1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<VectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = Shuf->getType()->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 178 if (DemandedElts.isNullValue()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 // FIXME: We currently have no way to represent the DemandedElts of a scalable 210 // vector 211 if (isa<ScalableVectorType>(V->getType())) { 212 Known.resetAll(); 213 return; 214 } 215 216 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 217 APInt DemandedElts = 218 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 219 computeKnownBits(V, DemandedElts, Known, Depth, Q); 220 } 221 222 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 223 const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, const Instruction *CxtI, 225 const DominatorTree *DT, 226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 227 ::computeKnownBits(V, Known, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 232 KnownBits &Known, const DataLayout &DL, 233 unsigned Depth, AssumptionCache *AC, 234 const Instruction *CxtI, const DominatorTree *DT, 235 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 236 ::computeKnownBits(V, DemandedElts, Known, Depth, 237 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 238 } 239 240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 241 unsigned Depth, const Query &Q); 242 243 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 257 const DataLayout &DL, unsigned Depth, 258 AssumptionCache *AC, const Instruction *CxtI, 259 const DominatorTree *DT, 260 OptimizationRemarkEmitter *ORE, 261 bool UseInstrInfo) { 262 return ::computeKnownBits( 263 V, DemandedElts, Depth, 264 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 265 } 266 267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 268 const DataLayout &DL, AssumptionCache *AC, 269 const Instruction *CxtI, const DominatorTree *DT, 270 bool UseInstrInfo) { 271 assert(LHS->getType() == RHS->getType() && 272 "LHS and RHS should have the same type"); 273 assert(LHS->getType()->isIntOrIntVectorTy() && 274 "LHS and RHS should be integers"); 275 // Look for an inverted mask: (X & ~M) op (Y & M). 276 Value *M; 277 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 278 match(RHS, m_c_And(m_Specific(M), m_Value()))) 279 return true; 280 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 281 match(LHS, m_c_And(m_Specific(M), m_Value()))) 282 return true; 283 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 284 KnownBits LHSKnown(IT->getBitWidth()); 285 KnownBits RHSKnown(IT->getBitWidth()); 286 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 287 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 288 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 289 } 290 291 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 292 for (const User *U : CxtI->users()) { 293 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 294 if (IC->isEquality()) 295 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 296 if (C->isNullValue()) 297 continue; 298 return false; 299 } 300 return true; 301 } 302 303 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 304 const Query &Q); 305 306 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 307 bool OrZero, unsigned Depth, 308 AssumptionCache *AC, const Instruction *CxtI, 309 const DominatorTree *DT, bool UseInstrInfo) { 310 return ::isKnownToBeAPowerOfTwo( 311 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 312 } 313 314 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 315 unsigned Depth, const Query &Q); 316 317 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 318 319 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 320 AssumptionCache *AC, const Instruction *CxtI, 321 const DominatorTree *DT, bool UseInstrInfo) { 322 return ::isKnownNonZero(V, Depth, 323 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 324 } 325 326 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 327 unsigned Depth, AssumptionCache *AC, 328 const Instruction *CxtI, const DominatorTree *DT, 329 bool UseInstrInfo) { 330 KnownBits Known = 331 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 332 return Known.isNonNegative(); 333 } 334 335 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 if (auto *CI = dyn_cast<ConstantInt>(V)) 339 return CI->getValue().isStrictlyPositive(); 340 341 // TODO: We'd doing two recursive queries here. We should factor this such 342 // that only a single query is needed. 343 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 344 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 345 } 346 347 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 348 AssumptionCache *AC, const Instruction *CxtI, 349 const DominatorTree *DT, bool UseInstrInfo) { 350 KnownBits Known = 351 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 352 return Known.isNegative(); 353 } 354 355 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 356 357 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 358 const DataLayout &DL, AssumptionCache *AC, 359 const Instruction *CxtI, const DominatorTree *DT, 360 bool UseInstrInfo) { 361 return ::isKnownNonEqual(V1, V2, 362 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 363 UseInstrInfo, /*ORE=*/nullptr)); 364 } 365 366 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 367 const Query &Q); 368 369 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 370 const DataLayout &DL, unsigned Depth, 371 AssumptionCache *AC, const Instruction *CxtI, 372 const DominatorTree *DT, bool UseInstrInfo) { 373 return ::MaskedValueIsZero( 374 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 375 } 376 377 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 378 unsigned Depth, const Query &Q); 379 380 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 381 const Query &Q) { 382 // FIXME: We currently have no way to represent the DemandedElts of a scalable 383 // vector 384 if (isa<ScalableVectorType>(V->getType())) 385 return 1; 386 387 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 388 APInt DemandedElts = 389 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 390 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 391 } 392 393 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 394 unsigned Depth, AssumptionCache *AC, 395 const Instruction *CxtI, 396 const DominatorTree *DT, bool UseInstrInfo) { 397 return ::ComputeNumSignBits( 398 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 399 } 400 401 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 402 bool NSW, const APInt &DemandedElts, 403 KnownBits &KnownOut, KnownBits &Known2, 404 unsigned Depth, const Query &Q) { 405 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 406 407 // If one operand is unknown and we have no nowrap information, 408 // the result will be unknown independently of the second operand. 409 if (KnownOut.isUnknown() && !NSW) 410 return; 411 412 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 413 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 414 } 415 416 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 417 const APInt &DemandedElts, KnownBits &Known, 418 KnownBits &Known2, unsigned Depth, 419 const Query &Q) { 420 unsigned BitWidth = Known.getBitWidth(); 421 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 422 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 423 424 bool isKnownNegative = false; 425 bool isKnownNonNegative = false; 426 // If the multiplication is known not to overflow, compute the sign bit. 427 if (NSW) { 428 if (Op0 == Op1) { 429 // The product of a number with itself is non-negative. 430 isKnownNonNegative = true; 431 } else { 432 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 433 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 434 bool isKnownNegativeOp1 = Known.isNegative(); 435 bool isKnownNegativeOp0 = Known2.isNegative(); 436 // The product of two numbers with the same sign is non-negative. 437 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 438 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 439 // The product of a negative number and a non-negative number is either 440 // negative or zero. 441 if (!isKnownNonNegative) 442 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 443 isKnownNonZero(Op0, Depth, Q)) || 444 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 445 isKnownNonZero(Op1, Depth, Q)); 446 } 447 } 448 449 assert(!Known.hasConflict() && !Known2.hasConflict()); 450 // Compute a conservative estimate for high known-0 bits. 451 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 452 Known2.countMinLeadingZeros(), 453 BitWidth) - BitWidth; 454 LeadZ = std::min(LeadZ, BitWidth); 455 456 // The result of the bottom bits of an integer multiply can be 457 // inferred by looking at the bottom bits of both operands and 458 // multiplying them together. 459 // We can infer at least the minimum number of known trailing bits 460 // of both operands. Depending on number of trailing zeros, we can 461 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 462 // a and b are divisible by m and n respectively. 463 // We then calculate how many of those bits are inferrable and set 464 // the output. For example, the i8 mul: 465 // a = XXXX1100 (12) 466 // b = XXXX1110 (14) 467 // We know the bottom 3 bits are zero since the first can be divided by 468 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 469 // Applying the multiplication to the trimmed arguments gets: 470 // XX11 (3) 471 // X111 (7) 472 // ------- 473 // XX11 474 // XX11 475 // XX11 476 // XX11 477 // ------- 478 // XXXXX01 479 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 480 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 481 // The proof for this can be described as: 482 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 483 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 484 // umin(countTrailingZeros(C2), C6) + 485 // umin(C5 - umin(countTrailingZeros(C1), C5), 486 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 487 // %aa = shl i8 %a, C5 488 // %bb = shl i8 %b, C6 489 // %aaa = or i8 %aa, C1 490 // %bbb = or i8 %bb, C2 491 // %mul = mul i8 %aaa, %bbb 492 // %mask = and i8 %mul, C7 493 // => 494 // %mask = i8 ((C1*C2)&C7) 495 // Where C5, C6 describe the known bits of %a, %b 496 // C1, C2 describe the known bottom bits of %a, %b. 497 // C7 describes the mask of the known bits of the result. 498 APInt Bottom0 = Known.One; 499 APInt Bottom1 = Known2.One; 500 501 // How many times we'd be able to divide each argument by 2 (shr by 1). 502 // This gives us the number of trailing zeros on the multiplication result. 503 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 504 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 505 unsigned TrailZero0 = Known.countMinTrailingZeros(); 506 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 507 unsigned TrailZ = TrailZero0 + TrailZero1; 508 509 // Figure out the fewest known-bits operand. 510 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 511 TrailBitsKnown1 - TrailZero1); 512 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 513 514 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 515 Bottom1.getLoBits(TrailBitsKnown1); 516 517 Known.resetAll(); 518 Known.Zero.setHighBits(LeadZ); 519 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 520 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 521 522 // Only make use of no-wrap flags if we failed to compute the sign bit 523 // directly. This matters if the multiplication always overflows, in 524 // which case we prefer to follow the result of the direct computation, 525 // though as the program is invoking undefined behaviour we can choose 526 // whatever we like here. 527 if (isKnownNonNegative && !Known.isNegative()) 528 Known.makeNonNegative(); 529 else if (isKnownNegative && !Known.isNonNegative()) 530 Known.makeNegative(); 531 } 532 533 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 534 KnownBits &Known) { 535 unsigned BitWidth = Known.getBitWidth(); 536 unsigned NumRanges = Ranges.getNumOperands() / 2; 537 assert(NumRanges >= 1); 538 539 Known.Zero.setAllBits(); 540 Known.One.setAllBits(); 541 542 for (unsigned i = 0; i < NumRanges; ++i) { 543 ConstantInt *Lower = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 545 ConstantInt *Upper = 546 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 547 ConstantRange Range(Lower->getValue(), Upper->getValue()); 548 549 // The first CommonPrefixBits of all values in Range are equal. 550 unsigned CommonPrefixBits = 551 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 552 553 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 554 Known.One &= Range.getUnsignedMax() & Mask; 555 Known.Zero &= ~Range.getUnsignedMax() & Mask; 556 } 557 } 558 559 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 560 SmallVector<const Value *, 16> WorkSet(1, I); 561 SmallPtrSet<const Value *, 32> Visited; 562 SmallPtrSet<const Value *, 16> EphValues; 563 564 // The instruction defining an assumption's condition itself is always 565 // considered ephemeral to that assumption (even if it has other 566 // non-ephemeral users). See r246696's test case for an example. 567 if (is_contained(I->operands(), E)) 568 return true; 569 570 while (!WorkSet.empty()) { 571 const Value *V = WorkSet.pop_back_val(); 572 if (!Visited.insert(V).second) 573 continue; 574 575 // If all uses of this value are ephemeral, then so is this value. 576 if (llvm::all_of(V->users(), [&](const User *U) { 577 return EphValues.count(U); 578 })) { 579 if (V == E) 580 return true; 581 582 if (V == I || isSafeToSpeculativelyExecute(V)) { 583 EphValues.insert(V); 584 if (const User *U = dyn_cast<User>(V)) 585 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 586 J != JE; ++J) 587 WorkSet.push_back(*J); 588 } 589 } 590 } 591 592 return false; 593 } 594 595 // Is this an intrinsic that cannot be speculated but also cannot trap? 596 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 597 if (const CallInst *CI = dyn_cast<CallInst>(I)) 598 if (Function *F = CI->getCalledFunction()) 599 switch (F->getIntrinsicID()) { 600 default: break; 601 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 602 case Intrinsic::assume: 603 case Intrinsic::sideeffect: 604 case Intrinsic::dbg_declare: 605 case Intrinsic::dbg_value: 606 case Intrinsic::dbg_label: 607 case Intrinsic::invariant_start: 608 case Intrinsic::invariant_end: 609 case Intrinsic::lifetime_start: 610 case Intrinsic::lifetime_end: 611 case Intrinsic::objectsize: 612 case Intrinsic::ptr_annotation: 613 case Intrinsic::var_annotation: 614 return true; 615 } 616 617 return false; 618 } 619 620 bool llvm::isValidAssumeForContext(const Instruction *Inv, 621 const Instruction *CxtI, 622 const DominatorTree *DT) { 623 // There are two restrictions on the use of an assume: 624 // 1. The assume must dominate the context (or the control flow must 625 // reach the assume whenever it reaches the context). 626 // 2. The context must not be in the assume's set of ephemeral values 627 // (otherwise we will use the assume to prove that the condition 628 // feeding the assume is trivially true, thus causing the removal of 629 // the assume). 630 631 if (Inv->getParent() == CxtI->getParent()) { 632 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 633 // in the BB. 634 if (Inv->comesBefore(CxtI)) 635 return true; 636 637 // Don't let an assume affect itself - this would cause the problems 638 // `isEphemeralValueOf` is trying to prevent, and it would also make 639 // the loop below go out of bounds. 640 if (Inv == CxtI) 641 return false; 642 643 // The context comes first, but they're both in the same block. 644 // Make sure there is nothing in between that might interrupt 645 // the control flow, not even CxtI itself. 646 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 647 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 648 return false; 649 650 return !isEphemeralValueOf(Inv, CxtI); 651 } 652 653 // Inv and CxtI are in different blocks. 654 if (DT) { 655 if (DT->dominates(Inv, CxtI)) 656 return true; 657 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 658 // We don't have a DT, but this trivially dominates. 659 return true; 660 } 661 662 return false; 663 } 664 665 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return false; 670 671 // Note that the patterns below need to be kept in sync with the code 672 // in AssumptionCache::updateAffectedValues. 673 674 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 675 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 676 677 Value *RHS; 678 CmpInst::Predicate Pred; 679 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 680 return false; 681 // assume(v u> y) -> assume(v != 0) 682 if (Pred == ICmpInst::ICMP_UGT) 683 return true; 684 685 // assume(v != 0) 686 // We special-case this one to ensure that we handle `assume(v != null)`. 687 if (Pred == ICmpInst::ICMP_NE) 688 return match(RHS, m_Zero()); 689 690 // All other predicates - rely on generic ConstantRange handling. 691 ConstantInt *CI; 692 if (!match(RHS, m_ConstantInt(CI))) 693 return false; 694 ConstantRange RHSRange(CI->getValue()); 695 ConstantRange TrueValues = 696 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 697 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 698 }; 699 700 if (Q.CxtI && V->getType()->isPointerTy()) { 701 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 702 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 703 V->getType()->getPointerAddressSpace())) 704 AttrKinds.push_back(Attribute::Dereferenceable); 705 706 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 707 return true; 708 } 709 710 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 711 if (!AssumeVH) 712 continue; 713 CallInst *I = cast<CallInst>(AssumeVH); 714 assert(I->getFunction() == Q.CxtI->getFunction() && 715 "Got assumption for the wrong function!"); 716 if (Q.isExcluded(I)) 717 continue; 718 719 // Warning: This loop can end up being somewhat performance sensitive. 720 // We're running this loop for once for each value queried resulting in a 721 // runtime of ~O(#assumes * #values). 722 723 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 724 "must be an assume intrinsic"); 725 726 Value *Arg = I->getArgOperand(0); 727 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 728 if (!Cmp) 729 continue; 730 731 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 732 return true; 733 } 734 735 return false; 736 } 737 738 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 739 unsigned Depth, const Query &Q) { 740 // Use of assumptions is context-sensitive. If we don't have a context, we 741 // cannot use them! 742 if (!Q.AC || !Q.CxtI) 743 return; 744 745 unsigned BitWidth = Known.getBitWidth(); 746 747 // Note that the patterns below need to be kept in sync with the code 748 // in AssumptionCache::updateAffectedValues. 749 750 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 751 if (!AssumeVH) 752 continue; 753 CallInst *I = cast<CallInst>(AssumeVH); 754 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 755 "Got assumption for the wrong function!"); 756 if (Q.isExcluded(I)) 757 continue; 758 759 // Warning: This loop can end up being somewhat performance sensitive. 760 // We're running this loop for once for each value queried resulting in a 761 // runtime of ~O(#assumes * #values). 762 763 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 764 "must be an assume intrinsic"); 765 766 Value *Arg = I->getArgOperand(0); 767 768 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 assert(BitWidth == 1 && "assume operand is not i1?"); 770 Known.setAllOnes(); 771 return; 772 } 773 if (match(Arg, m_Not(m_Specific(V))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 assert(BitWidth == 1 && "assume operand is not i1?"); 776 Known.setAllZero(); 777 return; 778 } 779 780 // The remaining tests are all recursive, so bail out if we hit the limit. 781 if (Depth == MaxDepth) 782 continue; 783 784 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 785 if (!Cmp) 786 continue; 787 788 // Note that ptrtoint may change the bitwidth. 789 Value *A, *B; 790 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 791 792 CmpInst::Predicate Pred; 793 uint64_t C; 794 switch (Cmp->getPredicate()) { 795 default: 796 break; 797 case ICmpInst::ICMP_EQ: 798 // assume(v = a) 799 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown = 802 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 803 Known.Zero |= RHSKnown.Zero; 804 Known.One |= RHSKnown.One; 805 // assume(v & b = a) 806 } else if (match(Cmp, 807 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 808 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 809 KnownBits RHSKnown = 810 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 KnownBits MaskKnown = 812 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 814 // For those bits in the mask that are known to be one, we can propagate 815 // known bits from the RHS to V. 816 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 817 Known.One |= RHSKnown.One & MaskKnown.One; 818 // assume(~(v & b) = a) 819 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 820 m_Value(A))) && 821 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 822 KnownBits RHSKnown = 823 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 KnownBits MaskKnown = 825 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 826 827 // For those bits in the mask that are known to be one, we can propagate 828 // inverted known bits from the RHS to V. 829 Known.Zero |= RHSKnown.One & MaskKnown.One; 830 Known.One |= RHSKnown.Zero & MaskKnown.One; 831 // assume(v | b = a) 832 } else if (match(Cmp, 833 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 834 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 835 KnownBits RHSKnown = 836 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 KnownBits BKnown = 838 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 839 840 // For those bits in B that are known to be zero, we can propagate known 841 // bits from the RHS to V. 842 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 843 Known.One |= RHSKnown.One & BKnown.Zero; 844 // assume(~(v | b) = a) 845 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 846 m_Value(A))) && 847 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 848 KnownBits RHSKnown = 849 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 KnownBits BKnown = 851 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 852 853 // For those bits in B that are known to be zero, we can propagate 854 // inverted known bits from the RHS to V. 855 Known.Zero |= RHSKnown.One & BKnown.Zero; 856 Known.One |= RHSKnown.Zero & BKnown.Zero; 857 // assume(v ^ b = a) 858 } else if (match(Cmp, 859 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 860 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 861 KnownBits RHSKnown = 862 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 KnownBits BKnown = 864 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 865 866 // For those bits in B that are known to be zero, we can propagate known 867 // bits from the RHS to V. For those bits in B that are known to be one, 868 // we can propagate inverted known bits from the RHS to V. 869 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 870 Known.One |= RHSKnown.One & BKnown.Zero; 871 Known.Zero |= RHSKnown.One & BKnown.One; 872 Known.One |= RHSKnown.Zero & BKnown.One; 873 // assume(~(v ^ b) = a) 874 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 875 m_Value(A))) && 876 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 877 KnownBits RHSKnown = 878 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 KnownBits BKnown = 880 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 881 882 // For those bits in B that are known to be zero, we can propagate 883 // inverted known bits from the RHS to V. For those bits in B that are 884 // known to be one, we can propagate known bits from the RHS to V. 885 Known.Zero |= RHSKnown.One & BKnown.Zero; 886 Known.One |= RHSKnown.Zero & BKnown.Zero; 887 Known.Zero |= RHSKnown.Zero & BKnown.One; 888 Known.One |= RHSKnown.One & BKnown.One; 889 // assume(v << c = a) 890 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 891 m_Value(A))) && 892 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 893 KnownBits RHSKnown = 894 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 895 896 // For those bits in RHS that are known, we can propagate them to known 897 // bits in V shifted to the right by C. 898 RHSKnown.Zero.lshrInPlace(C); 899 Known.Zero |= RHSKnown.Zero; 900 RHSKnown.One.lshrInPlace(C); 901 Known.One |= RHSKnown.One; 902 // assume(~(v << c) = a) 903 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 904 m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 906 KnownBits RHSKnown = 907 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 908 // For those bits in RHS that are known, we can propagate them inverted 909 // to known bits in V shifted to the right by C. 910 RHSKnown.One.lshrInPlace(C); 911 Known.Zero |= RHSKnown.One; 912 RHSKnown.Zero.lshrInPlace(C); 913 Known.One |= RHSKnown.Zero; 914 // assume(v >> c = a) 915 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 916 m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 920 // For those bits in RHS that are known, we can propagate them to known 921 // bits in V shifted to the right by C. 922 Known.Zero |= RHSKnown.Zero << C; 923 Known.One |= RHSKnown.One << C; 924 // assume(~(v >> c) = a) 925 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 926 m_Value(A))) && 927 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 928 KnownBits RHSKnown = 929 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 930 // For those bits in RHS that are known, we can propagate them inverted 931 // to known bits in V shifted to the right by C. 932 Known.Zero |= RHSKnown.One << C; 933 Known.One |= RHSKnown.Zero << C; 934 } 935 break; 936 case ICmpInst::ICMP_SGE: 937 // assume(v >=_s c) where c is non-negative 938 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 939 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 940 KnownBits RHSKnown = 941 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 942 943 if (RHSKnown.isNonNegative()) { 944 // We know that the sign bit is zero. 945 Known.makeNonNegative(); 946 } 947 } 948 break; 949 case ICmpInst::ICMP_SGT: 950 // assume(v >_s c) where c is at least -1. 951 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 952 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 953 KnownBits RHSKnown = 954 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 955 956 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 957 // We know that the sign bit is zero. 958 Known.makeNonNegative(); 959 } 960 } 961 break; 962 case ICmpInst::ICMP_SLE: 963 // assume(v <=_s c) where c is negative 964 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 965 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 966 KnownBits RHSKnown = 967 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 968 969 if (RHSKnown.isNegative()) { 970 // We know that the sign bit is one. 971 Known.makeNegative(); 972 } 973 } 974 break; 975 case ICmpInst::ICMP_SLT: 976 // assume(v <_s c) where c is non-positive 977 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 978 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 979 KnownBits RHSKnown = 980 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 981 982 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 983 // We know that the sign bit is one. 984 Known.makeNegative(); 985 } 986 } 987 break; 988 case ICmpInst::ICMP_ULE: 989 // assume(v <=_u c) 990 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 991 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 992 KnownBits RHSKnown = 993 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 994 995 // Whatever high bits in c are zero are known to be zero. 996 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 997 } 998 break; 999 case ICmpInst::ICMP_ULT: 1000 // assume(v <_u c) 1001 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1002 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1003 KnownBits RHSKnown = 1004 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1005 1006 // If the RHS is known zero, then this assumption must be wrong (nothing 1007 // is unsigned less than zero). Signal a conflict and get out of here. 1008 if (RHSKnown.isZero()) { 1009 Known.Zero.setAllBits(); 1010 Known.One.setAllBits(); 1011 break; 1012 } 1013 1014 // Whatever high bits in c are zero are known to be zero (if c is a power 1015 // of 2, then one more). 