1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include <algorithm>
69 #include <array>
70 #include <cassert>
71 #include <cstdint>
72 #include <iterator>
73 #include <utility>
74 
75 using namespace llvm;
76 using namespace llvm::PatternMatch;
77 
78 const unsigned MaxDepth = 6;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getIndexTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static void computeKnownBits(const Value *V, KnownBits &Known,
165                              unsigned Depth, const Query &Q);
166 
167 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
168                             const DataLayout &DL, unsigned Depth,
169                             AssumptionCache *AC, const Instruction *CxtI,
170                             const DominatorTree *DT,
171                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
172   ::computeKnownBits(V, Known, Depth,
173                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
174 }
175 
176 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
177                                   const Query &Q);
178 
179 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
180                                  unsigned Depth, AssumptionCache *AC,
181                                  const Instruction *CxtI,
182                                  const DominatorTree *DT,
183                                  OptimizationRemarkEmitter *ORE,
184                                  bool UseInstrInfo) {
185   return ::computeKnownBits(
186       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
187 }
188 
189 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
190                                const DataLayout &DL, AssumptionCache *AC,
191                                const Instruction *CxtI, const DominatorTree *DT,
192                                bool UseInstrInfo) {
193   assert(LHS->getType() == RHS->getType() &&
194          "LHS and RHS should have the same type");
195   assert(LHS->getType()->isIntOrIntVectorTy() &&
196          "LHS and RHS should be integers");
197   // Look for an inverted mask: (X & ~M) op (Y & M).
198   Value *M;
199   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
200       match(RHS, m_c_And(m_Specific(M), m_Value())))
201     return true;
202   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
203       match(LHS, m_c_And(m_Specific(M), m_Value())))
204     return true;
205   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
206   KnownBits LHSKnown(IT->getBitWidth());
207   KnownBits RHSKnown(IT->getBitWidth());
208   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
209   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
210   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
211 }
212 
213 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
214   for (const User *U : CxtI->users()) {
215     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
216       if (IC->isEquality())
217         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
218           if (C->isNullValue())
219             continue;
220     return false;
221   }
222   return true;
223 }
224 
225 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
226                                    const Query &Q);
227 
228 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
229                                   bool OrZero, unsigned Depth,
230                                   AssumptionCache *AC, const Instruction *CxtI,
231                                   const DominatorTree *DT, bool UseInstrInfo) {
232   return ::isKnownToBeAPowerOfTwo(
233       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
234 }
235 
236 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
237 
238 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
239                           AssumptionCache *AC, const Instruction *CxtI,
240                           const DominatorTree *DT, bool UseInstrInfo) {
241   return ::isKnownNonZero(V, Depth,
242                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
243 }
244 
245 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
246                               unsigned Depth, AssumptionCache *AC,
247                               const Instruction *CxtI, const DominatorTree *DT,
248                               bool UseInstrInfo) {
249   KnownBits Known =
250       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
251   return Known.isNonNegative();
252 }
253 
254 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
255                            AssumptionCache *AC, const Instruction *CxtI,
256                            const DominatorTree *DT, bool UseInstrInfo) {
257   if (auto *CI = dyn_cast<ConstantInt>(V))
258     return CI->getValue().isStrictlyPositive();
259 
260   // TODO: We'd doing two recursive queries here.  We should factor this such
261   // that only a single query is needed.
262   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
263          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
264 }
265 
266 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
267                            AssumptionCache *AC, const Instruction *CxtI,
268                            const DominatorTree *DT, bool UseInstrInfo) {
269   KnownBits Known =
270       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
271   return Known.isNegative();
272 }
273 
274 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
275 
276 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
277                            const DataLayout &DL, AssumptionCache *AC,
278                            const Instruction *CxtI, const DominatorTree *DT,
279                            bool UseInstrInfo) {
280   return ::isKnownNonEqual(V1, V2,
281                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
282                                  UseInstrInfo, /*ORE=*/nullptr));
283 }
284 
285 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
286                               const Query &Q);
287 
288 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
289                              const DataLayout &DL, unsigned Depth,
290                              AssumptionCache *AC, const Instruction *CxtI,
291                              const DominatorTree *DT, bool UseInstrInfo) {
292   return ::MaskedValueIsZero(
293       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
294 }
295 
296 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
297                                    const Query &Q);
298 
299 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
300                                   unsigned Depth, AssumptionCache *AC,
301                                   const Instruction *CxtI,
302                                   const DominatorTree *DT, bool UseInstrInfo) {
303   return ::ComputeNumSignBits(
304       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
305 }
306 
307 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
308                                    bool NSW,
309                                    KnownBits &KnownOut, KnownBits &Known2,
310                                    unsigned Depth, const Query &Q) {
311   unsigned BitWidth = KnownOut.getBitWidth();
312 
313   // If an initial sequence of bits in the result is not needed, the
314   // corresponding bits in the operands are not needed.
315   KnownBits LHSKnown(BitWidth);
316   computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
317   computeKnownBits(Op1, Known2, Depth + 1, Q);
318 
319   KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
320 }
321 
322 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
323                                 KnownBits &Known, KnownBits &Known2,
324                                 unsigned Depth, const Query &Q) {
325   unsigned BitWidth = Known.getBitWidth();
326   computeKnownBits(Op1, Known, Depth + 1, Q);
327   computeKnownBits(Op0, Known2, Depth + 1, Q);
328 
329   bool isKnownNegative = false;
330   bool isKnownNonNegative = false;
331   // If the multiplication is known not to overflow, compute the sign bit.
332   if (NSW) {
333     if (Op0 == Op1) {
334       // The product of a number with itself is non-negative.
335       isKnownNonNegative = true;
336     } else {
337       bool isKnownNonNegativeOp1 = Known.isNonNegative();
338       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
339       bool isKnownNegativeOp1 = Known.isNegative();
340       bool isKnownNegativeOp0 = Known2.isNegative();
341       // The product of two numbers with the same sign is non-negative.
342       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
343         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
344       // The product of a negative number and a non-negative number is either
345       // negative or zero.
346       if (!isKnownNonNegative)
347         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
348                            isKnownNonZero(Op0, Depth, Q)) ||
349                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
350                            isKnownNonZero(Op1, Depth, Q));
351     }
352   }
353 
354   assert(!Known.hasConflict() && !Known2.hasConflict());
355   // Compute a conservative estimate for high known-0 bits.
356   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
357                              Known2.countMinLeadingZeros(),
358                              BitWidth) - BitWidth;
359   LeadZ = std::min(LeadZ, BitWidth);
360 
361   // The result of the bottom bits of an integer multiply can be
362   // inferred by looking at the bottom bits of both operands and
363   // multiplying them together.
364   // We can infer at least the minimum number of known trailing bits
365   // of both operands. Depending on number of trailing zeros, we can
366   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
367   // a and b are divisible by m and n respectively.
368   // We then calculate how many of those bits are inferrable and set
369   // the output. For example, the i8 mul:
370   //  a = XXXX1100 (12)
371   //  b = XXXX1110 (14)
372   // We know the bottom 3 bits are zero since the first can be divided by
373   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
374   // Applying the multiplication to the trimmed arguments gets:
375   //    XX11 (3)
376   //    X111 (7)
377   // -------
378   //    XX11
379   //   XX11
380   //  XX11
381   // XX11
382   // -------
383   // XXXXX01
384   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
385   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
386   // The proof for this can be described as:
387   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
388   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
389   //                    umin(countTrailingZeros(C2), C6) +
390   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
391   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
392   // %aa = shl i8 %a, C5
393   // %bb = shl i8 %b, C6
394   // %aaa = or i8 %aa, C1
395   // %bbb = or i8 %bb, C2
396   // %mul = mul i8 %aaa, %bbb
397   // %mask = and i8 %mul, C7
398   //   =>
399   // %mask = i8 ((C1*C2)&C7)
400   // Where C5, C6 describe the known bits of %a, %b
401   // C1, C2 describe the known bottom bits of %a, %b.
402   // C7 describes the mask of the known bits of the result.
403   APInt Bottom0 = Known.One;
404   APInt Bottom1 = Known2.One;
405 
406   // How many times we'd be able to divide each argument by 2 (shr by 1).
407   // This gives us the number of trailing zeros on the multiplication result.
408   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
409   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
410   unsigned TrailZero0 = Known.countMinTrailingZeros();
411   unsigned TrailZero1 = Known2.countMinTrailingZeros();
412   unsigned TrailZ = TrailZero0 + TrailZero1;
413 
414   // Figure out the fewest known-bits operand.
415   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
416                                       TrailBitsKnown1 - TrailZero1);
417   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
418 
419   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
420                       Bottom1.getLoBits(TrailBitsKnown1);
421 
422   Known.resetAll();
423   Known.Zero.setHighBits(LeadZ);
424   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
425   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
426 
427   // Only make use of no-wrap flags if we failed to compute the sign bit
428   // directly.  This matters if the multiplication always overflows, in
429   // which case we prefer to follow the result of the direct computation,
430   // though as the program is invoking undefined behaviour we can choose
431   // whatever we like here.
432   if (isKnownNonNegative && !Known.isNegative())
433     Known.makeNonNegative();
434   else if (isKnownNegative && !Known.isNonNegative())
435     Known.makeNegative();
436 }
437 
438 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
439                                              KnownBits &Known) {
440   unsigned BitWidth = Known.getBitWidth();
441   unsigned NumRanges = Ranges.getNumOperands() / 2;
442   assert(NumRanges >= 1);
443 
444   Known.Zero.setAllBits();
445   Known.One.setAllBits();
446 
447   for (unsigned i = 0; i < NumRanges; ++i) {
448     ConstantInt *Lower =
449         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
450     ConstantInt *Upper =
451         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
452     ConstantRange Range(Lower->getValue(), Upper->getValue());
453 
454     // The first CommonPrefixBits of all values in Range are equal.
455     unsigned CommonPrefixBits =
456         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
457 
458     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
459     Known.One &= Range.getUnsignedMax() & Mask;
460     Known.Zero &= ~Range.getUnsignedMax() & Mask;
461   }
462 }
463 
464 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
465   SmallVector<const Value *, 16> WorkSet(1, I);
466   SmallPtrSet<const Value *, 32> Visited;
467   SmallPtrSet<const Value *, 16> EphValues;
468 
469   // The instruction defining an assumption's condition itself is always
470   // considered ephemeral to that assumption (even if it has other
471   // non-ephemeral users). See r246696's test case for an example.
472   if (is_contained(I->operands(), E))
473     return true;
474 
475   while (!WorkSet.empty()) {
476     const Value *V = WorkSet.pop_back_val();
477     if (!Visited.insert(V).second)
478       continue;
479 
480     // If all uses of this value are ephemeral, then so is this value.
481     if (llvm::all_of(V->users(), [&](const User *U) {
482                                    return EphValues.count(U);
483                                  })) {
484       if (V == E)
485         return true;
486 
487       if (V == I || isSafeToSpeculativelyExecute(V)) {
488        EphValues.insert(V);
489        if (const User *U = dyn_cast<User>(V))
490          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
491               J != JE; ++J)
492            WorkSet.push_back(*J);
493       }
494     }
495   }
496 
497   return false;
498 }
499 
500 // Is this an intrinsic that cannot be speculated but also cannot trap?
501 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
502   if (const CallInst *CI = dyn_cast<CallInst>(I))
503     if (Function *F = CI->getCalledFunction())
504       switch (F->getIntrinsicID()) {
505       default: break;
506       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
507       case Intrinsic::assume:
508       case Intrinsic::sideeffect:
509       case Intrinsic::dbg_declare:
510       case Intrinsic::dbg_value:
511       case Intrinsic::dbg_label:
512       case Intrinsic::invariant_start:
513       case Intrinsic::invariant_end:
514       case Intrinsic::lifetime_start:
515       case Intrinsic::lifetime_end:
516       case Intrinsic::objectsize:
517       case Intrinsic::ptr_annotation:
518       case Intrinsic::var_annotation:
519         return true;
520       }
521 
522   return false;
523 }
524 
525 bool llvm::isValidAssumeForContext(const Instruction *Inv,
526                                    const Instruction *CxtI,
527                                    const DominatorTree *DT) {
528   // There are two restrictions on the use of an assume:
529   //  1. The assume must dominate the context (or the control flow must
530   //     reach the assume whenever it reaches the context).
531   //  2. The context must not be in the assume's set of ephemeral values
532   //     (otherwise we will use the assume to prove that the condition
533   //     feeding the assume is trivially true, thus causing the removal of
534   //     the assume).
535 
536   if (DT) {
537     if (DT->dominates(Inv, CxtI))
538       return true;
539   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
540     // We don't have a DT, but this trivially dominates.
541     return true;
542   }
543 
544   // With or without a DT, the only remaining case we will check is if the
545   // instructions are in the same BB.  Give up if that is not the case.
546   if (Inv->getParent() != CxtI->getParent())
547     return false;
548 
549   // If we have a dom tree, then we now know that the assume doesn't dominate
550   // the other instruction.  If we don't have a dom tree then we can check if
551   // the assume is first in the BB.
552   if (!DT) {
553     // Search forward from the assume until we reach the context (or the end
554     // of the block); the common case is that the assume will come first.
555     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
556          IE = Inv->getParent()->end(); I != IE; ++I)
557       if (&*I == CxtI)
558         return true;
559   }
560 
561   // Don't let an assume affect itself - this would cause the problems
562   // `isEphemeralValueOf` is trying to prevent, and it would also make
563   // the loop below go out of bounds.
564   if (Inv == CxtI)
565     return false;
566 
567   // The context comes first, but they're both in the same block. Make sure
568   // there is nothing in between that might interrupt the control flow.
569   for (BasicBlock::const_iterator I =
570          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
571        I != IE; ++I)
572     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
573       return false;
574 
575   return !isEphemeralValueOf(Inv, CxtI);
576 }
577 
578 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
579                                        unsigned Depth, const Query &Q) {
580   // Use of assumptions is context-sensitive. If we don't have a context, we
581   // cannot use them!
582   if (!Q.AC || !Q.CxtI)
583     return;
584 
585   unsigned BitWidth = Known.getBitWidth();
586 
587   // Note that the patterns below need to be kept in sync with the code
588   // in AssumptionCache::updateAffectedValues.
589 
590   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
591     if (!AssumeVH)
592       continue;
593     CallInst *I = cast<CallInst>(AssumeVH);
594     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
595            "Got assumption for the wrong function!");
596     if (Q.isExcluded(I))
597       continue;
598 
599     // Warning: This loop can end up being somewhat performance sensitive.
600     // We're running this loop for once for each value queried resulting in a
601     // runtime of ~O(#assumes * #values).
602 
603     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
604            "must be an assume intrinsic");
605 
606     Value *Arg = I->getArgOperand(0);
607 
608     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
609       assert(BitWidth == 1 && "assume operand is not i1?");
610       Known.setAllOnes();
611       return;
612     }
613     if (match(Arg, m_Not(m_Specific(V))) &&
614         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
615       assert(BitWidth == 1 && "assume operand is not i1?");
616       Known.setAllZero();
617       return;
618     }
619 
620     // The remaining tests are all recursive, so bail out if we hit the limit.
621     if (Depth == MaxDepth)
622       continue;
623 
624     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
625     if (!Cmp)
626       continue;
627 
628     Value *A, *B;
629     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
630 
631     CmpInst::Predicate Pred;
632     uint64_t C;
633     switch (Cmp->getPredicate()) {
634     default:
635       break;
636     case ICmpInst::ICMP_EQ:
637       // assume(v = a)
638       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
639           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
640         KnownBits RHSKnown(BitWidth);
641         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
642         Known.Zero |= RHSKnown.Zero;
643         Known.One  |= RHSKnown.One;
644       // assume(v & b = a)
645       } else if (match(Cmp,
646                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
647                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
648         KnownBits RHSKnown(BitWidth);
649         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
650         KnownBits MaskKnown(BitWidth);
651         computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
652 
653         // For those bits in the mask that are known to be one, we can propagate
654         // known bits from the RHS to V.
655         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
656         Known.One  |= RHSKnown.One  & MaskKnown.One;
657       // assume(~(v & b) = a)
658       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
659                                      m_Value(A))) &&
660                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
661         KnownBits RHSKnown(BitWidth);
662         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
663         KnownBits MaskKnown(BitWidth);
664         computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
665 
666         // For those bits in the mask that are known to be one, we can propagate
667         // inverted known bits from the RHS to V.
668         Known.Zero |= RHSKnown.One  & MaskKnown.One;
669         Known.One  |= RHSKnown.Zero & MaskKnown.One;
670       // assume(v | b = a)
671       } else if (match(Cmp,
672                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
673                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
674         KnownBits RHSKnown(BitWidth);
675         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
676         KnownBits BKnown(BitWidth);
677         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
678 
679         // For those bits in B that are known to be zero, we can propagate known
680         // bits from the RHS to V.
681         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
682         Known.One  |= RHSKnown.One  & BKnown.Zero;
683       // assume(~(v | b) = a)
684       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
685                                      m_Value(A))) &&
686                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
687         KnownBits RHSKnown(BitWidth);
688         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
689         KnownBits BKnown(BitWidth);
690         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
691 
692         // For those bits in B that are known to be zero, we can propagate
693         // inverted known bits from the RHS to V.
694         Known.Zero |= RHSKnown.One  & BKnown.Zero;
695         Known.One  |= RHSKnown.Zero & BKnown.Zero;
696       // assume(v ^ b = a)
697       } else if (match(Cmp,
698                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
699                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
700         KnownBits RHSKnown(BitWidth);
701         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
702         KnownBits BKnown(BitWidth);
703         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
704 
705         // For those bits in B that are known to be zero, we can propagate known
706         // bits from the RHS to V. For those bits in B that are known to be one,
707         // we can propagate inverted known bits from the RHS to V.
708         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
709         Known.One  |= RHSKnown.One  & BKnown.Zero;
710         Known.Zero |= RHSKnown.One  & BKnown.One;
711         Known.One  |= RHSKnown.Zero & BKnown.One;
712       // assume(~(v ^ b) = a)
713       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
714                                      m_Value(A))) &&
715                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
716         KnownBits RHSKnown(BitWidth);
717         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
718         KnownBits BKnown(BitWidth);
719         computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
720 
721         // For those bits in B that are known to be zero, we can propagate
722         // inverted known bits from the RHS to V. For those bits in B that are
723         // known to be one, we can propagate known bits from the RHS to V.
724         Known.Zero |= RHSKnown.One  & BKnown.Zero;
725         Known.One  |= RHSKnown.Zero & BKnown.Zero;
726         Known.Zero |= RHSKnown.Zero & BKnown.One;
727         Known.One  |= RHSKnown.One  & BKnown.One;
728       // assume(v << c = a)
729       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
730                                      m_Value(A))) &&
731                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
732         KnownBits RHSKnown(BitWidth);
733         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
734         // For those bits in RHS that are known, we can propagate them to known
735         // bits in V shifted to the right by C.
736         RHSKnown.Zero.lshrInPlace(C);
737         Known.Zero |= RHSKnown.Zero;
738         RHSKnown.One.lshrInPlace(C);
739         Known.One  |= RHSKnown.One;
740       // assume(~(v << c) = a)
741       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
742                                      m_Value(A))) &&
743                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
744         KnownBits RHSKnown(BitWidth);
745         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
746         // For those bits in RHS that are known, we can propagate them inverted
747         // to known bits in V shifted to the right by C.
748         RHSKnown.One.lshrInPlace(C);
749         Known.Zero |= RHSKnown.One;
750         RHSKnown.Zero.lshrInPlace(C);
751         Known.One  |= RHSKnown.Zero;
752       // assume(v >> c = a)
753       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
754                                      m_Value(A))) &&
755                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
756         KnownBits RHSKnown(BitWidth);
757         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
758         // For those bits in RHS that are known, we can propagate them to known
759         // bits in V shifted to the right by C.
760         Known.Zero |= RHSKnown.Zero << C;
761         Known.One  |= RHSKnown.One  << C;
762       // assume(~(v >> c) = a)
763       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
764                                      m_Value(A))) &&
765                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
766         KnownBits RHSKnown(BitWidth);
767         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
768         // For those bits in RHS that are known, we can propagate them inverted
769         // to known bits in V shifted to the right by C.
770         Known.Zero |= RHSKnown.One  << C;
771         Known.One  |= RHSKnown.Zero << C;
772       }
773       break;
774     case ICmpInst::ICMP_SGE:
775       // assume(v >=_s c) where c is non-negative
776       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
777           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
778         KnownBits RHSKnown(BitWidth);
779         computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
780 
781         if (RHSKnown.isNonNegative()) {
782           // We know that the sign bit is zero.
783           Known.makeNonNegative();
784         }
785       }
786       break;
787     case ICmpInst::ICMP_SGT:
788       // assume(v >_s c) where c is at least -1.
789       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
790           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
791         KnownBits RHSKnown(BitWidth);
792         computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
793 
794         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
795           // We know that the sign bit is zero.
796           Known.makeNonNegative();
797         }
798       }
799       break;
800     case ICmpInst::ICMP_SLE:
801       // assume(v <=_s c) where c is negative
802       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
803           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
804         KnownBits RHSKnown(BitWidth);
805         computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
806 
807         if (RHSKnown.isNegative()) {
808           // We know that the sign bit is one.
809           Known.makeNegative();
810         }
811       }
812       break;
813     case ICmpInst::ICMP_SLT:
814       // assume(v <_s c) where c is non-positive
815       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
816           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
817         KnownBits RHSKnown(BitWidth);
818         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
819 
820         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
821           // We know that the sign bit is one.
822           Known.makeNegative();
823         }
824       }
825       break;
826     case ICmpInst::ICMP_ULE:
827       // assume(v <=_u c)
828       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
829           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
830         KnownBits RHSKnown(BitWidth);
831         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
832 
833         // Whatever high bits in c are zero are known to be zero.
834         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
835       }
836       break;
837     case ICmpInst::ICMP_ULT:
838       // assume(v <_u c)
839       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
840           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
841         KnownBits RHSKnown(BitWidth);
842         computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
843 
844         // If the RHS is known zero, then this assumption must be wrong (nothing
845         // is unsigned less than zero). Signal a conflict and get out of here.
846         if (RHSKnown.isZero()) {
847           Known.Zero.setAllBits();
848           Known.One.setAllBits();
849           break;
850         }
851 
852         // Whatever high bits in c are zero are known to be zero (if c is a power
853         // of 2, then one more).
