1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55 /// 0). For vector types, returns the element type's bitwidth.
56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
57   if (unsigned BitWidth = Ty->getScalarSizeInBits())
58     return BitWidth;
59 
60   return DL.getPointerTypeSizeInBits(Ty);
61 }
62 
63 namespace {
64 // Simplifying using an assume can only be done in a particular control-flow
65 // context (the context instruction provides that context). If an assume and
66 // the context instruction are not in the same block then the DT helps in
67 // figuring out if we can use it.
68 struct Query {
69   const DataLayout &DL;
70   AssumptionCache *AC;
71   const Instruction *CxtI;
72   const DominatorTree *DT;
73 
74   /// Set of assumptions that should be excluded from further queries.
75   /// This is because of the potential for mutual recursion to cause
76   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77   /// classic case of this is assume(x = y), which will attempt to determine
78   /// bits in x from bits in y, which will attempt to determine bits in y from
79   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82   /// on.
83   std::array<const Value*, MaxDepth> Excluded;
84   unsigned NumExcluded;
85 
86   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87         const DominatorTree *DT)
88       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
89 
90   Query(const Query &Q, const Value *NewExcl)
91       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92     Excluded = Q.Excluded;
93     Excluded[NumExcluded++] = NewExcl;
94     assert(NumExcluded <= Excluded.size());
95   }
96 
97   bool isExcluded(const Value *Value) const {
98     if (NumExcluded == 0)
99       return false;
100     auto End = Excluded.begin() + NumExcluded;
101     return std::find(Excluded.begin(), End, Value) != End;
102   }
103 };
104 } // end anonymous namespace
105 
106 // Given the provided Value and, potentially, a context instruction, return
107 // the preferred context instruction (if any).
108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109   // If we've been provided with a context instruction, then use that (provided
110   // it has been inserted).
111   if (CxtI && CxtI->getParent())
112     return CxtI;
113 
114   // If the value is really an already-inserted instruction, then use that.
115   CxtI = dyn_cast<Instruction>(V);
116   if (CxtI && CxtI->getParent())
117     return CxtI;
118 
119   return nullptr;
120 }
121 
122 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
123                              unsigned Depth, const Query &Q);
124 
125 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
126                             const DataLayout &DL, unsigned Depth,
127                             AssumptionCache *AC, const Instruction *CxtI,
128                             const DominatorTree *DT) {
129   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130                      Query(DL, AC, safeCxtI(V, CxtI), DT));
131 }
132 
133 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134                                AssumptionCache *AC, const Instruction *CxtI,
135                                const DominatorTree *DT) {
136   assert(LHS->getType() == RHS->getType() &&
137          "LHS and RHS should have the same type");
138   assert(LHS->getType()->isIntOrIntVectorTy() &&
139          "LHS and RHS should be integers");
140   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146 }
147 
148 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
149                            unsigned Depth, const Query &Q);
150 
151 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
152                           const DataLayout &DL, unsigned Depth,
153                           AssumptionCache *AC, const Instruction *CxtI,
154                           const DominatorTree *DT) {
155   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156                    Query(DL, AC, safeCxtI(V, CxtI), DT));
157 }
158 
159 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
160                                    const Query &Q);
161 
162 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
163                                   unsigned Depth, AssumptionCache *AC,
164                                   const Instruction *CxtI,
165                                   const DominatorTree *DT) {
166   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
167                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
168 }
169 
170 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
171 
172 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173                           AssumptionCache *AC, const Instruction *CxtI,
174                           const DominatorTree *DT) {
175   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
176 }
177 
178 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179                               AssumptionCache *AC, const Instruction *CxtI,
180                               const DominatorTree *DT) {
181   bool NonNegative, Negative;
182   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183   return NonNegative;
184 }
185 
186 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187                            AssumptionCache *AC, const Instruction *CxtI,
188                            const DominatorTree *DT) {
189   if (auto *CI = dyn_cast<ConstantInt>(V))
190     return CI->getValue().isStrictlyPositive();
191 
192   // TODO: We'd doing two recursive queries here.  We should factor this such
193   // that only a single query is needed.
194   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196 }
197 
198 bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199                            AssumptionCache *AC, const Instruction *CxtI,
200                            const DominatorTree *DT) {
201   bool NonNegative, Negative;
202   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203   return Negative;
204 }
205 
206 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
207 
208 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209                           AssumptionCache *AC, const Instruction *CxtI,
210                           const DominatorTree *DT) {
211   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
213                                          DT));
214 }
215 
216 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217                               const Query &Q);
218 
219 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220                              unsigned Depth, AssumptionCache *AC,
221                              const Instruction *CxtI, const DominatorTree *DT) {
222   return ::MaskedValueIsZero(V, Mask, Depth,
223                              Query(DL, AC, safeCxtI(V, CxtI), DT));
224 }
225 
226 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
227 
228 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229                                   unsigned Depth, AssumptionCache *AC,
230                                   const Instruction *CxtI,
231                                   const DominatorTree *DT) {
232   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
233 }
234 
235 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236                                    APInt &KnownZero, APInt &KnownOne,
237                                    APInt &KnownZero2, APInt &KnownOne2,
238                                    unsigned Depth, const Query &Q) {
239   if (!Add) {
240     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241       // We know that the top bits of C-X are clear if X contains less bits
242       // than C (i.e. no wrap-around can happen).  For example, 20-X is
243       // positive if we can prove that X is >= 0 and < 16.
244       if (!CLHS->getValue().isNegative()) {
245         unsigned BitWidth = KnownZero.getBitWidth();
246         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247         // NLZ can't be BitWidth with no sign bit
248         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
249         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
250 
251         // If all of the MaskV bits are known to be zero, then we know the
252         // output top bits are zero, because we now know that the output is
253         // from [0-C].
254         if ((KnownZero2 & MaskV) == MaskV) {
255           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256           // Top bits known zero.
257           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258         }
259       }
260     }
261   }
262 
263   unsigned BitWidth = KnownZero.getBitWidth();
264 
265   // If an initial sequence of bits in the result is not needed, the
266   // corresponding bits in the operands are not needed.
267   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
268   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
270 
271   // Carry in a 1 for a subtract, rather than a 0.
272   APInt CarryIn(BitWidth, 0);
273   if (!Add) {
274     // Sum = LHS + ~RHS + 1
275     std::swap(KnownZero2, KnownOne2);
276     CarryIn.setBit(0);
277   }
278 
279   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281 
282   // Compute known bits of the carry.
283   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285 
286   // Compute set of known bits (where all three relevant bits are known).
287   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288   APInt RHSKnown = KnownZero2 | KnownOne2;
289   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290   APInt Known = LHSKnown & RHSKnown & CarryKnown;
291 
292   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293          "known bits of sum differ");
294 
295   // Compute known bits of the result.
296   KnownZero = ~PossibleSumOne & Known;
297   KnownOne = PossibleSumOne & Known;
298 
299   // Are we still trying to solve for the sign bit?
300   if (!Known.isNegative()) {
301     if (NSW) {
302       // Adding two non-negative numbers, or subtracting a negative number from
303       // a non-negative one, can't wrap into negative.
304       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305         KnownZero |= APInt::getSignBit(BitWidth);
306       // Adding two negative numbers, or subtracting a non-negative number from
307       // a negative one, can't wrap into non-negative.
308       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309         KnownOne |= APInt::getSignBit(BitWidth);
310     }
311   }
312 }
313 
314 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315                                 APInt &KnownZero, APInt &KnownOne,
316                                 APInt &KnownZero2, APInt &KnownOne2,
317                                 unsigned Depth, const Query &Q) {
318   unsigned BitWidth = KnownZero.getBitWidth();
319   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
321 
322   bool isKnownNegative = false;
323   bool isKnownNonNegative = false;
324   // If the multiplication is known not to overflow, compute the sign bit.
325   if (NSW) {
326     if (Op0 == Op1) {
327       // The product of a number with itself is non-negative.
328       isKnownNonNegative = true;
329     } else {
330       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332       bool isKnownNegativeOp1 = KnownOne.isNegative();
333       bool isKnownNegativeOp0 = KnownOne2.isNegative();
334       // The product of two numbers with the same sign is non-negative.
335       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337       // The product of a negative number and a non-negative number is either
338       // negative or zero.
339       if (!isKnownNonNegative)
340         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
341                            isKnownNonZero(Op0, Depth, Q)) ||
342                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
343                            isKnownNonZero(Op1, Depth, Q));
344     }
345   }
346 
347   // If low bits are zero in either operand, output low known-0 bits.
348   // Also compute a conservative estimate for high known-0 bits.
349   // More trickiness is possible, but this is sufficient for the
350   // interesting case of alignment computation.
351   KnownOne.clearAllBits();
352   unsigned TrailZ = KnownZero.countTrailingOnes() +
353                     KnownZero2.countTrailingOnes();
354   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
355                              KnownZero2.countLeadingOnes(),
356                              BitWidth) - BitWidth;
357 
358   TrailZ = std::min(TrailZ, BitWidth);
359   LeadZ = std::min(LeadZ, BitWidth);
360   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361               APInt::getHighBitsSet(BitWidth, LeadZ);
362 
363   // Only make use of no-wrap flags if we failed to compute the sign bit
364   // directly.  This matters if the multiplication always overflows, in
365   // which case we prefer to follow the result of the direct computation,
366   // though as the program is invoking undefined behaviour we can choose
367   // whatever we like here.
368   if (isKnownNonNegative && !KnownOne.isNegative())
369     KnownZero.setBit(BitWidth - 1);
370   else if (isKnownNegative && !KnownZero.isNegative())
371     KnownOne.setBit(BitWidth - 1);
372 }
373 
374 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
375                                              APInt &KnownZero,
376                                              APInt &KnownOne) {
377   unsigned BitWidth = KnownZero.getBitWidth();
378   unsigned NumRanges = Ranges.getNumOperands() / 2;
379   assert(NumRanges >= 1);
380 
381   KnownZero.setAllBits();
382   KnownOne.setAllBits();
383 
384   for (unsigned i = 0; i < NumRanges; ++i) {
385     ConstantInt *Lower =
386         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387     ConstantInt *Upper =
388         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
389     ConstantRange Range(Lower->getValue(), Upper->getValue());
390 
391     // The first CommonPrefixBits of all values in Range are equal.
392     unsigned CommonPrefixBits =
393         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394 
395     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396     KnownOne &= Range.getUnsignedMax() & Mask;
397     KnownZero &= ~Range.getUnsignedMax() & Mask;
398   }
399 }
400 
401 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402   SmallVector<const Value *, 16> WorkSet(1, I);
403   SmallPtrSet<const Value *, 32> Visited;
404   SmallPtrSet<const Value *, 16> EphValues;
405 
406   // The instruction defining an assumption's condition itself is always
407   // considered ephemeral to that assumption (even if it has other
408   // non-ephemeral users). See r246696's test case for an example.
409   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410     return true;
411 
412   while (!WorkSet.empty()) {
413     const Value *V = WorkSet.pop_back_val();
414     if (!Visited.insert(V).second)
415       continue;
416 
417     // If all uses of this value are ephemeral, then so is this value.
418     if (std::all_of(V->user_begin(), V->user_end(),
419                     [&](const User *U) { return EphValues.count(U); })) {
420       if (V == E)
421         return true;
422 
423       EphValues.insert(V);
424       if (const User *U = dyn_cast<User>(V))
425         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426              J != JE; ++J) {
427           if (isSafeToSpeculativelyExecute(*J))
428             WorkSet.push_back(*J);
429         }
430     }
431   }
432 
433   return false;
434 }
435 
436 // Is this an intrinsic that cannot be speculated but also cannot trap?
437 static bool isAssumeLikeIntrinsic(const Instruction *I) {
438   if (const CallInst *CI = dyn_cast<CallInst>(I))
439     if (Function *F = CI->getCalledFunction())
440       switch (F->getIntrinsicID()) {
441       default: break;
442       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443       case Intrinsic::assume:
444       case Intrinsic::dbg_declare:
445       case Intrinsic::dbg_value:
446       case Intrinsic::invariant_start:
447       case Intrinsic::invariant_end:
448       case Intrinsic::lifetime_start:
449       case Intrinsic::lifetime_end:
450       case Intrinsic::objectsize:
451       case Intrinsic::ptr_annotation:
452       case Intrinsic::var_annotation:
453         return true;
454       }
455 
456   return false;
457 }
458 
459 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460                                     const DominatorTree *DT) {
461   Instruction *Inv = cast<Instruction>(V);
462 
463   // There are two restrictions on the use of an assume:
464   //  1. The assume must dominate the context (or the control flow must
465   //     reach the assume whenever it reaches the context).
466   //  2. The context must not be in the assume's set of ephemeral values
467   //     (otherwise we will use the assume to prove that the condition
468   //     feeding the assume is trivially true, thus causing the removal of
469   //     the assume).
470 
471   if (DT) {
472     if (DT->dominates(Inv, CxtI)) {
473       return true;
474     } else if (Inv->getParent() == CxtI->getParent()) {
475       // The context comes first, but they're both in the same block. Make sure
476       // there is nothing in between that might interrupt the control flow.
477       for (BasicBlock::const_iterator I =
478              std::next(BasicBlock::const_iterator(CxtI)),
479                                       IE(Inv); I != IE; ++I)
480         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
481           return false;
482 
483       return !isEphemeralValueOf(Inv, CxtI);
484     }
485 
486     return false;
487   }
488 
489   // When we don't have a DT, we do a limited search...
490   if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
491     return true;
492   } else if (Inv->getParent() == CxtI->getParent()) {
493     // Search forward from the assume until we reach the context (or the end
494     // of the block); the common case is that the assume will come first.
495     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496          IE = Inv->getParent()->end(); I != IE; ++I)
497       if (&*I == CxtI)
498         return true;
499 
500     // The context must come first...
501     for (BasicBlock::const_iterator I =
502            std::next(BasicBlock::const_iterator(CxtI)),
503                                     IE(Inv); I != IE; ++I)
504       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
505         return false;
506 
507     return !isEphemeralValueOf(Inv, CxtI);
508   }
509 
510   return false;
511 }
512 
513 bool llvm::isValidAssumeForContext(const Instruction *I,
514                                    const Instruction *CxtI,
515                                    const DominatorTree *DT) {
516   return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
517 }
518 
519 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
520                                        APInt &KnownOne, unsigned Depth,
521                                        const Query &Q) {
522   // Use of assumptions is context-sensitive. If we don't have a context, we
523   // cannot use them!
524   if (!Q.AC || !Q.CxtI)
525     return;
526 
527   unsigned BitWidth = KnownZero.getBitWidth();
528 
529   for (auto &AssumeVH : Q.AC->assumptions()) {
530     if (!AssumeVH)
531       continue;
532     CallInst *I = cast<CallInst>(AssumeVH);
533     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
534            "Got assumption for the wrong function!");
535     if (Q.isExcluded(I))
536       continue;
537 
538     // Warning: This loop can end up being somewhat performance sensetive.
539     // We're running this loop for once for each value queried resulting in a
540     // runtime of ~O(#assumes * #values).
541 
542     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
543            "must be an assume intrinsic");
544 
545     Value *Arg = I->getArgOperand(0);
546 
547     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548       assert(BitWidth == 1 && "assume operand is not i1?");
549       KnownZero.clearAllBits();
550       KnownOne.setAllBits();
551       return;
552     }
553 
554     // The remaining tests are all recursive, so bail out if we hit the limit.
