1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/GetElementPtrTypeIterator.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/Statepoint.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include <algorithm>
43 #include <array>
44 #include <cstring>
45 using namespace llvm;
46 using namespace llvm::PatternMatch;
47 
48 const unsigned MaxDepth = 6;
49 
50 // Controls the number of uses of the value searched for possible
51 // dominating comparisons.
52 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
53                                               cl::Hidden, cl::init(20));
54 
55 // This optimization is known to cause performance regressions is some cases,
56 // keep it under a temporary flag for now.
57 static cl::opt<bool>
58 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
59                               cl::Hidden, cl::init(true));
60 
61 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
62 /// 0). For vector types, returns the element type's bitwidth.
63 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
64   if (unsigned BitWidth = Ty->getScalarSizeInBits())
65     return BitWidth;
66 
67   return DL.getPointerTypeSizeInBits(Ty);
68 }
69 
70 namespace {
71 // Simplifying using an assume can only be done in a particular control-flow
72 // context (the context instruction provides that context). If an assume and
73 // the context instruction are not in the same block then the DT helps in
74 // figuring out if we can use it.
75 struct Query {
76   const DataLayout &DL;
77   AssumptionCache *AC;
78   const Instruction *CxtI;
79   const DominatorTree *DT;
80   // Unlike the other analyses, this may be a nullptr because not all clients
81   // provide it currently.
82   OptimizationRemarkEmitter *ORE;
83 
84   /// Set of assumptions that should be excluded from further queries.
85   /// This is because of the potential for mutual recursion to cause
86   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
87   /// classic case of this is assume(x = y), which will attempt to determine
88   /// bits in x from bits in y, which will attempt to determine bits in y from
89   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
90   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
91   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
92   /// on.
93   std::array<const Value *, MaxDepth> Excluded;
94   unsigned NumExcluded;
95 
96   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
97         const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
98       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
99 
100   Query(const Query &Q, const Value *NewExcl)
101       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
102         NumExcluded(Q.NumExcluded) {
103     Excluded = Q.Excluded;
104     Excluded[NumExcluded++] = NewExcl;
105     assert(NumExcluded <= Excluded.size());
106   }
107 
108   bool isExcluded(const Value *Value) const {
109     if (NumExcluded == 0)
110       return false;
111     auto End = Excluded.begin() + NumExcluded;
112     return std::find(Excluded.begin(), End, Value) != End;
113   }
114 };
115 } // end anonymous namespace
116 
117 // Given the provided Value and, potentially, a context instruction, return
118 // the preferred context instruction (if any).
119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
120   // If we've been provided with a context instruction, then use that (provided
121   // it has been inserted).
122   if (CxtI && CxtI->getParent())
123     return CxtI;
124 
125   // If the value is really an already-inserted instruction, then use that.
126   CxtI = dyn_cast<Instruction>(V);
127   if (CxtI && CxtI->getParent())
128     return CxtI;
129 
130   return nullptr;
131 }
132 
133 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
134                              unsigned Depth, const Query &Q);
135 
136 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
137                             const DataLayout &DL, unsigned Depth,
138                             AssumptionCache *AC, const Instruction *CxtI,
139                             const DominatorTree *DT,
140                             OptimizationRemarkEmitter *ORE) {
141   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
142                      Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
143 }
144 
145 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
146                                const DataLayout &DL,
147                                AssumptionCache *AC, const Instruction *CxtI,
148                                const DominatorTree *DT) {
149   assert(LHS->getType() == RHS->getType() &&
150          "LHS and RHS should have the same type");
151   assert(LHS->getType()->isIntOrIntVectorTy() &&
152          "LHS and RHS should be integers");
153   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
154   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
155   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
156   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
157   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
158   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
159 }
160 
161 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
162                            unsigned Depth, const Query &Q);
163 
164 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
165                           const DataLayout &DL, unsigned Depth,
166                           AssumptionCache *AC, const Instruction *CxtI,
167                           const DominatorTree *DT) {
168   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
169                    Query(DL, AC, safeCxtI(V, CxtI), DT));
170 }
171 
172 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
173                                    const Query &Q);
174 
175 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
176                                   bool OrZero,
177                                   unsigned Depth, AssumptionCache *AC,
178                                   const Instruction *CxtI,
179                                   const DominatorTree *DT) {
180   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
181                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
182 }
183 
184 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
185 
186 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
187                           AssumptionCache *AC, const Instruction *CxtI,
188                           const DominatorTree *DT) {
189   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
190 }
191 
192 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
193                               unsigned Depth,
194                               AssumptionCache *AC, const Instruction *CxtI,
195                               const DominatorTree *DT) {
196   bool NonNegative, Negative;
197   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
198   return NonNegative;
199 }
200 
201 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
202                            AssumptionCache *AC, const Instruction *CxtI,
203                            const DominatorTree *DT) {
204   if (auto *CI = dyn_cast<ConstantInt>(V))
205     return CI->getValue().isStrictlyPositive();
206 
207   // TODO: We'd doing two recursive queries here.  We should factor this such
208   // that only a single query is needed.
209   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
210     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
211 }
212 
213 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
214                            AssumptionCache *AC, const Instruction *CxtI,
215                            const DominatorTree *DT) {
216   bool NonNegative, Negative;
217   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
218   return Negative;
219 }
220 
221 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
222 
223 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
224                            const DataLayout &DL,
225                            AssumptionCache *AC, const Instruction *CxtI,
226                            const DominatorTree *DT) {
227   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
228                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
229                                          DT));
230 }
231 
232 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
233                               const Query &Q);
234 
235 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
236                              const DataLayout &DL,
237                              unsigned Depth, AssumptionCache *AC,
238                              const Instruction *CxtI, const DominatorTree *DT) {
239   return ::MaskedValueIsZero(V, Mask, Depth,
240                              Query(DL, AC, safeCxtI(V, CxtI), DT));
241 }
242 
243 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
244                                    const Query &Q);
245 
246 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
247                                   unsigned Depth, AssumptionCache *AC,
248                                   const Instruction *CxtI,
249                                   const DominatorTree *DT) {
250   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
251 }
252 
253 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
254                                    bool NSW,
255                                    APInt &KnownZero, APInt &KnownOne,
256                                    APInt &KnownZero2, APInt &KnownOne2,
257                                    unsigned Depth, const Query &Q) {
258   if (!Add) {
259     if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
260       // We know that the top bits of C-X are clear if X contains less bits
261       // than C (i.e. no wrap-around can happen).  For example, 20-X is
262       // positive if we can prove that X is >= 0 and < 16.
263       if (!CLHS->getValue().isNegative()) {
264         unsigned BitWidth = KnownZero.getBitWidth();
265         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
266         // NLZ can't be BitWidth with no sign bit
267         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
268         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
269 
270         // If all of the MaskV bits are known to be zero, then we know the
271         // output top bits are zero, because we now know that the output is
272         // from [0-C].
273         if ((KnownZero2 & MaskV) == MaskV) {
274           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
275           // Top bits known zero.
276           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
277         }
278       }
279     }
280   }
281 
282   unsigned BitWidth = KnownZero.getBitWidth();
283 
284   // If an initial sequence of bits in the result is not needed, the
285   // corresponding bits in the operands are not needed.
286   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
287   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
288   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
289 
290   // Carry in a 1 for a subtract, rather than a 0.
291   APInt CarryIn(BitWidth, 0);
292   if (!Add) {
293     // Sum = LHS + ~RHS + 1
294     std::swap(KnownZero2, KnownOne2);
295     CarryIn.setBit(0);
296   }
297 
298   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
299   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
300 
301   // Compute known bits of the carry.
302   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
303   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
304 
305   // Compute set of known bits (where all three relevant bits are known).
306   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
307   APInt RHSKnown = KnownZero2 | KnownOne2;
308   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
309   APInt Known = LHSKnown & RHSKnown & CarryKnown;
310 
311   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
312          "known bits of sum differ");
313 
314   // Compute known bits of the result.
315   KnownZero = ~PossibleSumOne & Known;
316   KnownOne = PossibleSumOne & Known;
317 
318   // Are we still trying to solve for the sign bit?
319   if (!Known.isNegative()) {
320     if (NSW) {
321       // Adding two non-negative numbers, or subtracting a negative number from
322       // a non-negative one, can't wrap into negative.
323       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
324         KnownZero |= APInt::getSignBit(BitWidth);
325       // Adding two negative numbers, or subtracting a non-negative number from
326       // a negative one, can't wrap into non-negative.
327       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
328         KnownOne |= APInt::getSignBit(BitWidth);
329     }
330   }
331 }
332 
333 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
334                                 APInt &KnownZero, APInt &KnownOne,
335                                 APInt &KnownZero2, APInt &KnownOne2,
336                                 unsigned Depth, const Query &Q) {
337   unsigned BitWidth = KnownZero.getBitWidth();
338   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
339   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
340 
341   bool isKnownNegative = false;
342   bool isKnownNonNegative = false;
343   // If the multiplication is known not to overflow, compute the sign bit.
344   if (NSW) {
345     if (Op0 == Op1) {
346       // The product of a number with itself is non-negative.
347       isKnownNonNegative = true;
348     } else {
349       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
350       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
351       bool isKnownNegativeOp1 = KnownOne.isNegative();
352       bool isKnownNegativeOp0 = KnownOne2.isNegative();
353       // The product of two numbers with the same sign is non-negative.
354       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
355         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
356       // The product of a negative number and a non-negative number is either
357       // negative or zero.
358       if (!isKnownNonNegative)
359         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
360                            isKnownNonZero(Op0, Depth, Q)) ||
361                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
362                            isKnownNonZero(Op1, Depth, Q));
363     }
364   }
365 
366   // If low bits are zero in either operand, output low known-0 bits.
367   // Also compute a conservative estimate for high known-0 bits.
368   // More trickiness is possible, but this is sufficient for the
369   // interesting case of alignment computation.
370   KnownOne.clearAllBits();
371   unsigned TrailZ = KnownZero.countTrailingOnes() +
372                     KnownZero2.countTrailingOnes();
373   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
374                              KnownZero2.countLeadingOnes(),
375                              BitWidth) - BitWidth;
376 
377   TrailZ = std::min(TrailZ, BitWidth);
378   LeadZ = std::min(LeadZ, BitWidth);
379   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
380               APInt::getHighBitsSet(BitWidth, LeadZ);
381 
382   // Only make use of no-wrap flags if we failed to compute the sign bit
383   // directly.  This matters if the multiplication always overflows, in
384   // which case we prefer to follow the result of the direct computation,
385   // though as the program is invoking undefined behaviour we can choose
386   // whatever we like here.
387   if (isKnownNonNegative && !KnownOne.isNegative())
388     KnownZero.setBit(BitWidth - 1);
389   else if (isKnownNegative && !KnownZero.isNegative())
390     KnownOne.setBit(BitWidth - 1);
391 }
392 
393 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
394                                              APInt &KnownZero,
395                                              APInt &KnownOne) {
396   unsigned BitWidth = KnownZero.getBitWidth();
397   unsigned NumRanges = Ranges.getNumOperands() / 2;
398   assert(NumRanges >= 1);
399 
400   KnownZero.setAllBits();
401   KnownOne.setAllBits();
402 
403   for (unsigned i = 0; i < NumRanges; ++i) {
404     ConstantInt *Lower =
405         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
406     ConstantInt *Upper =
407         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
408     ConstantRange Range(Lower->getValue(), Upper->getValue());
409 
410     // The first CommonPrefixBits of all values in Range are equal.
411     unsigned CommonPrefixBits =
412         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
413 
414     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
415     KnownOne &= Range.getUnsignedMax() & Mask;
416     KnownZero &= ~Range.getUnsignedMax() & Mask;
417   }
418 }
419 
420 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
421   SmallVector<const Value *, 16> WorkSet(1, I);
422   SmallPtrSet<const Value *, 32> Visited;
423   SmallPtrSet<const Value *, 16> EphValues;
424 
425   // The instruction defining an assumption's condition itself is always
426   // considered ephemeral to that assumption (even if it has other
427   // non-ephemeral users). See r246696's test case for an example.
428   if (is_contained(I->operands(), E))
429     return true;
430 
431   while (!WorkSet.empty()) {
432     const Value *V = WorkSet.pop_back_val();
433     if (!Visited.insert(V).second)
434       continue;
435 
436     // If all uses of this value are ephemeral, then so is this value.
437     if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
438       if (V == E)
439         return true;
440 
441       EphValues.insert(V);
442       if (const User *U = dyn_cast<User>(V))
443         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
444              J != JE; ++J) {
445           if (isSafeToSpeculativelyExecute(*J))
446             WorkSet.push_back(*J);
447         }
448     }
449   }
450 
451   return false;
452 }
453 
454 // Is this an intrinsic that cannot be speculated but also cannot trap?
455 static bool isAssumeLikeIntrinsic(const Instruction *I) {
456   if (const CallInst *CI = dyn_cast<CallInst>(I))
457     if (Function *F = CI->getCalledFunction())
458       switch (F->getIntrinsicID()) {
459       default: break;
460       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
461       case Intrinsic::assume:
462       case Intrinsic::dbg_declare:
463       case Intrinsic::dbg_value:
464       case Intrinsic::invariant_start:
465       case Intrinsic::invariant_end:
466       case Intrinsic::lifetime_start:
467       case Intrinsic::lifetime_end:
468       case Intrinsic::objectsize:
469       case Intrinsic::ptr_annotation:
470       case Intrinsic::var_annotation:
471         return true;
472       }
473 
474   return false;
475 }
476 
477 bool llvm::isValidAssumeForContext(const Instruction *Inv,
478                                    const Instruction *CxtI,
479                                    const DominatorTree *DT) {
480 
481   // There are two restrictions on the use of an assume:
482   //  1. The assume must dominate the context (or the control flow must
483   //     reach the assume whenever it reaches the context).
484   //  2. The context must not be in the assume's set of ephemeral values
485   //     (otherwise we will use the assume to prove that the condition
486   //     feeding the assume is trivially true, thus causing the removal of
487   //     the assume).
488 
489   if (DT) {
490     if (DT->dominates(Inv, CxtI))
491       return true;
492   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
493     // We don't have a DT, but this trivially dominates.
494     return true;
495   }
496 
497   // With or without a DT, the only remaining case we will check is if the
498   // instructions are in the same BB.  Give up if that is not the case.
499   if (Inv->getParent() != CxtI->getParent())
500     return false;
501 
502   // If we have a dom tree, then we now know that the assume doens't dominate
503   // the other instruction.  If we don't have a dom tree then we can check if
504   // the assume is first in the BB.
505   if (!DT) {
506     // Search forward from the assume until we reach the context (or the end
507     // of the block); the common case is that the assume will come first.
508     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
509          IE = Inv->getParent()->end(); I != IE; ++I)
510       if (&*I == CxtI)
511         return true;
512   }
513 
514   // The context comes first, but they're both in the same block. Make sure
515   // there is nothing in between that might interrupt the control flow.
516   for (BasicBlock::const_iterator I =
517          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
518        I != IE; ++I)
519     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
520       return false;
521 
522   return !isEphemeralValueOf(Inv, CxtI);
523 }
524 
525 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
526                                        APInt &KnownOne, unsigned Depth,
527                                        const Query &Q) {
528   // Use of assumptions is context-sensitive. If we don't have a context, we
529   // cannot use them!
530   if (!Q.AC || !Q.CxtI)
531     return;
532 
533   unsigned BitWidth = KnownZero.getBitWidth();
534 
535   // Note that the patterns below need to be kept in sync with the code
536   // in AssumptionCache::updateAffectedValues.
537 
538   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
539     if (!AssumeVH)
540       continue;
541     CallInst *I = cast<CallInst>(AssumeVH);
542     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
543            "Got assumption for the wrong function!");
544     if (Q.isExcluded(I))
545       continue;
546 
547     // Warning: This loop can end up being somewhat performance sensetive.
548     // We're running this loop for once for each value queried resulting in a
549     // runtime of ~O(#assumes * #values).
550 
551     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
552            "must be an assume intrinsic");
553 
554     Value *Arg = I->getArgOperand(0);
555 
556     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
557       assert(BitWidth == 1 && "assume operand is not i1?");
558       KnownZero.clearAllBits();
559       KnownOne.setAllBits();
560       return;
561     }
562     if (match(Arg, m_Not(m_Specific(V))) &&
563         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
564       assert(BitWidth == 1 && "assume operand is not i1?");
565       KnownZero.setAllBits();
566       KnownOne.clearAllBits();
567       return;
568     }
569 
570     // The remaining tests are all recursive, so bail out if we hit the limit.
571     if (Depth == MaxDepth)
572       continue;
573 
574     Value *A, *B;
575     auto m_V = m_CombineOr(m_Specific(V),
576                            m_CombineOr(m_PtrToInt(m_Specific(V)),
577                            m_BitCast(m_Specific(V))));
578 
579     CmpInst::Predicate Pred;
580     ConstantInt *C;
581     // assume(v = a)
582     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
583         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
584       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
585       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
586       KnownZero |= RHSKnownZero;
587       KnownOne  |= RHSKnownOne;
588     // assume(v & b = a)
589     } else if (match(Arg,
590                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
591                Pred == ICmpInst::ICMP_EQ &&
592                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
593       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
594       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
595       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
596       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
597 
598       // For those bits in the mask that are known to be one, we can propagate
599       // known bits from the RHS to V.