854         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
855           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
856         else
857           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
858       }
859       break;
860     }
861   }
862 
863   // If assumptions conflict with each other or previous known bits, then we
864   // have a logical fallacy. It's possible that the assumption is not reachable,
865   // so this isn't a real bug. On the other hand, the program may have undefined
866   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
867   // clear out the known bits, try to warn the user, and hope for the best.
868   if (Known.Zero.intersects(Known.One)) {
869     Known.resetAll();
870 
871     if (Q.ORE)
872       Q.ORE->emit([&]() {
873         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
874         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
875                                           CxtI)
876                << "Detected conflicting code assumptions. Program may "
877                   "have undefined behavior, or compiler may have "
878                   "internal error.";
879       });
880   }
881 }
882 
883 /// Compute known bits from a shift operator, including those with a
884 /// non-constant shift amount. Known is the output of this function. Known2 is a
885 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
886 /// operator-specific functions that, given the known-zero or known-one bits
887 /// respectively, and a shift amount, compute the implied known-zero or
888 /// known-one bits of the shift operator's result respectively for that shift
889 /// amount. The results from calling KZF and KOF are conservatively combined for
890 /// all permitted shift amounts.
891 static void computeKnownBitsFromShiftOperator(
892     const Operator *I, KnownBits &Known, KnownBits &Known2,
893     unsigned Depth, const Query &Q,
894     function_ref<APInt(const APInt &, unsigned)> KZF,
895     function_ref<APInt(const APInt &, unsigned)> KOF) {
896   unsigned BitWidth = Known.getBitWidth();
897 
898   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
899     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
900 
901     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
902     Known.Zero = KZF(Known.Zero, ShiftAmt);
903     Known.One  = KOF(Known.One, ShiftAmt);
904     // If the known bits conflict, this must be an overflowing left shift, so
905     // the shift result is poison. We can return anything we want. Choose 0 for
906     // the best folding opportunity.
907     if (Known.hasConflict())
908       Known.setAllZero();
909 
910     return;
911   }
912 
913   computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
914 
915   // If the shift amount could be greater than or equal to the bit-width of the
916   // LHS, the value could be poison, but bail out because the check below is
917   // expensive. TODO: Should we just carry on?
918   if ((~Known.Zero).uge(BitWidth)) {
919     Known.resetAll();
920     return;
921   }
922 
923   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
924   // BitWidth > 64 and any upper bits are known, we'll end up returning the
925   // limit value (which implies all bits are known).
926   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
927   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
928 
929   // It would be more-clearly correct to use the two temporaries for this
930   // calculation. Reusing the APInts here to prevent unnecessary allocations.
931   Known.resetAll();
932 
933   // If we know the shifter operand is nonzero, we can sometimes infer more
934   // known bits. However this is expensive to compute, so be lazy about it and
935   // only compute it when absolutely necessary.
936   Optional<bool> ShifterOperandIsNonZero;
937 
938   // Early exit if we can't constrain any well-defined shift amount.
939   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
940       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
941     ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
942     if (!*ShifterOperandIsNonZero)
943       return;
944   }
945 
946   computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
947 
948   Known.Zero.setAllBits();
949   Known.One.setAllBits();
950   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
951     // Combine the shifted known input bits only for those shift amounts
952     // compatible with its known constraints.
953     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
954       continue;
955     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
956       continue;
957     // If we know the shifter is nonzero, we may be able to infer more known
958     // bits. This check is sunk down as far as possible to avoid the expensive
959     // call to isKnownNonZero if the cheaper checks above fail.
960     if (ShiftAmt == 0) {
961       if (!ShifterOperandIsNonZero.hasValue())
962         ShifterOperandIsNonZero =
963             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
964       if (*ShifterOperandIsNonZero)
965         continue;
966     }
967 
968     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
969     Known.One  &= KOF(Known2.One, ShiftAmt);
970   }
971 
972   // If the known bits conflict, the result is poison. Return a 0 and hope the
973   // caller can further optimize that.
974   if (Known.hasConflict())
975     Known.setAllZero();
976 }
977 
978 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
979                                          unsigned Depth, const Query &Q) {
980   unsigned BitWidth = Known.getBitWidth();
981 
982   KnownBits Known2(Known);
983   switch (I->getOpcode()) {
984   default: break;
985   case Instruction::Load:
986     if (MDNode *MD =
987             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
988       computeKnownBitsFromRangeMetadata(*MD, Known);
989     break;
990   case Instruction::And: {
991     // If either the LHS or the RHS are Zero, the result is zero.
992     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
993     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
994 
995     // Output known-1 bits are only known if set in both the LHS & RHS.
996     Known.One &= Known2.One;
997     // Output known-0 are known to be clear if zero in either the LHS | RHS.
998     Known.Zero |= Known2.Zero;
999 
1000     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1001     // here we handle the more general case of adding any odd number by
1002     // matching the form add(x, add(x, y)) where y is odd.
1003     // TODO: This could be generalized to clearing any bit set in y where the
1004     // following bit is known to be unset in y.
1005     Value *X = nullptr, *Y = nullptr;
1006     if (!Known.Zero[0] && !Known.One[0] &&
1007         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1008       Known2.resetAll();
1009       computeKnownBits(Y, Known2, Depth + 1, Q);
1010       if (Known2.countMinTrailingOnes() > 0)
1011         Known.Zero.setBit(0);
1012     }
1013     break;
1014   }
1015   case Instruction::Or:
1016     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1017     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1018 
1019     // Output known-0 bits are only known if clear in both the LHS & RHS.
1020     Known.Zero &= Known2.Zero;
1021     // Output known-1 are known to be set if set in either the LHS | RHS.
1022     Known.One |= Known2.One;
1023     break;
1024   case Instruction::Xor: {
1025     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1026     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1027 
1028     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1029     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1030     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1031     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1032     Known.Zero = std::move(KnownZeroOut);
1033     break;
1034   }
1035   case Instruction::Mul: {
1036     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1037     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1038                         Known2, Depth, Q);
1039     break;
1040   }
1041   case Instruction::UDiv: {
1042     // For the purposes of computing leading zeros we can conservatively
1043     // treat a udiv as a logical right shift by the power of 2 known to
1044     // be less than the denominator.
1045     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1046     unsigned LeadZ = Known2.countMinLeadingZeros();
1047 
1048     Known2.resetAll();
1049     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1050     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1051     if (RHSMaxLeadingZeros != BitWidth)
1052       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1053 
1054     Known.Zero.setHighBits(LeadZ);
1055     break;
1056   }
1057   case Instruction::Select: {
1058     const Value *LHS = nullptr, *RHS = nullptr;
1059     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1060     if (SelectPatternResult::isMinOrMax(SPF)) {
1061       computeKnownBits(RHS, Known, Depth + 1, Q);
1062       computeKnownBits(LHS, Known2, Depth + 1, Q);
1063     } else {
1064       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1065       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1066     }
1067 
1068     unsigned MaxHighOnes = 0;
1069     unsigned MaxHighZeros = 0;
1070     if (SPF == SPF_SMAX) {
1071       // If both sides are negative, the result is negative.
1072       if (Known.isNegative() && Known2.isNegative())
1073         // We can derive a lower bound on the result by taking the max of the
1074         // leading one bits.
1075         MaxHighOnes =
1076             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1077       // If either side is non-negative, the result is non-negative.
1078       else if (Known.isNonNegative() || Known2.isNonNegative())
1079         MaxHighZeros = 1;
1080     } else if (SPF == SPF_SMIN) {
1081       // If both sides are non-negative, the result is non-negative.
1082       if (Known.isNonNegative() && Known2.isNonNegative())
1083         // We can derive an upper bound on the result by taking the max of the
1084         // leading zero bits.
1085         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1086                                 Known2.countMinLeadingZeros());
1087       // If either side is negative, the result is negative.
1088       else if (Known.isNegative() || Known2.isNegative())
1089         MaxHighOnes = 1;
1090     } else if (SPF == SPF_UMAX) {
1091       // We can derive a lower bound on the result by taking the max of the
1092       // leading one bits.
1093       MaxHighOnes =
1094           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1095     } else if (SPF == SPF_UMIN) {
1096       // We can derive an upper bound on the result by taking the max of the
1097       // leading zero bits.
1098       MaxHighZeros =
1099           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1100     } else if (SPF == SPF_ABS) {
1101       // RHS from matchSelectPattern returns the negation part of abs pattern.
1102       // If the negate has an NSW flag we can assume the sign bit of the result
1103       // will be 0 because that makes abs(INT_MIN) undefined.
1104       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1105           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1106         MaxHighZeros = 1;
1107     }
1108 
1109     // Only known if known in both the LHS and RHS.
1110     Known.One &= Known2.One;
1111     Known.Zero &= Known2.Zero;
1112     if (MaxHighOnes > 0)
1113       Known.One.setHighBits(MaxHighOnes);
1114     if (MaxHighZeros > 0)
1115       Known.Zero.setHighBits(MaxHighZeros);
1116     break;
1117   }
1118   case Instruction::FPTrunc:
1119   case Instruction::FPExt:
1120   case Instruction::FPToUI:
1121   case Instruction::FPToSI:
1122   case Instruction::SIToFP:
1123   case Instruction::UIToFP:
1124     break; // Can't work with floating point.
1125   case Instruction::PtrToInt:
1126   case Instruction::IntToPtr:
1127     // Fall through and handle them the same as zext/trunc.
1128     LLVM_FALLTHROUGH;
1129   case Instruction::ZExt:
1130   case Instruction::Trunc: {
1131     Type *SrcTy = I->getOperand(0)->getType();
1132 
1133     unsigned SrcBitWidth;
1134     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1135     // which fall through here.
1136     Type *ScalarTy = SrcTy->getScalarType();
1137     SrcBitWidth = ScalarTy->isPointerTy() ?
1138       Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1139       Q.DL.getTypeSizeInBits(ScalarTy);
1140 
1141     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1142     Known = Known.zextOrTrunc(SrcBitWidth, false);
1143     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1144     Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */);
1145     break;
1146   }
1147   case Instruction::BitCast: {
1148     Type *SrcTy = I->getOperand(0)->getType();
1149     if (SrcTy->isIntOrPtrTy() &&
1150         // TODO: For now, not handling conversions like:
1151         // (bitcast i64 %x to <2 x i32>)
1152         !I->getType()->isVectorTy()) {
1153       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1154       break;
1155     }
1156     break;
1157   }
1158   case Instruction::SExt: {
1159     // Compute the bits in the result that are not present in the input.
1160     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1161 
1162     Known = Known.trunc(SrcBitWidth);
1163     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1164     // If the sign bit of the input is known set or clear, then we know the
1165     // top bits of the result.
1166     Known = Known.sext(BitWidth);
1167     break;
1168   }
1169   case Instruction::Shl: {
1170     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1171     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1172     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1173       APInt KZResult = KnownZero << ShiftAmt;
1174       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1175       // If this shift has "nsw" keyword, then the result is either a poison
1176       // value or has the same sign bit as the first operand.
1177       if (NSW && KnownZero.isSignBitSet())
1178         KZResult.setSignBit();
1179       return KZResult;
1180     };
1181 
1182     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1183       APInt KOResult = KnownOne << ShiftAmt;
1184       if (NSW && KnownOne.isSignBitSet())
1185         KOResult.setSignBit();
1186       return KOResult;
1187     };
1188 
1189     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1190     break;
1191   }
1192   case Instruction::LShr: {
1193     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1194     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1195       APInt KZResult = KnownZero.lshr(ShiftAmt);
1196       // High bits known zero.
1197       KZResult.setHighBits(ShiftAmt);
1198       return KZResult;
1199     };
1200 
1201     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1202       return KnownOne.lshr(ShiftAmt);
1203     };
1204 
1205     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1206     break;
1207   }
1208   case Instruction::AShr: {
1209     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1210     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1211       return KnownZero.ashr(ShiftAmt);
1212     };
1213 
1214     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1215       return KnownOne.ashr(ShiftAmt);
1216     };
1217 
1218     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1219     break;
1220   }
1221   case Instruction::Sub: {
1222     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1223     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1224                            Known, Known2, Depth, Q);
1225     break;
1226   }
1227   case Instruction::Add: {
1228     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1229     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1230                            Known, Known2, Depth, Q);
1231     break;
1232   }
1233   case Instruction::SRem:
1234     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1235       APInt RA = Rem->getValue().abs();
1236       if (RA.isPowerOf2()) {
1237         APInt LowBits = RA - 1;
1238         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1239 
1240         // The low bits of the first operand are unchanged by the srem.
1241         Known.Zero = Known2.Zero & LowBits;
1242         Known.One = Known2.One & LowBits;
1243 
1244         // If the first operand is non-negative or has all low bits zero, then
1245         // the upper bits are all zero.
1246         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1247           Known.Zero |= ~LowBits;
1248 
1249         // If the first operand is negative and not all low bits are zero, then
1250         // the upper bits are all one.
1251         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1252           Known.One |= ~LowBits;
1253 
1254         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1255         break;
1256       }
1257     }
1258 
1259     // The sign bit is the LHS's sign bit, except when the result of the
1260     // remainder is zero.
1261     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1262     // If it's known zero, our sign bit is also zero.
1263     if (Known2.isNonNegative())
1264       Known.makeNonNegative();
1265 
1266     break;
1267   case Instruction::URem: {
1268     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1269       const APInt &RA = Rem->getValue();
1270       if (RA.isPowerOf2()) {
1271         APInt LowBits = (RA - 1);
1272         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1273         Known.Zero |= ~LowBits;
1274         Known.One &= LowBits;
1275         break;
1276       }
1277     }
1278 
1279     // Since the result is less than or equal to either operand, any leading
1280     // zero bits in either operand must also exist in the result.
1281     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1282     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1283 
1284     unsigned Leaders =
1285         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1286     Known.resetAll();
1287     Known.Zero.setHighBits(Leaders);
1288     break;
1289   }
1290 
1291   case Instruction::Alloca: {
1292     const AllocaInst *AI = cast<AllocaInst>(I);
1293     unsigned Align = AI->getAlignment();
1294     if (Align == 0)
1295       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1296 
1297     if (Align > 0)
1298       Known.Zero.setLowBits(countTrailingZeros(Align));
1299     break;
1300   }
1301   case Instruction::GetElementPtr: {
1302     // Analyze all of the subscripts of this getelementptr instruction
1303     // to determine if we can prove known low zero bits.
1304     KnownBits LocalKnown(BitWidth);
1305     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1306     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1307 
1308     gep_type_iterator GTI = gep_type_begin(I);
1309     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1310       Value *Index = I->getOperand(i);
1311       if (StructType *STy = GTI.getStructTypeOrNull()) {
1312         // Handle struct member offset arithmetic.
1313 
1314         // Handle case when index is vector zeroinitializer
1315         Constant *CIndex = cast<Constant>(Index);
1316         if (CIndex->isZeroValue())
1317           continue;
1318 
1319         if (CIndex->getType()->isVectorTy())
1320           Index = CIndex->getSplatValue();
1321 
1322         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1323         const StructLayout *SL = Q.DL.getStructLayout(STy);
1324         uint64_t Offset = SL->getElementOffset(Idx);
1325         TrailZ = std::min<unsigned>(TrailZ,
1326                                     countTrailingZeros(Offset));
1327       } else {
1328         // Handle array index arithmetic.
1329         Type *IndexedTy = GTI.getIndexedType();
1330         if (!IndexedTy->isSized()) {
1331           TrailZ = 0;
1332           break;
1333         }
1334         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1335         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1336         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1337         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1338         TrailZ = std::min(TrailZ,
1339                           unsigned(countTrailingZeros(TypeSize) +
1340                                    LocalKnown.countMinTrailingZeros()));
1341       }
1342     }
1343 
1344     Known.Zero.setLowBits(TrailZ);
1345     break;
1346   }
1347   case Instruction::PHI: {
1348     const PHINode *P = cast<PHINode>(I);
1349     // Handle the case of a simple two-predecessor recurrence PHI.
1350     // There's a lot more that could theoretically be done here, but
1351     // this is sufficient to catch some interesting cases.
1352     if (P->getNumIncomingValues() == 2) {
1353       for (unsigned i = 0; i != 2; ++i) {
1354         Value *L = P->getIncomingValue(i);
1355         Value *R = P->getIncomingValue(!i);
1356         Operator *LU = dyn_cast<Operator>(L);
1357         if (!LU)
1358           continue;
1359         unsigned Opcode = LU->getOpcode();
1360         // Check for operations that have the property that if
1361         // both their operands have low zero bits, the result
1362         // will have low zero bits.
1363         if (Opcode == Instruction::Add ||
1364             Opcode == Instruction::Sub ||
1365             Opcode == Instruction::And ||
1366             Opcode == Instruction::Or ||
1367             Opcode == Instruction::Mul) {
1368           Value *LL = LU->getOperand(0);
1369           Value *LR = LU->getOperand(1);
1370           // Find a recurrence.
1371           if (LL == I)
1372             L = LR;
1373           else if (LR == I)
1374             L = LL;
1375           else
1376             continue; // Check for recurrence with L and R flipped.
1377           // Ok, we have a PHI of the form L op= R. Check for low
1378           // zero bits.
1379           computeKnownBits(R, Known2, Depth + 1, Q);
1380 
1381           // We need to take the minimum number of known bits
1382           KnownBits Known3(Known);
1383           computeKnownBits(L, Known3, Depth + 1, Q);
1384 
1385           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1386                                          Known3.countMinTrailingZeros()));
1387 
1388           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1389           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1390             // If initial value of recurrence is nonnegative, and we are adding
1391             // a nonnegative number with nsw, the result can only be nonnegative
1392             // or poison value regardless of the number of times we execute the
1393             // add in phi recurrence. If initial value is negative and we are
1394             // adding a negative number with nsw, the result can only be
1395             // negative or poison value. Similar arguments apply to sub and mul.
1396             //
1397             // (add non-negative, non-negative) --> non-negative
1398             // (add negative, negative) --> negative
1399             if (Opcode == Instruction::Add) {
1400               if (Known2.isNonNegative() && Known3.isNonNegative())
1401                 Known.makeNonNegative();
1402               else if (Known2.isNegative() && Known3.isNegative())
1403                 Known.makeNegative();
1404             }
1405 
1406             // (sub nsw non-negative, negative) --> non-negative
1407             // (sub nsw negative, non-negative) --> negative
1408             else if (Opcode == Instruction::Sub && LL == I) {
1409               if (Known2.isNonNegative() && Known3.isNegative())
1410                 Known.makeNonNegative();
1411               else if (Known2.isNegative() && Known3.isNonNegative())
1412                 Known.makeNegative();
1413             }
1414 
1415             // (mul nsw non-negative, non-negative) --> non-negative
1416             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1417                      Known3.isNonNegative())
1418               Known.makeNonNegative();
1419           }
1420 
1421           break;
1422         }
1423       }
1424     }
1425 
1426     // Unreachable blocks may have zero-operand PHI nodes.
1427     if (P->getNumIncomingValues() == 0)
1428       break;
1429 
1430     // Otherwise take the unions of the known bit sets of the operands,
1431     // taking conservative care to avoid excessive recursion.
1432     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1433       // Skip if every incoming value references to ourself.
1434       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1435         break;
1436 
1437       Known.Zero.setAllBits();
1438       Known.One.setAllBits();
1439       for (Value *IncValue : P->incoming_values()) {
1440         // Skip direct self references.
1441         if (IncValue == P) continue;
1442 
1443         Known2 = KnownBits(BitWidth);
1444         // Recurse, but cap the recursion to one level, because we don't
1445         // want to waste time spinning around in loops.
1446         computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1447         Known.Zero &= Known2.Zero;
1448         Known.One &= Known2.One;
1449         // If all bits have been ruled out, there's no need to check
1450         // more operands.
1451         if (!Known.Zero && !Known.One)
1452           break;
1453       }
1454     }
1455     break;
1456   }
1457   case Instruction::Call:
1458   case Instruction::Invoke:
1459     // If range metadata is attached to this call, set known bits from that,
1460     // and then intersect with known bits based on other properties of the
1461     // function.
1462     if (MDNode *MD =
1463             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1464       computeKnownBitsFromRangeMetadata(*MD, Known);
1465     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1466       computeKnownBits(RV, Known2, Depth + 1, Q);
1467       Known.Zero |= Known2.Zero;
1468       Known.One |= Known2.One;
1469     }
1470     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1471       switch (II->getIntrinsicID()) {
1472       default: break;
1473       case Intrinsic::bitreverse:
1474         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1475         Known.Zero |= Known2.Zero.reverseBits();
1476         Known.One |= Known2.One.reverseBits();
1477         break;
1478       case Intrinsic::bswap:
1479         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1480         Known.Zero |= Known2.Zero.byteSwap();
1481         Known.One |= Known2.One.byteSwap();
1482         break;
1483       case Intrinsic::ctlz: {
1484         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1485         // If we have a known 1, its position is our upper bound.
1486         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1487         // If this call is undefined for 0, the result will be less than 2^n.
1488         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1489           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1490         unsigned LowBits = Log2_32(PossibleLZ)+1;
1491         Known.Zero.setBitsFrom(LowBits);
1492         break;
1493       }
1494       case Intrinsic::cttz: {
1495         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1496         // If we have a known 1, its position is our upper bound.
1497         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1498         // If this call is undefined for 0, the result will be less than 2^n.
1499         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1500           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1501         unsigned LowBits = Log2_32(PossibleTZ)+1;
1502         Known.Zero.setBitsFrom(LowBits);
1503         break;
1504       }
1505       case Intrinsic::ctpop: {
1506         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1507         // We can bound the space the count needs.  Also, bits known to be zero
1508         // can't contribute to the population.
1509         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1510         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1511         Known.Zero.setBitsFrom(LowBits);
1512         // TODO: we could bound KnownOne using the lower bound on the number
1513         // of bits which might be set provided by popcnt KnownOne2.
1514         break;
1515       }
1516       case Intrinsic::fshr:
1517       case Intrinsic::fshl: {
1518         const APInt *SA;
1519         if (!match(I->getOperand(2), m_APInt(SA)))
1520           break;
1521 
1522         // Normalize to funnel shift left.