555     if (Depth == MaxDepth)
556       continue;
557 
558     Value *A, *B;
559     auto m_V = m_CombineOr(m_Specific(V),
560                            m_CombineOr(m_PtrToInt(m_Specific(V)),
561                            m_BitCast(m_Specific(V))));
562 
563     CmpInst::Predicate Pred;
564     ConstantInt *C;
565     // assume(v = a)
566     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
567         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
568       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
569       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
570       KnownZero |= RHSKnownZero;
571       KnownOne  |= RHSKnownOne;
572     // assume(v & b = a)
573     } else if (match(Arg,
574                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
575                Pred == ICmpInst::ICMP_EQ &&
576                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
577       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
578       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
579       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
580       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
581 
582       // For those bits in the mask that are known to be one, we can propagate
583       // known bits from the RHS to V.
584       KnownZero |= RHSKnownZero & MaskKnownOne;
585       KnownOne  |= RHSKnownOne  & MaskKnownOne;
586     // assume(~(v & b) = a)
587     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588                                    m_Value(A))) &&
589                Pred == ICmpInst::ICMP_EQ &&
590                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
591       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
592       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
593       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
594       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
595 
596       // For those bits in the mask that are known to be one, we can propagate
597       // inverted known bits from the RHS to V.
598       KnownZero |= RHSKnownOne  & MaskKnownOne;
599       KnownOne  |= RHSKnownZero & MaskKnownOne;
600     // assume(v | b = a)
601     } else if (match(Arg,
602                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
603                Pred == ICmpInst::ICMP_EQ &&
604                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
606       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
607       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
608       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
609 
610       // For those bits in B that are known to be zero, we can propagate known
611       // bits from the RHS to V.
612       KnownZero |= RHSKnownZero & BKnownZero;
613       KnownOne  |= RHSKnownOne  & BKnownZero;
614     // assume(~(v | b) = a)
615     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616                                    m_Value(A))) &&
617                Pred == ICmpInst::ICMP_EQ &&
618                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
619       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
620       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
621       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
622       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
623 
624       // For those bits in B that are known to be zero, we can propagate
625       // inverted known bits from the RHS to V.
626       KnownZero |= RHSKnownOne  & BKnownZero;
627       KnownOne  |= RHSKnownZero & BKnownZero;
628     // assume(v ^ b = a)
629     } else if (match(Arg,
630                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
631                Pred == ICmpInst::ICMP_EQ &&
632                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
633       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
634       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
635       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
636       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
637 
638       // For those bits in B that are known to be zero, we can propagate known
639       // bits from the RHS to V. For those bits in B that are known to be one,
640       // we can propagate inverted known bits from the RHS to V.
641       KnownZero |= RHSKnownZero & BKnownZero;
642       KnownOne  |= RHSKnownOne  & BKnownZero;
643       KnownZero |= RHSKnownOne  & BKnownOne;
644       KnownOne  |= RHSKnownZero & BKnownOne;
645     // assume(~(v ^ b) = a)
646     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647                                    m_Value(A))) &&
648                Pred == ICmpInst::ICMP_EQ &&
649                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
650       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
651       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
652       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
653       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
654 
655       // For those bits in B that are known to be zero, we can propagate
656       // inverted known bits from the RHS to V. For those bits in B that are
657       // known to be one, we can propagate known bits from the RHS to V.
658       KnownZero |= RHSKnownOne  & BKnownZero;
659       KnownOne  |= RHSKnownZero & BKnownZero;
660       KnownZero |= RHSKnownZero & BKnownOne;
661       KnownOne  |= RHSKnownOne  & BKnownOne;
662     // assume(v << c = a)
663     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664                                    m_Value(A))) &&
665                Pred == ICmpInst::ICMP_EQ &&
666                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
668       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
669       // For those bits in RHS that are known, we can propagate them to known
670       // bits in V shifted to the right by C.
671       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
673     // assume(~(v << c) = a)
674     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675                                    m_Value(A))) &&
676                Pred == ICmpInst::ICMP_EQ &&
677                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
678       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
679       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
680       // For those bits in RHS that are known, we can propagate them inverted
681       // to known bits in V shifted to the right by C.
682       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
684     // assume(v >> c = a)
685     } else if (match(Arg,
686                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
687                                                 m_AShr(m_V, m_ConstantInt(C))),
688                               m_Value(A))) &&
689                Pred == ICmpInst::ICMP_EQ &&
690                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
691       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
692       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
693       // For those bits in RHS that are known, we can propagate them to known
694       // bits in V shifted to the right by C.
695       KnownZero |= RHSKnownZero << C->getZExtValue();
696       KnownOne  |= RHSKnownOne  << C->getZExtValue();
697     // assume(~(v >> c) = a)
698     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
699                                              m_LShr(m_V, m_ConstantInt(C)),
700                                              m_AShr(m_V, m_ConstantInt(C)))),
701                                    m_Value(A))) &&
702                Pred == ICmpInst::ICMP_EQ &&
703                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
704       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
705       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
706       // For those bits in RHS that are known, we can propagate them inverted
707       // to known bits in V shifted to the right by C.
708       KnownZero |= RHSKnownOne  << C->getZExtValue();
709       KnownOne  |= RHSKnownZero << C->getZExtValue();
710     // assume(v >=_s c) where c is non-negative
711     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
712                Pred == ICmpInst::ICMP_SGE &&
713                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
714       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
715       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
716 
717       if (RHSKnownZero.isNegative()) {
718         // We know that the sign bit is zero.
719         KnownZero |= APInt::getSignBit(BitWidth);
720       }
721     // assume(v >_s c) where c is at least -1.
722     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
723                Pred == ICmpInst::ICMP_SGT &&
724                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
725       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
726       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
727 
728       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729         // We know that the sign bit is zero.
730         KnownZero |= APInt::getSignBit(BitWidth);
731       }
732     // assume(v <=_s c) where c is negative
733     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
734                Pred == ICmpInst::ICMP_SLE &&
735                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
736       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
737       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
738 
739       if (RHSKnownOne.isNegative()) {
740         // We know that the sign bit is one.
741         KnownOne |= APInt::getSignBit(BitWidth);
742       }
743     // assume(v <_s c) where c is non-positive
744     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
745                Pred == ICmpInst::ICMP_SLT &&
746                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
747       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
748       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
749 
750       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751         // We know that the sign bit is one.
752         KnownOne |= APInt::getSignBit(BitWidth);
753       }
754     // assume(v <=_u c)
755     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
756                Pred == ICmpInst::ICMP_ULE &&
757                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
759       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
760 
761       // Whatever high bits in c are zero are known to be zero.
762       KnownZero |=
763         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764     // assume(v <_u c)
765     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
766                Pred == ICmpInst::ICMP_ULT &&
767                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
768       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
770 
771       // Whatever high bits in c are zero are known to be zero (if c is a power
772       // of 2, then one more).
773       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
774         KnownZero |=
775           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776       else
777         KnownZero |=
778           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
779     }
780   }
781 }
782 
783 // Compute known bits from a shift operator, including those with a
784 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
785 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787 // functors that, given the known-zero or known-one bits respectively, and a
788 // shift amount, compute the implied known-zero or known-one bits of the shift
789 // operator's result respectively for that shift amount. The results from calling
790 // KZF and KOF are conservatively combined for all permitted shift amounts.
791 template <typename KZFunctor, typename KOFunctor>
792 static void computeKnownBitsFromShiftOperator(Operator *I,
793               APInt &KnownZero, APInt &KnownOne,
794               APInt &KnownZero2, APInt &KnownOne2,
795               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
796   unsigned BitWidth = KnownZero.getBitWidth();
797 
798   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800 
801     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
802     KnownZero = KZF(KnownZero, ShiftAmt);
803     KnownOne  = KOF(KnownOne, ShiftAmt);
804     return;
805   }
806 
807   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
808 
809   // Note: We cannot use KnownZero.getLimitedValue() here, because if
810   // BitWidth > 64 and any upper bits are known, we'll end up returning the
811   // limit value (which implies all bits are known).
812   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814 
815   // It would be more-clearly correct to use the two temporaries for this
816   // calculation. Reusing the APInts here to prevent unnecessary allocations.
817   KnownZero.clearAllBits();
818   KnownOne.clearAllBits();
819 
820   // If we know the shifter operand is nonzero, we can sometimes infer more
821   // known bits. However this is expensive to compute, so be lazy about it and
822   // only compute it when absolutely necessary.
823   Optional<bool> ShifterOperandIsNonZero;
824 
825   // Early exit if we can't constrain any well-defined shift amount.
826   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827     ShifterOperandIsNonZero =
828         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
829     if (!*ShifterOperandIsNonZero)
830       return;
831   }
832 
833   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
834 
835   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837     // Combine the shifted known input bits only for those shift amounts
838     // compatible with its known constraints.
839     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840       continue;
841     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842       continue;
843     // If we know the shifter is nonzero, we may be able to infer more known
844     // bits. This check is sunk down as far as possible to avoid the expensive
845     // call to isKnownNonZero if the cheaper checks above fail.
846     if (ShiftAmt == 0) {
847       if (!ShifterOperandIsNonZero.hasValue())
848         ShifterOperandIsNonZero =
849             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
850       if (*ShifterOperandIsNonZero)
851         continue;
852     }
853 
854     KnownZero &= KZF(KnownZero2, ShiftAmt);
855     KnownOne  &= KOF(KnownOne2, ShiftAmt);
856   }
857 
858   // If there are no compatible shift amounts, then we've proven that the shift
859   // amount must be >= the BitWidth, and the result is undefined. We could
860   // return anything we'd like, but we need to make sure the sets of known bits
861   // stay disjoint (it should be better for some other code to actually
862   // propagate the undef than to pick a value here using known bits).
863   if ((KnownZero & KnownOne) != 0) {
864     KnownZero.clearAllBits();
865     KnownOne.clearAllBits();
866   }
867 }
868 
869 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
870                                          APInt &KnownOne, unsigned Depth,
871                                          const Query &Q) {
872   unsigned BitWidth = KnownZero.getBitWidth();
873 
874   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
875   switch (I->getOpcode()) {
876   default: break;
877   case Instruction::Load:
878     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
879       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
880     break;
881   case Instruction::And: {
882     // If either the LHS or the RHS are Zero, the result is zero.
883     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
885 
886     // Output known-1 bits are only known if set in both the LHS & RHS.
887     KnownOne &= KnownOne2;
888     // Output known-0 are known to be clear if zero in either the LHS | RHS.
889     KnownZero |= KnownZero2;
890 
891     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892     // here we handle the more general case of adding any odd number by
893     // matching the form add(x, add(x, y)) where y is odd.
894     // TODO: This could be generalized to clearing any bit set in y where the
895     // following bit is known to be unset in y.
896     Value *Y = nullptr;
897     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898                                       m_Value(Y))) ||
899         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900                                       m_Value(Y)))) {
901       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
902       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
903       if (KnownOne3.countTrailingOnes() > 0)
904         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905     }
906     break;
907   }
908   case Instruction::Or: {
909     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
911 
912     // Output known-0 bits are only known if clear in both the LHS & RHS.
913     KnownZero &= KnownZero2;
914     // Output known-1 are known to be set if set in either the LHS | RHS.
915     KnownOne |= KnownOne2;
916     break;
917   }
918   case Instruction::Xor: {
919     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
921 
922     // Output known-0 bits are known if clear or set in both the LHS & RHS.
923     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924     // Output known-1 are known to be set if set in only one of the LHS, RHS.
925     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926     KnownZero = KnownZeroOut;
927     break;
928   }
929   case Instruction::Mul: {
930     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
931     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
932                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
933     break;
934   }
935   case Instruction::UDiv: {
936     // For the purposes of computing leading zeros we can conservatively
937     // treat a udiv as a logical right shift by the power of 2 known to
938     // be less than the denominator.
939     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
940     unsigned LeadZ = KnownZero2.countLeadingOnes();
941 
942     KnownOne2.clearAllBits();
943     KnownZero2.clearAllBits();
944     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
945     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946     if (RHSUnknownLeadingOnes != BitWidth)
947       LeadZ = std::min(BitWidth,
948                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949 
950     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
951     break;
952   }
953   case Instruction::Select:
954     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
956 
957     // Only known if known in both the LHS and RHS.
958     KnownOne &= KnownOne2;
959     KnownZero &= KnownZero2;
960     break;
961   case Instruction::FPTrunc:
962   case Instruction::FPExt:
963   case Instruction::FPToUI:
964   case Instruction::FPToSI:
965   case Instruction::SIToFP:
966   case Instruction::UIToFP:
967     break; // Can't work with floating point.
968   case Instruction::PtrToInt:
969   case Instruction::IntToPtr:
970   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
971     // FALL THROUGH and handle them the same as zext/trunc.
972   case Instruction::ZExt:
973   case Instruction::Trunc: {
974     Type *SrcTy = I->getOperand(0)->getType();
975 
976     unsigned SrcBitWidth;
977     // Note that we handle pointer operands here because of inttoptr/ptrtoint
978     // which fall through here.
979     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
980 
981     assert(SrcBitWidth && "SrcBitWidth can't be zero");
982     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
984     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
985     KnownZero = KnownZero.zextOrTrunc(BitWidth);
986     KnownOne = KnownOne.zextOrTrunc(BitWidth);
987     // Any top bits are known to be zero.
988     if (BitWidth > SrcBitWidth)
989       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
990     break;
991   }
992   case Instruction::BitCast: {
993     Type *SrcTy = I->getOperand(0)->getType();
994     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
995          SrcTy->isFloatingPointTy()) &&
996         // TODO: For now, not handling conversions like:
997         // (bitcast i64 %x to <2 x i32>)
998         !I->getType()->isVectorTy()) {
999       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1000       break;
1001     }
1002     break;
1003   }
1004   case Instruction::SExt: {
1005     // Compute the bits in the result that are not present in the input.
1006     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1007 
1008     KnownZero = KnownZero.trunc(SrcBitWidth);
1009     KnownOne = KnownOne.trunc(SrcBitWidth);
1010     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1011     KnownZero = KnownZero.zext(BitWidth);
1012     KnownOne = KnownOne.zext(BitWidth);
1013 
1014     // If the sign bit of the input is known set or clear, then we know the
1015     // top bits of the result.
1016     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1017       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1018     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1019       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1020     break;
1021   }
1022   case Instruction::Shl: {
1023     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1024     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1025       return (KnownZero << ShiftAmt) |
1026              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1027     };
1028 
1029     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1030       return KnownOne << ShiftAmt;
1031     };
1032 
1033     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1034                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1035                                       KOF);
1036     break;
1037   }
1038   case Instruction::LShr: {
1039     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1040     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1041       return APIntOps::lshr(KnownZero, ShiftAmt) |
1042              // High bits known zero.
1043              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1044     };
1045 
1046     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1047       return APIntOps::lshr(KnownOne, ShiftAmt);
1048     };
1049 
1050     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1051                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1052                                       KOF);
1053     break;
1054   }
1055   case Instruction::AShr: {
1056     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1057     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1058       return APIntOps::ashr(KnownZero, ShiftAmt);
1059     };
1060 
1061     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1062       return APIntOps::ashr(KnownOne, ShiftAmt);
1063     };
1064 
1065     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1066                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1067                                       KOF);
1068     break;
1069   }
1070   case Instruction::Sub: {
1071     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1072     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1073                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1074                            Q);
1075     break;
1076   }
1077   case Instruction::Add: {
1078     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1079     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1080                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1081                            Q);
1082     break;
1083   }
1084   case Instruction::SRem:
1085     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1086       APInt RA = Rem->getValue().abs();
1087       if (RA.isPowerOf2()) {
1088         APInt LowBits = RA - 1;
1089         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1090                          Q);
1091 
1092         // The low bits of the first operand are unchanged by the srem.
