on values with integer type, values with pointer 1530 /// type, and vectors of integers. In the case 1531 /// where V is a vector, known zero, and known one values are the 1532 /// same width as the vector element, and the bit is set only if it is true 1533 /// for all of the elements in the vector. 1534 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1535 unsigned Depth, const Query &Q) { 1536 assert(V && "No Value?"); 1537 assert(Depth <= MaxDepth && "Limit Search Depth"); 1538 unsigned BitWidth = KnownZero.getBitWidth(); 1539 1540 assert((V->getType()->isIntOrIntVectorTy() || 1541 V->getType()->getScalarType()->isPointerTy()) && 1542 "Not integer or pointer type!"); 1543 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1544 (!V->getType()->isIntOrIntVectorTy() || 1545 V->getType()->getScalarSizeInBits() == BitWidth) && 1546 KnownZero.getBitWidth() == BitWidth && 1547 KnownOne.getBitWidth() == BitWidth && 1548 "V, KnownOne and KnownZero should have same BitWidth"); 1549 1550 const APInt *C; 1551 if (match(V, m_APInt(C))) { 1552 // We know all of the bits for a scalar constant or a splat vector constant! 1553 KnownOne = *C; 1554 KnownZero = ~KnownOne; 1555 return; 1556 } 1557 // Null and aggregate-zero are all-zeros. 1558 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1559 KnownOne.clearAllBits(); 1560 KnownZero = APInt::getAllOnesValue(BitWidth); 1561 return; 1562 } 1563 // Handle a constant vector by taking the intersection of the known bits of 1564 // each element. 1565 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1566 // We know that CDS must be a vector of integers. Take the intersection of 1567 // each element. 1568 KnownZero.setAllBits(); KnownOne.setAllBits(); 1569 APInt Elt(KnownZero.getBitWidth(), 0); 1570 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1571 Elt = CDS->getElementAsInteger(i); 1572 KnownZero &= ~Elt; 1573 KnownOne &= Elt; 1574 } 1575 return; 1576 } 1577 1578 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1579 // We know that CV must be a vector of integers. Take the intersection of 1580 // each element. 1581 KnownZero.setAllBits(); KnownOne.setAllBits(); 1582 APInt Elt(KnownZero.getBitWidth(), 0); 1583 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1584 Constant *Element = CV->getAggregateElement(i); 1585 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1586 if (!ElementCI) { 1587 KnownZero.clearAllBits(); 1588 KnownOne.clearAllBits(); 1589 return; 1590 } 1591 Elt = ElementCI->getValue(); 1592 KnownZero &= ~Elt; 1593 KnownOne &= Elt; 1594 } 1595 return; 1596 } 1597 1598 // Start out not knowing anything. 1599 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1600 1601 // We can't imply anything about undefs. 1602 if (isa<UndefValue>(V)) 1603 return; 1604 1605 // There's no point in looking through other users of ConstantData for 1606 // assumptions. Confirm that we've handled them all. 1607 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1608 1609 // Limit search depth. 1610 // All recursive calls that increase depth must come after this. 1611 if (Depth == MaxDepth) 1612 return; 1613 1614 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1615 // the bits of its aliasee. 1616 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1617 if (!GA->isInterposable()) 1618 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1619 return; 1620 } 1621 1622 if (const Operator *I = dyn_cast<Operator>(V)) 1623 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1624 1625 // Aligned pointers have trailing zeros - refine KnownZero set 1626 if (V->getType()->isPointerTy()) { 1627 unsigned Align = V->getPointerAlignment(Q.DL); 1628 if (Align) 1629 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1630 } 1631 1632 // computeKnownBitsFromAssume strictly refines KnownZero and 1633 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1634 1635 // Check whether a nearby assume intrinsic can determine some known bits. 1636 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1637 1638 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1639 } 1640 1641 /// Determine whether the sign bit is known to be zero or one. 1642 /// Convenience wrapper around computeKnownBits. 1643 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1644 unsigned Depth, const Query &Q) { 1645 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1646 if (!BitWidth) { 1647 KnownZero = false; 1648 KnownOne = false; 1649 return; 1650 } 1651 APInt ZeroBits(BitWidth, 0); 1652 APInt OneBits(BitWidth, 0); 1653 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1654 KnownOne = OneBits[BitWidth - 1]; 1655 KnownZero = ZeroBits[BitWidth - 1]; 1656 } 1657 1658 /// Return true if the given value is known to have exactly one 1659 /// bit set when defined. For vectors return true if every element is known to 1660 /// be a power of two when defined. Supports values with integer or pointer 1661 /// types and vectors of integers. 1662 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1663 const Query &Q) { 1664 if (const Constant *C = dyn_cast<Constant>(V)) { 1665 if (C->isNullValue()) 1666 return OrZero; 1667 1668 const APInt *ConstIntOrConstSplatInt; 1669 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1670 return ConstIntOrConstSplatInt->isPowerOf2(); 1671 } 1672 1673 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1674 // it is shifted off the end then the result is undefined. 1675 if (match(V, m_Shl(m_One(), m_Value()))) 1676 return true; 1677 1678 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1679 // bottom. If it is shifted off the bottom then the result is undefined. 1680 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1681 return true; 1682 1683 // The remaining tests are all recursive, so bail out if we hit the limit. 1684 if (Depth++ == MaxDepth) 1685 return false; 1686 1687 Value *X = nullptr, *Y = nullptr; 1688 // A shift left or a logical shift right of a power of two is a power of two 1689 // or zero. 1690 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1691 match(V, m_LShr(m_Value(X), m_Value())))) 1692 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1693 1694 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1695 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1696 1697 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1698 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1699 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1700 1701 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1702 // A power of two and'd with anything is a power of two or zero. 1703 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1704 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1705 return true; 1706 // X & (-X) is always a power of two or zero. 1707 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1708 return true; 1709 return false; 1710 } 1711 1712 // Adding a power-of-two or zero to the same power-of-two or zero yields 1713 // either the original power-of-two, a larger power-of-two or zero. 1714 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1715 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1716 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1717 if (match(X, m_And(m_Specific(Y), m_Value())) || 1718 match(X, m_And(m_Value(), m_Specific(Y)))) 1719 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1720 return true; 1721 if (match(Y, m_And(m_Specific(X), m_Value())) || 1722 match(Y, m_And(m_Value(), m_Specific(X)))) 1723 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1724 return true; 1725 1726 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1727 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1728 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1729 1730 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1731 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1732 // If i8 V is a power of two or zero: 1733 // ZeroBits: 1 1 1 0 1 1 1 1 1734 // ~ZeroBits: 0 0 0 1 0 0 0 0 1735 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1736 // If OrZero isn't set, we cannot give back a zero result. 1737 // Make sure either the LHS or RHS has a bit set. 1738 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1739 return true; 1740 } 1741 } 1742 1743 // An exact divide or right shift can only shift off zero bits, so the result 1744 // is a power of two only if the first operand is a power of two and not 1745 // copying a sign bit (sdiv int_min, 2). 1746 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1747 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1748 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1749 Depth, Q); 1750 } 1751 1752 return false; 1753 } 1754 1755 /// \brief Test whether a GEP's result is known to be non-null. 1756 /// 1757 /// Uses properties inherent in a GEP to try to determine whether it is known 1758 /// to be non-null. 1759 /// 1760 /// Currently this routine does not support vector GEPs. 1761 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1762 const Query &Q) { 1763 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1764 return false; 1765 1766 // FIXME: Support vector-GEPs. 1767 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1768 1769 // If the base pointer is non-null, we cannot walk to a null address with an 1770 // inbounds GEP in address space zero. 1771 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1772 return true; 1773 1774 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1775 // If so, then the GEP cannot produce a null pointer, as doing so would 1776 // inherently violate the inbounds contract within address space zero. 1777 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1778 GTI != GTE; ++GTI) { 1779 // Struct types are easy -- they must always be indexed by a constant. 1780 if (StructType *STy = GTI.getStructTypeOrNull()) { 1781 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1782 unsigned ElementIdx = OpC->getZExtValue(); 1783 const StructLayout *SL = Q.DL.getStructLayout(STy); 1784 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1785 if (ElementOffset > 0) 1786 return true; 1787 continue; 1788 } 1789 1790 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1791 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1792 continue; 1793 1794 // Fast path the constant operand case both for efficiency and so we don't 1795 // increment Depth when just zipping down an all-constant GEP. 1796 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1797 if (!OpC->isZero()) 1798 return true; 1799 continue; 1800 } 1801 1802 // We post-increment Depth here because while isKnownNonZero increments it 1803 // as well, when we pop back up that increment won't persist. We don't want 1804 // to recurse 10k times just because we have 10k GEP operands. We don't 1805 // bail completely out because we want to handle constant GEPs regardless 1806 // of depth. 1807 if (Depth++ >= MaxDepth) 1808 continue; 1809 1810 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1811 return true; 1812 } 1813 1814 return false; 1815 } 1816 1817 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1818 /// ensure that the value it's attached to is never Value? 'RangeType' is 1819 /// is the type of the value described by the range. 1820 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1821 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1822 assert(NumRanges >= 1); 1823 for (unsigned i = 0; i < NumRanges; ++i) { 1824 ConstantInt *Lower = 1825 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1826 ConstantInt *Upper = 1827 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1828 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1829 if (Range.contains(Value)) 1830 return false; 1831 } 1832 return true; 1833 } 1834 1835 /// Return true if the given value is known to be non-zero when defined. For 1836 /// vectors, return true if every element is known to be non-zero when 1837 /// defined. For pointers, if the context instruction and dominator tree are 1838 /// specified, perform context-sensitive analysis and return true if the 1839 /// pointer couldn't possibly be null at the specified instruction. 1840 /// Supports values with integer or pointer type and vectors of integers. 1841 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1842 if (auto *C = dyn_cast<Constant>(V)) { 1843 if (C->isNullValue()) 1844 return false; 1845 if (isa<ConstantInt>(C)) 1846 // Must be non-zero due to null test above. 1847 return true; 1848 1849 // For constant vectors, check that all elements are undefined or known 1850 // non-zero to determine that the whole vector is known non-zero. 1851 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1852 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1853 Constant *Elt = C->getAggregateElement(i); 1854 if (!Elt || Elt->isNullValue()) 1855 return false; 1856 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1857 return false; 1858 } 1859 return true; 1860 } 1861 1862 return false; 1863 } 1864 1865 if (auto *I = dyn_cast<Instruction>(V)) { 1866 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1867 // If the possible ranges don't contain zero, then the value is 1868 // definitely non-zero. 1869 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1870 const APInt ZeroValue(Ty->getBitWidth(), 0); 1871 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1872 return true; 1873 } 1874 } 1875 } 1876 1877 // The remaining tests are all recursive, so bail out if we hit the limit. 