1523         uint64_t ShiftAmt = SA->urem(BitWidth);
1524         if (II->getIntrinsicID() == Intrinsic::fshr)
1525           ShiftAmt = BitWidth - ShiftAmt;
1526 
1527         KnownBits Known3(Known);
1528         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1529         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1530 
1531         Known.Zero =
1532             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1533         Known.One =
1534             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1535         break;
1536       }
1537       case Intrinsic::uadd_sat:
1538       case Intrinsic::usub_sat: {
1539         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1540         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1541         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1542 
1543         // Add: Leading ones of either operand are preserved.
1544         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1545         // as leading zeros in the result.
1546         unsigned LeadingKnown;
1547         if (IsAdd)
1548           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1549                                   Known2.countMinLeadingOnes());
1550         else
1551           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1552                                   Known2.countMinLeadingOnes());
1553 
1554         Known = KnownBits::computeForAddSub(
1555             IsAdd, /* NSW */ false, Known, Known2);
1556 
1557         // We select between the operation result and all-ones/zero
1558         // respectively, so we can preserve known ones/zeros.
1559         if (IsAdd) {
1560           Known.One.setHighBits(LeadingKnown);
1561           Known.Zero.clearAllBits();
1562         } else {
1563           Known.Zero.setHighBits(LeadingKnown);
1564           Known.One.clearAllBits();
1565         }
1566         break;
1567       }
1568       case Intrinsic::x86_sse42_crc32_64_64:
1569         Known.Zero.setBitsFrom(32);
1570         break;
1571       }
1572     }
1573     break;
1574   case Instruction::ExtractElement:
1575     // Look through extract element. At the moment we keep this simple and skip
1576     // tracking the specific element. But at least we might find information
1577     // valid for all elements of the vector (for example if vector is sign
1578     // extended, shifted, etc).
1579     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1580     break;
1581   case Instruction::ExtractValue:
1582     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1583       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1584       if (EVI->getNumIndices() != 1) break;
1585       if (EVI->getIndices()[0] == 0) {
1586         switch (II->getIntrinsicID()) {
1587         default: break;
1588         case Intrinsic::uadd_with_overflow:
1589         case Intrinsic::sadd_with_overflow:
1590           computeKnownBitsAddSub(true, II->getArgOperand(0),
1591                                  II->getArgOperand(1), false, Known, Known2,
1592                                  Depth, Q);
1593           break;
1594         case Intrinsic::usub_with_overflow:
1595         case Intrinsic::ssub_with_overflow:
1596           computeKnownBitsAddSub(false, II->getArgOperand(0),
1597                                  II->getArgOperand(1), false, Known, Known2,
1598                                  Depth, Q);
1599           break;
1600         case Intrinsic::umul_with_overflow:
1601         case Intrinsic::smul_with_overflow:
1602           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1603                               Known, Known2, Depth, Q);
1604           break;
1605         }
1606       }
1607     }
1608   }
1609 }
1610 
1611 /// Determine which bits of V are known to be either zero or one and return
1612 /// them.
1613 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1614   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1615   computeKnownBits(V, Known, Depth, Q);
1616   return Known;
1617 }
1618 
1619 /// Determine which bits of V are known to be either zero or one and return
1620 /// them in the Known bit set.
1621 ///
1622 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1623 /// we cannot optimize based on the assumption that it is zero without changing
1624 /// it to be an explicit zero.  If we don't change it to zero, other code could
1625 /// optimized based on the contradictory assumption that it is non-zero.
1626 /// Because instcombine aggressively folds operations with undef args anyway,
1627 /// this won't lose us code quality.
1628 ///
1629 /// This function is defined on values with integer type, values with pointer
1630 /// type, and vectors of integers.  In the case
1631 /// where V is a vector, known zero, and known one values are the
1632 /// same width as the vector element, and the bit is set only if it is true
1633 /// for all of the elements in the vector.
1634 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1635                       const Query &Q) {
1636   assert(V && "No Value?");
1637   assert(Depth <= MaxDepth && "Limit Search Depth");
1638   unsigned BitWidth = Known.getBitWidth();
1639 
1640   assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1641           V->getType()->isPtrOrPtrVectorTy()) &&
1642          "Not integer or pointer type!");
1643 
1644   Type *ScalarTy = V->getType()->getScalarType();
1645   unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1646     Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1647   assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1648   (void)BitWidth;
1649   (void)ExpectedWidth;
1650 
1651   const APInt *C;
1652   if (match(V, m_APInt(C))) {
1653     // We know all of the bits for a scalar constant or a splat vector constant!
1654     Known.One = *C;
1655     Known.Zero = ~Known.One;
1656     return;
1657   }
1658   // Null and aggregate-zero are all-zeros.
1659   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1660     Known.setAllZero();
1661     return;
1662   }
1663   // Handle a constant vector by taking the intersection of the known bits of
1664   // each element.
1665   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1666     // We know that CDS must be a vector of integers. Take the intersection of
1667     // each element.
1668     Known.Zero.setAllBits(); Known.One.setAllBits();
1669     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1670       APInt Elt = CDS->getElementAsAPInt(i);
1671       Known.Zero &= ~Elt;
1672       Known.One &= Elt;
1673     }
1674     return;
1675   }
1676 
1677   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1678     // We know that CV must be a vector of integers. Take the intersection of
1679     // each element.
1680     Known.Zero.setAllBits(); Known.One.setAllBits();
1681     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1682       Constant *Element = CV->getAggregateElement(i);
1683       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1684       if (!ElementCI) {
1685         Known.resetAll();
1686         return;
1687       }
1688       const APInt &Elt = ElementCI->getValue();
1689       Known.Zero &= ~Elt;
1690       Known.One &= Elt;
1691     }
1692     return;
1693   }
1694 
1695   // Start out not knowing anything.
1696   Known.resetAll();
1697 
1698   // We can't imply anything about undefs.
1699   if (isa<UndefValue>(V))
1700     return;
1701 
1702   // There's no point in looking through other users of ConstantData for
1703   // assumptions.  Confirm that we've handled them all.
1704   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1705 
1706   // Limit search depth.
1707   // All recursive calls that increase depth must come after this.
1708   if (Depth == MaxDepth)
1709     return;
1710 
1711   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1712   // the bits of its aliasee.
1713   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1714     if (!GA->isInterposable())
1715       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1716     return;
1717   }
1718 
1719   if (const Operator *I = dyn_cast<Operator>(V))
1720     computeKnownBitsFromOperator(I, Known, Depth, Q);
1721 
1722   // Aligned pointers have trailing zeros - refine Known.Zero set
1723   if (V->getType()->isPointerTy()) {
1724     const MaybeAlign Align = V->getPointerAlignment(Q.DL);
1725     if (Align)
1726       Known.Zero.setLowBits(countTrailingZeros(Align->value()));
1727   }
1728 
1729   // computeKnownBitsFromAssume strictly refines Known.
1730   // Therefore, we run them after computeKnownBitsFromOperator.
1731 
1732   // Check whether a nearby assume intrinsic can determine some known bits.
1733   computeKnownBitsFromAssume(V, Known, Depth, Q);
1734 
1735   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1736 }
1737 
1738 /// Return true if the given value is known to have exactly one
1739 /// bit set when defined. For vectors return true if every element is known to
1740 /// be a power of two when defined. Supports values with integer or pointer
1741 /// types and vectors of integers.
1742 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1743                             const Query &Q) {
1744   assert(Depth <= MaxDepth && "Limit Search Depth");
1745 
1746   // Attempt to match against constants.
1747   if (OrZero && match(V, m_Power2OrZero()))
1748       return true;
1749   if (match(V, m_Power2()))
1750       return true;
1751 
1752   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1753   // it is shifted off the end then the result is undefined.
1754   if (match(V, m_Shl(m_One(), m_Value())))
1755     return true;
1756 
1757   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1758   // the bottom.  If it is shifted off the bottom then the result is undefined.
1759   if (match(V, m_LShr(m_SignMask(), m_Value())))
1760     return true;
1761 
1762   // The remaining tests are all recursive, so bail out if we hit the limit.
1763   if (Depth++ == MaxDepth)
1764     return false;
1765 
1766   Value *X = nullptr, *Y = nullptr;
1767   // A shift left or a logical shift right of a power of two is a power of two
1768   // or zero.
1769   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1770                  match(V, m_LShr(m_Value(X), m_Value()))))
1771     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1772 
1773   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1774     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1775 
1776   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1777     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1778            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1779 
1780   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1781     // A power of two and'd with anything is a power of two or zero.
1782     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1783         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1784       return true;
1785     // X & (-X) is always a power of two or zero.
1786     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1787       return true;
1788     return false;
1789   }
1790 
1791   // Adding a power-of-two or zero to the same power-of-two or zero yields
1792   // either the original power-of-two, a larger power-of-two or zero.
1793   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1794     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1795     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1796         Q.IIQ.hasNoSignedWrap(VOBO)) {
1797       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1798           match(X, m_And(m_Value(), m_Specific(Y))))
1799         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1800           return true;
1801       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1802           match(Y, m_And(m_Value(), m_Specific(X))))
1803         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1804           return true;
1805 
1806       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1807       KnownBits LHSBits(BitWidth);
1808       computeKnownBits(X, LHSBits, Depth, Q);
1809 
1810       KnownBits RHSBits(BitWidth);
1811       computeKnownBits(Y, RHSBits, Depth, Q);
1812       // If i8 V is a power of two or zero:
1813       //  ZeroBits: 1 1 1 0 1 1 1 1
1814       // ~ZeroBits: 0 0 0 1 0 0 0 0
1815       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1816         // If OrZero isn't set, we cannot give back a zero result.
1817         // Make sure either the LHS or RHS has a bit set.
1818         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1819           return true;
1820     }
1821   }
1822 
1823   // An exact divide or right shift can only shift off zero bits, so the result
1824   // is a power of two only if the first operand is a power of two and not
1825   // copying a sign bit (sdiv int_min, 2).
1826   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1827       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1828     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1829                                   Depth, Q);
1830   }
1831 
1832   return false;
1833 }
1834 
1835 /// Test whether a GEP's result is known to be non-null.
1836 ///
1837 /// Uses properties inherent in a GEP to try to determine whether it is known
1838 /// to be non-null.
1839 ///
1840 /// Currently this routine does not support vector GEPs.
1841 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1842                               const Query &Q) {
1843   const Function *F = nullptr;
1844   if (const Instruction *I = dyn_cast<Instruction>(GEP))
1845     F = I->getFunction();
1846 
1847   if (!GEP->isInBounds() ||
1848       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1849     return false;
1850 
1851   // FIXME: Support vector-GEPs.
1852   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1853 
1854   // If the base pointer is non-null, we cannot walk to a null address with an
1855   // inbounds GEP in address space zero.
1856   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1857     return true;
1858 
1859   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1860   // If so, then the GEP cannot produce a null pointer, as doing so would
1861   // inherently violate the inbounds contract within address space zero.
1862   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1863        GTI != GTE; ++GTI) {
1864     // Struct types are easy -- they must always be indexed by a constant.
1865     if (StructType *STy = GTI.getStructTypeOrNull()) {
1866       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1867       unsigned ElementIdx = OpC->getZExtValue();
1868       const StructLayout *SL = Q.DL.getStructLayout(STy);
1869       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1870       if (ElementOffset > 0)
1871         return true;
1872       continue;
1873     }
1874 
1875     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1876     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1877       continue;
1878 
1879     // Fast path the constant operand case both for efficiency and so we don't
1880     // increment Depth when just zipping down an all-constant GEP.
1881     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1882       if (!OpC->isZero())
1883         return true;
1884       continue;
1885     }
1886 
1887     // We post-increment Depth here because while isKnownNonZero increments it
1888     // as well, when we pop back up that increment won't persist. We don't want
1889     // to recurse 10k times just because we have 10k GEP operands. We don't
1890     // bail completely out because we want to handle constant GEPs regardless
1891     // of depth.
1892     if (Depth++ >= MaxDepth)
1893       continue;
1894 
1895     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1896       return true;
1897   }
1898 
1899   return false;
1900 }
1901 
1902 static bool isKnownNonNullFromDominatingCondition(const Value *V,
1903                                                   const Instruction *CtxI,
1904                                                   const DominatorTree *DT) {
1905   if (isa<Constant>(V))
1906     return false;
1907 
1908   if (!CtxI || !DT)
1909     return false;
1910 
1911   unsigned NumUsesExplored = 0;
1912   for (auto *U : V->users()) {
1913     // Avoid massive lists
1914     if (NumUsesExplored >= DomConditionsMaxUses)
1915       break;
1916     NumUsesExplored++;
1917 
1918     // If the value is used as an argument to a call or invoke, then argument
1919     // attributes may provide an answer about null-ness.
1920     if (auto CS = ImmutableCallSite(U))
1921       if (auto *CalledFunc = CS.getCalledFunction())
1922         for (const Argument &Arg : CalledFunc->args())
1923           if (CS.getArgOperand(Arg.getArgNo()) == V &&
1924               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1925             return true;
1926 
1927     // Consider only compare instructions uniquely controlling a branch
1928     CmpInst::Predicate Pred;
1929     if (!match(const_cast<User *>(U),
1930                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1931         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1932       continue;
1933 
1934     SmallVector<const User *, 4> WorkList;
1935     SmallPtrSet<const User *, 4> Visited;
1936     for (auto *CmpU : U->users()) {
1937       assert(WorkList.empty() && "Should be!");
1938       if (Visited.insert(CmpU).second)
1939         WorkList.push_back(CmpU);
1940 
1941       while (!WorkList.empty()) {
1942         auto *Curr = WorkList.pop_back_val();
1943 
1944         // If a user is an AND, add all its users to the work list. We only
1945         // propagate "pred != null" condition through AND because it is only
1946         // correct to assume that all conditions of AND are met in true branch.
1947         // TODO: Support similar logic of OR and EQ predicate?
1948         if (Pred == ICmpInst::ICMP_NE)
1949           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1950             if (BO->getOpcode() == Instruction::And) {
1951               for (auto *BOU : BO->users())
1952                 if (Visited.insert(BOU).second)
1953                   WorkList.push_back(BOU);
1954               continue;
1955             }
1956 
1957         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1958           assert(BI->isConditional() && "uses a comparison!");
1959 
1960           BasicBlock *NonNullSuccessor =
1961               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1962           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1963           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1964             return true;
1965         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1966                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
1967           return true;
1968         }
1969       }
1970     }
1971   }
1972 
1973   return false;
1974 }
1975 
1976 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1977 /// ensure that the value it's attached to is never Value?  'RangeType' is
1978 /// is the type of the value described by the range.
1979 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1980   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1981   assert(NumRanges >= 1);
1982   for (unsigned i = 0; i < NumRanges; ++i) {
1983     ConstantInt *Lower =
1984         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1985     ConstantInt *Upper =
1986         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1987     ConstantRange Range(Lower->getValue(), Upper->getValue());
1988     if (Range.contains(Value))
1989       return false;
1990   }
1991   return true;
1992 }
1993 
1994 /// Return true if the given value is known to be non-zero when defined. For
1995 /// vectors, return true if every element is known to be non-zero when
1996 /// defined. For pointers, if the context instruction and dominator tree are
1997 /// specified, perform context-sensitive analysis and return true if the
1998 /// pointer couldn't possibly be null at the specified instruction.
1999 /// Supports values with integer or pointer type and vectors of integers.
2000 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
2001   if (auto *C = dyn_cast<Constant>(V)) {
2002     if (C->isNullValue())
2003       return false;
2004     if (isa<ConstantInt>(C))
2005       // Must be non-zero due to null test above.
2006       return true;
2007 
2008     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2009       // See the comment for IntToPtr/PtrToInt instructions below.
2010       if (CE->getOpcode() == Instruction::IntToPtr ||
2011           CE->getOpcode() == Instruction::PtrToInt)
2012         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2013             Q.DL.getTypeSizeInBits(CE->getType()))
2014           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2015     }
2016 
2017     // For constant vectors, check that all elements are undefined or known
2018     // non-zero to determine that the whole vector is known non-zero.
2019     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
2020       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2021         Constant *Elt = C->getAggregateElement(i);
2022         if (!Elt || Elt->isNullValue())
2023           return false;
2024         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2025           return false;
2026       }
2027       return true;
2028     }
2029 
2030     // A global variable in address space 0 is non null unless extern weak
2031     // or an absolute symbol reference. Other address spaces may have null as a
2032     // valid address for a global, so we can't assume anything.
2033     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2034       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2035           GV->getType()->getAddressSpace() == 0)
2036         return true;
2037     } else
2038       return false;
2039   }
2040 
2041   if (auto *I = dyn_cast<Instruction>(V)) {
2042     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2043       // If the possible ranges don't contain zero, then the value is
2044       // definitely non-zero.
2045       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2046         const APInt ZeroValue(Ty->getBitWidth(), 0);
2047         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2048           return true;
2049       }
2050     }
2051   }
2052 
2053   // Some of the tests below are recursive, so bail out if we hit the limit.
2054   if (Depth++ >= MaxDepth)
2055     return false;
2056 
2057   // Check for pointer simplifications.
2058   if (V->getType()->isPointerTy()) {
2059     // Alloca never returns null, malloc might.
2060     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2061       return true;
2062 
2063     // A byval, inalloca, or nonnull argument is never null.
2064     if (const Argument *A = dyn_cast<Argument>(V))
2065       if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
2066         return true;
2067 
2068     // A Load tagged with nonnull metadata is never null.
2069     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2070       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2071         return true;
2072 
2073     if (const auto *Call = dyn_cast<CallBase>(V)) {
2074       if (Call->isReturnNonNull())
2075         return true;
2076       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2077         return isKnownNonZero(RP, Depth, Q);
2078     }
2079   }
2080 
2081   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2082     return true;
2083 
2084   // Check for recursive pointer simplifications.
2085   if (V->getType()->isPointerTy()) {
2086     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2087     // do not alter the value, or at least not the nullness property of the
2088     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2089     //
2090     // Note that we have to take special care to avoid looking through
2091     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2092     // as casts that can alter the value, e.g., AddrSpaceCasts.
2093     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2094       if (isGEPKnownNonNull(GEP, Depth, Q))
2095         return true;
2096 
2097     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2098       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2099 
2100     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2101       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2102           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2103         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2104   }
2105 
2106   // Similar to int2ptr above, we can look through ptr2int here if the cast
2107   // is a no-op or an extend and not a truncate.
2108   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2109     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2110         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2111       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2112 
2113   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2114 
2115   // X | Y != 0 if X != 0 or Y != 0.
2116   Value *X = nullptr, *Y = nullptr;
2117   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2118     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2119 
2120   // ext X != 0 if X != 0.
2121   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2122     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2123 
2124   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2125   // if the lowest bit is shifted off the end.
2126   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2127     // shl nuw can't remove any non-zero bits.
2128     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2129     if (Q.IIQ.hasNoUnsignedWrap(BO))
2130       return isKnownNonZero(X, Depth, Q);
2131 
2132     KnownBits Known(BitWidth);
2133     computeKnownBits(X, Known, Depth, Q);
2134     if (Known.One[0])
2135       return true;
2136   }
2137   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2138   // defined if the sign bit is shifted off the end.
2139   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2140     // shr exact can only shift out zero bits.
2141     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2142     if (BO->isExact())
2143       return isKnownNonZero(X, Depth, Q);
2144 
2145     KnownBits Known = computeKnownBits(X, Depth, Q);
2146     if (Known.isNegative())
2147       return true;
2148 
2149     // If the shifter operand is a constant, and all of the bits shifted
2150     // out are known to be zero, and X is known non-zero then at least one
2151     // non-zero bit must remain.
2152     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2153       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2154       // Is there a known one in the portion not shifted out?
2155       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2156         return true;
2157       // Are all the bits to be shifted out known zero?
2158       if (Known.countMinTrailingZeros() >= ShiftVal)
2159         return isKnownNonZero(X, Depth, Q);
2160     }
2161   }
2162   // div exact can only produce a zero if the dividend is zero.
2163   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2164     return isKnownNonZero(X, Depth, Q);
2165   }
2166   // X + Y.
2167   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2168     KnownBits XKnown = computeKnownBits(X, Depth, Q);
2169     KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2170 
2171     // If X and Y are both non-negative (as signed values) then their sum is not
2172     // zero unless both X and Y are zero.
2173     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2174       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2175         return true;
2176 
2177     // If X and Y are both negative (as signed values) then their sum is not
2178     // zero unless both X and Y equal INT_MIN.
2179     if (XKnown.isNegative() && YKnown.isNegative()) {
2180       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2181       // The sign bit of X is set.  If some other bit is set then X is not equal
2182       // to INT_MIN.
2183       if (XKnown.One.intersects(Mask))
2184         return true;
2185       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2186       // to INT_MIN.
2187       if (YKnown.One.intersects(Mask))
2188         return true;
2189     }
2190 
2191     // The sum of a non-negative number and a power of two is not zero.
2192     if (XKnown.isNonNegative() &&
2193         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2194       return true;
2195     if (YKnown.isNonNegative() &&
2196         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2197       return true;
2198   }
2199   // X * Y.
2200   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2201     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2202     // If X and Y are non-zero then so is X * Y as long as the multiplication
2203     // does not overflow.
2204     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2205         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2206       return true;
2207   }
2208   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2209   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2210     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2211         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2212       return true;
2213   }
2214   // PHI
2215   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2216     // Try and detect a recurrence that monotonically increases from a
2217     // starting value, as these are common as induction variables.
2218     if (PN->getNumIncomingValues() == 2) {
2219       Value *Start = PN->getIncomingValue(0);
2220       Value *Induction = PN->getIncomingValue(1);
2221       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2222         std::swap(Start, Induction);
2223       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2224         if (!C->isZero() && !C->isNegative()) {
2225           ConstantInt *X;
2226           if (Q.IIQ.UseInstrInfo &&
2227               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2228                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2229               !X->isNegative())
2230             return true;
2231         }
2232       }
2233     }
2234     // Check if all incoming values are non-zero constant.
2235     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2236       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2237     });
2238     if (AllNonZeroConstants)
2239       return true;
2240   }
2241 
2242   KnownBits Known(BitWidth);
2243   computeKnownBits(V, Known, Depth, Q);
2244   return Known.One != 0;
2245 }
2246 
2247 /// Return true if V2 == V1 + X, where X is known non-zero.
2248 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2249   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2250   if (!BO || BO->getOpcode() != Instruction::Add)
2251     return false;
2252   Value *Op = nullptr;
2253   if (V2 == BO->getOperand(0))
2254     Op = BO->getOperand(1);
2255   else if (V2 == BO->getOperand(1))
2256     Op = BO->getOperand(0);
2257   else
2258     return false;
2259   return isKnownNonZero(Op, 0, Q);
2260 }
2261 
2262 /// Return true if it is known that V1 != V2.
