1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (Shuf->getMask()->getType()->getVectorElementCount().Scalable) 172 return false; 173 174 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 175 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 177 178 for (int i = 0; i != NumMaskElts; ++i) { 179 if (!DemandedElts[i]) 180 continue; 181 int M = Shuf->getMaskValue(i); 182 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 183 184 // For undef elements, we don't know anything about the common state of 185 // the shuffle result. 186 if (M == -1) 187 return false; 188 if (M < NumElts) 189 DemandedLHS.setBit(M % NumElts); 190 else 191 DemandedRHS.setBit(M % NumElts); 192 } 193 194 return true; 195 } 196 197 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 198 KnownBits &Known, unsigned Depth, const Query &Q); 199 200 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 201 const Query &Q) { 202 Type *Ty = V->getType(); 203 APInt DemandedElts = Ty->isVectorTy() 204 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 205 : APInt(1, 1); 206 computeKnownBits(V, DemandedElts, Known, Depth, Q); 207 } 208 209 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 210 const DataLayout &DL, unsigned Depth, 211 AssumptionCache *AC, const Instruction *CxtI, 212 const DominatorTree *DT, 213 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 214 ::computeKnownBits(V, Known, Depth, 215 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 216 } 217 218 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 219 KnownBits &Known, const DataLayout &DL, 220 unsigned Depth, AssumptionCache *AC, 221 const Instruction *CxtI, const DominatorTree *DT, 222 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 223 ::computeKnownBits(V, DemandedElts, Known, Depth, 224 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 225 } 226 227 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 228 unsigned Depth, const Query &Q); 229 230 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 231 const Query &Q); 232 233 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 234 unsigned Depth, AssumptionCache *AC, 235 const Instruction *CxtI, 236 const DominatorTree *DT, 237 OptimizationRemarkEmitter *ORE, 238 bool UseInstrInfo) { 239 return ::computeKnownBits( 240 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 241 } 242 243 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 244 const DataLayout &DL, unsigned Depth, 245 AssumptionCache *AC, const Instruction *CxtI, 246 const DominatorTree *DT, 247 OptimizationRemarkEmitter *ORE, 248 bool UseInstrInfo) { 249 return ::computeKnownBits( 250 V, DemandedElts, Depth, 251 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 255 const DataLayout &DL, AssumptionCache *AC, 256 const Instruction *CxtI, const DominatorTree *DT, 257 bool UseInstrInfo) { 258 assert(LHS->getType() == RHS->getType() && 259 "LHS and RHS should have the same type"); 260 assert(LHS->getType()->isIntOrIntVectorTy() && 261 "LHS and RHS should be integers"); 262 // Look for an inverted mask: (X & ~M) op (Y & M). 263 Value *M; 264 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 265 match(RHS, m_c_And(m_Specific(M), m_Value()))) 266 return true; 267 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 268 match(LHS, m_c_And(m_Specific(M), m_Value()))) 269 return true; 270 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 271 KnownBits LHSKnown(IT->getBitWidth()); 272 KnownBits RHSKnown(IT->getBitWidth()); 273 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 274 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 275 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 276 } 277 278 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 279 for (const User *U : CxtI->users()) { 280 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 281 if (IC->isEquality()) 282 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 283 if (C->isNullValue()) 284 continue; 285 return false; 286 } 287 return true; 288 } 289 290 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 291 const Query &Q); 292 293 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 294 bool OrZero, unsigned Depth, 295 AssumptionCache *AC, const Instruction *CxtI, 296 const DominatorTree *DT, bool UseInstrInfo) { 297 return ::isKnownToBeAPowerOfTwo( 298 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 299 } 300 301 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 302 unsigned Depth, const Query &Q); 303 304 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 305 306 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 307 AssumptionCache *AC, const Instruction *CxtI, 308 const DominatorTree *DT, bool UseInstrInfo) { 309 return ::isKnownNonZero(V, Depth, 310 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 311 } 312 313 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 314 unsigned Depth, AssumptionCache *AC, 315 const Instruction *CxtI, const DominatorTree *DT, 316 bool UseInstrInfo) { 317 KnownBits Known = 318 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 319 return Known.isNonNegative(); 320 } 321 322 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 323 AssumptionCache *AC, const Instruction *CxtI, 324 const DominatorTree *DT, bool UseInstrInfo) { 325 if (auto *CI = dyn_cast<ConstantInt>(V)) 326 return CI->getValue().isStrictlyPositive(); 327 328 // TODO: We'd doing two recursive queries here. We should factor this such 329 // that only a single query is needed. 330 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 331 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 332 } 333 334 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 335 AssumptionCache *AC, const Instruction *CxtI, 336 const DominatorTree *DT, bool UseInstrInfo) { 337 KnownBits Known = 338 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 339 return Known.isNegative(); 340 } 341 342 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 343 344 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 345 const DataLayout &DL, AssumptionCache *AC, 346 const Instruction *CxtI, const DominatorTree *DT, 347 bool UseInstrInfo) { 348 return ::isKnownNonEqual(V1, V2, 349 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 350 UseInstrInfo, /*ORE=*/nullptr)); 351 } 352 353 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 357 const DataLayout &DL, unsigned Depth, 358 AssumptionCache *AC, const Instruction *CxtI, 359 const DominatorTree *DT, bool UseInstrInfo) { 360 return ::MaskedValueIsZero( 361 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 362 } 363 364 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 365 unsigned Depth, const Query &Q); 366 367 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 368 const Query &Q) { 369 Type *Ty = V->getType(); 370 APInt DemandedElts = Ty->isVectorTy() 371 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 372 : APInt(1, 1); 373 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 374 } 375 376 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 377 unsigned Depth, AssumptionCache *AC, 378 const Instruction *CxtI, 379 const DominatorTree *DT, bool UseInstrInfo) { 380 return ::ComputeNumSignBits( 381 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 382 } 383 384 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 385 bool NSW, const APInt &DemandedElts, 386 KnownBits &KnownOut, KnownBits &Known2, 387 unsigned Depth, const Query &Q) { 388 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 389 390 // If one operand is unknown and we have no nowrap information, 391 // the result will be unknown independently of the second operand. 392 if (KnownOut.isUnknown() && !NSW) 393 return; 394 395 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 396 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 397 } 398 399 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 400 const APInt &DemandedElts, KnownBits &Known, 401 KnownBits &Known2, unsigned Depth, 402 const Query &Q) { 403 unsigned BitWidth = Known.getBitWidth(); 404 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 405 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 406 407 bool isKnownNegative = false; 408 bool isKnownNonNegative = false; 409 // If the multiplication is known not to overflow, compute the sign bit. 410 if (NSW) { 411 if (Op0 == Op1) { 412 // The product of a number with itself is non-negative. 413 isKnownNonNegative = true; 414 } else { 415 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 416 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 417 bool isKnownNegativeOp1 = Known.isNegative(); 418 bool isKnownNegativeOp0 = Known2.isNegative(); 419 // The product of two numbers with the same sign is non-negative. 420 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 421 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 422 // The product of a negative number and a non-negative number is either 423 // negative or zero. 424 if (!isKnownNonNegative) 425 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 426 isKnownNonZero(Op0, Depth, Q)) || 427 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 428 isKnownNonZero(Op1, Depth, Q)); 429 } 430 } 431 432 assert(!Known.hasConflict() && !Known2.hasConflict()); 433 // Compute a conservative estimate for high known-0 bits. 434 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 435 Known2.countMinLeadingZeros(), 436 BitWidth) - BitWidth; 437 LeadZ = std::min(LeadZ, BitWidth); 438 439 // The result of the bottom bits of an integer multiply can be 440 // inferred by looking at the bottom bits of both operands and 441 // multiplying them together. 442 // We can infer at least the minimum number of known trailing bits 443 // of both operands. Depending on number of trailing zeros, we can 444 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 445 // a and b are divisible by m and n respectively. 446 // We then calculate how many of those bits are inferrable and set 447 // the output. For example, the i8 mul: 448 // a = XXXX1100 (12) 449 // b = XXXX1110 (14) 450 // We know the bottom 3 bits are zero since the first can be divided by 451 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 452 // Applying the multiplication to the trimmed arguments gets: 453 // XX11 (3) 454 // X111 (7) 455 // ------- 456 // XX11 457 // XX11 458 // XX11 459 // XX11 460 // ------- 461 // XXXXX01 462 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 463 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 464 // The proof for this can be described as: 465 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 466 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 467 // umin(countTrailingZeros(C2), C6) + 468 // umin(C5 - umin(countTrailingZeros(C1), C5), 469 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 470 // %aa = shl i8 %a, C5 471 // %bb = shl i8 %b, C6 472 // %aaa = or i8 %aa, C1 473 // %bbb = or i8 %bb, C2 474 // %mul = mul i8 %aaa, %bbb 475 // %mask = and i8 %mul, C7 476 // => 477 // %mask = i8 ((C1*C2)&C7) 478 // Where C5, C6 describe the known bits of %a, %b 479 // C1, C2 describe the known bottom bits of %a, %b. 480 // C7 describes the mask of the known bits of the result. 481 APInt Bottom0 = Known.One; 482 APInt Bottom1 = Known2.One; 483 484 // How many times we'd be able to divide each argument by 2 (shr by 1). 485 // This gives us the number of trailing zeros on the multiplication result. 486 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 487 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 488 unsigned TrailZero0 = Known.countMinTrailingZeros(); 489 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 490 unsigned TrailZ = TrailZero0 + TrailZero1; 491 492 // Figure out the fewest known-bits operand. 493 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 494 TrailBitsKnown1 - TrailZero1); 495 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 496 497 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 498 Bottom1.getLoBits(TrailBitsKnown1); 499 500 Known.resetAll(); 501 Known.Zero.setHighBits(LeadZ); 502 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 503 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 504 505 // Only make use of no-wrap flags if we failed to compute the sign bit 506 // directly. This matters if the multiplication always overflows, in 507 // which case we prefer to follow the result of the direct computation, 508 // though as the program is invoking undefined behaviour we can choose 509 // whatever we like here. 510 if (isKnownNonNegative && !Known.isNegative()) 511 Known.makeNonNegative(); 512 else if (isKnownNegative && !Known.isNonNegative()) 513 Known.makeNegative(); 514 } 515 516 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 517 KnownBits &Known) { 518 unsigned BitWidth = Known.getBitWidth(); 519 unsigned NumRanges = Ranges.getNumOperands() / 2; 520 assert(NumRanges >= 1); 521 522 Known.Zero.setAllBits(); 523 Known.One.setAllBits(); 524 525 for (unsigned i = 0; i < NumRanges; ++i) { 526 ConstantInt *Lower = 527 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 528 ConstantInt *Upper = 529 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 530 ConstantRange Range(Lower->getValue(), Upper->getValue()); 531 532 // The first CommonPrefixBits of all values in Range are equal. 533 unsigned CommonPrefixBits = 534 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 535 536 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 537 Known.One &= Range.getUnsignedMax() & Mask; 538 Known.Zero &= ~Range.getUnsignedMax() & Mask; 539 } 540 } 541 542 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 543 SmallVector<const Value *, 16> WorkSet(1, I); 544 SmallPtrSet<const Value *, 32> Visited; 545 SmallPtrSet<const Value *, 16> EphValues; 546 547 // The instruction defining an assumption's condition itself is always 548 // considered ephemeral to that assumption (even if it has other 549 // non-ephemeral users). See r246696's test case for an example. 550 if (is_contained(I->operands(), E)) 551 return true; 552 553 while (!WorkSet.empty()) { 554 const Value *V = WorkSet.pop_back_val(); 555 if (!Visited.insert(V).second) 556 continue; 557 558 // If all uses of this value are ephemeral, then so is this value. 559 if (llvm::all_of(V->users(), [&](const User *U) { 560 return EphValues.count(U); 561 })) { 562 if (V == E) 563 return true; 564 565 if (V == I || isSafeToSpeculativelyExecute(V)) { 566 EphValues.insert(V); 567 if (const User *U = dyn_cast<User>(V)) 568 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 569 J != JE; ++J) 570 WorkSet.push_back(*J); 571 } 572 } 573 } 574 575 return false; 576 } 577 578 // Is this an intrinsic that cannot be speculated but also cannot trap? 579 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 580 if (const CallInst *CI = dyn_cast<CallInst>(I)) 581 if (Function *F = CI->getCalledFunction()) 582 switch (F->getIntrinsicID()) { 583 default: break; 584 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 585 case Intrinsic::assume: 586 case Intrinsic::sideeffect: 587 case Intrinsic::dbg_declare: 588 case Intrinsic::dbg_value: 589 case Intrinsic::dbg_label: 590 case Intrinsic::invariant_start: 591 case Intrinsic::invariant_end: 592 case Intrinsic::lifetime_start: 593 case Intrinsic::lifetime_end: 594 case Intrinsic::objectsize: 595 case Intrinsic::ptr_annotation: 596 case Intrinsic::var_annotation: 597 return true; 598 } 599 600 return false; 601 } 602 603 bool llvm::isValidAssumeForContext(const Instruction *Inv, 604 const Instruction *CxtI, 605 const DominatorTree *DT) { 606 // There are two restrictions on the use of an assume: 607 // 1. The assume must dominate the context (or the control flow must 608 // reach the assume whenever it reaches the context). 609 // 2. The context must not be in the assume's set of ephemeral values 610 // (otherwise we will use the assume to prove that the condition 611 // feeding the assume is trivially true, thus causing the removal of 612 // the assume). 613 614 if (DT) { 615 if (DT->dominates(Inv, CxtI)) 616 return true; 617 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 618 // We don't have a DT, but this trivially dominates. 619 return true; 620 } 621 622 // With or without a DT, the only remaining case we will check is if the 623 // instructions are in the same BB. Give up if that is not the case. 624 if (Inv->getParent() != CxtI->getParent()) 625 return false; 626 627 // If we have a dom tree, then we now know that the assume doesn't dominate 628 // the other instruction. If we don't have a dom tree then we can check if 629 // the assume is first in the BB. 630 if (!DT) { 631 // Search forward from the assume until we reach the context (or the end 632 // of the block); the common case is that the assume will come first. 633 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 634 IE = Inv->getParent()->end(); I != IE; ++I) 635 if (&*I == CxtI) 636 return true; 637 } 638 639 // Don't let an assume affect itself - this would cause the problems 640 // `isEphemeralValueOf` is trying to prevent, and it would also make 641 // the loop below go out of bounds. 642 if (Inv == CxtI) 643 return false; 644 645 // The context comes first, but they're both in the same block. 646 // Make sure there is nothing in between that might interrupt 647 // the control flow, not even CxtI itself. 648 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 649 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 650 return false; 651 652 return !isEphemeralValueOf(Inv, CxtI); 653 } 654 655 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 656 // Use of assumptions is context-sensitive. If we don't have a context, we 657 // cannot use them! 658 if (!Q.AC || !Q.CxtI) 659 return false; 660 661 // Note that the patterns below need to be kept in sync with the code 662 // in AssumptionCache::updateAffectedValues. 663 664 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 665 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 666 667 Value *RHS; 668 CmpInst::Predicate Pred; 669 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 670 return false; 671 // assume(v u> y) -> assume(v != 0) 672 if (Pred == ICmpInst::ICMP_UGT) 673 return true; 674 675 // assume(v != 0) 676 // We special-case this one to ensure that we handle `assume(v != null)`. 677 if (Pred == ICmpInst::ICMP_NE) 678 return match(RHS, m_Zero()); 679 680 // All other predicates - rely on generic ConstantRange handling. 681 ConstantInt *CI; 682 if (!match(RHS, m_ConstantInt(CI))) 683 return false; 684 ConstantRange RHSRange(CI->getValue()); 685 ConstantRange TrueValues = 686 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 687 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 688 }; 689 690 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 691 if (!AssumeVH) 692 continue; 693 CallInst *I = cast<CallInst>(AssumeVH); 694 assert(I->getFunction() == Q.CxtI->getFunction() && 695 "Got assumption for the wrong function!"); 696 if (Q.isExcluded(I)) 697 continue; 698 699 // Warning: This loop can end up being somewhat performance sensitive. 700 // We're running this loop for once for each value queried resulting in a 701 // runtime of ~O(#assumes * #values). 702 703 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 704 "must be an assume intrinsic"); 705 706 Value *Arg = I->getArgOperand(0); 707 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 708 if (!Cmp) 709 continue; 710 711 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 712 return true; 713 } 714 715 return false; 716 } 717 718 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 719 unsigned Depth, const Query &Q) { 720 // Use of assumptions is context-sensitive. If we don't have a context, we 721 // cannot use them! 722 if (!Q.AC || !Q.CxtI) 723 return; 724 725 unsigned BitWidth = Known.getBitWidth(); 726 727 // Note that the patterns below need to be kept in sync with the code 728 // in AssumptionCache::updateAffectedValues. 729 730 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 731 if (!AssumeVH) 732 continue; 733 CallInst *I = cast<CallInst>(AssumeVH); 734 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 735 "Got assumption for the wrong function!"); 736 if (Q.isExcluded(I)) 737 continue; 738 739 // Warning: This loop can end up being somewhat performance sensitive. 740 // We're running this loop for once for each value queried resulting in a 741 // runtime of ~O(#assumes * #values). 742 743 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 744 "must be an assume intrinsic"); 745 746 Value *Arg = I->getArgOperand(0); 747 748 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 749 assert(BitWidth == 1 && "assume operand is not i1?"); 750 Known.setAllOnes(); 751 return; 752 } 753 if (match(Arg, m_Not(m_Specific(V))) && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 assert(BitWidth == 1 && "assume operand is not i1?"); 756 Known.setAllZero(); 757 return; 758 } 759 760 // The remaining tests are all recursive, so bail out if we hit the limit. 761 if (Depth == MaxDepth) 762 continue; 763 764 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 765 if (!Cmp) 766 continue; 767 768 Value *A, *B; 769 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 770 771 CmpInst::Predicate Pred; 772 uint64_t C; 773 switch (Cmp->getPredicate()) { 774 default: 775 break; 776 case ICmpInst::ICMP_EQ: 777 // assume(v = a) 778 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 779 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 780 KnownBits RHSKnown(BitWidth); 781 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 782 Known.Zero |= RHSKnown.Zero; 783 Known.One |= RHSKnown.One; 784 // assume(v & b = a) 785 } else if (match(Cmp, 786 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 KnownBits RHSKnown(BitWidth); 789 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 790 KnownBits MaskKnown(BitWidth); 791 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 792 793 // For those bits in the mask that are known to be one, we can propagate 794 // known bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 796 Known.One |= RHSKnown.One & MaskKnown.One; 797 // assume(~(v & b) = a) 798 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 799 m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown(BitWidth); 802 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 803 KnownBits MaskKnown(BitWidth); 804 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 805 806 // For those bits in the mask that are known to be one, we can propagate 807 // inverted known bits from the RHS to V. 808 Known.Zero |= RHSKnown.One & MaskKnown.One; 809 Known.One |= RHSKnown.Zero & MaskKnown.One; 810 // assume(v | b = a) 811 } else if (match(Cmp, 812 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 813 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 814 KnownBits RHSKnown(BitWidth); 815 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 816 KnownBits BKnown(BitWidth); 817 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 818 819 // For those bits in B that are known to be zero, we can propagate known 820 // bits from the RHS to V. 821 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 822 Known.One |= RHSKnown.One & BKnown.Zero; 823 // assume(~(v | b) = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 827 KnownBits RHSKnown(BitWidth); 828 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 829 KnownBits BKnown(BitWidth); 830 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 831 832 // For those bits in B that are known to be zero, we can propagate 833 // inverted known bits from the RHS to V. 834 Known.Zero |= RHSKnown.One & BKnown.Zero; 835 Known.One |= RHSKnown.Zero & BKnown.Zero; 836 // assume(v ^ b = a) 837 } else if (match(Cmp, 838 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 840 KnownBits RHSKnown(BitWidth); 841 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 842 KnownBits BKnown(BitWidth); 843 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 844 845 // For those bits in B that are known to be zero, we can propagate known 846 // bits from the RHS to V. For those bits in B that are known to be one, 847 // we can propagate inverted known bits from the RHS to V. 848 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 849 Known.One |= RHSKnown.One & BKnown.Zero; 850 Known.Zero |= RHSKnown.One & BKnown.One; 851 Known.One |= RHSKnown.Zero & BKnown.One; 852 // assume(~(v ^ b) = a) 853 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 854 m_Value(A))) && 855 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 856 KnownBits RHSKnown(BitWidth); 857 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 858 KnownBits BKnown(BitWidth); 859 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 860 861 // For those bits in B that are known to be zero, we can propagate 862 // inverted known bits from the RHS to V. For those bits in B that are 863 // known to be one, we can propagate known bits from the RHS to V. 864 Known.Zero |= RHSKnown.One & BKnown.Zero; 865 Known.One |= RHSKnown.Zero & BKnown.Zero; 866 Known.Zero |= RHSKnown.Zero & BKnown.One; 867 Known.One |= RHSKnown.One & BKnown.One; 868 // assume(v << c = a) 869 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 870 m_Value(A))) && 871 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 872 KnownBits RHSKnown(BitWidth); 873 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 874 // For those bits in RHS that are known, we can propagate them to known 875 // bits in V shifted to the right by C. 876 RHSKnown.Zero.lshrInPlace(C); 877 Known.Zero |= RHSKnown.Zero; 878 RHSKnown.One.lshrInPlace(C); 879 Known.One |= RHSKnown.One; 880 // assume(~(v << c) = a) 881 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 882 m_Value(A))) && 883 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 884 KnownBits RHSKnown(BitWidth); 885 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 886 // For those bits in RHS that are known, we can propagate them inverted 887 // to known bits in V shifted to the right by C. 888 RHSKnown.One.lshrInPlace(C); 889 Known.Zero |= RHSKnown.One; 890 RHSKnown.Zero.lshrInPlace(C); 891 Known.One |= RHSKnown.Zero; 892 // assume(v >> c = a) 893 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 894 m_Value(A))) && 895 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 896 KnownBits RHSKnown(BitWidth); 897 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 898 // For those bits in RHS that are known, we can propagate them to known 899 // bits in V shifted to the right by C. 900 Known.Zero |= RHSKnown.Zero << C; 901 Known.One |= RHSKnown.One << C; 902 // assume(~(v >> c) = a) 903 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 904 m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 906 KnownBits RHSKnown(BitWidth); 907 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 908 // For those bits in RHS that are known, we can propagate them inverted 909 // to known bits in V shifted to the right by C. 910 Known.Zero |= RHSKnown.One << C; 911 Known.One |= RHSKnown.Zero << C; 912 } 913 break; 914 case ICmpInst::ICMP_SGE: 915 // assume(v >=_s c) where c is non-negative 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown(BitWidth); 919 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 920 921 if (RHSKnown.isNonNegative()) { 922 // We know that the sign bit is zero. 923 Known.makeNonNegative(); 924 } 925 } 926 break; 927 case ICmpInst::ICMP_SGT: 928 // assume(v >_s c) where c is at least -1. 