1016 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1018 else 1019 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1020 } 1021 break; 1022 } 1023 } 1024 1025 // If assumptions conflict with each other or previous known bits, then we 1026 // have a logical fallacy. It's possible that the assumption is not reachable, 1027 // so this isn't a real bug. On the other hand, the program may have undefined 1028 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1029 // clear out the known bits, try to warn the user, and hope for the best. 1030 if (Known.Zero.intersects(Known.One)) { 1031 Known.resetAll(); 1032 1033 if (Q.ORE) 1034 Q.ORE->emit([&]() { 1035 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1036 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1037 CxtI) 1038 << "Detected conflicting code assumptions. Program may " 1039 "have undefined behavior, or compiler may have " 1040 "internal error."; 1041 }); 1042 } 1043 } 1044 1045 /// Compute known bits from a shift operator, including those with a 1046 /// non-constant shift amount. Known is the output of this function. Known2 is a 1047 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1048 /// operator-specific functions that, given the known-zero or known-one bits 1049 /// respectively, and a shift amount, compute the implied known-zero or 1050 /// known-one bits of the shift operator's result respectively for that shift 1051 /// amount. The results from calling KZF and KOF are conservatively combined for 1052 /// all permitted shift amounts. 1053 static void computeKnownBitsFromShiftOperator( 1054 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1055 KnownBits &Known2, unsigned Depth, const Query &Q, 1056 function_ref<APInt(const APInt &, unsigned)> KZF, 1057 function_ref<APInt(const APInt &, unsigned)> KOF) { 1058 unsigned BitWidth = Known.getBitWidth(); 1059 1060 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1061 if (Known.isConstant()) { 1062 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1063 1064 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1065 Known.Zero = KZF(Known.Zero, ShiftAmt); 1066 Known.One = KOF(Known.One, ShiftAmt); 1067 // If the known bits conflict, this must be an overflowing left shift, so 1068 // the shift result is poison. We can return anything we want. Choose 0 for 1069 // the best folding opportunity. 1070 if (Known.hasConflict()) 1071 Known.setAllZero(); 1072 1073 return; 1074 } 1075 1076 // If the shift amount could be greater than or equal to the bit-width of the 1077 // LHS, the value could be poison, but bail out because the check below is 1078 // expensive. 1079 // TODO: Should we just carry on? 1080 if (Known.getMaxValue().uge(BitWidth)) { 1081 Known.resetAll(); 1082 return; 1083 } 1084 1085 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1086 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1087 // limit value (which implies all bits are known). 1088 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1089 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1090 1091 // It would be more-clearly correct to use the two temporaries for this 1092 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1093 Known.resetAll(); 1094 1095 // If we know the shifter operand is nonzero, we can sometimes infer more 1096 // known bits. However this is expensive to compute, so be lazy about it and 1097 // only compute it when absolutely necessary. 1098 Optional<bool> ShifterOperandIsNonZero; 1099 1100 // Early exit if we can't constrain any well-defined shift amount. 1101 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1102 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1103 ShifterOperandIsNonZero = 1104 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1105 if (!*ShifterOperandIsNonZero) 1106 return; 1107 } 1108 1109 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1110 1111 Known.Zero.setAllBits(); 1112 Known.One.setAllBits(); 1113 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1114 // Combine the shifted known input bits only for those shift amounts 1115 // compatible with its known constraints. 1116 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1117 continue; 1118 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1119 continue; 1120 // If we know the shifter is nonzero, we may be able to infer more known 1121 // bits. This check is sunk down as far as possible to avoid the expensive 1122 // call to isKnownNonZero if the cheaper checks above fail. 1123 if (ShiftAmt == 0) { 1124 if (!ShifterOperandIsNonZero.hasValue()) 1125 ShifterOperandIsNonZero = 1126 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1127 if (*ShifterOperandIsNonZero) 1128 continue; 1129 } 1130 1131 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1132 Known.One &= KOF(Known2.One, ShiftAmt); 1133 } 1134 1135 // If the known bits conflict, the result is poison. Return a 0 and hope the 1136 // caller can further optimize that. 1137 if (Known.hasConflict()) 1138 Known.setAllZero(); 1139 } 1140 1141 static void computeKnownBitsFromOperator(const Operator *I, 1142 const APInt &DemandedElts, 1143 KnownBits &Known, unsigned Depth, 1144 const Query &Q) { 1145 unsigned BitWidth = Known.getBitWidth(); 1146 1147 KnownBits Known2(BitWidth); 1148 switch (I->getOpcode()) { 1149 default: break; 1150 case Instruction::Load: 1151 if (MDNode *MD = 1152 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1153 computeKnownBitsFromRangeMetadata(*MD, Known); 1154 break; 1155 case Instruction::And: { 1156 // If either the LHS or the RHS are Zero, the result is zero. 1157 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1158 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1159 1160 Known &= Known2; 1161 1162 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1163 // here we handle the more general case of adding any odd number by 1164 // matching the form add(x, add(x, y)) where y is odd. 1165 // TODO: This could be generalized to clearing any bit set in y where the 1166 // following bit is known to be unset in y. 1167 Value *X = nullptr, *Y = nullptr; 1168 if (!Known.Zero[0] && !Known.One[0] && 1169 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1170 Known2.resetAll(); 1171 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1172 if (Known2.countMinTrailingOnes() > 0) 1173 Known.Zero.setBit(0); 1174 } 1175 break; 1176 } 1177 case Instruction::Or: 1178 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1179 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1180 1181 Known |= Known2; 1182 break; 1183 case Instruction::Xor: 1184 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1185 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1186 1187 Known ^= Known2; 1188 break; 1189 case Instruction::Mul: { 1190 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1191 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1192 Known, Known2, Depth, Q); 1193 break; 1194 } 1195 case Instruction::UDiv: { 1196 // For the purposes of computing leading zeros we can conservatively 1197 // treat a udiv as a logical right shift by the power of 2 known to 1198 // be less than the denominator. 1199 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1200 unsigned LeadZ = Known2.countMinLeadingZeros(); 1201 1202 Known2.resetAll(); 1203 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1204 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1205 if (RHSMaxLeadingZeros != BitWidth) 1206 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1207 1208 Known.Zero.setHighBits(LeadZ); 1209 break; 1210 } 1211 case Instruction::Select: { 1212 const Value *LHS = nullptr, *RHS = nullptr; 1213 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1214 if (SelectPatternResult::isMinOrMax(SPF)) { 1215 computeKnownBits(RHS, Known, Depth + 1, Q); 1216 computeKnownBits(LHS, Known2, Depth + 1, Q); 1217 } else { 1218 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1219 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1220 } 1221 1222 unsigned MaxHighOnes = 0; 1223 unsigned MaxHighZeros = 0; 1224 if (SPF == SPF_SMAX) { 1225 // If both sides are negative, the result is negative. 1226 if (Known.isNegative() && Known2.isNegative()) 1227 // We can derive a lower bound on the result by taking the max of the 1228 // leading one bits. 1229 MaxHighOnes = 1230 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1231 // If either side is non-negative, the result is non-negative. 1232 else if (Known.isNonNegative() || Known2.isNonNegative()) 1233 MaxHighZeros = 1; 1234 } else if (SPF == SPF_SMIN) { 1235 // If both sides are non-negative, the result is non-negative. 1236 if (Known.isNonNegative() && Known2.isNonNegative()) 1237 // We can derive an upper bound on the result by taking the max of the 1238 // leading zero bits. 1239 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1240 Known2.countMinLeadingZeros()); 1241 // If either side is negative, the result is negative. 1242 else if (Known.isNegative() || Known2.isNegative()) 1243 MaxHighOnes = 1; 1244 } else if (SPF == SPF_UMAX) { 1245 // We can derive a lower bound on the result by taking the max of the 1246 // leading one bits. 1247 MaxHighOnes = 1248 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1249 } else if (SPF == SPF_UMIN) { 1250 // We can derive an upper bound on the result by taking the max of the 1251 // leading zero bits. 1252 MaxHighZeros = 1253 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1254 } else if (SPF == SPF_ABS) { 1255 // RHS from matchSelectPattern returns the negation part of abs pattern. 1256 // If the negate has an NSW flag we can assume the sign bit of the result 1257 // will be 0 because that makes abs(INT_MIN) undefined. 1258 if (match(RHS, m_Neg(m_Specific(LHS))) && 1259 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1260 MaxHighZeros = 1; 1261 } 1262 1263 // Only known if known in both the LHS and RHS. 1264 Known.One &= Known2.One; 1265 Known.Zero &= Known2.Zero; 1266 if (MaxHighOnes > 0) 1267 Known.One.setHighBits(MaxHighOnes); 1268 if (MaxHighZeros > 0) 1269 Known.Zero.setHighBits(MaxHighZeros); 1270 break; 1271 } 1272 case Instruction::FPTrunc: 1273 case Instruction::FPExt: 1274 case Instruction::FPToUI: 1275 case Instruction::FPToSI: 1276 case Instruction::SIToFP: 1277 case Instruction::UIToFP: 1278 break; // Can't work with floating point. 1279 case Instruction::PtrToInt: 1280 case Instruction::IntToPtr: 1281 // Fall through and handle them the same as zext/trunc. 1282 LLVM_FALLTHROUGH; 1283 case Instruction::ZExt: 1284 case Instruction::Trunc: { 1285 Type *SrcTy = I->getOperand(0)->getType(); 1286 1287 unsigned SrcBitWidth; 1288 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1289 // which fall through here. 1290 Type *ScalarTy = SrcTy->getScalarType(); 1291 SrcBitWidth = ScalarTy->isPointerTy() ? 1292 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1293 Q.DL.getTypeSizeInBits(ScalarTy); 1294 1295 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1296 Known = Known.anyextOrTrunc(SrcBitWidth); 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 Known = Known.zextOrTrunc(BitWidth); 1299 break; 1300 } 1301 case Instruction::BitCast: { 1302 Type *SrcTy = I->getOperand(0)->getType(); 1303 if (SrcTy->isIntOrPtrTy() && 1304 // TODO: For now, not handling conversions like: 1305 // (bitcast i64 %x to <2 x i32>) 1306 !I->getType()->isVectorTy()) { 1307 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1308 break; 1309 } 1310 break; 1311 } 1312 case Instruction::SExt: { 1313 // Compute the bits in the result that are not present in the input. 1314 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1315 1316 Known = Known.trunc(SrcBitWidth); 1317 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1318 // If the sign bit of the input is known set or clear, then we know the 1319 // top bits of the result. 1320 Known = Known.sext(BitWidth); 1321 break; 1322 } 1323 case Instruction::Shl: { 1324 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1325 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1326 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1327 APInt KZResult = KnownZero << ShiftAmt; 1328 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1329 // If this shift has "nsw" keyword, then the result is either a poison 1330 // value or has the same sign bit as the first operand. 1331 if (NSW && KnownZero.isSignBitSet()) 1332 KZResult.setSignBit(); 1333 return KZResult; 1334 }; 1335 1336 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1337 APInt KOResult = KnownOne << ShiftAmt; 1338 if (NSW && KnownOne.isSignBitSet()) 1339 KOResult.setSignBit(); 1340 return KOResult; 1341 }; 1342 1343 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1344 KZF, KOF); 1345 break; 1346 } 1347 case Instruction::LShr: { 1348 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1349 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1350 APInt KZResult = KnownZero.lshr(ShiftAmt); 1351 // High bits known zero. 1352 KZResult.setHighBits(ShiftAmt); 1353 return KZResult; 1354 }; 1355 1356 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1357 return KnownOne.lshr(ShiftAmt); 1358 }; 1359 1360 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1361 KZF, KOF); 1362 break; 1363 } 1364 case Instruction::AShr: { 1365 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1366 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1367 return KnownZero.ashr(ShiftAmt); 1368 }; 1369 1370 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1371 return KnownOne.ashr(ShiftAmt); 1372 }; 1373 1374 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1375 KZF, KOF); 1376 break; 1377 } 1378 case Instruction::Sub: { 1379 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1380 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1381 DemandedElts, Known, Known2, Depth, Q); 1382 break; 1383 } 1384 case Instruction::Add: { 1385 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1386 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1387 DemandedElts, Known, Known2, Depth, Q); 1388 break; 1389 } 1390 case Instruction::SRem: 1391 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1392 APInt RA = Rem->getValue().abs(); 1393 if (RA.isPowerOf2()) { 1394 APInt LowBits = RA - 1; 1395 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1396 1397 // The low bits of the first operand are unchanged by the srem. 1398 Known.Zero = Known2.Zero & LowBits; 1399 Known.One = Known2.One & LowBits; 1400 1401 // If the first operand is non-negative or has all low bits zero, then 1402 // the upper bits are all zero. 1403 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1404 Known.Zero |= ~LowBits; 1405 1406 // If the first operand is negative and not all low bits are zero, then 1407 // the upper bits are all one. 1408 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1409 Known.One |= ~LowBits; 1410 1411 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1412 break; 1413 } 1414 } 1415 1416 // The sign bit is the LHS's sign bit, except when the result of the 1417 // remainder is zero. 1418 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1419 // If it's known zero, our sign bit is also zero. 1420 if (Known2.isNonNegative()) 1421 Known.makeNonNegative(); 1422 1423 break; 1424 case Instruction::URem: { 1425 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1426 const APInt &RA = Rem->getValue(); 1427 if (RA.isPowerOf2()) { 1428 APInt LowBits = (RA - 1); 1429 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1430 Known.Zero |= ~LowBits; 1431 Known.One &= LowBits; 1432 break; 1433 } 1434 } 1435 1436 // Since the result is less than or equal to either operand, any leading 1437 // zero bits in either operand must also exist in the result. 1438 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1439 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1440 1441 unsigned Leaders = 1442 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1443 Known.resetAll(); 1444 Known.Zero.setHighBits(Leaders); 1445 break; 1446 } 1447 case Instruction::Alloca: 1448 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1449 break; 1450 case Instruction::GetElementPtr: { 1451 // Analyze all of the subscripts of this getelementptr instruction 1452 // to determine if we can prove known low zero bits. 1453 KnownBits LocalKnown(BitWidth); 1454 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1455 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1456 1457 gep_type_iterator GTI = gep_type_begin(I); 1458 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1459 // TrailZ can only become smaller, short-circuit if we hit zero. 1460 if (TrailZ == 0) 1461 break; 1462 1463 Value *Index = I->getOperand(i); 1464 if (StructType *STy = GTI.getStructTypeOrNull()) { 1465 // Handle struct member offset arithmetic. 1466 1467 // Handle case when index is vector zeroinitializer 1468 Constant *CIndex = cast<Constant>(Index); 1469 if (CIndex->isZeroValue()) 1470 continue; 1471 1472 if (CIndex->getType()->isVectorTy()) 1473 Index = CIndex->getSplatValue(); 1474 1475 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1476 const StructLayout *SL = Q.DL.getStructLayout(STy); 1477 uint64_t Offset = SL->getElementOffset(Idx); 1478 TrailZ = std::min<unsigned>(TrailZ, 1479 countTrailingZeros(Offset)); 1480 } else { 1481 // Handle array index arithmetic. 1482 Type *IndexedTy = GTI.getIndexedType(); 1483 if (!IndexedTy->isSized()) { 1484 TrailZ = 0; 1485 break; 1486 } 1487 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1488 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1489 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1490 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1491 TrailZ = std::min(TrailZ, 1492 unsigned(countTrailingZeros(TypeSize) + 1493 LocalKnown.countMinTrailingZeros())); 1494 } 1495 } 1496 1497 Known.Zero.setLowBits(TrailZ); 1498 break; 1499 } 1500 case Instruction::PHI: { 1501 const PHINode *P = cast<PHINode>(I); 1502 // Handle the case of a simple two-predecessor recurrence PHI. 1503 // There's a lot more that could theoretically be done here, but 1504 // this is sufficient to catch some interesting cases. 1505 if (P->getNumIncomingValues() == 2) { 1506 for (unsigned i = 0; i != 2; ++i) { 1507 Value *L = P->getIncomingValue(i); 1508 Value *R = P->getIncomingValue(!i); 1509 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1510 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1511 Operator *LU = dyn_cast<Operator>(L); 1512 if (!LU) 1513 continue; 1514 unsigned Opcode = LU->getOpcode(); 1515 // Check for operations that have the property that if 1516 // both their operands have low zero bits, the result 1517 // will have low zero bits. 1518 if (Opcode == Instruction::Add || 1519 Opcode == Instruction::Sub || 1520 Opcode == Instruction::And || 1521 Opcode == Instruction::Or || 1522 Opcode == Instruction::Mul) { 1523 Value *LL = LU->getOperand(0); 1524 Value *LR = LU->getOperand(1); 1525 // Find a recurrence. 1526 if (LL == I) 1527 L = LR; 1528 else if (LR == I) 1529 L = LL; 1530 else 1531 continue; // Check for recurrence with L and R flipped. 1532 1533 // Change the context instruction to the "edge" that flows into the 1534 // phi. This is important because that is where the value is actually 1535 // "evaluated" even though it is used later somewhere else. (see also 1536 // D69571). 1537 Query RecQ = Q; 1538 1539 // Ok, we have a PHI of the form L op= R. Check for low 1540 // zero bits. 1541 RecQ.CxtI = RInst; 1542 computeKnownBits(R, Known2, Depth + 1, RecQ); 1543 1544 // We need to take the minimum number of known bits 1545 KnownBits Known3(BitWidth); 1546 RecQ.CxtI = LInst; 1547 computeKnownBits(L, Known3, Depth + 1, RecQ); 1548 1549 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1550 Known3.countMinTrailingZeros())); 1551 1552 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1553 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1554 // If initial value of recurrence is nonnegative, and we are adding 1555 // a nonnegative number with nsw, the result can only be nonnegative 1556 // or poison value regardless of the number of times we execute the 1557 // add in phi recurrence. If initial value is negative and we are 1558 // adding a negative number with nsw, the result can only be 1559 // negative or poison value. Similar arguments apply to sub and mul. 1560 // 1561 // (add non-negative, non-negative) --> non-negative 1562 // (add negative, negative) --> negative 1563 if (Opcode == Instruction::Add) { 1564 if (Known2.isNonNegative() && Known3.isNonNegative()) 1565 Known.makeNonNegative(); 1566 else if (Known2.isNegative() && Known3.isNegative()) 1567 Known.makeNegative(); 1568 } 1569 1570 // (sub nsw non-negative, negative) --> non-negative 1571 // (sub nsw negative, non-negative) --> negative 1572 else if (Opcode == Instruction::Sub && LL == I) { 1573 if (Known2.isNonNegative() && Known3.isNegative()) 1574 Known.makeNonNegative(); 1575 else if (Known2.isNegative() && Known3.isNonNegative()) 1576 Known.makeNegative(); 1577 } 1578 1579 // (mul nsw non-negative, non-negative) --> non-negative 1580 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1581 Known3.isNonNegative()) 1582 Known.makeNonNegative(); 1583 } 1584 1585 break; 1586 } 1587 } 1588 } 1589 1590 // Unreachable blocks may have zero-operand PHI nodes. 1591 if (P->getNumIncomingValues() == 0) 1592 break; 1593 1594 // Otherwise take the unions of the known bit sets of the operands, 1595 // taking conservative care to avoid excessive recursion. 1596 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1597 // Skip if every incoming value references to ourself. 1598 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1599 break; 1600 1601 Known.Zero.setAllBits(); 1602 Known.One.setAllBits(); 1603 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1604 Value *IncValue = P->getIncomingValue(u); 1605 // Skip direct self references. 1606 if (IncValue == P) continue; 1607 1608 // Change the context instruction to the "edge" that flows into the 1609 // phi. This is important because that is where the value is actually 1610 // "evaluated" even though it is used later somewhere else. (see also 1611 // D69571). 1612 Query RecQ = Q; 1613 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1614 1615 Known2 = KnownBits(BitWidth); 1616 // Recurse, but cap the recursion to one level, because we don't 1617 // want to waste time spinning around in loops. 1618 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1619 Known.Zero &= Known2.Zero; 1620 Known.One &= Known2.One; 1621 // If all bits have been ruled out, there's no need to check 1622 // more operands. 1623 if (!Known.Zero && !Known.One) 1624 break; 1625 } 1626 } 1627 break; 1628 } 1629 case Instruction::Call: 1630 case Instruction::Invoke: 1631 // If range metadata is attached to this call, set known bits from that, 1632 // and then intersect with known bits based on other properties of the 1633 // function. 1634 if (MDNode *MD = 1635 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1636 computeKnownBitsFromRangeMetadata(*MD, Known); 1637 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1638 computeKnownBits(RV, Known2, Depth + 1, Q); 1639 Known.Zero |= Known2.Zero; 1640 Known.One |= Known2.One; 1641 } 1642 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1643 switch (II->getIntrinsicID()) { 1644 default: break; 1645 case Intrinsic::bitreverse: 1646 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1647 Known.Zero |= Known2.Zero.reverseBits(); 1648 Known.One |= Known2.One.reverseBits(); 1649 break; 1650 case Intrinsic::bswap: 1651 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1652 Known.Zero |= Known2.Zero.byteSwap(); 1653 Known.One |= Known2.One.byteSwap(); 1654 break; 1655 case Intrinsic::ctlz: { 1656 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1657 // If we have a known 1, its position is our upper bound. 1658 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1659 // If this call is undefined for 0, the result will be less than 2^n. 1660 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1661 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1662 unsigned LowBits = Log2_32(PossibleLZ)+1; 1663 Known.Zero.setBitsFrom(LowBits); 1664 break; 1665 } 1666 case Intrinsic::cttz: { 1667 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1668 // If we have a known 1, its position is our upper bound. 1669 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1670 // If this call is undefined for 0, the result will be less than 2^n. 1671 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1672 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1673 unsigned LowBits = Log2_32(PossibleTZ)+1; 1674 Known.Zero.setBitsFrom(LowBits); 1675 break; 1676 } 1677 case Intrinsic::ctpop: { 1678 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1679 // We can bound the space the count needs. Also, bits known to be zero 1680 // can't contribute to the population. 1681 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1682 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1683 Known.Zero.setBitsFrom(LowBits); 1684 // TODO: we could bound KnownOne using the lower bound on the number 1685 // of bits which might be set provided by popcnt KnownOne2. 1686 break; 1687 } 1688 case Intrinsic::fshr: 1689 case Intrinsic::fshl: { 1690 const APInt *SA; 1691 if (!match(I->getOperand(2), m_APInt(SA))) 1692 break; 1693 1694 // Normalize to funnel shift left. 1695 uint64_t ShiftAmt = SA->urem(BitWidth); 1696 if (II->getIntrinsicID() == Intrinsic::fshr) 1697 ShiftAmt = BitWidth - ShiftAmt; 1698 1699 KnownBits Known3(BitWidth); 1700 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1701 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1702 1703 Known.Zero = 1704 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1705 Known.One = 1706 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1707 break; 1708 } 1709 case Intrinsic::uadd_sat: 1710 case Intrinsic::usub_sat: { 1711 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1712 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1713 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1714 1715 // Add: Leading ones of either operand are preserved. 1716 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1717 // as leading zeros in the result. 1718 unsigned LeadingKnown; 1719 if (IsAdd) 1720 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1721 Known2.countMinLeadingOnes()); 1722 else 1723 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1724 Known2.countMinLeadingOnes()); 1725 1726 Known = KnownBits::computeForAddSub( 1727 IsAdd, /* NSW */ false, Known, Known2); 1728 1729 // We select between the operation result and all-ones/zero 1730 // respectively, so we can preserve known ones/zeros. 1731 if (IsAdd) { 1732 Known.One.setHighBits(LeadingKnown); 1733 Known.Zero.clearAllBits(); 1734 } else { 1735 Known.Zero.setHighBits(LeadingKnown); 1736 Known.One.clearAllBits(); 1737 } 1738 break; 1739 } 1740 case Intrinsic::x86_sse42_crc32_64_64: 1741 Known.Zero.setBitsFrom(32); 1742 break; 1743 } 1744 } 1745 break; 1746 case Instruction::ShuffleVector: { 1747 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1748 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1749 if (!Shuf) { 1750 Known.resetAll(); 1751 return; 1752 } 1753 // For undef elements, we don't know anything about the common state of 1754 // the shuffle result. 