1093         KnownZero = KnownZero2 & LowBits;
1094         KnownOne = KnownOne2 & LowBits;
1095 
1096         // If the first operand is non-negative or has all low bits zero, then
1097         // the upper bits are all zero.
1098         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1099           KnownZero |= ~LowBits;
1100 
1101         // If the first operand is negative and not all low bits are zero, then
1102         // the upper bits are all one.
1103         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1104           KnownOne |= ~LowBits;
1105 
1106         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1107       }
1108     }
1109 
1110     // The sign bit is the LHS's sign bit, except when the result of the
1111     // remainder is zero.
1112     if (KnownZero.isNonNegative()) {
1113       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1114       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1115                        Q);
1116       // If it's known zero, our sign bit is also zero.
1117       if (LHSKnownZero.isNegative())
1118         KnownZero.setBit(BitWidth - 1);
1119     }
1120 
1121     break;
1122   case Instruction::URem: {
1123     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1124       APInt RA = Rem->getValue();
1125       if (RA.isPowerOf2()) {
1126         APInt LowBits = (RA - 1);
1127         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1128         KnownZero |= ~LowBits;
1129         KnownOne &= LowBits;
1130         break;
1131       }
1132     }
1133 
1134     // Since the result is less than or equal to either operand, any leading
1135     // zero bits in either operand must also exist in the result.
1136     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1137     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1138 
1139     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1140                                 KnownZero2.countLeadingOnes());
1141     KnownOne.clearAllBits();
1142     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1143     break;
1144   }
1145 
1146   case Instruction::Alloca: {
1147     AllocaInst *AI = cast<AllocaInst>(I);
1148     unsigned Align = AI->getAlignment();
1149     if (Align == 0)
1150       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1151 
1152     if (Align > 0)
1153       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1154     break;
1155   }
1156   case Instruction::GetElementPtr: {
1157     // Analyze all of the subscripts of this getelementptr instruction
1158     // to determine if we can prove known low zero bits.
1159     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1160     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1161                      Q);
1162     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1163 
1164     gep_type_iterator GTI = gep_type_begin(I);
1165     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1166       Value *Index = I->getOperand(i);
1167       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1168         // Handle struct member offset arithmetic.
1169 
1170         // Handle case when index is vector zeroinitializer
1171         Constant *CIndex = cast<Constant>(Index);
1172         if (CIndex->isZeroValue())
1173           continue;
1174 
1175         if (CIndex->getType()->isVectorTy())
1176           Index = CIndex->getSplatValue();
1177 
1178         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1179         const StructLayout *SL = Q.DL.getStructLayout(STy);
1180         uint64_t Offset = SL->getElementOffset(Idx);
1181         TrailZ = std::min<unsigned>(TrailZ,
1182                                     countTrailingZeros(Offset));
1183       } else {
1184         // Handle array index arithmetic.
1185         Type *IndexedTy = GTI.getIndexedType();
1186         if (!IndexedTy->isSized()) {
1187           TrailZ = 0;
1188           break;
1189         }
1190         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1191         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1192         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1193         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1194         TrailZ = std::min(TrailZ,
1195                           unsigned(countTrailingZeros(TypeSize) +
1196                                    LocalKnownZero.countTrailingOnes()));
1197       }
1198     }
1199 
1200     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1201     break;
1202   }
1203   case Instruction::PHI: {
1204     PHINode *P = cast<PHINode>(I);
1205     // Handle the case of a simple two-predecessor recurrence PHI.
1206     // There's a lot more that could theoretically be done here, but
1207     // this is sufficient to catch some interesting cases.
1208     if (P->getNumIncomingValues() == 2) {
1209       for (unsigned i = 0; i != 2; ++i) {
1210         Value *L = P->getIncomingValue(i);
1211         Value *R = P->getIncomingValue(!i);
1212         Operator *LU = dyn_cast<Operator>(L);
1213         if (!LU)
1214           continue;
1215         unsigned Opcode = LU->getOpcode();
1216         // Check for operations that have the property that if
1217         // both their operands have low zero bits, the result
1218         // will have low zero bits.
1219         if (Opcode == Instruction::Add ||
1220             Opcode == Instruction::Sub ||
1221             Opcode == Instruction::And ||
1222             Opcode == Instruction::Or ||
1223             Opcode == Instruction::Mul) {
1224           Value *LL = LU->getOperand(0);
1225           Value *LR = LU->getOperand(1);
1226           // Find a recurrence.
1227           if (LL == I)
1228             L = LR;
1229           else if (LR == I)
1230             L = LL;
1231           else
1232             break;
1233           // Ok, we have a PHI of the form L op= R. Check for low
1234           // zero bits.
1235           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1236 
1237           // We need to take the minimum number of known bits
1238           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1239           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1240 
1241           KnownZero = APInt::getLowBitsSet(BitWidth,
1242                                            std::min(KnownZero2.countTrailingOnes(),
1243                                                     KnownZero3.countTrailingOnes()));
1244           break;
1245         }
1246       }
1247     }
1248 
1249     // Unreachable blocks may have zero-operand PHI nodes.
1250     if (P->getNumIncomingValues() == 0)
1251       break;
1252 
1253     // Otherwise take the unions of the known bit sets of the operands,
1254     // taking conservative care to avoid excessive recursion.
1255     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1256       // Skip if every incoming value references to ourself.
1257       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1258         break;
1259 
1260       KnownZero = APInt::getAllOnesValue(BitWidth);
1261       KnownOne = APInt::getAllOnesValue(BitWidth);
1262       for (Value *IncValue : P->incoming_values()) {
1263         // Skip direct self references.
1264         if (IncValue == P) continue;
1265 
1266         KnownZero2 = APInt(BitWidth, 0);
1267         KnownOne2 = APInt(BitWidth, 0);
1268         // Recurse, but cap the recursion to one level, because we don't
1269         // want to waste time spinning around in loops.
1270         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1271         KnownZero &= KnownZero2;
1272         KnownOne &= KnownOne2;
1273         // If all bits have been ruled out, there's no need to check
1274         // more operands.
1275         if (!KnownZero && !KnownOne)
1276           break;
1277       }
1278     }
1279     break;
1280   }
1281   case Instruction::Call:
1282   case Instruction::Invoke:
1283     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1284       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1285     // If a range metadata is attached to this IntrinsicInst, intersect the
1286     // explicit range specified by the metadata and the implicit range of
1287     // the intrinsic.
1288     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1289       switch (II->getIntrinsicID()) {
1290       default: break;
1291       case Intrinsic::bswap:
1292         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1293         KnownZero |= KnownZero2.byteSwap();
1294         KnownOne |= KnownOne2.byteSwap();
1295         break;
1296       case Intrinsic::ctlz:
1297       case Intrinsic::cttz: {
1298         unsigned LowBits = Log2_32(BitWidth)+1;
1299         // If this call is undefined for 0, the result will be less than 2^n.
1300         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1301           LowBits -= 1;
1302         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1303         break;
1304       }
1305       case Intrinsic::ctpop: {
1306         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1307         // We can bound the space the count needs.  Also, bits known to be zero
1308         // can't contribute to the population.
1309         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1310         unsigned LeadingZeros =
1311           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1312         assert(LeadingZeros <= BitWidth);
1313         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1314         KnownOne &= ~KnownZero;
1315         // TODO: we could bound KnownOne using the lower bound on the number
1316         // of bits which might be set provided by popcnt KnownOne2.
1317         break;
1318       }
1319       case Intrinsic::fabs: {
1320         Type *Ty = II->getType();
1321         APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1322         KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1323         break;
1324       }
1325       case Intrinsic::x86_sse42_crc32_64_64:
1326         KnownZero |= APInt::getHighBitsSet(64, 32);
1327         break;
1328       }
1329     }
1330     break;
1331   case Instruction::ExtractValue:
1332     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1333       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1334       if (EVI->getNumIndices() != 1) break;
1335       if (EVI->getIndices()[0] == 0) {
1336         switch (II->getIntrinsicID()) {
1337         default: break;
1338         case Intrinsic::uadd_with_overflow:
1339         case Intrinsic::sadd_with_overflow:
1340           computeKnownBitsAddSub(true, II->getArgOperand(0),
1341                                  II->getArgOperand(1), false, KnownZero,
1342                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1343           break;
1344         case Intrinsic::usub_with_overflow:
1345         case Intrinsic::ssub_with_overflow:
1346           computeKnownBitsAddSub(false, II->getArgOperand(0),
1347                                  II->getArgOperand(1), false, KnownZero,
1348                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1349           break;
1350         case Intrinsic::umul_with_overflow:
1351         case Intrinsic::smul_with_overflow:
1352           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1353                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1354                               Q);
1355           break;
1356         }
1357       }
1358     }
1359   }
1360 }
1361 
1362 /// Determine which bits of V are known to be either zero or one and return
1363 /// them in the KnownZero/KnownOne bit sets.
1364 ///
1365 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1366 /// we cannot optimize based on the assumption that it is zero without changing
1367 /// it to be an explicit zero.  If we don't change it to zero, other code could
1368 /// optimized based on the contradictory assumption that it is non-zero.
1369 /// Because instcombine aggressively folds operations with undef args anyway,
1370 /// this won't lose us code quality.
1371 ///
1372 /// This function is defined on values with integer type, values with pointer
1373 /// type, and vectors of integers.  In the case
1374 /// where V is a vector, known zero, and known one values are the
1375 /// same width as the vector element, and the bit is set only if it is true
1376 /// for all of the elements in the vector.
1377 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1378                       unsigned Depth, const Query &Q) {
1379   assert(V && "No Value?");
1380   assert(Depth <= MaxDepth && "Limit Search Depth");
1381   unsigned BitWidth = KnownZero.getBitWidth();
1382 
1383   assert((V->getType()->isIntOrIntVectorTy() ||
1384           V->getType()->isFPOrFPVectorTy() ||
1385           V->getType()->getScalarType()->isPointerTy()) &&
1386          "Not integer, floating point, or pointer type!");
1387   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1388          (!V->getType()->isIntOrIntVectorTy() ||
1389           V->getType()->getScalarSizeInBits() == BitWidth) &&
1390          KnownZero.getBitWidth() == BitWidth &&
1391          KnownOne.getBitWidth() == BitWidth &&
1392          "V, KnownOne and KnownZero should have same BitWidth");
1393 
1394   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1395     // We know all of the bits for a constant!
1396     KnownOne = CI->getValue();
1397     KnownZero = ~KnownOne;
1398     return;
1399   }
1400   // Null and aggregate-zero are all-zeros.
1401   if (isa<ConstantPointerNull>(V) ||
1402       isa<ConstantAggregateZero>(V)) {
1403     KnownOne.clearAllBits();
1404     KnownZero = APInt::getAllOnesValue(BitWidth);
1405     return;
1406   }
1407   // Handle a constant vector by taking the intersection of the known bits of
1408   // each element.  There is no real need to handle ConstantVector here, because
1409   // we don't handle undef in any particularly useful way.
1410   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1411     // We know that CDS must be a vector of integers. Take the intersection of
1412     // each element.
1413     KnownZero.setAllBits(); KnownOne.setAllBits();
1414     APInt Elt(KnownZero.getBitWidth(), 0);
1415     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1416       Elt = CDS->getElementAsInteger(i);
1417       KnownZero &= ~Elt;
1418       KnownOne &= Elt;
1419     }
1420     return;
1421   }
1422 
1423   // Start out not knowing anything.
1424   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1425 
1426   // Limit search depth.
1427   // All recursive calls that increase depth must come after this.
1428   if (Depth == MaxDepth)
1429     return;
1430 
1431   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1432   // the bits of its aliasee.
1433   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1434     if (!GA->isInterposable())
1435       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1436     return;
1437   }
1438 
1439   if (Operator *I = dyn_cast<Operator>(V))
1440     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1441 
1442   // Aligned pointers have trailing zeros - refine KnownZero set
1443   if (V->getType()->isPointerTy()) {
1444     unsigned Align = V->getPointerAlignment(Q.DL);
1445     if (Align)
1446       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1447   }
1448 
1449   // computeKnownBitsFromAssume strictly refines KnownZero and
1450   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1451 
1452   // Check whether a nearby assume intrinsic can determine some known bits.
1453   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1454 
1455   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1456 }
1457 
1458 /// Determine whether the sign bit is known to be zero or one.
1459 /// Convenience wrapper around computeKnownBits.
1460 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1461                     unsigned Depth, const Query &Q) {
1462   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1463   if (!BitWidth) {
1464     KnownZero = false;
1465     KnownOne = false;
1466     return;
1467   }
1468   APInt ZeroBits(BitWidth, 0);
1469   APInt OneBits(BitWidth, 0);
1470   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1471   KnownOne = OneBits[BitWidth - 1];
1472   KnownZero = ZeroBits[BitWidth - 1];
1473 }
1474 
1475 /// Return true if the given value is known to have exactly one
1476 /// bit set when defined. For vectors return true if every element is known to
1477 /// be a power of two when defined. Supports values with integer or pointer
1478 /// types and vectors of integers.
1479 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1480                             const Query &Q) {
1481   if (Constant *C = dyn_cast<Constant>(V)) {
1482     if (C->isNullValue())
1483       return OrZero;
1484     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1485       return CI->getValue().isPowerOf2();
1486     // TODO: Handle vector constants.
1487   }
1488 
1489   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1490   // it is shifted off the end then the result is undefined.
1491   if (match(V, m_Shl(m_One(), m_Value())))
1492     return true;
1493 
1494   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1495   // bottom.  If it is shifted off the bottom then the result is undefined.
1496   if (match(V, m_LShr(m_SignBit(), m_Value())))
1497     return true;
1498 
1499   // The remaining tests are all recursive, so bail out if we hit the limit.
1500   if (Depth++ == MaxDepth)
1501     return false;
1502 
1503   Value *X = nullptr, *Y = nullptr;
1504   // A shift left or a logical shift right of a power of two is a power of two
1505   // or zero.
1506   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1507                  match(V, m_LShr(m_Value(X), m_Value()))))
1508     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1509 
1510   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1511     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1512 
1513   if (SelectInst *SI = dyn_cast<SelectInst>(V))
1514     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1515            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1516 
1517   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1518     // A power of two and'd with anything is a power of two or zero.
1519     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1520         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1521       return true;
1522     // X & (-X) is always a power of two or zero.
1523     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1524       return true;
1525     return false;
1526   }
1527 
1528   // Adding a power-of-two or zero to the same power-of-two or zero yields
1529   // either the original power-of-two, a larger power-of-two or zero.
1530   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1531     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1532     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1533       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1534           match(X, m_And(m_Value(), m_Specific(Y))))
1535         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1536           return true;
1537       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1538           match(Y, m_And(m_Value(), m_Specific(X))))
1539         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1540           return true;
1541 
1542       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1543       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1544       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1545 
1546       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1547       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1548       // If i8 V is a power of two or zero:
1549       //  ZeroBits: 1 1 1 0 1 1 1 1
1550       // ~ZeroBits: 0 0 0 1 0 0 0 0
1551       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1552         // If OrZero isn't set, we cannot give back a zero result.
1553         // Make sure either the LHS or RHS has a bit set.
1554         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1555           return true;
1556     }
1557   }
1558 
1559   // An exact divide or right shift can only shift off zero bits, so the result
1560   // is a power of two only if the first operand is a power of two and not
1561   // copying a sign bit (sdiv int_min, 2).