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown(BitWidth); 932 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 933 934 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 935 // We know that the sign bit is zero. 936 Known.makeNonNegative(); 937 } 938 } 939 break; 940 case ICmpInst::ICMP_SLE: 941 // assume(v <=_s c) where c is negative 942 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 943 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 944 KnownBits RHSKnown(BitWidth); 945 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 946 947 if (RHSKnown.isNegative()) { 948 // We know that the sign bit is one. 949 Known.makeNegative(); 950 } 951 } 952 break; 953 case ICmpInst::ICMP_SLT: 954 // assume(v <_s c) where c is non-positive 955 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 956 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 957 KnownBits RHSKnown(BitWidth); 958 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 959 960 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 961 // We know that the sign bit is one. 962 Known.makeNegative(); 963 } 964 } 965 break; 966 case ICmpInst::ICMP_ULE: 967 // assume(v <=_u c) 968 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 969 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 970 KnownBits RHSKnown(BitWidth); 971 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 972 973 // Whatever high bits in c are zero are known to be zero. 974 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 975 } 976 break; 977 case ICmpInst::ICMP_ULT: 978 // assume(v <_u c) 979 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 980 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 981 KnownBits RHSKnown(BitWidth); 982 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 983 984 // If the RHS is known zero, then this assumption must be wrong (nothing 985 // is unsigned less than zero). Signal a conflict and get out of here. 986 if (RHSKnown.isZero()) { 987 Known.Zero.setAllBits(); 988 Known.One.setAllBits(); 989 break; 990 } 991 992 // Whatever high bits in c are zero are known to be zero (if c is a power 993 // of 2, then one more). 994 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 995 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 996 else 997 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 998 } 999 break; 1000 } 1001 } 1002 1003 // If assumptions conflict with each other or previous known bits, then we 1004 // have a logical fallacy. It's possible that the assumption is not reachable, 1005 // so this isn't a real bug. On the other hand, the program may have undefined 1006 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1007 // clear out the known bits, try to warn the user, and hope for the best. 1008 if (Known.Zero.intersects(Known.One)) { 1009 Known.resetAll(); 1010 1011 if (Q.ORE) 1012 Q.ORE->emit([&]() { 1013 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1014 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1015 CxtI) 1016 << "Detected conflicting code assumptions. Program may " 1017 "have undefined behavior, or compiler may have " 1018 "internal error."; 1019 }); 1020 } 1021 } 1022 1023 /// Compute known bits from a shift operator, including those with a 1024 /// non-constant shift amount. Known is the output of this function. Known2 is a 1025 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1026 /// operator-specific functions that, given the known-zero or known-one bits 1027 /// respectively, and a shift amount, compute the implied known-zero or 1028 /// known-one bits of the shift operator's result respectively for that shift 1029 /// amount. The results from calling KZF and KOF are conservatively combined for 1030 /// all permitted shift amounts. 1031 static void computeKnownBitsFromShiftOperator( 1032 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1033 KnownBits &Known2, unsigned Depth, const Query &Q, 1034 function_ref<APInt(const APInt &, unsigned)> KZF, 1035 function_ref<APInt(const APInt &, unsigned)> KOF) { 1036 unsigned BitWidth = Known.getBitWidth(); 1037 1038 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1039 if (Known.isConstant()) { 1040 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1041 1042 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1043 Known.Zero = KZF(Known.Zero, ShiftAmt); 1044 Known.One = KOF(Known.One, ShiftAmt); 1045 // If the known bits conflict, this must be an overflowing left shift, so 1046 // the shift result is poison. We can return anything we want. Choose 0 for 1047 // the best folding opportunity. 1048 if (Known.hasConflict()) 1049 Known.setAllZero(); 1050 1051 return; 1052 } 1053 1054 // If the shift amount could be greater than or equal to the bit-width of the 1055 // LHS, the value could be poison, but bail out because the check below is 1056 // expensive. 1057 // TODO: Should we just carry on? 1058 if (Known.getMaxValue().uge(BitWidth)) { 1059 Known.resetAll(); 1060 return; 1061 } 1062 1063 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1064 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1065 // limit value (which implies all bits are known). 1066 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1067 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1068 1069 // It would be more-clearly correct to use the two temporaries for this 1070 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1071 Known.resetAll(); 1072 1073 // If we know the shifter operand is nonzero, we can sometimes infer more 1074 // known bits. However this is expensive to compute, so be lazy about it and 1075 // only compute it when absolutely necessary. 1076 Optional<bool> ShifterOperandIsNonZero; 1077 1078 // Early exit if we can't constrain any well-defined shift amount. 1079 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1080 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1081 ShifterOperandIsNonZero = 1082 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1083 if (!*ShifterOperandIsNonZero) 1084 return; 1085 } 1086 1087 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1088 1089 Known.Zero.setAllBits(); 1090 Known.One.setAllBits(); 1091 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1092 // Combine the shifted known input bits only for those shift amounts 1093 // compatible with its known constraints. 1094 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1095 continue; 1096 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1097 continue; 1098 // If we know the shifter is nonzero, we may be able to infer more known 1099 // bits. This check is sunk down as far as possible to avoid the expensive 1100 // call to isKnownNonZero if the cheaper checks above fail. 1101 if (ShiftAmt == 0) { 1102 if (!ShifterOperandIsNonZero.hasValue()) 1103 ShifterOperandIsNonZero = 1104 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1105 if (*ShifterOperandIsNonZero) 1106 continue; 1107 } 1108 1109 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1110 Known.One &= KOF(Known2.One, ShiftAmt); 1111 } 1112 1113 // If the known bits conflict, the result is poison. Return a 0 and hope the 1114 // caller can further optimize that. 1115 if (Known.hasConflict()) 1116 Known.setAllZero(); 1117 } 1118 1119 static void computeKnownBitsFromOperator(const Operator *I, 1120 const APInt &DemandedElts, 1121 KnownBits &Known, unsigned Depth, 1122 const Query &Q) { 1123 unsigned BitWidth = Known.getBitWidth(); 1124 1125 KnownBits Known2(Known); 1126 switch (I->getOpcode()) { 1127 default: break; 1128 case Instruction::Load: 1129 if (MDNode *MD = 1130 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1131 computeKnownBitsFromRangeMetadata(*MD, Known); 1132 break; 1133 case Instruction::And: { 1134 // If either the LHS or the RHS are Zero, the result is zero. 1135 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1136 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1137 1138 // Output known-1 bits are only known if set in both the LHS & RHS. 1139 Known.One &= Known2.One; 1140 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1141 Known.Zero |= Known2.Zero; 1142 1143 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1144 // here we handle the more general case of adding any odd number by 1145 // matching the form add(x, add(x, y)) where y is odd. 1146 // TODO: This could be generalized to clearing any bit set in y where the 1147 // following bit is known to be unset in y. 1148 Value *X = nullptr, *Y = nullptr; 1149 if (!Known.Zero[0] && !Known.One[0] && 1150 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1151 Known2.resetAll(); 1152 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1153 if (Known2.countMinTrailingOnes() > 0) 1154 Known.Zero.setBit(0); 1155 } 1156 break; 1157 } 1158 case Instruction::Or: 1159 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1160 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1161 1162 // Output known-0 bits are only known if clear in both the LHS & RHS. 1163 Known.Zero &= Known2.Zero; 1164 // Output known-1 are known to be set if set in either the LHS | RHS. 1165 Known.One |= Known2.One; 1166 break; 1167 case Instruction::Xor: { 1168 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1169 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1170 1171 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1172 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1173 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1174 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1175 Known.Zero = std::move(KnownZeroOut); 1176 break; 1177 } 1178 case Instruction::Mul: { 1179 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1180 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1181 Known, Known2, Depth, Q); 1182 break; 1183 } 1184 case Instruction::UDiv: { 1185 // For the purposes of computing leading zeros we can conservatively 1186 // treat a udiv as a logical right shift by the power of 2 known to 1187 // be less than the denominator. 1188 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1189 unsigned LeadZ = Known2.countMinLeadingZeros(); 1190 1191 Known2.resetAll(); 1192 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1193 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1194 if (RHSMaxLeadingZeros != BitWidth) 1195 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1196 1197 Known.Zero.setHighBits(LeadZ); 1198 break; 1199 } 1200 case Instruction::Select: { 1201 const Value *LHS = nullptr, *RHS = nullptr; 1202 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1203 if (SelectPatternResult::isMinOrMax(SPF)) { 1204 computeKnownBits(RHS, Known, Depth + 1, Q); 1205 computeKnownBits(LHS, Known2, Depth + 1, Q); 1206 } else { 1207 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1208 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1209 } 1210 1211 unsigned MaxHighOnes = 0; 1212 unsigned MaxHighZeros = 0; 1213 if (SPF == SPF_SMAX) { 1214 // If both sides are negative, the result is negative. 1215 if (Known.isNegative() && Known2.isNegative()) 1216 // We can derive a lower bound on the result by taking the max of the 1217 // leading one bits. 1218 MaxHighOnes = 1219 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1220 // If either side is non-negative, the result is non-negative. 1221 else if (Known.isNonNegative() || Known2.isNonNegative()) 1222 MaxHighZeros = 1; 1223 } else if (SPF == SPF_SMIN) { 1224 // If both sides are non-negative, the result is non-negative. 1225 if (Known.isNonNegative() && Known2.isNonNegative()) 1226 // We can derive an upper bound on the result by taking the max of the 1227 // leading zero bits. 1228 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1229 Known2.countMinLeadingZeros()); 1230 // If either side is negative, the result is negative. 1231 else if (Known.isNegative() || Known2.isNegative()) 1232 MaxHighOnes = 1; 1233 } else if (SPF == SPF_UMAX) { 1234 // We can derive a lower bound on the result by taking the max of the 1235 // leading one bits. 1236 MaxHighOnes = 1237 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1238 } else if (SPF == SPF_UMIN) { 1239 // We can derive an upper bound on the result by taking the max of the 1240 // leading zero bits. 1241 MaxHighZeros = 1242 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1243 } else if (SPF == SPF_ABS) { 1244 // RHS from matchSelectPattern returns the negation part of abs pattern. 1245 // If the negate has an NSW flag we can assume the sign bit of the result 1246 // will be 0 because that makes abs(INT_MIN) undefined. 1247 if (match(RHS, m_Neg(m_Specific(LHS))) && 1248 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1249 MaxHighZeros = 1; 1250 } 1251 1252 // Only known if known in both the LHS and RHS. 1253 Known.One &= Known2.One; 1254 Known.Zero &= Known2.Zero; 1255 if (MaxHighOnes > 0) 1256 Known.One.setHighBits(MaxHighOnes); 1257 if (MaxHighZeros > 0) 1258 Known.Zero.setHighBits(MaxHighZeros); 1259 break; 1260 } 1261 case Instruction::FPTrunc: 1262 case Instruction::FPExt: 1263 case Instruction::FPToUI: 1264 case Instruction::FPToSI: 1265 case Instruction::SIToFP: 1266 case Instruction::UIToFP: 1267 break; // Can't work with floating point. 1268 case Instruction::PtrToInt: 1269 case Instruction::IntToPtr: 1270 // Fall through and handle them the same as zext/trunc. 1271 LLVM_FALLTHROUGH; 1272 case Instruction::ZExt: 1273 case Instruction::Trunc: { 1274 Type *SrcTy = I->getOperand(0)->getType(); 1275 1276 unsigned SrcBitWidth; 1277 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1278 // which fall through here. 1279 Type *ScalarTy = SrcTy->getScalarType(); 1280 SrcBitWidth = ScalarTy->isPointerTy() ? 1281 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1282 Q.DL.getTypeSizeInBits(ScalarTy); 1283 1284 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1285 Known = Known.anyextOrTrunc(SrcBitWidth); 1286 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1287 Known = Known.zextOrTrunc(BitWidth); 1288 break; 1289 } 1290 case Instruction::BitCast: { 1291 Type *SrcTy = I->getOperand(0)->getType(); 1292 if (SrcTy->isIntOrPtrTy() && 1293 // TODO: For now, not handling conversions like: 1294 // (bitcast i64 %x to <2 x i32>) 1295 !I->getType()->isVectorTy()) { 1296 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1297 break; 1298 } 1299 break; 1300 } 1301 case Instruction::SExt: { 1302 // Compute the bits in the result that are not present in the input. 1303 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1304 1305 Known = Known.trunc(SrcBitWidth); 1306 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1307 // If the sign bit of the input is known set or clear, then we know the 1308 // top bits of the result. 1309 Known = Known.sext(BitWidth); 1310 break; 1311 } 1312 case Instruction::Shl: { 1313 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1314 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1315 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1316 APInt KZResult = KnownZero << ShiftAmt; 1317 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1318 // If this shift has "nsw" keyword, then the result is either a poison 1319 // value or has the same sign bit as the first operand. 1320 if (NSW && KnownZero.isSignBitSet()) 1321 KZResult.setSignBit(); 1322 return KZResult; 1323 }; 1324 1325 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1326 APInt KOResult = KnownOne << ShiftAmt; 1327 if (NSW && KnownOne.isSignBitSet()) 1328 KOResult.setSignBit(); 1329 return KOResult; 1330 }; 1331 1332 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1333 KZF, KOF); 1334 break; 1335 } 1336 case Instruction::LShr: { 1337 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1338 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1339 APInt KZResult = KnownZero.lshr(ShiftAmt); 1340 // High bits known zero. 1341 KZResult.setHighBits(ShiftAmt); 1342 return KZResult; 1343 }; 1344 1345 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1346 return KnownOne.lshr(ShiftAmt); 1347 }; 1348 1349 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1350 KZF, KOF); 1351 break; 1352 } 1353 case Instruction::AShr: { 1354 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1355 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1356 return KnownZero.ashr(ShiftAmt); 1357 }; 1358 1359 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1360 return KnownOne.ashr(ShiftAmt); 1361 }; 1362 1363 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1364 KZF, KOF); 1365 break; 1366 } 1367 case Instruction::Sub: { 1368 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1369 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1370 DemandedElts, Known, Known2, Depth, Q); 1371 break; 1372 } 1373 case Instruction::Add: { 1374 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1375 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1376 DemandedElts, Known, Known2, Depth, Q); 1377 break; 1378 } 1379 case Instruction::SRem: 1380 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1381 APInt RA = Rem->getValue().abs(); 1382 if (RA.isPowerOf2()) { 1383 APInt LowBits = RA - 1; 1384 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1385 1386 // The low bits of the first operand are unchanged by the srem. 1387 Known.Zero = Known2.Zero & LowBits; 1388 Known.One = Known2.One & LowBits; 1389 1390 // If the first operand is non-negative or has all low bits zero, then 1391 // the upper bits are all zero. 1392 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1393 Known.Zero |= ~LowBits; 1394 1395 // If the first operand is negative and not all low bits are zero, then 1396 // the upper bits are all one. 1397 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1398 Known.One |= ~LowBits; 1399 1400 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1401 break; 1402 } 1403 } 1404 1405 // The sign bit is the LHS's sign bit, except when the result of the 1406 // remainder is zero. 1407 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1408 // If it's known zero, our sign bit is also zero. 1409 if (Known2.isNonNegative()) 1410 Known.makeNonNegative(); 1411 1412 break; 1413 case Instruction::URem: { 1414 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1415 const APInt &RA = Rem->getValue(); 1416 if (RA.isPowerOf2()) { 1417 APInt LowBits = (RA - 1); 1418 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1419 Known.Zero |= ~LowBits; 1420 Known.One &= LowBits; 1421 break; 1422 } 1423 } 1424 1425 // Since the result is less than or equal to either operand, any leading 1426 // zero bits in either operand must also exist in the result. 1427 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1428 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1429 1430 unsigned Leaders = 1431 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1432 Known.resetAll(); 1433 Known.Zero.setHighBits(Leaders); 1434 break; 1435 } 1436 1437 case Instruction::Alloca: { 1438 const AllocaInst *AI = cast<AllocaInst>(I); 1439 unsigned Align = AI->getAlignment(); 1440 if (Align == 0) 1441 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1442 1443 if (Align > 0) 1444 Known.Zero.setLowBits(countTrailingZeros(Align)); 1445 break; 1446 } 1447 case Instruction::GetElementPtr: { 1448 // Analyze all of the subscripts of this getelementptr instruction 1449 // to determine if we can prove known low zero bits. 1450 KnownBits LocalKnown(BitWidth); 1451 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1452 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1453 1454 gep_type_iterator GTI = gep_type_begin(I); 1455 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1456 Value *Index = I->getOperand(i); 1457 if (StructType *STy = GTI.getStructTypeOrNull()) { 1458 // Handle struct member offset arithmetic. 1459 1460 // Handle case when index is vector zeroinitializer 1461 Constant *CIndex = cast<Constant>(Index); 1462 if (CIndex->isZeroValue()) 1463 continue; 1464 1465 if (CIndex->getType()->isVectorTy()) 1466 Index = CIndex->getSplatValue(); 1467 1468 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1469 const StructLayout *SL = Q.DL.getStructLayout(STy); 1470 uint64_t Offset = SL->getElementOffset(Idx); 1471 TrailZ = std::min<unsigned>(TrailZ, 1472 countTrailingZeros(Offset)); 1473 } else { 1474 // Handle array index arithmetic. 1475 Type *IndexedTy = GTI.getIndexedType(); 1476 if (!IndexedTy->isSized()) { 1477 TrailZ = 0; 1478 break; 1479 } 1480 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1481 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1482 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1483 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1484 TrailZ = std::min(TrailZ, 1485 unsigned(countTrailingZeros(TypeSize) + 1486 LocalKnown.countMinTrailingZeros())); 1487 } 1488 } 1489 1490 Known.Zero.setLowBits(TrailZ); 1491 break; 1492 } 1493 case Instruction::PHI: { 1494 const PHINode *P = cast<PHINode>(I); 1495 // Handle the case of a simple two-predecessor recurrence PHI. 1496 // There's a lot more that could theoretically be done here, but 1497 // this is sufficient to catch some interesting cases. 1498 if (P->getNumIncomingValues() == 2) { 1499 for (unsigned i = 0; i != 2; ++i) { 1500 Value *L = P->getIncomingValue(i); 1501 Value *R = P->getIncomingValue(!i); 1502 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1503 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1504 Operator *LU = dyn_cast<Operator>(L); 1505 if (!LU) 1506 continue; 1507 unsigned Opcode = LU->getOpcode(); 1508 // Check for operations that have the property that if 1509 // both their operands have low zero bits, the result 1510 // will have low zero bits. 1511 if (Opcode == Instruction::Add || 1512 Opcode == Instruction::Sub || 1513 Opcode == Instruction::And || 1514 Opcode == Instruction::Or || 1515 Opcode == Instruction::Mul) { 1516 Value *LL = LU->getOperand(0); 1517 Value *LR = LU->getOperand(1); 1518 // Find a recurrence. 1519 if (LL == I) 1520 L = LR; 1521 else if (LR == I) 1522 L = LL; 1523 else 1524 continue; // Check for recurrence with L and R flipped. 1525 1526 // Change the context instruction to the "edge" that flows into the 1527 // phi. This is important because that is where the value is actually 1528 // "evaluated" even though it is used later somewhere else. (see also 1529 // D69571). 1530 Query RecQ = Q; 1531 1532 // Ok, we have a PHI of the form L op= R. Check for low 1533 // zero bits. 1534 RecQ.CxtI = RInst; 1535 computeKnownBits(R, Known2, Depth + 1, RecQ); 1536 1537 // We need to take the minimum number of known bits 1538 KnownBits Known3(Known); 1539 RecQ.CxtI = LInst; 1540 computeKnownBits(L, Known3, Depth + 1, RecQ); 1541 1542 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1543 Known3.countMinTrailingZeros())); 1544 1545 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1546 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1547 // If initial value of recurrence is nonnegative, and we are adding 1548 // a nonnegative number with nsw, the result can only be nonnegative 1549 // or poison value regardless of the number of times we execute the 1550 // add in phi recurrence. If initial value is negative and we are 1551 // adding a negative number with nsw, the result can only be 1552 // negative or poison value. Similar arguments apply to sub and mul. 1553 // 1554 // (add non-negative, non-negative) --> non-negative 1555 // (add negative, negative) --> negative 1556 if (Opcode == Instruction::Add) { 1557 if (Known2.isNonNegative() && Known3.isNonNegative()) 1558 Known.makeNonNegative(); 1559 else if (Known2.isNegative() && Known3.isNegative()) 1560 Known.makeNegative(); 1561 } 1562 1563 // (sub nsw non-negative, negative) --> non-negative 1564 // (sub nsw negative, non-negative) --> negative 1565 else if (Opcode == Instruction::Sub && LL == I) { 1566 if (Known2.isNonNegative() && Known3.isNegative()) 1567 Known.makeNonNegative(); 1568 else if (Known2.isNegative() && Known3.isNonNegative()) 1569 Known.makeNegative(); 1570 } 1571 1572 // (mul nsw non-negative, non-negative) --> non-negative 1573 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1574 Known3.isNonNegative()) 1575 Known.makeNonNegative(); 1576 } 1577 1578 break; 1579 } 1580 } 1581 } 1582 1583 // Unreachable blocks may have zero-operand PHI nodes. 1584 if (P->getNumIncomingValues() == 0) 1585 break; 1586 1587 // Otherwise take the unions of the known bit sets of the operands, 1588 // taking conservative care to avoid excessive recursion. 1589 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1590 // Skip if every incoming value references to ourself. 1591 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1592 break; 1593 1594 Known.Zero.setAllBits(); 1595 Known.One.setAllBits(); 1596 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1597 Value *IncValue = P->getIncomingValue(u); 1598 // Skip direct self references. 1599 if (IncValue == P) continue; 1600 1601 // Change the context instruction to the "edge" that flows into the 1602 // phi. This is important because that is where the value is actually 1603 // "evaluated" even though it is used later somewhere else. (see also 1604 // D69571). 1605 Query RecQ = Q; 1606 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1607 1608 Known2 = KnownBits(BitWidth); 1609 // Recurse, but cap the recursion to one level, because we don't 1610 // want to waste time spinning around in loops. 1611 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1612 Known.Zero &= Known2.Zero; 1613 Known.One &= Known2.One; 1614 // If all bits have been ruled out, there's no need to check 1615 // more operands. 1616 if (!Known.Zero && !Known.One) 1617 break; 1618 } 1619 } 1620 break; 1621 } 1622 case Instruction::Call: 1623 case Instruction::Invoke: 1624 // If range metadata is attached to this call, set known bits from that, 1625 // and then intersect with known bits based on other properties of the 1626 // function. 1627 if (MDNode *MD = 1628 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1629 computeKnownBitsFromRangeMetadata(*MD, Known); 1630 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1631 computeKnownBits(RV, Known2, Depth + 1, Q); 1632 Known.Zero |= Known2.Zero; 1633 Known.One |= Known2.One; 1634 } 1635 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1636 switch (II->getIntrinsicID()) { 1637 default: break; 1638 case Intrinsic::bitreverse: 1639 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1640 Known.Zero |= Known2.Zero.reverseBits(); 1641 Known.One |= Known2.One.reverseBits(); 1642 break; 1643 case Intrinsic::bswap: 1644 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1645 Known.Zero |= Known2.Zero.byteSwap(); 1646 Known.One |= Known2.One.byteSwap(); 1647 break; 1648 case Intrinsic::ctlz: { 1649 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1650 // If we have a known 1, its position is our upper bound. 1651 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1652 // If this call is undefined for 0, the result will be less than 2^n. 1653 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1654 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1655 unsigned LowBits = Log2_32(PossibleLZ)+1; 1656 Known.Zero.setBitsFrom(LowBits); 1657 break; 1658 } 1659 case Intrinsic::cttz: { 1660 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1661 // If we have a known 1, its position is our upper bound. 1662 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1663 // If this call is undefined for 0, the result will be less than 2^n. 1664 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1665 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1666 unsigned LowBits = Log2_32(PossibleTZ)+1; 1667 Known.Zero.setBitsFrom(LowBits); 1668 break; 1669 } 1670 case Intrinsic::ctpop: { 1671 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1672 // We can bound the space the count needs. Also, bits known to be zero 1673 // can't contribute to the population. 