600       KnownZero |= RHSKnownZero & MaskKnownOne;
601       KnownOne  |= RHSKnownOne  & MaskKnownOne;
602     // assume(~(v & b) = a)
603     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
604                                    m_Value(A))) &&
605                Pred == ICmpInst::ICMP_EQ &&
606                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
607       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
608       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
609       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
610       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
611 
612       // For those bits in the mask that are known to be one, we can propagate
613       // inverted known bits from the RHS to V.
614       KnownZero |= RHSKnownOne  & MaskKnownOne;
615       KnownOne  |= RHSKnownZero & MaskKnownOne;
616     // assume(v | b = a)
617     } else if (match(Arg,
618                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
619                Pred == ICmpInst::ICMP_EQ &&
620                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
621       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
622       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
623       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
624       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
625 
626       // For those bits in B that are known to be zero, we can propagate known
627       // bits from the RHS to V.
628       KnownZero |= RHSKnownZero & BKnownZero;
629       KnownOne  |= RHSKnownOne  & BKnownZero;
630     // assume(~(v | b) = a)
631     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
632                                    m_Value(A))) &&
633                Pred == ICmpInst::ICMP_EQ &&
634                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
635       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
636       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
637       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
638       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
639 
640       // For those bits in B that are known to be zero, we can propagate
641       // inverted known bits from the RHS to V.
642       KnownZero |= RHSKnownOne  & BKnownZero;
643       KnownOne  |= RHSKnownZero & BKnownZero;
644     // assume(v ^ b = a)
645     } else if (match(Arg,
646                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
647                Pred == ICmpInst::ICMP_EQ &&
648                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
649       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
650       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
651       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
652       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
653 
654       // For those bits in B that are known to be zero, we can propagate known
655       // bits from the RHS to V. For those bits in B that are known to be one,
656       // we can propagate inverted known bits from the RHS to V.
657       KnownZero |= RHSKnownZero & BKnownZero;
658       KnownOne  |= RHSKnownOne  & BKnownZero;
659       KnownZero |= RHSKnownOne  & BKnownOne;
660       KnownOne  |= RHSKnownZero & BKnownOne;
661     // assume(~(v ^ b) = a)
662     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
663                                    m_Value(A))) &&
664                Pred == ICmpInst::ICMP_EQ &&
665                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
666       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
667       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
668       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
669       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
670 
671       // For those bits in B that are known to be zero, we can propagate
672       // inverted known bits from the RHS to V. For those bits in B that are
673       // known to be one, we can propagate known bits from the RHS to V.
674       KnownZero |= RHSKnownOne  & BKnownZero;
675       KnownOne  |= RHSKnownZero & BKnownZero;
676       KnownZero |= RHSKnownZero & BKnownOne;
677       KnownOne  |= RHSKnownOne  & BKnownOne;
678     // assume(v << c = a)
679     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
680                                    m_Value(A))) &&
681                Pred == ICmpInst::ICMP_EQ &&
682                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
683       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
684       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
685       // For those bits in RHS that are known, we can propagate them to known
686       // bits in V shifted to the right by C.
687       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
688       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
689     // assume(~(v << c) = a)
690     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
691                                    m_Value(A))) &&
692                Pred == ICmpInst::ICMP_EQ &&
693                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
694       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
695       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
696       // For those bits in RHS that are known, we can propagate them inverted
697       // to known bits in V shifted to the right by C.
698       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
699       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
700     // assume(v >> c = a)
701     } else if (match(Arg,
702                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
703                                                 m_AShr(m_V, m_ConstantInt(C))),
704                               m_Value(A))) &&
705                Pred == ICmpInst::ICMP_EQ &&
706                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
707       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
708       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
709       // For those bits in RHS that are known, we can propagate them to known
710       // bits in V shifted to the right by C.
711       KnownZero |= RHSKnownZero << C->getZExtValue();
712       KnownOne  |= RHSKnownOne  << C->getZExtValue();
713     // assume(~(v >> c) = a)
714     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
715                                              m_LShr(m_V, m_ConstantInt(C)),
716                                              m_AShr(m_V, m_ConstantInt(C)))),
717                                    m_Value(A))) &&
718                Pred == ICmpInst::ICMP_EQ &&
719                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
720       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
721       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
722       // For those bits in RHS that are known, we can propagate them inverted
723       // to known bits in V shifted to the right by C.
724       KnownZero |= RHSKnownOne  << C->getZExtValue();
725       KnownOne  |= RHSKnownZero << C->getZExtValue();
726     // assume(v >=_s c) where c is non-negative
727     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
728                Pred == ICmpInst::ICMP_SGE &&
729                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
730       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
731       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
732 
733       if (RHSKnownZero.isNegative()) {
734         // We know that the sign bit is zero.
735         KnownZero |= APInt::getSignBit(BitWidth);
736       }
737     // assume(v >_s c) where c is at least -1.
738     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
739                Pred == ICmpInst::ICMP_SGT &&
740                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
741       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
742       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
743 
744       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
745         // We know that the sign bit is zero.
746         KnownZero |= APInt::getSignBit(BitWidth);
747       }
748     // assume(v <=_s c) where c is negative
749     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
750                Pred == ICmpInst::ICMP_SLE &&
751                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
752       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
753       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
754 
755       if (RHSKnownOne.isNegative()) {
756         // We know that the sign bit is one.
757         KnownOne |= APInt::getSignBit(BitWidth);
758       }
759     // assume(v <_s c) where c is non-positive
760     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
761                Pred == ICmpInst::ICMP_SLT &&
762                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
763       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
764       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
765 
766       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
767         // We know that the sign bit is one.
768         KnownOne |= APInt::getSignBit(BitWidth);
769       }
770     // assume(v <=_u c)
771     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
772                Pred == ICmpInst::ICMP_ULE &&
773                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
774       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
775       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
776 
777       // Whatever high bits in c are zero are known to be zero.
778       KnownZero |=
779         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
780     // assume(v <_u c)
781     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
782                Pred == ICmpInst::ICMP_ULT &&
783                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
784       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
785       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
786 
787       // Whatever high bits in c are zero are known to be zero (if c is a power
788       // of 2, then one more).
789       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
790         KnownZero |=
791           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
792       else
793         KnownZero |=
794           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
795     }
796   }
797 
798   // If assumptions conflict with each other or previous known bits, then we
799   // have a logical fallacy. It's possible that the assumption is not reachable,
800   // so this isn't a real bug. On the other hand, the program may have undefined
801   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
802   // clear out the known bits, try to warn the user, and hope for the best.
803   if ((KnownZero & KnownOne) != 0) {
804     KnownZero.clearAllBits();
805     KnownOne.clearAllBits();
806 
807     if (Q.ORE) {
808       auto *CxtI = const_cast<Instruction *>(Q.CxtI);
809       OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
810       Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
811                          "have undefined behavior, or compiler may have "
812                          "internal error.");
813     }
814   }
815 }
816 
817 // Compute known bits from a shift operator, including those with a
818 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
819 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
820 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
821 // functors that, given the known-zero or known-one bits respectively, and a
822 // shift amount, compute the implied known-zero or known-one bits of the shift
823 // operator's result respectively for that shift amount. The results from calling
824 // KZF and KOF are conservatively combined for all permitted shift amounts.
825 static void computeKnownBitsFromShiftOperator(
826     const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
827     APInt &KnownOne2, unsigned Depth, const Query &Q,
828     function_ref<APInt(const APInt &, unsigned)> KZF,
829     function_ref<APInt(const APInt &, unsigned)> KOF) {
830   unsigned BitWidth = KnownZero.getBitWidth();
831 
832   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
833     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
834 
835     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
836     KnownZero = KZF(KnownZero, ShiftAmt);
837     KnownOne  = KOF(KnownOne, ShiftAmt);
838     // If there is conflict between KnownZero and KnownOne, this must be an
839     // overflowing left shift, so the shift result is undefined. Clear KnownZero
840     // and KnownOne bits so that other code could propagate this undef.
841     if ((KnownZero & KnownOne) != 0) {
842       KnownZero.clearAllBits();
843       KnownOne.clearAllBits();
844     }
845 
846     return;
847   }
848 
849   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
850 
851   // If the shift amount could be greater than or equal to the bit-width of the LHS, the
852   // value could be undef, so we don't know anything about it.
853   if ((~KnownZero).uge(BitWidth)) {
854     KnownZero.clearAllBits();
855     KnownOne.clearAllBits();
856     return;
857   }
858 
859   // Note: We cannot use KnownZero.getLimitedValue() here, because if
860   // BitWidth > 64 and any upper bits are known, we'll end up returning the
861   // limit value (which implies all bits are known).
862   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
863   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
864 
865   // It would be more-clearly correct to use the two temporaries for this
866   // calculation. Reusing the APInts here to prevent unnecessary allocations.
867   KnownZero.clearAllBits();
868   KnownOne.clearAllBits();
869 
870   // If we know the shifter operand is nonzero, we can sometimes infer more
871   // known bits. However this is expensive to compute, so be lazy about it and
872   // only compute it when absolutely necessary.
873   Optional<bool> ShifterOperandIsNonZero;
874 
875   // Early exit if we can't constrain any well-defined shift amount.
876   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
877     ShifterOperandIsNonZero =
878         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
879     if (!*ShifterOperandIsNonZero)
880       return;
881   }
882 
883   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
884 
885   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
886   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
887     // Combine the shifted known input bits only for those shift amounts
888     // compatible with its known constraints.
889     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
890       continue;
891     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
892       continue;
893     // If we know the shifter is nonzero, we may be able to infer more known
894     // bits. This check is sunk down as far as possible to avoid the expensive
895     // call to isKnownNonZero if the cheaper checks above fail.
896     if (ShiftAmt == 0) {
897       if (!ShifterOperandIsNonZero.hasValue())
898         ShifterOperandIsNonZero =
899             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
900       if (*ShifterOperandIsNonZero)
901         continue;
902     }
903 
904     KnownZero &= KZF(KnownZero2, ShiftAmt);
905     KnownOne  &= KOF(KnownOne2, ShiftAmt);
906   }
907 
908   // If there are no compatible shift amounts, then we've proven that the shift
909   // amount must be >= the BitWidth, and the result is undefined. We could
910   // return anything we'd like, but we need to make sure the sets of known bits
911   // stay disjoint (it should be better for some other code to actually
912   // propagate the undef than to pick a value here using known bits).
913   if ((KnownZero & KnownOne) != 0) {
914     KnownZero.clearAllBits();
915     KnownOne.clearAllBits();
916   }
917 }
918 
919 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
920                                          APInt &KnownOne, unsigned Depth,
921                                          const Query &Q) {
922   unsigned BitWidth = KnownZero.getBitWidth();
923 
924   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
925   switch (I->getOpcode()) {
926   default: break;
927   case Instruction::Load:
928     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
929       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
930     break;
931   case Instruction::And: {
932     // If either the LHS or the RHS are Zero, the result is zero.
933     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
934     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
935 
936     // Output known-1 bits are only known if set in both the LHS & RHS.
937     KnownOne &= KnownOne2;
938     // Output known-0 are known to be clear if zero in either the LHS | RHS.
939     KnownZero |= KnownZero2;
940 
941     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
942     // here we handle the more general case of adding any odd number by
943     // matching the form add(x, add(x, y)) where y is odd.
944     // TODO: This could be generalized to clearing any bit set in y where the
945     // following bit is known to be unset in y.
946     Value *Y = nullptr;
947     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
948                                       m_Value(Y))) ||
949         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
950                                       m_Value(Y)))) {
951       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
952       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
953       if (KnownOne3.countTrailingOnes() > 0)
954         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
955     }
956     break;
957   }
958   case Instruction::Or: {
959     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
960     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
961 
962     // Output known-0 bits are only known if clear in both the LHS & RHS.
963     KnownZero &= KnownZero2;
964     // Output known-1 are known to be set if set in either the LHS | RHS.
965     KnownOne |= KnownOne2;
966     break;
967   }
968   case Instruction::Xor: {
969     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
970     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
971 
972     // Output known-0 bits are known if clear or set in both the LHS & RHS.
973     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
974     // Output known-1 are known to be set if set in only one of the LHS, RHS.
975     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
976     KnownZero = KnownZeroOut;
977     break;
978   }
979   case Instruction::Mul: {
980     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
981     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
982                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
983     break;
984   }
985   case Instruction::UDiv: {
986     // For the purposes of computing leading zeros we can conservatively
987     // treat a udiv as a logical right shift by the power of 2 known to
988     // be less than the denominator.
989     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
990     unsigned LeadZ = KnownZero2.countLeadingOnes();
991 
992     KnownOne2.clearAllBits();
993     KnownZero2.clearAllBits();
994     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
995     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
996     if (RHSUnknownLeadingOnes != BitWidth)
997       LeadZ = std::min(BitWidth,
998                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
999 
1000     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1001     break;
1002   }
1003   case Instruction::Select: {
1004     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1005     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1006 
1007     const Value *LHS;
1008     const Value *RHS;
1009     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1010     if (SelectPatternResult::isMinOrMax(SPF)) {
1011       computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
1012       computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
1013     } else {
1014       computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1015       computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1016     }
1017 
1018     unsigned MaxHighOnes = 0;
1019     unsigned MaxHighZeros = 0;
1020     if (SPF == SPF_SMAX) {
1021       // If both sides are negative, the result is negative.
1022       if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
1023         // We can derive a lower bound on the result by taking the max of the
1024         // leading one bits.
1025         MaxHighOnes =
1026             std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1027       // If either side is non-negative, the result is non-negative.
1028       else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
1029         MaxHighZeros = 1;
1030     } else if (SPF == SPF_SMIN) {
1031       // If both sides are non-negative, the result is non-negative.
1032       if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
1033         // We can derive an upper bound on the result by taking the max of the
1034         // leading zero bits.
1035         MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
1036                                 KnownZero2.countLeadingOnes());
1037       // If either side is negative, the result is negative.
1038       else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
1039         MaxHighOnes = 1;
1040     } else if (SPF == SPF_UMAX) {
1041       // We can derive a lower bound on the result by taking the max of the
1042       // leading one bits.
1043       MaxHighOnes =
1044           std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1045     } else if (SPF == SPF_UMIN) {
1046       // We can derive an upper bound on the result by taking the max of the
1047       // leading zero bits.
1048       MaxHighZeros =
1049           std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1050     }
1051 
1052     // Only known if known in both the LHS and RHS.
1053     KnownOne &= KnownOne2;
1054     KnownZero &= KnownZero2;
1055     if (MaxHighOnes > 0)
1056       KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1057     if (MaxHighZeros > 0)
1058       KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
1059     break;
1060   }
1061   case Instruction::FPTrunc:
1062   case Instruction::FPExt:
1063   case Instruction::FPToUI:
1064   case Instruction::FPToSI:
1065   case Instruction::SIToFP:
1066   case Instruction::UIToFP:
1067     break; // Can't work with floating point.
1068   case Instruction::PtrToInt:
1069   case Instruction::IntToPtr:
1070     // Fall through and handle them the same as zext/trunc.
1071     LLVM_FALLTHROUGH;
1072   case Instruction::ZExt:
1073   case Instruction::Trunc: {
1074     Type *SrcTy = I->getOperand(0)->getType();
1075 
1076     unsigned SrcBitWidth;
1077     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1078     // which fall through here.
1079     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1080 
1081     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1082     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1083     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1084     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1085     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1086     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1087     // Any top bits are known to be zero.
1088     if (BitWidth > SrcBitWidth)
1089       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1090     break;
1091   }
1092   case Instruction::BitCast: {
1093     Type *SrcTy = I->getOperand(0)->getType();
1094     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
1095         // TODO: For now, not handling conversions like:
1096         // (bitcast i64 %x to <2 x i32>)
1097         !I->getType()->isVectorTy()) {
1098       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1099       break;
1100     }
1101     break;
1102   }
1103   case Instruction::SExt: {
1104     // Compute the bits in the result that are not present in the input.
1105     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1106 
1107     KnownZero = KnownZero.trunc(SrcBitWidth);
1108     KnownOne = KnownOne.trunc(SrcBitWidth);
1109     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1110     KnownZero = KnownZero.zext(BitWidth);
1111     KnownOne = KnownOne.zext(BitWidth);
1112 
1113     // If the sign bit of the input is known set or clear, then we know the
1114     // top bits of the result.
1115     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1116       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1117     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1118       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1119     break;
1120   }
1121   case Instruction::Shl: {
1122     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1123     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1124     auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1125       APInt KZResult =
1126           (KnownZero << ShiftAmt) |
1127           APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1128       // If this shift has "nsw" keyword, then the result is either a poison
1129       // value or has the same sign bit as the first operand.
1130       if (NSW && KnownZero.isNegative())
1131         KZResult.setBit(BitWidth - 1);
1132       return KZResult;
1133     };
1134 
1135     auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1136       APInt KOResult = KnownOne << ShiftAmt;
1137       if (NSW && KnownOne.isNegative())
1138         KOResult.setBit(BitWidth - 1);
1139       return KOResult;
1140     };
1141 
1142     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1143                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1144                                       KOF);
1145     break;
1146   }
1147   case Instruction::LShr: {
1148     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1149     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1150       return APIntOps::lshr(KnownZero, ShiftAmt) |
1151              // High bits known zero.