1562   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1563       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1564     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1565                                   Depth, Q);
1566   }
1567 
1568   return false;
1569 }
1570 
1571 /// \brief Test whether a GEP's result is known to be non-null.
1572 ///
1573 /// Uses properties inherent in a GEP to try to determine whether it is known
1574 /// to be non-null.
1575 ///
1576 /// Currently this routine does not support vector GEPs.
1577 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1578                               const Query &Q) {
1579   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1580     return false;
1581 
1582   // FIXME: Support vector-GEPs.
1583   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1584 
1585   // If the base pointer is non-null, we cannot walk to a null address with an
1586   // inbounds GEP in address space zero.
1587   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1588     return true;
1589 
1590   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1591   // If so, then the GEP cannot produce a null pointer, as doing so would
1592   // inherently violate the inbounds contract within address space zero.
1593   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1594        GTI != GTE; ++GTI) {
1595     // Struct types are easy -- they must always be indexed by a constant.
1596     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1597       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1598       unsigned ElementIdx = OpC->getZExtValue();
1599       const StructLayout *SL = Q.DL.getStructLayout(STy);
1600       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1601       if (ElementOffset > 0)
1602         return true;
1603       continue;
1604     }
1605 
1606     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1607     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1608       continue;
1609 
1610     // Fast path the constant operand case both for efficiency and so we don't
1611     // increment Depth when just zipping down an all-constant GEP.
1612     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1613       if (!OpC->isZero())
1614         return true;
1615       continue;
1616     }
1617 
1618     // We post-increment Depth here because while isKnownNonZero increments it
1619     // as well, when we pop back up that increment won't persist. We don't want
1620     // to recurse 10k times just because we have 10k GEP operands. We don't
1621     // bail completely out because we want to handle constant GEPs regardless
1622     // of depth.
1623     if (Depth++ >= MaxDepth)
1624       continue;
1625 
1626     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1627       return true;
1628   }
1629 
1630   return false;
1631 }
1632 
1633 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1634 /// ensure that the value it's attached to is never Value?  'RangeType' is
1635 /// is the type of the value described by the range.
1636 static bool rangeMetadataExcludesValue(MDNode* Ranges,
1637                                        const APInt& Value) {
1638   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1639   assert(NumRanges >= 1);
1640   for (unsigned i = 0; i < NumRanges; ++i) {
1641     ConstantInt *Lower =
1642         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1643     ConstantInt *Upper =
1644         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1645     ConstantRange Range(Lower->getValue(), Upper->getValue());
1646     if (Range.contains(Value))
1647       return false;
1648   }
1649   return true;
1650 }
1651 
1652 /// Return true if the given value is known to be non-zero when defined.
1653 /// For vectors return true if every element is known to be non-zero when
1654 /// defined. Supports values with integer or pointer type and vectors of
1655 /// integers.
1656 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1657   if (Constant *C = dyn_cast<Constant>(V)) {
1658     if (C->isNullValue())
1659       return false;
1660     if (isa<ConstantInt>(C))
1661       // Must be non-zero due to null test above.
1662       return true;
1663     // TODO: Handle vectors
1664     return false;
1665   }
1666 
1667   if (Instruction* I = dyn_cast<Instruction>(V)) {
1668     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1669       // If the possible ranges don't contain zero, then the value is
1670       // definitely non-zero.
1671       if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1672         const APInt ZeroValue(Ty->getBitWidth(), 0);
1673         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1674           return true;
1675       }
1676     }
1677   }
1678 
1679   // The remaining tests are all recursive, so bail out if we hit the limit.
1680   if (Depth++ >= MaxDepth)
1681     return false;
1682 
1683   // Check for pointer simplifications.
1684   if (V->getType()->isPointerTy()) {
1685     if (isKnownNonNull(V))
1686       return true;
1687     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1688       if (isGEPKnownNonNull(GEP, Depth, Q))
1689         return true;
1690   }
1691 
1692   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1693 
1694   // X | Y != 0 if X != 0 or Y != 0.
1695   Value *X = nullptr, *Y = nullptr;
1696   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1697     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1698 
1699   // ext X != 0 if X != 0.
1700   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1701     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1702 
1703   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1704   // if the lowest bit is shifted off the end.
1705   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1706     // shl nuw can't remove any non-zero bits.
1707     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1708     if (BO->hasNoUnsignedWrap())
1709       return isKnownNonZero(X, Depth, Q);
1710 
1711     APInt KnownZero(BitWidth, 0);
1712     APInt KnownOne(BitWidth, 0);
1713     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1714     if (KnownOne[0])
1715       return true;
1716   }
1717   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1718   // defined if the sign bit is shifted off the end.
1719   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1720     // shr exact can only shift out zero bits.
1721     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1722     if (BO->isExact())
1723       return isKnownNonZero(X, Depth, Q);
1724 
1725     bool XKnownNonNegative, XKnownNegative;
1726     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1727     if (XKnownNegative)
1728       return true;
1729 
1730     // If the shifter operand is a constant, and all of the bits shifted
1731     // out are known to be zero, and X is known non-zero then at least one
1732     // non-zero bit must remain.
1733     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1734       APInt KnownZero(BitWidth, 0);
1735       APInt KnownOne(BitWidth, 0);
1736       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1737 
1738       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1739       // Is there a known one in the portion not shifted out?
1740       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1741         return true;
1742       // Are all the bits to be shifted out known zero?
1743       if (KnownZero.countTrailingOnes() >= ShiftVal)
1744         return isKnownNonZero(X, Depth, Q);
1745     }
1746   }
1747   // div exact can only produce a zero if the dividend is zero.
1748   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1749     return isKnownNonZero(X, Depth, Q);
1750   }
1751   // X + Y.
1752   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1753     bool XKnownNonNegative, XKnownNegative;
1754     bool YKnownNonNegative, YKnownNegative;
1755     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1756     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1757 
1758     // If X and Y are both non-negative (as signed values) then their sum is not
1759     // zero unless both X and Y are zero.
1760     if (XKnownNonNegative && YKnownNonNegative)
1761       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1762         return true;
1763 
1764     // If X and Y are both negative (as signed values) then their sum is not
1765     // zero unless both X and Y equal INT_MIN.
1766     if (BitWidth && XKnownNegative && YKnownNegative) {
1767       APInt KnownZero(BitWidth, 0);
1768       APInt KnownOne(BitWidth, 0);
1769       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1770       // The sign bit of X is set.  If some other bit is set then X is not equal
1771       // to INT_MIN.
1772       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1773       if ((KnownOne & Mask) != 0)
1774         return true;
1775       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1776       // to INT_MIN.
1777       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1778       if ((KnownOne & Mask) != 0)
1779         return true;
1780     }
1781 
1782     // The sum of a non-negative number and a power of two is not zero.
1783     if (XKnownNonNegative &&
1784         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1785       return true;
1786     if (YKnownNonNegative &&
1787         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1788       return true;
1789   }
1790   // X * Y.
1791   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1792     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1793     // If X and Y are non-zero then so is X * Y as long as the multiplication
1794     // does not overflow.
1795     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1796         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1797       return true;
1798   }
1799   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1800   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1801     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1802         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1803       return true;
1804   }
1805   // PHI
1806   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1807     // Try and detect a recurrence that monotonically increases from a
1808     // starting value, as these are common as induction variables.
1809     if (PN->getNumIncomingValues() == 2) {
1810       Value *Start = PN->getIncomingValue(0);
1811       Value *Induction = PN->getIncomingValue(1);
1812       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1813         std::swap(Start, Induction);
1814       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1815         if (!C->isZero() && !C->isNegative()) {
1816           ConstantInt *X;
1817           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1818                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1819               !X->isNegative())
1820             return true;
1821         }
1822       }
1823     }
1824     // Check if all incoming values are non-zero constant.
1825     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1826       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1827     });
1828     if (AllNonZeroConstants)
1829       return true;
1830   }
1831 
1832   if (!BitWidth) return false;
1833   APInt KnownZero(BitWidth, 0);
1834   APInt KnownOne(BitWidth, 0);
1835   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1836   return KnownOne != 0;
1837 }
1838 
1839 /// Return true if V2 == V1 + X, where X is known non-zero.
1840 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
1841   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1842   if (!BO || BO->getOpcode() != Instruction::Add)
1843     return false;
1844   Value *Op = nullptr;
1845   if (V2 == BO->getOperand(0))
1846     Op = BO->getOperand(1);
1847   else if (V2 == BO->getOperand(1))
1848     Op = BO->getOperand(0);
1849   else
1850     return false;
1851   return isKnownNonZero(Op, 0, Q);
1852 }
1853 
1854 /// Return true if it is known that V1 != V2.
1855 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
1856   if (V1->getType()->isVectorTy() || V1 == V2)
1857     return false;
1858   if (V1->getType() != V2->getType())
1859     // We can't look through casts yet.
1860     return false;
1861   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1862     return true;
1863 
1864   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1865     // Are any known bits in V1 contradictory to known bits in V2? If V1
1866     // has a known zero where V2 has a known one, they must not be equal.
1867     auto BitWidth = Ty->getBitWidth();
1868     APInt KnownZero1(BitWidth, 0);
1869     APInt KnownOne1(BitWidth, 0);
1870     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1871     APInt KnownZero2(BitWidth, 0);
1872     APInt KnownOne2(BitWidth, 0);
1873     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1874 
1875     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1876     if (OppositeBits.getBoolValue())
1877       return true;
1878   }
1879   return false;
1880 }
1881 
1882 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
1883 /// simplify operations downstream. Mask is known to be zero for bits that V
1884 /// cannot have.
1885 ///
1886 /// This function is defined on values with integer type, values with pointer
1887 /// type, and vectors of integers.  In the case
1888 /// where V is a vector, the mask, known zero, and known one values are the
1889 /// same width as the vector element, and the bit is set only if it is true
1890 /// for all of the elements in the vector.
1891 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1892                        const Query &Q) {
1893   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1894   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1895   return (KnownZero & Mask) == Mask;
1896 }
1897 
1898 
1899 
1900 /// Return the number of times the sign bit of the register is replicated into
1901 /// the other bits. We know that at least 1 bit is always equal to the sign bit
1902 /// (itself), but other cases can give us information. For example, immediately
1903 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1904 /// other, so we return 3.
1905 ///
1906 /// 'Op' must have a scalar integer type.
1907 ///
1908 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1909   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
1910   unsigned Tmp, Tmp2;
1911   unsigned FirstAnswer = 1;
1912 
1913   // Note that ConstantInt is handled by the general computeKnownBits case
1914   // below.
1915 
1916   if (Depth == 6)
1917     return 1;  // Limit search depth.
1918 
1919   Operator *U = dyn_cast<Operator>(V);
1920   switch (Operator::getOpcode(V)) {
1921   default: break;
1922   case Instruction::SExt:
1923     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1924     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
1925 
1926   case Instruction::SDiv: {
1927     const APInt *Denominator;
1928     // sdiv X, C -> adds log(C) sign bits.
1929     if (match(U->getOperand(1), m_APInt(Denominator))) {
1930 
1931       // Ignore non-positive denominator.
1932       if (!Denominator->isStrictlyPositive())
1933         break;
1934 
1935       // Calculate the incoming numerator bits.
1936       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1937 
1938       // Add floor(log(C)) bits to the numerator bits.
1939       return std::min(TyBits, NumBits + Denominator->logBase2());
1940     }
1941     break;
1942   }
1943 
1944   case Instruction::SRem: {
1945     const APInt *Denominator;
1946     // srem X, C -> we know that the result is within [-C+1,C) when C is a
1947     // positive constant.  This let us put a lower bound on the number of sign
1948     // bits.
1949     if (match(U->getOperand(1), m_APInt(Denominator))) {
1950 
1951       // Ignore non-positive denominator.
1952       if (!Denominator->isStrictlyPositive())
1953         break;
1954 
1955       // Calculate the incoming numerator bits. SRem by a positive constant
1956       // can't lower the number of sign bits.
1957       unsigned NumrBits =
1958           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1959 
1960       // Calculate the leading sign bit constraints by examining the
1961       // denominator.  Given that the denominator is positive, there are two
1962       // cases:
1963       //
1964       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
1965       //     (1 << ceilLogBase2(C)).
1966       //
1967       //  2. the numerator is negative.  Then the result range is (-C,0] and
1968       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1969       //
1970       // Thus a lower bound on the number of sign bits is `TyBits -
1971       // ceilLogBase2(C)`.
1972 
1973       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
1974       return std::max(NumrBits, ResBits);
1975     }
1976     break;
1977   }
1978 
1979   case Instruction::AShr: {
1980     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1981     // ashr X, C   -> adds C sign bits.  Vectors too.
1982     const APInt *ShAmt;
1983     if (match(U->getOperand(1), m_APInt(ShAmt))) {
1984       Tmp += ShAmt->getZExtValue();
1985       if (Tmp > TyBits) Tmp = TyBits;
1986     }
1987     return Tmp;
1988   }
1989   case Instruction::Shl: {
1990     const APInt *ShAmt;
1991     if (match(U->getOperand(1), m_APInt(ShAmt))) {
1992       // shl destroys sign bits.
1993       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1994       Tmp2 = ShAmt->getZExtValue();
1995       if (Tmp2 >= TyBits ||      // Bad shift.
1996           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
1997       return Tmp - Tmp2;
1998     }
1999     break;
2000   }
2001   case Instruction::And:
2002   case Instruction::Or:
2003   case Instruction::Xor:    // NOT is handled here.
2004     // Logical binary ops preserve the number of sign bits at the worst.
2005     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2006     if (Tmp != 1) {
2007       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2008       FirstAnswer = std::min(Tmp, Tmp2);
2009       // We computed what we know about the sign bits as our first
2010       // answer. Now proceed to the generic code that uses
2011       // computeKnownBits, and pick whichever answer is better.
2012     }
2013     break;
2014 
2015   case Instruction::Select:
2016     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2017     if (Tmp == 1) return 1;  // Early out.
2018     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2019     return std::min(Tmp, Tmp2);
2020 
2021   case Instruction::Add:
2022     // Add can have at most one carry bit.  Thus we know that the output
2023     // is, at worst, one more bit than the inputs.
2024     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2025     if (Tmp == 1) return 1;  // Early out.
2026 
2027     // Special case decrementing a value (ADD X, -1):
2028     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2029       if (CRHS->isAllOnesValue()) {
2030         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2031         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2032 
2033         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2034         // sign bits set.
2035         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2036           return TyBits;
2037 
2038         // If we are subtracting one from a positive number, there is no carry
2039         // out of the result.
2040         if (KnownZero.isNegative())
2041           return Tmp;
2042       }
2043 
2044     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2045     if (Tmp2 == 1) return 1;
2046     return std::min(Tmp, Tmp2)-1;
2047 
2048   case Instruction::Sub:
2049     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2050     if (Tmp2 == 1) return 1;
2051 
2052     // Handle NEG.
2053     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2054       if (CLHS->isNullValue()) {
2055         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2056         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2057         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2058         // sign bits set.
2059         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2060           return TyBits;
2061 
2062         // If the input is known to be positive (the sign bit is known clear),
2063         // the output of the NEG has the same number of sign bits as the input.
2064         if (KnownZero.isNegative())
2065           return Tmp2;
2066 
2067         // Otherwise, we treat this like a SUB.
2068       }
2069 
2070     // Sub can have at most one carry bit.  Thus we know that the output
2071     // is, at worst, one more bit than the inputs.
2072     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2073     if (Tmp == 1) return 1;  // Early out.