1755 APInt DemandedLHS, DemandedRHS; 1756 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1757 Known.resetAll(); 1758 return; 1759 } 1760 Known.One.setAllBits(); 1761 Known.Zero.setAllBits(); 1762 if (!!DemandedLHS) { 1763 const Value *LHS = Shuf->getOperand(0); 1764 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1765 // If we don't know any bits, early out. 1766 if (Known.isUnknown()) 1767 break; 1768 } 1769 if (!!DemandedRHS) { 1770 const Value *RHS = Shuf->getOperand(1); 1771 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1772 Known.One &= Known2.One; 1773 Known.Zero &= Known2.Zero; 1774 } 1775 break; 1776 } 1777 case Instruction::InsertElement: { 1778 const Value *Vec = I->getOperand(0); 1779 const Value *Elt = I->getOperand(1); 1780 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1781 // Early out if the index is non-constant or out-of-range. 1782 unsigned NumElts = DemandedElts.getBitWidth(); 1783 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1784 Known.resetAll(); 1785 return; 1786 } 1787 Known.One.setAllBits(); 1788 Known.Zero.setAllBits(); 1789 unsigned EltIdx = CIdx->getZExtValue(); 1790 // Do we demand the inserted element? 1791 if (DemandedElts[EltIdx]) { 1792 computeKnownBits(Elt, Known, Depth + 1, Q); 1793 // If we don't know any bits, early out. 1794 if (Known.isUnknown()) 1795 break; 1796 } 1797 // We don't need the base vector element that has been inserted. 1798 APInt DemandedVecElts = DemandedElts; 1799 DemandedVecElts.clearBit(EltIdx); 1800 if (!!DemandedVecElts) { 1801 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1802 Known.One &= Known2.One; 1803 Known.Zero &= Known2.Zero; 1804 } 1805 break; 1806 } 1807 case Instruction::ExtractElement: { 1808 // Look through extract element. If the index is non-constant or 1809 // out-of-range demand all elements, otherwise just the extracted element. 1810 const Value *Vec = I->getOperand(0); 1811 const Value *Idx = I->getOperand(1); 1812 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1813 if (isa<ScalableVectorType>(Vec->getType())) { 1814 // FIXME: there's probably *something* we can do with scalable vectors 1815 Known.resetAll(); 1816 break; 1817 } 1818 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1819 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1820 if (CIdx && CIdx->getValue().ult(NumElts)) 1821 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1822 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1823 break; 1824 } 1825 case Instruction::ExtractValue: 1826 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1827 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1828 if (EVI->getNumIndices() != 1) break; 1829 if (EVI->getIndices()[0] == 0) { 1830 switch (II->getIntrinsicID()) { 1831 default: break; 1832 case Intrinsic::uadd_with_overflow: 1833 case Intrinsic::sadd_with_overflow: 1834 computeKnownBitsAddSub(true, II->getArgOperand(0), 1835 II->getArgOperand(1), false, DemandedElts, 1836 Known, Known2, Depth, Q); 1837 break; 1838 case Intrinsic::usub_with_overflow: 1839 case Intrinsic::ssub_with_overflow: 1840 computeKnownBitsAddSub(false, II->getArgOperand(0), 1841 II->getArgOperand(1), false, DemandedElts, 1842 Known, Known2, Depth, Q); 1843 break; 1844 case Intrinsic::umul_with_overflow: 1845 case Intrinsic::smul_with_overflow: 1846 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1847 DemandedElts, Known, Known2, Depth, Q); 1848 break; 1849 } 1850 } 1851 } 1852 break; 1853 } 1854 } 1855 1856 /// Determine which bits of V are known to be either zero or one and return 1857 /// them. 1858 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1859 unsigned Depth, const Query &Q) { 1860 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1861 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1862 return Known; 1863 } 1864 1865 /// Determine which bits of V are known to be either zero or one and return 1866 /// them. 1867 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1868 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1869 computeKnownBits(V, Known, Depth, Q); 1870 return Known; 1871 } 1872 1873 /// Determine which bits of V are known to be either zero or one and return 1874 /// them in the Known bit set. 1875 /// 1876 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1877 /// we cannot optimize based on the assumption that it is zero without changing 1878 /// it to be an explicit zero. If we don't change it to zero, other code could 1879 /// optimized based on the contradictory assumption that it is non-zero. 1880 /// Because instcombine aggressively folds operations with undef args anyway, 1881 /// this won't lose us code quality. 1882 /// 1883 /// This function is defined on values with integer type, values with pointer 1884 /// type, and vectors of integers. In the case 1885 /// where V is a vector, known zero, and known one values are the 1886 /// same width as the vector element, and the bit is set only if it is true 1887 /// for all of the demanded elements in the vector specified by DemandedElts. 1888 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1889 KnownBits &Known, unsigned Depth, const Query &Q) { 1890 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1891 // No demanded elts or V is a scalable vector, better to assume we don't 1892 // know anything. 1893 Known.resetAll(); 1894 return; 1895 } 1896 1897 assert(V && "No Value?"); 1898 assert(Depth <= MaxDepth && "Limit Search Depth"); 1899 1900 #ifndef NDEBUG 1901 Type *Ty = V->getType(); 1902 unsigned BitWidth = Known.getBitWidth(); 1903 1904 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1905 "Not integer or pointer type!"); 1906 1907 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1908 assert( 1909 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1910 "DemandedElt width should equal the fixed vector number of elements"); 1911 } else { 1912 assert(DemandedElts == APInt(1, 1) && 1913 "DemandedElt width should be 1 for scalars"); 1914 } 1915 1916 Type *ScalarTy = Ty->getScalarType(); 1917 if (ScalarTy->isPointerTy()) { 1918 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1919 "V and Known should have same BitWidth"); 1920 } else { 1921 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1922 "V and Known should have same BitWidth"); 1923 } 1924 #endif 1925 1926 const APInt *C; 1927 if (match(V, m_APInt(C))) { 1928 // We know all of the bits for a scalar constant or a splat vector constant! 1929 Known.One = *C; 1930 Known.Zero = ~Known.One; 1931 return; 1932 } 1933 // Null and aggregate-zero are all-zeros. 1934 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1935 Known.setAllZero(); 1936 return; 1937 } 1938 // Handle a constant vector by taking the intersection of the known bits of 1939 // each element. 1940 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1941 // We know that CDV must be a vector of integers. Take the intersection of 1942 // each element. 1943 Known.Zero.setAllBits(); Known.One.setAllBits(); 1944 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1945 if (!DemandedElts[i]) 1946 continue; 1947 APInt Elt = CDV->getElementAsAPInt(i); 1948 Known.Zero &= ~Elt; 1949 Known.One &= Elt; 1950 } 1951 return; 1952 } 1953 1954 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1955 // We know that CV must be a vector of integers. Take the intersection of 1956 // each element. 1957 Known.Zero.setAllBits(); Known.One.setAllBits(); 1958 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1959 if (!DemandedElts[i]) 1960 continue; 1961 Constant *Element = CV->getAggregateElement(i); 1962 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1963 if (!ElementCI) { 1964 Known.resetAll(); 1965 return; 1966 } 1967 const APInt &Elt = ElementCI->getValue(); 1968 Known.Zero &= ~Elt; 1969 Known.One &= Elt; 1970 } 1971 return; 1972 } 1973 1974 // Start out not knowing anything. 1975 Known.resetAll(); 1976 1977 // We can't imply anything about undefs. 1978 if (isa<UndefValue>(V)) 1979 return; 1980 1981 // There's no point in looking through other users of ConstantData for 1982 // assumptions. Confirm that we've handled them all. 1983 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1984 1985 // Limit search depth. 1986 // All recursive calls that increase depth must come after this. 1987 if (Depth == MaxDepth) 1988 return; 1989 1990 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1991 // the bits of its aliasee. 1992 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1993 if (!GA->isInterposable()) 1994 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1995 return; 1996 } 1997 1998 if (const Operator *I = dyn_cast<Operator>(V)) 1999 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2000 2001 // Aligned pointers have trailing zeros - refine Known.Zero set 2002 if (isa<PointerType>(V->getType())) { 2003 Align Alignment = V->getPointerAlignment(Q.DL); 2004 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 2005 } 2006 2007 // computeKnownBitsFromAssume strictly refines Known. 2008 // Therefore, we run them after computeKnownBitsFromOperator. 2009 2010 // Check whether a nearby assume intrinsic can determine some known bits. 2011 computeKnownBitsFromAssume(V, Known, Depth, Q); 2012 2013 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2014 } 2015 2016 /// Return true if the given value is known to have exactly one 2017 /// bit set when defined. For vectors return true if every element is known to 2018 /// be a power of two when defined. Supports values with integer or pointer 2019 /// types and vectors of integers. 2020 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2021 const Query &Q) { 2022 assert(Depth <= MaxDepth && "Limit Search Depth"); 2023 2024 // Attempt to match against constants. 2025 if (OrZero && match(V, m_Power2OrZero())) 2026 return true; 2027 if (match(V, m_Power2())) 2028 return true; 2029 2030 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2031 // it is shifted off the end then the result is undefined. 2032 if (match(V, m_Shl(m_One(), m_Value()))) 2033 return true; 2034 2035 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2036 // the bottom. If it is shifted off the bottom then the result is undefined. 2037 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2038 return true; 2039 2040 // The remaining tests are all recursive, so bail out if we hit the limit. 2041 if (Depth++ == MaxDepth) 2042 return false; 2043 2044 Value *X = nullptr, *Y = nullptr; 2045 // A shift left or a logical shift right of a power of two is a power of two 2046 // or zero. 2047 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2048 match(V, m_LShr(m_Value(X), m_Value())))) 2049 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2050 2051 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2052 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2053 2054 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2055 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2056 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2057 2058 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2059 // A power of two and'd with anything is a power of two or zero. 2060 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2061 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2062 return true; 2063 // X & (-X) is always a power of two or zero. 2064 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2065 return true; 2066 return false; 2067 } 2068 2069 // Adding a power-of-two or zero to the same power-of-two or zero yields 2070 // either the original power-of-two, a larger power-of-two or zero. 2071 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2072 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2073 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2074 Q.IIQ.hasNoSignedWrap(VOBO)) { 2075 if (match(X, m_And(m_Specific(Y), m_Value())) || 2076 match(X, m_And(m_Value(), m_Specific(Y)))) 2077 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2078 return true; 2079 if (match(Y, m_And(m_Specific(X), m_Value())) || 2080 match(Y, m_And(m_Value(), m_Specific(X)))) 2081 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2082 return true; 2083 2084 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2085 KnownBits LHSBits(BitWidth); 2086 computeKnownBits(X, LHSBits, Depth, Q); 2087 2088 KnownBits RHSBits(BitWidth); 2089 computeKnownBits(Y, RHSBits, Depth, Q); 2090 // If i8 V is a power of two or zero: 2091 // ZeroBits: 1 1 1 0 1 1 1 1 2092 // ~ZeroBits: 0 0 0 1 0 0 0 0 2093 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2094 // If OrZero isn't set, we cannot give back a zero result. 2095 // Make sure either the LHS or RHS has a bit set. 2096 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2097 return true; 2098 } 2099 } 2100 2101 // An exact divide or right shift can only shift off zero bits, so the result 2102 // is a power of two only if the first operand is a power of two and not 2103 // copying a sign bit (sdiv int_min, 2). 2104 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2105 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2106 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2107 Depth, Q); 2108 } 2109 2110 return false; 2111 } 2112 2113 /// Test whether a GEP's result is known to be non-null. 2114 /// 2115 /// Uses properties inherent in a GEP to try to determine whether it is known 2116 /// to be non-null. 2117 /// 2118 /// Currently this routine does not support vector GEPs. 2119 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2120 const Query &Q) { 2121 const Function *F = nullptr; 2122 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2123 F = I->getFunction(); 2124 2125 if (!GEP->isInBounds() || 2126 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2127 return false; 2128 2129 // FIXME: Support vector-GEPs. 2130 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2131 2132 // If the base pointer is non-null, we cannot walk to a null address with an 2133 // inbounds GEP in address space zero. 2134 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2135 return true; 2136 2137 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2138 // If so, then the GEP cannot produce a null pointer, as doing so would 2139 // inherently violate the inbounds contract within address space zero. 2140 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2141 GTI != GTE; ++GTI) { 2142 // Struct types are easy -- they must always be indexed by a constant. 2143 if (StructType *STy = GTI.getStructTypeOrNull()) { 2144 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2145 unsigned ElementIdx = OpC->getZExtValue(); 2146 const StructLayout *SL = Q.DL.getStructLayout(STy); 2147 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2148 if (ElementOffset > 0) 2149 return true; 2150 continue; 2151 } 2152 2153 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2154 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2155 continue; 2156 2157 // Fast path the constant operand case both for efficiency and so we don't 2158 // increment Depth when just zipping down an all-constant GEP. 2159 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2160 if (!OpC->isZero()) 2161 return true; 2162 continue; 2163 } 2164 2165 // We post-increment Depth here because while isKnownNonZero increments it 2166 // as well, when we pop back up that increment won't persist. We don't want 2167 // to recurse 10k times just because we have 10k GEP operands. We don't 2168 // bail completely out because we want to handle constant GEPs regardless 2169 // of depth. 2170 if (Depth++ >= MaxDepth) 2171 continue; 2172 2173 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2174 return true; 2175 } 2176 2177 return false; 2178 } 2179 2180 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2181 const Instruction *CtxI, 2182 const DominatorTree *DT) { 2183 if (isa<Constant>(V)) 2184 return false; 2185 2186 if (!CtxI || !DT) 2187 return false; 2188 2189 unsigned NumUsesExplored = 0; 2190 for (auto *U : V->users()) { 2191 // Avoid massive lists 2192 if (NumUsesExplored >= DomConditionsMaxUses) 2193 break; 2194 NumUsesExplored++; 2195 2196 // If the value is used as an argument to a call or invoke, then argument 2197 // attributes may provide an answer about null-ness. 2198 if (const auto *CB = dyn_cast<CallBase>(U)) 2199 if (auto *CalledFunc = CB->getCalledFunction()) 2200 for (const Argument &Arg : CalledFunc->args()) 2201 if (CB->getArgOperand(Arg.getArgNo()) == V && 2202 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2203 return true; 2204 2205 // If the value is used as a load/store, then the pointer must be non null. 2206 if (V == getLoadStorePointerOperand(U)) { 2207 const Instruction *I = cast<Instruction>(U); 2208 if (!NullPointerIsDefined(I->getFunction(), 2209 V->getType()->getPointerAddressSpace()) && 2210 DT->dominates(I, CtxI)) 2211 return true; 2212 } 2213 2214 // Consider only compare instructions uniquely controlling a branch 2215 CmpInst::Predicate Pred; 2216 if (!match(const_cast<User *>(U), 2217 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2218 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2219 continue; 2220 2221 SmallVector<const User *, 4> WorkList; 2222 SmallPtrSet<const User *, 4> Visited; 2223 for (auto *CmpU : U->users()) { 2224 assert(WorkList.empty() && "Should be!"); 2225 if (Visited.insert(CmpU).second) 2226 WorkList.push_back(CmpU); 2227 2228 while (!WorkList.empty()) { 2229 auto *Curr = WorkList.pop_back_val(); 2230 2231 // If a user is an AND, add all its users to the work list. We only 2232 // propagate "pred != null" condition through AND because it is only 2233 // correct to assume that all conditions of AND are met in true branch. 2234 // TODO: Support similar logic of OR and EQ predicate? 2235 if (Pred == ICmpInst::ICMP_NE) 2236 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2237 if (BO->getOpcode() == Instruction::And) { 2238 for (auto *BOU : BO->users()) 2239 if (Visited.insert(BOU).second) 2240 WorkList.push_back(BOU); 2241 continue; 2242 } 2243 2244 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2245 assert(BI->isConditional() && "uses a comparison!"); 2246 2247 BasicBlock *NonNullSuccessor = 2248 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2249 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2250 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2251 return true; 2252 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2253 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2254 return true; 2255 } 2256 } 2257 } 2258 } 2259 2260 return false; 2261 } 2262 2263 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2264 /// ensure that the value it's attached to is never Value? 'RangeType' is 2265 /// is the type of the value described by the range. 2266 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2267 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2268 assert(NumRanges >= 1); 2269 for (unsigned i = 0; i < NumRanges; ++i) { 2270 ConstantInt *Lower = 2271 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2272 ConstantInt *Upper = 2273 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2274 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2275 if (Range.contains(Value)) 2276 return false; 2277 } 2278 return true; 2279 } 2280 2281 /// Return true if the given value is known to be non-zero when defined. For 2282 /// vectors, return true if every demanded element is known to be non-zero when 2283 /// defined. For pointers, if the context instruction and dominator tree are 2284 /// specified, perform context-sensitive analysis and return true if the 2285 /// pointer couldn't possibly be null at the specified instruction. 2286 /// Supports values with integer or pointer type and vectors of integers. 2287 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2288 const Query &Q) { 2289 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2290 // vector 2291 if (isa<ScalableVectorType>(V->getType())) 2292 return false; 2293 2294 if (auto *C = dyn_cast<Constant>(V)) { 2295 if (C->isNullValue()) 2296 return false; 2297 if (isa<ConstantInt>(C)) 2298 // Must be non-zero due to null test above. 2299 return true; 2300 2301 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2302 // See the comment for IntToPtr/PtrToInt instructions below. 2303 if (CE->getOpcode() == Instruction::IntToPtr || 2304 CE->getOpcode() == Instruction::PtrToInt) 2305 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2306 Q.DL.getTypeSizeInBits(CE->getType())) 2307 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2308 } 2309 2310 // For constant vectors, check that all elements are undefined or known 2311 // non-zero to determine that the whole vector is known non-zero. 2312 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2313 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2314 if (!DemandedElts[i]) 2315 continue; 2316 Constant *Elt = C->getAggregateElement(i); 2317 if (!Elt || Elt->isNullValue()) 2318 return false; 2319 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2320 return false; 2321 } 2322 return true; 2323 } 2324 2325 // A global variable in address space 0 is non null unless extern weak 2326 // or an absolute symbol reference. Other address spaces may have null as a 2327 // valid address for a global, so we can't assume anything. 2328 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2329 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2330 GV->getType()->getAddressSpace() == 0) 2331 return true; 2332 } else 2333 return false; 2334 } 2335 2336 if (auto *I = dyn_cast<Instruction>(V)) { 2337 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2338 // If the possible ranges don't contain zero, then the value is 2339 // definitely non-zero. 2340 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2341 const APInt ZeroValue(Ty->getBitWidth(), 0); 2342 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2343 return true; 2344 } 2345 } 2346 } 2347 2348 if (isKnownNonZeroFromAssume(V, Q)) 2349 return true; 2350 2351 // Some of the tests below are recursive, so bail out if we hit the limit. 2352 if (Depth++ >= MaxDepth) 2353 return false; 2354 2355 // Check for pointer simplifications. 2356 2357 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2358 // Alloca never returns null, malloc might. 2359 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2360 return true; 2361 2362 // A byval, inalloca may not be null in a non-default addres space. A 2363 // nonnull argument is assumed never 0. 2364 if (const Argument *A = dyn_cast<Argument>(V)) { 2365 if (((A->hasPassPointeeByValueCopyAttr() && 2366 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2367 A->hasNonNullAttr())) 2368 return true; 2369 } 2370 2371 // A Load tagged with nonnull metadata is never null. 2372 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2373 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2374 return true; 2375 2376 if (const auto *Call = dyn_cast<CallBase>(V)) { 2377 if (Call->isReturnNonNull()) 2378 return true; 2379 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2380 return isKnownNonZero(RP, Depth, Q); 2381 } 2382 } 2383 2384 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2385 return true; 2386 2387 // Check for recursive pointer simplifications. 2388 if (V->getType()->isPointerTy()) { 2389 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2390 // do not alter the value, or at least not the nullness property of the 2391 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2392 // 2393 // Note that we have to take special care to avoid looking through 2394 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2395 // as casts that can alter the value, e.g., AddrSpaceCasts. 2396 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2397 if (isGEPKnownNonNull(GEP, Depth, Q)) 2398 return true; 2399 2400 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2401 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2402 2403 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2404 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2405 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2406 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2407 } 2408 2409 // Similar to int2ptr above, we can look through ptr2int here if the cast 2410 // is a no-op or an extend and not a truncate. 2411 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2412 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2413 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2414 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2415 2416 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2417 2418 // X | Y != 0 if X != 0 or Y != 0. 2419 Value *X = nullptr, *Y = nullptr; 2420 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2421 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2422 isKnownNonZero(Y, DemandedElts, Depth, Q); 2423 2424 // ext X != 0 if X != 0. 2425 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2426 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2427 2428 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2429 // if the lowest bit is shifted off the end. 2430 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2431 // shl nuw can't remove any non-zero bits. 2432 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2433 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2434 return isKnownNonZero(X, Depth, Q); 2435 2436 KnownBits Known(BitWidth); 2437 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2438 if (Known.One[0]) 2439 return true; 2440 } 2441 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2442 // defined if the sign bit is shifted off the end. 2443 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2444 // shr exact can only shift out zero bits. 2445 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2446 if (BO->isExact()) 2447 return isKnownNonZero(X, Depth, Q); 2448 2449 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2450 if (Known.isNegative()) 2451 return true; 2452 2453 // If the shifter operand is a constant, and all of the bits shifted 2454 // out are known to be zero, and X is known non-zero then at least one 2455 // non-zero bit must remain. 2456 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2457 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2458 // Is there a known one in the portion not shifted out? 2459 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2460 return true; 2461 // Are all the bits to be shifted out known zero? 2462 if (Known.countMinTrailingZeros() >= ShiftVal) 2463 return isKnownNonZero(X, DemandedElts, Depth, Q); 2464 } 2465 } 2466 // div exact can only produce a zero if the dividend is zero. 2467 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2468 return isKnownNonZero(X, DemandedElts, Depth, Q); 2469 } 2470 // X + Y. 2471 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2472 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2473 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2474 2475 // If X and Y are both non-negative (as signed values) then their sum is not 2476 // zero unless both X and Y are zero. 2477 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2478 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2479 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2480 return true; 2481 2482 // If X and Y are both negative (as signed values) then their sum is not 2483 // zero unless both X and Y equal INT_MIN. 2484 if (XKnown.isNegative() && YKnown.isNegative()) { 2485 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2486 // The sign bit of X is set. If some other bit is set then X is not equal 2487 // to INT_MIN. 2488 if (XKnown.One.intersects(Mask)) 2489 return true; 2490 // The sign bit of Y is set. If some other bit is set then Y is not equal 2491 // to INT_MIN. 2492 if (YKnown.One.intersects(Mask)) 2493 return true; 2494 } 2495 2496 // The sum of a non-negative number and a power of two is not zero. 2497 if (XKnown.isNonNegative() && 2498 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2499 return true; 2500 if (YKnown.isNonNegative() && 2501 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2502 return true; 2503 } 2504 // X * Y. 2505 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2506 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2507 // If X and Y are non-zero then so is X * Y as long as the multiplication 2508 // does not overflow. 