1878 if (Depth++ >= MaxDepth) 1879 return false; 1880 1881 // Check for pointer simplifications. 1882 if (V->getType()->isPointerTy()) { 1883 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1884 return true; 1885 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1886 if (isGEPKnownNonNull(GEP, Depth, Q)) 1887 return true; 1888 } 1889 1890 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1891 1892 // X | Y != 0 if X != 0 or Y != 0. 1893 Value *X = nullptr, *Y = nullptr; 1894 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1895 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1896 1897 // ext X != 0 if X != 0. 1898 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1899 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1900 1901 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1902 // if the lowest bit is shifted off the end. 1903 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1904 // shl nuw can't remove any non-zero bits. 1905 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1906 if (BO->hasNoUnsignedWrap()) 1907 return isKnownNonZero(X, Depth, Q); 1908 1909 APInt KnownZero(BitWidth, 0); 1910 APInt KnownOne(BitWidth, 0); 1911 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1912 if (KnownOne[0]) 1913 return true; 1914 } 1915 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1916 // defined if the sign bit is shifted off the end. 1917 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1918 // shr exact can only shift out zero bits. 1919 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1920 if (BO->isExact()) 1921 return isKnownNonZero(X, Depth, Q); 1922 1923 bool XKnownNonNegative, XKnownNegative; 1924 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1925 if (XKnownNegative) 1926 return true; 1927 1928 // If the shifter operand is a constant, and all of the bits shifted 1929 // out are known to be zero, and X is known non-zero then at least one 1930 // non-zero bit must remain. 1931 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1932 APInt KnownZero(BitWidth, 0); 1933 APInt KnownOne(BitWidth, 0); 1934 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1935 1936 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1937 // Is there a known one in the portion not shifted out? 1938 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1939 return true; 1940 // Are all the bits to be shifted out known zero? 1941 if (KnownZero.countTrailingOnes() >= ShiftVal) 1942 return isKnownNonZero(X, Depth, Q); 1943 } 1944 } 1945 // div exact can only produce a zero if the dividend is zero. 1946 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1947 return isKnownNonZero(X, Depth, Q); 1948 } 1949 // X + Y. 1950 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1951 bool XKnownNonNegative, XKnownNegative; 1952 bool YKnownNonNegative, YKnownNegative; 1953 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1954 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1955 1956 // If X and Y are both non-negative (as signed values) then their sum is not 1957 // zero unless both X and Y are zero. 1958 if (XKnownNonNegative && YKnownNonNegative) 1959 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1960 return true; 1961 1962 // If X and Y are both negative (as signed values) then their sum is not 1963 // zero unless both X and Y equal INT_MIN. 1964 if (BitWidth && XKnownNegative && YKnownNegative) { 1965 APInt KnownZero(BitWidth, 0); 1966 APInt KnownOne(BitWidth, 0); 1967 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1968 // The sign bit of X is set. If some other bit is set then X is not equal 1969 // to INT_MIN. 1970 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1971 if ((KnownOne & Mask) != 0) 1972 return true; 1973 // The sign bit of Y is set. If some other bit is set then Y is not equal 1974 // to INT_MIN. 1975 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1976 if ((KnownOne & Mask) != 0) 1977 return true; 1978 } 1979 1980 // The sum of a non-negative number and a power of two is not zero. 1981 if (XKnownNonNegative && 1982 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1983 return true; 1984 if (YKnownNonNegative && 1985 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1986 return true; 1987 } 1988 // X * Y. 1989 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1990 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1991 // If X and Y are non-zero then so is X * Y as long as the multiplication 1992 // does not overflow. 1993 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1994 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1995 return true; 1996 } 1997 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1998 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1999 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2000 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2001 return true; 2002 } 2003 // PHI 2004 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2005 // Try and detect a recurrence that monotonically increases from a 2006 // starting value, as these are common as induction variables. 2007 if (PN->getNumIncomingValues() == 2) { 2008 Value *Start = PN->getIncomingValue(0); 2009 Value *Induction = PN->getIncomingValue(1); 2010 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2011 std::swap(Start, Induction); 2012 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2013 if (!C->isZero() && !C->isNegative()) { 2014 ConstantInt *X; 2015 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2016 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2017 !X->isNegative()) 2018 return true; 2019 } 2020 } 2021 } 2022 // Check if all incoming values are non-zero constant. 2023 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 2024 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 2025 }); 2026 if (AllNonZeroConstants) 2027 return true; 2028 } 2029 2030 if (!BitWidth) return false; 2031 APInt KnownZero(BitWidth, 0); 2032 APInt KnownOne(BitWidth, 0); 2033 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2034 return KnownOne != 0; 2035 } 2036 2037 /// Return true if V2 == V1 + X, where X is known non-zero. 2038 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2039 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2040 if (!BO || BO->getOpcode() != Instruction::Add) 2041 return false; 2042 Value *Op = nullptr; 2043 if (V2 == BO->getOperand(0)) 2044 Op = BO->getOperand(1); 2045 else if (V2 == BO->getOperand(1)) 2046 Op = BO->getOperand(0); 2047 else 2048 return false; 2049 return isKnownNonZero(Op, 0, Q); 2050 } 2051 2052 /// Return true if it is known that V1 != V2. 2053 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2054 if (V1->getType()->isVectorTy() || V1 == V2) 2055 return false; 2056 if (V1->getType() != V2->getType()) 2057 // We can't look through casts yet. 2058 return false; 2059 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2060 return true; 2061 2062 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2063 // Are any known bits in V1 contradictory to known bits in V2? If V1 2064 // has a known zero where V2 has a known one, they must not be equal. 2065 auto BitWidth = Ty->getBitWidth(); 2066 APInt KnownZero1(BitWidth, 0); 2067 APInt KnownOne1(BitWidth, 0); 2068 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2069 APInt KnownZero2(BitWidth, 0); 2070 APInt KnownOne2(BitWidth, 0); 2071 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2072 2073 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2074 if (OppositeBits.getBoolValue()) 2075 return true; 2076 } 2077 return false; 2078 } 2079 2080 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2081 /// simplify operations downstream. Mask is known to be zero for bits that V 2082 /// cannot have. 2083 /// 2084 /// This function is defined on values with integer type, values with pointer 2085 /// type, and vectors of integers. In the case 2086 /// where V is a vector, the mask, known zero, and known one values are the 2087 /// same width as the vector element, and the bit is set only if it is true 2088 /// for all of the elements in the vector. 2089 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2090 const Query &Q) { 2091 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2092 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2093 return (KnownZero & Mask) == Mask; 2094 } 2095 2096 /// For vector constants, loop over the elements and find the constant with the 2097 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2098 /// or if any element was not analyzed; otherwise, return the count for the 2099 /// element with the minimum number of sign bits. 2100 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2101 unsigned TyBits) { 2102 const auto *CV = dyn_cast<Constant>(V); 2103 if (!CV || !CV->getType()->isVectorTy()) 2104 return 0; 2105 2106 unsigned MinSignBits = TyBits; 2107 unsigned NumElts = CV->getType()->getVectorNumElements(); 2108 for (unsigned i = 0; i != NumElts; ++i) { 2109 // If we find a non-ConstantInt, bail out. 2110 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2111 if (!Elt) 2112 return 0; 2113 2114 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2115 APInt EltVal = Elt->getValue(); 2116 if (EltVal.isNegative()) 2117 EltVal = ~EltVal; 2118 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2119 } 2120 2121 return MinSignBits; 2122 } 2123 2124 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2125 const Query &Q); 2126 2127 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2128 const Query &Q) { 2129 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2130 assert(Result > 0 && "At least one sign bit needs to be present!"); 2131 return Result; 2132 } 2133 2134 /// Return the number of times the sign bit of the register is replicated into 2135 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2136 /// (itself), but other cases can give us information. For example, immediately 2137 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2138 /// other, so we return 3. For vectors, return the number of sign bits for the 2139 /// vector element with the mininum number of known sign bits. 2140 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2141 const Query &Q) { 2142 2143 // We return the minimum number of sign bits that are guaranteed to be present 2144 // in V, so for undef we have to conservatively return 1. We don't have the 2145 // same behavior for poison though -- that's a FIXME today. 2146 2147 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2148 unsigned Tmp, Tmp2; 2149 unsigned FirstAnswer = 1; 2150 2151 // Note that ConstantInt is handled by the general computeKnownBits case 2152 // below. 2153 2154 if (Depth == MaxDepth) 2155 return 1; // Limit search depth. 2156 2157 const Operator *U = dyn_cast<Operator>(V); 2158 switch (Operator::getOpcode(V)) { 2159 default: break; 2160 case Instruction::SExt: 2161 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2162 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2163 2164 case Instruction::SDiv: { 2165 const APInt *Denominator; 2166 // sdiv X, C -> adds log(C) sign bits. 2167 if (match(U->getOperand(1), m_APInt(Denominator))) { 2168 2169 // Ignore non-positive denominator. 2170 if (!Denominator->isStrictlyPositive()) 2171 break; 2172 2173 // Calculate the incoming numerator bits. 2174 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2175 2176 // Add floor(log(C)) bits to the numerator bits. 2177 return std::min(TyBits, NumBits + Denominator->logBase2()); 2178 } 2179 break; 2180 } 2181 2182 case Instruction::SRem: { 2183 const APInt *Denominator; 2184 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2185 // positive constant. This let us put a lower bound on the number of sign 2186 // bits. 2187 if (match(U->getOperand(1), m_APInt(Denominator))) { 2188 2189 // Ignore non-positive denominator. 2190 if (!Denominator->isStrictlyPositive()) 2191 break; 2192 2193 // Calculate the incoming numerator bits. SRem by a positive constant 2194 // can't lower the number of sign bits. 2195 unsigned NumrBits = 2196 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2197 2198 // Calculate the leading sign bit constraints by examining the 2199 // denominator. Given that the denominator is positive, there are two 2200 // cases: 2201 // 2202 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2203 // (1 << ceilLogBase2(C)). 2204 // 2205 // 2. the numerator is negative. Then the result range is (-C,0] and 2206 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2207 // 2208 // Thus a lower bound on the number of sign bits is `TyBits - 2209 // ceilLogBase2(C)`. 2210 2211 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2212 return std::max(NumrBits, ResBits); 2213 } 2214 break; 2215 } 2216 2217 case Instruction::AShr: { 2218 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2219 // ashr X, C -> adds C sign bits. Vectors too. 2220 const APInt *ShAmt; 2221 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2222 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2223 if (ShAmtLimited >= TyBits) 2224 break; // Bad shift. 