2074     return std::min(Tmp, Tmp2)-1;
2075 
2076   case Instruction::PHI: {
2077     PHINode *PN = cast<PHINode>(U);
2078     unsigned NumIncomingValues = PN->getNumIncomingValues();
2079     // Don't analyze large in-degree PHIs.
2080     if (NumIncomingValues > 4) break;
2081     // Unreachable blocks may have zero-operand PHI nodes.
2082     if (NumIncomingValues == 0) break;
2083 
2084     // Take the minimum of all incoming values.  This can't infinitely loop
2085     // because of our depth threshold.
2086     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2087     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2088       if (Tmp == 1) return Tmp;
2089       Tmp = std::min(
2090           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2091     }
2092     return Tmp;
2093   }
2094 
2095   case Instruction::Trunc:
2096     // FIXME: it's tricky to do anything useful for this, but it is an important
2097     // case for targets like X86.
2098     break;
2099   }
2100 
2101   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2102   // use this information.
2103   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2104   APInt Mask;
2105   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2106 
2107   if (KnownZero.isNegative()) {        // sign bit is 0
2108     Mask = KnownZero;
2109   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2110     Mask = KnownOne;
2111   } else {
2112     // Nothing known.
2113     return FirstAnswer;
2114   }
2115 
2116   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2117   // the number of identical bits in the top of the input value.
2118   Mask = ~Mask;
2119   Mask <<= Mask.getBitWidth()-TyBits;
2120   // Return # leading zeros.  We use 'min' here in case Val was zero before
2121   // shifting.  We don't want to return '64' as for an i32 "0".
2122   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2123 }
2124 
2125 /// This function computes the integer multiple of Base that equals V.
2126 /// If successful, it returns true and returns the multiple in
2127 /// Multiple. If unsuccessful, it returns false. It looks
2128 /// through SExt instructions only if LookThroughSExt is true.
2129 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2130                            bool LookThroughSExt, unsigned Depth) {
2131   const unsigned MaxDepth = 6;
2132 
2133   assert(V && "No Value?");
2134   assert(Depth <= MaxDepth && "Limit Search Depth");
2135   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2136 
2137   Type *T = V->getType();
2138 
2139   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2140 
2141   if (Base == 0)
2142     return false;
2143 
2144   if (Base == 1) {
2145     Multiple = V;
2146     return true;
2147   }
2148 
2149   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2150   Constant *BaseVal = ConstantInt::get(T, Base);
2151   if (CO && CO == BaseVal) {
2152     // Multiple is 1.
2153     Multiple = ConstantInt::get(T, 1);
2154     return true;
2155   }
2156 
2157   if (CI && CI->getZExtValue() % Base == 0) {
2158     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2159     return true;
2160   }
2161 
2162   if (Depth == MaxDepth) return false;  // Limit search depth.
2163 
2164   Operator *I = dyn_cast<Operator>(V);
2165   if (!I) return false;
2166 
2167   switch (I->getOpcode()) {
2168   default: break;
2169   case Instruction::SExt:
2170     if (!LookThroughSExt) return false;
2171     // otherwise fall through to ZExt
2172   case Instruction::ZExt:
2173     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2174                            LookThroughSExt, Depth+1);
2175   case Instruction::Shl:
2176   case Instruction::Mul: {
2177     Value *Op0 = I->getOperand(0);
2178     Value *Op1 = I->getOperand(1);
2179 
2180     if (I->getOpcode() == Instruction::Shl) {
2181       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2182       if (!Op1CI) return false;
2183       // Turn Op0 << Op1 into Op0 * 2^Op1
2184       APInt Op1Int = Op1CI->getValue();
2185       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2186       APInt API(Op1Int.getBitWidth(), 0);
2187       API.setBit(BitToSet);
2188       Op1 = ConstantInt::get(V->getContext(), API);
2189     }
2190 
2191     Value *Mul0 = nullptr;
2192     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2193       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2194         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2195           if (Op1C->getType()->getPrimitiveSizeInBits() <
2196               MulC->getType()->getPrimitiveSizeInBits())
2197             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2198           if (Op1C->getType()->getPrimitiveSizeInBits() >
2199               MulC->getType()->getPrimitiveSizeInBits())
2200             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2201 
2202           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2203           Multiple = ConstantExpr::getMul(MulC, Op1C);
2204           return true;
2205         }
2206 
2207       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2208         if (Mul0CI->getValue() == 1) {
2209           // V == Base * Op1, so return Op1
2210           Multiple = Op1;
2211           return true;
2212         }
2213     }
2214 
2215     Value *Mul1 = nullptr;
2216     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2217       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2218         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2219           if (Op0C->getType()->getPrimitiveSizeInBits() <
2220               MulC->getType()->getPrimitiveSizeInBits())
2221             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2222           if (Op0C->getType()->getPrimitiveSizeInBits() >
2223               MulC->getType()->getPrimitiveSizeInBits())
2224             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2225 
2226           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2227           Multiple = ConstantExpr::getMul(MulC, Op0C);
2228           return true;
2229         }
2230 
2231       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2232         if (Mul1CI->getValue() == 1) {
2233           // V == Base * Op0, so return Op0
2234           Multiple = Op0;
2235           return true;
2236         }
2237     }
2238   }
2239   }
2240 
2241   // We could not determine if V is a multiple of Base.
2242   return false;
2243 }
2244 
2245 /// \brief Check call has a unary float signature
2246 /// It checks following:
2247 /// a) call should have a single argument
2248 /// b) argument type should be floating point type
2249 /// c) call instruction type and argument type should be same
2250 /// d) call should only reads memory.
2251 /// If all these condition is met then return ValidIntrinsicID
2252 /// else return not_intrinsic.
2253 static Intrinsic::ID checkUnaryFloatSignature(ImmutableCallSite ICS,
2254                                               Intrinsic::ID ValidIntrinsicID) {
2255   if (ICS.getNumArgOperands() != 1 ||
2256       !ICS.getArgOperand(0)->getType()->isFloatingPointTy() ||
2257       ICS.getType() != ICS.getArgOperand(0)->getType() ||
2258       !ICS.onlyReadsMemory())
2259     return Intrinsic::not_intrinsic;
2260 
2261   return ValidIntrinsicID;
2262 }
2263 
2264 /// \brief Check call has a binary float signature
2265 /// It checks following:
2266 /// a) call should have 2 arguments.
2267 /// b) arguments type should be floating point type
2268 /// c) call instruction type and arguments type should be same
2269 /// d) call should only reads memory.
2270 /// If all these condition is met then return ValidIntrinsicID
2271 /// else return not_intrinsic.
2272 static Intrinsic::ID checkBinaryFloatSignature(ImmutableCallSite ICS,
2273                                                Intrinsic::ID ValidIntrinsicID) {
2274   if (ICS.getNumArgOperands() != 2 ||
2275       !ICS.getArgOperand(0)->getType()->isFloatingPointTy() ||
2276       !ICS.getArgOperand(1)->getType()->isFloatingPointTy() ||
2277       ICS.getType() != ICS.getArgOperand(0)->getType() ||
2278       ICS.getType() != ICS.getArgOperand(1)->getType() ||
2279       !ICS.onlyReadsMemory())
2280     return Intrinsic::not_intrinsic;
2281 
2282   return ValidIntrinsicID;
2283 }
2284 
2285 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2286                                             const TargetLibraryInfo *TLI) {
2287   const Function *F = ICS.getCalledFunction();
2288   if (!F)
2289     return Intrinsic::not_intrinsic;
2290 
2291   if (F->isIntrinsic())
2292     return F->getIntrinsicID();
2293 
2294   if (!TLI)
2295     return Intrinsic::not_intrinsic;
2296 
2297   LibFunc::Func Func;
2298   // We're going to make assumptions on the semantics of the functions, check
2299   // that the target knows that it's available in this environment and it does
2300   // not have local linkage.
2301   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
2302     return Intrinsic::not_intrinsic;
2303 
2304   // Otherwise check if we have a call to a function that can be turned into a
2305   // vector intrinsic.
2306   switch (Func) {
2307   default:
2308     break;
2309   case LibFunc::sin:
2310   case LibFunc::sinf:
2311   case LibFunc::sinl:
2312     return checkUnaryFloatSignature(ICS, Intrinsic::sin);
2313   case LibFunc::cos:
2314   case LibFunc::cosf:
2315   case LibFunc::cosl:
2316     return checkUnaryFloatSignature(ICS, Intrinsic::cos);
2317   case LibFunc::exp:
2318   case LibFunc::expf:
2319   case LibFunc::expl:
2320     return checkUnaryFloatSignature(ICS, Intrinsic::exp);
2321   case LibFunc::exp2:
2322   case LibFunc::exp2f:
2323   case LibFunc::exp2l:
2324     return checkUnaryFloatSignature(ICS, Intrinsic::exp2);
2325   case LibFunc::log:
2326   case LibFunc::logf:
2327   case LibFunc::logl:
2328     return checkUnaryFloatSignature(ICS, Intrinsic::log);
2329   case LibFunc::log10:
2330   case LibFunc::log10f:
2331   case LibFunc::log10l:
2332     return checkUnaryFloatSignature(ICS, Intrinsic::log10);
2333   case LibFunc::log2:
2334   case LibFunc::log2f:
2335   case LibFunc::log2l:
2336     return checkUnaryFloatSignature(ICS, Intrinsic::log2);
2337   case LibFunc::fabs:
2338   case LibFunc::fabsf:
2339   case LibFunc::fabsl:
2340     return checkUnaryFloatSignature(ICS, Intrinsic::fabs);
2341   case LibFunc::fmin:
2342   case LibFunc::fminf:
2343   case LibFunc::fminl:
2344     return checkBinaryFloatSignature(ICS, Intrinsic::minnum);
2345   case LibFunc::fmax:
2346   case LibFunc::fmaxf:
2347   case LibFunc::fmaxl:
2348     return checkBinaryFloatSignature(ICS, Intrinsic::maxnum);
2349   case LibFunc::copysign:
2350   case LibFunc::copysignf:
2351   case LibFunc::copysignl:
2352     return checkBinaryFloatSignature(ICS, Intrinsic::copysign);
2353   case LibFunc::floor:
2354   case LibFunc::floorf:
2355   case LibFunc::floorl:
2356     return checkUnaryFloatSignature(ICS, Intrinsic::floor);
2357   case LibFunc::ceil:
2358   case LibFunc::ceilf:
2359   case LibFunc::ceill:
2360     return checkUnaryFloatSignature(ICS, Intrinsic::ceil);
2361   case LibFunc::trunc:
2362   case LibFunc::truncf:
2363   case LibFunc::truncl:
2364     return checkUnaryFloatSignature(ICS, Intrinsic::trunc);
2365   case LibFunc::rint:
2366   case LibFunc::rintf:
2367   case LibFunc::rintl:
2368     return checkUnaryFloatSignature(ICS, Intrinsic::rint);
2369   case LibFunc::nearbyint:
2370   case LibFunc::nearbyintf:
2371   case LibFunc::nearbyintl:
2372     return checkUnaryFloatSignature(ICS, Intrinsic::nearbyint);
2373   case LibFunc::round:
2374   case LibFunc::roundf:
2375   case LibFunc::roundl:
2376     return checkUnaryFloatSignature(ICS, Intrinsic::round);
2377   case LibFunc::pow:
2378   case LibFunc::powf:
2379   case LibFunc::powl:
2380     return checkBinaryFloatSignature(ICS, Intrinsic::pow);
2381   case LibFunc::sqrt:
2382   case LibFunc::sqrtf:
2383   case LibFunc::sqrtl:
2384     if (ICS->hasNoNaNs())
2385       return checkUnaryFloatSignature(ICS, Intrinsic::sqrt);
2386     return Intrinsic::not_intrinsic;
2387   }
2388 
2389   return Intrinsic::not_intrinsic;
2390 }
2391 
2392 /// Return true if we can prove that the specified FP value is never equal to
2393 /// -0.0.
2394 ///
2395 /// NOTE: this function will need to be revisited when we support non-default
2396 /// rounding modes!
2397 ///
2398 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2399                                 unsigned Depth) {
2400   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2401     return !CFP->getValueAPF().isNegZero();
2402 
2403   // FIXME: Magic number! At the least, this should be given a name because it's
2404   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2405   // expose it as a parameter, so it can be used for testing / experimenting.
2406   if (Depth == 6)
2407     return false;  // Limit search depth.
2408 
2409   const Operator *I = dyn_cast<Operator>(V);
2410   if (!I) return false;
2411 
2412   // Check if the nsz fast-math flag is set
2413   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2414     if (FPO->hasNoSignedZeros())
2415       return true;
2416 
2417   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2418   if (I->getOpcode() == Instruction::FAdd)
2419     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2420       if (CFP->isNullValue())
2421         return true;
2422 
2423   // sitofp and uitofp turn into +0.0 for zero.
2424   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2425     return true;
2426 
2427   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2428     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2429     switch (IID) {
2430     default:
2431       break;
2432     // sqrt(-0.0) = -0.0, no other negative results are possible.
2433     case Intrinsic::sqrt:
2434       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2435     // fabs(x) != -0.0
2436     case Intrinsic::fabs:
2437       return true;
2438     }
2439   }
2440 
2441   return false;
2442 }
2443 
2444 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2445                                        const TargetLibraryInfo *TLI,
2446                                        unsigned Depth) {
2447   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2448     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2449 
2450   // FIXME: Magic number! At the least, this should be given a name because it's
2451   // used similarly in CannotBeNegativeZero(). A better fix may be to
2452   // expose it as a parameter, so it can be used for testing / experimenting.
2453   if (Depth == 6)
2454     return false;  // Limit search depth.
2455 
2456   const Operator *I = dyn_cast<Operator>(V);
2457   if (!I) return false;
2458 
2459   switch (I->getOpcode()) {
2460   default: break;
2461   // Unsigned integers are always nonnegative.
2462   case Instruction::UIToFP:
2463     return true;
2464   case Instruction::FMul:
2465     // x*x is always non-negative or a NaN.
2466     if (I->getOperand(0) == I->getOperand(1))
2467       return true;
2468     // Fall through
2469   case Instruction::FAdd:
2470   case Instruction::FDiv:
2471   case Instruction::FRem:
2472     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2473            CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2474   case Instruction::Select:
2475     return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2476            CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2477   case Instruction::FPExt:
2478   case Instruction::FPTrunc:
2479     // Widening/narrowing never change sign.
2480     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2481   case Instruction::Call:
2482     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2483     switch (IID) {
2484     default:
2485       break;
2486     case Intrinsic::maxnum:
2487       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2488              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2489     case Intrinsic::minnum:
2490       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2491              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2492     case Intrinsic::exp:
2493     case Intrinsic::exp2:
2494     case Intrinsic::fabs:
2495     case Intrinsic::sqrt:
2496       return true;
2497     case Intrinsic::powi:
2498       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2499         // powi(x,n) is non-negative if n is even.
2500         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2501           return true;
2502       }
2503       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2504     case Intrinsic::fma:
2505     case Intrinsic::fmuladd:
2506       // x*x+y is non-negative if y is non-negative.
2507       return I->getOperand(0) == I->getOperand(1) &&
2508              CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2509     }
2510     break;
2511   }
2512   return false;
2513 }
2514 
2515 /// If the specified value can be set by repeating the same byte in memory,
2516 /// return the i8 value that it is represented with.  This is
2517 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2518 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2519 /// byte store (e.g. i16 0x1234), return null.
2520 Value *llvm::isBytewiseValue(Value *V) {
2521   // All byte-wide stores are splatable, even of arbitrary variables.
2522   if (V->getType()->isIntegerTy(8)) return V;
2523 
2524   // Handle 'null' ConstantArrayZero etc.