2509 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2510 isKnownNonZero(X, DemandedElts, Depth, Q) && 2511 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2512 return true; 2513 } 2514 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2515 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2516 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2517 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2518 return true; 2519 } 2520 // PHI 2521 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2522 // Try and detect a recurrence that monotonically increases from a 2523 // starting value, as these are common as induction variables. 2524 if (PN->getNumIncomingValues() == 2) { 2525 Value *Start = PN->getIncomingValue(0); 2526 Value *Induction = PN->getIncomingValue(1); 2527 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2528 std::swap(Start, Induction); 2529 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2530 if (!C->isZero() && !C->isNegative()) { 2531 ConstantInt *X; 2532 if (Q.IIQ.UseInstrInfo && 2533 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2534 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2535 !X->isNegative()) 2536 return true; 2537 } 2538 } 2539 } 2540 // Check if all incoming values are non-zero constant. 2541 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2542 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2543 }); 2544 if (AllNonZeroConstants) 2545 return true; 2546 } 2547 // ExtractElement 2548 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2549 const Value *Vec = EEI->getVectorOperand(); 2550 const Value *Idx = EEI->getIndexOperand(); 2551 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2552 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 2553 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2554 if (CIdx && CIdx->getValue().ult(NumElts)) 2555 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2556 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2557 } 2558 2559 KnownBits Known(BitWidth); 2560 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2561 return Known.One != 0; 2562 } 2563 2564 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2565 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2566 // vector 2567 if (isa<ScalableVectorType>(V->getType())) 2568 return false; 2569 2570 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2571 APInt DemandedElts = 2572 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2573 return isKnownNonZero(V, DemandedElts, Depth, Q); 2574 } 2575 2576 /// Return true if V2 == V1 + X, where X is known non-zero. 2577 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2578 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2579 if (!BO || BO->getOpcode() != Instruction::Add) 2580 return false; 2581 Value *Op = nullptr; 2582 if (V2 == BO->getOperand(0)) 2583 Op = BO->getOperand(1); 2584 else if (V2 == BO->getOperand(1)) 2585 Op = BO->getOperand(0); 2586 else 2587 return false; 2588 return isKnownNonZero(Op, 0, Q); 2589 } 2590 2591 /// Return true if it is known that V1 != V2. 2592 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2593 if (V1 == V2) 2594 return false; 2595 if (V1->getType() != V2->getType()) 2596 // We can't look through casts yet. 2597 return false; 2598 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2599 return true; 2600 2601 if (V1->getType()->isIntOrIntVectorTy()) { 2602 // Are any known bits in V1 contradictory to known bits in V2? If V1 2603 // has a known zero where V2 has a known one, they must not be equal. 2604 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2605 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2606 2607 if (Known1.Zero.intersects(Known2.One) || 2608 Known2.Zero.intersects(Known1.One)) 2609 return true; 2610 } 2611 return false; 2612 } 2613 2614 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2615 /// simplify operations downstream. Mask is known to be zero for bits that V 2616 /// cannot have. 2617 /// 2618 /// This function is defined on values with integer type, values with pointer 2619 /// type, and vectors of integers. In the case 2620 /// where V is a vector, the mask, known zero, and known one values are the 2621 /// same width as the vector element, and the bit is set only if it is true 2622 /// for all of the elements in the vector. 2623 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2624 const Query &Q) { 2625 KnownBits Known(Mask.getBitWidth()); 2626 computeKnownBits(V, Known, Depth, Q); 2627 return Mask.isSubsetOf(Known.Zero); 2628 } 2629 2630 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2631 // Returns the input and lower/upper bounds. 2632 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2633 const APInt *&CLow, const APInt *&CHigh) { 2634 assert(isa<Operator>(Select) && 2635 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2636 "Input should be a Select!"); 2637 2638 const Value *LHS = nullptr, *RHS = nullptr; 2639 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2640 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2641 return false; 2642 2643 if (!match(RHS, m_APInt(CLow))) 2644 return false; 2645 2646 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2647 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2648 if (getInverseMinMaxFlavor(SPF) != SPF2) 2649 return false; 2650 2651 if (!match(RHS2, m_APInt(CHigh))) 2652 return false; 2653 2654 if (SPF == SPF_SMIN) 2655 std::swap(CLow, CHigh); 2656 2657 In = LHS2; 2658 return CLow->sle(*CHigh); 2659 } 2660 2661 /// For vector constants, loop over the elements and find the constant with the 2662 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2663 /// or if any element was not analyzed; otherwise, return the count for the 2664 /// element with the minimum number of sign bits. 2665 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2666 const APInt &DemandedElts, 2667 unsigned TyBits) { 2668 const auto *CV = dyn_cast<Constant>(V); 2669 if (!CV || !isa<FixedVectorType>(CV->getType())) 2670 return 0; 2671 2672 unsigned MinSignBits = TyBits; 2673 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2674 for (unsigned i = 0; i != NumElts; ++i) { 2675 if (!DemandedElts[i]) 2676 continue; 2677 // If we find a non-ConstantInt, bail out. 2678 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2679 if (!Elt) 2680 return 0; 2681 2682 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2683 } 2684 2685 return MinSignBits; 2686 } 2687 2688 static unsigned ComputeNumSignBitsImpl(const Value *V, 2689 const APInt &DemandedElts, 2690 unsigned Depth, const Query &Q); 2691 2692 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2693 unsigned Depth, const Query &Q) { 2694 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2695 assert(Result > 0 && "At least one sign bit needs to be present!"); 2696 return Result; 2697 } 2698 2699 /// Return the number of times the sign bit of the register is replicated into 2700 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2701 /// (itself), but other cases can give us information. For example, immediately 2702 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2703 /// other, so we return 3. For vectors, return the number of sign bits for the 2704 /// vector element with the minimum number of known sign bits of the demanded 2705 /// elements in the vector specified by DemandedElts. 2706 static unsigned ComputeNumSignBitsImpl(const Value *V, 2707 const APInt &DemandedElts, 2708 unsigned Depth, const Query &Q) { 2709 Type *Ty = V->getType(); 2710 2711 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2712 // vector 2713 if (isa<ScalableVectorType>(Ty)) 2714 return 1; 2715 2716 #ifndef NDEBUG 2717 assert(Depth <= MaxDepth && "Limit Search Depth"); 2718 2719 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2720 assert( 2721 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2722 "DemandedElt width should equal the fixed vector number of elements"); 2723 } else { 2724 assert(DemandedElts == APInt(1, 1) && 2725 "DemandedElt width should be 1 for scalars"); 2726 } 2727 #endif 2728 2729 // We return the minimum number of sign bits that are guaranteed to be present 2730 // in V, so for undef we have to conservatively return 1. We don't have the 2731 // same behavior for poison though -- that's a FIXME today. 2732 2733 Type *ScalarTy = Ty->getScalarType(); 2734 unsigned TyBits = ScalarTy->isPointerTy() ? 2735 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2736 Q.DL.getTypeSizeInBits(ScalarTy); 2737 2738 unsigned Tmp, Tmp2; 2739 unsigned FirstAnswer = 1; 2740 2741 // Note that ConstantInt is handled by the general computeKnownBits case 2742 // below. 2743 2744 if (Depth == MaxDepth) 2745 return 1; // Limit search depth. 2746 2747 if (auto *U = dyn_cast<Operator>(V)) { 2748 switch (Operator::getOpcode(V)) { 2749 default: break; 2750 case Instruction::SExt: 2751 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2752 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2753 2754 case Instruction::SDiv: { 2755 const APInt *Denominator; 2756 // sdiv X, C -> adds log(C) sign bits. 2757 if (match(U->getOperand(1), m_APInt(Denominator))) { 2758 2759 // Ignore non-positive denominator. 2760 if (!Denominator->isStrictlyPositive()) 2761 break; 2762 2763 // Calculate the incoming numerator bits. 2764 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2765 2766 // Add floor(log(C)) bits to the numerator bits. 2767 return std::min(TyBits, NumBits + Denominator->logBase2()); 2768 } 2769 break; 2770 } 2771 2772 case Instruction::SRem: { 2773 const APInt *Denominator; 2774 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2775 // positive constant. This let us put a lower bound on the number of sign 2776 // bits. 2777 if (match(U->getOperand(1), m_APInt(Denominator))) { 2778 2779 // Ignore non-positive denominator. 2780 if (!Denominator->isStrictlyPositive()) 2781 break; 2782 2783 // Calculate the incoming numerator bits. SRem by a positive constant 2784 // can't lower the number of sign bits. 2785 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2786 2787 // Calculate the leading sign bit constraints by examining the 2788 // denominator. Given that the denominator is positive, there are two 2789 // cases: 2790 // 2791 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2792 // (1 << ceilLogBase2(C)). 2793 // 2794 // 2. the numerator is negative. Then the result range is (-C,0] and 2795 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2796 // 2797 // Thus a lower bound on the number of sign bits is `TyBits - 2798 // ceilLogBase2(C)`. 2799 2800 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2801 return std::max(NumrBits, ResBits); 2802 } 2803 break; 2804 } 2805 2806 case Instruction::AShr: { 2807 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2808 // ashr X, C -> adds C sign bits. Vectors too. 2809 const APInt *ShAmt; 2810 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2811 if (ShAmt->uge(TyBits)) 2812 break; // Bad shift. 2813 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2814 Tmp += ShAmtLimited; 2815 if (Tmp > TyBits) Tmp = TyBits; 2816 } 2817 return Tmp; 2818 } 2819 case Instruction::Shl: { 2820 const APInt *ShAmt; 2821 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2822 // shl destroys sign bits. 2823 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2824 if (ShAmt->uge(TyBits) || // Bad shift. 2825 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2826 Tmp2 = ShAmt->getZExtValue(); 2827 return Tmp - Tmp2; 2828 } 2829 break; 2830 } 2831 case Instruction::And: 2832 case Instruction::Or: 2833 case Instruction::Xor: // NOT is handled here. 2834 // Logical binary ops preserve the number of sign bits at the worst. 2835 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2836 if (Tmp != 1) { 2837 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2838 FirstAnswer = std::min(Tmp, Tmp2); 2839 // We computed what we know about the sign bits as our first 2840 // answer. Now proceed to the generic code that uses 2841 // computeKnownBits, and pick whichever answer is better. 2842 } 2843 break; 2844 2845 case Instruction::Select: { 2846 // If we have a clamp pattern, we know that the number of sign bits will 2847 // be the minimum of the clamp min/max range. 2848 const Value *X; 2849 const APInt *CLow, *CHigh; 2850 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2851 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2852 2853 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2854 if (Tmp == 1) break; 2855 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2856 return std::min(Tmp, Tmp2); 2857 } 2858 2859 case Instruction::Add: 2860 // Add can have at most one carry bit. Thus we know that the output 2861 // is, at worst, one more bit than the inputs. 2862 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2863 if (Tmp == 1) break; 2864 2865 // Special case decrementing a value (ADD X, -1): 2866 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2867 if (CRHS->isAllOnesValue()) { 2868 KnownBits Known(TyBits); 2869 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2870 2871 // If the input is known to be 0 or 1, the output is 0/-1, which is 2872 // all sign bits set. 2873 if ((Known.Zero | 1).isAllOnesValue()) 2874 return TyBits; 2875 2876 // If we are subtracting one from a positive number, there is no carry 2877 // out of the result. 2878 if (Known.isNonNegative()) 2879 return Tmp; 2880 } 2881 2882 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2883 if (Tmp2 == 1) break; 2884 return std::min(Tmp, Tmp2) - 1; 2885 2886 case Instruction::Sub: 2887 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2888 if (Tmp2 == 1) break; 2889 2890 // Handle NEG. 2891 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2892 if (CLHS->isNullValue()) { 2893 KnownBits Known(TyBits); 2894 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2895 // If the input is known to be 0 or 1, the output is 0/-1, which is 2896 // all sign bits set. 2897 if ((Known.Zero | 1).isAllOnesValue()) 2898 return TyBits; 2899 2900 // If the input is known to be positive (the sign bit is known clear), 2901 // the output of the NEG has the same number of sign bits as the 2902 // input. 2903 if (Known.isNonNegative()) 2904 return Tmp2; 2905 2906 // Otherwise, we treat this like a SUB. 2907 } 2908 2909 // Sub can have at most one carry bit. Thus we know that the output 2910 // is, at worst, one more bit than the inputs. 2911 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2912 if (Tmp == 1) break; 2913 return std::min(Tmp, Tmp2) - 1; 2914 2915 case Instruction::Mul: { 2916 // The output of the Mul can be at most twice the valid bits in the 2917 // inputs. 2918 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2919 if (SignBitsOp0 == 1) break; 2920 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2921 if (SignBitsOp1 == 1) break; 2922 unsigned OutValidBits = 2923 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2924 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2925 } 2926 2927 case Instruction::PHI: { 2928 const PHINode *PN = cast<PHINode>(U); 2929 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2930 // Don't analyze large in-degree PHIs. 2931 if (NumIncomingValues > 4) break; 2932 // Unreachable blocks may have zero-operand PHI nodes. 2933 if (NumIncomingValues == 0) break; 2934 2935 // Take the minimum of all incoming values. This can't infinitely loop 2936 // because of our depth threshold. 2937 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2938 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2939 if (Tmp == 1) return Tmp; 2940 Tmp = std::min( 2941 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2942 } 2943 return Tmp; 2944 } 2945 2946 case Instruction::Trunc: 2947 // FIXME: it's tricky to do anything useful for this, but it is an 2948 // important case for targets like X86. 2949 break; 2950 2951 case Instruction::ExtractElement: 2952 // Look through extract element. At the moment we keep this simple and 2953 // skip tracking the specific element. But at least we might find 2954 // information valid for all elements of the vector (for example if vector 2955 // is sign extended, shifted, etc). 2956 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2957 2958 case Instruction::ShuffleVector: { 2959 // Collect the minimum number of sign bits that are shared by every vector 2960 // element referenced by the shuffle. 2961 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2962 if (!Shuf) { 2963 // FIXME: Add support for shufflevector constant expressions. 2964 return 1; 2965 } 2966 APInt DemandedLHS, DemandedRHS; 2967 // For undef elements, we don't know anything about the common state of 2968 // the shuffle result. 2969 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2970 return 1; 2971 Tmp = std::numeric_limits<unsigned>::max(); 2972 if (!!DemandedLHS) { 2973 const Value *LHS = Shuf->getOperand(0); 2974 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2975 } 2976 // If we don't know anything, early out and try computeKnownBits 2977 // fall-back. 2978 if (Tmp == 1) 2979 break; 2980 if (!!DemandedRHS) { 2981 const Value *RHS = Shuf->getOperand(1); 2982 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2983 Tmp = std::min(Tmp, Tmp2); 2984 } 2985 // If we don't know anything, early out and try computeKnownBits 2986 // fall-back. 2987 if (Tmp == 1) 2988 break; 2989 assert(Tmp <= Ty->getScalarSizeInBits() && 2990 "Failed to determine minimum sign bits"); 2991 return Tmp; 2992 } 2993 } 2994 } 2995 2996 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2997 // use this information. 2998 2999 // If we can examine all elements of a vector constant successfully, we're 3000 // done (we can't do any better than that). If not, keep trying. 3001 if (unsigned VecSignBits = 3002 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3003 return VecSignBits; 3004 3005 KnownBits Known(TyBits); 3006 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3007 3008 // If we know that the sign bit is either zero or one, determine the number of 3009 // identical bits in the top of the input value. 3010 return std::max(FirstAnswer, Known.countMinSignBits()); 3011 } 3012 3013 /// This function computes the integer multiple of Base that equals V. 3014 /// If successful, it returns true and returns the multiple in 3015 /// Multiple. If unsuccessful, it returns false. It looks 3016 /// through SExt instructions only if LookThroughSExt is true. 3017 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3018 bool LookThroughSExt, unsigned Depth) { 3019 assert(V && "No Value?"); 3020 assert(Depth <= MaxDepth && "Limit Search Depth"); 3021 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3022 3023 Type *T = V->getType(); 3024 3025 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3026 3027 if (Base == 0) 3028 return false; 3029 3030 if (Base == 1) { 3031 Multiple = V; 3032 return true; 3033 } 3034 3035 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3036 Constant *BaseVal = ConstantInt::get(T, Base); 3037 if (CO && CO == BaseVal) { 3038 // Multiple is 1. 3039 Multiple = ConstantInt::get(T, 1); 3040 return true; 3041 } 3042 3043 if (CI && CI->getZExtValue() % Base == 0) { 3044 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3045 return true; 3046 } 3047 3048 if (Depth == MaxDepth) return false; // Limit search depth. 3049 3050 Operator *I = dyn_cast<Operator>(V); 3051 if (!I) return false; 3052 3053 switch (I->getOpcode()) { 3054 default: break; 3055 case Instruction::SExt: 3056 if (!LookThroughSExt) return false; 3057 // otherwise fall through to ZExt 3058 LLVM_FALLTHROUGH; 3059 case Instruction::ZExt: 3060 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3061 LookThroughSExt, Depth+1); 3062 case Instruction::Shl: 3063 case Instruction::Mul: { 3064 Value *Op0 = I->getOperand(0); 3065 Value *Op1 = I->getOperand(1); 3066 3067 if (I->getOpcode() == Instruction::Shl) { 3068 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3069 if (!Op1CI) return false; 3070 // Turn Op0 << Op1 into Op0 * 2^Op1 3071 APInt Op1Int = Op1CI->getValue(); 3072 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3073 APInt API(Op1Int.getBitWidth(), 0); 3074 API.setBit(BitToSet); 3075 Op1 = ConstantInt::get(V->getContext(), API); 3076 } 3077 3078 Value *Mul0 = nullptr; 3079 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3080 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3081 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3082 if (Op1C->getType()->getPrimitiveSizeInBits() < 3083 MulC->getType()->getPrimitiveSizeInBits()) 3084 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3085 if (Op1C->getType()->getPrimitiveSizeInBits() > 3086 MulC->getType()->getPrimitiveSizeInBits()) 3087 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3088 3089 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3090 Multiple = ConstantExpr::getMul(MulC, Op1C); 3091 return true; 3092 } 3093 3094 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3095 if (Mul0CI->getValue() == 1) { 3096 // V == Base * Op1, so return Op1 3097 Multiple = Op1; 3098 return true; 3099 } 3100 } 3101 3102 Value *Mul1 = nullptr; 3103 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3104 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3105 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3106 if (Op0C->getType()->getPrimitiveSizeInBits() < 3107 MulC->getType()->getPrimitiveSizeInBits()) 3108 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3109 if (Op0C->getType()->getPrimitiveSizeInBits() > 3110 MulC->getType()->getPrimitiveSizeInBits()) 3111 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3112 3113 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3114 Multiple = ConstantExpr::getMul(MulC, Op0C); 3115 return true; 3116 } 3117 3118 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3119 if (Mul1CI->getValue() == 1) { 3120 // V == Base * Op0, so return Op0 3121 Multiple = Op0; 3122 return true; 3123 } 3124 } 3125 } 3126 } 3127 3128 // We could not determine if V is a multiple of Base. 3129 return false; 3130 } 3131 3132 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3133 const TargetLibraryInfo *TLI) { 3134 const Function *F = CB.getCalledFunction(); 3135 if (!F) 3136 return Intrinsic::not_intrinsic; 3137 3138 if (F->isIntrinsic()) 3139 return F->getIntrinsicID(); 3140 3141 // We are going to infer semantics of a library function based on mapping it 3142 // to an LLVM intrinsic. Check that the library function is available from 3143 // this callbase and in this environment. 3144 LibFunc Func; 3145 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3146 !CB.onlyReadsMemory()) 3147 return Intrinsic::not_intrinsic; 3148 3149 switch (Func) { 3150 default: 3151 break; 3152 case LibFunc_sin: 3153 case LibFunc_sinf: 3154 case LibFunc_sinl: 3155 return Intrinsic::sin; 3156 case LibFunc_cos: 3157 case LibFunc_cosf: 3158 case LibFunc_cosl: 3159 return Intrinsic::cos; 3160 case LibFunc_exp: 3161 case LibFunc_expf: 3162 case LibFunc_expl: 3163 return Intrinsic::exp; 3164 case LibFunc_exp2: 3165 case LibFunc_exp2f: 3166 case LibFunc_exp2l: 3167 return Intrinsic::exp2; 3168 case LibFunc_log: 3169 case LibFunc_logf: 3170 case LibFunc_logl: 3171 return Intrinsic::log; 3172 case LibFunc_log10: 3173 case LibFunc_log10f: 3174 case LibFunc_log10l: 3175 return Intrinsic::log10; 3176 case LibFunc_log2: 3177 case LibFunc_log2f: 3178 case LibFunc_log2l: 3179 return Intrinsic::log2; 3180 case LibFunc_fabs: 3181 case LibFunc_fabsf: 3182 case LibFunc_fabsl: 3183 return Intrinsic::fabs; 3184 case LibFunc_fmin: 3185 case LibFunc_fminf: 3186 case LibFunc_fminl: 3187 return Intrinsic::minnum; 3188 case LibFunc_fmax: 3189 case LibFunc_fmaxf: 3190 case LibFunc_fmaxl: 3191 return Intrinsic::maxnum; 3192 case LibFunc_copysign: 3193 case LibFunc_copysignf: 3194 case LibFunc_copysignl: 3195 return Intrinsic::copysign; 3196 case LibFunc_floor: 3197 case LibFunc_floorf: 3198 case LibFunc_floorl: 3199 return Intrinsic::floor; 3200 case LibFunc_ceil: 3201 case LibFunc_ceilf: 3202 case LibFunc_ceill: 3203 return Intrinsic::ceil; 3204 case LibFunc_trunc: 3205 case LibFunc_truncf: 3206 case LibFunc_truncl: 3207 return Intrinsic::trunc; 3208 case LibFunc_rint: 3209 case LibFunc_rintf: 3210 case LibFunc_rintl: 3211 return Intrinsic::rint; 3212 case LibFunc_nearbyint: 3213 case LibFunc_nearbyintf: 3214 case LibFunc_nearbyintl: 3215 return Intrinsic::nearbyint; 3216 case LibFunc_round: 3217 case LibFunc_roundf: 3218 case LibFunc_roundl: 3219 return Intrinsic::round; 3220 case LibFunc_roundeven: 3221 case LibFunc_roundevenf: 3222 case LibFunc_roundevenl: 3223 return Intrinsic::roundeven; 3224 case LibFunc_pow: 3225 case LibFunc_powf: 3226 case LibFunc_powl: 3227 return Intrinsic::pow; 3228 case LibFunc_sqrt: 3229 case LibFunc_sqrtf: 3230 case LibFunc_sqrtl: 3231 return Intrinsic::sqrt; 3232 } 3233 3234 return Intrinsic::not_intrinsic; 3235 } 3236 3237 /// Return true if we can prove that the specified FP value is never equal to 3238 /// -0.0. 3239 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3240 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3241 /// the same as +0.0 in floating-point ops. 3242 /// 3243 /// NOTE: this function will need to be revisited when we support non-default 3244 /// rounding modes! 3245 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3246 unsigned Depth) { 3247 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3248 return !CFP->getValueAPF().isNegZero(); 3249 3250 // Limit search depth. 3251 if (Depth == MaxDepth) 3252 return false; 3253 3254 auto *Op = dyn_cast<Operator>(V); 3255 if (!Op) 3256 return false; 3257 3258 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3259 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3260 return true; 3261 3262 // sitofp and uitofp turn into +0.0 for zero. 3263 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3264 return true; 3265 3266 if (auto *Call = dyn_cast<CallInst>(Op)) { 3267 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3268 switch (IID) { 3269 default: 3270 break; 3271 // sqrt(-0.0) = -0.0, no other negative results are possible. 3272 case Intrinsic::sqrt: 3273 case Intrinsic::canonicalize: 3274 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3275 // fabs(x) != -0.0 3276 case Intrinsic::fabs: 3277 return true; 3278 } 3279 } 3280 3281 return false; 3282 } 3283 3284 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3285 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3286 /// bit despite comparing equal. 3287 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3288 const TargetLibraryInfo *TLI, 3289 bool SignBitOnly, 3290 unsigned Depth) { 3291 // TODO: This function does not do the right thing when SignBitOnly is true 3292 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3293 // which flips the sign bits of NaNs. See 3294 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3295 3296 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3297 return !CFP->getValueAPF().isNegative() || 3298 (!SignBitOnly && CFP->getValueAPF().isZero()); 3299 } 3300 3301 // Handle vector of constants. 3302 if (auto *CV = dyn_cast<Constant>(V)) { 3303 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3304 unsigned NumElts = CVFVTy->getNumElements(); 3305 for (unsigned i = 0; i != NumElts; ++i) { 3306 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3307 if (!CFP) 3308 return false; 3309 if (CFP->getValueAPF().isNegative() && 3310 (SignBitOnly || !CFP->getValueAPF().isZero())) 3311 return false; 3312 } 3313 3314 // All non-negative ConstantFPs. 3315 return true; 3316 } 3317 } 3318 3319 if (Depth == MaxDepth) 3320 return false; // Limit search depth. 3321 3322 const Operator *I = dyn_cast<Operator>(V); 3323 if (!I) 3324 return false; 3325 3326 switch (I->getOpcode()) { 3327 default: 3328 break; 3329 // Unsigned integers are always nonnegative. 3330 case Instruction::UIToFP: 3331 return true; 3332 case Instruction::FMul: 3333 case Instruction::FDiv: 3334 // X * X is always non-negative or a NaN. 3335 // X / X is always exactly 1.0 or a NaN. 3336 if (I->getOperand(0) == I->getOperand(1) && 3337 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3338 return true; 3339 3340 LLVM_FALLTHROUGH; 3341 case Instruction::FAdd: 3342 case Instruction::FRem: 3343 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3344 Depth + 1) && 3345 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3346 Depth + 1); 3347 case Instruction::Select: 3348 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3349 Depth + 1) && 3350 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3351 Depth + 1); 3352 case Instruction::FPExt: 3353 case Instruction::FPTrunc: 3354 // Widening/narrowing never change sign. 3355 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3356 Depth + 1); 3357 case Instruction::ExtractElement: 3358 // Look through extract element. At the moment we keep this simple and skip 3359 // tracking the specific element. But at least we might find information 3360 // valid for all elements of the vector. 