2263 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2264   if (V1 == V2)
2265     return false;
2266   if (V1->getType() != V2->getType())
2267     // We can't look through casts yet.
2268     return false;
2269   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2270     return true;
2271 
2272   if (V1->getType()->isIntOrIntVectorTy()) {
2273     // Are any known bits in V1 contradictory to known bits in V2? If V1
2274     // has a known zero where V2 has a known one, they must not be equal.
2275     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2276     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2277 
2278     if (Known1.Zero.intersects(Known2.One) ||
2279         Known2.Zero.intersects(Known1.One))
2280       return true;
2281   }
2282   return false;
2283 }
2284 
2285 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2286 /// simplify operations downstream. Mask is known to be zero for bits that V
2287 /// cannot have.
2288 ///
2289 /// This function is defined on values with integer type, values with pointer
2290 /// type, and vectors of integers.  In the case
2291 /// where V is a vector, the mask, known zero, and known one values are the
2292 /// same width as the vector element, and the bit is set only if it is true
2293 /// for all of the elements in the vector.
2294 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2295                        const Query &Q) {
2296   KnownBits Known(Mask.getBitWidth());
2297   computeKnownBits(V, Known, Depth, Q);
2298   return Mask.isSubsetOf(Known.Zero);
2299 }
2300 
2301 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2302 // Returns the input and lower/upper bounds.
2303 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2304                                 const APInt *&CLow, const APInt *&CHigh) {
2305   assert(isa<Operator>(Select) &&
2306          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2307          "Input should be a Select!");
2308 
2309   const Value *LHS = nullptr, *RHS = nullptr;
2310   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2311   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2312     return false;
2313 
2314   if (!match(RHS, m_APInt(CLow)))
2315     return false;
2316 
2317   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2318   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2319   if (getInverseMinMaxFlavor(SPF) != SPF2)
2320     return false;
2321 
2322   if (!match(RHS2, m_APInt(CHigh)))
2323     return false;
2324 
2325   if (SPF == SPF_SMIN)
2326     std::swap(CLow, CHigh);
2327 
2328   In = LHS2;
2329   return CLow->sle(*CHigh);
2330 }
2331 
2332 /// For vector constants, loop over the elements and find the constant with the
2333 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2334 /// or if any element was not analyzed; otherwise, return the count for the
2335 /// element with the minimum number of sign bits.
2336 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2337                                                  unsigned TyBits) {
2338   const auto *CV = dyn_cast<Constant>(V);
2339   if (!CV || !CV->getType()->isVectorTy())
2340     return 0;
2341 
2342   unsigned MinSignBits = TyBits;
2343   unsigned NumElts = CV->getType()->getVectorNumElements();
2344   for (unsigned i = 0; i != NumElts; ++i) {
2345     // If we find a non-ConstantInt, bail out.
2346     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2347     if (!Elt)
2348       return 0;
2349 
2350     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2351   }
2352 
2353   return MinSignBits;
2354 }
2355 
2356 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2357                                        const Query &Q);
2358 
2359 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2360                                    const Query &Q) {
2361   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2362   assert(Result > 0 && "At least one sign bit needs to be present!");
2363   return Result;
2364 }
2365 
2366 /// Return the number of times the sign bit of the register is replicated into
2367 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2368 /// (itself), but other cases can give us information. For example, immediately
2369 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2370 /// other, so we return 3. For vectors, return the number of sign bits for the
2371 /// vector element with the minimum number of known sign bits.
2372 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2373                                        const Query &Q) {
2374   assert(Depth <= MaxDepth && "Limit Search Depth");
2375 
2376   // We return the minimum number of sign bits that are guaranteed to be present
2377   // in V, so for undef we have to conservatively return 1.  We don't have the
2378   // same behavior for poison though -- that's a FIXME today.
2379 
2380   Type *ScalarTy = V->getType()->getScalarType();
2381   unsigned TyBits = ScalarTy->isPointerTy() ?
2382     Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2383     Q.DL.getTypeSizeInBits(ScalarTy);
2384 
2385   unsigned Tmp, Tmp2;
2386   unsigned FirstAnswer = 1;
2387 
2388   // Note that ConstantInt is handled by the general computeKnownBits case
2389   // below.
2390 
2391   if (Depth == MaxDepth)
2392     return 1;  // Limit search depth.
2393 
2394   if (auto *U = dyn_cast<Operator>(V)) {
2395     switch (Operator::getOpcode(V)) {
2396     default: break;
2397     case Instruction::SExt:
2398       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2399       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2400 
2401     case Instruction::SDiv: {
2402       const APInt *Denominator;
2403       // sdiv X, C -> adds log(C) sign bits.
2404       if (match(U->getOperand(1), m_APInt(Denominator))) {
2405 
2406         // Ignore non-positive denominator.
2407         if (!Denominator->isStrictlyPositive())
2408           break;
2409 
2410         // Calculate the incoming numerator bits.
2411         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2412 
2413         // Add floor(log(C)) bits to the numerator bits.
2414         return std::min(TyBits, NumBits + Denominator->logBase2());
2415       }
2416       break;
2417     }
2418 
2419     case Instruction::SRem: {
2420       const APInt *Denominator;
2421       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2422       // positive constant.  This let us put a lower bound on the number of sign
2423       // bits.
2424       if (match(U->getOperand(1), m_APInt(Denominator))) {
2425 
2426         // Ignore non-positive denominator.
2427         if (!Denominator->isStrictlyPositive())
2428           break;
2429 
2430         // Calculate the incoming numerator bits. SRem by a positive constant
2431         // can't lower the number of sign bits.
2432         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2433 
2434         // Calculate the leading sign bit constraints by examining the
2435         // denominator.  Given that the denominator is positive, there are two
2436         // cases:
2437         //
2438         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2439         //     (1 << ceilLogBase2(C)).
2440         //
2441         //  2. the numerator is negative. Then the result range is (-C,0] and
2442         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2443         //
2444         // Thus a lower bound on the number of sign bits is `TyBits -
2445         // ceilLogBase2(C)`.
2446 
2447         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2448         return std::max(NumrBits, ResBits);
2449       }
2450       break;
2451     }
2452 
2453     case Instruction::AShr: {
2454       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2455       // ashr X, C   -> adds C sign bits.  Vectors too.
2456       const APInt *ShAmt;
2457       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2458         if (ShAmt->uge(TyBits))
2459           break; // Bad shift.
2460         unsigned ShAmtLimited = ShAmt->getZExtValue();
2461         Tmp += ShAmtLimited;
2462         if (Tmp > TyBits) Tmp = TyBits;
2463       }
2464       return Tmp;
2465     }
2466     case Instruction::Shl: {
2467       const APInt *ShAmt;
2468       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2469         // shl destroys sign bits.
2470         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2471         if (ShAmt->uge(TyBits) ||   // Bad shift.
2472             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2473         Tmp2 = ShAmt->getZExtValue();
2474         return Tmp - Tmp2;
2475       }
2476       break;
2477     }
2478     case Instruction::And:
2479     case Instruction::Or:
2480     case Instruction::Xor: // NOT is handled here.
2481       // Logical binary ops preserve the number of sign bits at the worst.
2482       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2483       if (Tmp != 1) {
2484         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2485         FirstAnswer = std::min(Tmp, Tmp2);
2486         // We computed what we know about the sign bits as our first
2487         // answer. Now proceed to the generic code that uses
2488         // computeKnownBits, and pick whichever answer is better.
2489       }
2490       break;
2491 
2492     case Instruction::Select: {
2493       // If we have a clamp pattern, we know that the number of sign bits will
2494       // be the minimum of the clamp min/max range.
2495       const Value *X;
2496       const APInt *CLow, *CHigh;
2497       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2498         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2499 
2500       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2501       if (Tmp == 1) break;
2502       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2503       return std::min(Tmp, Tmp2);
2504     }
2505 
2506     case Instruction::Add:
2507       // Add can have at most one carry bit.  Thus we know that the output
2508       // is, at worst, one more bit than the inputs.
2509       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2510       if (Tmp == 1) break;
2511 
2512       // Special case decrementing a value (ADD X, -1):
2513       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2514         if (CRHS->isAllOnesValue()) {
2515           KnownBits Known(TyBits);
2516           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2517 
2518           // If the input is known to be 0 or 1, the output is 0/-1, which is
2519           // all sign bits set.
2520           if ((Known.Zero | 1).isAllOnesValue())
2521             return TyBits;
2522 
2523           // If we are subtracting one from a positive number, there is no carry
2524           // out of the result.
2525           if (Known.isNonNegative())
2526             return Tmp;
2527         }
2528 
2529       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2530       if (Tmp2 == 1) break;
2531       return std::min(Tmp, Tmp2) - 1;
2532 
2533     case Instruction::Sub:
2534       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2535       if (Tmp2 == 1) break;
2536 
2537       // Handle NEG.
2538       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2539         if (CLHS->isNullValue()) {
2540           KnownBits Known(TyBits);
2541           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2542           // If the input is known to be 0 or 1, the output is 0/-1, which is
2543           // all sign bits set.
2544           if ((Known.Zero | 1).isAllOnesValue())
2545             return TyBits;
2546 
2547           // If the input is known to be positive (the sign bit is known clear),
2548           // the output of the NEG has the same number of sign bits as the
2549           // input.
2550           if (Known.isNonNegative())
2551             return Tmp2;
2552 
2553           // Otherwise, we treat this like a SUB.
2554         }
2555 
2556       // Sub can have at most one carry bit.  Thus we know that the output
2557       // is, at worst, one more bit than the inputs.
2558       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2559       if (Tmp == 1) break;
2560       return std::min(Tmp, Tmp2) - 1;
2561 
2562     case Instruction::Mul: {
2563       // The output of the Mul can be at most twice the valid bits in the
2564       // inputs.
2565       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2566       if (SignBitsOp0 == 1) break;
2567       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2568       if (SignBitsOp1 == 1) break;
2569       unsigned OutValidBits =
2570           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2571       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2572     }
2573 
2574     case Instruction::PHI: {
2575       const PHINode *PN = cast<PHINode>(U);
2576       unsigned NumIncomingValues = PN->getNumIncomingValues();
2577       // Don't analyze large in-degree PHIs.
2578       if (NumIncomingValues > 4) break;
2579       // Unreachable blocks may have zero-operand PHI nodes.
2580       if (NumIncomingValues == 0) break;
2581 
2582       // Take the minimum of all incoming values.  This can't infinitely loop
2583       // because of our depth threshold.
2584       Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2585       for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2586         if (Tmp == 1) return Tmp;
2587         Tmp = std::min(
2588             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2589       }
2590       return Tmp;
2591     }
2592 
2593     case Instruction::Trunc:
2594       // FIXME: it's tricky to do anything useful for this, but it is an
2595       // important case for targets like X86.
2596       break;
2597 
2598     case Instruction::ExtractElement:
2599       // Look through extract element. At the moment we keep this simple and
2600       // skip tracking the specific element. But at least we might find
2601       // information valid for all elements of the vector (for example if vector
2602       // is sign extended, shifted, etc).
2603       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2604 
2605     case Instruction::ShuffleVector: {
2606       // TODO: This is copied almost directly from the SelectionDAG version of
2607       //       ComputeNumSignBits. It would be better if we could share common
2608       //       code. If not, make sure that changes are translated to the DAG.
2609 
2610       // Collect the minimum number of sign bits that are shared by every vector
2611       // element referenced by the shuffle.
2612       auto *Shuf = cast<ShuffleVectorInst>(U);
2613       int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
2614       int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
2615       APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2616       for (int i = 0; i != NumMaskElts; ++i) {
2617         int M = Shuf->getMaskValue(i);
2618         assert(M < NumElts * 2 && "Invalid shuffle mask constant");
2619         // For undef elements, we don't know anything about the common state of
2620         // the shuffle result.
2621         if (M == -1)
2622           return 1;
2623         if (M < NumElts)
2624           DemandedLHS.setBit(M % NumElts);
2625         else
2626           DemandedRHS.setBit(M % NumElts);
2627       }
2628       Tmp = std::numeric_limits<unsigned>::max();
2629       if (!!DemandedLHS)
2630         Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
2631       if (!!DemandedRHS) {
2632         Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
2633         Tmp = std::min(Tmp, Tmp2);
2634       }
2635       // If we don't know anything, early out and try computeKnownBits
2636       // fall-back.
2637       if (Tmp == 1)
2638         break;
2639       assert(Tmp <= V->getType()->getScalarSizeInBits() &&
2640              "Failed to determine minimum sign bits");
2641       return Tmp;
2642     }
2643     }
2644   }
2645 
2646   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2647   // use this information.
2648 
2649   // If we can examine all elements of a vector constant successfully, we're
2650   // done (we can't do any better than that). If not, keep trying.
2651   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2652     return VecSignBits;
2653 
2654   KnownBits Known(TyBits);
2655   computeKnownBits(V, Known, Depth, Q);
2656 
2657   // If we know that the sign bit is either zero or one, determine the number of
2658   // identical bits in the top of the input value.
2659   return std::max(FirstAnswer, Known.countMinSignBits());
2660 }
2661 
2662 /// This function computes the integer multiple of Base that equals V.
2663 /// If successful, it returns true and returns the multiple in
2664 /// Multiple. If unsuccessful, it returns false. It looks
2665 /// through SExt instructions only if LookThroughSExt is true.
2666 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2667                            bool LookThroughSExt, unsigned Depth) {
2668   assert(V && "No Value?");
2669   assert(Depth <= MaxDepth && "Limit Search Depth");
2670   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2671 
2672   Type *T = V->getType();
2673 
2674   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2675 
2676   if (Base == 0)
2677     return false;
2678 
2679   if (Base == 1) {
2680     Multiple = V;
2681     return true;
2682   }
2683 
2684   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2685   Constant *BaseVal = ConstantInt::get(T, Base);
2686   if (CO && CO == BaseVal) {
2687     // Multiple is 1.
2688     Multiple = ConstantInt::get(T, 1);
2689     return true;
2690   }
2691 
2692   if (CI && CI->getZExtValue() % Base == 0) {
2693     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2694     return true;
2695   }
2696 
2697   if (Depth == MaxDepth) return false;  // Limit search depth.
2698 
2699   Operator *I = dyn_cast<Operator>(V);
2700   if (!I) return false;
2701 
2702   switch (I->getOpcode()) {
2703   default: break;
2704   case Instruction::SExt:
2705     if (!LookThroughSExt) return false;
2706     // otherwise fall through to ZExt
2707     LLVM_FALLTHROUGH;
2708   case Instruction::ZExt:
2709     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2710                            LookThroughSExt, Depth+1);
2711   case Instruction::Shl:
2712   case Instruction::Mul: {
2713     Value *Op0 = I->getOperand(0);
2714     Value *Op1 = I->getOperand(1);
2715 
2716     if (I->getOpcode() == Instruction::Shl) {
2717       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2718       if (!Op1CI) return false;
2719       // Turn Op0 << Op1 into Op0 * 2^Op1
2720       APInt Op1Int = Op1CI->getValue();
2721       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2722       APInt API(Op1Int.getBitWidth(), 0);
2723       API.setBit(BitToSet);
2724       Op1 = ConstantInt::get(V->getContext(), API);
2725     }
2726 
2727     Value *Mul0 = nullptr;
2728     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2729       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2730         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2731           if (Op1C->getType()->getPrimitiveSizeInBits() <
2732               MulC->getType()->getPrimitiveSizeInBits())
2733             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2734           if (Op1C->getType()->getPrimitiveSizeInBits() >
2735               MulC->getType()->getPrimitiveSizeInBits())
2736             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2737 
2738           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2739           Multiple = ConstantExpr::getMul(MulC, Op1C);
2740           return true;
2741         }
2742 
2743       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2744         if (Mul0CI->getValue() == 1) {
2745           // V == Base * Op1, so return Op1
2746           Multiple = Op1;
2747           return true;
2748         }
2749     }
2750 
2751     Value *Mul1 = nullptr;
2752     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2753       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2754         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2755           if (Op0C->getType()->getPrimitiveSizeInBits() <
2756               MulC->getType()->getPrimitiveSizeInBits())
2757             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2758           if (Op0C->getType()->getPrimitiveSizeInBits() >
2759               MulC->getType()->getPrimitiveSizeInBits())
2760             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2761 
2762           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2763           Multiple = ConstantExpr::getMul(MulC, Op0C);
2764           return true;
2765         }
2766 
2767       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2768         if (Mul1CI->getValue() == 1) {
2769           // V == Base * Op0, so return Op0
2770           Multiple = Op0;
2771           return true;
2772         }
2773     }
2774   }
2775   }
2776 
2777   // We could not determine if V is a multiple of Base.
2778   return false;
2779 }
2780 
2781 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2782                                             const TargetLibraryInfo *TLI) {
2783   const Function *F = ICS.getCalledFunction();
2784   if (!F)
2785     return Intrinsic::not_intrinsic;
2786 
2787   if (F->isIntrinsic())
2788     return F->getIntrinsicID();
2789 
2790   if (!TLI)
2791     return Intrinsic::not_intrinsic;
2792 
2793   LibFunc Func;
2794   // We're going to make assumptions on the semantics of the functions, check
2795   // that the target knows that it's available in this environment and it does
2796   // not have local linkage.
2797   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2798     return Intrinsic::not_intrinsic;
2799 
2800   if (!ICS.onlyReadsMemory())
2801     return Intrinsic::not_intrinsic;
2802 
2803   // Otherwise check if we have a call to a function that can be turned into a
2804   // vector intrinsic.
2805   switch (Func) {
2806   default:
2807     break;
2808   case LibFunc_sin:
2809   case LibFunc_sinf:
2810   case LibFunc_sinl:
2811     return Intrinsic::sin;
2812   case LibFunc_cos:
2813   case LibFunc_cosf:
2814   case LibFunc_cosl:
2815     return Intrinsic::cos;
2816   case LibFunc_exp:
2817   case LibFunc_expf:
2818   case LibFunc_expl:
2819     return Intrinsic::exp;
2820   case LibFunc_exp2:
2821   case LibFunc_exp2f:
2822   case LibFunc_exp2l:
2823     return Intrinsic::exp2;
2824   case LibFunc_log:
2825   case LibFunc_logf:
2826   case LibFunc_logl:
2827     return Intrinsic::log;
2828   case LibFunc_log10:
2829   case LibFunc_log10f:
2830   case LibFunc_log10l:
2831     return Intrinsic::log10;
2832   case LibFunc_log2:
2833   case LibFunc_log2f:
2834   case LibFunc_log2l:
2835     return Intrinsic::log2;
2836   case LibFunc_fabs:
2837   case LibFunc_fabsf:
2838   case LibFunc_fabsl:
2839     return Intrinsic::fabs;
2840   case LibFunc_fmin:
2841   case LibFunc_fminf:
2842   case LibFunc_fminl:
2843     return Intrinsic::minnum;
2844   case LibFunc_fmax:
2845   case LibFunc_fmaxf:
2846   case LibFunc_fmaxl:
2847     return Intrinsic::maxnum;
2848   case LibFunc_copysign:
2849   case LibFunc_copysignf:
2850   case LibFunc_copysignl:
2851     return Intrinsic::copysign;
2852   case LibFunc_floor:
2853   case LibFunc_floorf:
2854   case LibFunc_floorl:
2855     return Intrinsic::floor;
2856   case LibFunc_ceil:
2857   case LibFunc_ceilf:
2858   case LibFunc_ceill:
2859     return Intrinsic::ceil;
2860   case LibFunc_trunc:
2861   case LibFunc_truncf:
2862   case LibFunc_truncl:
2863     return Intrinsic::trunc;
2864   case LibFunc_rint:
2865   case LibFunc_rintf:
2866   case LibFunc_rintl:
2867     return Intrinsic::rint;
2868   case LibFunc_nearbyint:
2869   case LibFunc_nearbyintf:
2870   case LibFunc_nearbyintl:
2871     return Intrinsic::nearbyint;
2872   case LibFunc_round:
2873   case LibFunc_roundf:
2874   case LibFunc_roundl:
2875     return Intrinsic::round;
2876   case LibFunc_pow:
2877   case LibFunc_powf:
2878   case LibFunc_powl:
2879     return Intrinsic::pow;
2880   case LibFunc_sqrt:
2881   case LibFunc_sqrtf:
2882   case LibFunc_sqrtl:
2883     return Intrinsic::sqrt;
2884   }
2885 
2886   return Intrinsic::not_intrinsic;
2887 }
2888 
2889 /// Return true if we can prove that the specified FP value is never equal to
2890 /// -0.0.
2891 ///
2892 /// NOTE: this function will need to be revisited when we support non-default
2893 /// rounding modes!
2894 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2895                                 unsigned Depth) {
2896   if (auto *CFP = dyn_cast<ConstantFP>(V))
2897     return !CFP->getValueAPF().isNegZero();
2898 
2899   // Limit search depth.
2900   if (Depth == MaxDepth)
2901     return false;
2902 
2903   auto *Op = dyn_cast<Operator>(V);
2904   if (!Op)
2905     return false;
2906 
2907   // Check if the nsz fast-math flag is set.
2908   if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2909     if (FPO->hasNoSignedZeros())
2910       return true;
2911 
2912   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2913   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2914     return true;
2915 
2916   // sitofp and uitofp turn into +0.0 for zero.
2917   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2918     return true;
2919 
2920   if (auto *Call = dyn_cast<CallInst>(Op)) {
2921     Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2922     switch (IID) {
2923     default:
2924       break;
2925     // sqrt(-0.0) = -0.0, no other negative results are possible.
2926     case Intrinsic::sqrt:
2927     case Intrinsic::canonicalize:
2928       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2929     // fabs(x) != -0.0
2930     case Intrinsic::fabs:
2931       return true;
2932     }
2933   }
2934 
2935   return false;
2936 }
2937 
2938 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2939 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2940 /// bit despite comparing equal.
2941 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2942                                             const TargetLibraryInfo *TLI,
2943                                             bool SignBitOnly,
2944                                             unsigned Depth) {
2945   // TODO: This function does not do the right thing when SignBitOnly is true
2946   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2947   // which flips the sign bits of NaNs.  See
2948   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2949 
2950   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2951     return !CFP->getValueAPF().isNegative() ||
2952            (!SignBitOnly && CFP->getValueAPF().isZero());
2953   }
2954 
2955   // Handle vector of constants.