2225 Tmp += ShAmtLimited; 2226 if (Tmp > TyBits) Tmp = TyBits; 2227 } 2228 return Tmp; 2229 } 2230 case Instruction::Shl: { 2231 const APInt *ShAmt; 2232 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2233 // shl destroys sign bits. 2234 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2235 Tmp2 = ShAmt->getZExtValue(); 2236 if (Tmp2 >= TyBits || // Bad shift. 2237 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2238 return Tmp - Tmp2; 2239 } 2240 break; 2241 } 2242 case Instruction::And: 2243 case Instruction::Or: 2244 case Instruction::Xor: // NOT is handled here. 2245 // Logical binary ops preserve the number of sign bits at the worst. 2246 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2247 if (Tmp != 1) { 2248 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2249 FirstAnswer = std::min(Tmp, Tmp2); 2250 // We computed what we know about the sign bits as our first 2251 // answer. Now proceed to the generic code that uses 2252 // computeKnownBits, and pick whichever answer is better. 2253 } 2254 break; 2255 2256 case Instruction::Select: 2257 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2258 if (Tmp == 1) return 1; // Early out. 2259 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2260 return std::min(Tmp, Tmp2); 2261 2262 case Instruction::Add: 2263 // Add can have at most one carry bit. Thus we know that the output 2264 // is, at worst, one more bit than the inputs. 2265 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2266 if (Tmp == 1) return 1; // Early out. 2267 2268 // Special case decrementing a value (ADD X, -1): 2269 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2270 if (CRHS->isAllOnesValue()) { 2271 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2272 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2273 2274 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2275 // sign bits set. 2276 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2277 return TyBits; 2278 2279 // If we are subtracting one from a positive number, there is no carry 2280 // out of the result. 2281 if (KnownZero.isNegative()) 2282 return Tmp; 2283 } 2284 2285 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2286 if (Tmp2 == 1) return 1; 2287 return std::min(Tmp, Tmp2)-1; 2288 2289 case Instruction::Sub: 2290 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2291 if (Tmp2 == 1) return 1; 2292 2293 // Handle NEG. 2294 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2295 if (CLHS->isNullValue()) { 2296 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2297 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2298 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2299 // sign bits set. 2300 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2301 return TyBits; 2302 2303 // If the input is known to be positive (the sign bit is known clear), 2304 // the output of the NEG has the same number of sign bits as the input. 2305 if (KnownZero.isNegative()) 2306 return Tmp2; 2307 2308 // Otherwise, we treat this like a SUB. 2309 } 2310 2311 // Sub can have at most one carry bit. Thus we know that the output 2312 // is, at worst, one more bit than the inputs. 2313 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2314 if (Tmp == 1) return 1; // Early out. 2315 return std::min(Tmp, Tmp2)-1; 2316 2317 case Instruction::PHI: { 2318 const PHINode *PN = cast<PHINode>(U); 2319 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2320 // Don't analyze large in-degree PHIs. 2321 if (NumIncomingValues > 4) break; 2322 // Unreachable blocks may have zero-operand PHI nodes. 2323 if (NumIncomingValues == 0) break; 2324 2325 // Take the minimum of all incoming values. This can't infinitely loop 2326 // because of our depth threshold. 2327 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2328 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2329 if (Tmp == 1) return Tmp; 2330 Tmp = std::min( 2331 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2332 } 2333 return Tmp; 2334 } 2335 2336 case Instruction::Trunc: 2337 // FIXME: it's tricky to do anything useful for this, but it is an important 2338 // case for targets like X86. 2339 break; 2340 2341 case Instruction::ExtractElement: 2342 // Look through extract element. At the moment we keep this simple and skip 2343 // tracking the specific element. But at least we might find information 2344 // valid for all elements of the vector (for example if vector is sign 2345 // extended, shifted, etc). 2346 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2347 } 2348 2349 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2350 // use this information. 2351 2352 // If we can examine all elements of a vector constant successfully, we're 2353 // done (we can't do any better than that). If not, keep trying. 2354 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2355 return VecSignBits; 2356 2357 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2358 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2359 2360 // If we know that the sign bit is either zero or one, determine the number of 2361 // identical bits in the top of the input value. 2362 if (KnownZero.isNegative()) 2363 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2364 2365 if (KnownOne.isNegative()) 2366 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2367 2368 // computeKnownBits gave us no extra information about the top bits. 2369 return FirstAnswer; 2370 } 2371 2372 /// This function computes the integer multiple of Base that equals V. 2373 /// If successful, it returns true and returns the multiple in 2374 /// Multiple. If unsuccessful, it returns false. It looks 2375 /// through SExt instructions only if LookThroughSExt is true. 2376 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2377 bool LookThroughSExt, unsigned Depth) { 2378 const unsigned MaxDepth = 6; 2379 2380 assert(V && "No Value?"); 2381 assert(Depth <= MaxDepth && "Limit Search Depth"); 2382 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2383 2384 Type *T = V->getType(); 2385 2386 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2387 2388 if (Base == 0) 2389 return false; 2390 2391 if (Base == 1) { 2392 Multiple = V; 2393 return true; 2394 } 2395 2396 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2397 Constant *BaseVal = ConstantInt::get(T, Base); 2398 if (CO && CO == BaseVal) { 2399 // Multiple is 1. 2400 Multiple = ConstantInt::get(T, 1); 2401 return true; 2402 } 2403 2404 if (CI && CI->getZExtValue() % Base == 0) { 2405 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2406 return true; 2407 } 2408 2409 if (Depth == MaxDepth) return false; // Limit search depth. 2410 2411 Operator *I = dyn_cast<Operator>(V); 2412 if (!I) return false; 2413 2414 switch (I->getOpcode()) { 2415 default: break; 2416 case Instruction::SExt: 2417 if (!LookThroughSExt) return false; 2418 // otherwise fall through to ZExt 2419 case Instruction::ZExt: 2420 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2421 LookThroughSExt, Depth+1); 2422 case Instruction::Shl: 2423 case Instruction::Mul: { 2424 Value *Op0 = I->getOperand(0); 2425 Value *Op1 = I->getOperand(1); 2426 2427 if (I->getOpcode() == Instruction::Shl) { 2428 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2429 if (!Op1CI) return false; 2430 // Turn Op0 << Op1 into Op0 * 2^Op1 2431 APInt Op1Int = Op1CI->getValue(); 2432 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2433 APInt API(Op1Int.getBitWidth(), 0); 2434 API.setBit(BitToSet); 2435 Op1 = ConstantInt::get(V->getContext(), API); 2436 } 2437 2438 Value *Mul0 = nullptr; 2439 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2440 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2441 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2442 if (Op1C->getType()->getPrimitiveSizeInBits() < 2443 MulC->getType()->getPrimitiveSizeInBits()) 2444 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2445 if (Op1C->getType()->getPrimitiveSizeInBits() > 2446 MulC->getType()->getPrimitiveSizeInBits()) 2447 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2448 2449 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2450 Multiple = ConstantExpr::getMul(MulC, Op1C); 2451 return true; 2452 } 2453 2454 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2455 if (Mul0CI->getValue() == 1) { 2456 // V == Base * Op1, so return Op1 2457 Multiple = Op1; 2458 return true; 2459 } 2460 } 2461 2462 Value *Mul1 = nullptr; 2463 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2464 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2465 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2466 if (Op0C->getType()->getPrimitiveSizeInBits() < 2467 MulC->getType()->getPrimitiveSizeInBits()) 2468 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2469 if (Op0C->getType()->getPrimitiveSizeInBits() > 2470 MulC->getType()->getPrimitiveSizeInBits()) 2471 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2472 2473 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2474 Multiple = ConstantExpr::getMul(MulC, Op0C); 2475 return true; 2476 } 2477 2478 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2479 if (Mul1CI->getValue() == 1) { 2480 // V == Base * Op0, so return Op0 2481 Multiple = Op0; 2482 return true; 2483 } 2484 } 2485 } 2486 } 2487 2488 // We could not determine if V is a multiple of Base. 2489 return false; 2490 } 2491 2492 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2493 const TargetLibraryInfo *TLI) { 2494 const Function *F = ICS.getCalledFunction(); 2495 if (!F) 2496 return Intrinsic::not_intrinsic; 2497 2498 if (F->isIntrinsic()) 2499 return F->getIntrinsicID(); 2500 2501 if (!TLI) 2502 return Intrinsic::not_intrinsic; 2503 2504 LibFunc Func; 2505 // We're going to make assumptions on the semantics of the functions, check 2506 // that the target knows that it's available in this environment and it does 2507 // not have local linkage. 2508 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2509 return Intrinsic::not_intrinsic; 2510 2511 if (!ICS.onlyReadsMemory()) 2512 return Intrinsic::not_intrinsic; 2513 2514 // Otherwise check if we have a call to a function that can be turned into a 2515 // vector intrinsic. 2516 switch (Func) { 2517 default: 2518 break; 2519 case LibFunc_sin: 2520 case LibFunc_sinf: 2521 case LibFunc_sinl: 2522 return Intrinsic::sin; 2523 case LibFunc_cos: 2524 case LibFunc_cosf: 2525 case LibFunc_cosl: 2526 return Intrinsic::cos; 2527 case LibFunc_exp: 2528 case LibFunc_expf: 2529 case LibFunc_expl: 2530 return Intrinsic::exp; 2531 case LibFunc_exp2: 2532 case LibFunc_exp2f: 2533 case LibFunc_exp2l: 2534 return Intrinsic::exp2; 2535 case LibFunc_log: 2536 case LibFunc_logf: 2537 case LibFunc_logl: 2538 return Intrinsic::log; 2539 case LibFunc_log10: 2540 case LibFunc_log10f: 2541 case LibFunc_log10l: 2542 return Intrinsic::log10; 2543 case LibFunc_log2: 2544 case LibFunc_log2f: 2545 case LibFunc_log2l: 2546 return Intrinsic::log2; 2547 case LibFunc_fabs: 2548 case LibFunc_fabsf: 2549 case LibFunc_fabsl: 2550 return Intrinsic::fabs; 2551 case LibFunc_fmin: 2552 case LibFunc_fminf: 2553 case LibFunc_fminl: 2554 return Intrinsic::minnum; 2555 case LibFunc_fmax: 2556 case LibFunc_fmaxf: 2557 case LibFunc_fmaxl: 2558 return Intrinsic::maxnum; 2559 case LibFunc_copysign: 2560 case LibFunc_copysignf: 2561 case LibFunc_copysignl: 2562 return Intrinsic::copysign; 2563 case LibFunc_floor: 2564 case LibFunc_floorf: 2565 case LibFunc_floorl: 2566 return Intrinsic::floor; 2567 case LibFunc_ceil: 2568 case LibFunc_ceilf: 2569 case LibFunc_ceill: 2570 return Intrinsic::ceil; 2571 case LibFunc_trunc: 2572 case LibFunc_truncf: 2573 case LibFunc_truncl: 2574 return Intrinsic::trunc; 2575 case LibFunc_rint: 2576 case LibFunc_rintf: 2577 case LibFunc_rintl: 2578 return Intrinsic::rint; 2579 case LibFunc_nearbyint: 2580 case LibFunc_nearbyintf: 2581 case LibFunc_nearbyintl: 2582 return Intrinsic::nearbyint; 2583 case LibFunc_round: 2584 case LibFunc_roundf: 2585 case LibFunc_roundl: 2586 return Intrinsic::round; 2587 case LibFunc_pow: 2588 case LibFunc_powf: 2589 case LibFunc_powl: 2590 return Intrinsic::pow; 2591 case LibFunc_sqrt: 2592 case LibFunc_sqrtf: 2593 case LibFunc_sqrtl: 2594 if (ICS->hasNoNaNs()) 2595 return Intrinsic::sqrt; 2596 return Intrinsic::not_intrinsic; 2597 } 2598 2599 return Intrinsic::not_intrinsic; 2600 } 2601 2602 /// Return true if we can prove that the specified FP value is never equal to 2603 /// -0.0. 2604 /// 2605 /// NOTE: this function will need to be revisited when we support non-default 2606 /// rounding modes! 2607 /// 2608 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2609 unsigned Depth) { 2610 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2611 return !CFP->getValueAPF().isNegZero(); 2612 2613 if (Depth == MaxDepth) 2614 return false; // Limit search depth. 