1674 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1675 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1676 Known.Zero.setBitsFrom(LowBits); 1677 // TODO: we could bound KnownOne using the lower bound on the number 1678 // of bits which might be set provided by popcnt KnownOne2. 1679 break; 1680 } 1681 case Intrinsic::fshr: 1682 case Intrinsic::fshl: { 1683 const APInt *SA; 1684 if (!match(I->getOperand(2), m_APInt(SA))) 1685 break; 1686 1687 // Normalize to funnel shift left. 1688 uint64_t ShiftAmt = SA->urem(BitWidth); 1689 if (II->getIntrinsicID() == Intrinsic::fshr) 1690 ShiftAmt = BitWidth - ShiftAmt; 1691 1692 KnownBits Known3(Known); 1693 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1694 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1695 1696 Known.Zero = 1697 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1698 Known.One = 1699 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1700 break; 1701 } 1702 case Intrinsic::uadd_sat: 1703 case Intrinsic::usub_sat: { 1704 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1705 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1706 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1707 1708 // Add: Leading ones of either operand are preserved. 1709 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1710 // as leading zeros in the result. 1711 unsigned LeadingKnown; 1712 if (IsAdd) 1713 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1714 Known2.countMinLeadingOnes()); 1715 else 1716 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1717 Known2.countMinLeadingOnes()); 1718 1719 Known = KnownBits::computeForAddSub( 1720 IsAdd, /* NSW */ false, Known, Known2); 1721 1722 // We select between the operation result and all-ones/zero 1723 // respectively, so we can preserve known ones/zeros. 1724 if (IsAdd) { 1725 Known.One.setHighBits(LeadingKnown); 1726 Known.Zero.clearAllBits(); 1727 } else { 1728 Known.Zero.setHighBits(LeadingKnown); 1729 Known.One.clearAllBits(); 1730 } 1731 break; 1732 } 1733 case Intrinsic::x86_sse42_crc32_64_64: 1734 Known.Zero.setBitsFrom(32); 1735 break; 1736 } 1737 } 1738 break; 1739 case Instruction::ShuffleVector: { 1740 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1741 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1742 if (!Shuf) { 1743 Known.resetAll(); 1744 return; 1745 } 1746 // For undef elements, we don't know anything about the common state of 1747 // the shuffle result. 1748 APInt DemandedLHS, DemandedRHS; 1749 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1750 Known.resetAll(); 1751 return; 1752 } 1753 Known.One.setAllBits(); 1754 Known.Zero.setAllBits(); 1755 if (!!DemandedLHS) { 1756 const Value *LHS = Shuf->getOperand(0); 1757 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1758 // If we don't know any bits, early out. 1759 if (Known.isUnknown()) 1760 break; 1761 } 1762 if (!!DemandedRHS) { 1763 const Value *RHS = Shuf->getOperand(1); 1764 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1765 Known.One &= Known2.One; 1766 Known.Zero &= Known2.Zero; 1767 } 1768 break; 1769 } 1770 case Instruction::InsertElement: { 1771 const Value *Vec = I->getOperand(0); 1772 const Value *Elt = I->getOperand(1); 1773 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1774 // Early out if the index is non-constant or out-of-range. 1775 unsigned NumElts = DemandedElts.getBitWidth(); 1776 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1777 Known.resetAll(); 1778 return; 1779 } 1780 Known.One.setAllBits(); 1781 Known.Zero.setAllBits(); 1782 unsigned EltIdx = CIdx->getZExtValue(); 1783 // Do we demand the inserted element? 1784 if (DemandedElts[EltIdx]) { 1785 computeKnownBits(Elt, Known, Depth + 1, Q); 1786 // If we don't know any bits, early out. 1787 if (Known.isUnknown()) 1788 break; 1789 } 1790 // We don't need the base vector element that has been inserted. 1791 APInt DemandedVecElts = DemandedElts; 1792 DemandedVecElts.clearBit(EltIdx); 1793 if (!!DemandedVecElts) { 1794 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1795 Known.One &= Known2.One; 1796 Known.Zero &= Known2.Zero; 1797 } 1798 break; 1799 } 1800 case Instruction::ExtractElement: { 1801 // Look through extract element. If the index is non-constant or 1802 // out-of-range demand all elements, otherwise just the extracted element. 1803 const Value *Vec = I->getOperand(0); 1804 const Value *Idx = I->getOperand(1); 1805 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1806 unsigned NumElts = Vec->getType()->getVectorNumElements(); 1807 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1808 if (CIdx && CIdx->getValue().ult(NumElts)) 1809 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1810 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1811 break; 1812 } 1813 case Instruction::ExtractValue: 1814 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1815 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1816 if (EVI->getNumIndices() != 1) break; 1817 if (EVI->getIndices()[0] == 0) { 1818 switch (II->getIntrinsicID()) { 1819 default: break; 1820 case Intrinsic::uadd_with_overflow: 1821 case Intrinsic::sadd_with_overflow: 1822 computeKnownBitsAddSub(true, II->getArgOperand(0), 1823 II->getArgOperand(1), false, DemandedElts, 1824 Known, Known2, Depth, Q); 1825 break; 1826 case Intrinsic::usub_with_overflow: 1827 case Intrinsic::ssub_with_overflow: 1828 computeKnownBitsAddSub(false, II->getArgOperand(0), 1829 II->getArgOperand(1), false, DemandedElts, 1830 Known, Known2, Depth, Q); 1831 break; 1832 case Intrinsic::umul_with_overflow: 1833 case Intrinsic::smul_with_overflow: 1834 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1835 DemandedElts, Known, Known2, Depth, Q); 1836 break; 1837 } 1838 } 1839 } 1840 break; 1841 } 1842 } 1843 1844 /// Determine which bits of V are known to be either zero or one and return 1845 /// them. 1846 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1847 unsigned Depth, const Query &Q) { 1848 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1849 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1850 return Known; 1851 } 1852 1853 /// Determine which bits of V are known to be either zero or one and return 1854 /// them. 1855 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1856 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1857 computeKnownBits(V, Known, Depth, Q); 1858 return Known; 1859 } 1860 1861 /// Determine which bits of V are known to be either zero or one and return 1862 /// them in the Known bit set. 1863 /// 1864 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1865 /// we cannot optimize based on the assumption that it is zero without changing 1866 /// it to be an explicit zero. If we don't change it to zero, other code could 1867 /// optimized based on the contradictory assumption that it is non-zero. 1868 /// Because instcombine aggressively folds operations with undef args anyway, 1869 /// this won't lose us code quality. 1870 /// 1871 /// This function is defined on values with integer type, values with pointer 1872 /// type, and vectors of integers. In the case 1873 /// where V is a vector, known zero, and known one values are the 1874 /// same width as the vector element, and the bit is set only if it is true 1875 /// for all of the demanded elements in the vector specified by DemandedElts. 1876 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1877 KnownBits &Known, unsigned Depth, const Query &Q) { 1878 assert(V && "No Value?"); 1879 assert(Depth <= MaxDepth && "Limit Search Depth"); 1880 unsigned BitWidth = Known.getBitWidth(); 1881 1882 Type *Ty = V->getType(); 1883 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1884 "Not integer or pointer type!"); 1885 assert(((Ty->isVectorTy() && 1886 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 1887 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1888 "Unexpected vector size"); 1889 1890 Type *ScalarTy = Ty->getScalarType(); 1891 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1892 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1893 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1894 (void)BitWidth; 1895 (void)ExpectedWidth; 1896 1897 if (!DemandedElts) { 1898 // No demanded elts, better to assume we don't know anything. 1899 Known.resetAll(); 1900 return; 1901 } 1902 1903 const APInt *C; 1904 if (match(V, m_APInt(C))) { 1905 // We know all of the bits for a scalar constant or a splat vector constant! 1906 Known.One = *C; 1907 Known.Zero = ~Known.One; 1908 return; 1909 } 1910 // Null and aggregate-zero are all-zeros. 1911 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1912 Known.setAllZero(); 1913 return; 1914 } 1915 // Handle a constant vector by taking the intersection of the known bits of 1916 // each element. 1917 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1918 assert((!Ty->isVectorTy() || 1919 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1920 "Unexpected vector size"); 1921 // We know that CDS must be a vector of integers. Take the intersection of 1922 // each element. 1923 Known.Zero.setAllBits(); Known.One.setAllBits(); 1924 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1925 if (Ty->isVectorTy() && !DemandedElts[i]) 1926 continue; 1927 APInt Elt = CDS->getElementAsAPInt(i); 1928 Known.Zero &= ~Elt; 1929 Known.One &= Elt; 1930 } 1931 return; 1932 } 1933 1934 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1935 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1936 "Unexpected vector size"); 1937 // We know that CV must be a vector of integers. Take the intersection of 1938 // each element. 1939 Known.Zero.setAllBits(); Known.One.setAllBits(); 1940 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1941 if (!DemandedElts[i]) 1942 continue; 1943 Constant *Element = CV->getAggregateElement(i); 1944 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1945 if (!ElementCI) { 1946 Known.resetAll(); 1947 return; 1948 } 1949 const APInt &Elt = ElementCI->getValue(); 1950 Known.Zero &= ~Elt; 1951 Known.One &= Elt; 1952 } 1953 return; 1954 } 1955 1956 // Start out not knowing anything. 1957 Known.resetAll(); 1958 1959 // We can't imply anything about undefs. 1960 if (isa<UndefValue>(V)) 1961 return; 1962 1963 // There's no point in looking through other users of ConstantData for 1964 // assumptions. Confirm that we've handled them all. 1965 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1966 1967 // Limit search depth. 1968 // All recursive calls that increase depth must come after this. 1969 if (Depth == MaxDepth) 1970 return; 1971 1972 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1973 // the bits of its aliasee. 1974 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1975 if (!GA->isInterposable()) 1976 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1977 return; 1978 } 1979 1980 if (const Operator *I = dyn_cast<Operator>(V)) 1981 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1982 1983 // Aligned pointers have trailing zeros - refine Known.Zero set 1984 if (Ty->isPointerTy()) { 1985 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1986 if (Align) 1987 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1988 } 1989 1990 // computeKnownBitsFromAssume strictly refines Known. 1991 // Therefore, we run them after computeKnownBitsFromOperator. 1992 1993 // Check whether a nearby assume intrinsic can determine some known bits. 1994 computeKnownBitsFromAssume(V, Known, Depth, Q); 1995 1996 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1997 } 1998 1999 /// Return true if the given value is known to have exactly one 2000 /// bit set when defined. For vectors return true if every element is known to 2001 /// be a power of two when defined. Supports values with integer or pointer 2002 /// types and vectors of integers. 2003 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2004 const Query &Q) { 2005 assert(Depth <= MaxDepth && "Limit Search Depth"); 2006 2007 // Attempt to match against constants. 2008 if (OrZero && match(V, m_Power2OrZero())) 2009 return true; 2010 if (match(V, m_Power2())) 2011 return true; 2012 2013 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2014 // it is shifted off the end then the result is undefined. 2015 if (match(V, m_Shl(m_One(), m_Value()))) 2016 return true; 2017 2018 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2019 // the bottom. If it is shifted off the bottom then the result is undefined. 2020 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2021 return true; 2022 2023 // The remaining tests are all recursive, so bail out if we hit the limit. 2024 if (Depth++ == MaxDepth) 2025 return false; 2026 2027 Value *X = nullptr, *Y = nullptr; 2028 // A shift left or a logical shift right of a power of two is a power of two 2029 // or zero. 2030 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2031 match(V, m_LShr(m_Value(X), m_Value())))) 2032 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2033 2034 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2035 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2036 2037 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2038 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2039 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2040 2041 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2042 // A power of two and'd with anything is a power of two or zero. 2043 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2044 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2045 return true; 2046 // X & (-X) is always a power of two or zero. 2047 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2048 return true; 2049 return false; 2050 } 2051 2052 // Adding a power-of-two or zero to the same power-of-two or zero yields 2053 // either the original power-of-two, a larger power-of-two or zero. 2054 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2055 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2056 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2057 Q.IIQ.hasNoSignedWrap(VOBO)) { 2058 if (match(X, m_And(m_Specific(Y), m_Value())) || 2059 match(X, m_And(m_Value(), m_Specific(Y)))) 2060 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2061 return true; 2062 if (match(Y, m_And(m_Specific(X), m_Value())) || 2063 match(Y, m_And(m_Value(), m_Specific(X)))) 2064 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2065 return true; 2066 2067 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2068 KnownBits LHSBits(BitWidth); 2069 computeKnownBits(X, LHSBits, Depth, Q); 2070 2071 KnownBits RHSBits(BitWidth); 2072 computeKnownBits(Y, RHSBits, Depth, Q); 2073 // If i8 V is a power of two or zero: 2074 // ZeroBits: 1 1 1 0 1 1 1 1 2075 // ~ZeroBits: 0 0 0 1 0 0 0 0 2076 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2077 // If OrZero isn't set, we cannot give back a zero result. 2078 // Make sure either the LHS or RHS has a bit set. 2079 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2080 return true; 2081 } 2082 } 2083 2084 // An exact divide or right shift can only shift off zero bits, so the result 2085 // is a power of two only if the first operand is a power of two and not 2086 // copying a sign bit (sdiv int_min, 2). 2087 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2088 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2089 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2090 Depth, Q); 2091 } 2092 2093 return false; 2094 } 2095 2096 /// Test whether a GEP's result is known to be non-null. 2097 /// 2098 /// Uses properties inherent in a GEP to try to determine whether it is known 2099 /// to be non-null. 2100 /// 2101 /// Currently this routine does not support vector GEPs. 2102 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2103 const Query &Q) { 2104 const Function *F = nullptr; 2105 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2106 F = I->getFunction(); 2107 2108 if (!GEP->isInBounds() || 2109 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2110 return false; 2111 2112 // FIXME: Support vector-GEPs. 2113 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2114 2115 // If the base pointer is non-null, we cannot walk to a null address with an 2116 // inbounds GEP in address space zero. 2117 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2118 return true; 2119 2120 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2121 // If so, then the GEP cannot produce a null pointer, as doing so would 2122 // inherently violate the inbounds contract within address space zero. 2123 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2124 GTI != GTE; ++GTI) { 2125 // Struct types are easy -- they must always be indexed by a constant. 2126 if (StructType *STy = GTI.getStructTypeOrNull()) { 2127 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2128 unsigned ElementIdx = OpC->getZExtValue(); 2129 const StructLayout *SL = Q.DL.getStructLayout(STy); 2130 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2131 if (ElementOffset > 0) 2132 return true; 2133 continue; 2134 } 2135 2136 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2137 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2138 continue; 2139 2140 // Fast path the constant operand case both for efficiency and so we don't 2141 // increment Depth when just zipping down an all-constant GEP. 2142 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2143 if (!OpC->isZero()) 2144 return true; 2145 continue; 2146 } 2147 2148 // We post-increment Depth here because while isKnownNonZero increments it 2149 // as well, when we pop back up that increment won't persist. We don't want 2150 // to recurse 10k times just because we have 10k GEP operands. We don't 2151 // bail completely out because we want to handle constant GEPs regardless 2152 // of depth. 2153 if (Depth++ >= MaxDepth) 2154 continue; 2155 2156 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2157 return true; 2158 } 2159 2160 return false; 2161 } 2162 2163 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2164 const Instruction *CtxI, 2165 const DominatorTree *DT) { 2166 if (isa<Constant>(V)) 2167 return false; 2168 2169 if (!CtxI || !DT) 2170 return false; 2171 2172 unsigned NumUsesExplored = 0; 2173 for (auto *U : V->users()) { 2174 // Avoid massive lists 2175 if (NumUsesExplored >= DomConditionsMaxUses) 2176 break; 2177 NumUsesExplored++; 2178 2179 // If the value is used as an argument to a call or invoke, then argument 2180 // attributes may provide an answer about null-ness. 2181 if (auto CS = ImmutableCallSite(U)) 2182 if (auto *CalledFunc = CS.getCalledFunction()) 2183 for (const Argument &Arg : CalledFunc->args()) 2184 if (CS.getArgOperand(Arg.getArgNo()) == V && 2185 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2186 return true; 2187 2188 // If the value is used as a load/store, then the pointer must be non null. 2189 if (V == getLoadStorePointerOperand(U)) { 2190 const Instruction *I = cast<Instruction>(U); 2191 if (!NullPointerIsDefined(I->getFunction(), 2192 V->getType()->getPointerAddressSpace()) && 2193 DT->dominates(I, CtxI)) 2194 return true; 2195 } 2196 2197 // Consider only compare instructions uniquely controlling a branch 2198 CmpInst::Predicate Pred; 2199 if (!match(const_cast<User *>(U), 2200 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2201 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2202 continue; 2203 2204 SmallVector<const User *, 4> WorkList; 2205 SmallPtrSet<const User *, 4> Visited; 2206 for (auto *CmpU : U->users()) { 2207 assert(WorkList.empty() && "Should be!"); 2208 if (Visited.insert(CmpU).second) 2209 WorkList.push_back(CmpU); 2210 2211 while (!WorkList.empty()) { 2212 auto *Curr = WorkList.pop_back_val(); 2213 2214 // If a user is an AND, add all its users to the work list. We only 2215 // propagate "pred != null" condition through AND because it is only 2216 // correct to assume that all conditions of AND are met in true branch. 2217 // TODO: Support similar logic of OR and EQ predicate? 2218 if (Pred == ICmpInst::ICMP_NE) 2219 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2220 if (BO->getOpcode() == Instruction::And) { 2221 for (auto *BOU : BO->users()) 2222 if (Visited.insert(BOU).second) 2223 WorkList.push_back(BOU); 2224 continue; 2225 } 2226 2227 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2228 assert(BI->isConditional() && "uses a comparison!"); 2229 2230 BasicBlock *NonNullSuccessor = 2231 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2232 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2233 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2234 return true; 2235 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2236 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2237 return true; 2238 } 2239 } 2240 } 2241 } 2242 2243 return false; 2244 } 2245 2246 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2247 /// ensure that the value it's attached to is never Value? 'RangeType' is 2248 /// is the type of the value described by the range. 2249 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2250 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2251 assert(NumRanges >= 1); 2252 for (unsigned i = 0; i < NumRanges; ++i) { 2253 ConstantInt *Lower = 2254 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2255 ConstantInt *Upper = 2256 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2257 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2258 if (Range.contains(Value)) 2259 return false; 2260 } 2261 return true; 2262 } 2263 2264 /// Return true if the given value is known to be non-zero when defined. For 2265 /// vectors, return true if every demanded element is known to be non-zero when 2266 /// defined. For pointers, if the context instruction and dominator tree are 2267 /// specified, perform context-sensitive analysis and return true if the 2268 /// pointer couldn't possibly be null at the specified instruction. 2269 /// Supports values with integer or pointer type and vectors of integers. 2270 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2271 const Query &Q) { 2272 if (auto *C = dyn_cast<Constant>(V)) { 2273 if (C->isNullValue()) 2274 return false; 2275 if (isa<ConstantInt>(C)) 2276 // Must be non-zero due to null test above. 2277 return true; 2278 2279 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2280 // See the comment for IntToPtr/PtrToInt instructions below. 2281 if (CE->getOpcode() == Instruction::IntToPtr || 2282 CE->getOpcode() == Instruction::PtrToInt) 2283 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2284 Q.DL.getTypeSizeInBits(CE->getType())) 2285 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2286 } 2287 2288 // For constant vectors, check that all elements are undefined or known 2289 // non-zero to determine that the whole vector is known non-zero. 2290 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2291 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2292 if (!DemandedElts[i]) 2293 continue; 2294 Constant *Elt = C->getAggregateElement(i); 2295 if (!Elt || Elt->isNullValue()) 2296 return false; 2297 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2298 return false; 2299 } 2300 return true; 2301 } 2302 2303 // A global variable in address space 0 is non null unless extern weak 2304 // or an absolute symbol reference. Other address spaces may have null as a 2305 // valid address for a global, so we can't assume anything. 2306 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2307 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2308 GV->getType()->getAddressSpace() == 0) 2309 return true; 2310 } else 2311 return false; 2312 } 2313 2314 if (auto *I = dyn_cast<Instruction>(V)) { 2315 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2316 // If the possible ranges don't contain zero, then the value is 2317 // definitely non-zero. 2318 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2319 const APInt ZeroValue(Ty->getBitWidth(), 0); 2320 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2321 return true; 2322 } 2323 } 2324 } 2325 2326 if (isKnownNonZeroFromAssume(V, Q)) 2327 return true; 2328 2329 // Some of the tests below are recursive, so bail out if we hit the limit. 2330 if (Depth++ >= MaxDepth) 2331 return false; 2332 2333 // Check for pointer simplifications. 2334 if (V->getType()->isPointerTy()) { 2335 // Alloca never returns null, malloc might. 2336 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2337 return true; 2338 2339 // A byval, inalloca, or nonnull argument is never null. 2340 if (const Argument *A = dyn_cast<Argument>(V)) 2341 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2342 return true; 2343 2344 // A Load tagged with nonnull metadata is never null. 2345 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2346 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2347 return true; 2348 2349 if (const auto *Call = dyn_cast<CallBase>(V)) { 2350 if (Call->isReturnNonNull()) 2351 return true; 2352 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2353 return isKnownNonZero(RP, Depth, Q); 2354 } 2355 } 2356 2357 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2358 return true; 2359 2360 // Check for recursive pointer simplifications. 2361 if (V->getType()->isPointerTy()) { 2362 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2363 // do not alter the value, or at least not the nullness property of the 2364 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2365 // 2366 // Note that we have to take special care to avoid looking through 2367 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2368 // as casts that can alter the value, e.g., AddrSpaceCasts. 2369 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2370 if (isGEPKnownNonNull(GEP, Depth, Q)) 2371 return true; 2372 2373 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2374 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2375 2376 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2377 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2378 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2379 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2380 } 2381 2382 // Similar to int2ptr above, we can look through ptr2int here if the cast 2383 // is a no-op or an extend and not a truncate. 2384 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2385 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2386 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2387 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2388 2389 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2390 2391 // X | Y != 0 if X != 0 or Y != 0. 2392 Value *X = nullptr, *Y = nullptr; 2393 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2394 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2395 isKnownNonZero(Y, DemandedElts, Depth, Q); 2396 2397 // ext X != 0 if X != 0. 