1152              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1153     };
1154 
1155     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1156       return APIntOps::lshr(KnownOne, ShiftAmt);
1157     };
1158 
1159     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1160                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1161                                       KOF);
1162     break;
1163   }
1164   case Instruction::AShr: {
1165     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1166     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1167       return APIntOps::ashr(KnownZero, ShiftAmt);
1168     };
1169 
1170     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1171       return APIntOps::ashr(KnownOne, ShiftAmt);
1172     };
1173 
1174     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1175                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1176                                       KOF);
1177     break;
1178   }
1179   case Instruction::Sub: {
1180     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1181     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1182                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1183                            Q);
1184     break;
1185   }
1186   case Instruction::Add: {
1187     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1188     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1189                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1190                            Q);
1191     break;
1192   }
1193   case Instruction::SRem:
1194     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1195       APInt RA = Rem->getValue().abs();
1196       if (RA.isPowerOf2()) {
1197         APInt LowBits = RA - 1;
1198         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1199                          Q);
1200 
1201         // The low bits of the first operand are unchanged by the srem.
1202         KnownZero = KnownZero2 & LowBits;
1203         KnownOne = KnownOne2 & LowBits;
1204 
1205         // If the first operand is non-negative or has all low bits zero, then
1206         // the upper bits are all zero.
1207         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1208           KnownZero |= ~LowBits;
1209 
1210         // If the first operand is negative and not all low bits are zero, then
1211         // the upper bits are all one.
1212         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1213           KnownOne |= ~LowBits;
1214 
1215         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1216       }
1217     }
1218 
1219     // The sign bit is the LHS's sign bit, except when the result of the
1220     // remainder is zero.
1221     if (KnownZero.isNonNegative()) {
1222       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1223       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1224                        Q);
1225       // If it's known zero, our sign bit is also zero.
1226       if (LHSKnownZero.isNegative())
1227         KnownZero.setBit(BitWidth - 1);
1228     }
1229 
1230     break;
1231   case Instruction::URem: {
1232     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1233       const APInt &RA = Rem->getValue();
1234       if (RA.isPowerOf2()) {
1235         APInt LowBits = (RA - 1);
1236         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1237         KnownZero |= ~LowBits;
1238         KnownOne &= LowBits;
1239         break;
1240       }
1241     }
1242 
1243     // Since the result is less than or equal to either operand, any leading
1244     // zero bits in either operand must also exist in the result.
1245     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1246     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1247 
1248     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1249                                 KnownZero2.countLeadingOnes());
1250     KnownOne.clearAllBits();
1251     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1252     break;
1253   }
1254 
1255   case Instruction::Alloca: {
1256     const AllocaInst *AI = cast<AllocaInst>(I);
1257     unsigned Align = AI->getAlignment();
1258     if (Align == 0)
1259       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1260 
1261     if (Align > 0)
1262       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1263     break;
1264   }
1265   case Instruction::GetElementPtr: {
1266     // Analyze all of the subscripts of this getelementptr instruction
1267     // to determine if we can prove known low zero bits.
1268     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1269     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1270                      Q);
1271     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1272 
1273     gep_type_iterator GTI = gep_type_begin(I);
1274     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1275       Value *Index = I->getOperand(i);
1276       if (StructType *STy = GTI.getStructTypeOrNull()) {
1277         // Handle struct member offset arithmetic.
1278 
1279         // Handle case when index is vector zeroinitializer
1280         Constant *CIndex = cast<Constant>(Index);
1281         if (CIndex->isZeroValue())
1282           continue;
1283 
1284         if (CIndex->getType()->isVectorTy())
1285           Index = CIndex->getSplatValue();
1286 
1287         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1288         const StructLayout *SL = Q.DL.getStructLayout(STy);
1289         uint64_t Offset = SL->getElementOffset(Idx);
1290         TrailZ = std::min<unsigned>(TrailZ,
1291                                     countTrailingZeros(Offset));
1292       } else {
1293         // Handle array index arithmetic.
1294         Type *IndexedTy = GTI.getIndexedType();
1295         if (!IndexedTy->isSized()) {
1296           TrailZ = 0;
1297           break;
1298         }
1299         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1300         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1301         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1302         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1303         TrailZ = std::min(TrailZ,
1304                           unsigned(countTrailingZeros(TypeSize) +
1305                                    LocalKnownZero.countTrailingOnes()));
1306       }
1307     }
1308 
1309     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1310     break;
1311   }
1312   case Instruction::PHI: {
1313     const PHINode *P = cast<PHINode>(I);
1314     // Handle the case of a simple two-predecessor recurrence PHI.
1315     // There's a lot more that could theoretically be done here, but
1316     // this is sufficient to catch some interesting cases.
1317     if (P->getNumIncomingValues() == 2) {
1318       for (unsigned i = 0; i != 2; ++i) {
1319         Value *L = P->getIncomingValue(i);
1320         Value *R = P->getIncomingValue(!i);
1321         Operator *LU = dyn_cast<Operator>(L);
1322         if (!LU)
1323           continue;
1324         unsigned Opcode = LU->getOpcode();
1325         // Check for operations that have the property that if
1326         // both their operands have low zero bits, the result
1327         // will have low zero bits.
1328         if (Opcode == Instruction::Add ||
1329             Opcode == Instruction::Sub ||
1330             Opcode == Instruction::And ||
1331             Opcode == Instruction::Or ||
1332             Opcode == Instruction::Mul) {
1333           Value *LL = LU->getOperand(0);
1334           Value *LR = LU->getOperand(1);
1335           // Find a recurrence.
1336           if (LL == I)
1337             L = LR;
1338           else if (LR == I)
1339             L = LL;
1340           else
1341             break;
1342           // Ok, we have a PHI of the form L op= R. Check for low
1343           // zero bits.
1344           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1345 
1346           // We need to take the minimum number of known bits
1347           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1348           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1349 
1350           KnownZero = APInt::getLowBitsSet(
1351               BitWidth, std::min(KnownZero2.countTrailingOnes(),
1352                                  KnownZero3.countTrailingOnes()));
1353 
1354           if (DontImproveNonNegativePhiBits)
1355             break;
1356 
1357           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1358           if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1359             // If initial value of recurrence is nonnegative, and we are adding
1360             // a nonnegative number with nsw, the result can only be nonnegative
1361             // or poison value regardless of the number of times we execute the
1362             // add in phi recurrence. If initial value is negative and we are
1363             // adding a negative number with nsw, the result can only be
1364             // negative or poison value. Similar arguments apply to sub and mul.
1365             //
1366             // (add non-negative, non-negative) --> non-negative
1367             // (add negative, negative) --> negative
1368             if (Opcode == Instruction::Add) {
1369               if (KnownZero2.isNegative() && KnownZero3.isNegative())
1370                 KnownZero.setBit(BitWidth - 1);
1371               else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1372                 KnownOne.setBit(BitWidth - 1);
1373             }
1374 
1375             // (sub nsw non-negative, negative) --> non-negative
1376             // (sub nsw negative, non-negative) --> negative
1377             else if (Opcode == Instruction::Sub && LL == I) {
1378               if (KnownZero2.isNegative() && KnownOne3.isNegative())
1379                 KnownZero.setBit(BitWidth - 1);
1380               else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1381                 KnownOne.setBit(BitWidth - 1);
1382             }
1383 
1384             // (mul nsw non-negative, non-negative) --> non-negative
1385             else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1386                      KnownZero3.isNegative())
1387               KnownZero.setBit(BitWidth - 1);
1388           }
1389 
1390           break;
1391         }
1392       }
1393     }
1394 
1395     // Unreachable blocks may have zero-operand PHI nodes.
1396     if (P->getNumIncomingValues() == 0)
1397       break;
1398 
1399     // Otherwise take the unions of the known bit sets of the operands,
1400     // taking conservative care to avoid excessive recursion.
1401     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1402       // Skip if every incoming value references to ourself.
1403       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1404         break;
1405 
1406       KnownZero = APInt::getAllOnesValue(BitWidth);
1407       KnownOne = APInt::getAllOnesValue(BitWidth);
1408       for (Value *IncValue : P->incoming_values()) {
1409         // Skip direct self references.
1410         if (IncValue == P) continue;
1411 
1412         KnownZero2 = APInt(BitWidth, 0);
1413         KnownOne2 = APInt(BitWidth, 0);
1414         // Recurse, but cap the recursion to one level, because we don't
1415         // want to waste time spinning around in loops.
1416         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1417         KnownZero &= KnownZero2;
1418         KnownOne &= KnownOne2;
1419         // If all bits have been ruled out, there's no need to check
1420         // more operands.
1421         if (!KnownZero && !KnownOne)
1422           break;
1423       }
1424     }
1425     break;
1426   }
1427   case Instruction::Call:
1428   case Instruction::Invoke:
1429     // If range metadata is attached to this call, set known bits from that,
1430     // and then intersect with known bits based on other properties of the
1431     // function.
1432     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1433       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1434     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1435       computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1436       KnownZero |= KnownZero2;
1437       KnownOne |= KnownOne2;
1438     }
1439     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1440       switch (II->getIntrinsicID()) {
1441       default: break;
1442       case Intrinsic::bitreverse:
1443         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1444         KnownZero = KnownZero2.reverseBits();
1445         KnownOne = KnownOne2.reverseBits();
1446         break;
1447       case Intrinsic::bswap:
1448         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1449         KnownZero |= KnownZero2.byteSwap();
1450         KnownOne |= KnownOne2.byteSwap();
1451         break;
1452       case Intrinsic::ctlz:
1453       case Intrinsic::cttz: {
1454         unsigned LowBits = Log2_32(BitWidth)+1;
1455         // If this call is undefined for 0, the result will be less than 2^n.
1456         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1457           LowBits -= 1;
1458         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1459         break;
1460       }
1461       case Intrinsic::ctpop: {
1462         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1463         // We can bound the space the count needs.  Also, bits known to be zero
1464         // can't contribute to the population.
1465         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1466         unsigned LeadingZeros =
1467           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1468         assert(LeadingZeros <= BitWidth);
1469         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1470         KnownOne &= ~KnownZero;
1471         // TODO: we could bound KnownOne using the lower bound on the number
1472         // of bits which might be set provided by popcnt KnownOne2.
1473         break;
1474       }
1475       case Intrinsic::x86_sse42_crc32_64_64:
1476         KnownZero |= APInt::getHighBitsSet(64, 32);
1477         break;
1478       }
1479     }
1480     break;
1481   case Instruction::ExtractElement:
1482     // Look through extract element. At the moment we keep this simple and skip
1483     // tracking the specific element. But at least we might find information
1484     // valid for all elements of the vector (for example if vector is sign
1485     // extended, shifted, etc).
1486     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1487     break;
1488   case Instruction::ExtractValue:
1489     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1490       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1491       if (EVI->getNumIndices() != 1) break;
1492       if (EVI->getIndices()[0] == 0) {
1493         switch (II->getIntrinsicID()) {
1494         default: break;
1495         case Intrinsic::uadd_with_overflow:
1496         case Intrinsic::sadd_with_overflow:
1497           computeKnownBitsAddSub(true, II->getArgOperand(0),
1498                                  II->getArgOperand(1), false, KnownZero,
1499                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1500           break;
1501         case Intrinsic::usub_with_overflow:
1502         case Intrinsic::ssub_with_overflow:
1503           computeKnownBitsAddSub(false, II->getArgOperand(0),
1504                                  II->getArgOperand(1), false, KnownZero,
1505                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1506           break;
1507         case Intrinsic::umul_with_overflow:
1508         case Intrinsic::smul_with_overflow:
1509           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1510                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1511                               Q);
1512           break;
1513         }
1514       }
1515     }
1516   }
1517 }
1518 
1519 /// Determine which bits of V are known to be either zero or one and return
1520 /// them in the KnownZero/KnownOne bit sets.
1521 ///
1522 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1523 /// we cannot optimize based on the assumption that it is zero without changing
1524 /// it to be an explicit zero.  If we don't change it to zero, other code could
1525 /// optimized based on the contradictory assumption that it is non-zero.
1526 /// Because instcombine aggressively folds operations with undef args anyway,
1527 /// this won't lose us code quality.
1528 ///
1529 /// This function is defined on values with integer type, values with pointer
1530 /// type, and vectors of integers.  In the case
1531 /// where V is a vector, known zero, and known one values are the
1532 /// same width as the vector element, and the bit is set only if it is true
1533 /// for all of the elements in the vector.
1534 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
1535                       unsigned Depth, const Query &Q) {
1536   assert(V && "No Value?");
1537   assert(Depth <= MaxDepth && "Limit Search Depth");
1538   unsigned BitWidth = KnownZero.getBitWidth();
1539 
1540   assert((V->getType()->isIntOrIntVectorTy() ||
1541           V->getType()->getScalarType()->isPointerTy()) &&
1542          "Not integer or pointer type!");
1543   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1544          (!V->getType()->isIntOrIntVectorTy() ||
1545           V->getType()->getScalarSizeInBits() == BitWidth) &&
1546          KnownZero.getBitWidth() == BitWidth &&
1547          KnownOne.getBitWidth() == BitWidth &&
1548          "V, KnownOne and KnownZero should have same BitWidth");
1549 
1550   const APInt *C;
1551   if (match(V, m_APInt(C))) {
1552     // We know all of the bits for a scalar constant or a splat vector constant!
1553     KnownOne = *C;
1554     KnownZero = ~KnownOne;
1555     return;
1556   }
1557   // Null and aggregate-zero are all-zeros.
1558   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1559     KnownOne.clearAllBits();
1560     KnownZero = APInt::getAllOnesValue(BitWidth);
1561     return;
1562   }
1563   // Handle a constant vector by taking the intersection of the known bits of
1564   // each element.
1565   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1566     // We know that CDS must be a vector of integers. Take the intersection of
1567     // each element.
1568     KnownZero.setAllBits(); KnownOne.setAllBits();
1569     APInt Elt(KnownZero.getBitWidth(), 0);
1570     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1571       Elt = CDS->getElementAsInteger(i);
1572       KnownZero &= ~Elt;
1573       KnownOne &= Elt;
1574     }
1575     return;
1576   }
1577 
1578   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1579     // We know that CV must be a vector of integers. Take the intersection of
1580     // each element.
1581     KnownZero.setAllBits(); KnownOne.setAllBits();
1582     APInt Elt(KnownZero.getBitWidth(), 0);
1583     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1584       Constant *Element = CV->getAggregateElement(i);
1585       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1586       if (!ElementCI) {
1587         KnownZero.clearAllBits();
1588         KnownOne.clearAllBits();
1589         return;
1590       }
1591       Elt = ElementCI->getValue();
1592       KnownZero &= ~Elt;
1593       KnownOne &= Elt;
1594     }
1595     return;
1596   }
1597 
1598   // Start out not knowing anything.
1599   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1600 
1601   // We can't imply anything about undefs.
1602   if (isa<UndefValue>(V))
1603     return;
1604 
1605   // There's no point in looking through other users of ConstantData for
1606   // assumptions.  Confirm that we've handled them all.
1607   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1608 
1609   // Limit search depth.
1610   // All recursive calls that increase depth must come after this.
1611   if (Depth == MaxDepth)
1612     return;
1613 
1614   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1615   // the bits of its aliasee.
1616   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1617     if (!GA->isInterposable())
1618       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1619     return;
1620   }
1621 
1622   if (const Operator *I = dyn_cast<Operator>(V))
1623     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1624 
1625   // Aligned pointers have trailing zeros - refine KnownZero set
1626   if (V->getType()->isPointerTy()) {
1627     unsigned Align = V->getPointerAlignment(Q.DL);
1628     if (Align)
1629       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1630   }
1631 
1632   // computeKnownBitsFromAssume strictly refines KnownZero and
1633   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1634 
1635   // Check whether a nearby assume intrinsic can determine some known bits.
1636   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1637 
1638   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1639 }
1640 
1641 /// Determine whether the sign bit is known to be zero or one.
1642 /// Convenience wrapper around computeKnownBits.
1643 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
1644                     unsigned Depth, const Query &Q) {
1645   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1646   if (!BitWidth) {
1647     KnownZero = false;
1648     KnownOne = false;
1649     return;
1650   }
1651   APInt ZeroBits(BitWidth, 0);
1652   APInt OneBits(BitWidth, 0);
1653   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1654   KnownOne = OneBits[BitWidth - 1];
1655   KnownZero = ZeroBits[BitWidth - 1];
1656 }
1657 
1658 /// Return true if the given value is known to have exactly one
1659 /// bit set when defined. For vectors return true if every element is known to
1660 /// be a power of two when defined. Supports values with integer or pointer
1661 /// types and vectors of integers.
1662 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1663                             const Query &Q) {
1664   if (const Constant *C = dyn_cast<Constant>(V)) {
1665     if (C->isNullValue())
1666       return OrZero;
1667 
1668     const APInt *ConstIntOrConstSplatInt;
1669     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1670       return ConstIntOrConstSplatInt->isPowerOf2();
1671   }
1672 
1673   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1674   // it is shifted off the end then the result is undefined.
1675   if (match(V, m_Shl(m_One(), m_Value())))
1676     return true;
1677 
1678   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1679   // bottom.  If it is shifted off the bottom then the result is undefined.