2615 2616 const Operator *I = dyn_cast<Operator>(V); 2617 if (!I) return false; 2618 2619 // Check if the nsz fast-math flag is set 2620 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2621 if (FPO->hasNoSignedZeros()) 2622 return true; 2623 2624 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2625 if (I->getOpcode() == Instruction::FAdd) 2626 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2627 if (CFP->isNullValue()) 2628 return true; 2629 2630 // sitofp and uitofp turn into +0.0 for zero. 2631 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2632 return true; 2633 2634 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2635 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2636 switch (IID) { 2637 default: 2638 break; 2639 // sqrt(-0.0) = -0.0, no other negative results are possible. 2640 case Intrinsic::sqrt: 2641 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2642 // fabs(x) != -0.0 2643 case Intrinsic::fabs: 2644 return true; 2645 } 2646 } 2647 2648 return false; 2649 } 2650 2651 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2652 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2653 /// bit despite comparing equal. 2654 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2655 const TargetLibraryInfo *TLI, 2656 bool SignBitOnly, 2657 unsigned Depth) { 2658 // TODO: This function does not do the right thing when SignBitOnly is true 2659 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2660 // which flips the sign bits of NaNs. See 2661 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2662 2663 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2664 return !CFP->getValueAPF().isNegative() || 2665 (!SignBitOnly && CFP->getValueAPF().isZero()); 2666 } 2667 2668 if (Depth == MaxDepth) 2669 return false; // Limit search depth. 2670 2671 const Operator *I = dyn_cast<Operator>(V); 2672 if (!I) 2673 return false; 2674 2675 switch (I->getOpcode()) { 2676 default: 2677 break; 2678 // Unsigned integers are always nonnegative. 2679 case Instruction::UIToFP: 2680 return true; 2681 case Instruction::FMul: 2682 // x*x is always non-negative or a NaN. 2683 if (I->getOperand(0) == I->getOperand(1) && 2684 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2685 return true; 2686 2687 LLVM_FALLTHROUGH; 2688 case Instruction::FAdd: 2689 case Instruction::FDiv: 2690 case Instruction::FRem: 2691 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2692 Depth + 1) && 2693 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2694 Depth + 1); 2695 case Instruction::Select: 2696 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2697 Depth + 1) && 2698 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2699 Depth + 1); 2700 case Instruction::FPExt: 2701 case Instruction::FPTrunc: 2702 // Widening/narrowing never change sign. 2703 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2704 Depth + 1); 2705 case Instruction::Call: 2706 const auto *CI = cast<CallInst>(I); 2707 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2708 switch (IID) { 2709 default: 2710 break; 2711 case Intrinsic::maxnum: 2712 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2713 Depth + 1) || 2714 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2715 Depth + 1); 2716 case Intrinsic::minnum: 2717 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2718 Depth + 1) && 2719 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2720 Depth + 1); 2721 case Intrinsic::exp: 2722 case Intrinsic::exp2: 2723 case Intrinsic::fabs: 2724 return true; 2725 2726 case Intrinsic::sqrt: 2727 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2728 if (!SignBitOnly) 2729 return true; 2730 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2731 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2732 2733 case Intrinsic::powi: 2734 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2735 // powi(x,n) is non-negative if n is even. 2736 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2737 return true; 2738 } 2739 // TODO: This is not correct. Given that exp is an integer, here are the 2740 // ways that pow can return a negative value: 2741 // 2742 // pow(x, exp) --> negative if exp is odd and x is negative. 2743 // pow(-0, exp) --> -inf if exp is negative odd. 2744 // pow(-0, exp) --> -0 if exp is positive odd. 2745 // pow(-inf, exp) --> -0 if exp is negative odd. 2746 // pow(-inf, exp) --> -inf if exp is positive odd. 2747 // 2748 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2749 // but we must return false if x == -0. Unfortunately we do not currently 2750 // have a way of expressing this constraint. See details in 2751 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2752 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2753 Depth + 1); 2754 2755 case Intrinsic::fma: 2756 case Intrinsic::fmuladd: 2757 // x*x+y is non-negative if y is non-negative. 2758 return I->getOperand(0) == I->getOperand(1) && 2759 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2760 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2761 Depth + 1); 2762 } 2763 break; 2764 } 2765 return false; 2766 } 2767 2768 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2769 const TargetLibraryInfo *TLI) { 2770 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2771 } 2772 2773 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2774 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2775 } 2776 2777 /// If the specified value can be set by repeating the same byte in memory, 2778 /// return the i8 value that it is represented with. This is 2779 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2780 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2781 /// byte store (e.g. i16 0x1234), return null. 2782 Value *llvm::isBytewiseValue(Value *V) { 2783 // All byte-wide stores are splatable, even of arbitrary variables. 2784 if (V->getType()->isIntegerTy(8)) return V; 2785 2786 // Handle 'null' ConstantArrayZero etc. 2787 if (Constant *C = dyn_cast<Constant>(V)) 2788 if (C->isNullValue()) 2789 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2790 2791 // Constant float and double values can be handled as integer values if the 2792 // corresponding integer value is "byteable". An important case is 0.0. 2793 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2794 if (CFP->getType()->isFloatTy()) 2795 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2796 if (CFP->getType()->isDoubleTy()) 2797 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2798 // Don't handle long double formats, which have strange constraints. 2799 } 2800 2801 // We can handle constant integers that are multiple of 8 bits. 2802 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2803 if (CI->getBitWidth() % 8 == 0) { 2804 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2805 2806 if (!CI->getValue().isSplat(8)) 2807 return nullptr; 2808 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2809 } 2810 } 2811 2812 // A ConstantDataArray/Vector is splatable if all its members are equal and 2813 // also splatable. 2814 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2815 Value *Elt = CA->getElementAsConstant(0); 2816 Value *Val = isBytewiseValue(Elt); 2817 if (!Val) 2818 return nullptr; 2819 2820 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2821 if (CA->getElementAsConstant(I) != Elt) 2822 return nullptr; 2823 2824 return Val; 2825 } 2826 2827 // Conceptually, we could handle things like: 2828 // %a = zext i8 %X to i16 2829 // %b = shl i16 %a, 8 2830 // %c = or i16 %a, %b 2831 // but until there is an example that actually needs this, it doesn't seem 2832 // worth worrying about. 2833 return nullptr; 2834 } 2835 2836 2837 // This is the recursive version of BuildSubAggregate. It takes a few different 2838 // arguments. Idxs is the index within the nested struct From that we are 2839 // looking at now (which is of type IndexedType). IdxSkip is the number of 2840 // indices from Idxs that should be left out when inserting into the resulting 2841 // struct. To is the result struct built so far, new insertvalue instructions 2842 // build on that. 2843 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2844 SmallVectorImpl<unsigned> &Idxs, 2845 unsigned IdxSkip, 2846 Instruction *InsertBefore) { 2847 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2848 if (STy) { 2849 // Save the original To argument so we can modify it 2850 Value *OrigTo = To; 2851 // General case, the type indexed by Idxs is a struct 2852 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2853 // Process each struct element recursively 2854 Idxs.push_back(i); 2855 Value *PrevTo = To; 2856 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2857 InsertBefore); 2858 Idxs.pop_back(); 2859 if (!To) { 2860 // Couldn't find any inserted value for this index? Cleanup 2861 while (PrevTo != OrigTo) { 2862 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2863 PrevTo = Del->getAggregateOperand(); 2864 Del->eraseFromParent(); 2865 } 2866 // Stop processing elements 2867 break; 2868 } 2869 } 2870 // If we successfully found a value for each of our subaggregates 2871 if (To) 2872 return To; 2873 } 2874 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2875 // the struct's elements had a value that was inserted directly. In the latter 2876 // case, perhaps we can't determine each of the subelements individually, but 2877 // we might be able to find the complete struct somewhere. 2878 2879 // Find the value that is at that particular spot 2880 Value *V = FindInsertedValue(From, Idxs); 2881 2882 if (!V) 2883 return nullptr; 2884 2885 // Insert the value in the new (sub) aggregrate 2886 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2887 "tmp", InsertBefore); 2888 } 2889 2890 // This helper takes a nested struct and extracts a part of it (which is again a 2891 // struct) into a new value. For example, given the struct: 2892 // { a, { b, { c, d }, e } } 2893 // and the indices "1, 1" this returns 2894 // { c, d }. 2895 // 2896 // It does this by inserting an insertvalue for each element in the resulting 2897 // struct, as opposed to just inserting a single struct. This will only work if 2898 // each of the elements of the substruct are known (ie, inserted into From by an 2899 // insertvalue instruction somewhere). 2900 // 2901 // All inserted insertvalue instructions are inserted before InsertBefore 2902 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2903 Instruction *InsertBefore) { 2904 assert(InsertBefore && "Must have someplace to insert!"); 2905 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2906 idx_range); 2907 Value *To = UndefValue::get(IndexedType); 2908 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2909 unsigned IdxSkip = Idxs.size(); 2910 2911 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2912 } 2913 2914 /// Given an aggregrate and an sequence of indices, see if 2915 /// the scalar value indexed is already around as a register, for example if it 2916 /// were inserted directly into the aggregrate. 2917 /// 2918 /// If InsertBefore is not null, this function will duplicate (modified) 2919 /// insertvalues when a part of a nested struct is extracted. 2920 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2921 Instruction *InsertBefore) { 2922 // Nothing to index? Just return V then (this is useful at the end of our 2923 // recursion). 2924 if (idx_range.empty()) 2925 return V; 2926 // We have indices, so V should have an indexable type. 2927 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2928 "Not looking at a struct or array?"); 2929 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2930 "Invalid indices for type?"); 2931 2932 if (Constant *C = dyn_cast<Constant>(V)) { 2933 C = C->getAggregateElement(idx_range[0]); 2934 if (!C) return nullptr; 2935 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2936 } 2937 2938 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2939 // Loop the indices for the insertvalue instruction in parallel with the 2940 // requested indices 2941 const unsigned *req_idx = idx_range.begin(); 2942 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2943 i != e; ++i, ++req_idx) { 2944 if (req_idx == idx_range.end()) { 2945 // We can't handle this without inserting insertvalues 2946 if (!InsertBefore) 2947 return nullptr; 2948 2949 // The requested index identifies a part of a nested aggregate. Handle 2950 // this specially. For example, 2951 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2952 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2953 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2954 // This can be changed into 2955 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2956 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2957 // which allows the unused 0,0 element from the nested struct to be 2958 // removed. 2959 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2960 InsertBefore); 2961 } 2962 2963 // This insert value inserts something else than what we are looking for. 2964 // See if the (aggregate) value inserted into has the value we are 2965 // looking for, then. 2966 if (*req_idx != *i) 2967 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2968 InsertBefore); 2969 } 2970 // If we end up here, the indices of the insertvalue match with those 2971 // requested (though possibly only partially). Now we recursively look at 2972 // the inserted value, passing any remaining indices. 