3361 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3362 Depth + 1); 3363 case Instruction::Call: 3364 const auto *CI = cast<CallInst>(I); 3365 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3366 switch (IID) { 3367 default: 3368 break; 3369 case Intrinsic::maxnum: { 3370 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3371 auto isPositiveNum = [&](Value *V) { 3372 if (SignBitOnly) { 3373 // With SignBitOnly, this is tricky because the result of 3374 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3375 // a constant strictly greater than 0.0. 3376 const APFloat *C; 3377 return match(V, m_APFloat(C)) && 3378 *C > APFloat::getZero(C->getSemantics()); 3379 } 3380 3381 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3382 // maxnum can't be ordered-less-than-zero. 3383 return isKnownNeverNaN(V, TLI) && 3384 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3385 }; 3386 3387 // TODO: This could be improved. We could also check that neither operand 3388 // has its sign bit set (and at least 1 is not-NAN?). 3389 return isPositiveNum(V0) || isPositiveNum(V1); 3390 } 3391 3392 case Intrinsic::maximum: 3393 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3394 Depth + 1) || 3395 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3396 Depth + 1); 3397 case Intrinsic::minnum: 3398 case Intrinsic::minimum: 3399 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3400 Depth + 1) && 3401 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3402 Depth + 1); 3403 case Intrinsic::exp: 3404 case Intrinsic::exp2: 3405 case Intrinsic::fabs: 3406 return true; 3407 3408 case Intrinsic::sqrt: 3409 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3410 if (!SignBitOnly) 3411 return true; 3412 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3413 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3414 3415 case Intrinsic::powi: 3416 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3417 // powi(x,n) is non-negative if n is even. 3418 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3419 return true; 3420 } 3421 // TODO: This is not correct. Given that exp is an integer, here are the 3422 // ways that pow can return a negative value: 3423 // 3424 // pow(x, exp) --> negative if exp is odd and x is negative. 3425 // pow(-0, exp) --> -inf if exp is negative odd. 3426 // pow(-0, exp) --> -0 if exp is positive odd. 3427 // pow(-inf, exp) --> -0 if exp is negative odd. 3428 // pow(-inf, exp) --> -inf if exp is positive odd. 3429 // 3430 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3431 // but we must return false if x == -0. Unfortunately we do not currently 3432 // have a way of expressing this constraint. See details in 3433 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3434 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3435 Depth + 1); 3436 3437 case Intrinsic::fma: 3438 case Intrinsic::fmuladd: 3439 // x*x+y is non-negative if y is non-negative. 3440 return I->getOperand(0) == I->getOperand(1) && 3441 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3442 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3443 Depth + 1); 3444 } 3445 break; 3446 } 3447 return false; 3448 } 3449 3450 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3451 const TargetLibraryInfo *TLI) { 3452 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3453 } 3454 3455 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3456 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3457 } 3458 3459 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3460 unsigned Depth) { 3461 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3462 3463 // If we're told that infinities won't happen, assume they won't. 3464 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3465 if (FPMathOp->hasNoInfs()) 3466 return true; 3467 3468 // Handle scalar constants. 3469 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3470 return !CFP->isInfinity(); 3471 3472 if (Depth == MaxDepth) 3473 return false; 3474 3475 if (auto *Inst = dyn_cast<Instruction>(V)) { 3476 switch (Inst->getOpcode()) { 3477 case Instruction::Select: { 3478 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3479 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3480 } 3481 case Instruction::UIToFP: 3482 // If the input type fits into the floating type the result is finite. 3483 return ilogb(APFloat::getLargest( 3484 Inst->getType()->getScalarType()->getFltSemantics())) >= 3485 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3486 default: 3487 break; 3488 } 3489 } 3490 3491 // try to handle fixed width vector constants 3492 if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) { 3493 // For vectors, verify that each element is not infinity. 3494 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3495 for (unsigned i = 0; i != NumElts; ++i) { 3496 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3497 if (!Elt) 3498 return false; 3499 if (isa<UndefValue>(Elt)) 3500 continue; 3501 auto *CElt = dyn_cast<ConstantFP>(Elt); 3502 if (!CElt || CElt->isInfinity()) 3503 return false; 3504 } 3505 // All elements were confirmed non-infinity or undefined. 3506 return true; 3507 } 3508 3509 // was not able to prove that V never contains infinity 3510 return false; 3511 } 3512 3513 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3514 unsigned Depth) { 3515 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3516 3517 // If we're told that NaNs won't happen, assume they won't. 3518 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3519 if (FPMathOp->hasNoNaNs()) 3520 return true; 3521 3522 // Handle scalar constants. 3523 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3524 return !CFP->isNaN(); 3525 3526 if (Depth == MaxDepth) 3527 return false; 3528 3529 if (auto *Inst = dyn_cast<Instruction>(V)) { 3530 switch (Inst->getOpcode()) { 3531 case Instruction::FAdd: 3532 case Instruction::FSub: 3533 // Adding positive and negative infinity produces NaN. 3534 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3535 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3536 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3537 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3538 3539 case Instruction::FMul: 3540 // Zero multiplied with infinity produces NaN. 3541 // FIXME: If neither side can be zero fmul never produces NaN. 3542 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3543 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3544 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3545 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3546 3547 case Instruction::FDiv: 3548 case Instruction::FRem: 3549 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3550 return false; 3551 3552 case Instruction::Select: { 3553 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3554 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3555 } 3556 case Instruction::SIToFP: 3557 case Instruction::UIToFP: 3558 return true; 3559 case Instruction::FPTrunc: 3560 case Instruction::FPExt: 3561 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3562 default: 3563 break; 3564 } 3565 } 3566 3567 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3568 switch (II->getIntrinsicID()) { 3569 case Intrinsic::canonicalize: 3570 case Intrinsic::fabs: 3571 case Intrinsic::copysign: 3572 case Intrinsic::exp: 3573 case Intrinsic::exp2: 3574 case Intrinsic::floor: 3575 case Intrinsic::ceil: 3576 case Intrinsic::trunc: 3577 case Intrinsic::rint: 3578 case Intrinsic::nearbyint: 3579 case Intrinsic::round: 3580 case Intrinsic::roundeven: 3581 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3582 case Intrinsic::sqrt: 3583 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3584 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3585 case Intrinsic::minnum: 3586 case Intrinsic::maxnum: 3587 // If either operand is not NaN, the result is not NaN. 3588 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3589 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3590 default: 3591 return false; 3592 } 3593 } 3594 3595 // Try to handle fixed width vector constants 3596 if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) { 3597 // For vectors, verify that each element is not NaN. 3598 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3599 for (unsigned i = 0; i != NumElts; ++i) { 3600 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3601 if (!Elt) 3602 return false; 3603 if (isa<UndefValue>(Elt)) 3604 continue; 3605 auto *CElt = dyn_cast<ConstantFP>(Elt); 3606 if (!CElt || CElt->isNaN()) 3607 return false; 3608 } 3609 // All elements were confirmed not-NaN or undefined. 3610 return true; 3611 } 3612 3613 // Was not able to prove that V never contains NaN 3614 return false; 3615 } 3616 3617 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3618 3619 // All byte-wide stores are splatable, even of arbitrary variables. 3620 if (V->getType()->isIntegerTy(8)) 3621 return V; 3622 3623 LLVMContext &Ctx = V->getContext(); 3624 3625 // Undef don't care. 3626 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3627 if (isa<UndefValue>(V)) 3628 return UndefInt8; 3629 3630 // Return Undef for zero-sized type. 3631 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3632 return UndefInt8; 3633 3634 Constant *C = dyn_cast<Constant>(V); 3635 if (!C) { 3636 // Conceptually, we could handle things like: 3637 // %a = zext i8 %X to i16 3638 // %b = shl i16 %a, 8 3639 // %c = or i16 %a, %b 3640 // but until there is an example that actually needs this, it doesn't seem 3641 // worth worrying about. 3642 return nullptr; 3643 } 3644 3645 // Handle 'null' ConstantArrayZero etc. 3646 if (C->isNullValue()) 3647 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3648 3649 // Constant floating-point values can be handled as integer values if the 3650 // corresponding integer value is "byteable". An important case is 0.0. 3651 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3652 Type *Ty = nullptr; 3653 if (CFP->getType()->isHalfTy()) 3654 Ty = Type::getInt16Ty(Ctx); 3655 else if (CFP->getType()->isFloatTy()) 3656 Ty = Type::getInt32Ty(Ctx); 3657 else if (CFP->getType()->isDoubleTy()) 3658 Ty = Type::getInt64Ty(Ctx); 3659 // Don't handle long double formats, which have strange constraints. 3660 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3661 : nullptr; 3662 } 3663 3664 // We can handle constant integers that are multiple of 8 bits. 3665 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3666 if (CI->getBitWidth() % 8 == 0) { 3667 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3668 if (!CI->getValue().isSplat(8)) 3669 return nullptr; 3670 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3671 } 3672 } 3673 3674 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3675 if (CE->getOpcode() == Instruction::IntToPtr) { 3676 auto PS = DL.getPointerSizeInBits( 3677 cast<PointerType>(CE->getType())->getAddressSpace()); 3678 return isBytewiseValue( 3679 ConstantExpr::getIntegerCast(CE->getOperand(0), 3680 Type::getIntNTy(Ctx, PS), false), 3681 DL); 3682 } 3683 } 3684 3685 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3686 if (LHS == RHS) 3687 return LHS; 3688 if (!LHS || !RHS) 3689 return nullptr; 3690 if (LHS == UndefInt8) 3691 return RHS; 3692 if (RHS == UndefInt8) 3693 return LHS; 3694 return nullptr; 3695 }; 3696 3697 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3698 Value *Val = UndefInt8; 3699 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3700 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3701 return nullptr; 3702 return Val; 3703 } 3704 3705 if (isa<ConstantAggregate>(C)) { 3706 Value *Val = UndefInt8; 3707 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3708 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3709 return nullptr; 3710 return Val; 3711 } 3712 3713 // Don't try to handle the handful of other constants. 3714 return nullptr; 3715 } 3716 3717 // This is the recursive version of BuildSubAggregate. It takes a few different 3718 // arguments. Idxs is the index within the nested struct From that we are 3719 // looking at now (which is of type IndexedType). IdxSkip is the number of 3720 // indices from Idxs that should be left out when inserting into the resulting 3721 // struct. To is the result struct built so far, new insertvalue instructions 3722 // build on that. 3723 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3724 SmallVectorImpl<unsigned> &Idxs, 3725 unsigned IdxSkip, 3726 Instruction *InsertBefore) { 3727 StructType *STy = dyn_cast<StructType>(IndexedType); 3728 if (STy) { 3729 // Save the original To argument so we can modify it 3730 Value *OrigTo = To; 3731 // General case, the type indexed by Idxs is a struct 3732 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3733 // Process each struct element recursively 3734 Idxs.push_back(i); 3735 Value *PrevTo = To; 3736 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3737 InsertBefore); 3738 Idxs.pop_back(); 3739 if (!To) { 3740 // Couldn't find any inserted value for this index? Cleanup 3741 while (PrevTo != OrigTo) { 3742 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3743 PrevTo = Del->getAggregateOperand(); 3744 Del->eraseFromParent(); 3745 } 3746 // Stop processing elements 3747 break; 3748 } 3749 } 3750 // If we successfully found a value for each of our subaggregates 3751 if (To) 3752 return To; 3753 } 3754 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3755 // the struct's elements had a value that was inserted directly. In the latter 3756 // case, perhaps we can't determine each of the subelements individually, but 3757 // we might be able to find the complete struct somewhere. 3758 3759 // Find the value that is at that particular spot 3760 Value *V = FindInsertedValue(From, Idxs); 3761 3762 if (!V) 3763 return nullptr; 3764 3765 // Insert the value in the new (sub) aggregate 3766 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3767 "tmp", InsertBefore); 3768 } 3769 3770 // This helper takes a nested struct and extracts a part of it (which is again a 3771 // struct) into a new value. For example, given the struct: 3772 // { a, { b, { c, d }, e } } 3773 // and the indices "1, 1" this returns 3774 // { c, d }. 3775 // 3776 // It does this by inserting an insertvalue for each element in the resulting 3777 // struct, as opposed to just inserting a single struct. This will only work if 3778 // each of the elements of the substruct are known (ie, inserted into From by an 3779 // insertvalue instruction somewhere). 3780 // 3781 // All inserted insertvalue instructions are inserted before InsertBefore 3782 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3783 Instruction *InsertBefore) { 3784 assert(InsertBefore && "Must have someplace to insert!"); 3785 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3786 idx_range); 3787 Value *To = UndefValue::get(IndexedType); 3788 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3789 unsigned IdxSkip = Idxs.size(); 3790 3791 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3792 } 3793 3794 /// Given an aggregate and a sequence of indices, see if the scalar value 3795 /// indexed is already around as a register, for example if it was inserted 3796 /// directly into the aggregate. 3797 /// 3798 /// If InsertBefore is not null, this function will duplicate (modified) 3799 /// insertvalues when a part of a nested struct is extracted. 3800 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3801 Instruction *InsertBefore) { 3802 // Nothing to index? Just return V then (this is useful at the end of our 3803 // recursion). 3804 if (idx_range.empty()) 3805 return V; 3806 // We have indices, so V should have an indexable type. 3807 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3808 "Not looking at a struct or array?"); 3809 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3810 "Invalid indices for type?"); 3811 3812 if (Constant *C = dyn_cast<Constant>(V)) { 3813 C = C->getAggregateElement(idx_range[0]); 3814 if (!C) return nullptr; 3815 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3816 } 3817 3818 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3819 // Loop the indices for the insertvalue instruction in parallel with the 3820 // requested indices 3821 const unsigned *req_idx = idx_range.begin(); 3822 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3823 i != e; ++i, ++req_idx) { 3824 if (req_idx == idx_range.end()) { 3825 // We can't handle this without inserting insertvalues 3826 if (!InsertBefore) 3827 return nullptr; 3828 3829 // The requested index identifies a part of a nested aggregate. Handle 3830 // this specially. For example, 3831 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3832 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3833 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3834 // This can be changed into 3835 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3836 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3837 // which allows the unused 0,0 element from the nested struct to be 3838 // removed. 3839 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3840 InsertBefore); 3841 } 3842 3843 // This insert value inserts something else than what we are looking for. 3844 // See if the (aggregate) value inserted into has the value we are 3845 // looking for, then. 3846 if (*req_idx != *i) 3847 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3848 InsertBefore); 3849 } 3850 // If we end up here, the indices of the insertvalue match with those 3851 // requested (though possibly only partially). Now we recursively look at 3852 // the inserted value, passing any remaining indices. 3853 return FindInsertedValue(I->getInsertedValueOperand(), 3854 makeArrayRef(req_idx, idx_range.end()), 3855 InsertBefore); 3856 } 3857 3858 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3859 // If we're extracting a value from an aggregate that was extracted from 3860 // something else, we can extract from that something else directly instead. 3861 // However, we will need to chain I's indices with the requested indices. 3862 3863 // Calculate the number of indices required 3864 unsigned size = I->getNumIndices() + idx_range.size(); 3865 // Allocate some space to put the new indices in 3866 SmallVector<unsigned, 5> Idxs; 3867 Idxs.reserve(size); 3868 // Add indices from the extract value instruction 3869 Idxs.append(I->idx_begin(), I->idx_end()); 3870 3871 // Add requested indices 3872 Idxs.append(idx_range.begin(), idx_range.end()); 3873 3874 assert(Idxs.size() == size 3875 && "Number of indices added not correct?"); 3876 3877 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3878 } 3879 // Otherwise, we don't know (such as, extracting from a function return value 3880 // or load instruction) 3881 return nullptr; 3882 } 3883 3884 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3885 unsigned CharSize) { 3886 // Make sure the GEP has exactly three arguments. 3887 if (GEP->getNumOperands() != 3) 3888 return false; 3889 3890 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3891 // CharSize. 3892 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3893 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3894 return false; 3895 3896 // Check to make sure that the first operand of the GEP is an integer and 3897 // has value 0 so that we are sure we're indexing into the initializer. 3898 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3899 if (!FirstIdx || !FirstIdx->isZero()) 3900 return false; 3901 3902 return true; 3903 } 3904 3905 bool llvm::getConstantDataArrayInfo(const Value *V, 3906 ConstantDataArraySlice &Slice, 3907 unsigned ElementSize, uint64_t Offset) { 3908 assert(V); 3909 3910 // Look through bitcast instructions and geps. 3911 V = V->stripPointerCasts(); 3912 3913 // If the value is a GEP instruction or constant expression, treat it as an 3914 // offset. 3915 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3916 // The GEP operator should be based on a pointer to string constant, and is 3917 // indexing into the string constant. 3918 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3919 return false; 3920 3921 // If the second index isn't a ConstantInt, then this is a variable index 3922 // into the array. If this occurs, we can't say anything meaningful about 3923 // the string. 3924 uint64_t StartIdx = 0; 3925 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3926 StartIdx = CI->getZExtValue(); 3927 else 3928 return false; 3929 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3930 StartIdx + Offset); 3931 } 3932 3933 // The GEP instruction, constant or instruction, must reference a global 3934 // variable that is a constant and is initialized. The referenced constant 3935 // initializer is the array that we'll use for optimization. 3936 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3937 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3938 return false; 3939 3940 const ConstantDataArray *Array; 3941 ArrayType *ArrayTy; 3942 if (GV->getInitializer()->isNullValue()) { 3943 Type *GVTy = GV->getValueType(); 3944 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3945 // A zeroinitializer for the array; there is no ConstantDataArray. 3946 Array = nullptr; 3947 } else { 3948 const DataLayout &DL = GV->getParent()->getDataLayout(); 3949 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3950 uint64_t Length = SizeInBytes / (ElementSize / 8); 3951 if (Length <= Offset) 3952 return false; 3953 3954 Slice.Array = nullptr; 3955 Slice.Offset = 0; 3956 Slice.Length = Length - Offset; 3957 return true; 3958 } 3959 } else { 3960 // This must be a ConstantDataArray. 3961 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3962 if (!Array) 3963 return false; 3964 ArrayTy = Array->getType(); 3965 } 3966 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3967 return false; 3968 3969 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3970 if (Offset > NumElts) 3971 return false; 3972 3973 Slice.Array = Array; 3974 Slice.Offset = Offset; 3975 Slice.Length = NumElts - Offset; 3976 return true; 3977 } 3978 3979 /// This function computes the length of a null-terminated C string pointed to 3980 /// by V. If successful, it returns true and returns the string in Str. 3981 /// If unsuccessful, it returns false. 3982 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3983 uint64_t Offset, bool TrimAtNul) { 3984 ConstantDataArraySlice Slice; 3985 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3986 return false; 3987 3988 if (Slice.Array == nullptr) { 3989 if (TrimAtNul) { 3990 Str = StringRef(); 3991 return true; 3992 } 3993 if (Slice.Length == 1) { 3994 Str = StringRef("", 1); 3995 return true; 3996 } 3997 // We cannot instantiate a StringRef as we do not have an appropriate string 3998 // of 0s at hand. 3999 return false; 4000 } 4001 4002 // Start out with the entire array in the StringRef. 4003 Str = Slice.Array->getAsString(); 4004 // Skip over 'offset' bytes. 4005 Str = Str.substr(Slice.Offset); 4006 4007 if (TrimAtNul) { 4008 // Trim off the \0 and anything after it. If the array is not nul 4009 // terminated, we just return the whole end of string. The client may know 4010 // some other way that the string is length-bound. 4011 Str = Str.substr(0, Str.find('\0')); 4012 } 4013 return true; 4014 } 4015 4016 // These next two are very similar to the above, but also look through PHI 4017 // nodes. 4018 // TODO: See if we can integrate these two together. 4019 4020 /// If we can compute the length of the string pointed to by 4021 /// the specified pointer, return 'len+1'. If we can't, return 0. 4022 static uint64_t GetStringLengthH(const Value *V, 4023 SmallPtrSetImpl<const PHINode*> &PHIs, 4024 unsigned CharSize) { 4025 // Look through noop bitcast instructions. 4026 V = V->stripPointerCasts(); 4027 4028 // If this is a PHI node, there are two cases: either we have already seen it 4029 // or we haven't. 4030 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4031 if (!PHIs.insert(PN).second) 4032 return ~0ULL; // already in the set. 4033 4034 // If it was new, see if all the input strings are the same length. 4035 uint64_t LenSoFar = ~0ULL; 4036 for (Value *IncValue : PN->incoming_values()) { 4037 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4038 if (Len == 0) return 0; // Unknown length -> unknown. 4039 4040 if (Len == ~0ULL) continue; 4041 4042 if (Len != LenSoFar && LenSoFar != ~0ULL) 4043 return 0; // Disagree -> unknown. 4044 LenSoFar = Len; 4045 } 4046 4047 // Success, all agree. 4048 return LenSoFar; 4049 } 4050 4051 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4052 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4053 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4054 if (Len1 == 0) return 0; 4055 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4056 if (Len2 == 0) return 0; 4057 if (Len1 == ~0ULL) return Len2; 4058 if (Len2 == ~0ULL) return Len1; 4059 if (Len1 != Len2) return 0; 4060 return Len1; 4061 } 4062 4063 // Otherwise, see if we can read the string. 4064 ConstantDataArraySlice Slice; 4065 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4066 return 0; 4067 4068 if (Slice.Array == nullptr) 4069 return 1; 4070 4071 // Search for nul characters 4072 unsigned NullIndex = 0; 4073 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4074 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4075 break; 4076 } 4077 4078 return NullIndex + 1; 4079 } 4080 4081 /// If we can compute the length of the string pointed to by 4082 /// the specified pointer, return 'len+1'. If we can't, return 0. 4083 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4084 if (!V->getType()->isPointerTy()) 4085 return 0; 4086 4087 SmallPtrSet<const PHINode*, 32> PHIs; 4088 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4089 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4090 // an empty string as a length. 4091 return Len == ~0ULL ? 1 : Len; 4092 } 4093 4094 const Value * 4095 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4096 bool MustPreserveNullness) { 4097 assert(Call && 4098 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4099 if (const Value *RV = Call->getReturnedArgOperand()) 4100 return RV; 4101 // This can be used only as a aliasing property. 4102 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4103 Call, MustPreserveNullness)) 4104 return Call->getArgOperand(0); 4105 return nullptr; 4106 } 4107 4108 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4109 const CallBase *Call, bool MustPreserveNullness) { 4110 switch (Call->getIntrinsicID()) { 4111 case Intrinsic::launder_invariant_group: 4112 case Intrinsic::strip_invariant_group: 4113 case Intrinsic::aarch64_irg: 4114 case Intrinsic::aarch64_tagp: 4115 return true; 4116 case Intrinsic::ptrmask: 4117 return !MustPreserveNullness; 4118 default: 4119 return false; 4120 } 4121 } 4122 4123 /// \p PN defines a loop-variant pointer to an object. Check if the 4124 /// previous iteration of the loop was referring to the same object as \p PN. 4125 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4126 const LoopInfo *LI) { 4127 // Find the loop-defined value. 4128 Loop *L = LI->getLoopFor(PN->getParent()); 4129 if (PN->getNumIncomingValues() != 2) 4130 return true; 4131 4132 // Find the value from previous iteration. 4133 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4134 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4135 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4136 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4137 return true; 4138 4139 // If a new pointer is loaded in the loop, the pointer references a different 4140 // object in every iteration. E.g.: 4141 // for (i) 4142 // int *p = a[i]; 4143 // ... 