2398 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2399 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2400 2401 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2402 // if the lowest bit is shifted off the end. 2403 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2404 // shl nuw can't remove any non-zero bits. 2405 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2406 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2407 return isKnownNonZero(X, Depth, Q); 2408 2409 KnownBits Known(BitWidth); 2410 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2411 if (Known.One[0]) 2412 return true; 2413 } 2414 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2415 // defined if the sign bit is shifted off the end. 2416 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2417 // shr exact can only shift out zero bits. 2418 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2419 if (BO->isExact()) 2420 return isKnownNonZero(X, Depth, Q); 2421 2422 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2423 if (Known.isNegative()) 2424 return true; 2425 2426 // If the shifter operand is a constant, and all of the bits shifted 2427 // out are known to be zero, and X is known non-zero then at least one 2428 // non-zero bit must remain. 2429 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2430 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2431 // Is there a known one in the portion not shifted out? 2432 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2433 return true; 2434 // Are all the bits to be shifted out known zero? 2435 if (Known.countMinTrailingZeros() >= ShiftVal) 2436 return isKnownNonZero(X, DemandedElts, Depth, Q); 2437 } 2438 } 2439 // div exact can only produce a zero if the dividend is zero. 2440 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2441 return isKnownNonZero(X, DemandedElts, Depth, Q); 2442 } 2443 // X + Y. 2444 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2445 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2446 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2447 2448 // If X and Y are both non-negative (as signed values) then their sum is not 2449 // zero unless both X and Y are zero. 2450 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2451 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2452 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2453 return true; 2454 2455 // If X and Y are both negative (as signed values) then their sum is not 2456 // zero unless both X and Y equal INT_MIN. 2457 if (XKnown.isNegative() && YKnown.isNegative()) { 2458 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2459 // The sign bit of X is set. If some other bit is set then X is not equal 2460 // to INT_MIN. 2461 if (XKnown.One.intersects(Mask)) 2462 return true; 2463 // The sign bit of Y is set. If some other bit is set then Y is not equal 2464 // to INT_MIN. 2465 if (YKnown.One.intersects(Mask)) 2466 return true; 2467 } 2468 2469 // The sum of a non-negative number and a power of two is not zero. 2470 if (XKnown.isNonNegative() && 2471 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2472 return true; 2473 if (YKnown.isNonNegative() && 2474 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2475 return true; 2476 } 2477 // X * Y. 2478 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2479 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2480 // If X and Y are non-zero then so is X * Y as long as the multiplication 2481 // does not overflow. 2482 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2483 isKnownNonZero(X, DemandedElts, Depth, Q) && 2484 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2485 return true; 2486 } 2487 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2488 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2489 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2490 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2491 return true; 2492 } 2493 // PHI 2494 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2495 // Try and detect a recurrence that monotonically increases from a 2496 // starting value, as these are common as induction variables. 2497 if (PN->getNumIncomingValues() == 2) { 2498 Value *Start = PN->getIncomingValue(0); 2499 Value *Induction = PN->getIncomingValue(1); 2500 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2501 std::swap(Start, Induction); 2502 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2503 if (!C->isZero() && !C->isNegative()) { 2504 ConstantInt *X; 2505 if (Q.IIQ.UseInstrInfo && 2506 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2507 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2508 !X->isNegative()) 2509 return true; 2510 } 2511 } 2512 } 2513 // Check if all incoming values are non-zero constant. 2514 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2515 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2516 }); 2517 if (AllNonZeroConstants) 2518 return true; 2519 } 2520 // ExtractElement 2521 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2522 const Value *Vec = EEI->getVectorOperand(); 2523 const Value *Idx = EEI->getIndexOperand(); 2524 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2525 unsigned NumElts = Vec->getType()->getVectorNumElements(); 2526 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2527 if (CIdx && CIdx->getValue().ult(NumElts)) 2528 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2529 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2530 } 2531 2532 KnownBits Known(BitWidth); 2533 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2534 return Known.One != 0; 2535 } 2536 2537 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2538 Type *Ty = V->getType(); 2539 APInt DemandedElts = Ty->isVectorTy() 2540 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 2541 : APInt(1, 1); 2542 return isKnownNonZero(V, DemandedElts, Depth, Q); 2543 } 2544 2545 /// Return true if V2 == V1 + X, where X is known non-zero. 2546 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2547 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2548 if (!BO || BO->getOpcode() != Instruction::Add) 2549 return false; 2550 Value *Op = nullptr; 2551 if (V2 == BO->getOperand(0)) 2552 Op = BO->getOperand(1); 2553 else if (V2 == BO->getOperand(1)) 2554 Op = BO->getOperand(0); 2555 else 2556 return false; 2557 return isKnownNonZero(Op, 0, Q); 2558 } 2559 2560 /// Return true if it is known that V1 != V2. 2561 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2562 if (V1 == V2) 2563 return false; 2564 if (V1->getType() != V2->getType()) 2565 // We can't look through casts yet. 2566 return false; 2567 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2568 return true; 2569 2570 if (V1->getType()->isIntOrIntVectorTy()) { 2571 // Are any known bits in V1 contradictory to known bits in V2? If V1 2572 // has a known zero where V2 has a known one, they must not be equal. 2573 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2574 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2575 2576 if (Known1.Zero.intersects(Known2.One) || 2577 Known2.Zero.intersects(Known1.One)) 2578 return true; 2579 } 2580 return false; 2581 } 2582 2583 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2584 /// simplify operations downstream. Mask is known to be zero for bits that V 2585 /// cannot have. 2586 /// 2587 /// This function is defined on values with integer type, values with pointer 2588 /// type, and vectors of integers. In the case 2589 /// where V is a vector, the mask, known zero, and known one values are the 2590 /// same width as the vector element, and the bit is set only if it is true 2591 /// for all of the elements in the vector. 2592 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2593 const Query &Q) { 2594 KnownBits Known(Mask.getBitWidth()); 2595 computeKnownBits(V, Known, Depth, Q); 2596 return Mask.isSubsetOf(Known.Zero); 2597 } 2598 2599 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2600 // Returns the input and lower/upper bounds. 2601 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2602 const APInt *&CLow, const APInt *&CHigh) { 2603 assert(isa<Operator>(Select) && 2604 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2605 "Input should be a Select!"); 2606 2607 const Value *LHS = nullptr, *RHS = nullptr; 2608 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2609 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2610 return false; 2611 2612 if (!match(RHS, m_APInt(CLow))) 2613 return false; 2614 2615 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2616 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2617 if (getInverseMinMaxFlavor(SPF) != SPF2) 2618 return false; 2619 2620 if (!match(RHS2, m_APInt(CHigh))) 2621 return false; 2622 2623 if (SPF == SPF_SMIN) 2624 std::swap(CLow, CHigh); 2625 2626 In = LHS2; 2627 return CLow->sle(*CHigh); 2628 } 2629 2630 /// For vector constants, loop over the elements and find the constant with the 2631 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2632 /// or if any element was not analyzed; otherwise, return the count for the 2633 /// element with the minimum number of sign bits. 2634 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2635 const APInt &DemandedElts, 2636 unsigned TyBits) { 2637 const auto *CV = dyn_cast<Constant>(V); 2638 if (!CV || !CV->getType()->isVectorTy()) 2639 return 0; 2640 2641 unsigned MinSignBits = TyBits; 2642 unsigned NumElts = CV->getType()->getVectorNumElements(); 2643 for (unsigned i = 0; i != NumElts; ++i) { 2644 if (!DemandedElts[i]) 2645 continue; 2646 // If we find a non-ConstantInt, bail out. 2647 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2648 if (!Elt) 2649 return 0; 2650 2651 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2652 } 2653 2654 return MinSignBits; 2655 } 2656 2657 static unsigned ComputeNumSignBitsImpl(const Value *V, 2658 const APInt &DemandedElts, 2659 unsigned Depth, const Query &Q); 2660 2661 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2662 unsigned Depth, const Query &Q) { 2663 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2664 assert(Result > 0 && "At least one sign bit needs to be present!"); 2665 return Result; 2666 } 2667 2668 /// Return the number of times the sign bit of the register is replicated into 2669 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2670 /// (itself), but other cases can give us information. For example, immediately 2671 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2672 /// other, so we return 3. For vectors, return the number of sign bits for the 2673 /// vector element with the minimum number of known sign bits of the demanded 2674 /// elements in the vector specified by DemandedElts. 2675 static unsigned ComputeNumSignBitsImpl(const Value *V, 2676 const APInt &DemandedElts, 2677 unsigned Depth, const Query &Q) { 2678 assert(Depth <= MaxDepth && "Limit Search Depth"); 2679 2680 // We return the minimum number of sign bits that are guaranteed to be present 2681 // in V, so for undef we have to conservatively return 1. We don't have the 2682 // same behavior for poison though -- that's a FIXME today. 2683 2684 Type *Ty = V->getType(); 2685 assert(((Ty->isVectorTy() && 2686 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 2687 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2688 "Unexpected vector size"); 2689 2690 Type *ScalarTy = Ty->getScalarType(); 2691 unsigned TyBits = ScalarTy->isPointerTy() ? 2692 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2693 Q.DL.getTypeSizeInBits(ScalarTy); 2694 2695 unsigned Tmp, Tmp2; 2696 unsigned FirstAnswer = 1; 2697 2698 // Note that ConstantInt is handled by the general computeKnownBits case 2699 // below. 2700 2701 if (Depth == MaxDepth) 2702 return 1; // Limit search depth. 2703 2704 if (auto *U = dyn_cast<Operator>(V)) { 2705 switch (Operator::getOpcode(V)) { 2706 default: break; 2707 case Instruction::SExt: 2708 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2709 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2710 2711 case Instruction::SDiv: { 2712 const APInt *Denominator; 2713 // sdiv X, C -> adds log(C) sign bits. 2714 if (match(U->getOperand(1), m_APInt(Denominator))) { 2715 2716 // Ignore non-positive denominator. 2717 if (!Denominator->isStrictlyPositive()) 2718 break; 2719 2720 // Calculate the incoming numerator bits. 2721 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2722 2723 // Add floor(log(C)) bits to the numerator bits. 2724 return std::min(TyBits, NumBits + Denominator->logBase2()); 2725 } 2726 break; 2727 } 2728 2729 case Instruction::SRem: { 2730 const APInt *Denominator; 2731 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2732 // positive constant. This let us put a lower bound on the number of sign 2733 // bits. 2734 if (match(U->getOperand(1), m_APInt(Denominator))) { 2735 2736 // Ignore non-positive denominator. 2737 if (!Denominator->isStrictlyPositive()) 2738 break; 2739 2740 // Calculate the incoming numerator bits. SRem by a positive constant 2741 // can't lower the number of sign bits. 2742 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2743 2744 // Calculate the leading sign bit constraints by examining the 2745 // denominator. Given that the denominator is positive, there are two 2746 // cases: 2747 // 2748 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2749 // (1 << ceilLogBase2(C)). 2750 // 2751 // 2. the numerator is negative. Then the result range is (-C,0] and 2752 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2753 // 2754 // Thus a lower bound on the number of sign bits is `TyBits - 2755 // ceilLogBase2(C)`. 2756 2757 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2758 return std::max(NumrBits, ResBits); 2759 } 2760 break; 2761 } 2762 2763 case Instruction::AShr: { 2764 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2765 // ashr X, C -> adds C sign bits. Vectors too. 2766 const APInt *ShAmt; 2767 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2768 if (ShAmt->uge(TyBits)) 2769 break; // Bad shift. 2770 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2771 Tmp += ShAmtLimited; 2772 if (Tmp > TyBits) Tmp = TyBits; 2773 } 2774 return Tmp; 2775 } 2776 case Instruction::Shl: { 2777 const APInt *ShAmt; 2778 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2779 // shl destroys sign bits. 2780 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2781 if (ShAmt->uge(TyBits) || // Bad shift. 2782 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2783 Tmp2 = ShAmt->getZExtValue(); 2784 return Tmp - Tmp2; 2785 } 2786 break; 2787 } 2788 case Instruction::And: 2789 case Instruction::Or: 2790 case Instruction::Xor: // NOT is handled here. 2791 // Logical binary ops preserve the number of sign bits at the worst. 2792 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2793 if (Tmp != 1) { 2794 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2795 FirstAnswer = std::min(Tmp, Tmp2); 2796 // We computed what we know about the sign bits as our first 2797 // answer. Now proceed to the generic code that uses 2798 // computeKnownBits, and pick whichever answer is better. 2799 } 2800 break; 2801 2802 case Instruction::Select: { 2803 // If we have a clamp pattern, we know that the number of sign bits will 2804 // be the minimum of the clamp min/max range. 2805 const Value *X; 2806 const APInt *CLow, *CHigh; 2807 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2808 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2809 2810 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2811 if (Tmp == 1) break; 2812 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2813 return std::min(Tmp, Tmp2); 2814 } 2815 2816 case Instruction::Add: 2817 // Add can have at most one carry bit. Thus we know that the output 2818 // is, at worst, one more bit than the inputs. 2819 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2820 if (Tmp == 1) break; 2821 2822 // Special case decrementing a value (ADD X, -1): 2823 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2824 if (CRHS->isAllOnesValue()) { 2825 KnownBits Known(TyBits); 2826 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2827 2828 // If the input is known to be 0 or 1, the output is 0/-1, which is 2829 // all sign bits set. 2830 if ((Known.Zero | 1).isAllOnesValue()) 2831 return TyBits; 2832 2833 // If we are subtracting one from a positive number, there is no carry 2834 // out of the result. 2835 if (Known.isNonNegative()) 2836 return Tmp; 2837 } 2838 2839 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2840 if (Tmp2 == 1) break; 2841 return std::min(Tmp, Tmp2) - 1; 2842 2843 case Instruction::Sub: 2844 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2845 if (Tmp2 == 1) break; 2846 2847 // Handle NEG. 2848 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2849 if (CLHS->isNullValue()) { 2850 KnownBits Known(TyBits); 2851 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2852 // If the input is known to be 0 or 1, the output is 0/-1, which is 2853 // all sign bits set. 2854 if ((Known.Zero | 1).isAllOnesValue()) 2855 return TyBits; 2856 2857 // If the input is known to be positive (the sign bit is known clear), 2858 // the output of the NEG has the same number of sign bits as the 2859 // input. 2860 if (Known.isNonNegative()) 2861 return Tmp2; 2862 2863 // Otherwise, we treat this like a SUB. 2864 } 2865 2866 // Sub can have at most one carry bit. Thus we know that the output 2867 // is, at worst, one more bit than the inputs. 2868 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2869 if (Tmp == 1) break; 2870 return std::min(Tmp, Tmp2) - 1; 2871 2872 case Instruction::Mul: { 2873 // The output of the Mul can be at most twice the valid bits in the 2874 // inputs. 2875 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2876 if (SignBitsOp0 == 1) break; 2877 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2878 if (SignBitsOp1 == 1) break; 2879 unsigned OutValidBits = 2880 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2881 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2882 } 2883 2884 case Instruction::PHI: { 2885 const PHINode *PN = cast<PHINode>(U); 2886 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2887 // Don't analyze large in-degree PHIs. 2888 if (NumIncomingValues > 4) break; 2889 // Unreachable blocks may have zero-operand PHI nodes. 2890 if (NumIncomingValues == 0) break; 2891 2892 // Take the minimum of all incoming values. This can't infinitely loop 2893 // because of our depth threshold. 2894 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2895 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2896 if (Tmp == 1) return Tmp; 2897 Tmp = std::min( 2898 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2899 } 2900 return Tmp; 2901 } 2902 2903 case Instruction::Trunc: 2904 // FIXME: it's tricky to do anything useful for this, but it is an 2905 // important case for targets like X86. 2906 break; 2907 2908 case Instruction::ExtractElement: 2909 // Look through extract element. At the moment we keep this simple and 2910 // skip tracking the specific element. But at least we might find 2911 // information valid for all elements of the vector (for example if vector 2912 // is sign extended, shifted, etc). 2913 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2914 2915 case Instruction::ShuffleVector: { 2916 // Collect the minimum number of sign bits that are shared by every vector 2917 // element referenced by the shuffle. 2918 auto *Shuf = cast<ShuffleVectorInst>(U); 2919 APInt DemandedLHS, DemandedRHS; 2920 // For undef elements, we don't know anything about the common state of 2921 // the shuffle result. 2922 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2923 return 1; 2924 Tmp = std::numeric_limits<unsigned>::max(); 2925 if (!!DemandedLHS) { 2926 const Value *LHS = Shuf->getOperand(0); 2927 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2928 } 2929 // If we don't know anything, early out and try computeKnownBits 2930 // fall-back. 2931 if (Tmp == 1) 2932 break; 2933 if (!!DemandedRHS) { 2934 const Value *RHS = Shuf->getOperand(1); 2935 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2936 Tmp = std::min(Tmp, Tmp2); 2937 } 2938 // If we don't know anything, early out and try computeKnownBits 2939 // fall-back. 2940 if (Tmp == 1) 2941 break; 2942 assert(Tmp <= Ty->getScalarSizeInBits() && 2943 "Failed to determine minimum sign bits"); 2944 return Tmp; 2945 } 2946 } 2947 } 2948 2949 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2950 // use this information. 2951 2952 // If we can examine all elements of a vector constant successfully, we're 2953 // done (we can't do any better than that). If not, keep trying. 2954 if (unsigned VecSignBits = 2955 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2956 return VecSignBits; 2957 2958 KnownBits Known(TyBits); 2959 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2960 2961 // If we know that the sign bit is either zero or one, determine the number of 2962 // identical bits in the top of the input value. 2963 return std::max(FirstAnswer, Known.countMinSignBits()); 2964 } 2965 2966 /// This function computes the integer multiple of Base that equals V. 2967 /// If successful, it returns true and returns the multiple in 2968 /// Multiple. If unsuccessful, it returns false. It looks 2969 /// through SExt instructions only if LookThroughSExt is true. 2970 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2971 bool LookThroughSExt, unsigned Depth) { 2972 assert(V && "No Value?"); 2973 assert(Depth <= MaxDepth && "Limit Search Depth"); 2974 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2975 2976 Type *T = V->getType(); 2977 2978 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2979 2980 if (Base == 0) 2981 return false; 2982 2983 if (Base == 1) { 2984 Multiple = V; 2985 return true; 2986 } 2987 2988 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2989 Constant *BaseVal = ConstantInt::get(T, Base); 2990 if (CO && CO == BaseVal) { 2991 // Multiple is 1. 2992 Multiple = ConstantInt::get(T, 1); 2993 return true; 2994 } 2995 2996 if (CI && CI->getZExtValue() % Base == 0) { 2997 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2998 return true; 2999 } 3000 3001 if (Depth == MaxDepth) return false; // Limit search depth. 3002 3003 Operator *I = dyn_cast<Operator>(V); 3004 if (!I) return false; 3005 3006 switch (I->getOpcode()) { 3007 default: break; 3008 case Instruction::SExt: 3009 if (!LookThroughSExt) return false; 3010 // otherwise fall through to ZExt 3011 LLVM_FALLTHROUGH; 3012 case Instruction::ZExt: 3013 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3014 LookThroughSExt, Depth+1); 3015 case Instruction::Shl: 3016 case Instruction::Mul: { 3017 Value *Op0 = I->getOperand(0); 3018 Value *Op1 = I->getOperand(1); 3019 3020 if (I->getOpcode() == Instruction::Shl) { 3021 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3022 if (!Op1CI) return false; 3023 // Turn Op0 << Op1 into Op0 * 2^Op1 3024 APInt Op1Int = Op1CI->getValue(); 3025 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3026 APInt API(Op1Int.getBitWidth(), 0); 3027 API.setBit(BitToSet); 3028 Op1 = ConstantInt::get(V->getContext(), API); 3029 } 3030 3031 Value *Mul0 = nullptr; 3032 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3033 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3034 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3035 if (Op1C->getType()->getPrimitiveSizeInBits() < 3036 MulC->getType()->getPrimitiveSizeInBits()) 3037 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3038 if (Op1C->getType()->getPrimitiveSizeInBits() > 3039 MulC->getType()->getPrimitiveSizeInBits()) 3040 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3041 3042 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3043 Multiple = ConstantExpr::getMul(MulC, Op1C); 3044 return true; 3045 } 3046 3047 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3048 if (Mul0CI->getValue() == 1) { 3049 // V == Base * Op1, so return Op1 3050 Multiple = Op1; 3051 return true; 3052 } 3053 } 3054 3055 Value *Mul1 = nullptr; 3056 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3057 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3058 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3059 if (Op0C->getType()->getPrimitiveSizeInBits() < 3060 MulC->getType()->getPrimitiveSizeInBits()) 3061 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3062 if (Op0C->getType()->getPrimitiveSizeInBits() > 3063 MulC->getType()->getPrimitiveSizeInBits()) 3064 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3065 3066 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3067 Multiple = ConstantExpr::getMul(MulC, Op0C); 3068 return true; 3069 } 3070 3071 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3072 if (Mul1CI->getValue() == 1) { 3073 // V == Base * Op0, so return Op0 3074 Multiple = Op0; 3075 return true; 3076 } 3077 } 3078 } 3079 } 3080 3081 // We could not determine if V is a multiple of Base. 3082 return false; 3083 } 3084 3085 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 3086 const TargetLibraryInfo *TLI) { 3087 const Function *F = ICS.getCalledFunction(); 3088 if (!F) 3089 return Intrinsic::not_intrinsic; 3090 3091 if (F->isIntrinsic()) 3092 return F->getIntrinsicID(); 3093 3094 if (!TLI) 3095 return Intrinsic::not_intrinsic; 3096 3097 LibFunc Func; 3098 // We're going to make assumptions on the semantics of the functions, check 3099 // that the target knows that it's available in this environment and it does 3100 // not have local linkage. 3101 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3102 return Intrinsic::not_intrinsic; 3103 3104 if (!ICS.onlyReadsMemory()) 3105 return Intrinsic::not_intrinsic; 3106 3107 // Otherwise check if we have a call to a function that can be turned into a 3108 // vector intrinsic. 3109 switch (Func) { 3110 default: 3111 break; 3112 case LibFunc_sin: 3113 case LibFunc_sinf: 3114 case LibFunc_sinl: 3115 return Intrinsic::sin; 3116 case LibFunc_cos: 3117 case LibFunc_cosf: 3118 case LibFunc_cosl: 3119 return Intrinsic::cos; 3120 case LibFunc_exp: 3121 case LibFunc_expf: 3122 case LibFunc_expl: 3123 return Intrinsic::exp; 3124 case LibFunc_exp2: 3125 case LibFunc_exp2f: 3126 case LibFunc_exp2l: 3127 return Intrinsic::exp2; 3128 case LibFunc_log: 3129 case LibFunc_logf: 3130 case LibFunc_logl: 3131 return Intrinsic::log; 3132 case LibFunc_log10: 3133 case LibFunc_log10f: 3134 case LibFunc_log10l: 3135 return Intrinsic::log10; 3136 case LibFunc_log2: 3137 case LibFunc_log2f: 3138 case LibFunc_log2l: 3139 return Intrinsic::log2; 3140 case LibFunc_fabs: 3141 case LibFunc_fabsf: 3142 case LibFunc_fabsl: 3143 return Intrinsic::fabs; 3144 case LibFunc_fmin: 3145 case LibFunc_fminf: 3146 case LibFunc_fminl: 3147 return Intrinsic::minnum; 3148 case LibFunc_fmax: 3149 case LibFunc_fmaxf: 3150 case LibFunc_fmaxl: 3151 return Intrinsic::maxnum; 3152 case LibFunc_copysign: 3153 case LibFunc_copysignf: 3154 case LibFunc_copysignl: 3155 return Intrinsic::copysign; 3156 case LibFunc_floor: 3157 case LibFunc_floorf: 3158 case LibFunc_floorl: 3159 return Intrinsic::floor; 3160 case LibFunc_ceil: 3161 case LibFunc_ceilf: 3162 case LibFunc_ceill: 3163 return Intrinsic::ceil; 3164 case LibFunc_trunc: 3165 case LibFunc_truncf: 3166 case LibFunc_truncl: 3167 return Intrinsic::trunc; 3168 case LibFunc_rint: 3169 case LibFunc_rintf: 3170 case LibFunc_rintl: 3171 return Intrinsic::rint; 3172 case LibFunc_nearbyint: 3173 case LibFunc_nearbyintf: 3174 case LibFunc_nearbyintl: 3175 return Intrinsic::nearbyint; 3176 case LibFunc_round: 3177 case LibFunc_roundf: 3178 case LibFunc_roundl: 3179 return Intrinsic::round; 3180 case LibFunc_pow: 3181 case LibFunc_powf: 3182 case LibFunc_powl: 3183 return Intrinsic::pow; 3184 case LibFunc_sqrt: 3185 case LibFunc_sqrtf: 3186 case LibFunc_sqrtl: 3187 return Intrinsic::sqrt; 3188 } 3189 3190 return Intrinsic::not_intrinsic; 3191 } 3192 3193 /// Return true if we can prove that the specified FP value is never equal to 3194 /// -0.0. 