2956   if (auto *CV = dyn_cast<Constant>(V)) {
2957     if (CV->getType()->isVectorTy()) {
2958       unsigned NumElts = CV->getType()->getVectorNumElements();
2959       for (unsigned i = 0; i != NumElts; ++i) {
2960         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2961         if (!CFP)
2962           return false;
2963         if (CFP->getValueAPF().isNegative() &&
2964             (SignBitOnly || !CFP->getValueAPF().isZero()))
2965           return false;
2966       }
2967 
2968       // All non-negative ConstantFPs.
2969       return true;
2970     }
2971   }
2972 
2973   if (Depth == MaxDepth)
2974     return false; // Limit search depth.
2975 
2976   const Operator *I = dyn_cast<Operator>(V);
2977   if (!I)
2978     return false;
2979 
2980   switch (I->getOpcode()) {
2981   default:
2982     break;
2983   // Unsigned integers are always nonnegative.
2984   case Instruction::UIToFP:
2985     return true;
2986   case Instruction::FMul:
2987     // x*x is always non-negative or a NaN.
2988     if (I->getOperand(0) == I->getOperand(1) &&
2989         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2990       return true;
2991 
2992     LLVM_FALLTHROUGH;
2993   case Instruction::FAdd:
2994   case Instruction::FDiv:
2995   case Instruction::FRem:
2996     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2997                                            Depth + 1) &&
2998            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2999                                            Depth + 1);
3000   case Instruction::Select:
3001     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3002                                            Depth + 1) &&
3003            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3004                                            Depth + 1);
3005   case Instruction::FPExt:
3006   case Instruction::FPTrunc:
3007     // Widening/narrowing never change sign.
3008     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3009                                            Depth + 1);
3010   case Instruction::ExtractElement:
3011     // Look through extract element. At the moment we keep this simple and skip
3012     // tracking the specific element. But at least we might find information
3013     // valid for all elements of the vector.
3014     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3015                                            Depth + 1);
3016   case Instruction::Call:
3017     const auto *CI = cast<CallInst>(I);
3018     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
3019     switch (IID) {
3020     default:
3021       break;
3022     case Intrinsic::maxnum:
3023       return (isKnownNeverNaN(I->getOperand(0), TLI) &&
3024               cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
3025                                               SignBitOnly, Depth + 1)) ||
3026             (isKnownNeverNaN(I->getOperand(1), TLI) &&
3027               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
3028                                               SignBitOnly, Depth + 1));
3029 
3030     case Intrinsic::maximum:
3031       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3032                                              Depth + 1) ||
3033              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3034                                              Depth + 1);
3035     case Intrinsic::minnum:
3036     case Intrinsic::minimum:
3037       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3038                                              Depth + 1) &&
3039              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3040                                              Depth + 1);
3041     case Intrinsic::exp:
3042     case Intrinsic::exp2:
3043     case Intrinsic::fabs:
3044       return true;
3045 
3046     case Intrinsic::sqrt:
3047       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3048       if (!SignBitOnly)
3049         return true;
3050       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3051                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3052 
3053     case Intrinsic::powi:
3054       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3055         // powi(x,n) is non-negative if n is even.
3056         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3057           return true;
3058       }
3059       // TODO: This is not correct.  Given that exp is an integer, here are the
3060       // ways that pow can return a negative value:
3061       //
3062       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3063       //   pow(-0, exp)   --> -inf if exp is negative odd.
3064       //   pow(-0, exp)   --> -0 if exp is positive odd.
3065       //   pow(-inf, exp) --> -0 if exp is negative odd.
3066       //   pow(-inf, exp) --> -inf if exp is positive odd.
3067       //
3068       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3069       // but we must return false if x == -0.  Unfortunately we do not currently
3070       // have a way of expressing this constraint.  See details in
3071       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3072       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3073                                              Depth + 1);
3074 
3075     case Intrinsic::fma:
3076     case Intrinsic::fmuladd:
3077       // x*x+y is non-negative if y is non-negative.
3078       return I->getOperand(0) == I->getOperand(1) &&
3079              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3080              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3081                                              Depth + 1);
3082     }
3083     break;
3084   }
3085   return false;
3086 }
3087 
3088 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3089                                        const TargetLibraryInfo *TLI) {
3090   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3091 }
3092 
3093 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3094   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3095 }
3096 
3097 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3098                            unsigned Depth) {
3099   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3100 
3101   // If we're told that NaNs won't happen, assume they won't.
3102   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3103     if (FPMathOp->hasNoNaNs())
3104       return true;
3105 
3106   // Handle scalar constants.
3107   if (auto *CFP = dyn_cast<ConstantFP>(V))
3108     return !CFP->isNaN();
3109 
3110   if (Depth == MaxDepth)
3111     return false;
3112 
3113   if (auto *Inst = dyn_cast<Instruction>(V)) {
3114     switch (Inst->getOpcode()) {
3115     case Instruction::FAdd:
3116     case Instruction::FMul:
3117     case Instruction::FSub:
3118     case Instruction::FDiv:
3119     case Instruction::FRem: {
3120       // TODO: Need isKnownNeverInfinity
3121       return false;
3122     }
3123     case Instruction::Select: {
3124       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3125              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3126     }
3127     case Instruction::SIToFP:
3128     case Instruction::UIToFP:
3129       return true;
3130     case Instruction::FPTrunc:
3131     case Instruction::FPExt:
3132       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3133     default:
3134       break;
3135     }
3136   }
3137 
3138   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3139     switch (II->getIntrinsicID()) {
3140     case Intrinsic::canonicalize:
3141     case Intrinsic::fabs:
3142     case Intrinsic::copysign:
3143     case Intrinsic::exp:
3144     case Intrinsic::exp2:
3145     case Intrinsic::floor:
3146     case Intrinsic::ceil:
3147     case Intrinsic::trunc:
3148     case Intrinsic::rint:
3149     case Intrinsic::nearbyint:
3150     case Intrinsic::round:
3151       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3152     case Intrinsic::sqrt:
3153       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3154              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3155     case Intrinsic::minnum:
3156     case Intrinsic::maxnum:
3157       // If either operand is not NaN, the result is not NaN.
3158       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3159              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3160     default:
3161       return false;
3162     }
3163   }
3164 
3165   // Bail out for constant expressions, but try to handle vector constants.
3166   if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3167     return false;
3168 
3169   // For vectors, verify that each element is not NaN.
3170   unsigned NumElts = V->getType()->getVectorNumElements();
3171   for (unsigned i = 0; i != NumElts; ++i) {
3172     Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3173     if (!Elt)
3174       return false;
3175     if (isa<UndefValue>(Elt))
3176       continue;
3177     auto *CElt = dyn_cast<ConstantFP>(Elt);
3178     if (!CElt || CElt->isNaN())
3179       return false;
3180   }
3181   // All elements were confirmed not-NaN or undefined.
3182   return true;
3183 }
3184 
3185 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3186 
3187   // All byte-wide stores are splatable, even of arbitrary variables.
3188   if (V->getType()->isIntegerTy(8))
3189     return V;
3190 
3191   LLVMContext &Ctx = V->getContext();
3192 
3193   // Undef don't care.
3194   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3195   if (isa<UndefValue>(V))
3196     return UndefInt8;
3197 
3198   const uint64_t Size = DL.getTypeStoreSize(V->getType());
3199   if (!Size)
3200     return UndefInt8;
3201 
3202   Constant *C = dyn_cast<Constant>(V);
3203   if (!C) {
3204     // Conceptually, we could handle things like:
3205     //   %a = zext i8 %X to i16
3206     //   %b = shl i16 %a, 8
3207     //   %c = or i16 %a, %b
3208     // but until there is an example that actually needs this, it doesn't seem
3209     // worth worrying about.
3210     return nullptr;
3211   }
3212 
3213   // Handle 'null' ConstantArrayZero etc.
3214   if (C->isNullValue())
3215     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3216 
3217   // Constant floating-point values can be handled as integer values if the
3218   // corresponding integer value is "byteable".  An important case is 0.0.
3219   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3220     Type *Ty = nullptr;
3221     if (CFP->getType()->isHalfTy())
3222       Ty = Type::getInt16Ty(Ctx);
3223     else if (CFP->getType()->isFloatTy())
3224       Ty = Type::getInt32Ty(Ctx);
3225     else if (CFP->getType()->isDoubleTy())
3226       Ty = Type::getInt64Ty(Ctx);
3227     // Don't handle long double formats, which have strange constraints.
3228     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3229               : nullptr;
3230   }
3231 
3232   // We can handle constant integers that are multiple of 8 bits.
3233   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3234     if (CI->getBitWidth() % 8 == 0) {
3235       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3236       if (!CI->getValue().isSplat(8))
3237         return nullptr;
3238       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3239     }
3240   }
3241 
3242   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3243     if (CE->getOpcode() == Instruction::IntToPtr) {
3244       auto PS = DL.getPointerSizeInBits(
3245           cast<PointerType>(CE->getType())->getAddressSpace());
3246       return isBytewiseValue(
3247           ConstantExpr::getIntegerCast(CE->getOperand(0),
3248                                        Type::getIntNTy(Ctx, PS), false),
3249           DL);
3250     }
3251   }
3252 
3253   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3254     if (LHS == RHS)
3255       return LHS;
3256     if (!LHS || !RHS)
3257       return nullptr;
3258     if (LHS == UndefInt8)
3259       return RHS;
3260     if (RHS == UndefInt8)
3261       return LHS;
3262     return nullptr;
3263   };
3264 
3265   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3266     Value *Val = UndefInt8;
3267     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3268       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3269         return nullptr;
3270     return Val;
3271   }
3272 
3273   if (isa<ConstantAggregate>(C)) {
3274     Value *Val = UndefInt8;
3275     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3276       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3277         return nullptr;
3278     return Val;
3279   }
3280 
3281   // Don't try to handle the handful of other constants.
3282   return nullptr;
3283 }
3284 
3285 // This is the recursive version of BuildSubAggregate. It takes a few different
3286 // arguments. Idxs is the index within the nested struct From that we are
3287 // looking at now (which is of type IndexedType). IdxSkip is the number of
3288 // indices from Idxs that should be left out when inserting into the resulting
3289 // struct. To is the result struct built so far, new insertvalue instructions
3290 // build on that.
3291 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3292                                 SmallVectorImpl<unsigned> &Idxs,
3293                                 unsigned IdxSkip,
3294                                 Instruction *InsertBefore) {
3295   StructType *STy = dyn_cast<StructType>(IndexedType);
3296   if (STy) {
3297     // Save the original To argument so we can modify it
3298     Value *OrigTo = To;
3299     // General case, the type indexed by Idxs is a struct
3300     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3301       // Process each struct element recursively
3302       Idxs.push_back(i);
3303       Value *PrevTo = To;
3304       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3305                              InsertBefore);
3306       Idxs.pop_back();
3307       if (!To) {
3308         // Couldn't find any inserted value for this index? Cleanup
3309         while (PrevTo != OrigTo) {
3310           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3311           PrevTo = Del->getAggregateOperand();
3312           Del->eraseFromParent();
3313         }
3314         // Stop processing elements
3315         break;
3316       }
3317     }
3318     // If we successfully found a value for each of our subaggregates
3319     if (To)
3320       return To;
3321   }
3322   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3323   // the struct's elements had a value that was inserted directly. In the latter
3324   // case, perhaps we can't determine each of the subelements individually, but
3325   // we might be able to find the complete struct somewhere.
3326 
3327   // Find the value that is at that particular spot
3328   Value *V = FindInsertedValue(From, Idxs);
3329 
3330   if (!V)
3331     return nullptr;
3332 
3333   // Insert the value in the new (sub) aggregate
3334   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3335                                  "tmp", InsertBefore);
3336 }
3337 
3338 // This helper takes a nested struct and extracts a part of it (which is again a
3339 // struct) into a new value. For example, given the struct:
3340 // { a, { b, { c, d }, e } }
3341 // and the indices "1, 1" this returns
3342 // { c, d }.
3343 //
3344 // It does this by inserting an insertvalue for each element in the resulting
3345 // struct, as opposed to just inserting a single struct. This will only work if
3346 // each of the elements of the substruct are known (ie, inserted into From by an
3347 // insertvalue instruction somewhere).
3348 //
3349 // All inserted insertvalue instructions are inserted before InsertBefore
3350 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3351                                 Instruction *InsertBefore) {
3352   assert(InsertBefore && "Must have someplace to insert!");
3353   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3354                                                              idx_range);
3355   Value *To = UndefValue::get(IndexedType);
3356   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3357   unsigned IdxSkip = Idxs.size();
3358 
3359   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3360 }
3361 
3362 /// Given an aggregate and a sequence of indices, see if the scalar value
3363 /// indexed is already around as a register, for example if it was inserted
3364 /// directly into the aggregate.
3365 ///
3366 /// If InsertBefore is not null, this function will duplicate (modified)
3367 /// insertvalues when a part of a nested struct is extracted.
3368 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3369                                Instruction *InsertBefore) {
3370   // Nothing to index? Just return V then (this is useful at the end of our
3371   // recursion).
3372   if (idx_range.empty())
3373     return V;
3374   // We have indices, so V should have an indexable type.
3375   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3376          "Not looking at a struct or array?");
3377   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3378          "Invalid indices for type?");
3379 
3380   if (Constant *C = dyn_cast<Constant>(V)) {
3381     C = C->getAggregateElement(idx_range[0]);
3382     if (!C) return nullptr;
3383     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3384   }
3385 
3386   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3387     // Loop the indices for the insertvalue instruction in parallel with the
3388     // requested indices
3389     const unsigned *req_idx = idx_range.begin();
3390     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3391          i != e; ++i, ++req_idx) {
3392       if (req_idx == idx_range.end()) {
3393         // We can't handle this without inserting insertvalues
3394         if (!InsertBefore)
3395           return nullptr;
3396 
3397         // The requested index identifies a part of a nested aggregate. Handle
3398         // this specially. For example,
3399         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3400         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3401         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3402         // This can be changed into
3403         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3404         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3405         // which allows the unused 0,0 element from the nested struct to be
3406         // removed.
3407         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3408                                  InsertBefore);
3409       }
3410 
3411       // This insert value inserts something else than what we are looking for.
3412       // See if the (aggregate) value inserted into has the value we are
3413       // looking for, then.
3414       if (*req_idx != *i)
3415         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3416                                  InsertBefore);
3417     }
3418     // If we end up here, the indices of the insertvalue match with those
3419     // requested (though possibly only partially). Now we recursively look at
3420     // the inserted value, passing any remaining indices.
3421     return FindInsertedValue(I->getInsertedValueOperand(),
3422                              makeArrayRef(req_idx, idx_range.end()),
3423                              InsertBefore);
3424   }
3425 
3426   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3427     // If we're extracting a value from an aggregate that was extracted from
3428     // something else, we can extract from that something else directly instead.
3429     // However, we will need to chain I's indices with the requested indices.
3430 
3431     // Calculate the number of indices required
3432     unsigned size = I->getNumIndices() + idx_range.size();
3433     // Allocate some space to put the new indices in
3434     SmallVector<unsigned, 5> Idxs;
3435     Idxs.reserve(size);
3436     // Add indices from the extract value instruction
3437     Idxs.append(I->idx_begin(), I->idx_end());
3438 
3439     // Add requested indices
3440     Idxs.append(idx_range.begin(), idx_range.end());
3441 
3442     assert(Idxs.size() == size
3443            && "Number of indices added not correct?");
3444 
3445     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3446   }
3447   // Otherwise, we don't know (such as, extracting from a function return value
3448   // or load instruction)
3449   return nullptr;
3450 }
3451 
3452 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3453                                        unsigned CharSize) {
3454   // Make sure the GEP has exactly three arguments.
3455   if (GEP->getNumOperands() != 3)
3456     return false;
3457 
3458   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3459   // CharSize.
3460   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3461   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3462     return false;
3463 
3464   // Check to make sure that the first operand of the GEP is an integer and
3465   // has value 0 so that we are sure we're indexing into the initializer.
3466   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3467   if (!FirstIdx || !FirstIdx->isZero())
3468     return false;
3469 
3470   return true;
3471 }
3472 
3473 bool llvm::getConstantDataArrayInfo(const Value *V,
3474                                     ConstantDataArraySlice &Slice,
3475                                     unsigned ElementSize, uint64_t Offset) {
3476   assert(V);
3477 
3478   // Look through bitcast instructions and geps.
3479   V = V->stripPointerCasts();
3480 
3481   // If the value is a GEP instruction or constant expression, treat it as an
3482   // offset.
3483   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3484     // The GEP operator should be based on a pointer to string constant, and is
3485     // indexing into the string constant.
3486     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3487       return false;
3488 
3489     // If the second index isn't a ConstantInt, then this is a variable index
3490     // into the array.  If this occurs, we can't say anything meaningful about
3491     // the string.
3492     uint64_t StartIdx = 0;
3493     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3494       StartIdx = CI->getZExtValue();
3495     else
3496       return false;
3497     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3498                                     StartIdx + Offset);
3499   }
3500 
3501   // The GEP instruction, constant or instruction, must reference a global
3502   // variable that is a constant and is initialized. The referenced constant
3503   // initializer is the array that we'll use for optimization.
3504   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3505   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3506     return false;
3507 
3508   const ConstantDataArray *Array;
3509   ArrayType *ArrayTy;
3510   if (GV->getInitializer()->isNullValue()) {
3511     Type *GVTy = GV->getValueType();
3512     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3513       // A zeroinitializer for the array; there is no ConstantDataArray.
3514       Array = nullptr;
3515     } else {
3516       const DataLayout &DL = GV->getParent()->getDataLayout();
3517       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3518       uint64_t Length = SizeInBytes / (ElementSize / 8);
3519       if (Length <= Offset)
3520         return false;
3521 
3522       Slice.Array = nullptr;
3523       Slice.Offset = 0;
3524       Slice.Length = Length - Offset;
3525       return true;
3526     }
3527   } else {
3528     // This must be a ConstantDataArray.
3529     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3530     if (!Array)
3531       return false;
3532     ArrayTy = Array->getType();
3533   }
3534   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3535     return false;
3536 
3537   uint64_t NumElts = ArrayTy->getArrayNumElements();
3538   if (Offset > NumElts)
3539     return false;
3540 
3541   Slice.Array = Array;
3542   Slice.Offset = Offset;
3543   Slice.Length = NumElts - Offset;
3544   return true;
3545 }
3546 
3547 /// This function computes the length of a null-terminated C string pointed to
3548 /// by V. If successful, it returns true and returns the string in Str.
3549 /// If unsuccessful, it returns false.
3550 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3551                                  uint64_t Offset, bool TrimAtNul) {
3552   ConstantDataArraySlice Slice;
3553   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3554     return false;
3555 
3556   if (Slice.Array == nullptr) {
3557     if (TrimAtNul) {
3558       Str = StringRef();
3559       return true;
3560     }
3561     if (Slice.Length == 1) {
3562       Str = StringRef("", 1);
3563       return true;
3564     }
3565     // We cannot instantiate a StringRef as we do not have an appropriate string
3566     // of 0s at hand.
3567     return false;
3568   }
3569 
3570   // Start out with the entire array in the StringRef.
3571   Str = Slice.Array->getAsString();
3572   // Skip over 'offset' bytes.
3573   Str = Str.substr(Slice.Offset);
3574 
3575   if (TrimAtNul) {
3576     // Trim off the \0 and anything after it.  If the array is not nul
3577     // terminated, we just return the whole end of string.  The client may know
3578     // some other way that the string is length-bound.
3579     Str = Str.substr(0, Str.find('\0'));
3580   }
3581   return true;
3582 }
3583 
3584 // These next two are very similar to the above, but also look through PHI
3585 // nodes.
3586 // TODO: See if we can integrate these two together.
3587 
3588 /// If we can compute the length of the string pointed to by
3589 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3590 static uint64_t GetStringLengthH(const Value *V,
3591                                  SmallPtrSetImpl<const PHINode*> &PHIs,
3592                                  unsigned CharSize) {
3593   // Look through noop bitcast instructions.
3594   V = V->stripPointerCasts();
3595 
3596   // If this is a PHI node, there are two cases: either we have already seen it
3597   // or we haven't.
3598   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3599     if (!PHIs.insert(PN).second)
3600       return ~0ULL;  // already in the set.
3601 
3602     // If it was new, see if all the input strings are the same length.
3603     uint64_t LenSoFar = ~0ULL;
3604     for (Value *IncValue : PN->incoming_values()) {
3605       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3606       if (Len == 0) return 0; // Unknown length -> unknown.
3607 
3608       if (Len == ~0ULL) continue;
3609 
3610       if (Len != LenSoFar && LenSoFar != ~0ULL)
3611         return 0;    // Disagree -> unknown.
3612       LenSoFar = Len;
3613     }
3614 
3615     // Success, all agree.
3616     return LenSoFar;
3617   }
3618 
3619   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3620   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3621     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3622     if (Len1 == 0) return 0;
3623     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3624     if (Len2 == 0) return 0;
3625     if (Len1 == ~0ULL) return Len2;
3626     if (Len2 == ~0ULL) return Len1;
3627     if (Len1 != Len2) return 0;
3628     return Len1;
3629   }
3630 
3631   // Otherwise, see if we can read the string.
3632   ConstantDataArraySlice Slice;
3633   if (!getConstantDataArrayInfo(V, Slice, CharSize))
3634     return 0;
3635 
3636   if (Slice.Array == nullptr)
3637     return 1;
3638 
3639   // Search for nul characters
3640   unsigned NullIndex = 0;
3641   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3642     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3643       break;
3644   }
3645 
3646   return NullIndex + 1;
3647 }
3648 
3649 /// If we can compute the length of the string pointed to by
3650 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3651 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3652   if (!V->getType()->isPointerTy())
3653     return 0;
3654 
3655   SmallPtrSet<const PHINode*, 32> PHIs;
3656   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3657   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3658   // an empty string as a length.
3659   return Len == ~0ULL ? 1 : Len;
3660 }
3661 
3662 const Value *
3663 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
3664                                            bool MustPreserveNullness) {
3665   assert(Call &&
3666          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
3667   if (const Value *RV = Call->getReturnedArgOperand())
3668     return RV;
3669   // This can be used only as a aliasing property.
