1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 unsigned BitWidth = Known.getBitWidth(); 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 isKnownNonZero(Op0, Depth, Q)) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 443 isKnownNonZero(Op1, Depth, Q)); 444 } 445 } 446 447 assert(!Known.hasConflict() && !Known2.hasConflict()); 448 // Compute a conservative estimate for high known-0 bits. 449 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 450 Known2.countMinLeadingZeros(), 451 BitWidth) - BitWidth; 452 LeadZ = std::min(LeadZ, BitWidth); 453 454 // The result of the bottom bits of an integer multiply can be 455 // inferred by looking at the bottom bits of both operands and 456 // multiplying them together. 457 // We can infer at least the minimum number of known trailing bits 458 // of both operands. Depending on number of trailing zeros, we can 459 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 460 // a and b are divisible by m and n respectively. 461 // We then calculate how many of those bits are inferrable and set 462 // the output. For example, the i8 mul: 463 // a = XXXX1100 (12) 464 // b = XXXX1110 (14) 465 // We know the bottom 3 bits are zero since the first can be divided by 466 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 467 // Applying the multiplication to the trimmed arguments gets: 468 // XX11 (3) 469 // X111 (7) 470 // ------- 471 // XX11 472 // XX11 473 // XX11 474 // XX11 475 // ------- 476 // XXXXX01 477 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 478 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 479 // The proof for this can be described as: 480 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 481 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 482 // umin(countTrailingZeros(C2), C6) + 483 // umin(C5 - umin(countTrailingZeros(C1), C5), 484 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 485 // %aa = shl i8 %a, C5 486 // %bb = shl i8 %b, C6 487 // %aaa = or i8 %aa, C1 488 // %bbb = or i8 %bb, C2 489 // %mul = mul i8 %aaa, %bbb 490 // %mask = and i8 %mul, C7 491 // => 492 // %mask = i8 ((C1*C2)&C7) 493 // Where C5, C6 describe the known bits of %a, %b 494 // C1, C2 describe the known bottom bits of %a, %b. 495 // C7 describes the mask of the known bits of the result. 496 APInt Bottom0 = Known.One; 497 APInt Bottom1 = Known2.One; 498 499 // How many times we'd be able to divide each argument by 2 (shr by 1). 500 // This gives us the number of trailing zeros on the multiplication result. 501 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 502 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 503 unsigned TrailZero0 = Known.countMinTrailingZeros(); 504 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 505 unsigned TrailZ = TrailZero0 + TrailZero1; 506 507 // Figure out the fewest known-bits operand. 508 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 509 TrailBitsKnown1 - TrailZero1); 510 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 511 512 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 513 Bottom1.getLoBits(TrailBitsKnown1); 514 515 Known.resetAll(); 516 Known.Zero.setHighBits(LeadZ); 517 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 518 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 519 520 // Only make use of no-wrap flags if we failed to compute the sign bit 521 // directly. This matters if the multiplication always overflows, in 522 // which case we prefer to follow the result of the direct computation, 523 // though as the program is invoking undefined behaviour we can choose 524 // whatever we like here. 525 if (isKnownNonNegative && !Known.isNegative()) 526 Known.makeNonNegative(); 527 else if (isKnownNegative && !Known.isNonNegative()) 528 Known.makeNegative(); 529 } 530 531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 532 KnownBits &Known) { 533 unsigned BitWidth = Known.getBitWidth(); 534 unsigned NumRanges = Ranges.getNumOperands() / 2; 535 assert(NumRanges >= 1); 536 537 Known.Zero.setAllBits(); 538 Known.One.setAllBits(); 539 540 for (unsigned i = 0; i < NumRanges; ++i) { 541 ConstantInt *Lower = 542 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 543 ConstantInt *Upper = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 545 ConstantRange Range(Lower->getValue(), Upper->getValue()); 546 547 // The first CommonPrefixBits of all values in Range are equal. 548 unsigned CommonPrefixBits = 549 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 550 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 551 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 552 Known.One &= UnsignedMax & Mask; 553 Known.Zero &= ~UnsignedMax & Mask; 554 } 555 } 556 557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 558 SmallVector<const Value *, 16> WorkSet(1, I); 559 SmallPtrSet<const Value *, 32> Visited; 560 SmallPtrSet<const Value *, 16> EphValues; 561 562 // The instruction defining an assumption's condition itself is always 563 // considered ephemeral to that assumption (even if it has other 564 // non-ephemeral users). See r246696's test case for an example. 