4144 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4145 if (!L->isLoopInvariant(Load->getPointerOperand())) 4146 return false; 4147 return true; 4148 } 4149 4150 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4151 unsigned MaxLookup) { 4152 if (!V->getType()->isPointerTy()) 4153 return V; 4154 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4155 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4156 V = GEP->getPointerOperand(); 4157 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4158 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4159 V = cast<Operator>(V)->getOperand(0); 4160 if (!V->getType()->isPointerTy()) 4161 return V; 4162 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4163 if (GA->isInterposable()) 4164 return V; 4165 V = GA->getAliasee(); 4166 } else { 4167 if (auto *PHI = dyn_cast<PHINode>(V)) { 4168 // Look through single-arg phi nodes created by LCSSA. 4169 if (PHI->getNumIncomingValues() == 1) { 4170 V = PHI->getIncomingValue(0); 4171 continue; 4172 } 4173 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4174 // CaptureTracking can know about special capturing properties of some 4175 // intrinsics like launder.invariant.group, that can't be expressed with 4176 // the attributes, but have properties like returning aliasing pointer. 4177 // Because some analysis may assume that nocaptured pointer is not 4178 // returned from some special intrinsic (because function would have to 4179 // be marked with returns attribute), it is crucial to use this function 4180 // because it should be in sync with CaptureTracking. Not using it may 4181 // cause weird miscompilations where 2 aliasing pointers are assumed to 4182 // noalias. 4183 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4184 V = RP; 4185 continue; 4186 } 4187 } 4188 4189 return V; 4190 } 4191 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4192 } 4193 return V; 4194 } 4195 4196 void llvm::GetUnderlyingObjects(const Value *V, 4197 SmallVectorImpl<const Value *> &Objects, 4198 const DataLayout &DL, LoopInfo *LI, 4199 unsigned MaxLookup) { 4200 SmallPtrSet<const Value *, 4> Visited; 4201 SmallVector<const Value *, 4> Worklist; 4202 Worklist.push_back(V); 4203 do { 4204 const Value *P = Worklist.pop_back_val(); 4205 P = GetUnderlyingObject(P, DL, MaxLookup); 4206 4207 if (!Visited.insert(P).second) 4208 continue; 4209 4210 if (auto *SI = dyn_cast<SelectInst>(P)) { 4211 Worklist.push_back(SI->getTrueValue()); 4212 Worklist.push_back(SI->getFalseValue()); 4213 continue; 4214 } 4215 4216 if (auto *PN = dyn_cast<PHINode>(P)) { 4217 // If this PHI changes the underlying object in every iteration of the 4218 // loop, don't look through it. Consider: 4219 // int **A; 4220 // for (i) { 4221 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4222 // Curr = A[i]; 4223 // *Prev, *Curr; 4224 // 4225 // Prev is tracking Curr one iteration behind so they refer to different 4226 // underlying objects. 4227 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4228 isSameUnderlyingObjectInLoop(PN, LI)) 4229 for (Value *IncValue : PN->incoming_values()) 4230 Worklist.push_back(IncValue); 4231 continue; 4232 } 4233 4234 Objects.push_back(P); 4235 } while (!Worklist.empty()); 4236 } 4237 4238 /// This is the function that does the work of looking through basic 4239 /// ptrtoint+arithmetic+inttoptr sequences. 4240 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4241 do { 4242 if (const Operator *U = dyn_cast<Operator>(V)) { 4243 // If we find a ptrtoint, we can transfer control back to the 4244 // regular getUnderlyingObjectFromInt. 4245 if (U->getOpcode() == Instruction::PtrToInt) 4246 return U->getOperand(0); 4247 // If we find an add of a constant, a multiplied value, or a phi, it's 4248 // likely that the other operand will lead us to the base 4249 // object. We don't have to worry about the case where the 4250 // object address is somehow being computed by the multiply, 4251 // because our callers only care when the result is an 4252 // identifiable object. 4253 if (U->getOpcode() != Instruction::Add || 4254 (!isa<ConstantInt>(U->getOperand(1)) && 4255 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4256 !isa<PHINode>(U->getOperand(1)))) 4257 return V; 4258 V = U->getOperand(0); 4259 } else { 4260 return V; 4261 } 4262 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4263 } while (true); 4264 } 4265 4266 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4267 /// ptrtoint+arithmetic+inttoptr sequences. 4268 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4269 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4270 SmallVectorImpl<Value *> &Objects, 4271 const DataLayout &DL) { 4272 SmallPtrSet<const Value *, 16> Visited; 4273 SmallVector<const Value *, 4> Working(1, V); 4274 do { 4275 V = Working.pop_back_val(); 4276 4277 SmallVector<const Value *, 4> Objs; 4278 GetUnderlyingObjects(V, Objs, DL); 4279 4280 for (const Value *V : Objs) { 4281 if (!Visited.insert(V).second) 4282 continue; 4283 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4284 const Value *O = 4285 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4286 if (O->getType()->isPointerTy()) { 4287 Working.push_back(O); 4288 continue; 4289 } 4290 } 4291 // If GetUnderlyingObjects fails to find an identifiable object, 4292 // getUnderlyingObjectsForCodeGen also fails for safety. 4293 if (!isIdentifiedObject(V)) { 4294 Objects.clear(); 4295 return false; 4296 } 4297 Objects.push_back(const_cast<Value *>(V)); 4298 } 4299 } while (!Working.empty()); 4300 return true; 4301 } 4302 4303 /// Return true if the only users of this pointer are lifetime markers. 4304 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4305 for (const User *U : V->users()) { 4306 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4307 if (!II) return false; 4308 4309 if (!II->isLifetimeStartOrEnd()) 4310 return false; 4311 } 4312 return true; 4313 } 4314 4315 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4316 if (!LI.isUnordered()) 4317 return true; 4318 const Function &F = *LI.getFunction(); 4319 // Speculative load may create a race that did not exist in the source. 4320 return F.hasFnAttribute(Attribute::SanitizeThread) || 4321 // Speculative load may load data from dirty regions. 4322 F.hasFnAttribute(Attribute::SanitizeAddress) || 4323 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4324 } 4325 4326 4327 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4328 const Instruction *CtxI, 4329 const DominatorTree *DT) { 4330 const Operator *Inst = dyn_cast<Operator>(V); 4331 if (!Inst) 4332 return false; 4333 4334 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4335 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4336 if (C->canTrap()) 4337 return false; 4338 4339 switch (Inst->getOpcode()) { 4340 default: 4341 return true; 4342 case Instruction::UDiv: 4343 case Instruction::URem: { 4344 // x / y is undefined if y == 0. 4345 const APInt *V; 4346 if (match(Inst->getOperand(1), m_APInt(V))) 4347 return *V != 0; 4348 return false; 4349 } 4350 case Instruction::SDiv: 4351 case Instruction::SRem: { 4352 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4353 const APInt *Numerator, *Denominator; 4354 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4355 return false; 4356 // We cannot hoist this division if the denominator is 0. 4357 if (*Denominator == 0) 4358 return false; 4359 // It's safe to hoist if the denominator is not 0 or -1. 4360 if (*Denominator != -1) 4361 return true; 4362 // At this point we know that the denominator is -1. It is safe to hoist as 4363 // long we know that the numerator is not INT_MIN. 4364 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4365 return !Numerator->isMinSignedValue(); 4366 // The numerator *might* be MinSignedValue. 4367 return false; 4368 } 4369 case Instruction::Load: { 4370 const LoadInst *LI = cast<LoadInst>(Inst); 4371 if (mustSuppressSpeculation(*LI)) 4372 return false; 4373 const DataLayout &DL = LI->getModule()->getDataLayout(); 4374 return isDereferenceableAndAlignedPointer( 4375 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4376 DL, CtxI, DT); 4377 } 4378 case Instruction::Call: { 4379 auto *CI = cast<const CallInst>(Inst); 4380 const Function *Callee = CI->getCalledFunction(); 4381 4382 // The called function could have undefined behavior or side-effects, even 4383 // if marked readnone nounwind. 4384 return Callee && Callee->isSpeculatable(); 4385 } 4386 case Instruction::VAArg: 4387 case Instruction::Alloca: 4388 case Instruction::Invoke: 4389 case Instruction::CallBr: 4390 case Instruction::PHI: 4391 case Instruction::Store: 4392 case Instruction::Ret: 4393 case Instruction::Br: 4394 case Instruction::IndirectBr: 4395 case Instruction::Switch: 4396 case Instruction::Unreachable: 4397 case Instruction::Fence: 4398 case Instruction::AtomicRMW: 4399 case Instruction::AtomicCmpXchg: 4400 case Instruction::LandingPad: 4401 case Instruction::Resume: 4402 case Instruction::CatchSwitch: 4403 case Instruction::CatchPad: 4404 case Instruction::CatchRet: 4405 case Instruction::CleanupPad: 4406 case Instruction::CleanupRet: 4407 return false; // Misc instructions which have effects 4408 } 4409 } 4410 4411 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4412 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4413 } 4414 4415 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4416 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4417 switch (OR) { 4418 case ConstantRange::OverflowResult::MayOverflow: 4419 return OverflowResult::MayOverflow; 4420 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4421 return OverflowResult::AlwaysOverflowsLow; 4422 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4423 return OverflowResult::AlwaysOverflowsHigh; 4424 case ConstantRange::OverflowResult::NeverOverflows: 4425 return OverflowResult::NeverOverflows; 4426 } 4427 llvm_unreachable("Unknown OverflowResult"); 4428 } 4429 4430 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4431 static ConstantRange computeConstantRangeIncludingKnownBits( 4432 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4433 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4434 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4435 KnownBits Known = computeKnownBits( 4436 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4437 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4438 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4439 ConstantRange::PreferredRangeType RangeType = 4440 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4441 return CR1.intersectWith(CR2, RangeType); 4442 } 4443 4444 OverflowResult llvm::computeOverflowForUnsignedMul( 4445 const Value *LHS, const Value *RHS, const DataLayout &DL, 4446 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4447 bool UseInstrInfo) { 4448 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4449 nullptr, UseInstrInfo); 4450 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4451 nullptr, UseInstrInfo); 4452 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4453 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4454 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4455 } 4456 4457 OverflowResult 4458 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4459 const DataLayout &DL, AssumptionCache *AC, 4460 const Instruction *CxtI, 4461 const DominatorTree *DT, bool UseInstrInfo) { 4462 // Multiplying n * m significant bits yields a result of n + m significant 4463 // bits. If the total number of significant bits does not exceed the 4464 // result bit width (minus 1), there is no overflow. 4465 // This means if we have enough leading sign bits in the operands 4466 // we can guarantee that the result does not overflow. 4467 // Ref: "Hacker's Delight" by Henry Warren 4468 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4469 4470 // Note that underestimating the number of sign bits gives a more 4471 // conservative answer. 4472 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4473 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4474 4475 // First handle the easy case: if we have enough sign bits there's 4476 // definitely no overflow. 4477 if (SignBits > BitWidth + 1) 4478 return OverflowResult::NeverOverflows; 4479 4480 // There are two ambiguous cases where there can be no overflow: 4481 // SignBits == BitWidth + 1 and 4482 // SignBits == BitWidth 4483 // The second case is difficult to check, therefore we only handle the 4484 // first case. 4485 if (SignBits == BitWidth + 1) { 4486 // It overflows only when both arguments are negative and the true 4487 // product is exactly the minimum negative number. 4488 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4489 // For simplicity we just check if at least one side is not negative. 4490 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4491 nullptr, UseInstrInfo); 4492 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4493 nullptr, UseInstrInfo); 4494 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4495 return OverflowResult::NeverOverflows; 4496 } 4497 return OverflowResult::MayOverflow; 4498 } 4499 4500 OverflowResult llvm::computeOverflowForUnsignedAdd( 4501 const Value *LHS, const Value *RHS, const DataLayout &DL, 4502 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4503 bool UseInstrInfo) { 4504 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4505 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4506 nullptr, UseInstrInfo); 4507 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4508 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4509 nullptr, UseInstrInfo); 4510 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4511 } 4512 4513 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4514 const Value *RHS, 4515 const AddOperator *Add, 4516 const DataLayout &DL, 4517 AssumptionCache *AC, 4518 const Instruction *CxtI, 4519 const DominatorTree *DT) { 4520 if (Add && Add->hasNoSignedWrap()) { 4521 return OverflowResult::NeverOverflows; 4522 } 4523 4524 // If LHS and RHS each have at least two sign bits, the addition will look 4525 // like 4526 // 4527 // XX..... + 4528 // YY..... 4529 // 4530 // If the carry into the most significant position is 0, X and Y can't both 4531 // be 1 and therefore the carry out of the addition is also 0. 4532 // 4533 // If the carry into the most significant position is 1, X and Y can't both 4534 // be 0 and therefore the carry out of the addition is also 1. 4535 // 4536 // Since the carry into the most significant position is always equal to 4537 // the carry out of the addition, there is no signed overflow. 4538 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4539 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4540 return OverflowResult::NeverOverflows; 4541 4542 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4543 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4544 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4545 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4546 OverflowResult OR = 4547 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4548 if (OR != OverflowResult::MayOverflow) 4549 return OR; 4550 4551 // The remaining code needs Add to be available. Early returns if not so. 4552 if (!Add) 4553 return OverflowResult::MayOverflow; 4554 4555 // If the sign of Add is the same as at least one of the operands, this add 4556 // CANNOT overflow. If this can be determined from the known bits of the 4557 // operands the above signedAddMayOverflow() check will have already done so. 4558 // The only other way to improve on the known bits is from an assumption, so 4559 // call computeKnownBitsFromAssume() directly. 4560 bool LHSOrRHSKnownNonNegative = 4561 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4562 bool LHSOrRHSKnownNegative = 4563 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4564 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4565 KnownBits AddKnown(LHSRange.getBitWidth()); 4566 computeKnownBitsFromAssume( 4567 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4568 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4569 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4570 return OverflowResult::NeverOverflows; 4571 } 4572 4573 return OverflowResult::MayOverflow; 4574 } 4575 4576 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4577 const Value *RHS, 4578 const DataLayout &DL, 4579 AssumptionCache *AC, 4580 const Instruction *CxtI, 4581 const DominatorTree *DT) { 4582 // Checking for conditions implied by dominating conditions may be expensive. 4583 // Limit it to usub_with_overflow calls for now. 4584 if (match(CxtI, 4585 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4586 if (auto C = 4587 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4588 if (*C) 4589 return OverflowResult::NeverOverflows; 4590 return OverflowResult::AlwaysOverflowsLow; 4591 } 4592 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4593 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4594 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4595 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4596 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4597 } 4598 4599 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4600 const Value *RHS, 4601 const DataLayout &DL, 4602 AssumptionCache *AC, 4603 const Instruction *CxtI, 4604 const DominatorTree *DT) { 4605 // If LHS and RHS each have at least two sign bits, the subtraction 4606 // cannot overflow. 4607 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4608 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4609 return OverflowResult::NeverOverflows; 4610 4611 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4612 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4613 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4614 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4615 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4616 } 4617 4618 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4619 const DominatorTree &DT) { 4620 SmallVector<const BranchInst *, 2> GuardingBranches; 4621 SmallVector<const ExtractValueInst *, 2> Results; 4622 4623 for (const User *U : WO->users()) { 4624 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4625 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4626 4627 if (EVI->getIndices()[0] == 0) 4628 Results.push_back(EVI); 4629 else { 4630 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4631 4632 for (const auto *U : EVI->users()) 4633 if (const auto *B = dyn_cast<BranchInst>(U)) { 4634 assert(B->isConditional() && "How else is it using an i1?"); 4635 GuardingBranches.push_back(B); 4636 } 4637 } 4638 } else { 4639 // We are using the aggregate directly in a way we don't want to analyze 4640 // here (storing it to a global, say). 4641 return false; 4642 } 4643 } 4644 4645 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4646 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4647 if (!NoWrapEdge.isSingleEdge()) 4648 return false; 4649 4650 // Check if all users of the add are provably no-wrap. 4651 for (const auto *Result : Results) { 4652 // If the extractvalue itself is not executed on overflow, the we don't 4653 // need to check each use separately, since domination is transitive. 4654 if (DT.dominates(NoWrapEdge, Result->getParent())) 4655 continue; 4656 4657 for (auto &RU : Result->uses()) 4658 if (!DT.dominates(NoWrapEdge, RU)) 4659 return false; 4660 } 4661 4662 return true; 4663 }; 4664 4665 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4666 } 4667 4668 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4669 // See whether I has flags that may create poison 4670 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4671 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4672 return true; 4673 } 4674 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4675 if (ExactOp->isExact()) 4676 return true; 4677 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4678 auto FMF = FP->getFastMathFlags(); 4679 if (FMF.noNaNs() || FMF.noInfs()) 4680 return true; 4681 } 4682 4683 unsigned Opcode = Op->getOpcode(); 4684 4685 // Check whether opcode is a poison/undef-generating operation 4686 switch (Opcode) { 4687 case Instruction::Shl: 4688 case Instruction::AShr: 4689 case Instruction::LShr: { 4690 // Shifts return poison if shiftwidth is larger than the bitwidth. 4691 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4692 SmallVector<Constant *, 4> ShiftAmounts; 4693 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4694 unsigned NumElts = FVTy->getNumElements(); 4695 for (unsigned i = 0; i < NumElts; ++i) 4696 ShiftAmounts.push_back(C->getAggregateElement(i)); 4697 } else if (isa<ScalableVectorType>(C->getType())) 4698 return true; // Can't tell, just return true to be safe 4699 else 4700 ShiftAmounts.push_back(C); 4701 4702 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4703 auto *CI = dyn_cast<ConstantInt>(C); 4704 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4705 }); 4706 return !Safe; 4707 } 4708 return true; 4709 } 4710 case Instruction::FPToSI: 4711 case Instruction::FPToUI: 4712 // fptosi/ui yields poison if the resulting value does not fit in the 4713 // destination type. 4714 return true; 4715 case Instruction::Call: 4716 case Instruction::CallBr: 4717 case Instruction::Invoke: { 4718 const auto *CB = cast<CallBase>(Op); 4719 return !CB->hasRetAttr(Attribute::NoUndef); 4720 } 4721 case Instruction::InsertElement: 4722 case Instruction::ExtractElement: { 4723 // If index exceeds the length of the vector, it returns poison 4724 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4725 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4726 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4727 if (!Idx || Idx->getZExtValue() >= VTy->getElementCount().Min) 4728 return true; 4729 return false; 4730 } 4731 case Instruction::ShuffleVector: { 4732 // shufflevector may return undef. 4733 if (PoisonOnly) 4734 return false; 4735 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4736 ? cast<ConstantExpr>(Op)->getShuffleMask() 4737 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4738 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4739 } 4740 case Instruction::FNeg: 4741 case Instruction::PHI: 4742 case Instruction::Select: 4743 case Instruction::URem: 4744 case Instruction::SRem: 4745 case Instruction::ExtractValue: 4746 case Instruction::InsertValue: 4747 case Instruction::Freeze: 4748 case Instruction::ICmp: 4749 case Instruction::FCmp: 4750 return false; 4751 case Instruction::GetElementPtr: { 4752 const auto *GEP = cast<GEPOperator>(Op); 4753 return GEP->isInBounds(); 4754 } 4755 default: { 4756 const auto *CE = dyn_cast<ConstantExpr>(Op); 4757 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4758 return false; 4759 else if (isa<BinaryOperator>(Op)) 4760 return false; 4761 // Be conservative and return true. 4762 return true; 4763 } 4764 } 4765 } 4766 4767 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4768 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4769 } 4770 4771 bool llvm::canCreatePoison(const Operator *Op) { 4772 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4773 } 4774 4775 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4776 const Instruction *CtxI, 4777 const DominatorTree *DT, 4778 unsigned Depth) { 4779 if (Depth >= MaxDepth) 4780 return false; 4781 4782 if (const auto *A = dyn_cast<Argument>(V)) { 4783 if (A->hasAttribute(Attribute::NoUndef)) 4784 return true; 4785 } 4786 4787 if (auto *C = dyn_cast<Constant>(V)) { 4788 if (isa<UndefValue>(C)) 4789 return false; 4790 4791 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4792 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4793 return true; 4794 4795 if (C->getType()->isVectorTy()) 4796 return !C->containsUndefElement() && !C->containsConstantExpression(); 4797 } 4798 4799 // Strip cast operations from a pointer value. 4800 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4801 // inbounds with zero offset. To guarantee that the result isn't poison, the 4802 // stripped pointer is checked as it has to be pointing into an allocated 4803 // object or be null `null` to ensure `inbounds` getelement pointers with a 4804 // zero offset could not produce poison. 4805 // It can strip off addrspacecast that do not change bit representation as 4806 // well. We believe that such addrspacecast is equivalent to no-op. 4807 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4808 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4809 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4810 return true; 4811 4812 auto OpCheck = [&](const Value *V) { 4813 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4814 }; 4815 4816 if (auto *Opr = dyn_cast<Operator>(V)) { 4817 // If the value is a freeze instruction, then it can never 4818 // be undef or poison. 4819 if (isa<FreezeInst>(V)) 4820 return true; 4821 4822 if (const auto *CB = dyn_cast<CallBase>(V)) { 4823 if (CB->hasRetAttr(Attribute::NoUndef)) 4824 return true; 4825 } 4826 4827 if (canCreateUndefOrPoison(Opr)) 4828 return false; 4829 4830 if (all_of(Opr->operands(), OpCheck)) 4831 return true; 4832 } 4833 4834 if (auto *I = dyn_cast<Instruction>(V)) { 4835 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4836 // Note: once we have an agreement that poison is a value-wise concept, 4837 // we can remove the isIntegerTy(1) constraint. 4838 return true; 4839 } 4840 4841 // CxtI may be null or a cloned instruction. 4842 if (!CtxI || !CtxI->getParent() || !DT) 4843 return false; 4844 4845 auto *DNode = DT->getNode(CtxI->getParent()); 4846 if (!DNode) 4847 // Unreachable block 4848 return false; 4849 4850 // If V is used as a branch condition before reaching CtxI, V cannot be 4851 // undef or poison. 4852 // br V, BB1, BB2 4853 // BB1: 4854 // CtxI ; V cannot be undef or poison here 4855 auto *Dominator = DNode->getIDom(); 4856 while (Dominator) { 4857 auto *TI = Dominator->getBlock()->getTerminator(); 4858 4859 if (auto BI = dyn_cast<BranchInst>(TI)) { 4860 if (BI->isConditional() && BI->getCondition() == V) 4861 return true; 4862 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4863 if (SI->getCondition() == V) 4864 return true; 4865 } 4866 4867 Dominator = Dominator->getIDom(); 4868 } 4869 4870 return false; 4871 } 4872 4873 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4874 const DataLayout &DL, 4875 AssumptionCache *AC, 4876 const Instruction *CxtI, 4877 const DominatorTree *DT) { 4878 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4879 Add, DL, AC, CxtI, DT); 4880 } 4881 4882 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4883 const Value *RHS, 4884 const DataLayout &DL, 4885 AssumptionCache *AC, 4886 const Instruction *CxtI, 4887 const DominatorTree *DT) { 4888 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4889 } 4890 4891 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4892 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4893 // of time because it's possible for another thread to interfere with it for an 4894 // arbitrary length of time, but programs aren't allowed to rely on that. 4895 4896 // If there is no successor, then execution can't transfer to it. 4897 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4898 return !CRI->unwindsToCaller(); 4899 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4900 return !CatchSwitch->unwindsToCaller(); 4901 if (isa<ResumeInst>(I)) 4902 return false; 4903 if (isa<ReturnInst>(I)) 4904 return false; 4905 if (isa<UnreachableInst>(I)) 4906 return false; 4907 4908 // Calls can throw, or contain an infinite loop, or kill the process. 4909 if (const auto *CB = dyn_cast<CallBase>(I)) { 4910 // Call sites that throw have implicit non-local control flow. 4911 if (!CB->doesNotThrow()) 4912 return false; 4913 4914 // A function which doens't throw and has "willreturn" attribute will 4915 // always return. 4916 if (CB->hasFnAttr(Attribute::WillReturn)) 4917 return true; 4918 4919 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4920 // etc. and thus not return. However, LLVM already assumes that 4921 // 4922 // - Thread exiting actions are modeled as writes to memory invisible to 4923 // the program. 4924 // 4925 // - Loops that don't have side effects (side effects are volatile/atomic 4926 // stores and IO) always terminate (see http://llvm.org/PR965). 