2973 return FindInsertedValue(I->getInsertedValueOperand(), 2974 makeArrayRef(req_idx, idx_range.end()), 2975 InsertBefore); 2976 } 2977 2978 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2979 // If we're extracting a value from an aggregate that was extracted from 2980 // something else, we can extract from that something else directly instead. 2981 // However, we will need to chain I's indices with the requested indices. 2982 2983 // Calculate the number of indices required 2984 unsigned size = I->getNumIndices() + idx_range.size(); 2985 // Allocate some space to put the new indices in 2986 SmallVector<unsigned, 5> Idxs; 2987 Idxs.reserve(size); 2988 // Add indices from the extract value instruction 2989 Idxs.append(I->idx_begin(), I->idx_end()); 2990 2991 // Add requested indices 2992 Idxs.append(idx_range.begin(), idx_range.end()); 2993 2994 assert(Idxs.size() == size 2995 && "Number of indices added not correct?"); 2996 2997 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2998 } 2999 // Otherwise, we don't know (such as, extracting from a function return value 3000 // or load instruction) 3001 return nullptr; 3002 } 3003 3004 /// Analyze the specified pointer to see if it can be expressed as a base 3005 /// pointer plus a constant offset. Return the base and offset to the caller. 3006 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3007 const DataLayout &DL) { 3008 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 3009 APInt ByteOffset(BitWidth, 0); 3010 3011 // We walk up the defs but use a visited set to handle unreachable code. In 3012 // that case, we stop after accumulating the cycle once (not that it 3013 // matters). 3014 SmallPtrSet<Value *, 16> Visited; 3015 while (Visited.insert(Ptr).second) { 3016 if (Ptr->getType()->isVectorTy()) 3017 break; 3018 3019 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3020 // If one of the values we have visited is an addrspacecast, then 3021 // the pointer type of this GEP may be different from the type 3022 // of the Ptr parameter which was passed to this function. This 3023 // means when we construct GEPOffset, we need to use the size 3024 // of GEP's pointer type rather than the size of the original 3025 // pointer type. 3026 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 3027 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3028 break; 3029 3030 ByteOffset += GEPOffset.getSExtValue(); 3031 3032 Ptr = GEP->getPointerOperand(); 3033 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3034 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3035 Ptr = cast<Operator>(Ptr)->getOperand(0); 3036 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3037 if (GA->isInterposable()) 3038 break; 3039 Ptr = GA->getAliasee(); 3040 } else { 3041 break; 3042 } 3043 } 3044 Offset = ByteOffset.getSExtValue(); 3045 return Ptr; 3046 } 3047 3048 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 3049 // Make sure the GEP has exactly three arguments. 3050 if (GEP->getNumOperands() != 3) 3051 return false; 3052 3053 // Make sure the index-ee is a pointer to array of i8. 3054 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3055 if (!AT || !AT->getElementType()->isIntegerTy(8)) 3056 return false; 3057 3058 // Check to make sure that the first operand of the GEP is an integer and 3059 // has value 0 so that we are sure we're indexing into the initializer. 3060 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3061 if (!FirstIdx || !FirstIdx->isZero()) 3062 return false; 3063 3064 return true; 3065 } 3066 3067 /// This function computes the length of a null-terminated C string pointed to 3068 /// by V. If successful, it returns true and returns the string in Str. 3069 /// If unsuccessful, it returns false. 3070 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3071 uint64_t Offset, bool TrimAtNul) { 3072 assert(V); 3073 3074 // Look through bitcast instructions and geps. 3075 V = V->stripPointerCasts(); 3076 3077 // If the value is a GEP instruction or constant expression, treat it as an 3078 // offset. 3079 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3080 // The GEP operator should be based on a pointer to string constant, and is 3081 // indexing into the string constant. 3082 if (!isGEPBasedOnPointerToString(GEP)) 3083 return false; 3084 3085 // If the second index isn't a ConstantInt, then this is a variable index 3086 // into the array. If this occurs, we can't say anything meaningful about 3087 // the string. 3088 uint64_t StartIdx = 0; 3089 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3090 StartIdx = CI->getZExtValue(); 3091 else 3092 return false; 3093 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3094 TrimAtNul); 3095 } 3096 3097 // The GEP instruction, constant or instruction, must reference a global 3098 // variable that is a constant and is initialized. The referenced constant 3099 // initializer is the array that we'll use for optimization. 3100 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3101 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3102 return false; 3103 3104 // Handle the all-zeros case. 3105 if (GV->getInitializer()->isNullValue()) { 3106 // This is a degenerate case. The initializer is constant zero so the 3107 // length of the string must be zero. 3108 Str = ""; 3109 return true; 3110 } 3111 3112 // This must be a ConstantDataArray. 3113 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3114 if (!Array || !Array->isString()) 3115 return false; 3116 3117 // Get the number of elements in the array. 3118 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3119 3120 // Start out with the entire array in the StringRef. 3121 Str = Array->getAsString(); 3122 3123 if (Offset > NumElts) 3124 return false; 3125 3126 // Skip over 'offset' bytes. 3127 Str = Str.substr(Offset); 3128 3129 if (TrimAtNul) { 3130 // Trim off the \0 and anything after it. If the array is not nul 3131 // terminated, we just return the whole end of string. The client may know 3132 // some other way that the string is length-bound. 3133 Str = Str.substr(0, Str.find('\0')); 3134 } 3135 return true; 3136 } 3137 3138 // These next two are very similar to the above, but also look through PHI 3139 // nodes. 3140 // TODO: See if we can integrate these two together. 3141 3142 /// If we can compute the length of the string pointed to by 3143 /// the specified pointer, return 'len+1'. If we can't, return 0. 3144 static uint64_t GetStringLengthH(const Value *V, 3145 SmallPtrSetImpl<const PHINode*> &PHIs) { 3146 // Look through noop bitcast instructions. 3147 V = V->stripPointerCasts(); 3148 3149 // If this is a PHI node, there are two cases: either we have already seen it 3150 // or we haven't. 3151 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3152 if (!PHIs.insert(PN).second) 3153 return ~0ULL; // already in the set. 3154 3155 // If it was new, see if all the input strings are the same length. 3156 uint64_t LenSoFar = ~0ULL; 3157 for (Value *IncValue : PN->incoming_values()) { 3158 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3159 if (Len == 0) return 0; // Unknown length -> unknown. 3160 3161 if (Len == ~0ULL) continue; 3162 3163 if (Len != LenSoFar && LenSoFar != ~0ULL) 3164 return 0; // Disagree -> unknown. 3165 LenSoFar = Len; 3166 } 3167 3168 // Success, all agree. 3169 return LenSoFar; 3170 } 3171 3172 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3173 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3174 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3175 if (Len1 == 0) return 0; 3176 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3177 if (Len2 == 0) return 0; 3178 if (Len1 == ~0ULL) return Len2; 3179 if (Len2 == ~0ULL) return Len1; 3180 if (Len1 != Len2) return 0; 3181 return Len1; 3182 } 3183 3184 // Otherwise, see if we can read the string. 3185 StringRef StrData; 3186 if (!getConstantStringInfo(V, StrData)) 3187 return 0; 3188 3189 return StrData.size()+1; 3190 } 3191 3192 /// If we can compute the length of the string pointed to by 3193 /// the specified pointer, return 'len+1'. If we can't, return 0. 3194 uint64_t llvm::GetStringLength(const Value *V) { 3195 if (!V->getType()->isPointerTy()) return 0; 3196 3197 SmallPtrSet<const PHINode*, 32> PHIs; 3198 uint64_t Len = GetStringLengthH(V, PHIs); 3199 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3200 // an empty string as a length. 3201 return Len == ~0ULL ? 1 : Len; 3202 } 3203 3204 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3205 /// previous iteration of the loop was referring to the same object as \p PN. 3206 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3207 const LoopInfo *LI) { 3208 // Find the loop-defined value. 3209 Loop *L = LI->getLoopFor(PN->getParent()); 3210 if (PN->getNumIncomingValues() != 2) 3211 return true; 3212 3213 // Find the value from previous iteration. 3214 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3215 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3216 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3217 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3218 return true; 3219 3220 // If a new pointer is loaded in the loop, the pointer references a different 3221 // object in every iteration. E.g.: 3222 // for (i) 3223 // int *p = a[i]; 3224 // ... 3225 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3226 if (!L->isLoopInvariant(Load->getPointerOperand())) 3227 return false; 3228 return true; 3229 } 3230 3231 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3232 unsigned MaxLookup) { 3233 if (!V->getType()->isPointerTy()) 3234 return V; 3235 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3236 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3237 V = GEP->getPointerOperand(); 3238 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3239 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3240 V = cast<Operator>(V)->getOperand(0); 3241 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3242 if (GA->isInterposable()) 3243 return V; 3244 V = GA->getAliasee(); 3245 } else { 3246 if (auto CS = CallSite(V)) 3247 if (Value *RV = CS.getReturnedArgOperand()) { 3248 V = RV; 3249 continue; 3250 } 3251 3252 // See if InstructionSimplify knows any relevant tricks. 3253 if (Instruction *I = dyn_cast<Instruction>(V)) 3254 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3255 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3256 V = Simplified; 3257 continue; 3258 } 3259 3260 return V; 3261 } 3262 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3263 } 3264 return V; 3265 } 3266 3267 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3268 const DataLayout &DL, LoopInfo *LI, 3269 unsigned MaxLookup) { 3270 SmallPtrSet<Value *, 4> Visited; 3271 SmallVector<Value *, 4> Worklist; 3272 Worklist.push_back(V); 3273 do { 3274 Value *P = Worklist.pop_back_val(); 3275 P = GetUnderlyingObject(P, DL, MaxLookup); 3276 3277 if (!Visited.insert(P).second) 3278 continue; 3279 3280 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3281 Worklist.push_back(SI->getTrueValue()); 3282 Worklist.push_back(SI->getFalseValue()); 3283 continue; 3284 } 3285 3286 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3287 // If this PHI changes the underlying object in every iteration of the 3288 // loop, don't look through it. Consider: 3289 // int **A; 3290 // for (i) { 3291 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3292 // Curr = A[i]; 3293 // *Prev, *Curr; 3294 // 3295 // Prev is tracking Curr one iteration behind so they refer to different 3296 // underlying objects. 3297 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3298 isSameUnderlyingObjectInLoop(PN, LI)) 3299 for (Value *IncValue : PN->incoming_values()) 3300 Worklist.push_back(IncValue); 3301 continue; 3302 } 3303 3304 Objects.push_back(P); 3305 } while (!Worklist.empty()); 3306 } 3307 3308 /// Return true if the only users of this pointer are lifetime markers. 3309 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3310 for (const User *U : V->users()) { 3311 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3312 if (!II) return false; 3313 3314 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3315 II->getIntrinsicID() != Intrinsic::lifetime_end) 3316 return false; 3317 } 3318 return true; 3319 } 3320 3321 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3322 const Instruction *CtxI, 3323 const DominatorTree *DT) { 3324 const Operator *Inst = dyn_cast<Operator>(V); 3325 if (!Inst) 3326 return false; 3327 3328 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3329 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3330 if (C->canTrap()) 3331 return false; 3332 3333 switch (Inst->getOpcode()) { 3334 default: 3335 return true; 3336 case Instruction::UDiv: 3337 case Instruction::URem: { 3338 // x / y is undefined if y == 0. 3339 const APInt *V; 3340 if (match(Inst->getOperand(1), m_APInt(V))) 3341 return *V != 0; 3342 return false; 3343 } 3344 case Instruction::SDiv: 3345 case Instruction::SRem: { 3346 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3347 const APInt *Numerator, *Denominator; 3348 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3349 return false; 3350 // We cannot hoist this division if the denominator is 0. 3351 if (*Denominator == 0) 3352 return false; 3353 // It's safe to hoist if the denominator is not 0 or -1. 