3670   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3671           Call, MustPreserveNullness))
3672     return Call->getArgOperand(0);
3673   return nullptr;
3674 }
3675 
3676 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3677     const CallBase *Call, bool MustPreserveNullness) {
3678   return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
3679          Call->getIntrinsicID() == Intrinsic::strip_invariant_group ||
3680          Call->getIntrinsicID() == Intrinsic::aarch64_irg ||
3681          Call->getIntrinsicID() == Intrinsic::aarch64_tagp ||
3682          (!MustPreserveNullness &&
3683           Call->getIntrinsicID() == Intrinsic::ptrmask);
3684 }
3685 
3686 /// \p PN defines a loop-variant pointer to an object.  Check if the
3687 /// previous iteration of the loop was referring to the same object as \p PN.
3688 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3689                                          const LoopInfo *LI) {
3690   // Find the loop-defined value.
3691   Loop *L = LI->getLoopFor(PN->getParent());
3692   if (PN->getNumIncomingValues() != 2)
3693     return true;
3694 
3695   // Find the value from previous iteration.
3696   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3697   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3698     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3699   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3700     return true;
3701 
3702   // If a new pointer is loaded in the loop, the pointer references a different
3703   // object in every iteration.  E.g.:
3704   //    for (i)
3705   //       int *p = a[i];
3706   //       ...
3707   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3708     if (!L->isLoopInvariant(Load->getPointerOperand()))
3709       return false;
3710   return true;
3711 }
3712 
3713 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3714                                  unsigned MaxLookup) {
3715   if (!V->getType()->isPointerTy())
3716     return V;
3717   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3718     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3719       V = GEP->getPointerOperand();
3720     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3721                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3722       V = cast<Operator>(V)->getOperand(0);
3723     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3724       if (GA->isInterposable())
3725         return V;
3726       V = GA->getAliasee();
3727     } else if (isa<AllocaInst>(V)) {
3728       // An alloca can't be further simplified.
3729       return V;
3730     } else {
3731       if (auto *Call = dyn_cast<CallBase>(V)) {
3732         // CaptureTracking can know about special capturing properties of some
3733         // intrinsics like launder.invariant.group, that can't be expressed with
3734         // the attributes, but have properties like returning aliasing pointer.
3735         // Because some analysis may assume that nocaptured pointer is not
3736         // returned from some special intrinsic (because function would have to
3737         // be marked with returns attribute), it is crucial to use this function
3738         // because it should be in sync with CaptureTracking. Not using it may
3739         // cause weird miscompilations where 2 aliasing pointers are assumed to
3740         // noalias.
3741         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
3742           V = RP;
3743           continue;
3744         }
3745       }
3746 
3747       // See if InstructionSimplify knows any relevant tricks.
3748       if (Instruction *I = dyn_cast<Instruction>(V))
3749         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3750         if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3751           V = Simplified;
3752           continue;
3753         }
3754 
3755       return V;
3756     }
3757     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3758   }
3759   return V;
3760 }
3761 
3762 void llvm::GetUnderlyingObjects(const Value *V,
3763                                 SmallVectorImpl<const Value *> &Objects,
3764                                 const DataLayout &DL, LoopInfo *LI,
3765                                 unsigned MaxLookup) {
3766   SmallPtrSet<const Value *, 4> Visited;
3767   SmallVector<const Value *, 4> Worklist;
3768   Worklist.push_back(V);
3769   do {
3770     const Value *P = Worklist.pop_back_val();
3771     P = GetUnderlyingObject(P, DL, MaxLookup);
3772 
3773     if (!Visited.insert(P).second)
3774       continue;
3775 
3776     if (auto *SI = dyn_cast<SelectInst>(P)) {
3777       Worklist.push_back(SI->getTrueValue());
3778       Worklist.push_back(SI->getFalseValue());
3779       continue;
3780     }
3781 
3782     if (auto *PN = dyn_cast<PHINode>(P)) {
3783       // If this PHI changes the underlying object in every iteration of the
3784       // loop, don't look through it.  Consider:
3785       //   int **A;
3786       //   for (i) {
3787       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3788       //     Curr = A[i];
3789       //     *Prev, *Curr;
3790       //
3791       // Prev is tracking Curr one iteration behind so they refer to different
3792       // underlying objects.
3793       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3794           isSameUnderlyingObjectInLoop(PN, LI))
3795         for (Value *IncValue : PN->incoming_values())
3796           Worklist.push_back(IncValue);
3797       continue;
3798     }
3799 
3800     Objects.push_back(P);
3801   } while (!Worklist.empty());
3802 }
3803 
3804 /// This is the function that does the work of looking through basic
3805 /// ptrtoint+arithmetic+inttoptr sequences.
3806 static const Value *getUnderlyingObjectFromInt(const Value *V) {
3807   do {
3808     if (const Operator *U = dyn_cast<Operator>(V)) {
3809       // If we find a ptrtoint, we can transfer control back to the
3810       // regular getUnderlyingObjectFromInt.
3811       if (U->getOpcode() == Instruction::PtrToInt)
3812         return U->getOperand(0);
3813       // If we find an add of a constant, a multiplied value, or a phi, it's
3814       // likely that the other operand will lead us to the base
3815       // object. We don't have to worry about the case where the
3816       // object address is somehow being computed by the multiply,
3817       // because our callers only care when the result is an
3818       // identifiable object.
3819       if (U->getOpcode() != Instruction::Add ||
3820           (!isa<ConstantInt>(U->getOperand(1)) &&
3821            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3822            !isa<PHINode>(U->getOperand(1))))
3823         return V;
3824       V = U->getOperand(0);
3825     } else {
3826       return V;
3827     }
3828     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3829   } while (true);
3830 }
3831 
3832 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3833 /// ptrtoint+arithmetic+inttoptr sequences.
3834 /// It returns false if unidentified object is found in GetUnderlyingObjects.
3835 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3836                           SmallVectorImpl<Value *> &Objects,
3837                           const DataLayout &DL) {
3838   SmallPtrSet<const Value *, 16> Visited;
3839   SmallVector<const Value *, 4> Working(1, V);
3840   do {
3841     V = Working.pop_back_val();
3842 
3843     SmallVector<const Value *, 4> Objs;
3844     GetUnderlyingObjects(V, Objs, DL);
3845 
3846     for (const Value *V : Objs) {
3847       if (!Visited.insert(V).second)
3848         continue;
3849       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3850         const Value *O =
3851           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3852         if (O->getType()->isPointerTy()) {
3853           Working.push_back(O);
3854           continue;
3855         }
3856       }
3857       // If GetUnderlyingObjects fails to find an identifiable object,
3858       // getUnderlyingObjectsForCodeGen also fails for safety.
3859       if (!isIdentifiedObject(V)) {
3860         Objects.clear();
3861         return false;
3862       }
3863       Objects.push_back(const_cast<Value *>(V));
3864     }
3865   } while (!Working.empty());
3866   return true;
3867 }
3868 
3869 /// Return true if the only users of this pointer are lifetime markers.
3870 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3871   for (const User *U : V->users()) {
3872     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3873     if (!II) return false;
3874 
3875     if (!II->isLifetimeStartOrEnd())
3876       return false;
3877   }
3878   return true;
3879 }
3880 
3881 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
3882   if (!LI.isUnordered())
3883     return true;
3884   const Function &F = *LI.getFunction();
3885   // Speculative load may create a race that did not exist in the source.
3886   return F.hasFnAttribute(Attribute::SanitizeThread) ||
3887     // Speculative load may load data from dirty regions.
3888     F.hasFnAttribute(Attribute::SanitizeAddress) ||
3889     F.hasFnAttribute(Attribute::SanitizeHWAddress);
3890 }
3891 
3892 
3893 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3894                                         const Instruction *CtxI,
3895                                         const DominatorTree *DT) {
3896   const Operator *Inst = dyn_cast<Operator>(V);
3897   if (!Inst)
3898     return false;
3899 
3900   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3901     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3902       if (C->canTrap())
3903         return false;
3904 
3905   switch (Inst->getOpcode()) {
3906   default:
3907     return true;
3908   case Instruction::UDiv:
3909   case Instruction::URem: {
3910     // x / y is undefined if y == 0.
3911     const APInt *V;
3912     if (match(Inst->getOperand(1), m_APInt(V)))
3913       return *V != 0;
3914     return false;
3915   }
3916   case Instruction::SDiv:
3917   case Instruction::SRem: {
3918     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3919     const APInt *Numerator, *Denominator;
3920     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3921       return false;
3922     // We cannot hoist this division if the denominator is 0.
3923     if (*Denominator == 0)
3924       return false;
3925     // It's safe to hoist if the denominator is not 0 or -1.
3926     if (*Denominator != -1)
3927       return true;
3928     // At this point we know that the denominator is -1.  It is safe to hoist as
3929     // long we know that the numerator is not INT_MIN.
3930     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3931       return !Numerator->isMinSignedValue();
3932     // The numerator *might* be MinSignedValue.
3933     return false;
3934   }
3935   case Instruction::Load: {
3936     const LoadInst *LI = cast<LoadInst>(Inst);
3937     if (mustSuppressSpeculation(*LI))
3938       return false;
3939     const DataLayout &DL = LI->getModule()->getDataLayout();
3940     return isDereferenceableAndAlignedPointer(
3941         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
3942         DL, CtxI, DT);
3943   }
3944   case Instruction::Call: {
3945     auto *CI = cast<const CallInst>(Inst);
3946     const Function *Callee = CI->getCalledFunction();
3947 
3948     // The called function could have undefined behavior or side-effects, even
3949     // if marked readnone nounwind.
3950     return Callee && Callee->isSpeculatable();
3951   }
3952   case Instruction::VAArg:
3953   case Instruction::Alloca:
3954   case Instruction::Invoke:
3955   case Instruction::CallBr:
3956   case Instruction::PHI:
3957   case Instruction::Store:
3958   case Instruction::Ret:
3959   case Instruction::Br:
3960   case Instruction::IndirectBr:
3961   case Instruction::Switch:
3962   case Instruction::Unreachable:
3963   case Instruction::Fence:
3964   case Instruction::AtomicRMW:
3965   case Instruction::AtomicCmpXchg:
3966   case Instruction::LandingPad:
3967   case Instruction::Resume:
3968   case Instruction::CatchSwitch:
3969   case Instruction::CatchPad:
3970   case Instruction::CatchRet:
3971   case Instruction::CleanupPad:
3972   case Instruction::CleanupRet:
3973     return false; // Misc instructions which have effects
3974   }
3975 }
3976 
3977 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3978   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3979 }
3980 
3981 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
3982 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
3983   switch (OR) {
3984     case ConstantRange::OverflowResult::MayOverflow:
3985       return OverflowResult::MayOverflow;
3986     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
3987       return OverflowResult::AlwaysOverflowsLow;
3988     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
3989       return OverflowResult::AlwaysOverflowsHigh;
3990     case ConstantRange::OverflowResult::NeverOverflows:
3991       return OverflowResult::NeverOverflows;
3992   }
3993   llvm_unreachable("Unknown OverflowResult");
3994 }
3995 
3996 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
3997 static ConstantRange computeConstantRangeIncludingKnownBits(
3998     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
3999     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4000     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4001   KnownBits Known = computeKnownBits(
4002       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4003   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4004   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4005   ConstantRange::PreferredRangeType RangeType =
4006       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4007   return CR1.intersectWith(CR2, RangeType);
4008 }
4009 
4010 OverflowResult llvm::computeOverflowForUnsignedMul(
4011     const Value *LHS, const Value *RHS, const DataLayout &DL,
4012     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4013     bool UseInstrInfo) {
4014   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4015                                         nullptr, UseInstrInfo);
4016   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4017                                         nullptr, UseInstrInfo);
4018   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4019   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4020   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4021 }
4022 
4023 OverflowResult
4024 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4025                                   const DataLayout &DL, AssumptionCache *AC,
4026                                   const Instruction *CxtI,
4027                                   const DominatorTree *DT, bool UseInstrInfo) {
4028   // Multiplying n * m significant bits yields a result of n + m significant
4029   // bits. If the total number of significant bits does not exceed the
4030   // result bit width (minus 1), there is no overflow.
4031   // This means if we have enough leading sign bits in the operands
4032   // we can guarantee that the result does not overflow.
4033   // Ref: "Hacker's Delight" by Henry Warren
4034   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4035 
4036   // Note that underestimating the number of sign bits gives a more
4037   // conservative answer.
4038   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4039                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4040 
4041   // First handle the easy case: if we have enough sign bits there's
4042   // definitely no overflow.
4043   if (SignBits > BitWidth + 1)
4044     return OverflowResult::NeverOverflows;
4045 
4046   // There are two ambiguous cases where there can be no overflow:
4047   //   SignBits == BitWidth + 1    and
4048   //   SignBits == BitWidth
4049   // The second case is difficult to check, therefore we only handle the
4050   // first case.
4051   if (SignBits == BitWidth + 1) {
4052     // It overflows only when both arguments are negative and the true
4053     // product is exactly the minimum negative number.
4054     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4055     // For simplicity we just check if at least one side is not negative.
4056     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4057                                           nullptr, UseInstrInfo);
4058     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4059                                           nullptr, UseInstrInfo);
4060     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4061       return OverflowResult::NeverOverflows;
4062   }
4063   return OverflowResult::MayOverflow;
4064 }
4065 
4066 OverflowResult llvm::computeOverflowForUnsignedAdd(
4067     const Value *LHS, const Value *RHS, const DataLayout &DL,
4068     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4069     bool UseInstrInfo) {
4070   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4071       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4072       nullptr, UseInstrInfo);
4073   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4074       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4075       nullptr, UseInstrInfo);
4076   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4077 }
4078 
4079 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4080                                                   const Value *RHS,
4081                                                   const AddOperator *Add,
4082                                                   const DataLayout &DL,
4083                                                   AssumptionCache *AC,
4084                                                   const Instruction *CxtI,
4085                                                   const DominatorTree *DT) {
4086   if (Add && Add->hasNoSignedWrap()) {
4087     return OverflowResult::NeverOverflows;
4088   }
4089 
4090   // If LHS and RHS each have at least two sign bits, the addition will look
4091   // like
4092   //
4093   // XX..... +
4094   // YY.....
4095   //
4096   // If the carry into the most significant position is 0, X and Y can't both
4097   // be 1 and therefore the carry out of the addition is also 0.
4098   //
4099   // If the carry into the most significant position is 1, X and Y can't both
4100   // be 0 and therefore the carry out of the addition is also 1.
4101   //
4102   // Since the carry into the most significant position is always equal to
4103   // the carry out of the addition, there is no signed overflow.
4104   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4105       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4106     return OverflowResult::NeverOverflows;
4107 
4108   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4109       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4110   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4111       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4112   OverflowResult OR =
4113       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4114   if (OR != OverflowResult::MayOverflow)
4115     return OR;
4116 
4117   // The remaining code needs Add to be available. Early returns if not so.
4118   if (!Add)
4119     return OverflowResult::MayOverflow;
4120 
4121   // If the sign of Add is the same as at least one of the operands, this add
4122   // CANNOT overflow. If this can be determined from the known bits of the
4123   // operands the above signedAddMayOverflow() check will have already done so.
4124   // The only other way to improve on the known bits is from an assumption, so
4125   // call computeKnownBitsFromAssume() directly.
4126   bool LHSOrRHSKnownNonNegative =
4127       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4128   bool LHSOrRHSKnownNegative =
4129       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4130   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4131     KnownBits AddKnown(LHSRange.getBitWidth());
4132     computeKnownBitsFromAssume(
4133         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4134     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4135         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4136       return OverflowResult::NeverOverflows;
4137   }
4138 
4139   return OverflowResult::MayOverflow;
4140 }
4141 
4142 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4143                                                    const Value *RHS,
4144                                                    const DataLayout &DL,
4145                                                    AssumptionCache *AC,
4146                                                    const Instruction *CxtI,
4147                                                    const DominatorTree *DT) {
4148   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4149       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4150   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4151       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4152   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4153 }
4154 
4155 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4156                                                  const Value *RHS,
4157                                                  const DataLayout &DL,
4158                                                  AssumptionCache *AC,
4159                                                  const Instruction *CxtI,
4160                                                  const DominatorTree *DT) {
4161   // If LHS and RHS each have at least two sign bits, the subtraction
4162   // cannot overflow.
4163   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4164       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4165     return OverflowResult::NeverOverflows;
4166 
4167   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4168       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4169   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4170       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4171   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4172 }
4173 
4174 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4175                                      const DominatorTree &DT) {
4176   SmallVector<const BranchInst *, 2> GuardingBranches;
4177   SmallVector<const ExtractValueInst *, 2> Results;
4178 
4179   for (const User *U : WO->users()) {
4180     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4181       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4182 
4183       if (EVI->getIndices()[0] == 0)
4184         Results.push_back(EVI);
4185       else {
4186         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4187 
4188         for (const auto *U : EVI->users())
4189           if (const auto *B = dyn_cast<BranchInst>(U)) {
4190             assert(B->isConditional() && "How else is it using an i1?");
4191             GuardingBranches.push_back(B);
4192           }
4193       }
4194     } else {
4195       // We are using the aggregate directly in a way we don't want to analyze
4196       // here (storing it to a global, say).
4197       return false;
4198     }
4199   }
4200 
4201   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4202     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4203     if (!NoWrapEdge.isSingleEdge())
4204       return false;
4205 
4206     // Check if all users of the add are provably no-wrap.
4207     for (const auto *Result : Results) {
4208       // If the extractvalue itself is not executed on overflow, the we don't
4209       // need to check each use separately, since domination is transitive.
4210       if (DT.dominates(NoWrapEdge, Result->getParent()))
4211         continue;
4212 
4213       for (auto &RU : Result->uses())
4214         if (!DT.dominates(NoWrapEdge, RU))
4215           return false;
4216     }
4217 
4218     return true;
4219   };
4220 
4221   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4222 }
4223 
4224 
4225 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4226                                                  const DataLayout &DL,
4227                                                  AssumptionCache *AC,
4228                                                  const Instruction *CxtI,
4229                                                  const DominatorTree *DT) {
4230   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4231                                        Add, DL, AC, CxtI, DT);
4232 }
4233 
4234 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4235                                                  const Value *RHS,
4236                                                  const DataLayout &DL,
4237                                                  AssumptionCache *AC,
4238                                                  const Instruction *CxtI,
4239                                                  const DominatorTree *DT) {
4240   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4241 }
4242 
4243 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4244   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4245   // of time because it's possible for another thread to interfere with it for an
4246   // arbitrary length of time, but programs aren't allowed to rely on that.
4247 
4248   // If there is no successor, then execution can't transfer to it.
4249   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4250     return !CRI->unwindsToCaller();
4251   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4252     return !CatchSwitch->unwindsToCaller();
4253   if (isa<ResumeInst>(I))
4254     return false;
4255   if (isa<ReturnInst>(I))
4256     return false;
4257   if (isa<UnreachableInst>(I))
4258     return false;
4259 
4260   // Calls can throw, or contain an infinite loop, or kill the process.
4261   if (auto CS = ImmutableCallSite(I)) {
4262     // Call sites that throw have implicit non-local control flow.
4263     if (!CS.doesNotThrow())
4264       return false;
4265 
4266     // A function which doens't throw and has "willreturn" attribute will
4267     // always return.
4268     if (CS.hasFnAttr(Attribute::WillReturn))
4269       return true;
4270 
4271     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4272     // etc. and thus not return.  However, LLVM already assumes that
4273     //
4274     //  - Thread exiting actions are modeled as writes to memory invisible to
4275     //    the program.
4276     //
4277     //  - Loops that don't have side effects (side effects are volatile/atomic
4278     //    stores and IO) always terminate (see http://llvm.org/PR965).
4279     //    Furthermore IO itself is also modeled as writes to memory invisible to
4280     //    the program.
4281     //
4282     // We rely on those assumptions here, and use the memory effects of the call
4283     // target as a proxy for checking that it always returns.
4284 
4285     // FIXME: This isn't aggressive enough; a call which only writes to a global
4286     // is guaranteed to return.
4287     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory();
4288   }
4289 
4290   // Other instructions return normally.
4291   return true;
4292 }
4293 
4294 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4295   // TODO: This is slightly conservative for invoke instruction since exiting
4296   // via an exception *is* normal control for them.
4297   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4298     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4299       return false;
4300   return true;
4301 }
4302 
4303 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4304                                                   const Loop *L) {
4305   // The loop header is guaranteed to be executed for every iteration.
4306   //
4307   // FIXME: Relax this constraint to cover all basic blocks that are
4308   // guaranteed to be executed at every iteration.
4309   if (I->getParent() != L->getHeader()) return false;
4310 
4311   for (const Instruction &LI : *L->getHeader()) {
4312     if (&LI == I) return true;
4313     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4314   }
4315   llvm_unreachable("Instruction not contained in its own parent basic block.");
4316 }
4317 
4318 bool llvm::propagatesFullPoison(const Instruction *I) {
4319   // TODO: This should include all instructions apart from phis, selects and
4320   // call-like instructions.
4321   switch (I->getOpcode()) {
4322   case Instruction::Add:
4323   case Instruction::Sub:
4324   case Instruction::Xor:
4325   case Instruction::Trunc:
4326   case Instruction::BitCast:
4327   case Instruction::AddrSpaceCast:
4328   case Instruction::Mul:
4329   case Instruction::Shl:
4330   case Instruction::GetElementPtr:
4331     // These operations all propagate poison unconditionally. Note that poison
4332     // is not any particular value, so xor or subtraction of poison with
4333     // itself still yields poison, not zero.
4334     return true;
4335 
4336   case Instruction::AShr:
4337   case Instruction::SExt:
4338     // For these operations, one bit of the input is replicated across
4339     // multiple output bits. A replicated poison bit is still poison.
4340     return true;
4341 
4342   case Instruction::ICmp:
4343     // Comparing poison with any value yields poison.  This is why, for
4344     // instance, x s< (x +nsw 1) can be folded to true.
4345     return true;
4346 
4347   default:
4348     return false;
4349   }
4350 }
4351 
4352 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4353   switch (I->getOpcode()) {
4354     case Instruction::Store:
4355       return cast<StoreInst>(I)->getPointerOperand();
4356 
4357     case Instruction::Load:
4358       return cast<LoadInst>(I)->getPointerOperand();
4359 
4360     case Instruction::AtomicCmpXchg:
4361       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4362 
4363     case Instruction::AtomicRMW:
4364       return cast<AtomicRMWInst>(I)->getPointerOperand();
4365 
4366     case Instruction::UDiv:
4367     case Instruction::SDiv:
4368     case Instruction::URem:
4369     case Instruction::SRem:
4370       return I->getOperand(1);
4371 
4372     default:
4373       // Note: It's really tempting to think that a conditional branch or
4374       // switch should be listed here, but that's incorrect.  It's not
4375       // branching off of poison which is UB, it is executing a side effecting
4376       // instruction which follows the branch.