3195 /// 3196 /// NOTE: this function will need to be revisited when we support non-default 3197 /// rounding modes! 3198 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3199 unsigned Depth) { 3200 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3201 return !CFP->getValueAPF().isNegZero(); 3202 3203 // Limit search depth. 3204 if (Depth == MaxDepth) 3205 return false; 3206 3207 auto *Op = dyn_cast<Operator>(V); 3208 if (!Op) 3209 return false; 3210 3211 // Check if the nsz fast-math flag is set. 3212 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3213 if (FPO->hasNoSignedZeros()) 3214 return true; 3215 3216 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3217 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3218 return true; 3219 3220 // sitofp and uitofp turn into +0.0 for zero. 3221 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3222 return true; 3223 3224 if (auto *Call = dyn_cast<CallInst>(Op)) { 3225 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3226 switch (IID) { 3227 default: 3228 break; 3229 // sqrt(-0.0) = -0.0, no other negative results are possible. 3230 case Intrinsic::sqrt: 3231 case Intrinsic::canonicalize: 3232 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3233 // fabs(x) != -0.0 3234 case Intrinsic::fabs: 3235 return true; 3236 } 3237 } 3238 3239 return false; 3240 } 3241 3242 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3243 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3244 /// bit despite comparing equal. 3245 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3246 const TargetLibraryInfo *TLI, 3247 bool SignBitOnly, 3248 unsigned Depth) { 3249 // TODO: This function does not do the right thing when SignBitOnly is true 3250 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3251 // which flips the sign bits of NaNs. See 3252 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3253 3254 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3255 return !CFP->getValueAPF().isNegative() || 3256 (!SignBitOnly && CFP->getValueAPF().isZero()); 3257 } 3258 3259 // Handle vector of constants. 3260 if (auto *CV = dyn_cast<Constant>(V)) { 3261 if (CV->getType()->isVectorTy()) { 3262 unsigned NumElts = CV->getType()->getVectorNumElements(); 3263 for (unsigned i = 0; i != NumElts; ++i) { 3264 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3265 if (!CFP) 3266 return false; 3267 if (CFP->getValueAPF().isNegative() && 3268 (SignBitOnly || !CFP->getValueAPF().isZero())) 3269 return false; 3270 } 3271 3272 // All non-negative ConstantFPs. 3273 return true; 3274 } 3275 } 3276 3277 if (Depth == MaxDepth) 3278 return false; // Limit search depth. 3279 3280 const Operator *I = dyn_cast<Operator>(V); 3281 if (!I) 3282 return false; 3283 3284 switch (I->getOpcode()) { 3285 default: 3286 break; 3287 // Unsigned integers are always nonnegative. 3288 case Instruction::UIToFP: 3289 return true; 3290 case Instruction::FMul: 3291 // x*x is always non-negative or a NaN. 3292 if (I->getOperand(0) == I->getOperand(1) && 3293 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3294 return true; 3295 3296 LLVM_FALLTHROUGH; 3297 case Instruction::FAdd: 3298 case Instruction::FDiv: 3299 case Instruction::FRem: 3300 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3301 Depth + 1) && 3302 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3303 Depth + 1); 3304 case Instruction::Select: 3305 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3306 Depth + 1) && 3307 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3308 Depth + 1); 3309 case Instruction::FPExt: 3310 case Instruction::FPTrunc: 3311 // Widening/narrowing never change sign. 3312 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3313 Depth + 1); 3314 case Instruction::ExtractElement: 3315 // Look through extract element. At the moment we keep this simple and skip 3316 // tracking the specific element. But at least we might find information 3317 // valid for all elements of the vector. 3318 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3319 Depth + 1); 3320 case Instruction::Call: 3321 const auto *CI = cast<CallInst>(I); 3322 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3323 switch (IID) { 3324 default: 3325 break; 3326 case Intrinsic::maxnum: 3327 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3328 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3329 SignBitOnly, Depth + 1)) || 3330 (isKnownNeverNaN(I->getOperand(1), TLI) && 3331 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3332 SignBitOnly, Depth + 1)); 3333 3334 case Intrinsic::maximum: 3335 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3336 Depth + 1) || 3337 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3338 Depth + 1); 3339 case Intrinsic::minnum: 3340 case Intrinsic::minimum: 3341 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3342 Depth + 1) && 3343 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3344 Depth + 1); 3345 case Intrinsic::exp: 3346 case Intrinsic::exp2: 3347 case Intrinsic::fabs: 3348 return true; 3349 3350 case Intrinsic::sqrt: 3351 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3352 if (!SignBitOnly) 3353 return true; 3354 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3355 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3356 3357 case Intrinsic::powi: 3358 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3359 // powi(x,n) is non-negative if n is even. 3360 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3361 return true; 3362 } 3363 // TODO: This is not correct. Given that exp is an integer, here are the 3364 // ways that pow can return a negative value: 3365 // 3366 // pow(x, exp) --> negative if exp is odd and x is negative. 3367 // pow(-0, exp) --> -inf if exp is negative odd. 3368 // pow(-0, exp) --> -0 if exp is positive odd. 3369 // pow(-inf, exp) --> -0 if exp is negative odd. 3370 // pow(-inf, exp) --> -inf if exp is positive odd. 3371 // 3372 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3373 // but we must return false if x == -0. Unfortunately we do not currently 3374 // have a way of expressing this constraint. See details in 3375 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3376 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3377 Depth + 1); 3378 3379 case Intrinsic::fma: 3380 case Intrinsic::fmuladd: 3381 // x*x+y is non-negative if y is non-negative. 3382 return I->getOperand(0) == I->getOperand(1) && 3383 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3384 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3385 Depth + 1); 3386 } 3387 break; 3388 } 3389 return false; 3390 } 3391 3392 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3393 const TargetLibraryInfo *TLI) { 3394 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3395 } 3396 3397 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3398 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3399 } 3400 3401 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3402 unsigned Depth) { 3403 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3404 3405 // If we're told that infinities won't happen, assume they won't. 3406 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3407 if (FPMathOp->hasNoInfs()) 3408 return true; 3409 3410 // Handle scalar constants. 3411 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3412 return !CFP->isInfinity(); 3413 3414 if (Depth == MaxDepth) 3415 return false; 3416 3417 if (auto *Inst = dyn_cast<Instruction>(V)) { 3418 switch (Inst->getOpcode()) { 3419 case Instruction::Select: { 3420 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3421 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3422 } 3423 case Instruction::UIToFP: 3424 // If the input type fits into the floating type the result is finite. 3425 return ilogb(APFloat::getLargest( 3426 Inst->getType()->getScalarType()->getFltSemantics())) >= 3427 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3428 default: 3429 break; 3430 } 3431 } 3432 3433 // Bail out for constant expressions, but try to handle vector constants. 3434 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3435 return false; 3436 3437 // For vectors, verify that each element is not infinity. 3438 unsigned NumElts = V->getType()->getVectorNumElements(); 3439 for (unsigned i = 0; i != NumElts; ++i) { 3440 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3441 if (!Elt) 3442 return false; 3443 if (isa<UndefValue>(Elt)) 3444 continue; 3445 auto *CElt = dyn_cast<ConstantFP>(Elt); 3446 if (!CElt || CElt->isInfinity()) 3447 return false; 3448 } 3449 // All elements were confirmed non-infinity or undefined. 3450 return true; 3451 } 3452 3453 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3454 unsigned Depth) { 3455 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3456 3457 // If we're told that NaNs won't happen, assume they won't. 3458 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3459 if (FPMathOp->hasNoNaNs()) 3460 return true; 3461 3462 // Handle scalar constants. 3463 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3464 return !CFP->isNaN(); 3465 3466 if (Depth == MaxDepth) 3467 return false; 3468 3469 if (auto *Inst = dyn_cast<Instruction>(V)) { 3470 switch (Inst->getOpcode()) { 3471 case Instruction::FAdd: 3472 case Instruction::FSub: 3473 // Adding positive and negative infinity produces NaN. 3474 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3475 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3476 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3477 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3478 3479 case Instruction::FMul: 3480 // Zero multiplied with infinity produces NaN. 3481 // FIXME: If neither side can be zero fmul never produces NaN. 3482 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3483 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3484 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3485 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3486 3487 case Instruction::FDiv: 3488 case Instruction::FRem: 3489 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3490 return false; 3491 3492 case Instruction::Select: { 3493 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3494 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3495 } 3496 case Instruction::SIToFP: 3497 case Instruction::UIToFP: 3498 return true; 3499 case Instruction::FPTrunc: 3500 case Instruction::FPExt: 3501 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3502 default: 3503 break; 3504 } 3505 } 3506 3507 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3508 switch (II->getIntrinsicID()) { 3509 case Intrinsic::canonicalize: 3510 case Intrinsic::fabs: 3511 case Intrinsic::copysign: 3512 case Intrinsic::exp: 3513 case Intrinsic::exp2: 3514 case Intrinsic::floor: 3515 case Intrinsic::ceil: 3516 case Intrinsic::trunc: 3517 case Intrinsic::rint: 3518 case Intrinsic::nearbyint: 3519 case Intrinsic::round: 3520 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3521 case Intrinsic::sqrt: 3522 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3523 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3524 case Intrinsic::minnum: 3525 case Intrinsic::maxnum: 3526 // If either operand is not NaN, the result is not NaN. 3527 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3528 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3529 default: 3530 return false; 3531 } 3532 } 3533 3534 // Bail out for constant expressions, but try to handle vector constants. 3535 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3536 return false; 3537 3538 // For vectors, verify that each element is not NaN. 3539 unsigned NumElts = V->getType()->getVectorNumElements(); 3540 for (unsigned i = 0; i != NumElts; ++i) { 3541 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3542 if (!Elt) 3543 return false; 3544 if (isa<UndefValue>(Elt)) 3545 continue; 3546 auto *CElt = dyn_cast<ConstantFP>(Elt); 3547 if (!CElt || CElt->isNaN()) 3548 return false; 3549 } 3550 // All elements were confirmed not-NaN or undefined. 3551 return true; 3552 } 3553 3554 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3555 3556 // All byte-wide stores are splatable, even of arbitrary variables. 3557 if (V->getType()->isIntegerTy(8)) 3558 return V; 3559 3560 LLVMContext &Ctx = V->getContext(); 3561 3562 // Undef don't care. 3563 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3564 if (isa<UndefValue>(V)) 3565 return UndefInt8; 3566 3567 // Return Undef for zero-sized type. 3568 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3569 return UndefInt8; 3570 3571 Constant *C = dyn_cast<Constant>(V); 3572 if (!C) { 3573 // Conceptually, we could handle things like: 3574 // %a = zext i8 %X to i16 3575 // %b = shl i16 %a, 8 3576 // %c = or i16 %a, %b 3577 // but until there is an example that actually needs this, it doesn't seem 3578 // worth worrying about. 3579 return nullptr; 3580 } 3581 3582 // Handle 'null' ConstantArrayZero etc. 3583 if (C->isNullValue()) 3584 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3585 3586 // Constant floating-point values can be handled as integer values if the 3587 // corresponding integer value is "byteable". An important case is 0.0. 3588 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3589 Type *Ty = nullptr; 3590 if (CFP->getType()->isHalfTy()) 3591 Ty = Type::getInt16Ty(Ctx); 3592 else if (CFP->getType()->isFloatTy()) 3593 Ty = Type::getInt32Ty(Ctx); 3594 else if (CFP->getType()->isDoubleTy()) 3595 Ty = Type::getInt64Ty(Ctx); 3596 // Don't handle long double formats, which have strange constraints. 3597 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3598 : nullptr; 3599 } 3600 3601 // We can handle constant integers that are multiple of 8 bits. 3602 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3603 if (CI->getBitWidth() % 8 == 0) { 3604 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3605 if (!CI->getValue().isSplat(8)) 3606 return nullptr; 3607 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3608 } 3609 } 3610 3611 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3612 if (CE->getOpcode() == Instruction::IntToPtr) { 3613 auto PS = DL.getPointerSizeInBits( 3614 cast<PointerType>(CE->getType())->getAddressSpace()); 3615 return isBytewiseValue( 3616 ConstantExpr::getIntegerCast(CE->getOperand(0), 3617 Type::getIntNTy(Ctx, PS), false), 3618 DL); 3619 } 3620 } 3621 3622 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3623 if (LHS == RHS) 3624 return LHS; 3625 if (!LHS || !RHS) 3626 return nullptr; 3627 if (LHS == UndefInt8) 3628 return RHS; 3629 if (RHS == UndefInt8) 3630 return LHS; 3631 return nullptr; 3632 }; 3633 3634 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3635 Value *Val = UndefInt8; 3636 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3637 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3638 return nullptr; 3639 return Val; 3640 } 3641 3642 if (isa<ConstantAggregate>(C)) { 3643 Value *Val = UndefInt8; 3644 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3645 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3646 return nullptr; 3647 return Val; 3648 } 3649 3650 // Don't try to handle the handful of other constants. 3651 return nullptr; 3652 } 3653 3654 // This is the recursive version of BuildSubAggregate. It takes a few different 3655 // arguments. Idxs is the index within the nested struct From that we are 3656 // looking at now (which is of type IndexedType). IdxSkip is the number of 3657 // indices from Idxs that should be left out when inserting into the resulting 3658 // struct. To is the result struct built so far, new insertvalue instructions 3659 // build on that. 3660 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3661 SmallVectorImpl<unsigned> &Idxs, 3662 unsigned IdxSkip, 3663 Instruction *InsertBefore) { 3664 StructType *STy = dyn_cast<StructType>(IndexedType); 3665 if (STy) { 3666 // Save the original To argument so we can modify it 3667 Value *OrigTo = To; 3668 // General case, the type indexed by Idxs is a struct 3669 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3670 // Process each struct element recursively 3671 Idxs.push_back(i); 3672 Value *PrevTo = To; 3673 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3674 InsertBefore); 3675 Idxs.pop_back(); 3676 if (!To) { 3677 // Couldn't find any inserted value for this index? Cleanup 3678 while (PrevTo != OrigTo) { 3679 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3680 PrevTo = Del->getAggregateOperand(); 3681 Del->eraseFromParent(); 3682 } 3683 // Stop processing elements 3684 break; 3685 } 3686 } 3687 // If we successfully found a value for each of our subaggregates 3688 if (To) 3689 return To; 3690 } 3691 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3692 // the struct's elements had a value that was inserted directly. In the latter 3693 // case, perhaps we can't determine each of the subelements individually, but 3694 // we might be able to find the complete struct somewhere. 3695 3696 // Find the value that is at that particular spot 3697 Value *V = FindInsertedValue(From, Idxs); 3698 3699 if (!V) 3700 return nullptr; 3701 3702 // Insert the value in the new (sub) aggregate 3703 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3704 "tmp", InsertBefore); 3705 } 3706 3707 // This helper takes a nested struct and extracts a part of it (which is again a 3708 // struct) into a new value. For example, given the struct: 3709 // { a, { b, { c, d }, e } } 3710 // and the indices "1, 1" this returns 3711 // { c, d }. 3712 // 3713 // It does this by inserting an insertvalue for each element in the resulting 3714 // struct, as opposed to just inserting a single struct. This will only work if 3715 // each of the elements of the substruct are known (ie, inserted into From by an 3716 // insertvalue instruction somewhere). 3717 // 3718 // All inserted insertvalue instructions are inserted before InsertBefore 3719 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3720 Instruction *InsertBefore) { 3721 assert(InsertBefore && "Must have someplace to insert!"); 3722 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3723 idx_range); 3724 Value *To = UndefValue::get(IndexedType); 3725 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3726 unsigned IdxSkip = Idxs.size(); 3727 3728 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3729 } 3730 3731 /// Given an aggregate and a sequence of indices, see if the scalar value 3732 /// indexed is already around as a register, for example if it was inserted 3733 /// directly into the aggregate. 3734 /// 3735 /// If InsertBefore is not null, this function will duplicate (modified) 3736 /// insertvalues when a part of a nested struct is extracted. 3737 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3738 Instruction *InsertBefore) { 3739 // Nothing to index? Just return V then (this is useful at the end of our 3740 // recursion). 3741 if (idx_range.empty()) 3742 return V; 3743 // We have indices, so V should have an indexable type. 3744 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3745 "Not looking at a struct or array?"); 3746 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3747 "Invalid indices for type?"); 3748 3749 if (Constant *C = dyn_cast<Constant>(V)) { 3750 C = C->getAggregateElement(idx_range[0]); 3751 if (!C) return nullptr; 3752 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3753 } 3754 3755 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3756 // Loop the indices for the insertvalue instruction in parallel with the 3757 // requested indices 3758 const unsigned *req_idx = idx_range.begin(); 3759 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3760 i != e; ++i, ++req_idx) { 3761 if (req_idx == idx_range.end()) { 3762 // We can't handle this without inserting insertvalues 3763 if (!InsertBefore) 3764 return nullptr; 3765 3766 // The requested index identifies a part of a nested aggregate. Handle 3767 // this specially. For example, 3768 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3769 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3770 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3771 // This can be changed into 3772 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3773 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3774 // which allows the unused 0,0 element from the nested struct to be 3775 // removed. 3776 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3777 InsertBefore); 3778 } 3779 3780 // This insert value inserts something else than what we are looking for. 3781 // See if the (aggregate) value inserted into has the value we are 3782 // looking for, then. 3783 if (*req_idx != *i) 3784 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3785 InsertBefore); 3786 } 3787 // If we end up here, the indices of the insertvalue match with those 3788 // requested (though possibly only partially). Now we recursively look at 3789 // the inserted value, passing any remaining indices. 3790 return FindInsertedValue(I->getInsertedValueOperand(), 3791 makeArrayRef(req_idx, idx_range.end()), 3792 InsertBefore); 3793 } 3794 3795 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3796 // If we're extracting a value from an aggregate that was extracted from 3797 // something else, we can extract from that something else directly instead. 3798 // However, we will need to chain I's indices with the requested indices. 3799 3800 // Calculate the number of indices required 3801 unsigned size = I->getNumIndices() + idx_range.size(); 3802 // Allocate some space to put the new indices in 3803 SmallVector<unsigned, 5> Idxs; 3804 Idxs.reserve(size); 3805 // Add indices from the extract value instruction 3806 Idxs.append(I->idx_begin(), I->idx_end()); 3807 3808 // Add requested indices 3809 Idxs.append(idx_range.begin(), idx_range.end()); 3810 3811 assert(Idxs.size() == size 3812 && "Number of indices added not correct?"); 3813 3814 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3815 } 3816 // Otherwise, we don't know (such as, extracting from a function return value 3817 // or load instruction) 3818 return nullptr; 3819 } 3820 3821 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3822 unsigned CharSize) { 3823 // Make sure the GEP has exactly three arguments. 3824 if (GEP->getNumOperands() != 3) 3825 return false; 3826 3827 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3828 // CharSize. 3829 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3830 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3831 return false; 3832 3833 // Check to make sure that the first operand of the GEP is an integer and 3834 // has value 0 so that we are sure we're indexing into the initializer. 3835 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3836 if (!FirstIdx || !FirstIdx->isZero()) 3837 return false; 3838 3839 return true; 3840 } 3841 3842 bool llvm::getConstantDataArrayInfo(const Value *V, 3843 ConstantDataArraySlice &Slice, 3844 unsigned ElementSize, uint64_t Offset) { 3845 assert(V); 3846 3847 // Look through bitcast instructions and geps. 3848 V = V->stripPointerCasts(); 3849 3850 // If the value is a GEP instruction or constant expression, treat it as an 3851 // offset. 3852 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3853 // The GEP operator should be based on a pointer to string constant, and is 3854 // indexing into the string constant. 3855 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3856 return false; 3857 3858 // If the second index isn't a ConstantInt, then this is a variable index 3859 // into the array. If this occurs, we can't say anything meaningful about 3860 // the string. 3861 uint64_t StartIdx = 0; 3862 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3863 StartIdx = CI->getZExtValue(); 3864 else 3865 return false; 3866 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3867 StartIdx + Offset); 3868 } 3869 3870 // The GEP instruction, constant or instruction, must reference a global 3871 // variable that is a constant and is initialized. The referenced constant 3872 // initializer is the array that we'll use for optimization. 3873 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3874 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3875 return false; 3876 3877 const ConstantDataArray *Array; 3878 ArrayType *ArrayTy; 3879 if (GV->getInitializer()->isNullValue()) { 3880 Type *GVTy = GV->getValueType(); 3881 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3882 // A zeroinitializer for the array; there is no ConstantDataArray. 3883 Array = nullptr; 3884 } else { 3885 const DataLayout &DL = GV->getParent()->getDataLayout(); 3886 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3887 uint64_t Length = SizeInBytes / (ElementSize / 8); 3888 if (Length <= Offset) 3889 return false; 3890 3891 Slice.Array = nullptr; 3892 Slice.Offset = 0; 3893 Slice.Length = Length - Offset; 3894 return true; 3895 } 3896 } else { 3897 // This must be a ConstantDataArray. 3898 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3899 if (!Array) 3900 return false; 3901 ArrayTy = Array->getType(); 3902 } 3903 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3904 return false; 3905 3906 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3907 if (Offset > NumElts) 3908 return false; 3909 3910 Slice.Array = Array; 3911 Slice.Offset = Offset; 3912 Slice.Length = NumElts - Offset; 3913 return true; 3914 } 3915 3916 /// This function computes the length of a null-terminated C string pointed to 3917 /// by V. If successful, it returns true and returns the string in Str. 3918 /// If unsuccessful, it returns false. 3919 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3920 uint64_t Offset, bool TrimAtNul) { 3921 ConstantDataArraySlice Slice; 3922 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3923 return false; 3924 3925 if (Slice.Array == nullptr) { 3926 if (TrimAtNul) { 3927 Str = StringRef(); 3928 return true; 3929 } 3930 if (Slice.Length == 1) { 3931 Str = StringRef("", 1); 3932 return true; 3933 } 3934 // We cannot instantiate a StringRef as we do not have an appropriate string 3935 // of 0s at hand. 3936 return false; 3937 } 3938 3939 // Start out with the entire array in the StringRef. 3940 Str = Slice.Array->getAsString(); 3941 // Skip over 'offset' bytes. 3942 Str = Str.substr(Slice.Offset); 3943 3944 if (TrimAtNul) { 3945 // Trim off the \0 and anything after it. If the array is not nul 3946 // terminated, we just return the whole end of string. The client may know 3947 // some other way that the string is length-bound. 3948 Str = Str.substr(0, Str.find('\0')); 3949 } 3950 return true; 3951 } 3952 3953 // These next two are very similar to the above, but also look through PHI 3954 // nodes. 3955 // TODO: See if we can integrate these two together. 3956 3957 /// If we can compute the length of the string pointed to by 3958 /// the specified pointer, return 'len+1'. If we can't, return 0. 3959 static uint64_t GetStringLengthH(const Value *V, 3960 SmallPtrSetImpl<const PHINode*> &PHIs, 3961 unsigned CharSize) { 3962 // Look through noop bitcast instructions. 3963 V = V->stripPointerCasts(); 3964 3965 // If this is a PHI node, there are two cases: either we have already seen it 3966 // or we haven't. 3967 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3968 if (!PHIs.insert(PN).second) 3969 return ~0ULL; // already in the set. 3970 3971 // If it was new, see if all the input strings are the same length. 3972 uint64_t LenSoFar = ~0ULL; 3973 for (Value *IncValue : PN->incoming_values()) { 3974 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3975 if (Len == 0) return 0; // Unknown length -> unknown. 