1680   if (match(V, m_LShr(m_SignBit(), m_Value())))
1681     return true;
1682 
1683   // The remaining tests are all recursive, so bail out if we hit the limit.
1684   if (Depth++ == MaxDepth)
1685     return false;
1686 
1687   Value *X = nullptr, *Y = nullptr;
1688   // A shift left or a logical shift right of a power of two is a power of two
1689   // or zero.
1690   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1691                  match(V, m_LShr(m_Value(X), m_Value()))))
1692     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1693 
1694   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1695     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1696 
1697   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1698     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1699            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1700 
1701   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1702     // A power of two and'd with anything is a power of two or zero.
1703     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1704         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1705       return true;
1706     // X & (-X) is always a power of two or zero.
1707     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1708       return true;
1709     return false;
1710   }
1711 
1712   // Adding a power-of-two or zero to the same power-of-two or zero yields
1713   // either the original power-of-two, a larger power-of-two or zero.
1714   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1715     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1716     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1717       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1718           match(X, m_And(m_Value(), m_Specific(Y))))
1719         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1720           return true;
1721       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1722           match(Y, m_And(m_Value(), m_Specific(X))))
1723         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1724           return true;
1725 
1726       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1727       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1728       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1729 
1730       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1731       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1732       // If i8 V is a power of two or zero:
1733       //  ZeroBits: 1 1 1 0 1 1 1 1
1734       // ~ZeroBits: 0 0 0 1 0 0 0 0
1735       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1736         // If OrZero isn't set, we cannot give back a zero result.
1737         // Make sure either the LHS or RHS has a bit set.
1738         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1739           return true;
1740     }
1741   }
1742 
1743   // An exact divide or right shift can only shift off zero bits, so the result
1744   // is a power of two only if the first operand is a power of two and not
1745   // copying a sign bit (sdiv int_min, 2).
1746   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1747       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1748     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1749                                   Depth, Q);
1750   }
1751 
1752   return false;
1753 }
1754 
1755 /// \brief Test whether a GEP's result is known to be non-null.
1756 ///
1757 /// Uses properties inherent in a GEP to try to determine whether it is known
1758 /// to be non-null.
1759 ///
1760 /// Currently this routine does not support vector GEPs.
1761 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1762                               const Query &Q) {
1763   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1764     return false;
1765 
1766   // FIXME: Support vector-GEPs.
1767   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1768 
1769   // If the base pointer is non-null, we cannot walk to a null address with an
1770   // inbounds GEP in address space zero.
1771   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1772     return true;
1773 
1774   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1775   // If so, then the GEP cannot produce a null pointer, as doing so would
1776   // inherently violate the inbounds contract within address space zero.
1777   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1778        GTI != GTE; ++GTI) {
1779     // Struct types are easy -- they must always be indexed by a constant.
1780     if (StructType *STy = GTI.getStructTypeOrNull()) {
1781       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1782       unsigned ElementIdx = OpC->getZExtValue();
1783       const StructLayout *SL = Q.DL.getStructLayout(STy);
1784       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1785       if (ElementOffset > 0)
1786         return true;
1787       continue;
1788     }
1789 
1790     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1791     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1792       continue;
1793 
1794     // Fast path the constant operand case both for efficiency and so we don't
1795     // increment Depth when just zipping down an all-constant GEP.
1796     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1797       if (!OpC->isZero())
1798         return true;
1799       continue;
1800     }
1801 
1802     // We post-increment Depth here because while isKnownNonZero increments it
1803     // as well, when we pop back up that increment won't persist. We don't want
1804     // to recurse 10k times just because we have 10k GEP operands. We don't
1805     // bail completely out because we want to handle constant GEPs regardless
1806     // of depth.
1807     if (Depth++ >= MaxDepth)
1808       continue;
1809 
1810     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1811       return true;
1812   }
1813 
1814   return false;
1815 }
1816 
1817 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1818 /// ensure that the value it's attached to is never Value?  'RangeType' is
1819 /// is the type of the value described by the range.
1820 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1821   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1822   assert(NumRanges >= 1);
1823   for (unsigned i = 0; i < NumRanges; ++i) {
1824     ConstantInt *Lower =
1825         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1826     ConstantInt *Upper =
1827         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1828     ConstantRange Range(Lower->getValue(), Upper->getValue());
1829     if (Range.contains(Value))
1830       return false;
1831   }
1832   return true;
1833 }
1834 
1835 /// Return true if the given value is known to be non-zero when defined. For
1836 /// vectors, return true if every element is known to be non-zero when
1837 /// defined. For pointers, if the context instruction and dominator tree are
1838 /// specified, perform context-sensitive analysis and return true if the
1839 /// pointer couldn't possibly be null at the specified instruction.
1840 /// Supports values with integer or pointer type and vectors of integers.
1841 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1842   if (auto *C = dyn_cast<Constant>(V)) {
1843     if (C->isNullValue())
1844       return false;
1845     if (isa<ConstantInt>(C))
1846       // Must be non-zero due to null test above.
1847       return true;
1848 
1849     // For constant vectors, check that all elements are undefined or known
1850     // non-zero to determine that the whole vector is known non-zero.
1851     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1852       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1853         Constant *Elt = C->getAggregateElement(i);
1854         if (!Elt || Elt->isNullValue())
1855           return false;
1856         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1857           return false;
1858       }
1859       return true;
1860     }
1861 
1862     return false;
1863   }
1864 
1865   if (auto *I = dyn_cast<Instruction>(V)) {
1866     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1867       // If the possible ranges don't contain zero, then the value is
1868       // definitely non-zero.
1869       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1870         const APInt ZeroValue(Ty->getBitWidth(), 0);
1871         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1872           return true;
1873       }
1874     }
1875   }
1876 
1877   // The remaining tests are all recursive, so bail out if we hit the limit.
1878   if (Depth++ >= MaxDepth)
1879     return false;
1880 
1881   // Check for pointer simplifications.
1882   if (V->getType()->isPointerTy()) {
1883     if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
1884       return true;
1885     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1886       if (isGEPKnownNonNull(GEP, Depth, Q))
1887         return true;
1888   }
1889 
1890   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1891 
1892   // X | Y != 0 if X != 0 or Y != 0.
1893   Value *X = nullptr, *Y = nullptr;
1894   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1895     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1896 
1897   // ext X != 0 if X != 0.
1898   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1899     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1900 
1901   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1902   // if the lowest bit is shifted off the end.
1903   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1904     // shl nuw can't remove any non-zero bits.
1905     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1906     if (BO->hasNoUnsignedWrap())
1907       return isKnownNonZero(X, Depth, Q);
1908 
1909     APInt KnownZero(BitWidth, 0);
1910     APInt KnownOne(BitWidth, 0);
1911     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1912     if (KnownOne[0])
1913       return true;
1914   }
1915   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1916   // defined if the sign bit is shifted off the end.
1917   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1918     // shr exact can only shift out zero bits.
1919     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1920     if (BO->isExact())
1921       return isKnownNonZero(X, Depth, Q);
1922 
1923     bool XKnownNonNegative, XKnownNegative;
1924     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1925     if (XKnownNegative)
1926       return true;
1927 
1928     // If the shifter operand is a constant, and all of the bits shifted
1929     // out are known to be zero, and X is known non-zero then at least one
1930     // non-zero bit must remain.
1931     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1932       APInt KnownZero(BitWidth, 0);
1933       APInt KnownOne(BitWidth, 0);
1934       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1935 
1936       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1937       // Is there a known one in the portion not shifted out?
1938       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1939         return true;
1940       // Are all the bits to be shifted out known zero?
1941       if (KnownZero.countTrailingOnes() >= ShiftVal)
1942         return isKnownNonZero(X, Depth, Q);
1943     }
1944   }
1945   // div exact can only produce a zero if the dividend is zero.
1946   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1947     return isKnownNonZero(X, Depth, Q);
1948   }
1949   // X + Y.
1950   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1951     bool XKnownNonNegative, XKnownNegative;
1952     bool YKnownNonNegative, YKnownNegative;
1953     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1954     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1955 
1956     // If X and Y are both non-negative (as signed values) then their sum is not
1957     // zero unless both X and Y are zero.
1958     if (XKnownNonNegative && YKnownNonNegative)
1959       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1960         return true;
1961 
1962     // If X and Y are both negative (as signed values) then their sum is not
1963     // zero unless both X and Y equal INT_MIN.
1964     if (BitWidth && XKnownNegative && YKnownNegative) {
1965       APInt KnownZero(BitWidth, 0);
1966       APInt KnownOne(BitWidth, 0);
1967       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1968       // The sign bit of X is set.  If some other bit is set then X is not equal
1969       // to INT_MIN.
1970       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1971       if ((KnownOne & Mask) != 0)
1972         return true;
1973       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1974       // to INT_MIN.
1975       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1976       if ((KnownOne & Mask) != 0)
1977         return true;
1978     }
1979 
1980     // The sum of a non-negative number and a power of two is not zero.
1981     if (XKnownNonNegative &&
1982         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1983       return true;
1984     if (YKnownNonNegative &&
1985         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1986       return true;
1987   }
1988   // X * Y.
1989   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1990     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1991     // If X and Y are non-zero then so is X * Y as long as the multiplication
1992     // does not overflow.
1993     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1994         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1995       return true;
1996   }
1997   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1998   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
1999     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2000         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2001       return true;
2002   }
2003   // PHI
2004   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2005     // Try and detect a recurrence that monotonically increases from a
2006     // starting value, as these are common as induction variables.
2007     if (PN->getNumIncomingValues() == 2) {
2008       Value *Start = PN->getIncomingValue(0);
2009       Value *Induction = PN->getIncomingValue(1);
2010       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2011         std::swap(Start, Induction);
2012       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2013         if (!C->isZero() && !C->isNegative()) {
2014           ConstantInt *X;
2015           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2016                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2017               !X->isNegative())
2018             return true;
2019         }
2020       }
2021     }
2022     // Check if all incoming values are non-zero constant.
2023     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
2024       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
2025     });
2026     if (AllNonZeroConstants)
2027       return true;
2028   }
2029 
2030   if (!BitWidth) return false;
2031   APInt KnownZero(BitWidth, 0);
2032   APInt KnownOne(BitWidth, 0);
2033   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2034   return KnownOne != 0;
2035 }
2036 
2037 /// Return true if V2 == V1 + X, where X is known non-zero.
2038 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2039   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2040   if (!BO || BO->getOpcode() != Instruction::Add)
2041     return false;
2042   Value *Op = nullptr;
2043   if (V2 == BO->getOperand(0))
2044     Op = BO->getOperand(1);
2045   else if (V2 == BO->getOperand(1))
2046     Op = BO->getOperand(0);
2047   else
2048     return false;
2049   return isKnownNonZero(Op, 0, Q);
2050 }
2051 
2052 /// Return true if it is known that V1 != V2.
2053 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2054   if (V1->getType()->isVectorTy() || V1 == V2)
2055     return false;
2056   if (V1->getType() != V2->getType())
2057     // We can't look through casts yet.
2058     return false;
2059   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2060     return true;
2061 
2062   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2063     // Are any known bits in V1 contradictory to known bits in V2? If V1
2064     // has a known zero where V2 has a known one, they must not be equal.
2065     auto BitWidth = Ty->getBitWidth();
2066     APInt KnownZero1(BitWidth, 0);
2067     APInt KnownOne1(BitWidth, 0);
2068     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
2069     APInt KnownZero2(BitWidth, 0);
2070     APInt KnownOne2(BitWidth, 0);
2071     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
2072 
2073     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2074     if (OppositeBits.getBoolValue())
2075       return true;
2076   }
2077   return false;
2078 }
2079 
2080 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2081 /// simplify operations downstream. Mask is known to be zero for bits that V
2082 /// cannot have.
2083 ///
2084 /// This function is defined on values with integer type, values with pointer
2085 /// type, and vectors of integers.  In the case
2086 /// where V is a vector, the mask, known zero, and known one values are the
2087 /// same width as the vector element, and the bit is set only if it is true
2088 /// for all of the elements in the vector.
2089 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2090                        const Query &Q) {
2091   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2092   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2093   return (KnownZero & Mask) == Mask;
2094 }
2095 
2096 /// For vector constants, loop over the elements and find the constant with the
2097 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2098 /// or if any element was not analyzed; otherwise, return the count for the
2099 /// element with the minimum number of sign bits.
2100 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2101                                                  unsigned TyBits) {
2102   const auto *CV = dyn_cast<Constant>(V);
2103   if (!CV || !CV->getType()->isVectorTy())
2104     return 0;
2105 
2106   unsigned MinSignBits = TyBits;
2107   unsigned NumElts = CV->getType()->getVectorNumElements();
2108   for (unsigned i = 0; i != NumElts; ++i) {
2109     // If we find a non-ConstantInt, bail out.
2110     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2111     if (!Elt)
2112       return 0;
2113 
2114     // If the sign bit is 1, flip the bits, so we always count leading zeros.
2115     APInt EltVal = Elt->getValue();
2116     if (EltVal.isNegative())
2117       EltVal = ~EltVal;
2118     MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2119   }
2120 
2121   return MinSignBits;
2122 }
2123 
2124 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2125                                        const Query &Q);
2126 
2127 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2128                                    const Query &Q) {
2129   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2130   assert(Result > 0 && "At least one sign bit needs to be present!");
2131   return Result;
2132 }
2133 
2134 /// Return the number of times the sign bit of the register is replicated into
2135 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2136 /// (itself), but other cases can give us information. For example, immediately
2137 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2138 /// other, so we return 3. For vectors, return the number of sign bits for the
2139 /// vector element with the mininum number of known sign bits.
2140 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2141                                        const Query &Q) {
2142 
2143   // We return the minimum number of sign bits that are guaranteed to be present
2144   // in V, so for undef we have to conservatively return 1.  We don't have the
2145   // same behavior for poison though -- that's a FIXME today.
2146 
2147   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2148   unsigned Tmp, Tmp2;
2149   unsigned FirstAnswer = 1;
2150 
2151   // Note that ConstantInt is handled by the general computeKnownBits case
2152   // below.
2153 
2154   if (Depth == MaxDepth)
2155     return 1;  // Limit search depth.
2156 
2157   const Operator *U = dyn_cast<Operator>(V);
2158   switch (Operator::getOpcode(V)) {
2159   default: break;
2160   case Instruction::SExt:
2161     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2162     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2163 
2164   case Instruction::SDiv: {
2165     const APInt *Denominator;
2166     // sdiv X, C -> adds log(C) sign bits.
2167     if (match(U->getOperand(1), m_APInt(Denominator))) {
2168 
2169       // Ignore non-positive denominator.
2170       if (!Denominator->isStrictlyPositive())
2171         break;
2172 
2173       // Calculate the incoming numerator bits.
2174       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2175 
2176       // Add floor(log(C)) bits to the numerator bits.
2177       return std::min(TyBits, NumBits + Denominator->logBase2());
2178     }
2179     break;
2180   }
2181 
2182   case Instruction::SRem: {
2183     const APInt *Denominator;
2184     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2185     // positive constant.  This let us put a lower bound on the number of sign
2186     // bits.
2187     if (match(U->getOperand(1), m_APInt(Denominator))) {
2188 
2189       // Ignore non-positive denominator.
2190       if (!Denominator->isStrictlyPositive())
2191         break;
2192 
2193       // Calculate the incoming numerator bits. SRem by a positive constant
2194       // can't lower the number of sign bits.
2195       unsigned NumrBits =
2196           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2197 
2198       // Calculate the leading sign bit constraints by examining the
2199       // denominator.  Given that the denominator is positive, there are two
2200       // cases:
2201       //
2202       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2203       //     (1 << ceilLogBase2(C)).
2204       //
2205       //  2. the numerator is negative.  Then the result range is (-C,0] and
2206       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2207       //
2208       // Thus a lower bound on the number of sign bits is `TyBits -
2209       // ceilLogBase2(C)`.
2210 
2211       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2212       return std::max(NumrBits, ResBits);
2213     }
2214     break;
2215   }
2216 
2217   case Instruction::AShr: {
2218     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2219     // ashr X, C   -> adds C sign bits.  Vectors too.
2220     const APInt *ShAmt;
2221     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2222       unsigned ShAmtLimited = ShAmt->getZExtValue();
2223       if (ShAmtLimited >= TyBits)
2224         break;  // Bad shift.
2225       Tmp += ShAmtLimited;
2226       if (Tmp > TyBits) Tmp = TyBits;
2227     }
2228     return Tmp;
2229   }
2230   case Instruction::Shl: {
2231     const APInt *ShAmt;
2232     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2233       // shl destroys sign bits.
2234       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2235       Tmp2 = ShAmt->getZExtValue();
2236       if (Tmp2 >= TyBits ||      // Bad shift.
2237           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2238       return Tmp - Tmp2;
2239     }
2240     break;
2241   }
2242   case Instruction::And:
2243   case Instruction::Or:
2244   case Instruction::Xor:    // NOT is handled here.
2245     // Logical binary ops preserve the number of sign bits at the worst.
2246     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2247     if (Tmp != 1) {
2248       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2249       FirstAnswer = std::min(Tmp, Tmp2);
2250       // We computed what we know about the sign bits as our first
2251       // answer. Now proceed to the generic code that uses
2252       // computeKnownBits, and pick whichever answer is better.
2253     }
2254     break;
2255 
2256   case Instruction::Select:
2257     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2258     if (Tmp == 1) return 1;  // Early out.