4377       return nullptr;
4378   }
4379 }
4380 
4381 bool llvm::mustTriggerUB(const Instruction *I,
4382                          const SmallSet<const Value *, 16>& KnownPoison) {
4383   auto *NotPoison = getGuaranteedNonFullPoisonOp(I);
4384   return (NotPoison && KnownPoison.count(NotPoison));
4385 }
4386 
4387 
4388 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4389   // We currently only look for uses of poison values within the same basic
4390   // block, as that makes it easier to guarantee that the uses will be
4391   // executed given that PoisonI is executed.
4392   //
4393   // FIXME: Expand this to consider uses beyond the same basic block. To do
4394   // this, look out for the distinction between post-dominance and strong
4395   // post-dominance.
4396   const BasicBlock *BB = PoisonI->getParent();
4397 
4398   // Set of instructions that we have proved will yield poison if PoisonI
4399   // does.
4400   SmallSet<const Value *, 16> YieldsPoison;
4401   SmallSet<const BasicBlock *, 4> Visited;
4402   YieldsPoison.insert(PoisonI);
4403   Visited.insert(PoisonI->getParent());
4404 
4405   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4406 
4407   unsigned Iter = 0;
4408   while (Iter++ < MaxDepth) {
4409     for (auto &I : make_range(Begin, End)) {
4410       if (&I != PoisonI) {
4411         if (mustTriggerUB(&I, YieldsPoison))
4412           return true;
4413         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4414           return false;
4415       }
4416 
4417       // Mark poison that propagates from I through uses of I.
4418       if (YieldsPoison.count(&I)) {
4419         for (const User *User : I.users()) {
4420           const Instruction *UserI = cast<Instruction>(User);
4421           if (propagatesFullPoison(UserI))
4422             YieldsPoison.insert(User);
4423         }
4424       }
4425     }
4426 
4427     if (auto *NextBB = BB->getSingleSuccessor()) {
4428       if (Visited.insert(NextBB).second) {
4429         BB = NextBB;
4430         Begin = BB->getFirstNonPHI()->getIterator();
4431         End = BB->end();
4432         continue;
4433       }
4434     }
4435 
4436     break;
4437   }
4438   return false;
4439 }
4440 
4441 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4442   if (FMF.noNaNs())
4443     return true;
4444 
4445   if (auto *C = dyn_cast<ConstantFP>(V))
4446     return !C->isNaN();
4447 
4448   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4449     if (!C->getElementType()->isFloatingPointTy())
4450       return false;
4451     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4452       if (C->getElementAsAPFloat(I).isNaN())
4453         return false;
4454     }
4455     return true;
4456   }
4457 
4458   return false;
4459 }
4460 
4461 static bool isKnownNonZero(const Value *V) {
4462   if (auto *C = dyn_cast<ConstantFP>(V))
4463     return !C->isZero();
4464 
4465   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4466     if (!C->getElementType()->isFloatingPointTy())
4467       return false;
4468     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4469       if (C->getElementAsAPFloat(I).isZero())
4470         return false;
4471     }
4472     return true;
4473   }
4474 
4475   return false;
4476 }
4477 
4478 /// Match clamp pattern for float types without care about NaNs or signed zeros.
4479 /// Given non-min/max outer cmp/select from the clamp pattern this
4480 /// function recognizes if it can be substitued by a "canonical" min/max
4481 /// pattern.
4482 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4483                                                Value *CmpLHS, Value *CmpRHS,
4484                                                Value *TrueVal, Value *FalseVal,
4485                                                Value *&LHS, Value *&RHS) {
4486   // Try to match
4487   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4488   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4489   // and return description of the outer Max/Min.
4490 
4491   // First, check if select has inverse order:
4492   if (CmpRHS == FalseVal) {
4493     std::swap(TrueVal, FalseVal);
4494     Pred = CmpInst::getInversePredicate(Pred);
4495   }
4496 
4497   // Assume success now. If there's no match, callers should not use these anyway.
4498   LHS = TrueVal;
4499   RHS = FalseVal;
4500 
4501   const APFloat *FC1;
4502   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4503     return {SPF_UNKNOWN, SPNB_NA, false};
4504 
4505   const APFloat *FC2;
4506   switch (Pred) {
4507   case CmpInst::FCMP_OLT:
4508   case CmpInst::FCMP_OLE:
4509   case CmpInst::FCMP_ULT:
4510   case CmpInst::FCMP_ULE:
4511     if (match(FalseVal,
4512               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4513                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4514         FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4515       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4516     break;
4517   case CmpInst::FCMP_OGT:
4518   case CmpInst::FCMP_OGE:
4519   case CmpInst::FCMP_UGT:
4520   case CmpInst::FCMP_UGE:
4521     if (match(FalseVal,
4522               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4523                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4524         FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4525       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4526     break;
4527   default:
4528     break;
4529   }
4530 
4531   return {SPF_UNKNOWN, SPNB_NA, false};
4532 }
4533 
4534 /// Recognize variations of:
4535 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4536 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4537                                       Value *CmpLHS, Value *CmpRHS,
4538                                       Value *TrueVal, Value *FalseVal) {
4539   // Swap the select operands and predicate to match the patterns below.
4540   if (CmpRHS != TrueVal) {
4541     Pred = ICmpInst::getSwappedPredicate(Pred);
4542     std::swap(TrueVal, FalseVal);
4543   }
4544   const APInt *C1;
4545   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4546     const APInt *C2;
4547     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4548     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4549         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4550       return {SPF_SMAX, SPNB_NA, false};
4551 
4552     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4553     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4554         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4555       return {SPF_SMIN, SPNB_NA, false};
4556 
4557     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4558     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4559         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4560       return {SPF_UMAX, SPNB_NA, false};
4561 
4562     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4563     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4564         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4565       return {SPF_UMIN, SPNB_NA, false};
4566   }
4567   return {SPF_UNKNOWN, SPNB_NA, false};
4568 }
4569 
4570 /// Recognize variations of:
4571 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4572 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4573                                                Value *CmpLHS, Value *CmpRHS,
4574                                                Value *TVal, Value *FVal,
4575                                                unsigned Depth) {
4576   // TODO: Allow FP min/max with nnan/nsz.
4577   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4578 
4579   Value *A = nullptr, *B = nullptr;
4580   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4581   if (!SelectPatternResult::isMinOrMax(L.Flavor))
4582     return {SPF_UNKNOWN, SPNB_NA, false};
4583 
4584   Value *C = nullptr, *D = nullptr;
4585   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4586   if (L.Flavor != R.Flavor)
4587     return {SPF_UNKNOWN, SPNB_NA, false};
4588 
4589   // We have something like: x Pred y ? min(a, b) : min(c, d).
4590   // Try to match the compare to the min/max operations of the select operands.
4591   // First, make sure we have the right compare predicate.
4592   switch (L.Flavor) {
4593   case SPF_SMIN:
4594     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4595       Pred = ICmpInst::getSwappedPredicate(Pred);
4596       std::swap(CmpLHS, CmpRHS);
4597     }
4598     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4599       break;
4600     return {SPF_UNKNOWN, SPNB_NA, false};
4601   case SPF_SMAX:
4602     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4603       Pred = ICmpInst::getSwappedPredicate(Pred);
4604       std::swap(CmpLHS, CmpRHS);
4605     }
4606     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4607       break;
4608     return {SPF_UNKNOWN, SPNB_NA, false};
4609   case SPF_UMIN:
4610     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4611       Pred = ICmpInst::getSwappedPredicate(Pred);
4612       std::swap(CmpLHS, CmpRHS);
4613     }
4614     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4615       break;
4616     return {SPF_UNKNOWN, SPNB_NA, false};
4617   case SPF_UMAX:
4618     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4619       Pred = ICmpInst::getSwappedPredicate(Pred);
4620       std::swap(CmpLHS, CmpRHS);
4621     }
4622     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4623       break;
4624     return {SPF_UNKNOWN, SPNB_NA, false};
4625   default:
4626     return {SPF_UNKNOWN, SPNB_NA, false};
4627   }
4628 
4629   // If there is a common operand in the already matched min/max and the other
4630   // min/max operands match the compare operands (either directly or inverted),
4631   // then this is min/max of the same flavor.
4632 
4633   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4634   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4635   if (D == B) {
4636     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4637                                          match(A, m_Not(m_Specific(CmpRHS)))))
4638       return {L.Flavor, SPNB_NA, false};
4639   }
4640   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4641   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4642   if (C == B) {
4643     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4644                                          match(A, m_Not(m_Specific(CmpRHS)))))
4645       return {L.Flavor, SPNB_NA, false};
4646   }
4647   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4648   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4649   if (D == A) {
4650     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4651                                          match(B, m_Not(m_Specific(CmpRHS)))))
4652       return {L.Flavor, SPNB_NA, false};
4653   }
4654   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4655   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4656   if (C == A) {
4657     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4658                                          match(B, m_Not(m_Specific(CmpRHS)))))
4659       return {L.Flavor, SPNB_NA, false};
4660   }
4661 
4662   return {SPF_UNKNOWN, SPNB_NA, false};
4663 }
4664 
4665 /// Match non-obvious integer minimum and maximum sequences.
4666 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4667                                        Value *CmpLHS, Value *CmpRHS,
4668                                        Value *TrueVal, Value *FalseVal,
4669                                        Value *&LHS, Value *&RHS,
4670                                        unsigned Depth) {
4671   // Assume success. If there's no match, callers should not use these anyway.
4672   LHS = TrueVal;
4673   RHS = FalseVal;
4674 
4675   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4676   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4677     return SPR;
4678 
4679   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4680   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4681     return SPR;
4682 
4683   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4684     return {SPF_UNKNOWN, SPNB_NA, false};
4685 
4686   // Z = X -nsw Y
4687   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4688   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4689   if (match(TrueVal, m_Zero()) &&
4690       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4691     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4692 
4693   // Z = X -nsw Y
4694   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4695   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4696   if (match(FalseVal, m_Zero()) &&
4697       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4698     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4699 
4700   const APInt *C1;
4701   if (!match(CmpRHS, m_APInt(C1)))
4702     return {SPF_UNKNOWN, SPNB_NA, false};
4703 
4704   // An unsigned min/max can be written with a signed compare.
4705   const APInt *C2;
4706   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4707       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4708     // Is the sign bit set?
4709     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4710     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4711     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4712         C2->isMaxSignedValue())
4713       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4714 
4715     // Is the sign bit clear?
4716     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4717     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4718     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4719         C2->isMinSignedValue())
4720       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4721   }
4722 
4723   // Look through 'not' ops to find disguised signed min/max.
4724   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4725   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4726   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4727       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4728     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4729 
4730   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4731   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4732   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4733       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4734     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4735 
4736   return {SPF_UNKNOWN, SPNB_NA, false};
4737 }
4738 
4739 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4740   assert(X && Y && "Invalid operand");
4741 
4742   // X = sub (0, Y) || X = sub nsw (0, Y)
4743   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4744       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4745     return true;
4746 
4747   // Y = sub (0, X) || Y = sub nsw (0, X)
4748   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4749       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4750     return true;
4751 
4752   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4753   Value *A, *B;
4754   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4755                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4756          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4757                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4758 }
4759 
4760 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4761                                               FastMathFlags FMF,
4762                                               Value *CmpLHS, Value *CmpRHS,
4763                                               Value *TrueVal, Value *FalseVal,
4764                                               Value *&LHS, Value *&RHS,
4765                                               unsigned Depth) {
4766   if (CmpInst::isFPPredicate(Pred)) {
4767     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
4768     // 0.0 operand, set the compare's 0.0 operands to that same value for the
4769     // purpose of identifying min/max. Disregard vector constants with undefined
4770     // elements because those can not be back-propagated for analysis.
4771     Value *OutputZeroVal = nullptr;
4772     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
4773         !cast<Constant>(TrueVal)->containsUndefElement())
4774       OutputZeroVal = TrueVal;
4775     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
4776              !cast<Constant>(FalseVal)->containsUndefElement())
4777       OutputZeroVal = FalseVal;
4778 
4779     if (OutputZeroVal) {
4780       if (match(CmpLHS, m_AnyZeroFP()))
4781         CmpLHS = OutputZeroVal;
4782       if (match(CmpRHS, m_AnyZeroFP()))
4783         CmpRHS = OutputZeroVal;
4784     }
4785   }
4786 
4787   LHS = CmpLHS;
4788   RHS = CmpRHS;
4789 
4790   // Signed zero may return inconsistent results between implementations.
4791   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4792   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4793   // Therefore, we behave conservatively and only proceed if at least one of the
4794   // operands is known to not be zero or if we don't care about signed zero.
4795   switch (Pred) {
4796   default: break;
4797   // FIXME: Include OGT/OLT/UGT/ULT.
4798   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4799   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4800     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4801         !isKnownNonZero(CmpRHS))
4802       return {SPF_UNKNOWN, SPNB_NA, false};
4803   }
4804 
4805   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4806   bool Ordered = false;
4807 
4808   // When given one NaN and one non-NaN input:
4809   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4810   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4811   //     ordered comparison fails), which could be NaN or non-NaN.
4812   // so here we discover exactly what NaN behavior is required/accepted.
4813   if (CmpInst::isFPPredicate(Pred)) {
4814     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4815     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4816 
4817     if (LHSSafe && RHSSafe) {
4818       // Both operands are known non-NaN.
4819       NaNBehavior = SPNB_RETURNS_ANY;
4820     } else if (CmpInst::isOrdered(Pred)) {
4821       // An ordered comparison will return false when given a NaN, so it
4822       // returns the RHS.
4823       Ordered = true;
4824       if (LHSSafe)
4825         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4826         NaNBehavior = SPNB_RETURNS_NAN;
4827       else if (RHSSafe)
4828         NaNBehavior = SPNB_RETURNS_OTHER;
4829       else
4830         // Completely unsafe.
4831         return {SPF_UNKNOWN, SPNB_NA, false};
4832     } else {
4833       Ordered = false;
4834       // An unordered comparison will return true when given a NaN, so it
4835       // returns the LHS.
4836       if (LHSSafe)
4837         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4838         NaNBehavior = SPNB_RETURNS_OTHER;
4839       else if (RHSSafe)
4840         NaNBehavior = SPNB_RETURNS_NAN;
4841       else
4842         // Completely unsafe.
4843         return {SPF_UNKNOWN, SPNB_NA, false};
4844     }
4845   }
4846 
4847   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4848     std::swap(CmpLHS, CmpRHS);
4849     Pred = CmpInst::getSwappedPredicate(Pred);
4850     if (NaNBehavior == SPNB_RETURNS_NAN)
4851       NaNBehavior = SPNB_RETURNS_OTHER;
4852     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4853       NaNBehavior = SPNB_RETURNS_NAN;
4854     Ordered = !Ordered;
4855   }
4856 
4857   // ([if]cmp X, Y) ? X : Y
4858   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4859     switch (Pred) {
4860     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4861     case ICmpInst::ICMP_UGT:
4862     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4863     case ICmpInst::ICMP_SGT:
4864     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4865     case ICmpInst::ICMP_ULT:
4866     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4867     case ICmpInst::ICMP_SLT:
4868     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4869     case FCmpInst::FCMP_UGT:
4870     case FCmpInst::FCMP_UGE:
4871     case FCmpInst::FCMP_OGT:
4872     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4873     case FCmpInst::FCMP_ULT:
4874     case FCmpInst::FCMP_ULE:
4875     case FCmpInst::FCMP_OLT:
4876     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4877     }
4878   }
4879 
4880   if (isKnownNegation(TrueVal, FalseVal)) {
4881     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4882     // match against either LHS or sext(LHS).
4883     auto MaybeSExtCmpLHS =
4884         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4885     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4886     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4887     if (match(TrueVal, MaybeSExtCmpLHS)) {
4888       // Set the return values. If the compare uses the negated value (-X >s 0),
4889       // swap the return values because the negated value is always 'RHS'.
4890       LHS = TrueVal;
4891       RHS = FalseVal;
4892       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4893         std::swap(LHS, RHS);
4894 
4895       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4896       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4897       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4898         return {SPF_ABS, SPNB_NA, false};
4899 
4900       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
4901       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
4902         return {SPF_ABS, SPNB_NA, false};
4903 
4904       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4905       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4906       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4907         return {SPF_NABS, SPNB_NA, false};
4908     }
4909     else if (match(FalseVal, MaybeSExtCmpLHS)) {
4910       // Set the return values. If the compare uses the negated value (-X >s 0),
4911       // swap the return values because the negated value is always 'RHS'.
4912       LHS = FalseVal;
4913       RHS = TrueVal;
4914       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4915         std::swap(LHS, RHS);
4916 
4917       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4918       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4919       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4920         return {SPF_NABS, SPNB_NA, false};
4921 
4922       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4923       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4924       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4925         return {SPF_ABS, SPNB_NA, false};
4926     }
4927   }
4928 
4929   if (CmpInst::isIntPredicate(Pred))
4930     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4931 
4932   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4933   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4934   // semantics than minNum. Be conservative in such case.
4935   if (NaNBehavior != SPNB_RETURNS_ANY ||
4936       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4937        !isKnownNonZero(CmpRHS)))
4938     return {SPF_UNKNOWN, SPNB_NA, false};
4939 
4940   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4941 }
4942 
4943 /// Helps to match a select pattern in case of a type mismatch.
4944 ///
4945 /// The function processes the case when type of true and false values of a
4946 /// select instruction differs from type of the cmp instruction operands because
4947 /// of a cast instruction. The function checks if it is legal to move the cast
4948 /// operation after "select". If yes, it returns the new second value of
4949 /// "select" (with the assumption that cast is moved):
4950 /// 1. As operand of cast instruction when both values of "select" are same cast
4951 /// instructions.
4952 /// 2. As restored constant (by applying reverse cast operation) when the first
4953 /// value of the "select" is a cast operation and the second value is a
4954 /// constant.
4955 /// NOTE: We return only the new second value because the first value could be
4956 /// accessed as operand of cast instruction.
4957 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4958                               Instruction::CastOps *CastOp) {
4959   auto *Cast1 = dyn_cast<CastInst>(V1);
4960   if (!Cast1)
4961     return nullptr;
4962 
4963   *CastOp = Cast1->getOpcode();
4964   Type *SrcTy = Cast1->getSrcTy();
4965   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4966     // If V1 and V2 are both the same cast from the same type, look through V1.
4967     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4968       return Cast2->getOperand(0);
4969     return nullptr;
4970   }
4971 
4972   auto *C = dyn_cast<Constant>(V2);
4973   if (!C)
4974     return nullptr;
4975 
4976   Constant *CastedTo = nullptr;
4977   switch (*CastOp) {
4978   case Instruction::ZExt:
4979     if (CmpI->isUnsigned())
4980       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4981     break;
4982   case Instruction::SExt:
4983     if (CmpI->isSigned())
4984       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4985     break;
4986   case Instruction::Trunc:
4987     Constant *CmpConst;
4988     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4989         CmpConst->getType() == SrcTy) {
4990       // Here we have the following case:
4991       //
4992       //   %cond = cmp iN %x, CmpConst
4993       //   %tr = trunc iN %x to iK
4994       //   %narrowsel = select i1 %cond, iK %t, iK C
4995       //
4996       // We can always move trunc after select operation:
4997       //
4998       //   %cond = cmp iN %x, CmpConst
4999       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5000       //   %tr = trunc iN %widesel to iK
5001       //
5002       // Note that C could be extended in any way because we don't care about
5003       // upper bits after truncation. It can't be abs pattern, because it would
5004       // look like:
5005       //
5006       //   select i1 %cond, x, -x.
5007       //
5008       // So only min/max pattern could be matched. Such match requires widened C
5009       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5010       // CmpConst == C is checked below.
5011       CastedTo = CmpConst;
5012     } else {
5013       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5014     }
5015     break;
5016   case Instruction::FPTrunc:
5017     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5018     break;
5019   case Instruction::FPExt:
5020     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5021     break;
5022   case Instruction::FPToUI:
5023     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5024     break;
5025   case Instruction::FPToSI:
5026     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5027     break;
5028   case Instruction::UIToFP:
5029     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5030     break;
5031   case Instruction::SIToFP:
5032     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5033     break;
5034   default:
5035     break;
5036   }
5037 
5038   if (!CastedTo)
5039     return nullptr;
5040 
5041   // Make sure the cast doesn't lose any information.
5042   Constant *CastedBack =
5043       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5044   if (CastedBack != C)
5045     return nullptr;
5046 
5047   return CastedTo;
5048 }
5049 
5050 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5051                                              Instruction::CastOps *CastOp,
5052                                              unsigned Depth) {
5053   if (Depth >= MaxDepth)
5054     return {SPF_UNKNOWN, SPNB_NA, false};
5055 
5056   SelectInst *SI = dyn_cast<SelectInst>(V);
5057   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5058 
5059   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5060   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5061 
5062   Value *TrueVal = SI->getTrueValue();
5063   Value *FalseVal = SI->getFalseValue();
5064 
5065   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5066                                             CastOp, Depth);
5067 }
5068 
5069 SelectPatternResult llvm::matchDecomposedSelectPattern(
5070     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5071     Instruction::CastOps *CastOp, unsigned Depth) {
5072   CmpInst::Predicate Pred = CmpI->getPredicate();
5073   Value *CmpLHS = CmpI->getOperand(0);
5074   Value *CmpRHS = CmpI->getOperand(1);
5075   FastMathFlags FMF;
5076   if (isa<FPMathOperator>(CmpI))
5077     FMF = CmpI->getFastMathFlags();
5078 
5079   // Bail out early.
5080   if (CmpI->isEquality())
5081     return {SPF_UNKNOWN, SPNB_NA, false};
5082 
5083   // Deal with type mismatches.
5084   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5085     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5086       // If this is a potential fmin/fmax with a cast to integer, then ignore
5087       // -0.0 because there is no corresponding integer value.
5088       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5089         FMF.setNoSignedZeros();
5090       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5091                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5092                                   LHS, RHS, Depth);
5093     }
5094     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5095       // If this is a potential fmin/fmax with a cast to integer, then ignore
5096       // -0.0 because there is no corresponding integer value.