3976 3977 if (Len == ~0ULL) continue; 3978 3979 if (Len != LenSoFar && LenSoFar != ~0ULL) 3980 return 0; // Disagree -> unknown. 3981 LenSoFar = Len; 3982 } 3983 3984 // Success, all agree. 3985 return LenSoFar; 3986 } 3987 3988 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3989 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3990 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3991 if (Len1 == 0) return 0; 3992 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3993 if (Len2 == 0) return 0; 3994 if (Len1 == ~0ULL) return Len2; 3995 if (Len2 == ~0ULL) return Len1; 3996 if (Len1 != Len2) return 0; 3997 return Len1; 3998 } 3999 4000 // Otherwise, see if we can read the string. 4001 ConstantDataArraySlice Slice; 4002 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4003 return 0; 4004 4005 if (Slice.Array == nullptr) 4006 return 1; 4007 4008 // Search for nul characters 4009 unsigned NullIndex = 0; 4010 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4011 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4012 break; 4013 } 4014 4015 return NullIndex + 1; 4016 } 4017 4018 /// If we can compute the length of the string pointed to by 4019 /// the specified pointer, return 'len+1'. If we can't, return 0. 4020 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4021 if (!V->getType()->isPointerTy()) 4022 return 0; 4023 4024 SmallPtrSet<const PHINode*, 32> PHIs; 4025 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4026 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4027 // an empty string as a length. 4028 return Len == ~0ULL ? 1 : Len; 4029 } 4030 4031 const Value * 4032 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4033 bool MustPreserveNullness) { 4034 assert(Call && 4035 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4036 if (const Value *RV = Call->getReturnedArgOperand()) 4037 return RV; 4038 // This can be used only as a aliasing property. 4039 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4040 Call, MustPreserveNullness)) 4041 return Call->getArgOperand(0); 4042 return nullptr; 4043 } 4044 4045 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4046 const CallBase *Call, bool MustPreserveNullness) { 4047 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4048 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4049 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4050 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4051 (!MustPreserveNullness && 4052 Call->getIntrinsicID() == Intrinsic::ptrmask); 4053 } 4054 4055 /// \p PN defines a loop-variant pointer to an object. Check if the 4056 /// previous iteration of the loop was referring to the same object as \p PN. 4057 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4058 const LoopInfo *LI) { 4059 // Find the loop-defined value. 4060 Loop *L = LI->getLoopFor(PN->getParent()); 4061 if (PN->getNumIncomingValues() != 2) 4062 return true; 4063 4064 // Find the value from previous iteration. 4065 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4066 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4067 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4068 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4069 return true; 4070 4071 // If a new pointer is loaded in the loop, the pointer references a different 4072 // object in every iteration. E.g.: 4073 // for (i) 4074 // int *p = a[i]; 4075 // ... 4076 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4077 if (!L->isLoopInvariant(Load->getPointerOperand())) 4078 return false; 4079 return true; 4080 } 4081 4082 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4083 unsigned MaxLookup) { 4084 if (!V->getType()->isPointerTy()) 4085 return V; 4086 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4087 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4088 V = GEP->getPointerOperand(); 4089 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4090 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4091 V = cast<Operator>(V)->getOperand(0); 4092 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4093 if (GA->isInterposable()) 4094 return V; 4095 V = GA->getAliasee(); 4096 } else if (isa<AllocaInst>(V)) { 4097 // An alloca can't be further simplified. 4098 return V; 4099 } else { 4100 if (auto *Call = dyn_cast<CallBase>(V)) { 4101 // CaptureTracking can know about special capturing properties of some 4102 // intrinsics like launder.invariant.group, that can't be expressed with 4103 // the attributes, but have properties like returning aliasing pointer. 4104 // Because some analysis may assume that nocaptured pointer is not 4105 // returned from some special intrinsic (because function would have to 4106 // be marked with returns attribute), it is crucial to use this function 4107 // because it should be in sync with CaptureTracking. Not using it may 4108 // cause weird miscompilations where 2 aliasing pointers are assumed to 4109 // noalias. 4110 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4111 V = RP; 4112 continue; 4113 } 4114 } 4115 4116 // See if InstructionSimplify knows any relevant tricks. 4117 if (Instruction *I = dyn_cast<Instruction>(V)) 4118 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4119 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4120 V = Simplified; 4121 continue; 4122 } 4123 4124 return V; 4125 } 4126 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4127 } 4128 return V; 4129 } 4130 4131 void llvm::GetUnderlyingObjects(const Value *V, 4132 SmallVectorImpl<const Value *> &Objects, 4133 const DataLayout &DL, LoopInfo *LI, 4134 unsigned MaxLookup) { 4135 SmallPtrSet<const Value *, 4> Visited; 4136 SmallVector<const Value *, 4> Worklist; 4137 Worklist.push_back(V); 4138 do { 4139 const Value *P = Worklist.pop_back_val(); 4140 P = GetUnderlyingObject(P, DL, MaxLookup); 4141 4142 if (!Visited.insert(P).second) 4143 continue; 4144 4145 if (auto *SI = dyn_cast<SelectInst>(P)) { 4146 Worklist.push_back(SI->getTrueValue()); 4147 Worklist.push_back(SI->getFalseValue()); 4148 continue; 4149 } 4150 4151 if (auto *PN = dyn_cast<PHINode>(P)) { 4152 // If this PHI changes the underlying object in every iteration of the 4153 // loop, don't look through it. Consider: 4154 // int **A; 4155 // for (i) { 4156 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4157 // Curr = A[i]; 4158 // *Prev, *Curr; 4159 // 4160 // Prev is tracking Curr one iteration behind so they refer to different 4161 // underlying objects. 4162 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4163 isSameUnderlyingObjectInLoop(PN, LI)) 4164 for (Value *IncValue : PN->incoming_values()) 4165 Worklist.push_back(IncValue); 4166 continue; 4167 } 4168 4169 Objects.push_back(P); 4170 } while (!Worklist.empty()); 4171 } 4172 4173 /// This is the function that does the work of looking through basic 4174 /// ptrtoint+arithmetic+inttoptr sequences. 4175 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4176 do { 4177 if (const Operator *U = dyn_cast<Operator>(V)) { 4178 // If we find a ptrtoint, we can transfer control back to the 4179 // regular getUnderlyingObjectFromInt. 4180 if (U->getOpcode() == Instruction::PtrToInt) 4181 return U->getOperand(0); 4182 // If we find an add of a constant, a multiplied value, or a phi, it's 4183 // likely that the other operand will lead us to the base 4184 // object. We don't have to worry about the case where the 4185 // object address is somehow being computed by the multiply, 4186 // because our callers only care when the result is an 4187 // identifiable object. 4188 if (U->getOpcode() != Instruction::Add || 4189 (!isa<ConstantInt>(U->getOperand(1)) && 4190 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4191 !isa<PHINode>(U->getOperand(1)))) 4192 return V; 4193 V = U->getOperand(0); 4194 } else { 4195 return V; 4196 } 4197 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4198 } while (true); 4199 } 4200 4201 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4202 /// ptrtoint+arithmetic+inttoptr sequences. 4203 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4204 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4205 SmallVectorImpl<Value *> &Objects, 4206 const DataLayout &DL) { 4207 SmallPtrSet<const Value *, 16> Visited; 4208 SmallVector<const Value *, 4> Working(1, V); 4209 do { 4210 V = Working.pop_back_val(); 4211 4212 SmallVector<const Value *, 4> Objs; 4213 GetUnderlyingObjects(V, Objs, DL); 4214 4215 for (const Value *V : Objs) { 4216 if (!Visited.insert(V).second) 4217 continue; 4218 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4219 const Value *O = 4220 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4221 if (O->getType()->isPointerTy()) { 4222 Working.push_back(O); 4223 continue; 4224 } 4225 } 4226 // If GetUnderlyingObjects fails to find an identifiable object, 4227 // getUnderlyingObjectsForCodeGen also fails for safety. 4228 if (!isIdentifiedObject(V)) { 4229 Objects.clear(); 4230 return false; 4231 } 4232 Objects.push_back(const_cast<Value *>(V)); 4233 } 4234 } while (!Working.empty()); 4235 return true; 4236 } 4237 4238 /// Return true if the only users of this pointer are lifetime markers. 4239 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4240 for (const User *U : V->users()) { 4241 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4242 if (!II) return false; 4243 4244 if (!II->isLifetimeStartOrEnd()) 4245 return false; 4246 } 4247 return true; 4248 } 4249 4250 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4251 if (!LI.isUnordered()) 4252 return true; 4253 const Function &F = *LI.getFunction(); 4254 // Speculative load may create a race that did not exist in the source. 4255 return F.hasFnAttribute(Attribute::SanitizeThread) || 4256 // Speculative load may load data from dirty regions. 4257 F.hasFnAttribute(Attribute::SanitizeAddress) || 4258 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4259 } 4260 4261 4262 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4263 const Instruction *CtxI, 4264 const DominatorTree *DT) { 4265 const Operator *Inst = dyn_cast<Operator>(V); 4266 if (!Inst) 4267 return false; 4268 4269 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4270 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4271 if (C->canTrap()) 4272 return false; 4273 4274 switch (Inst->getOpcode()) { 4275 default: 4276 return true; 4277 case Instruction::UDiv: 4278 case Instruction::URem: { 4279 // x / y is undefined if y == 0. 4280 const APInt *V; 4281 if (match(Inst->getOperand(1), m_APInt(V))) 4282 return *V != 0; 4283 return false; 4284 } 4285 case Instruction::SDiv: 4286 case Instruction::SRem: { 4287 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4288 const APInt *Numerator, *Denominator; 4289 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4290 return false; 4291 // We cannot hoist this division if the denominator is 0. 4292 if (*Denominator == 0) 4293 return false; 4294 // It's safe to hoist if the denominator is not 0 or -1. 4295 if (*Denominator != -1) 4296 return true; 4297 // At this point we know that the denominator is -1. It is safe to hoist as 4298 // long we know that the numerator is not INT_MIN. 4299 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4300 return !Numerator->isMinSignedValue(); 4301 // The numerator *might* be MinSignedValue. 4302 return false; 4303 } 4304 case Instruction::Load: { 4305 const LoadInst *LI = cast<LoadInst>(Inst); 4306 if (mustSuppressSpeculation(*LI)) 4307 return false; 4308 const DataLayout &DL = LI->getModule()->getDataLayout(); 4309 return isDereferenceableAndAlignedPointer( 4310 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4311 DL, CtxI, DT); 4312 } 4313 case Instruction::Call: { 4314 auto *CI = cast<const CallInst>(Inst); 4315 const Function *Callee = CI->getCalledFunction(); 4316 4317 // The called function could have undefined behavior or side-effects, even 4318 // if marked readnone nounwind. 4319 return Callee && Callee->isSpeculatable(); 4320 } 4321 case Instruction::VAArg: 4322 case Instruction::Alloca: 4323 case Instruction::Invoke: 4324 case Instruction::CallBr: 4325 case Instruction::PHI: 4326 case Instruction::Store: 4327 case Instruction::Ret: 4328 case Instruction::Br: 4329 case Instruction::IndirectBr: 4330 case Instruction::Switch: 4331 case Instruction::Unreachable: 4332 case Instruction::Fence: 4333 case Instruction::AtomicRMW: 4334 case Instruction::AtomicCmpXchg: 4335 case Instruction::LandingPad: 4336 case Instruction::Resume: 4337 case Instruction::CatchSwitch: 4338 case Instruction::CatchPad: 4339 case Instruction::CatchRet: 4340 case Instruction::CleanupPad: 4341 case Instruction::CleanupRet: 4342 return false; // Misc instructions which have effects 4343 } 4344 } 4345 4346 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4347 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4348 } 4349 4350 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4351 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4352 switch (OR) { 4353 case ConstantRange::OverflowResult::MayOverflow: 4354 return OverflowResult::MayOverflow; 4355 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4356 return OverflowResult::AlwaysOverflowsLow; 4357 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4358 return OverflowResult::AlwaysOverflowsHigh; 4359 case ConstantRange::OverflowResult::NeverOverflows: 4360 return OverflowResult::NeverOverflows; 4361 } 4362 llvm_unreachable("Unknown OverflowResult"); 4363 } 4364 4365 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4366 static ConstantRange computeConstantRangeIncludingKnownBits( 4367 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4368 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4369 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4370 KnownBits Known = computeKnownBits( 4371 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4372 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4373 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4374 ConstantRange::PreferredRangeType RangeType = 4375 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4376 return CR1.intersectWith(CR2, RangeType); 4377 } 4378 4379 OverflowResult llvm::computeOverflowForUnsignedMul( 4380 const Value *LHS, const Value *RHS, const DataLayout &DL, 4381 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4382 bool UseInstrInfo) { 4383 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4384 nullptr, UseInstrInfo); 4385 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4386 nullptr, UseInstrInfo); 4387 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4388 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4389 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4390 } 4391 4392 OverflowResult 4393 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4394 const DataLayout &DL, AssumptionCache *AC, 4395 const Instruction *CxtI, 4396 const DominatorTree *DT, bool UseInstrInfo) { 4397 // Multiplying n * m significant bits yields a result of n + m significant 4398 // bits. If the total number of significant bits does not exceed the 4399 // result bit width (minus 1), there is no overflow. 4400 // This means if we have enough leading sign bits in the operands 4401 // we can guarantee that the result does not overflow. 4402 // Ref: "Hacker's Delight" by Henry Warren 4403 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4404 4405 // Note that underestimating the number of sign bits gives a more 4406 // conservative answer. 4407 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4408 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4409 4410 // First handle the easy case: if we have enough sign bits there's 4411 // definitely no overflow. 4412 if (SignBits > BitWidth + 1) 4413 return OverflowResult::NeverOverflows; 4414 4415 // There are two ambiguous cases where there can be no overflow: 4416 // SignBits == BitWidth + 1 and 4417 // SignBits == BitWidth 4418 // The second case is difficult to check, therefore we only handle the 4419 // first case. 4420 if (SignBits == BitWidth + 1) { 4421 // It overflows only when both arguments are negative and the true 4422 // product is exactly the minimum negative number. 4423 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4424 // For simplicity we just check if at least one side is not negative. 4425 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4426 nullptr, UseInstrInfo); 4427 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4428 nullptr, UseInstrInfo); 4429 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4430 return OverflowResult::NeverOverflows; 4431 } 4432 return OverflowResult::MayOverflow; 4433 } 4434 4435 OverflowResult llvm::computeOverflowForUnsignedAdd( 4436 const Value *LHS, const Value *RHS, const DataLayout &DL, 4437 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4438 bool UseInstrInfo) { 4439 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4440 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4441 nullptr, UseInstrInfo); 4442 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4443 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4444 nullptr, UseInstrInfo); 4445 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4446 } 4447 4448 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4449 const Value *RHS, 4450 const AddOperator *Add, 4451 const DataLayout &DL, 4452 AssumptionCache *AC, 4453 const Instruction *CxtI, 4454 const DominatorTree *DT) { 4455 if (Add && Add->hasNoSignedWrap()) { 4456 return OverflowResult::NeverOverflows; 4457 } 4458 4459 // If LHS and RHS each have at least two sign bits, the addition will look 4460 // like 4461 // 4462 // XX..... + 4463 // YY..... 4464 // 4465 // If the carry into the most significant position is 0, X and Y can't both 4466 // be 1 and therefore the carry out of the addition is also 0. 4467 // 4468 // If the carry into the most significant position is 1, X and Y can't both 4469 // be 0 and therefore the carry out of the addition is also 1. 4470 // 4471 // Since the carry into the most significant position is always equal to 4472 // the carry out of the addition, there is no signed overflow. 4473 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4474 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4475 return OverflowResult::NeverOverflows; 4476 4477 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4478 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4479 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4480 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4481 OverflowResult OR = 4482 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4483 if (OR != OverflowResult::MayOverflow) 4484 return OR; 4485 4486 // The remaining code needs Add to be available. Early returns if not so. 4487 if (!Add) 4488 return OverflowResult::MayOverflow; 4489 4490 // If the sign of Add is the same as at least one of the operands, this add 4491 // CANNOT overflow. If this can be determined from the known bits of the 4492 // operands the above signedAddMayOverflow() check will have already done so. 4493 // The only other way to improve on the known bits is from an assumption, so 4494 // call computeKnownBitsFromAssume() directly. 4495 bool LHSOrRHSKnownNonNegative = 4496 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4497 bool LHSOrRHSKnownNegative = 4498 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4499 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4500 KnownBits AddKnown(LHSRange.getBitWidth()); 4501 computeKnownBitsFromAssume( 4502 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4503 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4504 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4505 return OverflowResult::NeverOverflows; 4506 } 4507 4508 return OverflowResult::MayOverflow; 4509 } 4510 4511 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4512 const Value *RHS, 4513 const DataLayout &DL, 4514 AssumptionCache *AC, 4515 const Instruction *CxtI, 4516 const DominatorTree *DT) { 4517 // Checking for conditions implied by dominating conditions may be expensive. 4518 // Limit it to usub_with_overflow calls for now. 4519 if (match(CxtI, 4520 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4521 if (auto C = 4522 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4523 if (*C) 4524 return OverflowResult::NeverOverflows; 4525 return OverflowResult::AlwaysOverflowsLow; 4526 } 4527 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4528 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4529 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4530 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4531 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4532 } 4533 4534 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4535 const Value *RHS, 4536 const DataLayout &DL, 4537 AssumptionCache *AC, 4538 const Instruction *CxtI, 4539 const DominatorTree *DT) { 4540 // If LHS and RHS each have at least two sign bits, the subtraction 4541 // cannot overflow. 4542 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4543 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4544 return OverflowResult::NeverOverflows; 4545 4546 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4547 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4548 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4549 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4550 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4551 } 4552 4553 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4554 const DominatorTree &DT) { 4555 SmallVector<const BranchInst *, 2> GuardingBranches; 4556 SmallVector<const ExtractValueInst *, 2> Results; 4557 4558 for (const User *U : WO->users()) { 4559 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4560 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4561 4562 if (EVI->getIndices()[0] == 0) 4563 Results.push_back(EVI); 4564 else { 4565 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4566 4567 for (const auto *U : EVI->users()) 4568 if (const auto *B = dyn_cast<BranchInst>(U)) { 4569 assert(B->isConditional() && "How else is it using an i1?"); 4570 GuardingBranches.push_back(B); 4571 } 4572 } 4573 } else { 4574 // We are using the aggregate directly in a way we don't want to analyze 4575 // here (storing it to a global, say). 4576 return false; 4577 } 4578 } 4579 4580 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4581 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4582 if (!NoWrapEdge.isSingleEdge()) 4583 return false; 4584 4585 // Check if all users of the add are provably no-wrap. 4586 for (const auto *Result : Results) { 4587 // If the extractvalue itself is not executed on overflow, the we don't 4588 // need to check each use separately, since domination is transitive. 4589 if (DT.dominates(NoWrapEdge, Result->getParent())) 4590 continue; 4591 4592 for (auto &RU : Result->uses()) 4593 if (!DT.dominates(NoWrapEdge, RU)) 4594 return false; 4595 } 4596 4597 return true; 4598 }; 4599 4600 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4601 } 4602 4603 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4604 const Instruction *CtxI, 4605 const DominatorTree *DT) { 4606 // If the value is a freeze instruction, then it can never 4607 // be undef or poison. 4608 if (isa<FreezeInst>(V)) 4609 return true; 4610 // TODO: Some instructions are guaranteed to return neither undef 4611 // nor poison if their arguments are not poison/undef. 4612 4613 if (auto *C = dyn_cast<Constant>(V)) { 4614 // TODO: We can analyze ConstExpr by opcode to determine if there is any 4615 // possibility of poison. 4616 if (isa<UndefValue>(C) || isa<ConstantExpr>(C)) 4617 return false; 4618 4619 // TODO: Add ConstantFP and pointers. 4620 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) ) 4621 return true; 4622 4623 if (C->getType()->isVectorTy()) 4624 return !C->containsUndefElement() && !C->containsConstantExpression(); 4625 4626 // TODO: Recursively analyze aggregates or other constants. 4627 return false; 4628 } 4629 4630 if (auto PN = dyn_cast<PHINode>(V)) { 4631 if (llvm::all_of(PN->incoming_values(), [](const Use &U) { 4632 return isa<ConstantInt>(U.get()); 4633 })) 4634 return true; 4635 } 4636 4637 if (auto II = dyn_cast<ICmpInst>(V)) { 4638 if (llvm::all_of(II->operands(), [](const Value *V) { 4639 return isGuaranteedNotToBeUndefOrPoison(V); 4640 })) 4641 return true; 4642 } 4643 4644 if (auto I = dyn_cast<Instruction>(V)) { 4645 if (programUndefinedIfFullPoison(I) && I->getType()->isIntegerTy(1)) 4646 // Note: once we have an agreement that poison is a value-wise concept, 4647 // we can remove the isIntegerTy(1) constraint. 4648 return true; 4649 } 4650 4651 // CxtI may be null or a cloned instruction. 4652 if (!CtxI || !CtxI->getParent() || !DT) 4653 return false; 4654 4655 // If V is used as a branch condition before reaching CtxI, V cannot be 4656 // undef or poison. 4657 // br V, BB1, BB2 4658 // BB1: 4659 // CtxI ; V cannot be undef or poison here 4660 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4661 while (Dominator) { 4662 auto *TI = Dominator->getBlock()->getTerminator(); 4663 4664 if (auto BI = dyn_cast<BranchInst>(TI)) { 4665 if (BI->isConditional() && BI->getCondition() == V) 4666 return true; 4667 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4668 if (SI->getCondition() == V) 4669 return true; 4670 } 4671 4672 Dominator = Dominator->getIDom(); 4673 } 4674 4675 return false; 4676 } 4677 4678 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4679 const DataLayout &DL, 4680 AssumptionCache *AC, 4681 const Instruction *CxtI, 4682 const DominatorTree *DT) { 4683 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4684 Add, DL, AC, CxtI, DT); 4685 } 4686 4687 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4688 const Value *RHS, 4689 const DataLayout &DL, 4690 AssumptionCache *AC, 4691 const Instruction *CxtI, 4692 const DominatorTree *DT) { 4693 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4694 } 4695 4696 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4697 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4698 // of time because it's possible for another thread to interfere with it for an 4699 // arbitrary length of time, but programs aren't allowed to rely on that. 4700 4701 // If there is no successor, then execution can't transfer to it. 4702 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4703 return !CRI->unwindsToCaller(); 4704 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4705 return !CatchSwitch->unwindsToCaller(); 4706 if (isa<ResumeInst>(I)) 4707 return false; 4708 if (isa<ReturnInst>(I)) 4709 return false; 4710 if (isa<UnreachableInst>(I)) 4711 return false; 4712 4713 // Calls can throw, or contain an infinite loop, or kill the process. 4714 if (auto CS = ImmutableCallSite(I)) { 4715 // Call sites that throw have implicit non-local control flow. 4716 if (!CS.doesNotThrow()) 4717 return false; 4718 4719 // A function which doens't throw and has "willreturn" attribute will 4720 // always return. 4721 if (CS.hasFnAttr(Attribute::WillReturn)) 4722 return true; 4723 4724 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4725 // etc. and thus not return. However, LLVM already assumes that 4726 // 4727 // - Thread exiting actions are modeled as writes to memory invisible to 4728 // the program. 4729 // 4730 // - Loops that don't have side effects (side effects are volatile/atomic 4731 // stores and IO) always terminate (see http://llvm.org/PR965). 