3354 if (*Denominator != -1) 3355 return true; 3356 // At this point we know that the denominator is -1. It is safe to hoist as 3357 // long we know that the numerator is not INT_MIN. 3358 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3359 return !Numerator->isMinSignedValue(); 3360 // The numerator *might* be MinSignedValue. 3361 return false; 3362 } 3363 case Instruction::Load: { 3364 const LoadInst *LI = cast<LoadInst>(Inst); 3365 if (!LI->isUnordered() || 3366 // Speculative load may create a race that did not exist in the source. 3367 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3368 // Speculative load may load data from dirty regions. 3369 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3370 return false; 3371 const DataLayout &DL = LI->getModule()->getDataLayout(); 3372 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3373 LI->getAlignment(), DL, CtxI, DT); 3374 } 3375 case Instruction::Call: { 3376 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3377 switch (II->getIntrinsicID()) { 3378 // These synthetic intrinsics have no side-effects and just mark 3379 // information about their operands. 3380 // FIXME: There are other no-op synthetic instructions that potentially 3381 // should be considered at least *safe* to speculate... 3382 case Intrinsic::dbg_declare: 3383 case Intrinsic::dbg_value: 3384 return true; 3385 3386 case Intrinsic::bitreverse: 3387 case Intrinsic::bswap: 3388 case Intrinsic::ctlz: 3389 case Intrinsic::ctpop: 3390 case Intrinsic::cttz: 3391 case Intrinsic::objectsize: 3392 case Intrinsic::sadd_with_overflow: 3393 case Intrinsic::smul_with_overflow: 3394 case Intrinsic::ssub_with_overflow: 3395 case Intrinsic::uadd_with_overflow: 3396 case Intrinsic::umul_with_overflow: 3397 case Intrinsic::usub_with_overflow: 3398 return true; 3399 // These intrinsics are defined to have the same behavior as libm 3400 // functions except for setting errno. 3401 case Intrinsic::sqrt: 3402 case Intrinsic::fma: 3403 case Intrinsic::fmuladd: 3404 return true; 3405 // These intrinsics are defined to have the same behavior as libm 3406 // functions, and the corresponding libm functions never set errno. 3407 case Intrinsic::trunc: 3408 case Intrinsic::copysign: 3409 case Intrinsic::fabs: 3410 case Intrinsic::minnum: 3411 case Intrinsic::maxnum: 3412 return true; 3413 // These intrinsics are defined to have the same behavior as libm 3414 // functions, which never overflow when operating on the IEEE754 types 3415 // that we support, and never set errno otherwise. 3416 case Intrinsic::ceil: 3417 case Intrinsic::floor: 3418 case Intrinsic::nearbyint: 3419 case Intrinsic::rint: 3420 case Intrinsic::round: 3421 return true; 3422 // These intrinsics do not correspond to any libm function, and 3423 // do not set errno. 3424 case Intrinsic::powi: 3425 return true; 3426 // TODO: are convert_{from,to}_fp16 safe? 3427 // TODO: can we list target-specific intrinsics here? 3428 default: break; 3429 } 3430 } 3431 return false; // The called function could have undefined behavior or 3432 // side-effects, even if marked readnone nounwind. 3433 } 3434 case Instruction::VAArg: 3435 case Instruction::Alloca: 3436 case Instruction::Invoke: 3437 case Instruction::PHI: 3438 case Instruction::Store: 3439 case Instruction::Ret: 3440 case Instruction::Br: 3441 case Instruction::IndirectBr: 3442 case Instruction::Switch: 3443 case Instruction::Unreachable: 3444 case Instruction::Fence: 3445 case Instruction::AtomicRMW: 3446 case Instruction::AtomicCmpXchg: 3447 case Instruction::LandingPad: 3448 case Instruction::Resume: 3449 case Instruction::CatchSwitch: 3450 case Instruction::CatchPad: 3451 case Instruction::CatchRet: 3452 case Instruction::CleanupPad: 3453 case Instruction::CleanupRet: 3454 return false; // Misc instructions which have effects 3455 } 3456 } 3457 3458 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3459 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3460 } 3461 3462 /// Return true if we know that the specified value is never null. 3463 bool llvm::isKnownNonNull(const Value *V) { 3464 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3465 3466 // Alloca never returns null, malloc might. 3467 if (isa<AllocaInst>(V)) return true; 3468 3469 // A byval, inalloca, or nonnull argument is never null. 3470 if (const Argument *A = dyn_cast<Argument>(V)) 3471 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3472 3473 // A global variable in address space 0 is non null unless extern weak 3474 // or an absolute symbol reference. Other address spaces may have null as a 3475 // valid address for a global, so we can't assume anything. 3476 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3477 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3478 GV->getType()->getAddressSpace() == 0; 3479 3480 // A Load tagged with nonnull metadata is never null. 3481 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3482 return LI->getMetadata(LLVMContext::MD_nonnull); 3483 3484 if (auto CS = ImmutableCallSite(V)) 3485 if (CS.isReturnNonNull()) 3486 return true; 3487 3488 return false; 3489 } 3490 3491 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3492 const Instruction *CtxI, 3493 const DominatorTree *DT) { 3494 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3495 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3496 assert(CtxI && "Context instruction required for analysis"); 3497 assert(DT && "Dominator tree required for analysis"); 3498 3499 unsigned NumUsesExplored = 0; 3500 for (auto *U : V->users()) { 3501 // Avoid massive lists 3502 if (NumUsesExplored >= DomConditionsMaxUses) 3503 break; 3504 NumUsesExplored++; 3505 3506 // If the value is used as an argument to a call or invoke, then argument 3507 // attributes may provide an answer about null-ness. 3508 if (auto CS = ImmutableCallSite(U)) 3509 if (auto *CalledFunc = CS.getCalledFunction()) 3510 for (const Argument &Arg : CalledFunc->args()) 3511 if (CS.getArgOperand(Arg.getArgNo()) == V && 3512 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3513 return true; 3514 3515 // Consider only compare instructions uniquely controlling a branch 3516 CmpInst::Predicate Pred; 3517 if (!match(const_cast<User *>(U), 3518 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3519 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3520 continue; 3521 3522 for (auto *CmpU : U->users()) { 3523 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3524 assert(BI->isConditional() && "uses a comparison!"); 3525 3526 BasicBlock *NonNullSuccessor = 3527 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3528 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3529 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3530 return true; 3531 } else if (Pred == ICmpInst::ICMP_NE && 3532 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3533 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3534 return true; 3535 } 3536 } 3537 } 3538 3539 return false; 3540 } 3541 3542 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3543 const DominatorTree *DT) { 3544 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3545 return false; 3546 3547 if (isKnownNonNull(V)) 3548 return true; 3549 3550 if (!CtxI || !DT) 3551 return false; 3552 3553 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3554 } 3555 3556 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3557 const Value *RHS, 3558 const DataLayout &DL, 3559 AssumptionCache *AC, 3560 const Instruction *CxtI, 3561 const DominatorTree *DT) { 3562 // Multiplying n * m significant bits yields a result of n + m significant 3563 // bits. If the total number of significant bits does not exceed the 3564 // result bit width (minus 1), there is no overflow. 3565 // This means if we have enough leading zero bits in the operands 3566 // we can guarantee that the result does not overflow. 3567 // Ref: "Hacker's Delight" by Henry Warren 3568 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3569 APInt LHSKnownZero(BitWidth, 0); 3570 APInt LHSKnownOne(BitWidth, 0); 3571 APInt RHSKnownZero(BitWidth, 0); 3572 APInt RHSKnownOne(BitWidth, 0); 3573 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3574 DT); 3575 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3576 DT); 3577 // Note that underestimating the number of zero bits gives a more 3578 // conservative answer. 3579 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3580 RHSKnownZero.countLeadingOnes(); 3581 // First handle the easy case: if we have enough zero bits there's 3582 // definitely no overflow. 3583 if (ZeroBits >= BitWidth) 3584 return OverflowResult::NeverOverflows; 3585 3586 // Get the largest possible values for each operand. 3587 APInt LHSMax = ~LHSKnownZero; 3588 APInt RHSMax = ~RHSKnownZero; 3589 3590 // We know the multiply operation doesn't overflow if the maximum values for 3591 // each operand will not overflow after we multiply them together. 3592 bool MaxOverflow; 3593 LHSMax.umul_ov(RHSMax, MaxOverflow); 3594 if (!MaxOverflow) 3595 return OverflowResult::NeverOverflows; 3596 3597 // We know it always overflows if multiplying the smallest possible values for 3598 // the operands also results in overflow. 3599 bool MinOverflow; 3600 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3601 if (MinOverflow) 3602 return OverflowResult::AlwaysOverflows; 3603 3604 return OverflowResult::MayOverflow; 3605 } 3606 3607 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3608 const Value *RHS, 3609 const DataLayout &DL, 3610 AssumptionCache *AC, 3611 const Instruction *CxtI, 3612 const DominatorTree *DT) { 3613 bool LHSKnownNonNegative, LHSKnownNegative; 3614 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3615 AC, CxtI, DT); 3616 if (LHSKnownNonNegative || LHSKnownNegative) { 3617 bool RHSKnownNonNegative, RHSKnownNegative; 3618 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3619 AC, CxtI, DT); 3620 3621 if (LHSKnownNegative && RHSKnownNegative) { 3622 // The sign bit is set in both cases: this MUST overflow. 3623 // Create a simple add instruction, and insert it into the struct. 3624 return OverflowResult::AlwaysOverflows; 3625 } 3626 3627 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3628 // The sign bit is clear in both cases: this CANNOT overflow. 3629 // Create a simple add instruction, and insert it into the struct. 3630 return OverflowResult::NeverOverflows; 3631 } 3632 } 3633 3634 return OverflowResult::MayOverflow; 3635 } 3636 3637 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3638 const Value *RHS, 3639 const AddOperator *Add, 3640 const DataLayout &DL, 3641 AssumptionCache *AC, 3642 const Instruction *CxtI, 3643 const DominatorTree *DT) { 3644 if (Add && Add->hasNoSignedWrap()) { 3645 return OverflowResult::NeverOverflows; 3646 } 3647 3648 bool LHSKnownNonNegative, LHSKnownNegative; 3649 bool RHSKnownNonNegative, RHSKnownNegative; 3650 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3651 AC, CxtI, DT); 3652 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3653 AC, CxtI, DT); 3654 3655 if ((LHSKnownNonNegative && RHSKnownNegative) || 3656 (LHSKnownNegative && RHSKnownNonNegative)) { 3657 // The sign bits are opposite: this CANNOT overflow. 3658 return OverflowResult::NeverOverflows; 3659 } 3660 3661 // The remaining code needs Add to be available. Early returns if not so. 3662 if (!Add) 3663 return OverflowResult::MayOverflow; 3664 3665 // If the sign of Add is the same as at least one of the operands, this add 3666 // CANNOT overflow. This is particularly useful when the sum is 3667 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3668 // operands. 3669 bool LHSOrRHSKnownNonNegative = 3670 (LHSKnownNonNegative || RHSKnownNonNegative); 3671 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3672 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3673 bool AddKnownNonNegative, AddKnownNegative; 3674 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3675 /*Depth=*/0, AC, CxtI, DT); 3676 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3677 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3678 return OverflowResult::NeverOverflows; 3679 } 3680 } 3681 3682 return OverflowResult::MayOverflow; 3683 } 3684 3685 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3686 const DominatorTree &DT) { 3687 #ifndef NDEBUG 3688 auto IID = II->getIntrinsicID(); 3689 assert((IID == Intrinsic::sadd_with_overflow || 3690 IID == Intrinsic::uadd_with_overflow || 3691 IID == Intrinsic::ssub_with_overflow || 3692 IID == Intrinsic::usub_with_overflow || 3693 IID == Intrinsic::smul_with_overflow || 3694 IID == Intrinsic::umul_with_overflow) && 3695 "Not an overflow intrinsic!"); 3696 #endif 3697 3698 SmallVector<const BranchInst *, 2> GuardingBranches; 3699 SmallVector<const ExtractValueInst *, 2> Results; 3700 3701 for (const User *U : II->users()) { 3702 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3703 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3704 3705 if (EVI->getIndices()[0] == 0) 3706 Results.push_back(EVI); 3707 else { 3708 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3709 3710 for (const auto *U : EVI->users()) 3711 if (const auto *B = dyn_cast<BranchInst>(U)) { 3712 assert(B->isConditional() && "How else is it using an i1?"); 3713 GuardingBranches.push_back(B); 3714 } 3715 } 3716 } else { 3717 // We are using the aggregate directly in a way we don't want to analyze 3718 // here (storing it to a global, say). 