4927 // Furthermore IO itself is also modeled as writes to memory invisible to 4928 // the program. 4929 // 4930 // We rely on those assumptions here, and use the memory effects of the call 4931 // target as a proxy for checking that it always returns. 4932 4933 // FIXME: This isn't aggressive enough; a call which only writes to a global 4934 // is guaranteed to return. 4935 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4936 } 4937 4938 // Other instructions return normally. 4939 return true; 4940 } 4941 4942 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4943 // TODO: This is slightly conservative for invoke instruction since exiting 4944 // via an exception *is* normal control for them. 4945 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4946 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4947 return false; 4948 return true; 4949 } 4950 4951 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4952 const Loop *L) { 4953 // The loop header is guaranteed to be executed for every iteration. 4954 // 4955 // FIXME: Relax this constraint to cover all basic blocks that are 4956 // guaranteed to be executed at every iteration. 4957 if (I->getParent() != L->getHeader()) return false; 4958 4959 for (const Instruction &LI : *L->getHeader()) { 4960 if (&LI == I) return true; 4961 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4962 } 4963 llvm_unreachable("Instruction not contained in its own parent basic block."); 4964 } 4965 4966 bool llvm::propagatesPoison(const Instruction *I) { 4967 switch (I->getOpcode()) { 4968 case Instruction::Freeze: 4969 case Instruction::Select: 4970 case Instruction::PHI: 4971 case Instruction::Call: 4972 case Instruction::Invoke: 4973 return false; 4974 case Instruction::ICmp: 4975 case Instruction::FCmp: 4976 case Instruction::GetElementPtr: 4977 return true; 4978 default: 4979 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 4980 return true; 4981 4982 // Be conservative and return false. 4983 return false; 4984 } 4985 } 4986 4987 const Value *llvm::getGuaranteedNonPoisonOp(const Instruction *I) { 4988 switch (I->getOpcode()) { 4989 case Instruction::Store: 4990 return cast<StoreInst>(I)->getPointerOperand(); 4991 4992 case Instruction::Load: 4993 return cast<LoadInst>(I)->getPointerOperand(); 4994 4995 case Instruction::AtomicCmpXchg: 4996 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4997 4998 case Instruction::AtomicRMW: 4999 return cast<AtomicRMWInst>(I)->getPointerOperand(); 5000 5001 case Instruction::UDiv: 5002 case Instruction::SDiv: 5003 case Instruction::URem: 5004 case Instruction::SRem: 5005 return I->getOperand(1); 5006 5007 case Instruction::Call: 5008 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5009 switch (II->getIntrinsicID()) { 5010 case Intrinsic::assume: 5011 return II->getArgOperand(0); 5012 default: 5013 return nullptr; 5014 } 5015 } 5016 return nullptr; 5017 5018 default: 5019 return nullptr; 5020 } 5021 } 5022 5023 bool llvm::mustTriggerUB(const Instruction *I, 5024 const SmallSet<const Value *, 16>& KnownPoison) { 5025 auto *NotPoison = getGuaranteedNonPoisonOp(I); 5026 return (NotPoison && KnownPoison.count(NotPoison)); 5027 } 5028 5029 5030 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 5031 // We currently only look for uses of poison values within the same basic 5032 // block, as that makes it easier to guarantee that the uses will be 5033 // executed given that PoisonI is executed. 5034 // 5035 // FIXME: Expand this to consider uses beyond the same basic block. To do 5036 // this, look out for the distinction between post-dominance and strong 5037 // post-dominance. 5038 const BasicBlock *BB = PoisonI->getParent(); 5039 5040 // Set of instructions that we have proved will yield poison if PoisonI 5041 // does. 5042 SmallSet<const Value *, 16> YieldsPoison; 5043 SmallSet<const BasicBlock *, 4> Visited; 5044 YieldsPoison.insert(PoisonI); 5045 Visited.insert(PoisonI->getParent()); 5046 5047 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 5048 5049 unsigned Iter = 0; 5050 while (Iter++ < MaxDepth) { 5051 for (auto &I : make_range(Begin, End)) { 5052 if (&I != PoisonI) { 5053 if (mustTriggerUB(&I, YieldsPoison)) 5054 return true; 5055 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5056 return false; 5057 } 5058 5059 // Mark poison that propagates from I through uses of I. 5060 if (YieldsPoison.count(&I)) { 5061 for (const User *User : I.users()) { 5062 const Instruction *UserI = cast<Instruction>(User); 5063 if (propagatesPoison(UserI)) 5064 YieldsPoison.insert(User); 5065 } 5066 } 5067 } 5068 5069 if (auto *NextBB = BB->getSingleSuccessor()) { 5070 if (Visited.insert(NextBB).second) { 5071 BB = NextBB; 5072 Begin = BB->getFirstNonPHI()->getIterator(); 5073 End = BB->end(); 5074 continue; 5075 } 5076 } 5077 5078 break; 5079 } 5080 return false; 5081 } 5082 5083 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5084 if (FMF.noNaNs()) 5085 return true; 5086 5087 if (auto *C = dyn_cast<ConstantFP>(V)) 5088 return !C->isNaN(); 5089 5090 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5091 if (!C->getElementType()->isFloatingPointTy()) 5092 return false; 5093 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5094 if (C->getElementAsAPFloat(I).isNaN()) 5095 return false; 5096 } 5097 return true; 5098 } 5099 5100 if (isa<ConstantAggregateZero>(V)) 5101 return true; 5102 5103 return false; 5104 } 5105 5106 static bool isKnownNonZero(const Value *V) { 5107 if (auto *C = dyn_cast<ConstantFP>(V)) 5108 return !C->isZero(); 5109 5110 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5111 if (!C->getElementType()->isFloatingPointTy()) 5112 return false; 5113 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5114 if (C->getElementAsAPFloat(I).isZero()) 5115 return false; 5116 } 5117 return true; 5118 } 5119 5120 return false; 5121 } 5122 5123 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5124 /// Given non-min/max outer cmp/select from the clamp pattern this 5125 /// function recognizes if it can be substitued by a "canonical" min/max 5126 /// pattern. 5127 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5128 Value *CmpLHS, Value *CmpRHS, 5129 Value *TrueVal, Value *FalseVal, 5130 Value *&LHS, Value *&RHS) { 5131 // Try to match 5132 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5133 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5134 // and return description of the outer Max/Min. 5135 5136 // First, check if select has inverse order: 5137 if (CmpRHS == FalseVal) { 5138 std::swap(TrueVal, FalseVal); 5139 Pred = CmpInst::getInversePredicate(Pred); 5140 } 5141 5142 // Assume success now. If there's no match, callers should not use these anyway. 5143 LHS = TrueVal; 5144 RHS = FalseVal; 5145 5146 const APFloat *FC1; 5147 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5148 return {SPF_UNKNOWN, SPNB_NA, false}; 5149 5150 const APFloat *FC2; 5151 switch (Pred) { 5152 case CmpInst::FCMP_OLT: 5153 case CmpInst::FCMP_OLE: 5154 case CmpInst::FCMP_ULT: 5155 case CmpInst::FCMP_ULE: 5156 if (match(FalseVal, 5157 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5158 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5159 *FC1 < *FC2) 5160 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5161 break; 5162 case CmpInst::FCMP_OGT: 5163 case CmpInst::FCMP_OGE: 5164 case CmpInst::FCMP_UGT: 5165 case CmpInst::FCMP_UGE: 5166 if (match(FalseVal, 5167 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5168 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5169 *FC1 > *FC2) 5170 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5171 break; 5172 default: 5173 break; 5174 } 5175 5176 return {SPF_UNKNOWN, SPNB_NA, false}; 5177 } 5178 5179 /// Recognize variations of: 5180 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5181 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5182 Value *CmpLHS, Value *CmpRHS, 5183 Value *TrueVal, Value *FalseVal) { 5184 // Swap the select operands and predicate to match the patterns below. 5185 if (CmpRHS != TrueVal) { 5186 Pred = ICmpInst::getSwappedPredicate(Pred); 5187 std::swap(TrueVal, FalseVal); 5188 } 5189 const APInt *C1; 5190 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5191 const APInt *C2; 5192 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5193 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5194 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5195 return {SPF_SMAX, SPNB_NA, false}; 5196 5197 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5198 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5199 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5200 return {SPF_SMIN, SPNB_NA, false}; 5201 5202 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5203 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5204 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5205 return {SPF_UMAX, SPNB_NA, false}; 5206 5207 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5208 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5209 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5210 return {SPF_UMIN, SPNB_NA, false}; 5211 } 5212 return {SPF_UNKNOWN, SPNB_NA, false}; 5213 } 5214 5215 /// Recognize variations of: 5216 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5217 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5218 Value *CmpLHS, Value *CmpRHS, 5219 Value *TVal, Value *FVal, 5220 unsigned Depth) { 5221 // TODO: Allow FP min/max with nnan/nsz. 5222 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5223 5224 Value *A = nullptr, *B = nullptr; 5225 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5226 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5227 return {SPF_UNKNOWN, SPNB_NA, false}; 5228 5229 Value *C = nullptr, *D = nullptr; 5230 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5231 if (L.Flavor != R.Flavor) 5232 return {SPF_UNKNOWN, SPNB_NA, false}; 5233 5234 // We have something like: x Pred y ? min(a, b) : min(c, d). 5235 // Try to match the compare to the min/max operations of the select operands. 5236 // First, make sure we have the right compare predicate. 5237 switch (L.Flavor) { 5238 case SPF_SMIN: 5239 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5240 Pred = ICmpInst::getSwappedPredicate(Pred); 5241 std::swap(CmpLHS, CmpRHS); 5242 } 5243 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5244 break; 5245 return {SPF_UNKNOWN, SPNB_NA, false}; 5246 case SPF_SMAX: 5247 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5248 Pred = ICmpInst::getSwappedPredicate(Pred); 5249 std::swap(CmpLHS, CmpRHS); 5250 } 5251 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5252 break; 5253 return {SPF_UNKNOWN, SPNB_NA, false}; 5254 case SPF_UMIN: 5255 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5256 Pred = ICmpInst::getSwappedPredicate(Pred); 5257 std::swap(CmpLHS, CmpRHS); 5258 } 5259 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5260 break; 5261 return {SPF_UNKNOWN, SPNB_NA, false}; 5262 case SPF_UMAX: 5263 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5264 Pred = ICmpInst::getSwappedPredicate(Pred); 5265 std::swap(CmpLHS, CmpRHS); 5266 } 5267 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5268 break; 5269 return {SPF_UNKNOWN, SPNB_NA, false}; 5270 default: 5271 return {SPF_UNKNOWN, SPNB_NA, false}; 5272 } 5273 5274 // If there is a common operand in the already matched min/max and the other 5275 // min/max operands match the compare operands (either directly or inverted), 5276 // then this is min/max of the same flavor. 5277 5278 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5279 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5280 if (D == B) { 5281 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5282 match(A, m_Not(m_Specific(CmpRHS))))) 5283 return {L.Flavor, SPNB_NA, false}; 5284 } 5285 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5286 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5287 if (C == B) { 5288 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5289 match(A, m_Not(m_Specific(CmpRHS))))) 5290 return {L.Flavor, SPNB_NA, false}; 5291 } 5292 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5293 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5294 if (D == A) { 5295 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5296 match(B, m_Not(m_Specific(CmpRHS))))) 5297 return {L.Flavor, SPNB_NA, false}; 5298 } 5299 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5300 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5301 if (C == A) { 5302 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5303 match(B, m_Not(m_Specific(CmpRHS))))) 5304 return {L.Flavor, SPNB_NA, false}; 5305 } 5306 5307 return {SPF_UNKNOWN, SPNB_NA, false}; 5308 } 5309 5310 /// If the input value is the result of a 'not' op, constant integer, or vector 5311 /// splat of a constant integer, return the bitwise-not source value. 5312 /// TODO: This could be extended to handle non-splat vector integer constants. 5313 static Value *getNotValue(Value *V) { 5314 Value *NotV; 5315 if (match(V, m_Not(m_Value(NotV)))) 5316 return NotV; 5317 5318 const APInt *C; 5319 if (match(V, m_APInt(C))) 5320 return ConstantInt::get(V->getType(), ~(*C)); 5321 5322 return nullptr; 5323 } 5324 5325 /// Match non-obvious integer minimum and maximum sequences. 5326 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5327 Value *CmpLHS, Value *CmpRHS, 5328 Value *TrueVal, Value *FalseVal, 5329 Value *&LHS, Value *&RHS, 5330 unsigned Depth) { 5331 // Assume success. If there's no match, callers should not use these anyway. 5332 LHS = TrueVal; 5333 RHS = FalseVal; 5334 5335 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5336 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5337 return SPR; 5338 5339 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5340 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5341 return SPR; 5342 5343 // Look through 'not' ops to find disguised min/max. 5344 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5345 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5346 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5347 switch (Pred) { 5348 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5349 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5350 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5351 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5352 default: break; 5353 } 5354 } 5355 5356 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5357 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5358 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5359 switch (Pred) { 5360 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5361 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5362 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5363 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5364 default: break; 5365 } 5366 } 5367 5368 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5369 return {SPF_UNKNOWN, SPNB_NA, false}; 5370 5371 // Z = X -nsw Y 5372 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5373 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5374 if (match(TrueVal, m_Zero()) && 5375 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5376 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5377 5378 // Z = X -nsw Y 5379 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5380 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5381 if (match(FalseVal, m_Zero()) && 5382 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5383 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5384 5385 const APInt *C1; 5386 if (!match(CmpRHS, m_APInt(C1))) 5387 return {SPF_UNKNOWN, SPNB_NA, false}; 5388 5389 // An unsigned min/max can be written with a signed compare. 5390 const APInt *C2; 5391 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5392 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5393 // Is the sign bit set? 5394 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5395 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5396 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5397 C2->isMaxSignedValue()) 5398 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5399 5400 // Is the sign bit clear? 5401 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5402 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5403 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5404 C2->isMinSignedValue()) 5405 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5406 } 5407 5408 return {SPF_UNKNOWN, SPNB_NA, false}; 5409 } 5410 5411 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5412 assert(X && Y && "Invalid operand"); 5413 5414 // X = sub (0, Y) || X = sub nsw (0, Y) 5415 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5416 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5417 return true; 5418 5419 // Y = sub (0, X) || Y = sub nsw (0, X) 5420 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5421 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5422 return true; 5423 5424 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5425 Value *A, *B; 5426 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5427 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5428 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5429 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5430 } 5431 5432 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5433 FastMathFlags FMF, 5434 Value *CmpLHS, Value *CmpRHS, 5435 Value *TrueVal, Value *FalseVal, 5436 Value *&LHS, Value *&RHS, 5437 unsigned Depth) { 5438 if (CmpInst::isFPPredicate(Pred)) { 5439 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5440 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5441 // purpose of identifying min/max. Disregard vector constants with undefined 5442 // elements because those can not be back-propagated for analysis. 5443 Value *OutputZeroVal = nullptr; 5444 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5445 !cast<Constant>(TrueVal)->containsUndefElement()) 5446 OutputZeroVal = TrueVal; 5447 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5448 !cast<Constant>(FalseVal)->containsUndefElement()) 5449 OutputZeroVal = FalseVal; 5450 5451 if (OutputZeroVal) { 5452 if (match(CmpLHS, m_AnyZeroFP())) 5453 CmpLHS = OutputZeroVal; 5454 if (match(CmpRHS, m_AnyZeroFP())) 5455 CmpRHS = OutputZeroVal; 5456 } 5457 } 5458 5459 LHS = CmpLHS; 5460 RHS = CmpRHS; 5461 5462 // Signed zero may return inconsistent results between implementations. 5463 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5464 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5465 // Therefore, we behave conservatively and only proceed if at least one of the 5466 // operands is known to not be zero or if we don't care about signed zero. 5467 switch (Pred) { 5468 default: break; 5469 // FIXME: Include OGT/OLT/UGT/ULT. 5470 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5471 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5472 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5473 !isKnownNonZero(CmpRHS)) 5474 return {SPF_UNKNOWN, SPNB_NA, false}; 5475 } 5476 5477 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5478 bool Ordered = false; 5479 5480 // When given one NaN and one non-NaN input: 5481 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5482 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5483 // ordered comparison fails), which could be NaN or non-NaN. 5484 // so here we discover exactly what NaN behavior is required/accepted. 5485 if (CmpInst::isFPPredicate(Pred)) { 5486 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5487 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5488 5489 if (LHSSafe && RHSSafe) { 5490 // Both operands are known non-NaN. 5491 NaNBehavior = SPNB_RETURNS_ANY; 5492 } else if (CmpInst::isOrdered(Pred)) { 5493 // An ordered comparison will return false when given a NaN, so it 5494 // returns the RHS. 5495 Ordered = true; 5496 if (LHSSafe) 5497 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5498 NaNBehavior = SPNB_RETURNS_NAN; 5499 else if (RHSSafe) 5500 NaNBehavior = SPNB_RETURNS_OTHER; 5501 else 5502 // Completely unsafe. 5503 return {SPF_UNKNOWN, SPNB_NA, false}; 5504 } else { 5505 Ordered = false; 5506 // An unordered comparison will return true when given a NaN, so it 5507 // returns the LHS. 5508 if (LHSSafe) 5509 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5510 NaNBehavior = SPNB_RETURNS_OTHER; 5511 else if (RHSSafe) 5512 NaNBehavior = SPNB_RETURNS_NAN; 5513 else 5514 // Completely unsafe. 5515 return {SPF_UNKNOWN, SPNB_NA, false}; 5516 } 5517 } 5518 5519 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5520 std::swap(CmpLHS, CmpRHS); 5521 Pred = CmpInst::getSwappedPredicate(Pred); 5522 if (NaNBehavior == SPNB_RETURNS_NAN) 5523 NaNBehavior = SPNB_RETURNS_OTHER; 5524 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5525 NaNBehavior = SPNB_RETURNS_NAN; 5526 Ordered = !Ordered; 5527 } 5528 5529 // ([if]cmp X, Y) ? X : Y 5530 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5531 switch (Pred) { 5532 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5533 case ICmpInst::ICMP_UGT: 5534 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5535 case ICmpInst::ICMP_SGT: 5536 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5537 case ICmpInst::ICMP_ULT: 5538 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5539 case ICmpInst::ICMP_SLT: 5540 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5541 case FCmpInst::FCMP_UGT: 5542 case FCmpInst::FCMP_UGE: 5543 case FCmpInst::FCMP_OGT: 5544 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5545 case FCmpInst::FCMP_ULT: 5546 case FCmpInst::FCMP_ULE: 5547 case FCmpInst::FCMP_OLT: 5548 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5549 } 5550 } 5551 5552 if (isKnownNegation(TrueVal, FalseVal)) { 5553 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5554 // match against either LHS or sext(LHS). 5555 auto MaybeSExtCmpLHS = 5556 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5557 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5558 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5559 if (match(TrueVal, MaybeSExtCmpLHS)) { 5560 // Set the return values. If the compare uses the negated value (-X >s 0), 5561 // swap the return values because the negated value is always 'RHS'. 5562 LHS = TrueVal; 5563 RHS = FalseVal; 5564 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5565 std::swap(LHS, RHS); 5566 5567 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5568 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5569 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5570 return {SPF_ABS, SPNB_NA, false}; 5571 5572 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5573 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5574 return {SPF_ABS, SPNB_NA, false}; 5575 5576 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5577 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5578 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5579 return {SPF_NABS, SPNB_NA, false}; 5580 } 5581 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5582 // Set the return values. If the compare uses the negated value (-X >s 0), 5583 // swap the return values because the negated value is always 'RHS'. 5584 LHS = FalseVal; 5585 RHS = TrueVal; 5586 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5587 std::swap(LHS, RHS); 5588 5589 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5590 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5591 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5592 return {SPF_NABS, SPNB_NA, false}; 5593 5594 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5595 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5596 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5597 return {SPF_ABS, SPNB_NA, false}; 5598 } 5599 } 5600 5601 if (CmpInst::isIntPredicate(Pred)) 5602 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5603 5604 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5605 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5606 // semantics than minNum. Be conservative in such case. 5607 if (NaNBehavior != SPNB_RETURNS_ANY || 5608 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5609 !isKnownNonZero(CmpRHS))) 5610 return {SPF_UNKNOWN, SPNB_NA, false}; 5611 5612 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5613 } 5614 5615 /// Helps to match a select pattern in case of a type mismatch. 5616 /// 5617 /// The function processes the case when type of true and false values of a 5618 /// select instruction differs from type of the cmp instruction operands because 5619 /// of a cast instruction. The function checks if it is legal to move the cast 5620 /// operation after "select". If yes, it returns the new second value of 5621 /// "select" (with the assumption that cast is moved): 5622 /// 1. As operand of cast instruction when both values of "select" are same cast 5623 /// instructions. 5624 /// 2. As restored constant (by applying reverse cast operation) when the first 5625 /// value of the "select" is a cast operation and the second value is a 5626 /// constant. 5627 /// NOTE: We return only the new second value because the first value could be 5628 /// accessed as operand of cast instruction. 5629 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5630 Instruction::CastOps *CastOp) { 5631 auto *Cast1 = dyn_cast<CastInst>(V1); 5632 if (!Cast1) 5633 return nullptr; 5634 5635 *CastOp = Cast1->getOpcode(); 5636 Type *SrcTy = Cast1->getSrcTy(); 5637 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5638 // If V1 and V2 are both the same cast from the same type, look through V1. 5639 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5640 return Cast2->getOperand(0); 5641 return nullptr; 5642 } 5643 5644 auto *C = dyn_cast<Constant>(V2); 5645 if (!C) 5646 return nullptr; 5647 5648 Constant *CastedTo = nullptr; 5649 switch (*CastOp) { 5650 case Instruction::ZExt: 5651 if (CmpI->isUnsigned()) 5652 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5653 break; 5654 case Instruction::SExt: 5655 if (CmpI->isSigned()) 5656 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5657 break; 5658 case Instruction::Trunc: 5659 Constant *CmpConst; 5660 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5661 CmpConst->getType() == SrcTy) { 5662 // Here we have the following case: 5663 // 5664 // %cond = cmp iN %x, CmpConst 5665 // %tr = trunc iN %x to iK 5666 // %narrowsel = select i1 %cond, iK %t, iK C 5667 // 5668 // We can always move trunc after select operation: 5669 // 5670 // %cond = cmp iN %x, CmpConst 5671 // %widesel = select i1 %cond, iN %x, iN CmpConst 5672 // %tr = trunc iN %widesel to iK 5673 // 5674 // Note that C could be extended in any way because we don't care about 5675 // upper bits after truncation. It can't be abs pattern, because it would 5676 // look like: 5677 // 5678 // select i1 %cond, x, -x. 5679 // 5680 // So only min/max pattern could be matched. Such match requires widened C 5681 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5682 // CmpConst == C is checked below. 5683 CastedTo = CmpConst; 5684 } else { 5685 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5686 } 5687 break; 5688 case Instruction::FPTrunc: 5689 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5690 break; 5691 case Instruction::FPExt: 5692 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5693 break; 5694 case Instruction::FPToUI: 5695 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5696 break; 5697 case Instruction::FPToSI: 5698 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5699 break; 5700 case Instruction::UIToFP: 5701 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5702 break; 5703 case Instruction::SIToFP: 5704 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5705 break; 5706 default: 5707 break; 5708 } 5709 5710 if (!CastedTo) 5711 return nullptr; 5712 5713 // Make sure the cast doesn't lose any information. 