2259     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2260     return std::min(Tmp, Tmp2);
2261 
2262   case Instruction::Add:
2263     // Add can have at most one carry bit.  Thus we know that the output
2264     // is, at worst, one more bit than the inputs.
2265     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2266     if (Tmp == 1) return 1;  // Early out.
2267 
2268     // Special case decrementing a value (ADD X, -1):
2269     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2270       if (CRHS->isAllOnesValue()) {
2271         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2272         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2273 
2274         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2275         // sign bits set.
2276         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2277           return TyBits;
2278 
2279         // If we are subtracting one from a positive number, there is no carry
2280         // out of the result.
2281         if (KnownZero.isNegative())
2282           return Tmp;
2283       }
2284 
2285     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2286     if (Tmp2 == 1) return 1;
2287     return std::min(Tmp, Tmp2)-1;
2288 
2289   case Instruction::Sub:
2290     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2291     if (Tmp2 == 1) return 1;
2292 
2293     // Handle NEG.
2294     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2295       if (CLHS->isNullValue()) {
2296         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2297         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2298         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2299         // sign bits set.
2300         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2301           return TyBits;
2302 
2303         // If the input is known to be positive (the sign bit is known clear),
2304         // the output of the NEG has the same number of sign bits as the input.
2305         if (KnownZero.isNegative())
2306           return Tmp2;
2307 
2308         // Otherwise, we treat this like a SUB.
2309       }
2310 
2311     // Sub can have at most one carry bit.  Thus we know that the output
2312     // is, at worst, one more bit than the inputs.
2313     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2314     if (Tmp == 1) return 1;  // Early out.
2315     return std::min(Tmp, Tmp2)-1;
2316 
2317   case Instruction::PHI: {
2318     const PHINode *PN = cast<PHINode>(U);
2319     unsigned NumIncomingValues = PN->getNumIncomingValues();
2320     // Don't analyze large in-degree PHIs.
2321     if (NumIncomingValues > 4) break;
2322     // Unreachable blocks may have zero-operand PHI nodes.
2323     if (NumIncomingValues == 0) break;
2324 
2325     // Take the minimum of all incoming values.  This can't infinitely loop
2326     // because of our depth threshold.
2327     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2328     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2329       if (Tmp == 1) return Tmp;
2330       Tmp = std::min(
2331           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2332     }
2333     return Tmp;
2334   }
2335 
2336   case Instruction::Trunc:
2337     // FIXME: it's tricky to do anything useful for this, but it is an important
2338     // case for targets like X86.
2339     break;
2340 
2341   case Instruction::ExtractElement:
2342     // Look through extract element. At the moment we keep this simple and skip
2343     // tracking the specific element. But at least we might find information
2344     // valid for all elements of the vector (for example if vector is sign
2345     // extended, shifted, etc).
2346     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2347   }
2348 
2349   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2350   // use this information.
2351 
2352   // If we can examine all elements of a vector constant successfully, we're
2353   // done (we can't do any better than that). If not, keep trying.
2354   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2355     return VecSignBits;
2356 
2357   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2358   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2359 
2360   // If we know that the sign bit is either zero or one, determine the number of
2361   // identical bits in the top of the input value.
2362   if (KnownZero.isNegative())
2363     return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2364 
2365   if (KnownOne.isNegative())
2366     return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2367 
2368   // computeKnownBits gave us no extra information about the top bits.
2369   return FirstAnswer;
2370 }
2371 
2372 /// This function computes the integer multiple of Base that equals V.
2373 /// If successful, it returns true and returns the multiple in
2374 /// Multiple. If unsuccessful, it returns false. It looks
2375 /// through SExt instructions only if LookThroughSExt is true.
2376 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2377                            bool LookThroughSExt, unsigned Depth) {
2378   const unsigned MaxDepth = 6;
2379 
2380   assert(V && "No Value?");
2381   assert(Depth <= MaxDepth && "Limit Search Depth");
2382   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2383 
2384   Type *T = V->getType();
2385 
2386   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2387 
2388   if (Base == 0)
2389     return false;
2390 
2391   if (Base == 1) {
2392     Multiple = V;
2393     return true;
2394   }
2395 
2396   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2397   Constant *BaseVal = ConstantInt::get(T, Base);
2398   if (CO && CO == BaseVal) {
2399     // Multiple is 1.
2400     Multiple = ConstantInt::get(T, 1);
2401     return true;
2402   }
2403 
2404   if (CI && CI->getZExtValue() % Base == 0) {
2405     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2406     return true;
2407   }
2408 
2409   if (Depth == MaxDepth) return false;  // Limit search depth.
2410 
2411   Operator *I = dyn_cast<Operator>(V);
2412   if (!I) return false;
2413 
2414   switch (I->getOpcode()) {
2415   default: break;
2416   case Instruction::SExt:
2417     if (!LookThroughSExt) return false;
2418     // otherwise fall through to ZExt
2419   case Instruction::ZExt:
2420     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2421                            LookThroughSExt, Depth+1);
2422   case Instruction::Shl:
2423   case Instruction::Mul: {
2424     Value *Op0 = I->getOperand(0);
2425     Value *Op1 = I->getOperand(1);
2426 
2427     if (I->getOpcode() == Instruction::Shl) {
2428       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2429       if (!Op1CI) return false;
2430       // Turn Op0 << Op1 into Op0 * 2^Op1
2431       APInt Op1Int = Op1CI->getValue();
2432       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2433       APInt API(Op1Int.getBitWidth(), 0);
2434       API.setBit(BitToSet);
2435       Op1 = ConstantInt::get(V->getContext(), API);
2436     }
2437 
2438     Value *Mul0 = nullptr;
2439     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2440       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2441         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2442           if (Op1C->getType()->getPrimitiveSizeInBits() <
2443               MulC->getType()->getPrimitiveSizeInBits())
2444             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2445           if (Op1C->getType()->getPrimitiveSizeInBits() >
2446               MulC->getType()->getPrimitiveSizeInBits())
2447             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2448 
2449           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2450           Multiple = ConstantExpr::getMul(MulC, Op1C);
2451           return true;
2452         }
2453 
2454       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2455         if (Mul0CI->getValue() == 1) {
2456           // V == Base * Op1, so return Op1
2457           Multiple = Op1;
2458           return true;
2459         }
2460     }
2461 
2462     Value *Mul1 = nullptr;
2463     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2464       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2465         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2466           if (Op0C->getType()->getPrimitiveSizeInBits() <
2467               MulC->getType()->getPrimitiveSizeInBits())
2468             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2469           if (Op0C->getType()->getPrimitiveSizeInBits() >
2470               MulC->getType()->getPrimitiveSizeInBits())
2471             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2472 
2473           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2474           Multiple = ConstantExpr::getMul(MulC, Op0C);
2475           return true;
2476         }
2477 
2478       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2479         if (Mul1CI->getValue() == 1) {
2480           // V == Base * Op0, so return Op0
2481           Multiple = Op0;
2482           return true;
2483         }
2484     }
2485   }
2486   }
2487 
2488   // We could not determine if V is a multiple of Base.
2489   return false;
2490 }
2491 
2492 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2493                                             const TargetLibraryInfo *TLI) {
2494   const Function *F = ICS.getCalledFunction();
2495   if (!F)
2496     return Intrinsic::not_intrinsic;
2497 
2498   if (F->isIntrinsic())
2499     return F->getIntrinsicID();
2500 
2501   if (!TLI)
2502     return Intrinsic::not_intrinsic;
2503 
2504   LibFunc Func;
2505   // We're going to make assumptions on the semantics of the functions, check
2506   // that the target knows that it's available in this environment and it does
2507   // not have local linkage.
2508   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2509     return Intrinsic::not_intrinsic;
2510 
2511   if (!ICS.onlyReadsMemory())
2512     return Intrinsic::not_intrinsic;
2513 
2514   // Otherwise check if we have a call to a function that can be turned into a
2515   // vector intrinsic.
2516   switch (Func) {
2517   default:
2518     break;
2519   case LibFunc_sin:
2520   case LibFunc_sinf:
2521   case LibFunc_sinl:
2522     return Intrinsic::sin;
2523   case LibFunc_cos:
2524   case LibFunc_cosf:
2525   case LibFunc_cosl:
2526     return Intrinsic::cos;
2527   case LibFunc_exp:
2528   case LibFunc_expf:
2529   case LibFunc_expl:
2530     return Intrinsic::exp;
2531   case LibFunc_exp2:
2532   case LibFunc_exp2f:
2533   case LibFunc_exp2l:
2534     return Intrinsic::exp2;
2535   case LibFunc_log:
2536   case LibFunc_logf:
2537   case LibFunc_logl:
2538     return Intrinsic::log;
2539   case LibFunc_log10:
2540   case LibFunc_log10f:
2541   case LibFunc_log10l:
2542     return Intrinsic::log10;
2543   case LibFunc_log2:
2544   case LibFunc_log2f:
2545   case LibFunc_log2l:
2546     return Intrinsic::log2;
2547   case LibFunc_fabs:
2548   case LibFunc_fabsf:
2549   case LibFunc_fabsl:
2550     return Intrinsic::fabs;
2551   case LibFunc_fmin:
2552   case LibFunc_fminf:
2553   case LibFunc_fminl:
2554     return Intrinsic::minnum;
2555   case LibFunc_fmax:
2556   case LibFunc_fmaxf:
2557   case LibFunc_fmaxl:
2558     return Intrinsic::maxnum;
2559   case LibFunc_copysign:
2560   case LibFunc_copysignf:
2561   case LibFunc_copysignl:
2562     return Intrinsic::copysign;
2563   case LibFunc_floor:
2564   case LibFunc_floorf:
2565   case LibFunc_floorl:
2566     return Intrinsic::floor;
2567   case LibFunc_ceil:
2568   case LibFunc_ceilf:
2569   case LibFunc_ceill:
2570     return Intrinsic::ceil;
2571   case LibFunc_trunc:
2572   case LibFunc_truncf:
2573   case LibFunc_truncl:
2574     return Intrinsic::trunc;
2575   case LibFunc_rint:
2576   case LibFunc_rintf:
2577   case LibFunc_rintl:
2578     return Intrinsic::rint;
2579   case LibFunc_nearbyint:
2580   case LibFunc_nearbyintf:
2581   case LibFunc_nearbyintl:
2582     return Intrinsic::nearbyint;
2583   case LibFunc_round:
2584   case LibFunc_roundf:
2585   case LibFunc_roundl:
2586     return Intrinsic::round;
2587   case LibFunc_pow:
2588   case LibFunc_powf:
2589   case LibFunc_powl:
2590     return Intrinsic::pow;
2591   case LibFunc_sqrt:
2592   case LibFunc_sqrtf:
2593   case LibFunc_sqrtl:
2594     if (ICS->hasNoNaNs())
2595       return Intrinsic::sqrt;
2596     return Intrinsic::not_intrinsic;
2597   }
2598 
2599   return Intrinsic::not_intrinsic;
2600 }
2601 
2602 /// Return true if we can prove that the specified FP value is never equal to
2603 /// -0.0.
2604 ///
2605 /// NOTE: this function will need to be revisited when we support non-default
2606 /// rounding modes!
2607 ///
2608 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2609                                 unsigned Depth) {
2610   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2611     return !CFP->getValueAPF().isNegZero();
2612 
2613   if (Depth == MaxDepth)
2614     return false;  // Limit search depth.
2615 
2616   const Operator *I = dyn_cast<Operator>(V);
2617   if (!I) return false;
2618 
2619   // Check if the nsz fast-math flag is set
2620   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2621     if (FPO->hasNoSignedZeros())
2622       return true;
2623 
2624   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2625   if (I->getOpcode() == Instruction::FAdd)
2626     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2627       if (CFP->isNullValue())
2628         return true;
2629 
2630   // sitofp and uitofp turn into +0.0 for zero.
2631   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2632     return true;
2633 
2634   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2635     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2636     switch (IID) {
2637     default:
2638       break;
2639     // sqrt(-0.0) = -0.0, no other negative results are possible.
2640     case Intrinsic::sqrt:
2641       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2642     // fabs(x) != -0.0
2643     case Intrinsic::fabs:
2644       return true;
2645     }
2646   }
2647 
2648   return false;
2649 }
2650 
2651 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2652 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2653 /// bit despite comparing equal.
2654 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2655                                             const TargetLibraryInfo *TLI,
2656                                             bool SignBitOnly,
2657                                             unsigned Depth) {
2658   // TODO: This function does not do the right thing when SignBitOnly is true
2659   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2660   // which flips the sign bits of NaNs.  See
2661   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2662 
2663   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2664     return !CFP->getValueAPF().isNegative() ||
2665            (!SignBitOnly && CFP->getValueAPF().isZero());
2666   }
2667 
2668   if (Depth == MaxDepth)
2669     return false; // Limit search depth.
2670 
2671   const Operator *I = dyn_cast<Operator>(V);
2672   if (!I)
2673     return false;
2674 
2675   switch (I->getOpcode()) {
2676   default:
2677     break;
2678   // Unsigned integers are always nonnegative.
2679   case Instruction::UIToFP:
2680     return true;
2681   case Instruction::FMul:
2682     // x*x is always non-negative or a NaN.
2683     if (I->getOperand(0) == I->getOperand(1) &&
2684         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2685       return true;
2686 
2687     LLVM_FALLTHROUGH;
2688   case Instruction::FAdd:
2689   case Instruction::FDiv:
2690   case Instruction::FRem:
2691     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2692                                            Depth + 1) &&
2693            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2694                                            Depth + 1);
2695   case Instruction::Select:
2696     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2697                                            Depth + 1) &&
2698            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2699                                            Depth + 1);
2700   case Instruction::FPExt:
2701   case Instruction::FPTrunc:
2702     // Widening/narrowing never change sign.
2703     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2704                                            Depth + 1);
2705   case Instruction::Call:
2706     const auto *CI = cast<CallInst>(I);
2707     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2708     switch (IID) {
2709     default:
2710       break;
2711     case Intrinsic::maxnum:
2712       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2713                                              Depth + 1) ||
2714              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2715                                              Depth + 1);
2716     case Intrinsic::minnum:
2717       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2718                                              Depth + 1) &&
2719              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2720                                              Depth + 1);
2721     case Intrinsic::exp:
2722     case Intrinsic::exp2:
2723     case Intrinsic::fabs:
2724       return true;
2725 
2726     case Intrinsic::sqrt:
2727       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
2728       if (!SignBitOnly)
2729         return true;
2730       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2731                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
2732 
2733     case Intrinsic::powi:
2734       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
2735         // powi(x,n) is non-negative if n is even.
2736         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
2737           return true;
2738       }
2739       // TODO: This is not correct.  Given that exp is an integer, here are the
2740       // ways that pow can return a negative value:
2741       //
2742       //   pow(x, exp)    --> negative if exp is odd and x is negative.
2743       //   pow(-0, exp)   --> -inf if exp is negative odd.
2744       //   pow(-0, exp)   --> -0 if exp is positive odd.
2745       //   pow(-inf, exp) --> -0 if exp is negative odd.
2746       //   pow(-inf, exp) --> -inf if exp is positive odd.
2747       //
2748       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2749       // but we must return false if x == -0.  Unfortunately we do not currently
2750       // have a way of expressing this constraint.  See details in
2751       // https://llvm.org/bugs/show_bug.cgi?id=31702.
2752       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2753                                              Depth + 1);
2754 
2755     case Intrinsic::fma:
2756     case Intrinsic::fmuladd:
2757       // x*x+y is non-negative if y is non-negative.
2758       return I->getOperand(0) == I->getOperand(1) &&
2759              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2760              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2761                                              Depth + 1);
2762     }
2763     break;
2764   }
2765   return false;
2766 }
2767 
2768 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2769                                        const TargetLibraryInfo *TLI) {
2770   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2771 }
2772 
2773 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2774   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2775 }
2776 
2777 /// If the specified value can be set by repeating the same byte in memory,
2778 /// return the i8 value that it is represented with.  This is
2779 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2780 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2781 /// byte store (e.g. i16 0x1234), return null.
2782 Value *llvm::isBytewiseValue(Value *V) {
2783   // All byte-wide stores are splatable, even of arbitrary variables.
2784   if (V->getType()->isIntegerTy(8)) return V;
2785 
2786   // Handle 'null' ConstantArrayZero etc.
2787   if (Constant *C = dyn_cast<Constant>(V))
2788     if (C->isNullValue())
2789       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2790 
2791   // Constant float and double values can be handled as integer values if the
2792   // corresponding integer value is "byteable".  An important case is 0.0.
2793   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2794     if (CFP->getType()->isFloatTy())
2795       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2796     if (CFP->getType()->isDoubleTy())
2797       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2798     // Don't handle long double formats, which have strange constraints.
2799   }
2800 
2801   // We can handle constant integers that are multiple of 8 bits.
2802   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2803     if (CI->getBitWidth() % 8 == 0) {
2804       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2805 
2806       if (!CI->getValue().isSplat(8))
2807         return nullptr;
2808       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2809     }
2810   }
2811 
2812   // A ConstantDataArray/Vector is splatable if all its members are equal and
2813   // also splatable.