3719 return false; 3720 } 3721 } 3722 3723 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3724 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3725 if (!NoWrapEdge.isSingleEdge()) 3726 return false; 3727 3728 // Check if all users of the add are provably no-wrap. 3729 for (const auto *Result : Results) { 3730 // If the extractvalue itself is not executed on overflow, the we don't 3731 // need to check each use separately, since domination is transitive. 3732 if (DT.dominates(NoWrapEdge, Result->getParent())) 3733 continue; 3734 3735 for (auto &RU : Result->uses()) 3736 if (!DT.dominates(NoWrapEdge, RU)) 3737 return false; 3738 } 3739 3740 return true; 3741 }; 3742 3743 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3744 } 3745 3746 3747 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3748 const DataLayout &DL, 3749 AssumptionCache *AC, 3750 const Instruction *CxtI, 3751 const DominatorTree *DT) { 3752 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3753 Add, DL, AC, CxtI, DT); 3754 } 3755 3756 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3757 const Value *RHS, 3758 const DataLayout &DL, 3759 AssumptionCache *AC, 3760 const Instruction *CxtI, 3761 const DominatorTree *DT) { 3762 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3763 } 3764 3765 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3766 // A memory operation returns normally if it isn't volatile. A volatile 3767 // operation is allowed to trap. 3768 // 3769 // An atomic operation isn't guaranteed to return in a reasonable amount of 3770 // time because it's possible for another thread to interfere with it for an 3771 // arbitrary length of time, but programs aren't allowed to rely on that. 3772 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3773 return !LI->isVolatile(); 3774 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3775 return !SI->isVolatile(); 3776 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3777 return !CXI->isVolatile(); 3778 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3779 return !RMWI->isVolatile(); 3780 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3781 return !MII->isVolatile(); 3782 3783 // If there is no successor, then execution can't transfer to it. 3784 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3785 return !CRI->unwindsToCaller(); 3786 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3787 return !CatchSwitch->unwindsToCaller(); 3788 if (isa<ResumeInst>(I)) 3789 return false; 3790 if (isa<ReturnInst>(I)) 3791 return false; 3792 if (isa<UnreachableInst>(I)) 3793 return false; 3794 3795 // Calls can throw, or contain an infinite loop, or kill the process. 3796 if (auto CS = ImmutableCallSite(I)) { 3797 // Call sites that throw have implicit non-local control flow. 3798 if (!CS.doesNotThrow()) 3799 return false; 3800 3801 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3802 // etc. and thus not return. However, LLVM already assumes that 3803 // 3804 // - Thread exiting actions are modeled as writes to memory invisible to 3805 // the program. 3806 // 3807 // - Loops that don't have side effects (side effects are volatile/atomic 3808 // stores and IO) always terminate (see http://llvm.org/PR965). 3809 // Furthermore IO itself is also modeled as writes to memory invisible to 3810 // the program. 3811 // 3812 // We rely on those assumptions here, and use the memory effects of the call 3813 // target as a proxy for checking that it always returns. 3814 3815 // FIXME: This isn't aggressive enough; a call which only writes to a global 3816 // is guaranteed to return. 3817 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3818 match(I, m_Intrinsic<Intrinsic::assume>()); 3819 } 3820 3821 // Other instructions return normally. 3822 return true; 3823 } 3824 3825 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3826 const Loop *L) { 3827 // The loop header is guaranteed to be executed for every iteration. 3828 // 3829 // FIXME: Relax this constraint to cover all basic blocks that are 3830 // guaranteed to be executed at every iteration. 3831 if (I->getParent() != L->getHeader()) return false; 3832 3833 for (const Instruction &LI : *L->getHeader()) { 3834 if (&LI == I) return true; 3835 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3836 } 3837 llvm_unreachable("Instruction not contained in its own parent basic block."); 3838 } 3839 3840 bool llvm::propagatesFullPoison(const Instruction *I) { 3841 switch (I->getOpcode()) { 3842 case Instruction::Add: 3843 case Instruction::Sub: 3844 case Instruction::Xor: 3845 case Instruction::Trunc: 3846 case Instruction::BitCast: 3847 case Instruction::AddrSpaceCast: 3848 case Instruction::Mul: 3849 case Instruction::Shl: 3850 case Instruction::GetElementPtr: 3851 // These operations all propagate poison unconditionally. Note that poison 3852 // is not any particular value, so xor or subtraction of poison with 3853 // itself still yields poison, not zero. 3854 return true; 3855 3856 case Instruction::AShr: 3857 case Instruction::SExt: 3858 // For these operations, one bit of the input is replicated across 3859 // multiple output bits. A replicated poison bit is still poison. 3860 return true; 3861 3862 case Instruction::ICmp: 3863 // Comparing poison with any value yields poison. This is why, for 3864 // instance, x s< (x +nsw 1) can be folded to true. 3865 return true; 3866 3867 default: 3868 return false; 3869 } 3870 } 3871 3872 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3873 switch (I->getOpcode()) { 3874 case Instruction::Store: 3875 return cast<StoreInst>(I)->getPointerOperand(); 3876 3877 case Instruction::Load: 3878 return cast<LoadInst>(I)->getPointerOperand(); 3879 3880 case Instruction::AtomicCmpXchg: 3881 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3882 3883 case Instruction::AtomicRMW: 3884 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3885 3886 case Instruction::UDiv: 3887 case Instruction::SDiv: 3888 case Instruction::URem: 3889 case Instruction::SRem: 3890 return I->getOperand(1); 3891 3892 default: 3893 return nullptr; 3894 } 3895 } 3896 3897 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3898 // We currently only look for uses of poison values within the same basic 3899 // block, as that makes it easier to guarantee that the uses will be 3900 // executed given that PoisonI is executed. 3901 // 3902 // FIXME: Expand this to consider uses beyond the same basic block. To do 3903 // this, look out for the distinction between post-dominance and strong 3904 // post-dominance. 3905 const BasicBlock *BB = PoisonI->getParent(); 3906 3907 // Set of instructions that we have proved will yield poison if PoisonI 3908 // does. 3909 SmallSet<const Value *, 16> YieldsPoison; 3910 SmallSet<const BasicBlock *, 4> Visited; 3911 YieldsPoison.insert(PoisonI); 3912 Visited.insert(PoisonI->getParent()); 3913 3914 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3915 3916 unsigned Iter = 0; 3917 while (Iter++ < MaxDepth) { 3918 for (auto &I : make_range(Begin, End)) { 3919 if (&I != PoisonI) { 3920 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3921 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3922 return true; 3923 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3924 return false; 3925 } 3926 3927 // Mark poison that propagates from I through uses of I. 3928 if (YieldsPoison.count(&I)) { 3929 for (const User *User : I.users()) { 3930 const Instruction *UserI = cast<Instruction>(User); 3931 if (propagatesFullPoison(UserI)) 3932 YieldsPoison.insert(User); 3933 } 3934 } 3935 } 3936 3937 if (auto *NextBB = BB->getSingleSuccessor()) { 3938 if (Visited.insert(NextBB).second) { 3939 BB = NextBB; 3940 Begin = BB->getFirstNonPHI()->getIterator(); 3941 End = BB->end(); 3942 continue; 3943 } 3944 } 3945 3946 break; 3947 }; 3948 return false; 3949 } 3950 3951 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3952 if (FMF.noNaNs()) 3953 return true; 3954 3955 if (auto *C = dyn_cast<ConstantFP>(V)) 3956 return !C->isNaN(); 3957 return false; 3958 } 3959 3960 static bool isKnownNonZero(const Value *V) { 3961 if (auto *C = dyn_cast<ConstantFP>(V)) 3962 return !C->isZero(); 3963 return false; 3964 } 3965 3966 /// Match non-obvious integer minimum and maximum sequences. 3967 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3968 Value *CmpLHS, Value *CmpRHS, 3969 Value *TrueVal, Value *FalseVal, 3970 Value *&LHS, Value *&RHS) { 3971 // Assume success. If there's no match, callers should not use these anyway. 3972 LHS = TrueVal; 3973 RHS = FalseVal; 3974 3975 // Recognize variations of: 3976 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3977 const APInt *C1; 3978 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3979 const APInt *C2; 3980 3981 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3982 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3983 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3984 return {SPF_SMAX, SPNB_NA, false}; 3985 3986 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3987 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3988 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3989 return {SPF_SMIN, SPNB_NA, false}; 3990 3991 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3992 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3993 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3994 return {SPF_UMAX, SPNB_NA, false}; 3995 3996 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3997 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3998 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3999 return {SPF_UMIN, SPNB_NA, false}; 4000 } 4001 4002 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4003 return {SPF_UNKNOWN, SPNB_NA, false}; 4004 4005 // Z = X -nsw Y 4006 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4007 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4008 if (match(TrueVal, m_Zero()) && 4009 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4010 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4011 4012 // Z = X -nsw Y 4013 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4014 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4015 if (match(FalseVal, m_Zero()) && 4016 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4017 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4018 4019 if (!match(CmpRHS, m_APInt(C1))) 4020 return {SPF_UNKNOWN, SPNB_NA, false}; 4021 4022 // An unsigned min/max can be written with a signed compare. 4023 const APInt *C2; 4024 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4025 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4026 // Is the sign bit set? 4027 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4028 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4029 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4030 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4031 4032 // Is the sign bit clear? 4033 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4034 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4035 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4036 C2->isMinSignedValue()) 4037 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4038 } 4039 4040 // Look through 'not' ops to find disguised signed min/max. 4041 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4042 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4043 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4044 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4045 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4046 4047 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4048 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4049 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4050 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4051 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4052 4053 return {SPF_UNKNOWN, SPNB_NA, false}; 4054 } 4055 4056 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4057 FastMathFlags FMF, 4058 Value *CmpLHS, Value *CmpRHS, 4059 Value *TrueVal, Value *FalseVal, 4060 Value *&LHS, Value *&RHS) { 4061 LHS = CmpLHS; 4062 RHS = CmpRHS; 4063 4064 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4065 // return inconsistent results between implementations. 4066 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4067 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4068 // Therefore we behave conservatively and only proceed if at least one of the 4069 // operands is known to not be zero, or if we don't care about signed zeroes. 4070 switch (Pred) { 4071 default: break; 4072 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4073 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4074 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4075 !isKnownNonZero(CmpRHS)) 4076 return {SPF_UNKNOWN, SPNB_NA, false}; 4077 } 4078 4079 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4080 bool Ordered = false; 4081 4082 // When given one NaN and one non-NaN input: 4083 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4084 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4085 // ordered comparison fails), which could be NaN or non-NaN. 4086 // so here we discover exactly what NaN behavior is required/accepted. 