565 if (is_contained(I->operands(), E)) 566 return true; 567 568 while (!WorkSet.empty()) { 569 const Value *V = WorkSet.pop_back_val(); 570 if (!Visited.insert(V).second) 571 continue; 572 573 // If all uses of this value are ephemeral, then so is this value. 574 if (llvm::all_of(V->users(), [&](const User *U) { 575 return EphValues.count(U); 576 })) { 577 if (V == E) 578 return true; 579 580 if (V == I || isSafeToSpeculativelyExecute(V)) { 581 EphValues.insert(V); 582 if (const User *U = dyn_cast<User>(V)) 583 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 584 J != JE; ++J) 585 WorkSet.push_back(*J); 586 } 587 } 588 } 589 590 return false; 591 } 592 593 // Is this an intrinsic that cannot be speculated but also cannot trap? 594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 595 if (const CallInst *CI = dyn_cast<CallInst>(I)) 596 if (Function *F = CI->getCalledFunction()) 597 switch (F->getIntrinsicID()) { 598 default: break; 599 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 600 case Intrinsic::assume: 601 case Intrinsic::sideeffect: 602 case Intrinsic::dbg_declare: 603 case Intrinsic::dbg_value: 604 case Intrinsic::dbg_label: 605 case Intrinsic::invariant_start: 606 case Intrinsic::invariant_end: 607 case Intrinsic::lifetime_start: 608 case Intrinsic::lifetime_end: 609 case Intrinsic::objectsize: 610 case Intrinsic::ptr_annotation: 611 case Intrinsic::var_annotation: 612 return true; 613 } 614 615 return false; 616 } 617 618 bool llvm::isValidAssumeForContext(const Instruction *Inv, 619 const Instruction *CxtI, 620 const DominatorTree *DT) { 621 // There are two restrictions on the use of an assume: 622 // 1. The assume must dominate the context (or the control flow must 623 // reach the assume whenever it reaches the context). 624 // 2. The context must not be in the assume's set of ephemeral values 625 // (otherwise we will use the assume to prove that the condition 626 // feeding the assume is trivially true, thus causing the removal of 627 // the assume). 628 629 if (Inv->getParent() == CxtI->getParent()) { 630 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 631 // in the BB. 632 if (Inv->comesBefore(CxtI)) 633 return true; 634 635 // Don't let an assume affect itself - this would cause the problems 636 // `isEphemeralValueOf` is trying to prevent, and it would also make 637 // the loop below go out of bounds. 638 if (Inv == CxtI) 639 return false; 640 641 // The context comes first, but they're both in the same block. 642 // Make sure there is nothing in between that might interrupt 643 // the control flow, not even CxtI itself. 644 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 645 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 646 return false; 647 648 return !isEphemeralValueOf(Inv, CxtI); 649 } 650 651 // Inv and CxtI are in different blocks. 652 if (DT) { 653 if (DT->dominates(Inv, CxtI)) 654 return true; 655 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 656 // We don't have a DT, but this trivially dominates. 657 return true; 658 } 659 660 return false; 661 } 662 663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 664 // Use of assumptions is context-sensitive. If we don't have a context, we 665 // cannot use them! 666 if (!Q.AC || !Q.CxtI) 667 return false; 668 669 // Note that the patterns below need to be kept in sync with the code 670 // in AssumptionCache::updateAffectedValues. 671 672 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 673 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 674 675 Value *RHS; 676 CmpInst::Predicate Pred; 677 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 678 return false; 679 // assume(v u> y) -> assume(v != 0) 680 if (Pred == ICmpInst::ICMP_UGT) 681 return true; 682 683 // assume(v != 0) 684 // We special-case this one to ensure that we handle `assume(v != null)`. 685 if (Pred == ICmpInst::ICMP_NE) 686 return match(RHS, m_Zero()); 687 688 // All other predicates - rely on generic ConstantRange handling. 689 ConstantInt *CI; 690 if (!match(RHS, m_ConstantInt(CI))) 691 return false; 692 ConstantRange RHSRange(CI->getValue()); 693 ConstantRange TrueValues = 694 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 695 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 696 }; 697 698 if (Q.CxtI && V->getType()->isPointerTy()) { 699 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 700 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 701 V->getType()->getPointerAddressSpace())) 702 AttrKinds.push_back(Attribute::Dereferenceable); 703 704 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 705 return true; 706 } 707 708 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 709 if (!AssumeVH) 710 continue; 711 CallInst *I = cast<CallInst>(AssumeVH); 712 assert(I->getFunction() == Q.CxtI->getFunction() && 713 "Got assumption for the wrong function!"); 714 if (Q.isExcluded(I)) 715 continue; 716 717 // Warning: This loop can end up being somewhat performance sensitive. 718 // We're running this loop for once for each value queried resulting in a 719 // runtime of ~O(#assumes * #values). 