4732 // Furthermore IO itself is also modeled as writes to memory invisible to 4733 // the program. 4734 // 4735 // We rely on those assumptions here, and use the memory effects of the call 4736 // target as a proxy for checking that it always returns. 4737 4738 // FIXME: This isn't aggressive enough; a call which only writes to a global 4739 // is guaranteed to return. 4740 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4741 } 4742 4743 // Other instructions return normally. 4744 return true; 4745 } 4746 4747 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4748 // TODO: This is slightly conservative for invoke instruction since exiting 4749 // via an exception *is* normal control for them. 4750 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4751 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4752 return false; 4753 return true; 4754 } 4755 4756 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4757 const Loop *L) { 4758 // The loop header is guaranteed to be executed for every iteration. 4759 // 4760 // FIXME: Relax this constraint to cover all basic blocks that are 4761 // guaranteed to be executed at every iteration. 4762 if (I->getParent() != L->getHeader()) return false; 4763 4764 for (const Instruction &LI : *L->getHeader()) { 4765 if (&LI == I) return true; 4766 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4767 } 4768 llvm_unreachable("Instruction not contained in its own parent basic block."); 4769 } 4770 4771 bool llvm::propagatesFullPoison(const Instruction *I) { 4772 // TODO: This should include all instructions apart from phis, selects and 4773 // call-like instructions. 4774 switch (I->getOpcode()) { 4775 case Instruction::Add: 4776 case Instruction::Sub: 4777 case Instruction::Xor: 4778 case Instruction::Trunc: 4779 case Instruction::BitCast: 4780 case Instruction::AddrSpaceCast: 4781 case Instruction::Mul: 4782 case Instruction::Shl: 4783 case Instruction::GetElementPtr: 4784 // These operations all propagate poison unconditionally. Note that poison 4785 // is not any particular value, so xor or subtraction of poison with 4786 // itself still yields poison, not zero. 4787 return true; 4788 4789 case Instruction::AShr: 4790 case Instruction::SExt: 4791 // For these operations, one bit of the input is replicated across 4792 // multiple output bits. A replicated poison bit is still poison. 4793 return true; 4794 4795 case Instruction::ICmp: 4796 // Comparing poison with any value yields poison. This is why, for 4797 // instance, x s< (x +nsw 1) can be folded to true. 4798 return true; 4799 4800 default: 4801 return false; 4802 } 4803 } 4804 4805 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4806 switch (I->getOpcode()) { 4807 case Instruction::Store: 4808 return cast<StoreInst>(I)->getPointerOperand(); 4809 4810 case Instruction::Load: 4811 return cast<LoadInst>(I)->getPointerOperand(); 4812 4813 case Instruction::AtomicCmpXchg: 4814 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4815 4816 case Instruction::AtomicRMW: 4817 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4818 4819 case Instruction::UDiv: 4820 case Instruction::SDiv: 4821 case Instruction::URem: 4822 case Instruction::SRem: 4823 return I->getOperand(1); 4824 4825 case Instruction::Call: 4826 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4827 switch (II->getIntrinsicID()) { 4828 case Intrinsic::assume: 4829 return II->getArgOperand(0); 4830 default: 4831 return nullptr; 4832 } 4833 } 4834 return nullptr; 4835 4836 default: 4837 return nullptr; 4838 } 4839 } 4840 4841 bool llvm::mustTriggerUB(const Instruction *I, 4842 const SmallSet<const Value *, 16>& KnownPoison) { 4843 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4844 return (NotPoison && KnownPoison.count(NotPoison)); 4845 } 4846 4847 4848 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4849 // We currently only look for uses of poison values within the same basic 4850 // block, as that makes it easier to guarantee that the uses will be 4851 // executed given that PoisonI is executed. 4852 // 4853 // FIXME: Expand this to consider uses beyond the same basic block. To do 4854 // this, look out for the distinction between post-dominance and strong 4855 // post-dominance. 4856 const BasicBlock *BB = PoisonI->getParent(); 4857 4858 // Set of instructions that we have proved will yield poison if PoisonI 4859 // does. 4860 SmallSet<const Value *, 16> YieldsPoison; 4861 SmallSet<const BasicBlock *, 4> Visited; 4862 YieldsPoison.insert(PoisonI); 4863 Visited.insert(PoisonI->getParent()); 4864 4865 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4866 4867 unsigned Iter = 0; 4868 while (Iter++ < MaxDepth) { 4869 for (auto &I : make_range(Begin, End)) { 4870 if (&I != PoisonI) { 4871 if (mustTriggerUB(&I, YieldsPoison)) 4872 return true; 4873 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4874 return false; 4875 } 4876 4877 // Mark poison that propagates from I through uses of I. 4878 if (YieldsPoison.count(&I)) { 4879 for (const User *User : I.users()) { 4880 const Instruction *UserI = cast<Instruction>(User); 4881 if (propagatesFullPoison(UserI)) 4882 YieldsPoison.insert(User); 4883 } 4884 } 4885 } 4886 4887 if (auto *NextBB = BB->getSingleSuccessor()) { 4888 if (Visited.insert(NextBB).second) { 4889 BB = NextBB; 4890 Begin = BB->getFirstNonPHI()->getIterator(); 4891 End = BB->end(); 4892 continue; 4893 } 4894 } 4895 4896 break; 4897 } 4898 return false; 4899 } 4900 4901 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4902 if (FMF.noNaNs()) 4903 return true; 4904 4905 if (auto *C = dyn_cast<ConstantFP>(V)) 4906 return !C->isNaN(); 4907 4908 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4909 if (!C->getElementType()->isFloatingPointTy()) 4910 return false; 4911 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4912 if (C->getElementAsAPFloat(I).isNaN()) 4913 return false; 4914 } 4915 return true; 4916 } 4917 4918 if (isa<ConstantAggregateZero>(V)) 4919 return true; 4920 4921 return false; 4922 } 4923 4924 static bool isKnownNonZero(const Value *V) { 4925 if (auto *C = dyn_cast<ConstantFP>(V)) 4926 return !C->isZero(); 4927 4928 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4929 if (!C->getElementType()->isFloatingPointTy()) 4930 return false; 4931 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4932 if (C->getElementAsAPFloat(I).isZero()) 4933 return false; 4934 } 4935 return true; 4936 } 4937 4938 return false; 4939 } 4940 4941 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4942 /// Given non-min/max outer cmp/select from the clamp pattern this 4943 /// function recognizes if it can be substitued by a "canonical" min/max 4944 /// pattern. 4945 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4946 Value *CmpLHS, Value *CmpRHS, 4947 Value *TrueVal, Value *FalseVal, 4948 Value *&LHS, Value *&RHS) { 4949 // Try to match 4950 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4951 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4952 // and return description of the outer Max/Min. 4953 4954 // First, check if select has inverse order: 4955 if (CmpRHS == FalseVal) { 4956 std::swap(TrueVal, FalseVal); 4957 Pred = CmpInst::getInversePredicate(Pred); 4958 } 4959 4960 // Assume success now. If there's no match, callers should not use these anyway. 4961 LHS = TrueVal; 4962 RHS = FalseVal; 4963 4964 const APFloat *FC1; 4965 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4966 return {SPF_UNKNOWN, SPNB_NA, false}; 4967 4968 const APFloat *FC2; 4969 switch (Pred) { 4970 case CmpInst::FCMP_OLT: 4971 case CmpInst::FCMP_OLE: 4972 case CmpInst::FCMP_ULT: 4973 case CmpInst::FCMP_ULE: 4974 if (match(FalseVal, 4975 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4976 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4977 *FC1 < *FC2) 4978 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4979 break; 4980 case CmpInst::FCMP_OGT: 4981 case CmpInst::FCMP_OGE: 4982 case CmpInst::FCMP_UGT: 4983 case CmpInst::FCMP_UGE: 4984 if (match(FalseVal, 4985 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4986 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4987 *FC1 > *FC2) 4988 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4989 break; 4990 default: 4991 break; 4992 } 4993 4994 return {SPF_UNKNOWN, SPNB_NA, false}; 4995 } 4996 4997 /// Recognize variations of: 4998 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4999 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5000 Value *CmpLHS, Value *CmpRHS, 5001 Value *TrueVal, Value *FalseVal) { 5002 // Swap the select operands and predicate to match the patterns below. 5003 if (CmpRHS != TrueVal) { 5004 Pred = ICmpInst::getSwappedPredicate(Pred); 5005 std::swap(TrueVal, FalseVal); 5006 } 5007 const APInt *C1; 5008 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5009 const APInt *C2; 5010 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5011 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5012 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5013 return {SPF_SMAX, SPNB_NA, false}; 5014 5015 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5016 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5017 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5018 return {SPF_SMIN, SPNB_NA, false}; 5019 5020 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5021 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5022 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5023 return {SPF_UMAX, SPNB_NA, false}; 5024 5025 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5026 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5027 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5028 return {SPF_UMIN, SPNB_NA, false}; 5029 } 5030 return {SPF_UNKNOWN, SPNB_NA, false}; 5031 } 5032 5033 /// Recognize variations of: 5034 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5035 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5036 Value *CmpLHS, Value *CmpRHS, 5037 Value *TVal, Value *FVal, 5038 unsigned Depth) { 5039 // TODO: Allow FP min/max with nnan/nsz. 5040 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5041 5042 Value *A = nullptr, *B = nullptr; 5043 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5044 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5045 return {SPF_UNKNOWN, SPNB_NA, false}; 5046 5047 Value *C = nullptr, *D = nullptr; 5048 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5049 if (L.Flavor != R.Flavor) 5050 return {SPF_UNKNOWN, SPNB_NA, false}; 5051 5052 // We have something like: x Pred y ? min(a, b) : min(c, d). 5053 // Try to match the compare to the min/max operations of the select operands. 5054 // First, make sure we have the right compare predicate. 5055 switch (L.Flavor) { 5056 case SPF_SMIN: 5057 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5058 Pred = ICmpInst::getSwappedPredicate(Pred); 5059 std::swap(CmpLHS, CmpRHS); 5060 } 5061 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5062 break; 5063 return {SPF_UNKNOWN, SPNB_NA, false}; 5064 case SPF_SMAX: 5065 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5066 Pred = ICmpInst::getSwappedPredicate(Pred); 5067 std::swap(CmpLHS, CmpRHS); 5068 } 5069 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5070 break; 5071 return {SPF_UNKNOWN, SPNB_NA, false}; 5072 case SPF_UMIN: 5073 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5074 Pred = ICmpInst::getSwappedPredicate(Pred); 5075 std::swap(CmpLHS, CmpRHS); 5076 } 5077 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5078 break; 5079 return {SPF_UNKNOWN, SPNB_NA, false}; 5080 case SPF_UMAX: 5081 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5082 Pred = ICmpInst::getSwappedPredicate(Pred); 5083 std::swap(CmpLHS, CmpRHS); 5084 } 5085 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5086 break; 5087 return {SPF_UNKNOWN, SPNB_NA, false}; 5088 default: 5089 return {SPF_UNKNOWN, SPNB_NA, false}; 5090 } 5091 5092 // If there is a common operand in the already matched min/max and the other 5093 // min/max operands match the compare operands (either directly or inverted), 5094 // then this is min/max of the same flavor. 5095 5096 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5097 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5098 if (D == B) { 5099 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5100 match(A, m_Not(m_Specific(CmpRHS))))) 5101 return {L.Flavor, SPNB_NA, false}; 5102 } 5103 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5104 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5105 if (C == B) { 5106 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5107 match(A, m_Not(m_Specific(CmpRHS))))) 5108 return {L.Flavor, SPNB_NA, false}; 5109 } 5110 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5111 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5112 if (D == A) { 5113 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5114 match(B, m_Not(m_Specific(CmpRHS))))) 5115 return {L.Flavor, SPNB_NA, false}; 5116 } 5117 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5118 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5119 if (C == A) { 5120 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5121 match(B, m_Not(m_Specific(CmpRHS))))) 5122 return {L.Flavor, SPNB_NA, false}; 5123 } 5124 5125 return {SPF_UNKNOWN, SPNB_NA, false}; 5126 } 5127 5128 /// Match non-obvious integer minimum and maximum sequences. 5129 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5130 Value *CmpLHS, Value *CmpRHS, 5131 Value *TrueVal, Value *FalseVal, 5132 Value *&LHS, Value *&RHS, 5133 unsigned Depth) { 5134 // Assume success. If there's no match, callers should not use these anyway. 5135 LHS = TrueVal; 5136 RHS = FalseVal; 5137 5138 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5139 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5140 return SPR; 5141 5142 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5143 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5144 return SPR; 5145 5146 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5147 return {SPF_UNKNOWN, SPNB_NA, false}; 5148 5149 // Z = X -nsw Y 5150 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5151 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5152 if (match(TrueVal, m_Zero()) && 5153 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5154 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5155 5156 // Z = X -nsw Y 5157 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5158 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5159 if (match(FalseVal, m_Zero()) && 5160 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5161 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5162 5163 const APInt *C1; 5164 if (!match(CmpRHS, m_APInt(C1))) 5165 return {SPF_UNKNOWN, SPNB_NA, false}; 5166 5167 // An unsigned min/max can be written with a signed compare. 5168 const APInt *C2; 5169 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5170 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5171 // Is the sign bit set? 5172 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5173 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5174 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5175 C2->isMaxSignedValue()) 5176 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5177 5178 // Is the sign bit clear? 5179 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5180 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5181 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5182 C2->isMinSignedValue()) 5183 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5184 } 5185 5186 // Look through 'not' ops to find disguised signed min/max. 5187 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 5188 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 5189 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 5190 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 5191 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5192 5193 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 5194 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 5195 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 5196 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 5197 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5198 5199 return {SPF_UNKNOWN, SPNB_NA, false}; 5200 } 5201 5202 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5203 assert(X && Y && "Invalid operand"); 5204 5205 // X = sub (0, Y) || X = sub nsw (0, Y) 5206 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5207 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5208 return true; 5209 5210 // Y = sub (0, X) || Y = sub nsw (0, X) 5211 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5212 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5213 return true; 5214 5215 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5216 Value *A, *B; 5217 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5218 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5219 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5220 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5221 } 5222 5223 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5224 FastMathFlags FMF, 5225 Value *CmpLHS, Value *CmpRHS, 5226 Value *TrueVal, Value *FalseVal, 5227 Value *&LHS, Value *&RHS, 5228 unsigned Depth) { 5229 if (CmpInst::isFPPredicate(Pred)) { 5230 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5231 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5232 // purpose of identifying min/max. Disregard vector constants with undefined 5233 // elements because those can not be back-propagated for analysis. 5234 Value *OutputZeroVal = nullptr; 5235 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5236 !cast<Constant>(TrueVal)->containsUndefElement()) 5237 OutputZeroVal = TrueVal; 5238 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5239 !cast<Constant>(FalseVal)->containsUndefElement()) 5240 OutputZeroVal = FalseVal; 5241 5242 if (OutputZeroVal) { 5243 if (match(CmpLHS, m_AnyZeroFP())) 5244 CmpLHS = OutputZeroVal; 5245 if (match(CmpRHS, m_AnyZeroFP())) 5246 CmpRHS = OutputZeroVal; 5247 } 5248 } 5249 5250 LHS = CmpLHS; 5251 RHS = CmpRHS; 5252 5253 // Signed zero may return inconsistent results between implementations. 5254 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5255 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5256 // Therefore, we behave conservatively and only proceed if at least one of the 5257 // operands is known to not be zero or if we don't care about signed zero. 5258 switch (Pred) { 5259 default: break; 5260 // FIXME: Include OGT/OLT/UGT/ULT. 5261 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5262 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5263 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5264 !isKnownNonZero(CmpRHS)) 5265 return {SPF_UNKNOWN, SPNB_NA, false}; 5266 } 5267 5268 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5269 bool Ordered = false; 5270 5271 // When given one NaN and one non-NaN input: 5272 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5273 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5274 // ordered comparison fails), which could be NaN or non-NaN. 5275 // so here we discover exactly what NaN behavior is required/accepted. 5276 if (CmpInst::isFPPredicate(Pred)) { 5277 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5278 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5279 5280 if (LHSSafe && RHSSafe) { 5281 // Both operands are known non-NaN. 5282 NaNBehavior = SPNB_RETURNS_ANY; 5283 } else if (CmpInst::isOrdered(Pred)) { 5284 // An ordered comparison will return false when given a NaN, so it 5285 // returns the RHS. 5286 Ordered = true; 5287 if (LHSSafe) 5288 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5289 NaNBehavior = SPNB_RETURNS_NAN; 5290 else if (RHSSafe) 5291 NaNBehavior = SPNB_RETURNS_OTHER; 5292 else 5293 // Completely unsafe. 5294 return {SPF_UNKNOWN, SPNB_NA, false}; 5295 } else { 5296 Ordered = false; 5297 // An unordered comparison will return true when given a NaN, so it 5298 // returns the LHS. 5299 if (LHSSafe) 5300 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5301 NaNBehavior = SPNB_RETURNS_OTHER; 5302 else if (RHSSafe) 5303 NaNBehavior = SPNB_RETURNS_NAN; 5304 else 5305 // Completely unsafe. 5306 return {SPF_UNKNOWN, SPNB_NA, false}; 5307 } 5308 } 5309 5310 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5311 std::swap(CmpLHS, CmpRHS); 5312 Pred = CmpInst::getSwappedPredicate(Pred); 5313 if (NaNBehavior == SPNB_RETURNS_NAN) 5314 NaNBehavior = SPNB_RETURNS_OTHER; 5315 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5316 NaNBehavior = SPNB_RETURNS_NAN; 5317 Ordered = !Ordered; 5318 } 5319 5320 // ([if]cmp X, Y) ? X : Y 5321 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5322 switch (Pred) { 5323 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5324 case ICmpInst::ICMP_UGT: 5325 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5326 case ICmpInst::ICMP_SGT: 5327 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5328 case ICmpInst::ICMP_ULT: 5329 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5330 case ICmpInst::ICMP_SLT: 5331 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5332 case FCmpInst::FCMP_UGT: 5333 case FCmpInst::FCMP_UGE: 5334 case FCmpInst::FCMP_OGT: 5335 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5336 case FCmpInst::FCMP_ULT: 5337 case FCmpInst::FCMP_ULE: 5338 case FCmpInst::FCMP_OLT: 5339 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5340 } 5341 } 5342 5343 if (isKnownNegation(TrueVal, FalseVal)) { 5344 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5345 // match against either LHS or sext(LHS). 5346 auto MaybeSExtCmpLHS = 5347 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5348 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5349 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5350 if (match(TrueVal, MaybeSExtCmpLHS)) { 5351 // Set the return values. If the compare uses the negated value (-X >s 0), 5352 // swap the return values because the negated value is always 'RHS'. 5353 LHS = TrueVal; 5354 RHS = FalseVal; 5355 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5356 std::swap(LHS, RHS); 5357 5358 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5359 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5360 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5361 return {SPF_ABS, SPNB_NA, false}; 5362 5363 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5364 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5365 return {SPF_ABS, SPNB_NA, false}; 5366 5367 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5368 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5369 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5370 return {SPF_NABS, SPNB_NA, false}; 5371 } 5372 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5373 // Set the return values. If the compare uses the negated value (-X >s 0), 5374 // swap the return values because the negated value is always 'RHS'. 5375 LHS = FalseVal; 5376 RHS = TrueVal; 5377 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5378 std::swap(LHS, RHS); 5379 5380 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5381 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5382 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5383 return {SPF_NABS, SPNB_NA, false}; 5384 5385 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5386 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5387 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5388 return {SPF_ABS, SPNB_NA, false}; 5389 } 5390 } 5391 5392 if (CmpInst::isIntPredicate(Pred)) 5393 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5394 5395 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5396 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5397 // semantics than minNum. Be conservative in such case. 5398 if (NaNBehavior != SPNB_RETURNS_ANY || 5399 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5400 !isKnownNonZero(CmpRHS))) 5401 return {SPF_UNKNOWN, SPNB_NA, false}; 5402 5403 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5404 } 5405 5406 /// Helps to match a select pattern in case of a type mismatch. 5407 /// 5408 /// The function processes the case when type of true and false values of a 5409 /// select instruction differs from type of the cmp instruction operands because 5410 /// of a cast instruction. The function checks if it is legal to move the cast 5411 /// operation after "select". If yes, it returns the new second value of 5412 /// "select" (with the assumption that cast is moved): 5413 /// 1. As operand of cast instruction when both values of "select" are same cast 5414 /// instructions. 5415 /// 2. As restored constant (by applying reverse cast operation) when the first 5416 /// value of the "select" is a cast operation and the second value is a 5417 /// constant. 5418 /// NOTE: We return only the new second value because the first value could be 5419 /// accessed as operand of cast instruction. 5420 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5421 Instruction::CastOps *CastOp) { 5422 auto *Cast1 = dyn_cast<CastInst>(V1); 5423 if (!Cast1) 5424 return nullptr; 5425 5426 *CastOp = Cast1->getOpcode(); 5427 Type *SrcTy = Cast1->getSrcTy(); 5428 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5429 // If V1 and V2 are both the same cast from the same type, look through V1. 5430 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5431 return Cast2->getOperand(0); 5432 return nullptr; 5433 } 5434 5435 auto *C = dyn_cast<Constant>(V2); 5436 if (!C) 5437 return nullptr; 5438 5439 Constant *CastedTo = nullptr; 5440 switch (*CastOp) { 5441 case Instruction::ZExt: 5442 if (CmpI->isUnsigned()) 5443 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5444 break; 5445 case Instruction::SExt: 5446 if (CmpI->isSigned()) 5447 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5448 break; 5449 case Instruction::Trunc: 5450 Constant *CmpConst; 5451 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5452 CmpConst->getType() == SrcTy) { 5453 // Here we have the following case: 5454 // 5455 // %cond = cmp iN %x, CmpConst 5456 // %tr = trunc iN %x to iK 5457 // %narrowsel = select i1 %cond, iK %t, iK C 5458 // 5459 // We can always move trunc after select operation: 5460 // 5461 // %cond = cmp iN %x, CmpConst 5462 // %widesel = select i1 %cond, iN %x, iN CmpConst 5463 // %tr = trunc iN %widesel to iK 5464 // 5465 // Note that C could be extended in any way because we don't care about 5466 // upper bits after truncation. It can't be abs pattern, because it would 5467 // look like: 5468 // 5469 // select i1 %cond, x, -x. 5470 // 5471 // So only min/max pattern could be matched. Such match requires widened C 5472 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5473 // CmpConst == C is checked below. 5474 CastedTo = CmpConst; 5475 } else { 5476 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5477 } 5478 break; 5479 case Instruction::FPTrunc: 5480 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5481 break; 5482 case Instruction::FPExt: 5483 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5484 break; 5485 case Instruction::FPToUI: 5486 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5487 break; 5488 case Instruction::FPToSI: 5489 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5490 break; 5491 case Instruction::UIToFP: 5492 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5493 break; 5494 case Instruction::SIToFP: 5495 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5496 break; 5497 default: 5498 break; 5499 } 5500 5501 if (!CastedTo) 5502 return nullptr; 5503 5504 // Make sure the cast doesn't lose any information. 