2814   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2815     Value *Elt = CA->getElementAsConstant(0);
2816     Value *Val = isBytewiseValue(Elt);
2817     if (!Val)
2818       return nullptr;
2819 
2820     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2821       if (CA->getElementAsConstant(I) != Elt)
2822         return nullptr;
2823 
2824     return Val;
2825   }
2826 
2827   // Conceptually, we could handle things like:
2828   //   %a = zext i8 %X to i16
2829   //   %b = shl i16 %a, 8
2830   //   %c = or i16 %a, %b
2831   // but until there is an example that actually needs this, it doesn't seem
2832   // worth worrying about.
2833   return nullptr;
2834 }
2835 
2836 
2837 // This is the recursive version of BuildSubAggregate. It takes a few different
2838 // arguments. Idxs is the index within the nested struct From that we are
2839 // looking at now (which is of type IndexedType). IdxSkip is the number of
2840 // indices from Idxs that should be left out when inserting into the resulting
2841 // struct. To is the result struct built so far, new insertvalue instructions
2842 // build on that.
2843 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2844                                 SmallVectorImpl<unsigned> &Idxs,
2845                                 unsigned IdxSkip,
2846                                 Instruction *InsertBefore) {
2847   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2848   if (STy) {
2849     // Save the original To argument so we can modify it
2850     Value *OrigTo = To;
2851     // General case, the type indexed by Idxs is a struct
2852     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2853       // Process each struct element recursively
2854       Idxs.push_back(i);
2855       Value *PrevTo = To;
2856       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2857                              InsertBefore);
2858       Idxs.pop_back();
2859       if (!To) {
2860         // Couldn't find any inserted value for this index? Cleanup
2861         while (PrevTo != OrigTo) {
2862           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2863           PrevTo = Del->getAggregateOperand();
2864           Del->eraseFromParent();
2865         }
2866         // Stop processing elements
2867         break;
2868       }
2869     }
2870     // If we successfully found a value for each of our subaggregates
2871     if (To)
2872       return To;
2873   }
2874   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2875   // the struct's elements had a value that was inserted directly. In the latter
2876   // case, perhaps we can't determine each of the subelements individually, but
2877   // we might be able to find the complete struct somewhere.
2878 
2879   // Find the value that is at that particular spot
2880   Value *V = FindInsertedValue(From, Idxs);
2881 
2882   if (!V)
2883     return nullptr;
2884 
2885   // Insert the value in the new (sub) aggregrate
2886   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2887                                        "tmp", InsertBefore);
2888 }
2889 
2890 // This helper takes a nested struct and extracts a part of it (which is again a
2891 // struct) into a new value. For example, given the struct:
2892 // { a, { b, { c, d }, e } }
2893 // and the indices "1, 1" this returns
2894 // { c, d }.
2895 //
2896 // It does this by inserting an insertvalue for each element in the resulting
2897 // struct, as opposed to just inserting a single struct. This will only work if
2898 // each of the elements of the substruct are known (ie, inserted into From by an
2899 // insertvalue instruction somewhere).
2900 //
2901 // All inserted insertvalue instructions are inserted before InsertBefore
2902 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2903                                 Instruction *InsertBefore) {
2904   assert(InsertBefore && "Must have someplace to insert!");
2905   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2906                                                              idx_range);
2907   Value *To = UndefValue::get(IndexedType);
2908   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2909   unsigned IdxSkip = Idxs.size();
2910 
2911   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2912 }
2913 
2914 /// Given an aggregrate and an sequence of indices, see if
2915 /// the scalar value indexed is already around as a register, for example if it
2916 /// were inserted directly into the aggregrate.
2917 ///
2918 /// If InsertBefore is not null, this function will duplicate (modified)
2919 /// insertvalues when a part of a nested struct is extracted.
2920 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2921                                Instruction *InsertBefore) {
2922   // Nothing to index? Just return V then (this is useful at the end of our
2923   // recursion).
2924   if (idx_range.empty())
2925     return V;
2926   // We have indices, so V should have an indexable type.
2927   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2928          "Not looking at a struct or array?");
2929   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2930          "Invalid indices for type?");
2931 
2932   if (Constant *C = dyn_cast<Constant>(V)) {
2933     C = C->getAggregateElement(idx_range[0]);
2934     if (!C) return nullptr;
2935     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2936   }
2937 
2938   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2939     // Loop the indices for the insertvalue instruction in parallel with the
2940     // requested indices
2941     const unsigned *req_idx = idx_range.begin();
2942     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2943          i != e; ++i, ++req_idx) {
2944       if (req_idx == idx_range.end()) {
2945         // We can't handle this without inserting insertvalues
2946         if (!InsertBefore)
2947           return nullptr;
2948 
2949         // The requested index identifies a part of a nested aggregate. Handle
2950         // this specially. For example,
2951         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2952         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2953         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2954         // This can be changed into
2955         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2956         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2957         // which allows the unused 0,0 element from the nested struct to be
2958         // removed.
2959         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2960                                  InsertBefore);
2961       }
2962 
2963       // This insert value inserts something else than what we are looking for.
2964       // See if the (aggregate) value inserted into has the value we are
2965       // looking for, then.
2966       if (*req_idx != *i)
2967         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2968                                  InsertBefore);
2969     }
2970     // If we end up here, the indices of the insertvalue match with those
2971     // requested (though possibly only partially). Now we recursively look at
2972     // the inserted value, passing any remaining indices.
2973     return FindInsertedValue(I->getInsertedValueOperand(),
2974                              makeArrayRef(req_idx, idx_range.end()),
2975                              InsertBefore);
2976   }
2977 
2978   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2979     // If we're extracting a value from an aggregate that was extracted from
2980     // something else, we can extract from that something else directly instead.
2981     // However, we will need to chain I's indices with the requested indices.
2982 
2983     // Calculate the number of indices required
2984     unsigned size = I->getNumIndices() + idx_range.size();
2985     // Allocate some space to put the new indices in
2986     SmallVector<unsigned, 5> Idxs;
2987     Idxs.reserve(size);
2988     // Add indices from the extract value instruction
2989     Idxs.append(I->idx_begin(), I->idx_end());
2990 
2991     // Add requested indices
2992     Idxs.append(idx_range.begin(), idx_range.end());
2993 
2994     assert(Idxs.size() == size
2995            && "Number of indices added not correct?");
2996 
2997     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2998   }
2999   // Otherwise, we don't know (such as, extracting from a function return value
3000   // or load instruction)
3001   return nullptr;
3002 }
3003 
3004 /// Analyze the specified pointer to see if it can be expressed as a base
3005 /// pointer plus a constant offset. Return the base and offset to the caller.
3006 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
3007                                               const DataLayout &DL) {
3008   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
3009   APInt ByteOffset(BitWidth, 0);
3010 
3011   // We walk up the defs but use a visited set to handle unreachable code. In
3012   // that case, we stop after accumulating the cycle once (not that it
3013   // matters).
3014   SmallPtrSet<Value *, 16> Visited;
3015   while (Visited.insert(Ptr).second) {
3016     if (Ptr->getType()->isVectorTy())
3017       break;
3018 
3019     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
3020       // If one of the values we have visited is an addrspacecast, then
3021       // the pointer type of this GEP may be different from the type
3022       // of the Ptr parameter which was passed to this function.  This
3023       // means when we construct GEPOffset, we need to use the size
3024       // of GEP's pointer type rather than the size of the original
3025       // pointer type.
3026       APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
3027       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3028         break;
3029 
3030       ByteOffset += GEPOffset.getSExtValue();
3031 
3032       Ptr = GEP->getPointerOperand();
3033     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3034                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3035       Ptr = cast<Operator>(Ptr)->getOperand(0);
3036     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3037       if (GA->isInterposable())
3038         break;
3039       Ptr = GA->getAliasee();
3040     } else {
3041       break;
3042     }
3043   }
3044   Offset = ByteOffset.getSExtValue();
3045   return Ptr;
3046 }
3047 
3048 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
3049   // Make sure the GEP has exactly three arguments.
3050   if (GEP->getNumOperands() != 3)
3051     return false;
3052 
3053   // Make sure the index-ee is a pointer to array of i8.
3054   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3055   if (!AT || !AT->getElementType()->isIntegerTy(8))
3056     return false;
3057 
3058   // Check to make sure that the first operand of the GEP is an integer and
3059   // has value 0 so that we are sure we're indexing into the initializer.
3060   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3061   if (!FirstIdx || !FirstIdx->isZero())
3062     return false;
3063 
3064   return true;
3065 }
3066 
3067 /// This function computes the length of a null-terminated C string pointed to
3068 /// by V. If successful, it returns true and returns the string in Str.
3069 /// If unsuccessful, it returns false.
3070 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3071                                  uint64_t Offset, bool TrimAtNul) {
3072   assert(V);
3073 
3074   // Look through bitcast instructions and geps.
3075   V = V->stripPointerCasts();
3076 
3077   // If the value is a GEP instruction or constant expression, treat it as an
3078   // offset.
3079   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3080     // The GEP operator should be based on a pointer to string constant, and is
3081     // indexing into the string constant.
3082     if (!isGEPBasedOnPointerToString(GEP))
3083       return false;
3084 
3085     // If the second index isn't a ConstantInt, then this is a variable index
3086     // into the array.  If this occurs, we can't say anything meaningful about
3087     // the string.
3088     uint64_t StartIdx = 0;
3089     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3090       StartIdx = CI->getZExtValue();
3091     else
3092       return false;
3093     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3094                                  TrimAtNul);
3095   }
3096 
3097   // The GEP instruction, constant or instruction, must reference a global
3098   // variable that is a constant and is initialized. The referenced constant
3099   // initializer is the array that we'll use for optimization.
3100   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3101   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3102     return false;
3103 
3104   // Handle the all-zeros case.
3105   if (GV->getInitializer()->isNullValue()) {
3106     // This is a degenerate case. The initializer is constant zero so the
3107     // length of the string must be zero.
3108     Str = "";
3109     return true;
3110   }
3111 
3112   // This must be a ConstantDataArray.
3113   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3114   if (!Array || !Array->isString())
3115     return false;
3116 
3117   // Get the number of elements in the array.
3118   uint64_t NumElts = Array->getType()->getArrayNumElements();
3119 
3120   // Start out with the entire array in the StringRef.
3121   Str = Array->getAsString();
3122 
3123   if (Offset > NumElts)
3124     return false;
3125 
3126   // Skip over 'offset' bytes.
3127   Str = Str.substr(Offset);
3128 
3129   if (TrimAtNul) {
3130     // Trim off the \0 and anything after it.  If the array is not nul
3131     // terminated, we just return the whole end of string.  The client may know
3132     // some other way that the string is length-bound.
3133     Str = Str.substr(0, Str.find('\0'));
3134   }
3135   return true;
3136 }
3137 
3138 // These next two are very similar to the above, but also look through PHI
3139 // nodes.
3140 // TODO: See if we can integrate these two together.
3141 
3142 /// If we can compute the length of the string pointed to by
3143 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3144 static uint64_t GetStringLengthH(const Value *V,
3145                                  SmallPtrSetImpl<const PHINode*> &PHIs) {
3146   // Look through noop bitcast instructions.
3147   V = V->stripPointerCasts();
3148 
3149   // If this is a PHI node, there are two cases: either we have already seen it
3150   // or we haven't.
3151   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3152     if (!PHIs.insert(PN).second)
3153       return ~0ULL;  // already in the set.
3154 
3155     // If it was new, see if all the input strings are the same length.
3156     uint64_t LenSoFar = ~0ULL;
3157     for (Value *IncValue : PN->incoming_values()) {
3158       uint64_t Len = GetStringLengthH(IncValue, PHIs);
3159       if (Len == 0) return 0; // Unknown length -> unknown.
3160 
3161       if (Len == ~0ULL) continue;
3162 
3163       if (Len != LenSoFar && LenSoFar != ~0ULL)
3164         return 0;    // Disagree -> unknown.
3165       LenSoFar = Len;
3166     }
3167 
3168     // Success, all agree.
3169     return LenSoFar;
3170   }
3171 
3172   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3173   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3174     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3175     if (Len1 == 0) return 0;
3176     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3177     if (Len2 == 0) return 0;
3178     if (Len1 == ~0ULL) return Len2;
3179     if (Len2 == ~0ULL) return Len1;
3180     if (Len1 != Len2) return 0;
3181     return Len1;
3182   }
3183 
3184   // Otherwise, see if we can read the string.
3185   StringRef StrData;
3186   if (!getConstantStringInfo(V, StrData))
3187     return 0;
3188 
3189   return StrData.size()+1;
3190 }
3191 
3192 /// If we can compute the length of the string pointed to by
3193 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3194 uint64_t llvm::GetStringLength(const Value *V) {
3195   if (!V->getType()->isPointerTy()) return 0;
3196 
3197   SmallPtrSet<const PHINode*, 32> PHIs;
3198   uint64_t Len = GetStringLengthH(V, PHIs);
3199   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3200   // an empty string as a length.
3201   return Len == ~0ULL ? 1 : Len;
3202 }
3203 
3204 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3205 /// previous iteration of the loop was referring to the same object as \p PN.
3206 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3207                                          const LoopInfo *LI) {
3208   // Find the loop-defined value.
3209   Loop *L = LI->getLoopFor(PN->getParent());
3210   if (PN->getNumIncomingValues() != 2)
3211     return true;
3212 
3213   // Find the value from previous iteration.
3214   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3215   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3216     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3217   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3218     return true;
3219 
3220   // If a new pointer is loaded in the loop, the pointer references a different
3221   // object in every iteration.  E.g.:
3222   //    for (i)
3223   //       int *p = a[i];
3224   //       ...
3225   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3226     if (!L->isLoopInvariant(Load->getPointerOperand()))
3227       return false;
3228   return true;
3229 }
3230 
3231 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3232                                  unsigned MaxLookup) {
3233   if (!V->getType()->isPointerTy())
3234     return V;
3235   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3236     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3237       V = GEP->getPointerOperand();
3238     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3239                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3240       V = cast<Operator>(V)->getOperand(0);
3241     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3242       if (GA->isInterposable())
3243         return V;
3244       V = GA->getAliasee();
3245     } else {
3246       if (auto CS = CallSite(V))
3247         if (Value *RV = CS.getReturnedArgOperand()) {
3248           V = RV;
3249           continue;
3250         }
3251 
3252       // See if InstructionSimplify knows any relevant tricks.
3253       if (Instruction *I = dyn_cast<Instruction>(V))
3254         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3255         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3256           V = Simplified;
3257           continue;
3258         }
3259 
3260       return V;
3261     }
3262     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3263   }
3264   return V;
3265 }
3266 
3267 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3268                                 const DataLayout &DL, LoopInfo *LI,
3269                                 unsigned MaxLookup) {
3270   SmallPtrSet<Value *, 4> Visited;
3271   SmallVector<Value *, 4> Worklist;
3272   Worklist.push_back(V);
3273   do {
3274     Value *P = Worklist.pop_back_val();
3275     P = GetUnderlyingObject(P, DL, MaxLookup);
3276 
3277     if (!Visited.insert(P).second)
3278       continue;
3279 
3280     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3281       Worklist.push_back(SI->getTrueValue());
3282       Worklist.push_back(SI->getFalseValue());
3283       continue;
3284     }
3285 
3286     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3287       // If this PHI changes the underlying object in every iteration of the
3288       // loop, don't look through it.  Consider:
3289       //   int **A;
3290       //   for (i) {
3291       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3292       //     Curr = A[i];
3293       //     *Prev, *Curr;
3294       //
3295       // Prev is tracking Curr one iteration behind so they refer to different
3296       // underlying objects.
3297       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3298           isSameUnderlyingObjectInLoop(PN, LI))
3299         for (Value *IncValue : PN->incoming_values())
3300           Worklist.push_back(IncValue);
3301       continue;
3302     }
3303 
3304     Objects.push_back(P);
3305   } while (!Worklist.empty());
3306 }
3307 
3308 /// Return true if the only users of this pointer are lifetime markers.
3309 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3310   for (const User *U : V->users()) {
3311     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3312     if (!II) return false;
3313 
3314     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3315         II->getIntrinsicID() != Intrinsic::lifetime_end)
3316       return false;
3317   }
3318   return true;
3319 }
3320 
3321 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3322                                         const Instruction *CtxI,
3323                                         const DominatorTree *DT) {
3324   const Operator *Inst = dyn_cast<Operator>(V);
3325   if (!Inst)
3326     return false;
3327 
3328   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3329     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3330       if (C->canTrap())
3331         return false;
3332 
3333   switch (Inst->getOpcode()) {
3334   default:
3335     return true;
3336   case Instruction::UDiv:
3337   case Instruction::URem: {
3338     // x / y is undefined if y == 0.
3339     const APInt *V;
3340     if (match(Inst->getOperand(1), m_APInt(V)))
3341       return *V != 0;
3342     return false;
3343   }
3344   case Instruction::SDiv:
3345   case Instruction::SRem: {
3346     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3347     const APInt *Numerator, *Denominator;
3348     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3349       return false;
3350     // We cannot hoist this division if the denominator is 0.
3351     if (*Denominator == 0)
3352       return false;
3353     // It's safe to hoist if the denominator is not 0 or -1.
3354     if (*Denominator != -1)
3355       return true;
3356     // At this point we know that the denominator is -1.  It is safe to hoist as
3357     // long we know that the numerator is not INT_MIN.
3358     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3359       return !Numerator->isMinSignedValue();
3360     // The numerator *might* be MinSignedValue.