4087 if (CmpInst::isFPPredicate(Pred)) { 4088 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4089 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4090 4091 if (LHSSafe && RHSSafe) { 4092 // Both operands are known non-NaN. 4093 NaNBehavior = SPNB_RETURNS_ANY; 4094 } else if (CmpInst::isOrdered(Pred)) { 4095 // An ordered comparison will return false when given a NaN, so it 4096 // returns the RHS. 4097 Ordered = true; 4098 if (LHSSafe) 4099 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4100 NaNBehavior = SPNB_RETURNS_NAN; 4101 else if (RHSSafe) 4102 NaNBehavior = SPNB_RETURNS_OTHER; 4103 else 4104 // Completely unsafe. 4105 return {SPF_UNKNOWN, SPNB_NA, false}; 4106 } else { 4107 Ordered = false; 4108 // An unordered comparison will return true when given a NaN, so it 4109 // returns the LHS. 4110 if (LHSSafe) 4111 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4112 NaNBehavior = SPNB_RETURNS_OTHER; 4113 else if (RHSSafe) 4114 NaNBehavior = SPNB_RETURNS_NAN; 4115 else 4116 // Completely unsafe. 4117 return {SPF_UNKNOWN, SPNB_NA, false}; 4118 } 4119 } 4120 4121 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4122 std::swap(CmpLHS, CmpRHS); 4123 Pred = CmpInst::getSwappedPredicate(Pred); 4124 if (NaNBehavior == SPNB_RETURNS_NAN) 4125 NaNBehavior = SPNB_RETURNS_OTHER; 4126 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4127 NaNBehavior = SPNB_RETURNS_NAN; 4128 Ordered = !Ordered; 4129 } 4130 4131 // ([if]cmp X, Y) ? X : Y 4132 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4133 switch (Pred) { 4134 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4135 case ICmpInst::ICMP_UGT: 4136 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4137 case ICmpInst::ICMP_SGT: 4138 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4139 case ICmpInst::ICMP_ULT: 4140 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4141 case ICmpInst::ICMP_SLT: 4142 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4143 case FCmpInst::FCMP_UGT: 4144 case FCmpInst::FCMP_UGE: 4145 case FCmpInst::FCMP_OGT: 4146 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4147 case FCmpInst::FCMP_ULT: 4148 case FCmpInst::FCMP_ULE: 4149 case FCmpInst::FCMP_OLT: 4150 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4151 } 4152 } 4153 4154 const APInt *C1; 4155 if (match(CmpRHS, m_APInt(C1))) { 4156 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4157 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4158 4159 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4160 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4161 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4162 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4163 } 4164 4165 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4166 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4167 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4168 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4169 } 4170 } 4171 } 4172 4173 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4174 } 4175 4176 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4177 Instruction::CastOps *CastOp) { 4178 auto *Cast1 = dyn_cast<CastInst>(V1); 4179 if (!Cast1) 4180 return nullptr; 4181 4182 *CastOp = Cast1->getOpcode(); 4183 Type *SrcTy = Cast1->getSrcTy(); 4184 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4185 // If V1 and V2 are both the same cast from the same type, look through V1. 4186 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4187 return Cast2->getOperand(0); 4188 return nullptr; 4189 } 4190 4191 auto *C = dyn_cast<Constant>(V2); 4192 if (!C) 4193 return nullptr; 4194 4195 Constant *CastedTo = nullptr; 4196 switch (*CastOp) { 4197 case Instruction::ZExt: 4198 if (CmpI->isUnsigned()) 4199 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4200 break; 4201 case Instruction::SExt: 4202 if (CmpI->isSigned()) 4203 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4204 break; 4205 case Instruction::Trunc: 4206 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4207 break; 4208 case Instruction::FPTrunc: 4209 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4210 break; 4211 case Instruction::FPExt: 4212 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4213 break; 4214 case Instruction::FPToUI: 4215 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4216 break; 4217 case Instruction::FPToSI: 4218 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4219 break; 4220 case Instruction::UIToFP: 4221 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4222 break; 4223 case Instruction::SIToFP: 4224 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4225 break; 4226 default: 4227 break; 4228 } 4229 4230 if (!CastedTo) 4231 return nullptr; 4232 4233 // Make sure the cast doesn't lose any information. 4234 Constant *CastedBack = 4235 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4236 if (CastedBack != C) 4237 return nullptr; 4238 4239 return CastedTo; 4240 } 4241 4242 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4243 Instruction::CastOps *CastOp) { 4244 SelectInst *SI = dyn_cast<SelectInst>(V); 4245 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4246 4247 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4248 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4249 4250 CmpInst::Predicate Pred = CmpI->getPredicate(); 4251 Value *CmpLHS = CmpI->getOperand(0); 4252 Value *CmpRHS = CmpI->getOperand(1); 4253 Value *TrueVal = SI->getTrueValue(); 4254 Value *FalseVal = SI->getFalseValue(); 4255 FastMathFlags FMF; 4256 if (isa<FPMathOperator>(CmpI)) 4257 FMF = CmpI->getFastMathFlags(); 4258 4259 // Bail out early. 4260 if (CmpI->isEquality()) 4261 return {SPF_UNKNOWN, SPNB_NA, false}; 4262 4263 // Deal with type mismatches. 4264 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4265 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4266 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4267 cast<CastInst>(TrueVal)->getOperand(0), C, 4268 LHS, RHS); 4269 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4270 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4271 C, cast<CastInst>(FalseVal)->getOperand(0), 4272 LHS, RHS); 4273 } 4274 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4275 LHS, RHS); 4276 } 4277 4278 /// Return true if "icmp Pred LHS RHS" is always true. 4279 static bool isTruePredicate(CmpInst::Predicate Pred, 4280 const Value *LHS, const Value *RHS, 4281 const DataLayout &DL, unsigned Depth, 4282 AssumptionCache *AC, const Instruction *CxtI, 4283 const DominatorTree *DT) { 4284 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4285 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4286 return true; 4287 4288 switch (Pred) { 4289 default: 4290 return false; 4291 4292 case CmpInst::ICMP_SLE: { 4293 const APInt *C; 4294 4295 // LHS s<= LHS +_{nsw} C if C >= 0 4296 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4297 return !C->isNegative(); 4298 return false; 4299 } 4300 4301 case CmpInst::ICMP_ULE: { 4302 const APInt *C; 4303 4304 // LHS u<= LHS +_{nuw} C for any C 4305 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4306 return true; 4307 4308 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4309 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4310 const Value *&X, 4311 const APInt *&CA, const APInt *&CB) { 4312 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4313 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4314 return true; 4315 4316 // If X & C == 0 then (X | C) == X +_{nuw} C 4317 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4318 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4319 unsigned BitWidth = CA->getBitWidth(); 4320 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4321 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4322 4323 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4324 return true; 4325 } 4326 4327 return false; 4328 }; 4329 4330 const Value *X; 4331 const APInt *CLHS, *CRHS; 4332 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4333 return CLHS->ule(*CRHS); 4334 4335 return false; 4336 } 4337 } 4338 } 4339 4340 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4341 /// ALHS ARHS" is true. Otherwise, return None. 4342 static Optional<bool> 4343 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4344 const Value *ARHS, const Value *BLHS, 4345 const Value *BRHS, const DataLayout &DL, 4346 unsigned Depth, AssumptionCache *AC, 4347 const Instruction *CxtI, const DominatorTree *DT) { 4348 switch (Pred) { 4349 default: 4350 return None; 4351 4352 case CmpInst::ICMP_SLT: 4353 case CmpInst::ICMP_SLE: 4354 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4355 DT) && 4356 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4357 return true; 4358 return None; 4359 4360 case CmpInst::ICMP_ULT: 4361 case CmpInst::ICMP_ULE: 4362 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4363 DT) && 4364 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4365 return true; 4366 return None; 4367 } 4368 } 4369 4370 /// Return true if the operands of the two compares match. IsSwappedOps is true 4371 /// when the operands match, but are swapped. 4372 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4373 const Value *BLHS, const Value *BRHS, 4374 bool &IsSwappedOps) { 4375 4376 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4377 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4378 return IsMatchingOps || IsSwappedOps; 4379 } 4380 4381 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4382 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4383 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4384 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4385 const Value *ALHS, 4386 const Value *ARHS, 4387 CmpInst::Predicate BPred, 4388 const Value *BLHS, 4389 const Value *BRHS, 4390 bool IsSwappedOps) { 4391 // Canonicalize the operands so they're matching. 4392 if (IsSwappedOps) { 4393 std::swap(BLHS, BRHS); 4394 BPred = ICmpInst::getSwappedPredicate(BPred); 4395 } 4396 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4397 return true; 4398 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4399 return false; 4400 4401 return None; 4402 } 4403 4404 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4405 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4406 /// C2" is false. Otherwise, return None if we can't infer anything. 4407 static Optional<bool> 4408 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4409 const ConstantInt *C1, 4410 CmpInst::Predicate BPred, 4411 const Value *BLHS, const ConstantInt *C2) { 4412 assert(ALHS == BLHS && "LHS operands must match."); 4413 ConstantRange DomCR = 4414 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4415 ConstantRange CR = 4416 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4417 ConstantRange Intersection = DomCR.intersectWith(CR); 4418 ConstantRange Difference = DomCR.difference(CR); 4419 if (Intersection.isEmptySet()) 4420 return false; 4421 if (Difference.isEmptySet()) 4422 return true; 4423 return None; 4424 } 4425 4426 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4427 const DataLayout &DL, bool InvertAPred, 4428 unsigned Depth, AssumptionCache *AC, 4429 const Instruction *CxtI, 4430 const DominatorTree *DT) { 4431 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4432 if (LHS->getType() != RHS->getType()) 4433 return None; 4434 4435 Type *OpTy = LHS->getType(); 4436 assert(OpTy->getScalarType()->isIntegerTy(1)); 4437 4438 // LHS ==> RHS by definition 4439 if (!InvertAPred && LHS == RHS) 4440 return true; 4441 4442 if (OpTy->isVectorTy()) 4443 // TODO: extending the code below to handle vectors 4444 return None; 4445 assert(OpTy->isIntegerTy(1) && "implied by above"); 4446 4447 ICmpInst::Predicate APred, BPred; 4448 Value *ALHS, *ARHS; 4449 Value *BLHS, *BRHS; 4450 4451 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4452 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4453 return None; 4454 4455 if (InvertAPred) 4456 APred = CmpInst::getInversePredicate(APred); 4457 4458 // Can we infer anything when the two compares have matching operands? 4459 bool IsSwappedOps; 4460 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4461 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4462 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4463 return Implication; 4464 // No amount of additional analysis will infer the second condition, so 4465 // early exit. 4466 return None; 4467 } 4468 4469 // Can we infer anything when the LHS operands match and the RHS operands are 4470 // constants (not necessarily matching)? 4471 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4472 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4473 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4474 cast<ConstantInt>(BRHS))) 4475 return Implication; 4476 // No amount of additional analysis will infer the second condition, so 4477 // early exit. 4478 return None; 4479 } 4480 4481 if (APred == BPred) 4482 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4483 CxtI, DT); 4484 4485 return None; 4486 } 4487