5097       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5098         FMF.setNoSignedZeros();
5099       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5100                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5101                                   LHS, RHS, Depth);
5102     }
5103   }
5104   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5105                               LHS, RHS, Depth);
5106 }
5107 
5108 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5109   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5110   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5111   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5112   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5113   if (SPF == SPF_FMINNUM)
5114     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5115   if (SPF == SPF_FMAXNUM)
5116     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5117   llvm_unreachable("unhandled!");
5118 }
5119 
5120 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5121   if (SPF == SPF_SMIN) return SPF_SMAX;
5122   if (SPF == SPF_UMIN) return SPF_UMAX;
5123   if (SPF == SPF_SMAX) return SPF_SMIN;
5124   if (SPF == SPF_UMAX) return SPF_UMIN;
5125   llvm_unreachable("unhandled!");
5126 }
5127 
5128 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5129   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5130 }
5131 
5132 /// Return true if "icmp Pred LHS RHS" is always true.
5133 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5134                             const Value *RHS, const DataLayout &DL,
5135                             unsigned Depth) {
5136   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5137   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5138     return true;
5139 
5140   switch (Pred) {
5141   default:
5142     return false;
5143 
5144   case CmpInst::ICMP_SLE: {
5145     const APInt *C;
5146 
5147     // LHS s<= LHS +_{nsw} C   if C >= 0
5148     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5149       return !C->isNegative();
5150     return false;
5151   }
5152 
5153   case CmpInst::ICMP_ULE: {
5154     const APInt *C;
5155 
5156     // LHS u<= LHS +_{nuw} C   for any C
5157     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5158       return true;
5159 
5160     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5161     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5162                                        const Value *&X,
5163                                        const APInt *&CA, const APInt *&CB) {
5164       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5165           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5166         return true;
5167 
5168       // If X & C == 0 then (X | C) == X +_{nuw} C
5169       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5170           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5171         KnownBits Known(CA->getBitWidth());
5172         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5173                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5174         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5175           return true;
5176       }
5177 
5178       return false;
5179     };
5180 
5181     const Value *X;
5182     const APInt *CLHS, *CRHS;
5183     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5184       return CLHS->ule(*CRHS);
5185 
5186     return false;
5187   }
5188   }
5189 }
5190 
5191 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5192 /// ALHS ARHS" is true.  Otherwise, return None.
5193 static Optional<bool>
5194 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5195                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5196                       const DataLayout &DL, unsigned Depth) {
5197   switch (Pred) {
5198   default:
5199     return None;
5200 
5201   case CmpInst::ICMP_SLT:
5202   case CmpInst::ICMP_SLE:
5203     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5204         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5205       return true;
5206     return None;
5207 
5208   case CmpInst::ICMP_ULT:
5209   case CmpInst::ICMP_ULE:
5210     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5211         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5212       return true;
5213     return None;
5214   }
5215 }
5216 
5217 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5218 /// when the operands match, but are swapped.
5219 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5220                           const Value *BLHS, const Value *BRHS,
5221                           bool &IsSwappedOps) {
5222 
5223   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5224   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5225   return IsMatchingOps || IsSwappedOps;
5226 }
5227 
5228 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5229 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5230 /// Otherwise, return None if we can't infer anything.
5231 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5232                                                     CmpInst::Predicate BPred,
5233                                                     bool AreSwappedOps) {
5234   // Canonicalize the predicate as if the operands were not commuted.
5235   if (AreSwappedOps)
5236     BPred = ICmpInst::getSwappedPredicate(BPred);
5237 
5238   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5239     return true;
5240   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5241     return false;
5242 
5243   return None;
5244 }
5245 
5246 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5247 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5248 /// Otherwise, return None if we can't infer anything.
5249 static Optional<bool>
5250 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
5251                                  const ConstantInt *C1,
5252                                  CmpInst::Predicate BPred,
5253                                  const ConstantInt *C2) {
5254   ConstantRange DomCR =
5255       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5256   ConstantRange CR =
5257       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5258   ConstantRange Intersection = DomCR.intersectWith(CR);
5259   ConstantRange Difference = DomCR.difference(CR);
5260   if (Intersection.isEmptySet())
5261     return false;
5262   if (Difference.isEmptySet())
5263     return true;
5264   return None;
5265 }
5266 
5267 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5268 /// false.  Otherwise, return None if we can't infer anything.
5269 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5270                                          const ICmpInst *RHS,
5271                                          const DataLayout &DL, bool LHSIsTrue,
5272                                          unsigned Depth) {
5273   Value *ALHS = LHS->getOperand(0);
5274   Value *ARHS = LHS->getOperand(1);
5275   // The rest of the logic assumes the LHS condition is true.  If that's not the
5276   // case, invert the predicate to make it so.
5277   ICmpInst::Predicate APred =
5278       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5279 
5280   Value *BLHS = RHS->getOperand(0);
5281   Value *BRHS = RHS->getOperand(1);
5282   ICmpInst::Predicate BPred = RHS->getPredicate();
5283 
5284   // Can we infer anything when the two compares have matching operands?
5285   bool AreSwappedOps;
5286   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
5287     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5288             APred, BPred, AreSwappedOps))
5289       return Implication;
5290     // No amount of additional analysis will infer the second condition, so
5291     // early exit.
5292     return None;
5293   }
5294 
5295   // Can we infer anything when the LHS operands match and the RHS operands are
5296   // constants (not necessarily matching)?
5297   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5298     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5299             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
5300       return Implication;
5301     // No amount of additional analysis will infer the second condition, so
5302     // early exit.
5303     return None;
5304   }
5305 
5306   if (APred == BPred)
5307     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5308   return None;
5309 }
5310 
5311 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5312 /// false.  Otherwise, return None if we can't infer anything.  We expect the
5313 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5314 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5315                                          const ICmpInst *RHS,
5316                                          const DataLayout &DL, bool LHSIsTrue,
5317                                          unsigned Depth) {
5318   // The LHS must be an 'or' or an 'and' instruction.
5319   assert((LHS->getOpcode() == Instruction::And ||
5320           LHS->getOpcode() == Instruction::Or) &&
5321          "Expected LHS to be 'and' or 'or'.");
5322 
5323   assert(Depth <= MaxDepth && "Hit recursion limit");
5324 
5325   // If the result of an 'or' is false, then we know both legs of the 'or' are
5326   // false.  Similarly, if the result of an 'and' is true, then we know both
5327   // legs of the 'and' are true.
5328   Value *ALHS, *ARHS;
5329   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5330       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5331     // FIXME: Make this non-recursion.
5332     if (Optional<bool> Implication =
5333             isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5334       return Implication;
5335     if (Optional<bool> Implication =
5336             isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5337       return Implication;
5338     return None;
5339   }
5340   return None;
5341 }
5342 
5343 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5344                                         const DataLayout &DL, bool LHSIsTrue,
5345                                         unsigned Depth) {
5346   // Bail out when we hit the limit.
5347   if (Depth == MaxDepth)
5348     return None;
5349 
5350   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5351   // example.
5352   if (LHS->getType() != RHS->getType())
5353     return None;
5354 
5355   Type *OpTy = LHS->getType();
5356   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5357 
5358   // LHS ==> RHS by definition
5359   if (LHS == RHS)
5360     return LHSIsTrue;
5361 
5362   // FIXME: Extending the code below to handle vectors.
5363   if (OpTy->isVectorTy())
5364     return None;
5365 
5366   assert(OpTy->isIntegerTy(1) && "implied by above");
5367 
5368   // Both LHS and RHS are icmps.
5369   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5370   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5371   if (LHSCmp && RHSCmp)
5372     return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5373 
5374   // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
5375   // an icmp. FIXME: Add support for and/or on the RHS.
5376   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5377   if (LHSBO && RHSCmp) {
5378     if ((LHSBO->getOpcode() == Instruction::And ||
5379          LHSBO->getOpcode() == Instruction::Or))
5380       return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5381   }
5382   return None;
5383 }
5384 
5385 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
5386                                              const Instruction *ContextI,
5387                                              const DataLayout &DL) {
5388   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
5389   if (!ContextI || !ContextI->getParent())
5390     return None;
5391 
5392   // TODO: This is a poor/cheap way to determine dominance. Should we use a
5393   // dominator tree (eg, from a SimplifyQuery) instead?
5394   const BasicBlock *ContextBB = ContextI->getParent();
5395   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
5396   if (!PredBB)
5397     return None;
5398 
5399   // We need a conditional branch in the predecessor.
5400   Value *PredCond;
5401   BasicBlock *TrueBB, *FalseBB;
5402   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
5403     return None;
5404 
5405   // The branch should get simplified. Don't bother simplifying this condition.
5406   if (TrueBB == FalseBB)
5407     return None;
5408 
5409   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
5410          "Predecessor block does not point to successor?");
5411 
5412   // Is this condition implied by the predecessor condition?
5413   bool CondIsTrue = TrueBB == ContextBB;
5414   return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
5415 }
5416 
5417 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
5418                               APInt &Upper, const InstrInfoQuery &IIQ) {
5419   unsigned Width = Lower.getBitWidth();
5420   const APInt *C;
5421   switch (BO.getOpcode()) {
5422   case Instruction::Add:
5423     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5424       // FIXME: If we have both nuw and nsw, we should reduce the range further.
5425       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5426         // 'add nuw x, C' produces [C, UINT_MAX].
5427         Lower = *C;
5428       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5429         if (C->isNegative()) {
5430           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
5431           Lower = APInt::getSignedMinValue(Width);
5432           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5433         } else {
5434           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
5435           Lower = APInt::getSignedMinValue(Width) + *C;
5436           Upper = APInt::getSignedMaxValue(Width) + 1;
5437         }
5438       }
5439     }
5440     break;
5441 
5442   case Instruction::And:
5443     if (match(BO.getOperand(1), m_APInt(C)))
5444       // 'and x, C' produces [0, C].
5445       Upper = *C + 1;
5446     break;
5447 
5448   case Instruction::Or:
5449     if (match(BO.getOperand(1), m_APInt(C)))
5450       // 'or x, C' produces [C, UINT_MAX].
5451       Lower = *C;
5452     break;
5453 
5454   case Instruction::AShr:
5455     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5456       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
5457       Lower = APInt::getSignedMinValue(Width).ashr(*C);
5458       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
5459     } else if (match(BO.getOperand(0), m_APInt(C))) {
5460       unsigned ShiftAmount = Width - 1;
5461       if (!C->isNullValue() && IIQ.isExact(&BO))
5462         ShiftAmount = C->countTrailingZeros();
5463       if (C->isNegative()) {
5464         // 'ashr C, x' produces [C, C >> (Width-1)]
5465         Lower = *C;
5466         Upper = C->ashr(ShiftAmount) + 1;
5467       } else {
5468         // 'ashr C, x' produces [C >> (Width-1), C]
5469         Lower = C->ashr(ShiftAmount);
5470         Upper = *C + 1;
5471       }
5472     }
5473     break;
5474 
5475   case Instruction::LShr:
5476     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5477       // 'lshr x, C' produces [0, UINT_MAX >> C].
5478       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
5479     } else if (match(BO.getOperand(0), m_APInt(C))) {
5480       // 'lshr C, x' produces [C >> (Width-1), C].
5481       unsigned ShiftAmount = Width - 1;
5482       if (!C->isNullValue() && IIQ.isExact(&BO))
5483         ShiftAmount = C->countTrailingZeros();
5484       Lower = C->lshr(ShiftAmount);
5485       Upper = *C + 1;
5486     }
5487     break;
5488 
5489   case Instruction::Shl:
5490     if (match(BO.getOperand(0), m_APInt(C))) {
5491       if (IIQ.hasNoUnsignedWrap(&BO)) {
5492         // 'shl nuw C, x' produces [C, C << CLZ(C)]
5493         Lower = *C;
5494         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
5495       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
5496         if (C->isNegative()) {
5497           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
5498           unsigned ShiftAmount = C->countLeadingOnes() - 1;
5499           Lower = C->shl(ShiftAmount);
5500           Upper = *C + 1;
5501         } else {
5502           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
5503           unsigned ShiftAmount = C->countLeadingZeros() - 1;
5504           Lower = *C;
5505           Upper = C->shl(ShiftAmount) + 1;
5506         }
5507       }
5508     }
5509     break;
5510 
5511   case Instruction::SDiv:
5512     if (match(BO.getOperand(1), m_APInt(C))) {
5513       APInt IntMin = APInt::getSignedMinValue(Width);
5514       APInt IntMax = APInt::getSignedMaxValue(Width);
5515       if (C->isAllOnesValue()) {
5516         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
5517         //    where C != -1 and C != 0 and C != 1
5518         Lower = IntMin + 1;
5519         Upper = IntMax + 1;
5520       } else if (C->countLeadingZeros() < Width - 1) {
5521         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
5522         //    where C != -1 and C != 0 and C != 1
5523         Lower = IntMin.sdiv(*C);
5524         Upper = IntMax.sdiv(*C);
5525         if (Lower.sgt(Upper))
5526           std::swap(Lower, Upper);
5527         Upper = Upper + 1;
5528         assert(Upper != Lower && "Upper part of range has wrapped!");
5529       }
5530     } else if (match(BO.getOperand(0), m_APInt(C))) {
5531       if (C->isMinSignedValue()) {
5532         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
5533         Lower = *C;
5534         Upper = Lower.lshr(1) + 1;
5535       } else {
5536         // 'sdiv C, x' produces [-|C|, |C|].
5537         Upper = C->abs() + 1;
5538         Lower = (-Upper) + 1;
5539       }
5540     }
5541     break;
5542 
5543   case Instruction::UDiv:
5544     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5545       // 'udiv x, C' produces [0, UINT_MAX / C].
5546       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
5547     } else if (match(BO.getOperand(0), m_APInt(C))) {
5548       // 'udiv C, x' produces [0, C].
5549       Upper = *C + 1;
5550     }
5551     break;
5552 
5553   case Instruction::SRem:
5554     if (match(BO.getOperand(1), m_APInt(C))) {
5555       // 'srem x, C' produces (-|C|, |C|).
5556       Upper = C->abs();
5557       Lower = (-Upper) + 1;
5558     }
5559     break;
5560 
5561   case Instruction::URem:
5562     if (match(BO.getOperand(1), m_APInt(C)))
5563       // 'urem x, C' produces [0, C).
5564       Upper = *C;
5565     break;
5566 
5567   default:
5568     break;
5569   }
5570 }
5571 
5572 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
5573                                   APInt &Upper) {
5574   unsigned Width = Lower.getBitWidth();
5575   const APInt *C;
5576   switch (II.getIntrinsicID()) {
5577   case Intrinsic::uadd_sat:
5578     // uadd.sat(x, C) produces [C, UINT_MAX].
5579     if (match(II.getOperand(0), m_APInt(C)) ||
5580         match(II.getOperand(1), m_APInt(C)))
5581       Lower = *C;
5582     break;
5583   case Intrinsic::sadd_sat:
5584     if (match(II.getOperand(0), m_APInt(C)) ||
5585         match(II.getOperand(1), m_APInt(C))) {
5586       if (C->isNegative()) {
5587         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
5588         Lower = APInt::getSignedMinValue(Width);
5589         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5590       } else {
5591         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
5592         Lower = APInt::getSignedMinValue(Width) + *C;
5593         Upper = APInt::getSignedMaxValue(Width) + 1;
5594       }
5595     }
5596     break;
5597   case Intrinsic::usub_sat:
5598     // usub.sat(C, x) produces [0, C].
5599     if (match(II.getOperand(0), m_APInt(C)))
5600       Upper = *C + 1;
5601     // usub.sat(x, C) produces [0, UINT_MAX - C].
5602     else if (match(II.getOperand(1), m_APInt(C)))
5603       Upper = APInt::getMaxValue(Width) - *C + 1;
5604     break;
5605   case Intrinsic::ssub_sat:
5606     if (match(II.getOperand(0), m_APInt(C))) {
5607       if (C->isNegative()) {
5608         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
5609         Lower = APInt::getSignedMinValue(Width);
5610         Upper = *C - APInt::getSignedMinValue(Width) + 1;
5611       } else {
5612         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
5613         Lower = *C - APInt::getSignedMaxValue(Width);
5614         Upper = APInt::getSignedMaxValue(Width) + 1;
5615       }
5616     } else if (match(II.getOperand(1), m_APInt(C))) {
5617       if (C->isNegative()) {
5618         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
5619         Lower = APInt::getSignedMinValue(Width) - *C;
5620         Upper = APInt::getSignedMaxValue(Width) + 1;
5621       } else {
5622         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
5623         Lower = APInt::getSignedMinValue(Width);
5624         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
5625       }
5626     }
5627     break;
5628   default:
5629     break;
5630   }
5631 }
5632 
5633 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
5634                                       APInt &Upper, const InstrInfoQuery &IIQ) {
5635   const Value *LHS = nullptr, *RHS = nullptr;
5636   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
5637   if (R.Flavor == SPF_UNKNOWN)
5638     return;
5639 
5640   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
5641 
5642   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
5643     // If the negation part of the abs (in RHS) has the NSW flag,
5644     // then the result of abs(X) is [0..SIGNED_MAX],
5645     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
5646     Lower = APInt::getNullValue(BitWidth);
5647     if (match(RHS, m_Neg(m_Specific(LHS))) &&
5648         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
5649       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
5650     else
5651       Upper = APInt::getSignedMinValue(BitWidth) + 1;
5652     return;
5653   }
5654 
5655   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
5656     // The result of -abs(X) is <= 0.
5657     Lower = APInt::getSignedMinValue(BitWidth);
5658     Upper = APInt(BitWidth, 1);
5659     return;
5660   }
5661 
5662   const APInt *C;
5663   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
5664     return;
5665 
5666   switch (R.Flavor) {
5667     case SPF_UMIN:
5668       Upper = *C + 1;
5669       break;
5670     case SPF_UMAX:
5671       Lower = *C;
5672       break;
5673     case SPF_SMIN:
5674       Lower = APInt::getSignedMinValue(BitWidth);
5675       Upper = *C + 1;
5676       break;
5677     case SPF_SMAX:
5678       Lower = *C;
5679       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
5680       break;
5681     default:
5682       break;
5683   }
5684 }
5685 
5686 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) {
5687   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
5688 
5689   const APInt *C;
5690   if (match(V, m_APInt(C)))
5691     return ConstantRange(*C);
5692 
5693   InstrInfoQuery IIQ(UseInstrInfo);
5694   unsigned BitWidth = V->getType()->getScalarSizeInBits();
5695   APInt Lower = APInt(BitWidth, 0);
5696   APInt Upper = APInt(BitWidth, 0);
5697   if (auto *BO = dyn_cast<BinaryOperator>(V))
5698     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
5699   else if (auto *II = dyn_cast<IntrinsicInst>(V))
5700     setLimitsForIntrinsic(*II, Lower, Upper);
5701   else if (auto *SI = dyn_cast<SelectInst>(V))
5702     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
5703 
5704   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
5705 
5706   if (auto *I = dyn_cast<Instruction>(V))
5707     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
5708       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
5709 
5710   return CR;
5711 }
5712 
5713 static Optional<int64_t>
5714 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
5715   // Skip over the first indices.
5716   gep_type_iterator GTI = gep_type_begin(GEP);
5717   for (unsigned i = 1; i != Idx; ++i, ++GTI)
5718     /*skip along*/;
5719 
5720   // Compute the offset implied by the rest of the indices.
5721   int64_t Offset = 0;
5722   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
5723     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
5724     if (!OpC)
5725       return None;
5726     if (OpC->isZero())
5727       continue; // No offset.
5728 
5729     // Handle struct indices, which add their field offset to the pointer.
5730     if (StructType *STy = GTI.getStructTypeOrNull()) {
5731       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
5732       continue;
5733     }
5734 
5735     // Otherwise, we have a sequential type like an array or vector.  Multiply
5736     // the index by the ElementSize.
5737     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
5738     Offset += Size * OpC->getSExtValue();
5739   }
5740 
5741   return Offset;
5742 }
5743 
5744 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
5745                                         const DataLayout &DL) {
5746   Ptr1 = Ptr1->stripPointerCasts();
5747   Ptr2 = Ptr2->stripPointerCasts();
5748 
5749   // Handle the trivial case first.
5750   if (Ptr1 == Ptr2) {
5751     return 0;
5752   }
5753 
5754   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
5755   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
5756 
5757   // If one pointer is a GEP see if the GEP is a constant offset from the base,
5758   // as in "P" and "gep P, 1".
5759   // Also do this iteratively to handle the the following case:
5760   //   Ptr_t1 = GEP Ptr1, c1
5761   //   Ptr_t2 = GEP Ptr_t1, c2
5762   //   Ptr2 = GEP Ptr_t2, c3
5763   // where we will return c1+c2+c3.
5764   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
5765   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
5766   // are the same, and return the difference between offsets.
5767   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
5768                                  const Value *Ptr) -> Optional<int64_t> {
5769     const GEPOperator *GEP_T = GEP;
5770     int64_t OffsetVal = 0;
5771     bool HasSameBase = false;
5772     while (GEP_T) {
5773       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
5774       if (!Offset)
5775         return None;
5776       OffsetVal += *Offset;
5777       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
5778       if (Op0 == Ptr) {
5779         HasSameBase = true;
5780         break;
5781       }
5782       GEP_T = dyn_cast<GEPOperator>(Op0);
5783     }
5784     if (!HasSameBase)
5785       return None;
5786     return OffsetVal;
5787   };
5788 
5789   if (GEP1) {
5790     auto Offset = getOffsetFromBase(GEP1, Ptr2);
5791     if (Offset)
5792       return -*Offset;
5793   }
5794   if (GEP2) {
5795     auto Offset = getOffsetFromBase(GEP2, Ptr1);
5796     if (Offset)
5797       return Offset;
5798   }
5799 
5800   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
5801   // base.  After that base, they may have some number of common (and
5802   // potentially variable) indices.  After that they handle some constant
5803   // offset, which determines their offset from each other.  At this point, we
5804   // handle no other case.
5805   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
5806     return None;
5807 
5808   // Skip any common indices and track the GEP types.
5809   unsigned Idx = 1;
5810   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
5811     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
5812       break;
5813 
5814   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
5815   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
5816   if (!Offset1 || !Offset2)
5817     return None;
5818   return *Offset2 - *Offset1;
5819 }
5820