3361     return false;
3362   }
3363   case Instruction::Load: {
3364     const LoadInst *LI = cast<LoadInst>(Inst);
3365     if (!LI->isUnordered() ||
3366         // Speculative load may create a race that did not exist in the source.
3367         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3368         // Speculative load may load data from dirty regions.
3369         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3370       return false;
3371     const DataLayout &DL = LI->getModule()->getDataLayout();
3372     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3373                                               LI->getAlignment(), DL, CtxI, DT);
3374   }
3375   case Instruction::Call: {
3376     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3377       switch (II->getIntrinsicID()) {
3378       // These synthetic intrinsics have no side-effects and just mark
3379       // information about their operands.
3380       // FIXME: There are other no-op synthetic instructions that potentially
3381       // should be considered at least *safe* to speculate...
3382       case Intrinsic::dbg_declare:
3383       case Intrinsic::dbg_value:
3384         return true;
3385 
3386       case Intrinsic::bitreverse:
3387       case Intrinsic::bswap:
3388       case Intrinsic::ctlz:
3389       case Intrinsic::ctpop:
3390       case Intrinsic::cttz:
3391       case Intrinsic::objectsize:
3392       case Intrinsic::sadd_with_overflow:
3393       case Intrinsic::smul_with_overflow:
3394       case Intrinsic::ssub_with_overflow:
3395       case Intrinsic::uadd_with_overflow:
3396       case Intrinsic::umul_with_overflow:
3397       case Intrinsic::usub_with_overflow:
3398         return true;
3399       // These intrinsics are defined to have the same behavior as libm
3400       // functions except for setting errno.
3401       case Intrinsic::sqrt:
3402       case Intrinsic::fma:
3403       case Intrinsic::fmuladd:
3404         return true;
3405       // These intrinsics are defined to have the same behavior as libm
3406       // functions, and the corresponding libm functions never set errno.
3407       case Intrinsic::trunc:
3408       case Intrinsic::copysign:
3409       case Intrinsic::fabs:
3410       case Intrinsic::minnum:
3411       case Intrinsic::maxnum:
3412         return true;
3413       // These intrinsics are defined to have the same behavior as libm
3414       // functions, which never overflow when operating on the IEEE754 types
3415       // that we support, and never set errno otherwise.
3416       case Intrinsic::ceil:
3417       case Intrinsic::floor:
3418       case Intrinsic::nearbyint:
3419       case Intrinsic::rint:
3420       case Intrinsic::round:
3421         return true;
3422       // These intrinsics do not correspond to any libm function, and
3423       // do not set errno.
3424       case Intrinsic::powi:
3425         return true;
3426       // TODO: are convert_{from,to}_fp16 safe?
3427       // TODO: can we list target-specific intrinsics here?
3428       default: break;
3429       }
3430     }
3431     return false; // The called function could have undefined behavior or
3432                   // side-effects, even if marked readnone nounwind.
3433   }
3434   case Instruction::VAArg:
3435   case Instruction::Alloca:
3436   case Instruction::Invoke:
3437   case Instruction::PHI:
3438   case Instruction::Store:
3439   case Instruction::Ret:
3440   case Instruction::Br:
3441   case Instruction::IndirectBr:
3442   case Instruction::Switch:
3443   case Instruction::Unreachable:
3444   case Instruction::Fence:
3445   case Instruction::AtomicRMW:
3446   case Instruction::AtomicCmpXchg:
3447   case Instruction::LandingPad:
3448   case Instruction::Resume:
3449   case Instruction::CatchSwitch:
3450   case Instruction::CatchPad:
3451   case Instruction::CatchRet:
3452   case Instruction::CleanupPad:
3453   case Instruction::CleanupRet:
3454     return false; // Misc instructions which have effects
3455   }
3456 }
3457 
3458 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3459   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3460 }
3461 
3462 /// Return true if we know that the specified value is never null.
3463 bool llvm::isKnownNonNull(const Value *V) {
3464   assert(V->getType()->isPointerTy() && "V must be pointer type");
3465 
3466   // Alloca never returns null, malloc might.
3467   if (isa<AllocaInst>(V)) return true;
3468 
3469   // A byval, inalloca, or nonnull argument is never null.
3470   if (const Argument *A = dyn_cast<Argument>(V))
3471     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3472 
3473   // A global variable in address space 0 is non null unless extern weak
3474   // or an absolute symbol reference. Other address spaces may have null as a
3475   // valid address for a global, so we can't assume anything.
3476   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3477     return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3478            GV->getType()->getAddressSpace() == 0;
3479 
3480   // A Load tagged with nonnull metadata is never null.
3481   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3482     return LI->getMetadata(LLVMContext::MD_nonnull);
3483 
3484   if (auto CS = ImmutableCallSite(V))
3485     if (CS.isReturnNonNull())
3486       return true;
3487 
3488   return false;
3489 }
3490 
3491 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3492                                                   const Instruction *CtxI,
3493                                                   const DominatorTree *DT) {
3494   assert(V->getType()->isPointerTy() && "V must be pointer type");
3495   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
3496   assert(CtxI && "Context instruction required for analysis");
3497   assert(DT && "Dominator tree required for analysis");
3498 
3499   unsigned NumUsesExplored = 0;
3500   for (auto *U : V->users()) {
3501     // Avoid massive lists
3502     if (NumUsesExplored >= DomConditionsMaxUses)
3503       break;
3504     NumUsesExplored++;
3505 
3506     // If the value is used as an argument to a call or invoke, then argument
3507     // attributes may provide an answer about null-ness.
3508     if (auto CS = ImmutableCallSite(U))
3509       if (auto *CalledFunc = CS.getCalledFunction())
3510         for (const Argument &Arg : CalledFunc->args())
3511           if (CS.getArgOperand(Arg.getArgNo()) == V &&
3512               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3513             return true;
3514 
3515     // Consider only compare instructions uniquely controlling a branch
3516     CmpInst::Predicate Pred;
3517     if (!match(const_cast<User *>(U),
3518                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3519         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3520       continue;
3521 
3522     for (auto *CmpU : U->users()) {
3523       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3524         assert(BI->isConditional() && "uses a comparison!");
3525 
3526         BasicBlock *NonNullSuccessor =
3527             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3528         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3529         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3530           return true;
3531       } else if (Pred == ICmpInst::ICMP_NE &&
3532                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3533                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3534         return true;
3535       }
3536     }
3537   }
3538 
3539   return false;
3540 }
3541 
3542 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3543                             const DominatorTree *DT) {
3544   if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3545     return false;
3546 
3547   if (isKnownNonNull(V))
3548     return true;
3549 
3550   if (!CtxI || !DT)
3551     return false;
3552 
3553   return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
3554 }
3555 
3556 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3557                                                    const Value *RHS,
3558                                                    const DataLayout &DL,
3559                                                    AssumptionCache *AC,
3560                                                    const Instruction *CxtI,
3561                                                    const DominatorTree *DT) {
3562   // Multiplying n * m significant bits yields a result of n + m significant
3563   // bits. If the total number of significant bits does not exceed the
3564   // result bit width (minus 1), there is no overflow.
3565   // This means if we have enough leading zero bits in the operands
3566   // we can guarantee that the result does not overflow.
3567   // Ref: "Hacker's Delight" by Henry Warren
3568   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3569   APInt LHSKnownZero(BitWidth, 0);
3570   APInt LHSKnownOne(BitWidth, 0);
3571   APInt RHSKnownZero(BitWidth, 0);
3572   APInt RHSKnownOne(BitWidth, 0);
3573   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3574                    DT);
3575   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3576                    DT);
3577   // Note that underestimating the number of zero bits gives a more
3578   // conservative answer.
3579   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3580                       RHSKnownZero.countLeadingOnes();
3581   // First handle the easy case: if we have enough zero bits there's
3582   // definitely no overflow.
3583   if (ZeroBits >= BitWidth)
3584     return OverflowResult::NeverOverflows;
3585 
3586   // Get the largest possible values for each operand.
3587   APInt LHSMax = ~LHSKnownZero;
3588   APInt RHSMax = ~RHSKnownZero;
3589 
3590   // We know the multiply operation doesn't overflow if the maximum values for
3591   // each operand will not overflow after we multiply them together.
3592   bool MaxOverflow;
3593   LHSMax.umul_ov(RHSMax, MaxOverflow);
3594   if (!MaxOverflow)
3595     return OverflowResult::NeverOverflows;
3596 
3597   // We know it always overflows if multiplying the smallest possible values for
3598   // the operands also results in overflow.
3599   bool MinOverflow;
3600   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3601   if (MinOverflow)
3602     return OverflowResult::AlwaysOverflows;
3603 
3604   return OverflowResult::MayOverflow;
3605 }
3606 
3607 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3608                                                    const Value *RHS,
3609                                                    const DataLayout &DL,
3610                                                    AssumptionCache *AC,
3611                                                    const Instruction *CxtI,
3612                                                    const DominatorTree *DT) {
3613   bool LHSKnownNonNegative, LHSKnownNegative;
3614   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3615                  AC, CxtI, DT);
3616   if (LHSKnownNonNegative || LHSKnownNegative) {
3617     bool RHSKnownNonNegative, RHSKnownNegative;
3618     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3619                    AC, CxtI, DT);
3620 
3621     if (LHSKnownNegative && RHSKnownNegative) {
3622       // The sign bit is set in both cases: this MUST overflow.
3623       // Create a simple add instruction, and insert it into the struct.
3624       return OverflowResult::AlwaysOverflows;
3625     }
3626 
3627     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3628       // The sign bit is clear in both cases: this CANNOT overflow.
3629       // Create a simple add instruction, and insert it into the struct.
3630       return OverflowResult::NeverOverflows;
3631     }
3632   }
3633 
3634   return OverflowResult::MayOverflow;
3635 }
3636 
3637 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3638                                                   const Value *RHS,
3639                                                   const AddOperator *Add,
3640                                                   const DataLayout &DL,
3641                                                   AssumptionCache *AC,
3642                                                   const Instruction *CxtI,
3643                                                   const DominatorTree *DT) {
3644   if (Add && Add->hasNoSignedWrap()) {
3645     return OverflowResult::NeverOverflows;
3646   }
3647 
3648   bool LHSKnownNonNegative, LHSKnownNegative;
3649   bool RHSKnownNonNegative, RHSKnownNegative;
3650   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3651                  AC, CxtI, DT);
3652   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3653                  AC, CxtI, DT);
3654 
3655   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3656       (LHSKnownNegative && RHSKnownNonNegative)) {
3657     // The sign bits are opposite: this CANNOT overflow.
3658     return OverflowResult::NeverOverflows;
3659   }
3660 
3661   // The remaining code needs Add to be available. Early returns if not so.
3662   if (!Add)
3663     return OverflowResult::MayOverflow;
3664 
3665   // If the sign of Add is the same as at least one of the operands, this add
3666   // CANNOT overflow. This is particularly useful when the sum is
3667   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3668   // operands.
3669   bool LHSOrRHSKnownNonNegative =
3670       (LHSKnownNonNegative || RHSKnownNonNegative);
3671   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3672   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3673     bool AddKnownNonNegative, AddKnownNegative;
3674     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3675                    /*Depth=*/0, AC, CxtI, DT);
3676     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3677         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3678       return OverflowResult::NeverOverflows;
3679     }
3680   }
3681 
3682   return OverflowResult::MayOverflow;
3683 }
3684 
3685 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3686                                      const DominatorTree &DT) {
3687 #ifndef NDEBUG
3688   auto IID = II->getIntrinsicID();
3689   assert((IID == Intrinsic::sadd_with_overflow ||
3690           IID == Intrinsic::uadd_with_overflow ||
3691           IID == Intrinsic::ssub_with_overflow ||
3692           IID == Intrinsic::usub_with_overflow ||
3693           IID == Intrinsic::smul_with_overflow ||
3694           IID == Intrinsic::umul_with_overflow) &&
3695          "Not an overflow intrinsic!");
3696 #endif
3697 
3698   SmallVector<const BranchInst *, 2> GuardingBranches;
3699   SmallVector<const ExtractValueInst *, 2> Results;
3700 
3701   for (const User *U : II->users()) {
3702     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3703       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3704 
3705       if (EVI->getIndices()[0] == 0)
3706         Results.push_back(EVI);
3707       else {
3708         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3709 
3710         for (const auto *U : EVI->users())
3711           if (const auto *B = dyn_cast<BranchInst>(U)) {
3712             assert(B->isConditional() && "How else is it using an i1?");
3713             GuardingBranches.push_back(B);
3714           }
3715       }
3716     } else {
3717       // We are using the aggregate directly in a way we don't want to analyze
3718       // here (storing it to a global, say).
3719       return false;
3720     }
3721   }
3722 
3723   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
3724     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3725     if (!NoWrapEdge.isSingleEdge())
3726       return false;
3727 
3728     // Check if all users of the add are provably no-wrap.
3729     for (const auto *Result : Results) {
3730       // If the extractvalue itself is not executed on overflow, the we don't
3731       // need to check each use separately, since domination is transitive.
3732       if (DT.dominates(NoWrapEdge, Result->getParent()))
3733         continue;
3734 
3735       for (auto &RU : Result->uses())
3736         if (!DT.dominates(NoWrapEdge, RU))
3737           return false;
3738     }
3739 
3740     return true;
3741   };
3742 
3743   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3744 }
3745 
3746 
3747 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
3748                                                  const DataLayout &DL,
3749                                                  AssumptionCache *AC,
3750                                                  const Instruction *CxtI,
3751                                                  const DominatorTree *DT) {
3752   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3753                                        Add, DL, AC, CxtI, DT);
3754 }
3755 
3756 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3757                                                  const Value *RHS,
3758                                                  const DataLayout &DL,
3759                                                  AssumptionCache *AC,
3760                                                  const Instruction *CxtI,
3761                                                  const DominatorTree *DT) {
3762   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3763 }
3764 
3765 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3766   // A memory operation returns normally if it isn't volatile. A volatile
3767   // operation is allowed to trap.
3768   //
3769   // An atomic operation isn't guaranteed to return in a reasonable amount of
3770   // time because it's possible for another thread to interfere with it for an
3771   // arbitrary length of time, but programs aren't allowed to rely on that.
3772   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3773     return !LI->isVolatile();
3774   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3775     return !SI->isVolatile();
3776   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3777     return !CXI->isVolatile();
3778   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3779     return !RMWI->isVolatile();
3780   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3781     return !MII->isVolatile();
3782 
3783   // If there is no successor, then execution can't transfer to it.
3784   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3785     return !CRI->unwindsToCaller();
3786   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3787     return !CatchSwitch->unwindsToCaller();
3788   if (isa<ResumeInst>(I))
3789     return false;
3790   if (isa<ReturnInst>(I))
3791     return false;
3792   if (isa<UnreachableInst>(I))
3793     return false;
3794 
3795   // Calls can throw, or contain an infinite loop, or kill the process.
3796   if (auto CS = ImmutableCallSite(I)) {
3797     // Call sites that throw have implicit non-local control flow.
3798     if (!CS.doesNotThrow())
3799       return false;
3800 
3801     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3802     // etc. and thus not return.  However, LLVM already assumes that
3803     //
3804     //  - Thread exiting actions are modeled as writes to memory invisible to
3805     //    the program.
3806     //
3807     //  - Loops that don't have side effects (side effects are volatile/atomic
3808     //    stores and IO) always terminate (see http://llvm.org/PR965).
3809     //    Furthermore IO itself is also modeled as writes to memory invisible to
3810     //    the program.
3811     //
3812     // We rely on those assumptions here, and use the memory effects of the call
3813     // target as a proxy for checking that it always returns.
3814 
3815     // FIXME: This isn't aggressive enough; a call which only writes to a global
3816     // is guaranteed to return.
3817     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3818            match(I, m_Intrinsic<Intrinsic::assume>());
3819   }
3820 
3821   // Other instructions return normally.
3822   return true;
3823 }
3824 
3825 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3826                                                   const Loop *L) {
3827   // The loop header is guaranteed to be executed for every iteration.
3828   //
3829   // FIXME: Relax this constraint to cover all basic blocks that are
3830   // guaranteed to be executed at every iteration.
3831   if (I->getParent() != L->getHeader()) return false;
3832 
3833   for (const Instruction &LI : *L->getHeader()) {
3834     if (&LI == I) return true;
3835     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3836   }
3837   llvm_unreachable("Instruction not contained in its own parent basic block.");
3838 }
3839 
3840 bool llvm::propagatesFullPoison(const Instruction *I) {
3841   switch (I->getOpcode()) {
3842   case Instruction::Add:
3843   case Instruction::Sub:
3844   case Instruction::Xor:
3845   case Instruction::Trunc:
3846   case Instruction::BitCast:
3847   case Instruction::AddrSpaceCast:
3848   case Instruction::Mul:
3849   case Instruction::Shl:
3850   case Instruction::GetElementPtr:
3851     // These operations all propagate poison unconditionally. Note that poison
3852     // is not any particular value, so xor or subtraction of poison with
3853     // itself still yields poison, not zero.
3854     return true;
3855 
3856   case Instruction::AShr:
3857   case Instruction::SExt:
3858     // For these operations, one bit of the input is replicated across
3859     // multiple output bits. A replicated poison bit is still poison.