2525   if (Constant *C = dyn_cast<Constant>(V))
2526     if (C->isNullValue())
2527       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2528 
2529   // Constant float and double values can be handled as integer values if the
2530   // corresponding integer value is "byteable".  An important case is 0.0.
2531   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2532     if (CFP->getType()->isFloatTy())
2533       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2534     if (CFP->getType()->isDoubleTy())
2535       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2536     // Don't handle long double formats, which have strange constraints.
2537   }
2538 
2539   // We can handle constant integers that are multiple of 8 bits.
2540   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2541     if (CI->getBitWidth() % 8 == 0) {
2542       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2543 
2544       if (!CI->getValue().isSplat(8))
2545         return nullptr;
2546       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2547     }
2548   }
2549 
2550   // A ConstantDataArray/Vector is splatable if all its members are equal and
2551   // also splatable.
2552   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2553     Value *Elt = CA->getElementAsConstant(0);
2554     Value *Val = isBytewiseValue(Elt);
2555     if (!Val)
2556       return nullptr;
2557 
2558     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2559       if (CA->getElementAsConstant(I) != Elt)
2560         return nullptr;
2561 
2562     return Val;
2563   }
2564 
2565   // Conceptually, we could handle things like:
2566   //   %a = zext i8 %X to i16
2567   //   %b = shl i16 %a, 8
2568   //   %c = or i16 %a, %b
2569   // but until there is an example that actually needs this, it doesn't seem
2570   // worth worrying about.
2571   return nullptr;
2572 }
2573 
2574 
2575 // This is the recursive version of BuildSubAggregate. It takes a few different
2576 // arguments. Idxs is the index within the nested struct From that we are
2577 // looking at now (which is of type IndexedType). IdxSkip is the number of
2578 // indices from Idxs that should be left out when inserting into the resulting
2579 // struct. To is the result struct built so far, new insertvalue instructions
2580 // build on that.
2581 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2582                                 SmallVectorImpl<unsigned> &Idxs,
2583                                 unsigned IdxSkip,
2584                                 Instruction *InsertBefore) {
2585   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2586   if (STy) {
2587     // Save the original To argument so we can modify it
2588     Value *OrigTo = To;
2589     // General case, the type indexed by Idxs is a struct
2590     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2591       // Process each struct element recursively
2592       Idxs.push_back(i);
2593       Value *PrevTo = To;
2594       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2595                              InsertBefore);
2596       Idxs.pop_back();
2597       if (!To) {
2598         // Couldn't find any inserted value for this index? Cleanup
2599         while (PrevTo != OrigTo) {
2600           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2601           PrevTo = Del->getAggregateOperand();
2602           Del->eraseFromParent();
2603         }
2604         // Stop processing elements
2605         break;
2606       }
2607     }
2608     // If we successfully found a value for each of our subaggregates
2609     if (To)
2610       return To;
2611   }
2612   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2613   // the struct's elements had a value that was inserted directly. In the latter
2614   // case, perhaps we can't determine each of the subelements individually, but
2615   // we might be able to find the complete struct somewhere.
2616 
2617   // Find the value that is at that particular spot
2618   Value *V = FindInsertedValue(From, Idxs);
2619 
2620   if (!V)
2621     return nullptr;
2622 
2623   // Insert the value in the new (sub) aggregrate
2624   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2625                                        "tmp", InsertBefore);
2626 }
2627 
2628 // This helper takes a nested struct and extracts a part of it (which is again a
2629 // struct) into a new value. For example, given the struct:
2630 // { a, { b, { c, d }, e } }
2631 // and the indices "1, 1" this returns
2632 // { c, d }.
2633 //
2634 // It does this by inserting an insertvalue for each element in the resulting
2635 // struct, as opposed to just inserting a single struct. This will only work if
2636 // each of the elements of the substruct are known (ie, inserted into From by an
2637 // insertvalue instruction somewhere).
2638 //
2639 // All inserted insertvalue instructions are inserted before InsertBefore
2640 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2641                                 Instruction *InsertBefore) {
2642   assert(InsertBefore && "Must have someplace to insert!");
2643   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2644                                                              idx_range);
2645   Value *To = UndefValue::get(IndexedType);
2646   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2647   unsigned IdxSkip = Idxs.size();
2648 
2649   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2650 }
2651 
2652 /// Given an aggregrate and an sequence of indices, see if
2653 /// the scalar value indexed is already around as a register, for example if it
2654 /// were inserted directly into the aggregrate.
2655 ///
2656 /// If InsertBefore is not null, this function will duplicate (modified)
2657 /// insertvalues when a part of a nested struct is extracted.
2658 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2659                                Instruction *InsertBefore) {
2660   // Nothing to index? Just return V then (this is useful at the end of our
2661   // recursion).
2662   if (idx_range.empty())
2663     return V;
2664   // We have indices, so V should have an indexable type.
2665   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2666          "Not looking at a struct or array?");
2667   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2668          "Invalid indices for type?");
2669 
2670   if (Constant *C = dyn_cast<Constant>(V)) {
2671     C = C->getAggregateElement(idx_range[0]);
2672     if (!C) return nullptr;
2673     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2674   }
2675 
2676   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2677     // Loop the indices for the insertvalue instruction in parallel with the
2678     // requested indices
2679     const unsigned *req_idx = idx_range.begin();
2680     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2681          i != e; ++i, ++req_idx) {
2682       if (req_idx == idx_range.end()) {
2683         // We can't handle this without inserting insertvalues
2684         if (!InsertBefore)
2685           return nullptr;
2686 
2687         // The requested index identifies a part of a nested aggregate. Handle
2688         // this specially. For example,
2689         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2690         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2691         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2692         // This can be changed into
2693         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2694         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2695         // which allows the unused 0,0 element from the nested struct to be
2696         // removed.
2697         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2698                                  InsertBefore);
2699       }
2700 
2701       // This insert value inserts something else than what we are looking for.
2702       // See if the (aggregate) value inserted into has the value we are
2703       // looking for, then.
2704       if (*req_idx != *i)
2705         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2706                                  InsertBefore);
2707     }
2708     // If we end up here, the indices of the insertvalue match with those
2709     // requested (though possibly only partially). Now we recursively look at
2710     // the inserted value, passing any remaining indices.
2711     return FindInsertedValue(I->getInsertedValueOperand(),
2712                              makeArrayRef(req_idx, idx_range.end()),
2713                              InsertBefore);
2714   }
2715 
2716   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2717     // If we're extracting a value from an aggregate that was extracted from
2718     // something else, we can extract from that something else directly instead.
2719     // However, we will need to chain I's indices with the requested indices.
2720 
2721     // Calculate the number of indices required
2722     unsigned size = I->getNumIndices() + idx_range.size();
2723     // Allocate some space to put the new indices in
2724     SmallVector<unsigned, 5> Idxs;
2725     Idxs.reserve(size);
2726     // Add indices from the extract value instruction
2727     Idxs.append(I->idx_begin(), I->idx_end());
2728 
2729     // Add requested indices
2730     Idxs.append(idx_range.begin(), idx_range.end());
2731 
2732     assert(Idxs.size() == size
2733            && "Number of indices added not correct?");
2734 
2735     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2736   }
2737   // Otherwise, we don't know (such as, extracting from a function return value
2738   // or load instruction)
2739   return nullptr;
2740 }
2741 
2742 /// Analyze the specified pointer to see if it can be expressed as a base
2743 /// pointer plus a constant offset. Return the base and offset to the caller.
2744 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2745                                               const DataLayout &DL) {
2746   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2747   APInt ByteOffset(BitWidth, 0);
2748 
2749   // We walk up the defs but use a visited set to handle unreachable code. In
2750   // that case, we stop after accumulating the cycle once (not that it
2751   // matters).
2752   SmallPtrSet<Value *, 16> Visited;
2753   while (Visited.insert(Ptr).second) {
2754     if (Ptr->getType()->isVectorTy())
2755       break;
2756 
2757     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2758       APInt GEPOffset(BitWidth, 0);
2759       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2760         break;
2761 
2762       ByteOffset += GEPOffset;
2763 
2764       Ptr = GEP->getPointerOperand();
2765     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2766                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2767       Ptr = cast<Operator>(Ptr)->getOperand(0);
2768     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2769       if (GA->isInterposable())
2770         break;
2771       Ptr = GA->getAliasee();
2772     } else {
2773       break;
2774     }
2775   }
2776   Offset = ByteOffset.getSExtValue();
2777   return Ptr;
2778 }
2779 
2780 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2781   // Make sure the GEP has exactly three arguments.
2782   if (GEP->getNumOperands() != 3)
2783     return false;
2784 
2785   // Make sure the index-ee is a pointer to array of i8.
2786   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2787   if (!AT || !AT->getElementType()->isIntegerTy(8))
2788     return false;
2789 
2790   // Check to make sure that the first operand of the GEP is an integer and
2791   // has value 0 so that we are sure we're indexing into the initializer.
2792   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2793   if (!FirstIdx || !FirstIdx->isZero())
2794     return false;
2795 
2796   return true;
2797 }
2798 
2799 /// This function computes the length of a null-terminated C string pointed to
2800 /// by V. If successful, it returns true and returns the string in Str.
2801 /// If unsuccessful, it returns false.
2802 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2803                                  uint64_t Offset, bool TrimAtNul) {
2804   assert(V);
2805 
2806   // Look through bitcast instructions and geps.
2807   V = V->stripPointerCasts();
2808 
2809   // If the value is a GEP instruction or constant expression, treat it as an
2810   // offset.
2811   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2812     // The GEP operator should be based on a pointer to string constant, and is
2813     // indexing into the string constant.
2814     if (!isGEPBasedOnPointerToString(GEP))
2815       return false;
2816 
2817     // If the second index isn't a ConstantInt, then this is a variable index
2818     // into the array.  If this occurs, we can't say anything meaningful about
2819     // the string.
2820     uint64_t StartIdx = 0;
2821     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2822       StartIdx = CI->getZExtValue();
2823     else
2824       return false;
2825     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2826                                  TrimAtNul);
2827   }
2828 
2829   // The GEP instruction, constant or instruction, must reference a global
2830   // variable that is a constant and is initialized. The referenced constant
2831   // initializer is the array that we'll use for optimization.
2832   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2833   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2834     return false;
2835 
2836   // Handle the all-zeros case
2837   if (GV->getInitializer()->isNullValue()) {
2838     // This is a degenerate case. The initializer is constant zero so the
2839     // length of the string must be zero.
2840     Str = "";
2841     return true;
2842   }
2843 
2844   // Must be a Constant Array
2845   const ConstantDataArray *Array =
2846     dyn_cast<ConstantDataArray>(GV->getInitializer());
2847   if (!Array || !Array->isString())
2848     return false;
2849 
2850   // Get the number of elements in the array
2851   uint64_t NumElts = Array->getType()->getArrayNumElements();
2852 
2853   // Start out with the entire array in the StringRef.
2854   Str = Array->getAsString();
2855 
2856   if (Offset > NumElts)
2857     return false;
2858 
2859   // Skip over 'offset' bytes.
2860   Str = Str.substr(Offset);
2861 
2862   if (TrimAtNul) {
2863     // Trim off the \0 and anything after it.  If the array is not nul
2864     // terminated, we just return the whole end of string.  The client may know
2865     // some other way that the string is length-bound.
2866     Str = Str.substr(0, Str.find('\0'));
2867   }
2868   return true;
2869 }
2870 
2871 // These next two are very similar to the above, but also look through PHI
2872 // nodes.
2873 // TODO: See if we can integrate these two together.
2874 
2875 /// If we can compute the length of the string pointed to by
2876 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2877 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2878   // Look through noop bitcast instructions.
2879   V = V->stripPointerCasts();
2880 
2881   // If this is a PHI node, there are two cases: either we have already seen it
2882   // or we haven't.
2883   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2884     if (!PHIs.insert(PN).second)
2885       return ~0ULL;  // already in the set.
2886 
2887     // If it was new, see if all the input strings are the same length.
2888     uint64_t LenSoFar = ~0ULL;
2889     for (Value *IncValue : PN->incoming_values()) {
2890       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2891       if (Len == 0) return 0; // Unknown length -> unknown.
2892 
2893       if (Len == ~0ULL) continue;
2894 
2895       if (Len != LenSoFar && LenSoFar != ~0ULL)
2896         return 0;    // Disagree -> unknown.
2897       LenSoFar = Len;
2898     }
2899 
2900     // Success, all agree.
2901     return LenSoFar;
2902   }
2903 
2904   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2905   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2906     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2907     if (Len1 == 0) return 0;
2908     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2909     if (Len2 == 0) return 0;
2910     if (Len1 == ~0ULL) return Len2;
2911     if (Len2 == ~0ULL) return Len1;
2912     if (Len1 != Len2) return 0;
2913     return Len1;
2914   }
2915 
2916   // Otherwise, see if we can read the string.
2917   StringRef StrData;
2918   if (!getConstantStringInfo(V, StrData))
2919     return 0;
2920 
2921   return StrData.size()+1;
2922 }
2923 
2924 /// If we can compute the length of the string pointed to by
2925 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2926 uint64_t llvm::GetStringLength(Value *V) {
2927   if (!V->getType()->isPointerTy()) return 0;
2928 
2929   SmallPtrSet<PHINode*, 32> PHIs;
2930   uint64_t Len = GetStringLengthH(V, PHIs);
2931   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2932   // an empty string as a length.
2933   return Len == ~0ULL ? 1 : Len;
2934 }
2935 
2936 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
2937 /// previous iteration of the loop was referring to the same object as \p PN.
2938 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2939   // Find the loop-defined value.
2940   Loop *L = LI->getLoopFor(PN->getParent());
2941   if (PN->getNumIncomingValues() != 2)
2942     return true;
2943 
2944   // Find the value from previous iteration.
2945   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2946   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2947     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2948   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2949     return true;
2950 
2951   // If a new pointer is loaded in the loop, the pointer references a different
2952   // object in every iteration.  E.g.:
2953   //    for (i)
2954   //       int *p = a[i];
2955   //       ...
2956   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2957     if (!L->isLoopInvariant(Load->getPointerOperand()))
2958       return false;
2959   return true;
2960 }
2961 
2962 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2963                                  unsigned MaxLookup) {
2964   if (!V->getType()->isPointerTy())
2965     return V;
2966   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2967     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2968       V = GEP->getPointerOperand();
2969     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2970                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
2971       V = cast<Operator>(V)->getOperand(0);
2972     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2973       if (GA->isInterposable())
2974         return V;
2975       V = GA->getAliasee();
2976     } else {
2977       // See if InstructionSimplify knows any relevant tricks.
2978       if (Instruction *I = dyn_cast<Instruction>(V))
2979         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
2980         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
2981           V = Simplified;
2982           continue;
2983         }
2984 
2985       return V;
2986     }
2987     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2988   }
2989   return V;
2990 }
2991 
2992 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
2993                                 const DataLayout &DL, LoopInfo *LI,
2994                                 unsigned MaxLookup) {
2995   SmallPtrSet<Value *, 4> Visited;
2996   SmallVector<Value *, 4> Worklist;
2997   Worklist.push_back(V);
2998   do {
2999     Value *P = Worklist.pop_back_val();
3000     P = GetUnderlyingObject(P, DL, MaxLookup);
3001 
3002     if (!Visited.insert(P).second)
3003       continue;
3004 
3005     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3006       Worklist.push_back(SI->getTrueValue());
3007       Worklist.push_back(SI->getFalseValue());
3008       continue;
3009     }
3010 
3011     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3012       // If this PHI changes the underlying object in every iteration of the
3013       // loop, don't look through it.  Consider:
3014       //   int **A;
3015       //   for (i) {
3016       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3017       //     Curr = A[i];
3018       //     *Prev, *Curr;
3019       //
3020       // Prev is tracking Curr one iteration behind so they refer to different
3021       // underlying objects.