5714 Constant *CastedBack = 5715 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5716 if (CastedBack != C) 5717 return nullptr; 5718 5719 return CastedTo; 5720 } 5721 5722 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5723 Instruction::CastOps *CastOp, 5724 unsigned Depth) { 5725 if (Depth >= MaxDepth) 5726 return {SPF_UNKNOWN, SPNB_NA, false}; 5727 5728 SelectInst *SI = dyn_cast<SelectInst>(V); 5729 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5730 5731 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5732 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5733 5734 Value *TrueVal = SI->getTrueValue(); 5735 Value *FalseVal = SI->getFalseValue(); 5736 5737 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5738 CastOp, Depth); 5739 } 5740 5741 SelectPatternResult llvm::matchDecomposedSelectPattern( 5742 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5743 Instruction::CastOps *CastOp, unsigned Depth) { 5744 CmpInst::Predicate Pred = CmpI->getPredicate(); 5745 Value *CmpLHS = CmpI->getOperand(0); 5746 Value *CmpRHS = CmpI->getOperand(1); 5747 FastMathFlags FMF; 5748 if (isa<FPMathOperator>(CmpI)) 5749 FMF = CmpI->getFastMathFlags(); 5750 5751 // Bail out early. 5752 if (CmpI->isEquality()) 5753 return {SPF_UNKNOWN, SPNB_NA, false}; 5754 5755 // Deal with type mismatches. 5756 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5757 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5758 // If this is a potential fmin/fmax with a cast to integer, then ignore 5759 // -0.0 because there is no corresponding integer value. 5760 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5761 FMF.setNoSignedZeros(); 5762 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5763 cast<CastInst>(TrueVal)->getOperand(0), C, 5764 LHS, RHS, Depth); 5765 } 5766 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5767 // If this is a potential fmin/fmax with a cast to integer, then ignore 5768 // -0.0 because there is no corresponding integer value. 5769 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5770 FMF.setNoSignedZeros(); 5771 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5772 C, cast<CastInst>(FalseVal)->getOperand(0), 5773 LHS, RHS, Depth); 5774 } 5775 } 5776 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5777 LHS, RHS, Depth); 5778 } 5779 5780 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5781 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5782 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5783 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5784 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5785 if (SPF == SPF_FMINNUM) 5786 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5787 if (SPF == SPF_FMAXNUM) 5788 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5789 llvm_unreachable("unhandled!"); 5790 } 5791 5792 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5793 if (SPF == SPF_SMIN) return SPF_SMAX; 5794 if (SPF == SPF_UMIN) return SPF_UMAX; 5795 if (SPF == SPF_SMAX) return SPF_SMIN; 5796 if (SPF == SPF_UMAX) return SPF_UMIN; 5797 llvm_unreachable("unhandled!"); 5798 } 5799 5800 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5801 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5802 } 5803 5804 /// Return true if "icmp Pred LHS RHS" is always true. 5805 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5806 const Value *RHS, const DataLayout &DL, 5807 unsigned Depth) { 5808 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5809 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5810 return true; 5811 5812 switch (Pred) { 5813 default: 5814 return false; 5815 5816 case CmpInst::ICMP_SLE: { 5817 const APInt *C; 5818 5819 // LHS s<= LHS +_{nsw} C if C >= 0 5820 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5821 return !C->isNegative(); 5822 return false; 5823 } 5824 5825 case CmpInst::ICMP_ULE: { 5826 const APInt *C; 5827 5828 // LHS u<= LHS +_{nuw} C for any C 5829 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5830 return true; 5831 5832 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5833 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5834 const Value *&X, 5835 const APInt *&CA, const APInt *&CB) { 5836 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5837 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5838 return true; 5839 5840 // If X & C == 0 then (X | C) == X +_{nuw} C 5841 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5842 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5843 KnownBits Known(CA->getBitWidth()); 5844 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5845 /*CxtI*/ nullptr, /*DT*/ nullptr); 5846 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5847 return true; 5848 } 5849 5850 return false; 5851 }; 5852 5853 const Value *X; 5854 const APInt *CLHS, *CRHS; 5855 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5856 return CLHS->ule(*CRHS); 5857 5858 return false; 5859 } 5860 } 5861 } 5862 5863 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5864 /// ALHS ARHS" is true. Otherwise, return None. 5865 static Optional<bool> 5866 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5867 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5868 const DataLayout &DL, unsigned Depth) { 5869 switch (Pred) { 5870 default: 5871 return None; 5872 5873 case CmpInst::ICMP_SLT: 5874 case CmpInst::ICMP_SLE: 5875 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5876 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5877 return true; 5878 return None; 5879 5880 case CmpInst::ICMP_ULT: 5881 case CmpInst::ICMP_ULE: 5882 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5883 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5884 return true; 5885 return None; 5886 } 5887 } 5888 5889 /// Return true if the operands of the two compares match. IsSwappedOps is true 5890 /// when the operands match, but are swapped. 5891 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5892 const Value *BLHS, const Value *BRHS, 5893 bool &IsSwappedOps) { 5894 5895 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5896 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5897 return IsMatchingOps || IsSwappedOps; 5898 } 5899 5900 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5901 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5902 /// Otherwise, return None if we can't infer anything. 5903 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5904 CmpInst::Predicate BPred, 5905 bool AreSwappedOps) { 5906 // Canonicalize the predicate as if the operands were not commuted. 5907 if (AreSwappedOps) 5908 BPred = ICmpInst::getSwappedPredicate(BPred); 5909 5910 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5911 return true; 5912 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5913 return false; 5914 5915 return None; 5916 } 5917 5918 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5919 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5920 /// Otherwise, return None if we can't infer anything. 5921 static Optional<bool> 5922 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5923 const ConstantInt *C1, 5924 CmpInst::Predicate BPred, 5925 const ConstantInt *C2) { 5926 ConstantRange DomCR = 5927 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5928 ConstantRange CR = 5929 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5930 ConstantRange Intersection = DomCR.intersectWith(CR); 5931 ConstantRange Difference = DomCR.difference(CR); 5932 if (Intersection.isEmptySet()) 5933 return false; 5934 if (Difference.isEmptySet()) 5935 return true; 5936 return None; 5937 } 5938 5939 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5940 /// false. Otherwise, return None if we can't infer anything. 5941 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5942 CmpInst::Predicate BPred, 5943 const Value *BLHS, const Value *BRHS, 5944 const DataLayout &DL, bool LHSIsTrue, 5945 unsigned Depth) { 5946 Value *ALHS = LHS->getOperand(0); 5947 Value *ARHS = LHS->getOperand(1); 5948 5949 // The rest of the logic assumes the LHS condition is true. If that's not the 5950 // case, invert the predicate to make it so. 5951 CmpInst::Predicate APred = 5952 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5953 5954 // Can we infer anything when the two compares have matching operands? 5955 bool AreSwappedOps; 5956 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5957 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5958 APred, BPred, AreSwappedOps)) 5959 return Implication; 5960 // No amount of additional analysis will infer the second condition, so 5961 // early exit. 5962 return None; 5963 } 5964 5965 // Can we infer anything when the LHS operands match and the RHS operands are 5966 // constants (not necessarily matching)? 5967 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5968 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5969 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5970 return Implication; 5971 // No amount of additional analysis will infer the second condition, so 5972 // early exit. 5973 return None; 5974 } 5975 5976 if (APred == BPred) 5977 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5978 return None; 5979 } 5980 5981 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5982 /// false. Otherwise, return None if we can't infer anything. We expect the 5983 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5984 static Optional<bool> 5985 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5986 const Value *RHSOp0, const Value *RHSOp1, 5987 5988 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5989 // The LHS must be an 'or' or an 'and' instruction. 5990 assert((LHS->getOpcode() == Instruction::And || 5991 LHS->getOpcode() == Instruction::Or) && 5992 "Expected LHS to be 'and' or 'or'."); 5993 5994 assert(Depth <= MaxDepth && "Hit recursion limit"); 5995 5996 // If the result of an 'or' is false, then we know both legs of the 'or' are 5997 // false. Similarly, if the result of an 'and' is true, then we know both 5998 // legs of the 'and' are true. 5999 Value *ALHS, *ARHS; 6000 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6001 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6002 // FIXME: Make this non-recursion. 6003 if (Optional<bool> Implication = isImpliedCondition( 6004 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6005 return Implication; 6006 if (Optional<bool> Implication = isImpliedCondition( 6007 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6008 return Implication; 6009 return None; 6010 } 6011 return None; 6012 } 6013 6014 Optional<bool> 6015 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6016 const Value *RHSOp0, const Value *RHSOp1, 6017 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6018 // Bail out when we hit the limit. 6019 if (Depth == MaxDepth) 6020 return None; 6021 6022 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6023 // example. 6024 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6025 return None; 6026 6027 Type *OpTy = LHS->getType(); 6028 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6029 6030 // FIXME: Extending the code below to handle vectors. 6031 if (OpTy->isVectorTy()) 6032 return None; 6033 6034 assert(OpTy->isIntegerTy(1) && "implied by above"); 6035 6036 // Both LHS and RHS are icmps. 6037 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6038 if (LHSCmp) 6039 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6040 Depth); 6041 6042 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6043 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6044 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6045 if (LHSBO) { 6046 if ((LHSBO->getOpcode() == Instruction::And || 6047 LHSBO->getOpcode() == Instruction::Or)) 6048 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6049 Depth); 6050 } 6051 return None; 6052 } 6053 6054 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6055 const DataLayout &DL, bool LHSIsTrue, 6056 unsigned Depth) { 6057 // LHS ==> RHS by definition 6058 if (LHS == RHS) 6059 return LHSIsTrue; 6060 6061 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6062 if (RHSCmp) 6063 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6064 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6065 LHSIsTrue, Depth); 6066 return None; 6067 } 6068 6069 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6070 // condition dominating ContextI or nullptr, if no condition is found. 6071 static std::pair<Value *, bool> 6072 getDomPredecessorCondition(const Instruction *ContextI) { 6073 if (!ContextI || !ContextI->getParent()) 6074 return {nullptr, false}; 6075 6076 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6077 // dominator tree (eg, from a SimplifyQuery) instead? 6078 const BasicBlock *ContextBB = ContextI->getParent(); 6079 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6080 if (!PredBB) 6081 return {nullptr, false}; 6082 6083 // We need a conditional branch in the predecessor. 6084 Value *PredCond; 6085 BasicBlock *TrueBB, *FalseBB; 6086 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6087 return {nullptr, false}; 6088 6089 // The branch should get simplified. Don't bother simplifying this condition. 6090 if (TrueBB == FalseBB) 6091 return {nullptr, false}; 6092 6093 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6094 "Predecessor block does not point to successor?"); 6095 6096 // Is this condition implied by the predecessor condition? 6097 return {PredCond, TrueBB == ContextBB}; 6098 } 6099 6100 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6101 const Instruction *ContextI, 6102 const DataLayout &DL) { 6103 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6104 auto PredCond = getDomPredecessorCondition(ContextI); 6105 if (PredCond.first) 6106 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6107 return None; 6108 } 6109 6110 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6111 const Value *LHS, const Value *RHS, 6112 const Instruction *ContextI, 6113 const DataLayout &DL) { 6114 auto PredCond = getDomPredecessorCondition(ContextI); 6115 if (PredCond.first) 6116 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6117 PredCond.second); 6118 return None; 6119 } 6120 6121 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6122 APInt &Upper, const InstrInfoQuery &IIQ) { 6123 unsigned Width = Lower.getBitWidth(); 6124 const APInt *C; 6125 switch (BO.getOpcode()) { 6126 case Instruction::Add: 6127 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6128 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6129 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6130 // 'add nuw x, C' produces [C, UINT_MAX]. 6131 Lower = *C; 6132 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6133 if (C->isNegative()) { 6134 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6135 Lower = APInt::getSignedMinValue(Width); 6136 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6137 } else { 6138 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6139 Lower = APInt::getSignedMinValue(Width) + *C; 6140 Upper = APInt::getSignedMaxValue(Width) + 1; 6141 } 6142 } 6143 } 6144 break; 6145 6146 case Instruction::And: 6147 if (match(BO.getOperand(1), m_APInt(C))) 6148 // 'and x, C' produces [0, C]. 6149 Upper = *C + 1; 6150 break; 6151 6152 case Instruction::Or: 6153 if (match(BO.getOperand(1), m_APInt(C))) 6154 // 'or x, C' produces [C, UINT_MAX]. 6155 Lower = *C; 6156 break; 6157 6158 case Instruction::AShr: 6159 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6160 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6161 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6162 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6163 } else if (match(BO.getOperand(0), m_APInt(C))) { 6164 unsigned ShiftAmount = Width - 1; 6165 if (!C->isNullValue() && IIQ.isExact(&BO)) 6166 ShiftAmount = C->countTrailingZeros(); 6167 if (C->isNegative()) { 6168 // 'ashr C, x' produces [C, C >> (Width-1)] 6169 Lower = *C; 6170 Upper = C->ashr(ShiftAmount) + 1; 6171 } else { 6172 // 'ashr C, x' produces [C >> (Width-1), C] 6173 Lower = C->ashr(ShiftAmount); 6174 Upper = *C + 1; 6175 } 6176 } 6177 break; 6178 6179 case Instruction::LShr: 6180 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6181 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6182 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6183 } else if (match(BO.getOperand(0), m_APInt(C))) { 6184 // 'lshr C, x' produces [C >> (Width-1), C]. 6185 unsigned ShiftAmount = Width - 1; 6186 if (!C->isNullValue() && IIQ.isExact(&BO)) 6187 ShiftAmount = C->countTrailingZeros(); 6188 Lower = C->lshr(ShiftAmount); 6189 Upper = *C + 1; 6190 } 6191 break; 6192 6193 case Instruction::Shl: 6194 if (match(BO.getOperand(0), m_APInt(C))) { 6195 if (IIQ.hasNoUnsignedWrap(&BO)) { 6196 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6197 Lower = *C; 6198 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6199 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6200 if (C->isNegative()) { 6201 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6202 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6203 Lower = C->shl(ShiftAmount); 6204 Upper = *C + 1; 6205 } else { 6206 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6207 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6208 Lower = *C; 6209 Upper = C->shl(ShiftAmount) + 1; 6210 } 6211 } 6212 } 6213 break; 6214 6215 case Instruction::SDiv: 6216 if (match(BO.getOperand(1), m_APInt(C))) { 6217 APInt IntMin = APInt::getSignedMinValue(Width); 6218 APInt IntMax = APInt::getSignedMaxValue(Width); 6219 if (C->isAllOnesValue()) { 6220 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6221 // where C != -1 and C != 0 and C != 1 6222 Lower = IntMin + 1; 6223 Upper = IntMax + 1; 6224 } else if (C->countLeadingZeros() < Width - 1) { 6225 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6226 // where C != -1 and C != 0 and C != 1 6227 Lower = IntMin.sdiv(*C); 6228 Upper = IntMax.sdiv(*C); 6229 if (Lower.sgt(Upper)) 6230 std::swap(Lower, Upper); 6231 Upper = Upper + 1; 6232 assert(Upper != Lower && "Upper part of range has wrapped!"); 6233 } 6234 } else if (match(BO.getOperand(0), m_APInt(C))) { 6235 if (C->isMinSignedValue()) { 6236 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6237 Lower = *C; 6238 Upper = Lower.lshr(1) + 1; 6239 } else { 6240 // 'sdiv C, x' produces [-|C|, |C|]. 6241 Upper = C->abs() + 1; 6242 Lower = (-Upper) + 1; 6243 } 6244 } 6245 break; 6246 6247 case Instruction::UDiv: 6248 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6249 // 'udiv x, C' produces [0, UINT_MAX / C]. 6250 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6251 } else if (match(BO.getOperand(0), m_APInt(C))) { 6252 // 'udiv C, x' produces [0, C]. 6253 Upper = *C + 1; 6254 } 6255 break; 6256 6257 case Instruction::SRem: 6258 if (match(BO.getOperand(1), m_APInt(C))) { 6259 // 'srem x, C' produces (-|C|, |C|). 6260 Upper = C->abs(); 6261 Lower = (-Upper) + 1; 6262 } 6263 break; 6264 6265 case Instruction::URem: 6266 if (match(BO.getOperand(1), m_APInt(C))) 6267 // 'urem x, C' produces [0, C). 6268 Upper = *C; 6269 break; 6270 6271 default: 6272 break; 6273 } 6274 } 6275 6276 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6277 APInt &Upper) { 6278 unsigned Width = Lower.getBitWidth(); 6279 const APInt *C; 6280 switch (II.getIntrinsicID()) { 6281 case Intrinsic::uadd_sat: 6282 // uadd.sat(x, C) produces [C, UINT_MAX]. 6283 if (match(II.getOperand(0), m_APInt(C)) || 6284 match(II.getOperand(1), m_APInt(C))) 6285 Lower = *C; 6286 break; 6287 case Intrinsic::sadd_sat: 6288 if (match(II.getOperand(0), m_APInt(C)) || 6289 match(II.getOperand(1), m_APInt(C))) { 6290 if (C->isNegative()) { 6291 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6292 Lower = APInt::getSignedMinValue(Width); 6293 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6294 } else { 6295 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6296 Lower = APInt::getSignedMinValue(Width) + *C; 6297 Upper = APInt::getSignedMaxValue(Width) + 1; 6298 } 6299 } 6300 break; 6301 case Intrinsic::usub_sat: 6302 // usub.sat(C, x) produces [0, C]. 6303 if (match(II.getOperand(0), m_APInt(C))) 6304 Upper = *C + 1; 6305 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6306 else if (match(II.getOperand(1), m_APInt(C))) 6307 Upper = APInt::getMaxValue(Width) - *C + 1; 6308 break; 6309 case Intrinsic::ssub_sat: 6310 if (match(II.getOperand(0), m_APInt(C))) { 6311 if (C->isNegative()) { 6312 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6313 Lower = APInt::getSignedMinValue(Width); 6314 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6315 } else { 6316 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6317 Lower = *C - APInt::getSignedMaxValue(Width); 6318 Upper = APInt::getSignedMaxValue(Width) + 1; 6319 } 6320 } else if (match(II.getOperand(1), m_APInt(C))) { 6321 if (C->isNegative()) { 6322 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6323 Lower = APInt::getSignedMinValue(Width) - *C; 6324 Upper = APInt::getSignedMaxValue(Width) + 1; 6325 } else { 6326 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6327 Lower = APInt::getSignedMinValue(Width); 6328 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6329 } 6330 } 6331 break; 6332 default: 6333 break; 6334 } 6335 } 6336 6337 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6338 APInt &Upper, const InstrInfoQuery &IIQ) { 6339 const Value *LHS = nullptr, *RHS = nullptr; 6340 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6341 if (R.Flavor == SPF_UNKNOWN) 6342 return; 6343 6344 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6345 6346 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6347 // If the negation part of the abs (in RHS) has the NSW flag, 6348 // then the result of abs(X) is [0..SIGNED_MAX], 6349 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6350 Lower = APInt::getNullValue(BitWidth); 6351 if (match(RHS, m_Neg(m_Specific(LHS))) && 6352 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6353 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6354 else 6355 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6356 return; 6357 } 6358 6359 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6360 // The result of -abs(X) is <= 0. 6361 Lower = APInt::getSignedMinValue(BitWidth); 6362 Upper = APInt(BitWidth, 1); 6363 return; 6364 } 6365 6366 const APInt *C; 6367 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6368 return; 6369 6370 switch (R.Flavor) { 6371 case SPF_UMIN: 6372 Upper = *C + 1; 6373 break; 6374 case SPF_UMAX: 6375 Lower = *C; 6376 break; 6377 case SPF_SMIN: 6378 Lower = APInt::getSignedMinValue(BitWidth); 6379 Upper = *C + 1; 6380 break; 6381 case SPF_SMAX: 6382 Lower = *C; 6383 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6384 break; 6385 default: 6386 break; 6387 } 6388 } 6389 6390 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6391 AssumptionCache *AC, 6392 const Instruction *CtxI, 6393 unsigned Depth) { 6394 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6395 6396 if (Depth == MaxDepth) 6397 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6398 6399 const APInt *C; 6400 if (match(V, m_APInt(C))) 6401 return ConstantRange(*C); 6402 6403 InstrInfoQuery IIQ(UseInstrInfo); 6404 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6405 APInt Lower = APInt(BitWidth, 0); 6406 APInt Upper = APInt(BitWidth, 0); 6407 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6408 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6409 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6410 setLimitsForIntrinsic(*II, Lower, Upper); 6411 else if (auto *SI = dyn_cast<SelectInst>(V)) 6412 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6413 6414 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6415 6416 if (auto *I = dyn_cast<Instruction>(V)) 6417 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6418 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6419 6420 if (CtxI && AC) { 6421 // Try to restrict the range based on information from assumptions. 6422 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6423 if (!AssumeVH) 6424 continue; 6425 CallInst *I = cast<CallInst>(AssumeVH); 6426 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6427 "Got assumption for the wrong function!"); 6428 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6429 "must be an assume intrinsic"); 6430 6431 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6432 continue; 6433 Value *Arg = I->getArgOperand(0); 6434 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6435 // Currently we just use information from comparisons. 6436 if (!Cmp || Cmp->getOperand(0) != V) 6437 continue; 6438 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6439 AC, I, Depth + 1); 6440 CR = CR.intersectWith( 6441 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6442 } 6443 } 6444 6445 return CR; 6446 } 6447 6448 static Optional<int64_t> 6449 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6450 // Skip over the first indices. 6451 gep_type_iterator GTI = gep_type_begin(GEP); 6452 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6453 /*skip along*/; 6454 6455 // Compute the offset implied by the rest of the indices. 6456 int64_t Offset = 0; 6457 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6458 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6459 if (!OpC) 6460 return None; 6461 if (OpC->isZero()) 6462 continue; // No offset. 6463 6464 // Handle struct indices, which add their field offset to the pointer. 6465 if (StructType *STy = GTI.getStructTypeOrNull()) { 6466 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6467 continue; 6468 } 6469 6470 // Otherwise, we have a sequential type like an array or fixed-length 6471 // vector. Multiply the index by the ElementSize. 6472 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6473 if (Size.isScalable()) 6474 return None; 6475 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6476 } 6477 6478 return Offset; 6479 } 6480 6481 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6482 const DataLayout &DL) { 6483 Ptr1 = Ptr1->stripPointerCasts(); 6484 Ptr2 = Ptr2->stripPointerCasts(); 6485 6486 // Handle the trivial case first. 6487 if (Ptr1 == Ptr2) { 6488 return 0; 6489 } 6490 6491 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6492 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6493 6494 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6495 // as in "P" and "gep P, 1". 6496 // Also do this iteratively to handle the the following case: 6497 // Ptr_t1 = GEP Ptr1, c1 6498 // Ptr_t2 = GEP Ptr_t1, c2 6499 // Ptr2 = GEP Ptr_t2, c3 6500 // where we will return c1+c2+c3. 6501 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6502 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6503 // are the same, and return the difference between offsets. 6504 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6505 const Value *Ptr) -> Optional<int64_t> { 6506 const GEPOperator *GEP_T = GEP; 6507 int64_t OffsetVal = 0; 6508 bool HasSameBase = false; 6509 while (GEP_T) { 6510 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6511 if (!Offset) 6512 return None; 6513 OffsetVal += *Offset; 6514 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6515 if (Op0 == Ptr) { 6516 HasSameBase = true; 6517 break; 6518 } 6519 GEP_T = dyn_cast<GEPOperator>(Op0); 6520 } 6521 if (!HasSameBase) 6522 return None; 6523 return OffsetVal; 6524 }; 6525 6526 if (GEP1) { 6527 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6528 if (Offset) 6529 return -*Offset; 6530 } 6531 if (GEP2) { 6532 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6533 if (Offset) 6534 return Offset; 6535 } 6536 6537 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6538 // base. After that base, they may have some number of common (and 6539 // potentially variable) indices. After that they handle some constant 6540 // offset, which determines their offset from each other. At this point, we 6541 // handle no other case. 6542 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6543 return None; 6544 6545 // Skip any common indices and track the GEP types. 6546 unsigned Idx = 1; 6547 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6548 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6549 break; 6550 6551 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6552 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6553 if (!Offset1 || !Offset2) 6554 return None; 6555 return *Offset2 - *Offset1; 6556 } 6557