3860     return true;
3861 
3862   case Instruction::ICmp:
3863     // Comparing poison with any value yields poison.  This is why, for
3864     // instance, x s< (x +nsw 1) can be folded to true.
3865     return true;
3866 
3867   default:
3868     return false;
3869   }
3870 }
3871 
3872 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3873   switch (I->getOpcode()) {
3874     case Instruction::Store:
3875       return cast<StoreInst>(I)->getPointerOperand();
3876 
3877     case Instruction::Load:
3878       return cast<LoadInst>(I)->getPointerOperand();
3879 
3880     case Instruction::AtomicCmpXchg:
3881       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3882 
3883     case Instruction::AtomicRMW:
3884       return cast<AtomicRMWInst>(I)->getPointerOperand();
3885 
3886     case Instruction::UDiv:
3887     case Instruction::SDiv:
3888     case Instruction::URem:
3889     case Instruction::SRem:
3890       return I->getOperand(1);
3891 
3892     default:
3893       return nullptr;
3894   }
3895 }
3896 
3897 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3898   // We currently only look for uses of poison values within the same basic
3899   // block, as that makes it easier to guarantee that the uses will be
3900   // executed given that PoisonI is executed.
3901   //
3902   // FIXME: Expand this to consider uses beyond the same basic block. To do
3903   // this, look out for the distinction between post-dominance and strong
3904   // post-dominance.
3905   const BasicBlock *BB = PoisonI->getParent();
3906 
3907   // Set of instructions that we have proved will yield poison if PoisonI
3908   // does.
3909   SmallSet<const Value *, 16> YieldsPoison;
3910   SmallSet<const BasicBlock *, 4> Visited;
3911   YieldsPoison.insert(PoisonI);
3912   Visited.insert(PoisonI->getParent());
3913 
3914   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3915 
3916   unsigned Iter = 0;
3917   while (Iter++ < MaxDepth) {
3918     for (auto &I : make_range(Begin, End)) {
3919       if (&I != PoisonI) {
3920         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3921         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3922           return true;
3923         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3924           return false;
3925       }
3926 
3927       // Mark poison that propagates from I through uses of I.
3928       if (YieldsPoison.count(&I)) {
3929         for (const User *User : I.users()) {
3930           const Instruction *UserI = cast<Instruction>(User);
3931           if (propagatesFullPoison(UserI))
3932             YieldsPoison.insert(User);
3933         }
3934       }
3935     }
3936 
3937     if (auto *NextBB = BB->getSingleSuccessor()) {
3938       if (Visited.insert(NextBB).second) {
3939         BB = NextBB;
3940         Begin = BB->getFirstNonPHI()->getIterator();
3941         End = BB->end();
3942         continue;
3943       }
3944     }
3945 
3946     break;
3947   };
3948   return false;
3949 }
3950 
3951 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
3952   if (FMF.noNaNs())
3953     return true;
3954 
3955   if (auto *C = dyn_cast<ConstantFP>(V))
3956     return !C->isNaN();
3957   return false;
3958 }
3959 
3960 static bool isKnownNonZero(const Value *V) {
3961   if (auto *C = dyn_cast<ConstantFP>(V))
3962     return !C->isZero();
3963   return false;
3964 }
3965 
3966 /// Match non-obvious integer minimum and maximum sequences.
3967 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3968                                        Value *CmpLHS, Value *CmpRHS,
3969                                        Value *TrueVal, Value *FalseVal,
3970                                        Value *&LHS, Value *&RHS) {
3971   // Assume success. If there's no match, callers should not use these anyway.
3972   LHS = TrueVal;
3973   RHS = FalseVal;
3974 
3975   // Recognize variations of:
3976   // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3977   const APInt *C1;
3978   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3979     const APInt *C2;
3980 
3981     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3982     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
3983         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
3984       return {SPF_SMAX, SPNB_NA, false};
3985 
3986     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
3987     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
3988         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
3989       return {SPF_SMIN, SPNB_NA, false};
3990 
3991     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
3992     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
3993         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
3994       return {SPF_UMAX, SPNB_NA, false};
3995 
3996     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
3997     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
3998         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
3999       return {SPF_UMIN, SPNB_NA, false};
4000   }
4001 
4002   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4003     return {SPF_UNKNOWN, SPNB_NA, false};
4004 
4005   // Z = X -nsw Y
4006   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4007   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4008   if (match(TrueVal, m_Zero()) &&
4009       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4010     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4011 
4012   // Z = X -nsw Y
4013   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4014   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4015   if (match(FalseVal, m_Zero()) &&
4016       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4017     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4018 
4019   if (!match(CmpRHS, m_APInt(C1)))
4020     return {SPF_UNKNOWN, SPNB_NA, false};
4021 
4022   // An unsigned min/max can be written with a signed compare.
4023   const APInt *C2;
4024   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4025       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4026     // Is the sign bit set?
4027     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4028     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4029     if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
4030       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4031 
4032     // Is the sign bit clear?
4033     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4034     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4035     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4036         C2->isMinSignedValue())
4037       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4038   }
4039 
4040   // Look through 'not' ops to find disguised signed min/max.
4041   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4042   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4043   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4044       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4045     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4046 
4047   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4048   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4049   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4050       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4051     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4052 
4053   return {SPF_UNKNOWN, SPNB_NA, false};
4054 }
4055 
4056 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4057                                               FastMathFlags FMF,
4058                                               Value *CmpLHS, Value *CmpRHS,
4059                                               Value *TrueVal, Value *FalseVal,
4060                                               Value *&LHS, Value *&RHS) {
4061   LHS = CmpLHS;
4062   RHS = CmpRHS;
4063 
4064   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
4065   // return inconsistent results between implementations.
4066   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4067   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4068   // Therefore we behave conservatively and only proceed if at least one of the
4069   // operands is known to not be zero, or if we don't care about signed zeroes.
4070   switch (Pred) {
4071   default: break;
4072   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4073   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4074     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4075         !isKnownNonZero(CmpRHS))
4076       return {SPF_UNKNOWN, SPNB_NA, false};
4077   }
4078 
4079   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4080   bool Ordered = false;
4081 
4082   // When given one NaN and one non-NaN input:
4083   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4084   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4085   //     ordered comparison fails), which could be NaN or non-NaN.
4086   // so here we discover exactly what NaN behavior is required/accepted.
4087   if (CmpInst::isFPPredicate(Pred)) {
4088     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4089     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4090 
4091     if (LHSSafe && RHSSafe) {
4092       // Both operands are known non-NaN.
4093       NaNBehavior = SPNB_RETURNS_ANY;
4094     } else if (CmpInst::isOrdered(Pred)) {
4095       // An ordered comparison will return false when given a NaN, so it
4096       // returns the RHS.
4097       Ordered = true;
4098       if (LHSSafe)
4099         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4100         NaNBehavior = SPNB_RETURNS_NAN;
4101       else if (RHSSafe)
4102         NaNBehavior = SPNB_RETURNS_OTHER;
4103       else
4104         // Completely unsafe.
4105         return {SPF_UNKNOWN, SPNB_NA, false};
4106     } else {
4107       Ordered = false;
4108       // An unordered comparison will return true when given a NaN, so it
4109       // returns the LHS.
4110       if (LHSSafe)
4111         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4112         NaNBehavior = SPNB_RETURNS_OTHER;
4113       else if (RHSSafe)
4114         NaNBehavior = SPNB_RETURNS_NAN;
4115       else
4116         // Completely unsafe.
4117         return {SPF_UNKNOWN, SPNB_NA, false};
4118     }
4119   }
4120 
4121   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4122     std::swap(CmpLHS, CmpRHS);
4123     Pred = CmpInst::getSwappedPredicate(Pred);
4124     if (NaNBehavior == SPNB_RETURNS_NAN)
4125       NaNBehavior = SPNB_RETURNS_OTHER;
4126     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4127       NaNBehavior = SPNB_RETURNS_NAN;
4128     Ordered = !Ordered;
4129   }
4130 
4131   // ([if]cmp X, Y) ? X : Y
4132   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4133     switch (Pred) {
4134     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4135     case ICmpInst::ICMP_UGT:
4136     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4137     case ICmpInst::ICMP_SGT:
4138     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4139     case ICmpInst::ICMP_ULT:
4140     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4141     case ICmpInst::ICMP_SLT:
4142     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4143     case FCmpInst::FCMP_UGT:
4144     case FCmpInst::FCMP_UGE:
4145     case FCmpInst::FCMP_OGT:
4146     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4147     case FCmpInst::FCMP_ULT:
4148     case FCmpInst::FCMP_ULE:
4149     case FCmpInst::FCMP_OLT:
4150     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4151     }
4152   }
4153 
4154   const APInt *C1;
4155   if (match(CmpRHS, m_APInt(C1))) {
4156     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4157         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4158 
4159       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4160       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
4161       if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
4162         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
4163       }
4164 
4165       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4166       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
4167       if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
4168         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
4169       }
4170     }
4171   }
4172 
4173   return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4174 }
4175 
4176 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4177                               Instruction::CastOps *CastOp) {
4178   auto *Cast1 = dyn_cast<CastInst>(V1);
4179   if (!Cast1)
4180     return nullptr;
4181 
4182   *CastOp = Cast1->getOpcode();
4183   Type *SrcTy = Cast1->getSrcTy();
4184   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4185     // If V1 and V2 are both the same cast from the same type, look through V1.
4186     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4187       return Cast2->getOperand(0);
4188     return nullptr;
4189   }
4190 
4191   auto *C = dyn_cast<Constant>(V2);
4192   if (!C)
4193     return nullptr;
4194 
4195   Constant *CastedTo = nullptr;
4196   switch (*CastOp) {
4197   case Instruction::ZExt:
4198     if (CmpI->isUnsigned())
4199       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4200     break;
4201   case Instruction::SExt:
4202     if (CmpI->isSigned())
4203       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4204     break;
4205   case Instruction::Trunc:
4206     CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4207     break;
4208   case Instruction::FPTrunc:
4209     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4210     break;
4211   case Instruction::FPExt:
4212     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4213     break;
4214   case Instruction::FPToUI:
4215     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4216     break;
4217   case Instruction::FPToSI:
4218     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4219     break;
4220   case Instruction::UIToFP:
4221     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4222     break;
4223   case Instruction::SIToFP:
4224     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4225     break;
4226   default:
4227     break;
4228   }
4229 
4230   if (!CastedTo)
4231     return nullptr;
4232 
4233   // Make sure the cast doesn't lose any information.
4234   Constant *CastedBack =
4235       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
4236   if (CastedBack != C)
4237     return nullptr;
4238 
4239   return CastedTo;
4240 }
4241 
4242 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
4243                                              Instruction::CastOps *CastOp) {
4244   SelectInst *SI = dyn_cast<SelectInst>(V);
4245   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4246 
4247   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4248   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4249 
4250   CmpInst::Predicate Pred = CmpI->getPredicate();
4251   Value *CmpLHS = CmpI->getOperand(0);
4252   Value *CmpRHS = CmpI->getOperand(1);
4253   Value *TrueVal = SI->getTrueValue();
4254   Value *FalseVal = SI->getFalseValue();
4255   FastMathFlags FMF;
4256   if (isa<FPMathOperator>(CmpI))
4257     FMF = CmpI->getFastMathFlags();
4258 
4259   // Bail out early.
4260   if (CmpI->isEquality())
4261     return {SPF_UNKNOWN, SPNB_NA, false};
4262 
4263   // Deal with type mismatches.
4264   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4265     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4266       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4267                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4268                                   LHS, RHS);
4269     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4270       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4271                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4272                                   LHS, RHS);
4273   }
4274   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4275                               LHS, RHS);
4276 }
4277 
4278 /// Return true if "icmp Pred LHS RHS" is always true.
4279 static bool isTruePredicate(CmpInst::Predicate Pred,
4280                             const Value *LHS, const Value *RHS,
4281                             const DataLayout &DL, unsigned Depth,
4282                             AssumptionCache *AC, const Instruction *CxtI,
4283                             const DominatorTree *DT) {
4284   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4285   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4286     return true;
4287 
4288   switch (Pred) {
4289   default:
4290     return false;
4291 
4292   case CmpInst::ICMP_SLE: {
4293     const APInt *C;
4294 
4295     // LHS s<= LHS +_{nsw} C   if C >= 0
4296     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4297       return !C->isNegative();
4298     return false;
4299   }
4300 
4301   case CmpInst::ICMP_ULE: {
4302     const APInt *C;
4303 
4304     // LHS u<= LHS +_{nuw} C   for any C
4305     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4306       return true;
4307 
4308     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4309     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4310                                        const Value *&X,
4311                                        const APInt *&CA, const APInt *&CB) {
4312       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4313           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4314         return true;
4315 
4316       // If X & C == 0 then (X | C) == X +_{nuw} C
4317       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4318           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4319         unsigned BitWidth = CA->getBitWidth();
4320         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4321         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4322 
4323         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4324           return true;
4325       }
4326 
4327       return false;
4328     };
4329 
4330     const Value *X;
4331     const APInt *CLHS, *CRHS;
4332     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4333       return CLHS->ule(*CRHS);
4334 
4335     return false;
4336   }
4337   }
4338 }
4339 
4340 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4341 /// ALHS ARHS" is true.  Otherwise, return None.
4342 static Optional<bool>
4343 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4344                       const Value *ARHS, const Value *BLHS,
4345                       const Value *BRHS, const DataLayout &DL,
4346                       unsigned Depth, AssumptionCache *AC,
4347                       const Instruction *CxtI, const DominatorTree *DT) {
4348   switch (Pred) {
4349   default:
4350     return None;
4351 
4352   case CmpInst::ICMP_SLT:
4353   case CmpInst::ICMP_SLE:
4354     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4355                         DT) &&
4356         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4357       return true;
4358     return None;
4359 
4360   case CmpInst::ICMP_ULT:
4361   case CmpInst::ICMP_ULE:
4362     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4363                         DT) &&
4364         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4365       return true;
4366     return None;
4367   }
4368 }
4369 
4370 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4371 /// when the operands match, but are swapped.
4372 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4373                           const Value *BLHS, const Value *BRHS,
4374                           bool &IsSwappedOps) {
4375 
4376   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4377   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4378   return IsMatchingOps || IsSwappedOps;
4379 }
4380 
4381 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4382 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4383 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4384 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4385                                                     const Value *ALHS,
4386                                                     const Value *ARHS,
4387                                                     CmpInst::Predicate BPred,
4388                                                     const Value *BLHS,
4389                                                     const Value *BRHS,
4390                                                     bool IsSwappedOps) {
4391   // Canonicalize the operands so they're matching.
4392   if (IsSwappedOps) {
4393     std::swap(BLHS, BRHS);
4394     BPred = ICmpInst::getSwappedPredicate(BPred);
4395   }
4396   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4397     return true;
4398   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4399     return false;
4400 
4401   return None;
4402 }
4403 
4404 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4405 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4406 /// C2" is false.  Otherwise, return None if we can't infer anything.
4407 static Optional<bool>
4408 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4409                                  const ConstantInt *C1,
4410                                  CmpInst::Predicate BPred,
4411                                  const Value *BLHS, const ConstantInt *C2) {
4412   assert(ALHS == BLHS && "LHS operands must match.");
4413   ConstantRange DomCR =
4414       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4415   ConstantRange CR =
4416       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4417   ConstantRange Intersection = DomCR.intersectWith(CR);
4418   ConstantRange Difference = DomCR.difference(CR);
4419   if (Intersection.isEmptySet())
4420     return false;
4421   if (Difference.isEmptySet())
4422     return true;
4423   return None;
4424 }
4425 
4426 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
4427                                         const DataLayout &DL, bool InvertAPred,
4428                                         unsigned Depth, AssumptionCache *AC,
4429                                         const Instruction *CxtI,
4430                                         const DominatorTree *DT) {
4431   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4432   if (LHS->getType() != RHS->getType())
4433     return None;
4434 
4435   Type *OpTy = LHS->getType();
4436   assert(OpTy->getScalarType()->isIntegerTy(1));
4437 
4438   // LHS ==> RHS by definition
4439   if (!InvertAPred && LHS == RHS)
4440     return true;
4441 
4442   if (OpTy->isVectorTy())
4443     // TODO: extending the code below to handle vectors
4444     return None;
4445   assert(OpTy->isIntegerTy(1) && "implied by above");
4446 
4447   ICmpInst::Predicate APred, BPred;
4448   Value *ALHS, *ARHS;
4449   Value *BLHS, *BRHS;
4450 
4451   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4452       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4453     return None;
4454 
4455   if (InvertAPred)
4456     APred = CmpInst::getInversePredicate(APred);
4457 
4458   // Can we infer anything when the two compares have matching operands?
4459   bool IsSwappedOps;
4460   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4461     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4462             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4463       return Implication;
4464     // No amount of additional analysis will infer the second condition, so
4465     // early exit.
4466     return None;
4467   }
4468 
4469   // Can we infer anything when the LHS operands match and the RHS operands are
4470   // constants (not necessarily matching)?
4471   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4472     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4473             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4474             cast<ConstantInt>(BRHS)))
4475       return Implication;
4476     // No amount of additional analysis will infer the second condition, so
4477     // early exit.
4478     return None;
4479   }
4480 
4481   if (APred == BPred)
4482     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4483                                  CxtI, DT);
4484 
4485   return None;
4486 }
4487