3022       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3023           isSameUnderlyingObjectInLoop(PN, LI))
3024         for (Value *IncValue : PN->incoming_values())
3025           Worklist.push_back(IncValue);
3026       continue;
3027     }
3028 
3029     Objects.push_back(P);
3030   } while (!Worklist.empty());
3031 }
3032 
3033 /// Return true if the only users of this pointer are lifetime markers.
3034 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3035   for (const User *U : V->users()) {
3036     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3037     if (!II) return false;
3038 
3039     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3040         II->getIntrinsicID() != Intrinsic::lifetime_end)
3041       return false;
3042   }
3043   return true;
3044 }
3045 
3046 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3047                                         const Instruction *CtxI,
3048                                         const DominatorTree *DT,
3049                                         const TargetLibraryInfo *TLI) {
3050   const Operator *Inst = dyn_cast<Operator>(V);
3051   if (!Inst)
3052     return false;
3053 
3054   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3055     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3056       if (C->canTrap())
3057         return false;
3058 
3059   switch (Inst->getOpcode()) {
3060   default:
3061     return true;
3062   case Instruction::UDiv:
3063   case Instruction::URem: {
3064     // x / y is undefined if y == 0.
3065     const APInt *V;
3066     if (match(Inst->getOperand(1), m_APInt(V)))
3067       return *V != 0;
3068     return false;
3069   }
3070   case Instruction::SDiv:
3071   case Instruction::SRem: {
3072     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3073     const APInt *Numerator, *Denominator;
3074     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3075       return false;
3076     // We cannot hoist this division if the denominator is 0.
3077     if (*Denominator == 0)
3078       return false;
3079     // It's safe to hoist if the denominator is not 0 or -1.
3080     if (*Denominator != -1)
3081       return true;
3082     // At this point we know that the denominator is -1.  It is safe to hoist as
3083     // long we know that the numerator is not INT_MIN.
3084     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3085       return !Numerator->isMinSignedValue();
3086     // The numerator *might* be MinSignedValue.
3087     return false;
3088   }
3089   case Instruction::Load: {
3090     const LoadInst *LI = cast<LoadInst>(Inst);
3091     if (!LI->isUnordered() ||
3092         // Speculative load may create a race that did not exist in the source.
3093         LI->getParent()->getParent()->hasFnAttribute(
3094             Attribute::SanitizeThread) ||
3095         // Speculative load may load data from dirty regions.
3096         LI->getParent()->getParent()->hasFnAttribute(
3097             Attribute::SanitizeAddress))
3098       return false;
3099     const DataLayout &DL = LI->getModule()->getDataLayout();
3100     return isDereferenceableAndAlignedPointer(
3101         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
3102   }
3103   case Instruction::Call: {
3104     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3105       switch (II->getIntrinsicID()) {
3106       // These synthetic intrinsics have no side-effects and just mark
3107       // information about their operands.
3108       // FIXME: There are other no-op synthetic instructions that potentially
3109       // should be considered at least *safe* to speculate...
3110       case Intrinsic::dbg_declare:
3111       case Intrinsic::dbg_value:
3112         return true;
3113 
3114       case Intrinsic::bswap:
3115       case Intrinsic::ctlz:
3116       case Intrinsic::ctpop:
3117       case Intrinsic::cttz:
3118       case Intrinsic::objectsize:
3119       case Intrinsic::sadd_with_overflow:
3120       case Intrinsic::smul_with_overflow:
3121       case Intrinsic::ssub_with_overflow:
3122       case Intrinsic::uadd_with_overflow:
3123       case Intrinsic::umul_with_overflow:
3124       case Intrinsic::usub_with_overflow:
3125         return true;
3126       // These intrinsics are defined to have the same behavior as libm
3127       // functions except for setting errno.
3128       case Intrinsic::sqrt:
3129       case Intrinsic::fma:
3130       case Intrinsic::fmuladd:
3131         return true;
3132       // These intrinsics are defined to have the same behavior as libm
3133       // functions, and the corresponding libm functions never set errno.
3134       case Intrinsic::trunc:
3135       case Intrinsic::copysign:
3136       case Intrinsic::fabs:
3137       case Intrinsic::minnum:
3138       case Intrinsic::maxnum:
3139         return true;
3140       // These intrinsics are defined to have the same behavior as libm
3141       // functions, which never overflow when operating on the IEEE754 types
3142       // that we support, and never set errno otherwise.
3143       case Intrinsic::ceil:
3144       case Intrinsic::floor:
3145       case Intrinsic::nearbyint:
3146       case Intrinsic::rint:
3147       case Intrinsic::round:
3148         return true;
3149       // TODO: are convert_{from,to}_fp16 safe?
3150       // TODO: can we list target-specific intrinsics here?
3151       default: break;
3152       }
3153     }
3154     return false; // The called function could have undefined behavior or
3155                   // side-effects, even if marked readnone nounwind.
3156   }
3157   case Instruction::VAArg:
3158   case Instruction::Alloca:
3159   case Instruction::Invoke:
3160   case Instruction::PHI:
3161   case Instruction::Store:
3162   case Instruction::Ret:
3163   case Instruction::Br:
3164   case Instruction::IndirectBr:
3165   case Instruction::Switch:
3166   case Instruction::Unreachable:
3167   case Instruction::Fence:
3168   case Instruction::AtomicRMW:
3169   case Instruction::AtomicCmpXchg:
3170   case Instruction::LandingPad:
3171   case Instruction::Resume:
3172   case Instruction::CatchSwitch:
3173   case Instruction::CatchPad:
3174   case Instruction::CatchRet:
3175   case Instruction::CleanupPad:
3176   case Instruction::CleanupRet:
3177     return false; // Misc instructions which have effects
3178   }
3179 }
3180 
3181 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3182   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3183 }
3184 
3185 /// Return true if we know that the specified value is never null.
3186 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3187   assert(V->getType()->isPointerTy() && "V must be pointer type");
3188 
3189   // Alloca never returns null, malloc might.
3190   if (isa<AllocaInst>(V)) return true;
3191 
3192   // A byval, inalloca, or nonnull argument is never null.
3193   if (const Argument *A = dyn_cast<Argument>(V))
3194     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3195 
3196   // A global variable in address space 0 is non null unless extern weak.
3197   // Other address spaces may have null as a valid address for a global,
3198   // so we can't assume anything.
3199   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3200     return !GV->hasExternalWeakLinkage() &&
3201            GV->getType()->getAddressSpace() == 0;
3202 
3203   // A Load tagged w/nonnull metadata is never null.
3204   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3205     return LI->getMetadata(LLVMContext::MD_nonnull);
3206 
3207   if (auto CS = ImmutableCallSite(V))
3208     if (CS.isReturnNonNull())
3209       return true;
3210 
3211   return false;
3212 }
3213 
3214 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3215                                                   const Instruction *CtxI,
3216                                                   const DominatorTree *DT) {
3217   assert(V->getType()->isPointerTy() && "V must be pointer type");
3218 
3219   unsigned NumUsesExplored = 0;
3220   for (auto U : V->users()) {
3221     // Avoid massive lists
3222     if (NumUsesExplored >= DomConditionsMaxUses)
3223       break;
3224     NumUsesExplored++;
3225     // Consider only compare instructions uniquely controlling a branch
3226     const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3227     if (!Cmp)
3228       continue;
3229 
3230     for (auto *CmpU : Cmp->users()) {
3231       const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3232       if (!BI)
3233         continue;
3234 
3235       assert(BI->isConditional() && "uses a comparison!");
3236 
3237       BasicBlock *NonNullSuccessor = nullptr;
3238       CmpInst::Predicate Pred;
3239 
3240       if (match(const_cast<ICmpInst*>(Cmp),
3241                 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3242         if (Pred == ICmpInst::ICMP_EQ)
3243           NonNullSuccessor = BI->getSuccessor(1);
3244         else if (Pred == ICmpInst::ICMP_NE)
3245           NonNullSuccessor = BI->getSuccessor(0);
3246       }
3247 
3248       if (NonNullSuccessor) {
3249         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3250         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3251           return true;
3252       }
3253     }
3254   }
3255 
3256   return false;
3257 }
3258 
3259 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3260                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3261   if (isKnownNonNull(V, TLI))
3262     return true;
3263 
3264   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3265 }
3266 
3267 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3268                                                    const DataLayout &DL,
3269                                                    AssumptionCache *AC,
3270                                                    const Instruction *CxtI,
3271                                                    const DominatorTree *DT) {
3272   // Multiplying n * m significant bits yields a result of n + m significant
3273   // bits. If the total number of significant bits does not exceed the
3274   // result bit width (minus 1), there is no overflow.
3275   // This means if we have enough leading zero bits in the operands
3276   // we can guarantee that the result does not overflow.
3277   // Ref: "Hacker's Delight" by Henry Warren
3278   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3279   APInt LHSKnownZero(BitWidth, 0);
3280   APInt LHSKnownOne(BitWidth, 0);
3281   APInt RHSKnownZero(BitWidth, 0);
3282   APInt RHSKnownOne(BitWidth, 0);
3283   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3284                    DT);
3285   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3286                    DT);
3287   // Note that underestimating the number of zero bits gives a more
3288   // conservative answer.
3289   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3290                       RHSKnownZero.countLeadingOnes();
3291   // First handle the easy case: if we have enough zero bits there's
3292   // definitely no overflow.
3293   if (ZeroBits >= BitWidth)
3294     return OverflowResult::NeverOverflows;
3295 
3296   // Get the largest possible values for each operand.
3297   APInt LHSMax = ~LHSKnownZero;
3298   APInt RHSMax = ~RHSKnownZero;
3299 
3300   // We know the multiply operation doesn't overflow if the maximum values for
3301   // each operand will not overflow after we multiply them together.
3302   bool MaxOverflow;
3303   LHSMax.umul_ov(RHSMax, MaxOverflow);
3304   if (!MaxOverflow)
3305     return OverflowResult::NeverOverflows;
3306 
3307   // We know it always overflows if multiplying the smallest possible values for
3308   // the operands also results in overflow.
3309   bool MinOverflow;
3310   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3311   if (MinOverflow)
3312     return OverflowResult::AlwaysOverflows;
3313 
3314   return OverflowResult::MayOverflow;
3315 }
3316 
3317 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3318                                                    const DataLayout &DL,
3319                                                    AssumptionCache *AC,
3320                                                    const Instruction *CxtI,
3321                                                    const DominatorTree *DT) {
3322   bool LHSKnownNonNegative, LHSKnownNegative;
3323   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3324                  AC, CxtI, DT);
3325   if (LHSKnownNonNegative || LHSKnownNegative) {
3326     bool RHSKnownNonNegative, RHSKnownNegative;
3327     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3328                    AC, CxtI, DT);
3329 
3330     if (LHSKnownNegative && RHSKnownNegative) {
3331       // The sign bit is set in both cases: this MUST overflow.
3332       // Create a simple add instruction, and insert it into the struct.
3333       return OverflowResult::AlwaysOverflows;
3334     }
3335 
3336     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3337       // The sign bit is clear in both cases: this CANNOT overflow.
3338       // Create a simple add instruction, and insert it into the struct.
3339       return OverflowResult::NeverOverflows;
3340     }
3341   }
3342 
3343   return OverflowResult::MayOverflow;
3344 }
3345 
3346 static OverflowResult computeOverflowForSignedAdd(
3347     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3348     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3349   if (Add && Add->hasNoSignedWrap()) {
3350     return OverflowResult::NeverOverflows;
3351   }
3352 
3353   bool LHSKnownNonNegative, LHSKnownNegative;
3354   bool RHSKnownNonNegative, RHSKnownNegative;
3355   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3356                  AC, CxtI, DT);
3357   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3358                  AC, CxtI, DT);
3359 
3360   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3361       (LHSKnownNegative && RHSKnownNonNegative)) {
3362     // The sign bits are opposite: this CANNOT overflow.
3363     return OverflowResult::NeverOverflows;
3364   }
3365 
3366   // The remaining code needs Add to be available. Early returns if not so.
3367   if (!Add)
3368     return OverflowResult::MayOverflow;
3369 
3370   // If the sign of Add is the same as at least one of the operands, this add
3371   // CANNOT overflow. This is particularly useful when the sum is
3372   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3373   // operands.
3374   bool LHSOrRHSKnownNonNegative =
3375       (LHSKnownNonNegative || RHSKnownNonNegative);
3376   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3377   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3378     bool AddKnownNonNegative, AddKnownNegative;
3379     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3380                    /*Depth=*/0, AC, CxtI, DT);
3381     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3382         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3383       return OverflowResult::NeverOverflows;
3384     }
3385   }
3386 
3387   return OverflowResult::MayOverflow;
3388 }
3389 
3390 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3391                                                  const DataLayout &DL,
3392                                                  AssumptionCache *AC,
3393                                                  const Instruction *CxtI,
3394                                                  const DominatorTree *DT) {
3395   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3396                                        Add, DL, AC, CxtI, DT);
3397 }
3398 
3399 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3400                                                  const DataLayout &DL,
3401                                                  AssumptionCache *AC,
3402                                                  const Instruction *CxtI,
3403                                                  const DominatorTree *DT) {
3404   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3405 }
3406 
3407 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3408   // FIXME: This conservative implementation can be relaxed. E.g. most
3409   // atomic operations are guaranteed to terminate on most platforms
3410   // and most functions terminate.
3411 
3412   return !I->isAtomic() &&       // atomics may never succeed on some platforms
3413          !isa<CallInst>(I) &&    // could throw and might not terminate
3414          !isa<InvokeInst>(I) &&  // might not terminate and could throw to
3415                                  //   non-successor (see bug 24185 for details).
3416          !isa<ResumeInst>(I) &&  // has no successors
3417          !isa<ReturnInst>(I);    // has no successors
3418 }
3419 
3420 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3421                                                   const Loop *L) {
3422   // The loop header is guaranteed to be executed for every iteration.
3423   //
3424   // FIXME: Relax this constraint to cover all basic blocks that are
3425   // guaranteed to be executed at every iteration.
3426   if (I->getParent() != L->getHeader()) return false;
3427 
3428   for (const Instruction &LI : *L->getHeader()) {
3429     if (&LI == I) return true;
3430     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3431   }
3432   llvm_unreachable("Instruction not contained in its own parent basic block.");
3433 }
3434 
3435 bool llvm::propagatesFullPoison(const Instruction *I) {
3436   switch (I->getOpcode()) {
3437     case Instruction::Add:
3438     case Instruction::Sub:
3439     case Instruction::Xor:
3440     case Instruction::Trunc:
3441     case Instruction::BitCast:
3442     case Instruction::AddrSpaceCast:
3443       // These operations all propagate poison unconditionally. Note that poison
3444       // is not any particular value, so xor or subtraction of poison with
3445       // itself still yields poison, not zero.
3446       return true;
3447 
3448     case Instruction::AShr:
3449     case Instruction::SExt:
3450       // For these operations, one bit of the input is replicated across
3451       // multiple output bits. A replicated poison bit is still poison.
3452       return true;
3453 
3454     case Instruction::Shl: {
3455       // Left shift *by* a poison value is poison. The number of
3456       // positions to shift is unsigned, so no negative values are
3457       // possible there. Left shift by zero places preserves poison. So
3458       // it only remains to consider left shift of poison by a positive
3459       // number of places.