5505 Constant *CastedBack = 5506 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5507 if (CastedBack != C) 5508 return nullptr; 5509 5510 return CastedTo; 5511 } 5512 5513 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5514 Instruction::CastOps *CastOp, 5515 unsigned Depth) { 5516 if (Depth >= MaxDepth) 5517 return {SPF_UNKNOWN, SPNB_NA, false}; 5518 5519 SelectInst *SI = dyn_cast<SelectInst>(V); 5520 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5521 5522 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5523 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5524 5525 Value *TrueVal = SI->getTrueValue(); 5526 Value *FalseVal = SI->getFalseValue(); 5527 5528 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5529 CastOp, Depth); 5530 } 5531 5532 SelectPatternResult llvm::matchDecomposedSelectPattern( 5533 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5534 Instruction::CastOps *CastOp, unsigned Depth) { 5535 CmpInst::Predicate Pred = CmpI->getPredicate(); 5536 Value *CmpLHS = CmpI->getOperand(0); 5537 Value *CmpRHS = CmpI->getOperand(1); 5538 FastMathFlags FMF; 5539 if (isa<FPMathOperator>(CmpI)) 5540 FMF = CmpI->getFastMathFlags(); 5541 5542 // Bail out early. 5543 if (CmpI->isEquality()) 5544 return {SPF_UNKNOWN, SPNB_NA, false}; 5545 5546 // Deal with type mismatches. 5547 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5548 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5549 // If this is a potential fmin/fmax with a cast to integer, then ignore 5550 // -0.0 because there is no corresponding integer value. 5551 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5552 FMF.setNoSignedZeros(); 5553 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5554 cast<CastInst>(TrueVal)->getOperand(0), C, 5555 LHS, RHS, Depth); 5556 } 5557 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5558 // If this is a potential fmin/fmax with a cast to integer, then ignore 5559 // -0.0 because there is no corresponding integer value. 5560 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5561 FMF.setNoSignedZeros(); 5562 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5563 C, cast<CastInst>(FalseVal)->getOperand(0), 5564 LHS, RHS, Depth); 5565 } 5566 } 5567 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5568 LHS, RHS, Depth); 5569 } 5570 5571 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5572 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5573 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5574 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5575 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5576 if (SPF == SPF_FMINNUM) 5577 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5578 if (SPF == SPF_FMAXNUM) 5579 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5580 llvm_unreachable("unhandled!"); 5581 } 5582 5583 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5584 if (SPF == SPF_SMIN) return SPF_SMAX; 5585 if (SPF == SPF_UMIN) return SPF_UMAX; 5586 if (SPF == SPF_SMAX) return SPF_SMIN; 5587 if (SPF == SPF_UMAX) return SPF_UMIN; 5588 llvm_unreachable("unhandled!"); 5589 } 5590 5591 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5592 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5593 } 5594 5595 /// Return true if "icmp Pred LHS RHS" is always true. 5596 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5597 const Value *RHS, const DataLayout &DL, 5598 unsigned Depth) { 5599 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5600 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5601 return true; 5602 5603 switch (Pred) { 5604 default: 5605 return false; 5606 5607 case CmpInst::ICMP_SLE: { 5608 const APInt *C; 5609 5610 // LHS s<= LHS +_{nsw} C if C >= 0 5611 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5612 return !C->isNegative(); 5613 return false; 5614 } 5615 5616 case CmpInst::ICMP_ULE: { 5617 const APInt *C; 5618 5619 // LHS u<= LHS +_{nuw} C for any C 5620 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5621 return true; 5622 5623 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5624 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5625 const Value *&X, 5626 const APInt *&CA, const APInt *&CB) { 5627 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5628 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5629 return true; 5630 5631 // If X & C == 0 then (X | C) == X +_{nuw} C 5632 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5633 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5634 KnownBits Known(CA->getBitWidth()); 5635 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5636 /*CxtI*/ nullptr, /*DT*/ nullptr); 5637 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5638 return true; 5639 } 5640 5641 return false; 5642 }; 5643 5644 const Value *X; 5645 const APInt *CLHS, *CRHS; 5646 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5647 return CLHS->ule(*CRHS); 5648 5649 return false; 5650 } 5651 } 5652 } 5653 5654 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5655 /// ALHS ARHS" is true. Otherwise, return None. 5656 static Optional<bool> 5657 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5658 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5659 const DataLayout &DL, unsigned Depth) { 5660 switch (Pred) { 5661 default: 5662 return None; 5663 5664 case CmpInst::ICMP_SLT: 5665 case CmpInst::ICMP_SLE: 5666 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5667 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5668 return true; 5669 return None; 5670 5671 case CmpInst::ICMP_ULT: 5672 case CmpInst::ICMP_ULE: 5673 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5674 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5675 return true; 5676 return None; 5677 } 5678 } 5679 5680 /// Return true if the operands of the two compares match. IsSwappedOps is true 5681 /// when the operands match, but are swapped. 5682 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5683 const Value *BLHS, const Value *BRHS, 5684 bool &IsSwappedOps) { 5685 5686 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5687 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5688 return IsMatchingOps || IsSwappedOps; 5689 } 5690 5691 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5692 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5693 /// Otherwise, return None if we can't infer anything. 5694 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5695 CmpInst::Predicate BPred, 5696 bool AreSwappedOps) { 5697 // Canonicalize the predicate as if the operands were not commuted. 5698 if (AreSwappedOps) 5699 BPred = ICmpInst::getSwappedPredicate(BPred); 5700 5701 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5702 return true; 5703 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5704 return false; 5705 5706 return None; 5707 } 5708 5709 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5710 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5711 /// Otherwise, return None if we can't infer anything. 5712 static Optional<bool> 5713 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5714 const ConstantInt *C1, 5715 CmpInst::Predicate BPred, 5716 const ConstantInt *C2) { 5717 ConstantRange DomCR = 5718 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5719 ConstantRange CR = 5720 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5721 ConstantRange Intersection = DomCR.intersectWith(CR); 5722 ConstantRange Difference = DomCR.difference(CR); 5723 if (Intersection.isEmptySet()) 5724 return false; 5725 if (Difference.isEmptySet()) 5726 return true; 5727 return None; 5728 } 5729 5730 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5731 /// false. Otherwise, return None if we can't infer anything. 5732 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5733 CmpInst::Predicate BPred, 5734 const Value *BLHS, const Value *BRHS, 5735 const DataLayout &DL, bool LHSIsTrue, 5736 unsigned Depth) { 5737 Value *ALHS = LHS->getOperand(0); 5738 Value *ARHS = LHS->getOperand(1); 5739 5740 // The rest of the logic assumes the LHS condition is true. If that's not the 5741 // case, invert the predicate to make it so. 5742 CmpInst::Predicate APred = 5743 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5744 5745 // Can we infer anything when the two compares have matching operands? 5746 bool AreSwappedOps; 5747 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5748 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5749 APred, BPred, AreSwappedOps)) 5750 return Implication; 5751 // No amount of additional analysis will infer the second condition, so 5752 // early exit. 5753 return None; 5754 } 5755 5756 // Can we infer anything when the LHS operands match and the RHS operands are 5757 // constants (not necessarily matching)? 5758 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5759 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5760 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5761 return Implication; 5762 // No amount of additional analysis will infer the second condition, so 5763 // early exit. 5764 return None; 5765 } 5766 5767 if (APred == BPred) 5768 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5769 return None; 5770 } 5771 5772 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5773 /// false. Otherwise, return None if we can't infer anything. We expect the 5774 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5775 static Optional<bool> 5776 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5777 const Value *RHSOp0, const Value *RHSOp1, 5778 5779 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5780 // The LHS must be an 'or' or an 'and' instruction. 5781 assert((LHS->getOpcode() == Instruction::And || 5782 LHS->getOpcode() == Instruction::Or) && 5783 "Expected LHS to be 'and' or 'or'."); 5784 5785 assert(Depth <= MaxDepth && "Hit recursion limit"); 5786 5787 // If the result of an 'or' is false, then we know both legs of the 'or' are 5788 // false. Similarly, if the result of an 'and' is true, then we know both 5789 // legs of the 'and' are true. 5790 Value *ALHS, *ARHS; 5791 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5792 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5793 // FIXME: Make this non-recursion. 5794 if (Optional<bool> Implication = isImpliedCondition( 5795 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5796 return Implication; 5797 if (Optional<bool> Implication = isImpliedCondition( 5798 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5799 return Implication; 5800 return None; 5801 } 5802 return None; 5803 } 5804 5805 Optional<bool> 5806 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5807 const Value *RHSOp0, const Value *RHSOp1, 5808 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5809 // Bail out when we hit the limit. 5810 if (Depth == MaxDepth) 5811 return None; 5812 5813 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5814 // example. 5815 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5816 return None; 5817 5818 Type *OpTy = LHS->getType(); 5819 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5820 5821 // FIXME: Extending the code below to handle vectors. 5822 if (OpTy->isVectorTy()) 5823 return None; 5824 5825 assert(OpTy->isIntegerTy(1) && "implied by above"); 5826 5827 // Both LHS and RHS are icmps. 5828 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5829 if (LHSCmp) 5830 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5831 Depth); 5832 5833 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5834 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5835 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5836 if (LHSBO) { 5837 if ((LHSBO->getOpcode() == Instruction::And || 5838 LHSBO->getOpcode() == Instruction::Or)) 5839 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5840 Depth); 5841 } 5842 return None; 5843 } 5844 5845 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5846 const DataLayout &DL, bool LHSIsTrue, 5847 unsigned Depth) { 5848 // LHS ==> RHS by definition 5849 if (LHS == RHS) 5850 return LHSIsTrue; 5851 5852 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5853 if (RHSCmp) 5854 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 5855 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 5856 LHSIsTrue, Depth); 5857 return None; 5858 } 5859 5860 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 5861 // condition dominating ContextI or nullptr, if no condition is found. 5862 static std::pair<Value *, bool> 5863 getDomPredecessorCondition(const Instruction *ContextI) { 5864 if (!ContextI || !ContextI->getParent()) 5865 return {nullptr, false}; 5866 5867 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5868 // dominator tree (eg, from a SimplifyQuery) instead? 5869 const BasicBlock *ContextBB = ContextI->getParent(); 5870 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5871 if (!PredBB) 5872 return {nullptr, false}; 5873 5874 // We need a conditional branch in the predecessor. 5875 Value *PredCond; 5876 BasicBlock *TrueBB, *FalseBB; 5877 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5878 return {nullptr, false}; 5879 5880 // The branch should get simplified. Don't bother simplifying this condition. 5881 if (TrueBB == FalseBB) 5882 return {nullptr, false}; 5883 5884 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5885 "Predecessor block does not point to successor?"); 5886 5887 // Is this condition implied by the predecessor condition? 5888 return {PredCond, TrueBB == ContextBB}; 5889 } 5890 5891 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5892 const Instruction *ContextI, 5893 const DataLayout &DL) { 5894 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5895 auto PredCond = getDomPredecessorCondition(ContextI); 5896 if (PredCond.first) 5897 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 5898 return None; 5899 } 5900 5901 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 5902 const Value *LHS, const Value *RHS, 5903 const Instruction *ContextI, 5904 const DataLayout &DL) { 5905 auto PredCond = getDomPredecessorCondition(ContextI); 5906 if (PredCond.first) 5907 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 5908 PredCond.second); 5909 return None; 5910 } 5911 5912 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5913 APInt &Upper, const InstrInfoQuery &IIQ) { 5914 unsigned Width = Lower.getBitWidth(); 5915 const APInt *C; 5916 switch (BO.getOpcode()) { 5917 case Instruction::Add: 5918 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5919 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5920 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5921 // 'add nuw x, C' produces [C, UINT_MAX]. 5922 Lower = *C; 5923 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5924 if (C->isNegative()) { 5925 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5926 Lower = APInt::getSignedMinValue(Width); 5927 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5928 } else { 5929 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5930 Lower = APInt::getSignedMinValue(Width) + *C; 5931 Upper = APInt::getSignedMaxValue(Width) + 1; 5932 } 5933 } 5934 } 5935 break; 5936 5937 case Instruction::And: 5938 if (match(BO.getOperand(1), m_APInt(C))) 5939 // 'and x, C' produces [0, C]. 5940 Upper = *C + 1; 5941 break; 5942 5943 case Instruction::Or: 5944 if (match(BO.getOperand(1), m_APInt(C))) 5945 // 'or x, C' produces [C, UINT_MAX]. 5946 Lower = *C; 5947 break; 5948 5949 case Instruction::AShr: 5950 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5951 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5952 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5953 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5954 } else if (match(BO.getOperand(0), m_APInt(C))) { 5955 unsigned ShiftAmount = Width - 1; 5956 if (!C->isNullValue() && IIQ.isExact(&BO)) 5957 ShiftAmount = C->countTrailingZeros(); 5958 if (C->isNegative()) { 5959 // 'ashr C, x' produces [C, C >> (Width-1)] 5960 Lower = *C; 5961 Upper = C->ashr(ShiftAmount) + 1; 5962 } else { 5963 // 'ashr C, x' produces [C >> (Width-1), C] 5964 Lower = C->ashr(ShiftAmount); 5965 Upper = *C + 1; 5966 } 5967 } 5968 break; 5969 5970 case Instruction::LShr: 5971 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5972 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5973 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5974 } else if (match(BO.getOperand(0), m_APInt(C))) { 5975 // 'lshr C, x' produces [C >> (Width-1), C]. 5976 unsigned ShiftAmount = Width - 1; 5977 if (!C->isNullValue() && IIQ.isExact(&BO)) 5978 ShiftAmount = C->countTrailingZeros(); 5979 Lower = C->lshr(ShiftAmount); 5980 Upper = *C + 1; 5981 } 5982 break; 5983 5984 case Instruction::Shl: 5985 if (match(BO.getOperand(0), m_APInt(C))) { 5986 if (IIQ.hasNoUnsignedWrap(&BO)) { 5987 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5988 Lower = *C; 5989 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5990 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5991 if (C->isNegative()) { 5992 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5993 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5994 Lower = C->shl(ShiftAmount); 5995 Upper = *C + 1; 5996 } else { 5997 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5998 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5999 Lower = *C; 6000 Upper = C->shl(ShiftAmount) + 1; 6001 } 6002 } 6003 } 6004 break; 6005 6006 case Instruction::SDiv: 6007 if (match(BO.getOperand(1), m_APInt(C))) { 6008 APInt IntMin = APInt::getSignedMinValue(Width); 6009 APInt IntMax = APInt::getSignedMaxValue(Width); 6010 if (C->isAllOnesValue()) { 6011 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6012 // where C != -1 and C != 0 and C != 1 6013 Lower = IntMin + 1; 6014 Upper = IntMax + 1; 6015 } else if (C->countLeadingZeros() < Width - 1) { 6016 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6017 // where C != -1 and C != 0 and C != 1 6018 Lower = IntMin.sdiv(*C); 6019 Upper = IntMax.sdiv(*C); 6020 if (Lower.sgt(Upper)) 6021 std::swap(Lower, Upper); 6022 Upper = Upper + 1; 6023 assert(Upper != Lower && "Upper part of range has wrapped!"); 6024 } 6025 } else if (match(BO.getOperand(0), m_APInt(C))) { 6026 if (C->isMinSignedValue()) { 6027 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6028 Lower = *C; 6029 Upper = Lower.lshr(1) + 1; 6030 } else { 6031 // 'sdiv C, x' produces [-|C|, |C|]. 6032 Upper = C->abs() + 1; 6033 Lower = (-Upper) + 1; 6034 } 6035 } 6036 break; 6037 6038 case Instruction::UDiv: 6039 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6040 // 'udiv x, C' produces [0, UINT_MAX / C]. 6041 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6042 } else if (match(BO.getOperand(0), m_APInt(C))) { 6043 // 'udiv C, x' produces [0, C]. 6044 Upper = *C + 1; 6045 } 6046 break; 6047 6048 case Instruction::SRem: 6049 if (match(BO.getOperand(1), m_APInt(C))) { 6050 // 'srem x, C' produces (-|C|, |C|). 6051 Upper = C->abs(); 6052 Lower = (-Upper) + 1; 6053 } 6054 break; 6055 6056 case Instruction::URem: 6057 if (match(BO.getOperand(1), m_APInt(C))) 6058 // 'urem x, C' produces [0, C). 6059 Upper = *C; 6060 break; 6061 6062 default: 6063 break; 6064 } 6065 } 6066 6067 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6068 APInt &Upper) { 6069 unsigned Width = Lower.getBitWidth(); 6070 const APInt *C; 6071 switch (II.getIntrinsicID()) { 6072 case Intrinsic::uadd_sat: 6073 // uadd.sat(x, C) produces [C, UINT_MAX]. 6074 if (match(II.getOperand(0), m_APInt(C)) || 6075 match(II.getOperand(1), m_APInt(C))) 6076 Lower = *C; 6077 break; 6078 case Intrinsic::sadd_sat: 6079 if (match(II.getOperand(0), m_APInt(C)) || 6080 match(II.getOperand(1), m_APInt(C))) { 6081 if (C->isNegative()) { 6082 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6083 Lower = APInt::getSignedMinValue(Width); 6084 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6085 } else { 6086 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6087 Lower = APInt::getSignedMinValue(Width) + *C; 6088 Upper = APInt::getSignedMaxValue(Width) + 1; 6089 } 6090 } 6091 break; 6092 case Intrinsic::usub_sat: 6093 // usub.sat(C, x) produces [0, C]. 6094 if (match(II.getOperand(0), m_APInt(C))) 6095 Upper = *C + 1; 6096 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6097 else if (match(II.getOperand(1), m_APInt(C))) 6098 Upper = APInt::getMaxValue(Width) - *C + 1; 6099 break; 6100 case Intrinsic::ssub_sat: 6101 if (match(II.getOperand(0), m_APInt(C))) { 6102 if (C->isNegative()) { 6103 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6104 Lower = APInt::getSignedMinValue(Width); 6105 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6106 } else { 6107 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6108 Lower = *C - APInt::getSignedMaxValue(Width); 6109 Upper = APInt::getSignedMaxValue(Width) + 1; 6110 } 6111 } else if (match(II.getOperand(1), m_APInt(C))) { 6112 if (C->isNegative()) { 6113 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6114 Lower = APInt::getSignedMinValue(Width) - *C; 6115 Upper = APInt::getSignedMaxValue(Width) + 1; 6116 } else { 6117 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6118 Lower = APInt::getSignedMinValue(Width); 6119 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6120 } 6121 } 6122 break; 6123 default: 6124 break; 6125 } 6126 } 6127 6128 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6129 APInt &Upper, const InstrInfoQuery &IIQ) { 6130 const Value *LHS = nullptr, *RHS = nullptr; 6131 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6132 if (R.Flavor == SPF_UNKNOWN) 6133 return; 6134 6135 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6136 6137 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6138 // If the negation part of the abs (in RHS) has the NSW flag, 6139 // then the result of abs(X) is [0..SIGNED_MAX], 6140 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6141 Lower = APInt::getNullValue(BitWidth); 6142 if (match(RHS, m_Neg(m_Specific(LHS))) && 6143 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6144 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6145 else 6146 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6147 return; 6148 } 6149 6150 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6151 // The result of -abs(X) is <= 0. 6152 Lower = APInt::getSignedMinValue(BitWidth); 6153 Upper = APInt(BitWidth, 1); 6154 return; 6155 } 6156 6157 const APInt *C; 6158 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6159 return; 6160 6161 switch (R.Flavor) { 6162 case SPF_UMIN: 6163 Upper = *C + 1; 6164 break; 6165 case SPF_UMAX: 6166 Lower = *C; 6167 break; 6168 case SPF_SMIN: 6169 Lower = APInt::getSignedMinValue(BitWidth); 6170 Upper = *C + 1; 6171 break; 6172 case SPF_SMAX: 6173 Lower = *C; 6174 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6175 break; 6176 default: 6177 break; 6178 } 6179 } 6180 6181 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6182 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6183 6184 const APInt *C; 6185 if (match(V, m_APInt(C))) 6186 return ConstantRange(*C); 6187 6188 InstrInfoQuery IIQ(UseInstrInfo); 6189 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6190 APInt Lower = APInt(BitWidth, 0); 6191 APInt Upper = APInt(BitWidth, 0); 6192 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6193 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6194 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6195 setLimitsForIntrinsic(*II, Lower, Upper); 6196 else if (auto *SI = dyn_cast<SelectInst>(V)) 6197 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6198 6199 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6200 6201 if (auto *I = dyn_cast<Instruction>(V)) 6202 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6203 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6204 6205 return CR; 6206 } 6207 6208 static Optional<int64_t> 6209 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6210 // Skip over the first indices. 6211 gep_type_iterator GTI = gep_type_begin(GEP); 6212 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6213 /*skip along*/; 6214 6215 // Compute the offset implied by the rest of the indices. 6216 int64_t Offset = 0; 6217 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6218 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6219 if (!OpC) 6220 return None; 6221 if (OpC->isZero()) 6222 continue; // No offset. 6223 6224 // Handle struct indices, which add their field offset to the pointer. 6225 if (StructType *STy = GTI.getStructTypeOrNull()) { 6226 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6227 continue; 6228 } 6229 6230 // Otherwise, we have a sequential type like an array or fixed-length 6231 // vector. Multiply the index by the ElementSize. 6232 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6233 if (Size.isScalable()) 6234 return None; 6235 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6236 } 6237 6238 return Offset; 6239 } 6240 6241 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6242 const DataLayout &DL) { 6243 Ptr1 = Ptr1->stripPointerCasts(); 6244 Ptr2 = Ptr2->stripPointerCasts(); 6245 6246 // Handle the trivial case first. 6247 if (Ptr1 == Ptr2) { 6248 return 0; 6249 } 6250 6251 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6252 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6253 6254 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6255 // as in "P" and "gep P, 1". 6256 // Also do this iteratively to handle the the following case: 6257 // Ptr_t1 = GEP Ptr1, c1 6258 // Ptr_t2 = GEP Ptr_t1, c2 6259 // Ptr2 = GEP Ptr_t2, c3 6260 // where we will return c1+c2+c3. 6261 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6262 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6263 // are the same, and return the difference between offsets. 6264 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6265 const Value *Ptr) -> Optional<int64_t> { 6266 const GEPOperator *GEP_T = GEP; 6267 int64_t OffsetVal = 0; 6268 bool HasSameBase = false; 6269 while (GEP_T) { 6270 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6271 if (!Offset) 6272 return None; 6273 OffsetVal += *Offset; 6274 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6275 if (Op0 == Ptr) { 6276 HasSameBase = true; 6277 break; 6278 } 6279 GEP_T = dyn_cast<GEPOperator>(Op0); 6280 } 6281 if (!HasSameBase) 6282 return None; 6283 return OffsetVal; 6284 }; 6285 6286 if (GEP1) { 6287 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6288 if (Offset) 6289 return -*Offset; 6290 } 6291 if (GEP2) { 6292 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6293 if (Offset) 6294 return Offset; 6295 } 6296 6297 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6298 // base. After that base, they may have some number of common (and 6299 // potentially variable) indices. After that they handle some constant 6300 // offset, which determines their offset from each other. At this point, we 6301 // handle no other case. 6302 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6303 return None; 6304 6305 // Skip any common indices and track the GEP types. 6306 unsigned Idx = 1; 6307 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6308 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6309 break; 6310 6311 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6312 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6313 if (!Offset1 || !Offset2) 6314 return None; 6315 return *Offset2 - *Offset1; 6316 } 6317