3460       //
3461       // A left shift by a positive number of places leaves the lowest order bit
3462       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3463       // make the poison operand violate that flag, yielding a fresh full-poison
3464       // value.
3465       auto *OBO = cast<OverflowingBinaryOperator>(I);
3466       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3467     }
3468 
3469     case Instruction::Mul: {
3470       // A multiplication by zero yields a non-poison zero result, so we need to
3471       // rule out zero as an operand. Conservatively, multiplication by a
3472       // non-zero constant is not multiplication by zero.
3473       //
3474       // Multiplication by a non-zero constant can leave some bits
3475       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3476       // order bit unpoisoned. So we need to consider that.
3477       //
3478       // Multiplication by 1 preserves poison. If the multiplication has a
3479       // no-wrap flag, then we can make the poison operand violate that flag
3480       // when multiplied by any integer other than 0 and 1.
3481       auto *OBO = cast<OverflowingBinaryOperator>(I);
3482       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3483         for (Value *V : OBO->operands()) {
3484           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3485             // A ConstantInt cannot yield poison, so we can assume that it is
3486             // the other operand that is poison.
3487             return !CI->isZero();
3488           }
3489         }
3490       }
3491       return false;
3492     }
3493 
3494     case Instruction::GetElementPtr:
3495       // A GEP implicitly represents a sequence of additions, subtractions,
3496       // truncations, sign extensions and multiplications. The multiplications
3497       // are by the non-zero sizes of some set of types, so we do not have to be
3498       // concerned with multiplication by zero. If the GEP is in-bounds, then
3499       // these operations are implicitly no-signed-wrap so poison is propagated
3500       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3501       return cast<GEPOperator>(I)->isInBounds();
3502 
3503     default:
3504       return false;
3505   }
3506 }
3507 
3508 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3509   switch (I->getOpcode()) {
3510     case Instruction::Store:
3511       return cast<StoreInst>(I)->getPointerOperand();
3512 
3513     case Instruction::Load:
3514       return cast<LoadInst>(I)->getPointerOperand();
3515 
3516     case Instruction::AtomicCmpXchg:
3517       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3518 
3519     case Instruction::AtomicRMW:
3520       return cast<AtomicRMWInst>(I)->getPointerOperand();
3521 
3522     case Instruction::UDiv:
3523     case Instruction::SDiv:
3524     case Instruction::URem:
3525     case Instruction::SRem:
3526       return I->getOperand(1);
3527 
3528     default:
3529       return nullptr;
3530   }
3531 }
3532 
3533 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3534   // We currently only look for uses of poison values within the same basic
3535   // block, as that makes it easier to guarantee that the uses will be
3536   // executed given that PoisonI is executed.
3537   //
3538   // FIXME: Expand this to consider uses beyond the same basic block. To do
3539   // this, look out for the distinction between post-dominance and strong
3540   // post-dominance.
3541   const BasicBlock *BB = PoisonI->getParent();
3542 
3543   // Set of instructions that we have proved will yield poison if PoisonI
3544   // does.
3545   SmallSet<const Value *, 16> YieldsPoison;
3546   YieldsPoison.insert(PoisonI);
3547 
3548   for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3549        I != E; ++I) {
3550     if (&*I != PoisonI) {
3551       const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
3552       if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
3553       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3554         return false;
3555     }
3556 
3557     // Mark poison that propagates from I through uses of I.
3558     if (YieldsPoison.count(&*I)) {
3559       for (const User *User : I->users()) {
3560         const Instruction *UserI = cast<Instruction>(User);
3561         if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3562           YieldsPoison.insert(User);
3563       }
3564     }
3565   }
3566   return false;
3567 }
3568 
3569 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3570   if (FMF.noNaNs())
3571     return true;
3572 
3573   if (auto *C = dyn_cast<ConstantFP>(V))
3574     return !C->isNaN();
3575   return false;
3576 }
3577 
3578 static bool isKnownNonZero(Value *V) {
3579   if (auto *C = dyn_cast<ConstantFP>(V))
3580     return !C->isZero();
3581   return false;
3582 }
3583 
3584 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3585                                               FastMathFlags FMF,
3586                                               Value *CmpLHS, Value *CmpRHS,
3587                                               Value *TrueVal, Value *FalseVal,
3588                                               Value *&LHS, Value *&RHS) {
3589   LHS = CmpLHS;
3590   RHS = CmpRHS;
3591 
3592   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3593   // return inconsistent results between implementations.
3594   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3595   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3596   // Therefore we behave conservatively and only proceed if at least one of the
3597   // operands is known to not be zero, or if we don't care about signed zeroes.
3598   switch (Pred) {
3599   default: break;
3600   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3601   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3602     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3603         !isKnownNonZero(CmpRHS))
3604       return {SPF_UNKNOWN, SPNB_NA, false};
3605   }
3606 
3607   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3608   bool Ordered = false;
3609 
3610   // When given one NaN and one non-NaN input:
3611   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3612   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3613   //     ordered comparison fails), which could be NaN or non-NaN.
3614   // so here we discover exactly what NaN behavior is required/accepted.
3615   if (CmpInst::isFPPredicate(Pred)) {
3616     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3617     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3618 
3619     if (LHSSafe && RHSSafe) {
3620       // Both operands are known non-NaN.
3621       NaNBehavior = SPNB_RETURNS_ANY;
3622     } else if (CmpInst::isOrdered(Pred)) {
3623       // An ordered comparison will return false when given a NaN, so it
3624       // returns the RHS.
3625       Ordered = true;
3626       if (LHSSafe)
3627         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3628         NaNBehavior = SPNB_RETURNS_NAN;
3629       else if (RHSSafe)
3630         NaNBehavior = SPNB_RETURNS_OTHER;
3631       else
3632         // Completely unsafe.
3633         return {SPF_UNKNOWN, SPNB_NA, false};
3634     } else {
3635       Ordered = false;
3636       // An unordered comparison will return true when given a NaN, so it
3637       // returns the LHS.
3638       if (LHSSafe)
3639         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3640         NaNBehavior = SPNB_RETURNS_OTHER;
3641       else if (RHSSafe)
3642         NaNBehavior = SPNB_RETURNS_NAN;
3643       else
3644         // Completely unsafe.
3645         return {SPF_UNKNOWN, SPNB_NA, false};
3646     }
3647   }
3648 
3649   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3650     std::swap(CmpLHS, CmpRHS);
3651     Pred = CmpInst::getSwappedPredicate(Pred);
3652     if (NaNBehavior == SPNB_RETURNS_NAN)
3653       NaNBehavior = SPNB_RETURNS_OTHER;
3654     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3655       NaNBehavior = SPNB_RETURNS_NAN;
3656     Ordered = !Ordered;
3657   }
3658 
3659   // ([if]cmp X, Y) ? X : Y
3660   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3661     switch (Pred) {
3662     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3663     case ICmpInst::ICMP_UGT:
3664     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3665     case ICmpInst::ICMP_SGT:
3666     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3667     case ICmpInst::ICMP_ULT:
3668     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3669     case ICmpInst::ICMP_SLT:
3670     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3671     case FCmpInst::FCMP_UGT:
3672     case FCmpInst::FCMP_UGE:
3673     case FCmpInst::FCMP_OGT:
3674     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3675     case FCmpInst::FCMP_ULT:
3676     case FCmpInst::FCMP_ULE:
3677     case FCmpInst::FCMP_OLT:
3678     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3679     }
3680   }
3681 
3682   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3683     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3684         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3685 
3686       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3687       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3688       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3689         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3690       }
3691 
3692       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3693       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3694       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3695         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3696       }
3697     }
3698 
3699     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3700     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3701       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3702           ~C1->getValue() == C2->getValue() &&
3703           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3704            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3705         LHS = TrueVal;
3706         RHS = FalseVal;
3707         return {SPF_SMIN, SPNB_NA, false};
3708       }
3709     }
3710   }
3711 
3712   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3713 
3714   return {SPF_UNKNOWN, SPNB_NA, false};
3715 }
3716 
3717 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3718                               Instruction::CastOps *CastOp) {
3719   CastInst *CI = dyn_cast<CastInst>(V1);
3720   Constant *C = dyn_cast<Constant>(V2);
3721   CastInst *CI2 = dyn_cast<CastInst>(V2);
3722   if (!CI)
3723     return nullptr;
3724   *CastOp = CI->getOpcode();
3725 
3726   if (CI2) {
3727     // If V1 and V2 are both the same cast from the same type, we can look
3728     // through V1.
3729     if (CI2->getOpcode() == CI->getOpcode() &&
3730         CI2->getSrcTy() == CI->getSrcTy())
3731       return CI2->getOperand(0);
3732     return nullptr;
3733   } else if (!C) {
3734     return nullptr;
3735   }
3736 
3737   if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3738     Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3739     // This is only valid if the truncated value can be sign-extended
3740     // back to the original value.
3741     if (ConstantExpr::getSExt(T, C->getType()) == C)
3742       return T;
3743     return nullptr;
3744   }
3745   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3746     return ConstantExpr::getTrunc(C, CI->getSrcTy());
3747 
3748   if (isa<TruncInst>(CI))
3749     return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3750 
3751   if (isa<FPToUIInst>(CI))
3752     return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3753 
3754   if (isa<FPToSIInst>(CI))
3755     return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3756 
3757   if (isa<UIToFPInst>(CI))
3758     return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3759 
3760   if (isa<SIToFPInst>(CI))
3761     return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3762 
3763   if (isa<FPTruncInst>(CI))
3764     return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3765 
3766   if (isa<FPExtInst>(CI))
3767     return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3768 
3769   return nullptr;
3770 }
3771 
3772 SelectPatternResult llvm::matchSelectPattern(Value *V,
3773                                              Value *&LHS, Value *&RHS,
3774                                              Instruction::CastOps *CastOp) {
3775   SelectInst *SI = dyn_cast<SelectInst>(V);
3776   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3777 
3778   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3779   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3780 
3781   CmpInst::Predicate Pred = CmpI->getPredicate();
3782   Value *CmpLHS = CmpI->getOperand(0);
3783   Value *CmpRHS = CmpI->getOperand(1);
3784   Value *TrueVal = SI->getTrueValue();
3785   Value *FalseVal = SI->getFalseValue();
3786   FastMathFlags FMF;
3787   if (isa<FPMathOperator>(CmpI))
3788     FMF = CmpI->getFastMathFlags();
3789 
3790   // Bail out early.
3791   if (CmpI->isEquality())
3792     return {SPF_UNKNOWN, SPNB_NA, false};
3793 
3794   // Deal with type mismatches.
3795   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
3796     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
3797       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3798                                   cast<CastInst>(TrueVal)->getOperand(0), C,
3799                                   LHS, RHS);
3800     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
3801       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3802                                   C, cast<CastInst>(FalseVal)->getOperand(0),
3803                                   LHS, RHS);
3804   }
3805   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
3806                               LHS, RHS);
3807 }
3808 
3809 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3810   const unsigned NumRanges = Ranges.getNumOperands() / 2;
3811   assert(NumRanges >= 1 && "Must have at least one range!");
3812   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3813 
3814   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3815   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3816 
3817   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3818 
3819   for (unsigned i = 1; i < NumRanges; ++i) {
3820     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3821     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3822 
3823     // Note: unionWith will potentially create a range that contains values not
3824     // contained in any of the original N ranges.
3825     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3826   }
3827 
3828   return CR;
3829 }
3830 
3831 /// Return true if "icmp Pred LHS RHS" is always true.
3832 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3833                             const DataLayout &DL, unsigned Depth,
3834                             AssumptionCache *AC, const Instruction *CxtI,
3835                             const DominatorTree *DT) {
3836   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
3837   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3838     return true;
3839 
3840   switch (Pred) {
3841   default:
3842     return false;
3843 
3844   case CmpInst::ICMP_SLE: {
3845     const APInt *C;
3846 
3847     // LHS s<= LHS +_{nsw} C   if C >= 0
3848     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
3849       return !C->isNegative();
3850     return false;
3851   }
3852 
3853   case CmpInst::ICMP_ULE: {
3854     const APInt *C;
3855 
3856     // LHS u<= LHS +_{nuw} C   for any C
3857     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
3858       return true;
3859 
3860     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3861     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3862                                        const APInt *&CA, const APInt *&CB) {
3863       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3864           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3865         return true;
3866 
3867       // If X & C == 0 then (X | C) == X +_{nuw} C
3868       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3869           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3870         unsigned BitWidth = CA->getBitWidth();
3871         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3872         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3873 
3874         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3875           return true;
3876       }
3877 
3878       return false;
3879     };
3880 
3881     Value *X;
3882     const APInt *CLHS, *CRHS;
3883     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3884       return CLHS->ule(*CRHS);
3885 
3886     return false;
3887   }
3888   }
3889 }
3890 
3891 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
3892 /// ALHS ARHS" is true.  Otherwise, return None.
3893 static Optional<bool>
3894 isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
3895                       Value *BLHS, Value *BRHS, const DataLayout &DL,
3896                       unsigned Depth, AssumptionCache *AC,
3897                       const Instruction *CxtI, const DominatorTree *DT) {
3898   switch (Pred) {
3899   default:
3900     return None;
3901 
3902   case CmpInst::ICMP_SLT:
3903   case CmpInst::ICMP_SLE:
3904     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3905                         DT) &&
3906         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3907       return true;
3908     return None;
3909 
3910   case CmpInst::ICMP_ULT:
3911   case CmpInst::ICMP_ULE:
3912     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3913                         DT) &&
3914         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3915       return true;
3916     return None;
3917   }
3918 }
3919 
3920 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
3921 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
3922 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
3923 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
3924                                                     Value *ALHS, Value *ARHS,
3925                                                     CmpInst::Predicate BPred,
3926                                                     Value *BLHS, Value *BRHS) {
3927   // The operands of the two compares must match.
3928   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
3929   bool IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
3930   if (!IsMatchingOps && !IsSwappedOps)
3931     return None;
3932 
3933   // Canonicalize the operands so they're matching.
3934   if (IsSwappedOps) {
3935     std::swap(BLHS, BRHS);
3936     BPred = ICmpInst::getSwappedPredicate(BPred);
3937   }
3938   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
3939     return true;
3940   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
3941     return false;
3942 
3943   return None;
3944 }
3945 
3946 Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
3947                                         const DataLayout &DL, unsigned Depth,
3948                                         AssumptionCache *AC,
3949                                         const Instruction *CxtI,
3950                                         const DominatorTree *DT) {
3951   assert(LHS->getType() == RHS->getType() && "mismatched type");
3952   Type *OpTy = LHS->getType();
3953   assert(OpTy->getScalarType()->isIntegerTy(1));
3954 
3955   // LHS ==> RHS by definition
3956   if (LHS == RHS)
3957     return true;
3958 
3959   if (OpTy->isVectorTy())
3960     // TODO: extending the code below to handle vectors
3961     return None;
3962   assert(OpTy->isIntegerTy(1) && "implied by above");
3963 
3964   ICmpInst::Predicate APred, BPred;
3965   Value *ALHS, *ARHS;
3966   Value *BLHS, *BRHS;
3967 
3968   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
3969       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
3970     return None;
3971 
3972   Optional<bool> Implication =
3973       isImpliedCondMatchingOperands(APred, ALHS, ARHS, BPred, BLHS, BRHS);
3974   if (Implication)
3975     return Implication;
3976 
3977   if (APred == BPred)
3978     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
3979                                  CxtI, DT);
3980 
3981   return None;
3982 }
3983