720 721 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 722 "must be an assume intrinsic"); 723 724 Value *Arg = I->getArgOperand(0); 725 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 726 if (!Cmp) 727 continue; 728 729 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 730 return true; 731 } 732 733 return false; 734 } 735 736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 737 unsigned Depth, const Query &Q) { 738 // Use of assumptions is context-sensitive. If we don't have a context, we 739 // cannot use them! 740 if (!Q.AC || !Q.CxtI) 741 return; 742 743 unsigned BitWidth = Known.getBitWidth(); 744 745 // Note that the patterns below need to be kept in sync with the code 746 // in AssumptionCache::updateAffectedValues. 747 748 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 749 if (!AssumeVH) 750 continue; 751 CallInst *I = cast<CallInst>(AssumeVH); 752 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 753 "Got assumption for the wrong function!"); 754 if (Q.isExcluded(I)) 755 continue; 756 757 // Warning: This loop can end up being somewhat performance sensitive. 758 // We're running this loop for once for each value queried resulting in a 759 // runtime of ~O(#assumes * #values). 760 761 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 762 "must be an assume intrinsic"); 763 764 Value *Arg = I->getArgOperand(0); 765 766 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllOnes(); 769 return; 770 } 771 if (match(Arg, m_Not(m_Specific(V))) && 772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 773 assert(BitWidth == 1 && "assume operand is not i1?"); 774 Known.setAllZero(); 775 return; 776 } 777 778 // The remaining tests are all recursive, so bail out if we hit the limit. 779 if (Depth == MaxAnalysisRecursionDepth) 780 continue; 781 782 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 783 if (!Cmp) 784 continue; 785 786 // Note that ptrtoint may change the bitwidth. 787 Value *A, *B; 788 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 789 790 CmpInst::Predicate Pred; 791 uint64_t C; 792 switch (Cmp->getPredicate()) { 793 default: 794 break; 795 case ICmpInst::ICMP_EQ: 796 // assume(v = a) 797 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 799 KnownBits RHSKnown = 800 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 Known.Zero |= RHSKnown.Zero; 802 Known.One |= RHSKnown.One; 803 // assume(v & b = a) 804 } else if (match(Cmp, 805 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown = 808 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 KnownBits MaskKnown = 810 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 812 // For those bits in the mask that are known to be one, we can propagate 813 // known bits from the RHS to V. 814 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 815 Known.One |= RHSKnown.One & MaskKnown.One; 816 // assume(~(v & b) = a) 817 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 818 m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 820 KnownBits RHSKnown = 821 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 822 KnownBits MaskKnown = 823 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 825 // For those bits in the mask that are known to be one, we can propagate 826 // inverted known bits from the RHS to V. 827 Known.Zero |= RHSKnown.One & MaskKnown.One; 828 Known.One |= RHSKnown.Zero & MaskKnown.One; 829 // assume(v | b = a) 830 } else if (match(Cmp, 831 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 835 KnownBits BKnown = 836 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 838 // For those bits in B that are known to be zero, we can propagate known 839 // bits from the RHS to V. 840 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 841 Known.One |= RHSKnown.One & BKnown.Zero; 842 // assume(~(v | b) = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 KnownBits BKnown = 849 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 851 // For those bits in B that are known to be zero, we can propagate 852 // inverted known bits from the RHS to V. 853 Known.Zero |= RHSKnown.One & BKnown.Zero; 854 Known.One |= RHSKnown.Zero & BKnown.Zero; 855 // assume(v ^ b = a) 856 } else if (match(Cmp, 857 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 861 KnownBits BKnown = 862 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 864 // For those bits in B that are known to be zero, we can propagate known 865 // bits from the RHS to V. For those bits in B that are known to be one, 866 // we can propagate inverted known bits from the RHS to V. 867 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 868 Known.One |= RHSKnown.One & BKnown.Zero; 869 Known.Zero |= RHSKnown.One & BKnown.One; 870 Known.One |= RHSKnown.Zero & BKnown.One; 871 // assume(~(v ^ b) = a) 872 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 873 m_Value(A))) && 874 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 875 KnownBits RHSKnown = 876 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 877 KnownBits BKnown = 878 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 880 // For those bits in B that are known to be zero, we can propagate 881 // inverted known bits from the RHS to V. For those bits in B that are 882 // known to be one, we can propagate known bits from the RHS to V. 883 Known.Zero |= RHSKnown.One & BKnown.Zero; 884 Known.One |= RHSKnown.Zero & BKnown.Zero; 885 Known.Zero |= RHSKnown.Zero & BKnown.One; 886 Known.One |= RHSKnown.One & BKnown.One; 887 // assume(v << c = a) 888 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 889 m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 891 KnownBits RHSKnown = 892 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 893 894 // For those bits in RHS that are known, we can propagate them to known 895 // bits in V shifted to the right by C. 896 RHSKnown.Zero.lshrInPlace(C); 897 Known.Zero |= RHSKnown.Zero; 898 RHSKnown.One.lshrInPlace(C); 899 Known.One |= RHSKnown.One; 900 // assume(~(v << c) = a) 901 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 902 m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 904 KnownBits RHSKnown = 905 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 906 // For those bits in RHS that are known, we can propagate them inverted 907 // to known bits in V shifted to the right by C. 908 RHSKnown.One.lshrInPlace(C); 909 Known.Zero |= RHSKnown.One; 910 RHSKnown.Zero.lshrInPlace(C); 911 Known.One |= RHSKnown.Zero; 912 // assume(v >> c = a) 913 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 914 m_Value(A))) && 915 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 916 KnownBits RHSKnown = 917 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 918 // For those bits in RHS that are known, we can propagate them to known 919 // bits in V shifted to the right by C. 920 Known.Zero |= RHSKnown.Zero << C; 921 Known.One |= RHSKnown.One << C; 922 // assume(~(v >> c) = a) 923 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 924 m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 // For those bits in RHS that are known, we can propagate them inverted 929 // to known bits in V shifted to the right by C. 930 Known.Zero |= RHSKnown.One << C; 931 Known.One |= RHSKnown.Zero << C; 932 } 933 break; 934 case ICmpInst::ICMP_SGE: 935 // assume(v >=_s c) where c is non-negative 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown = 939 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 940 941 if (RHSKnown.isNonNegative()) { 942 // We know that the sign bit is zero. 943 Known.makeNonNegative(); 944 } 945 } 946 break; 947 case ICmpInst::ICMP_SGT: 948 // assume(v >_s c) where c is at least -1. 949 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 950 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 951 KnownBits RHSKnown = 952 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 953 954 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 955 // We know that the sign bit is zero. 956 Known.makeNonNegative(); 957 } 958 } 959 break; 960 case ICmpInst::ICMP_SLE: 961 // assume(v <=_s c) where c is negative 962 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 963 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 964 KnownBits RHSKnown = 965 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 966 967 if (RHSKnown.isNegative()) { 968 // We know that the sign bit is one. 969 Known.makeNegative(); 970 } 971 } 972 break; 973 case ICmpInst::ICMP_SLT: 974 // assume(v <_s c) where c is non-positive 975 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 976 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 977 KnownBits RHSKnown = 978 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 979 980 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 981 // We know that the sign bit is one. 982 Known.makeNegative(); 983 } 984 } 985 break; 986 case ICmpInst::ICMP_ULE: 987 // assume(v <=_u c) 988 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 989 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 990 KnownBits RHSKnown = 991 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 992 993 // Whatever high bits in c are zero are known to be zero. 994 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 995 } 996 break; 997 case ICmpInst::ICMP_ULT: 998 // assume(v <_u c) 999 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1000 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1001 KnownBits RHSKnown = 1002 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1003 1004 // If the RHS is known zero, then this assumption must be wrong (nothing 1005 // is unsigned less than zero). Signal a conflict and get out of here. 1006 if (RHSKnown.isZero()) { 1007 Known.Zero.setAllBits(); 1008 Known.One.setAllBits(); 1009 break; 1010 } 1011 1012 // Whatever high bits in c are zero are known to be zero (if c is a power 1013 // of 2, then one more). 1014 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1015 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1016 else 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1018 } 1019 break; 1020 } 1021 } 1022 1023 // If assumptions conflict with each other or previous known bits, then we 1024 // have a logical fallacy. It's possible that the assumption is not reachable, 1025 // so this isn't a real bug. On the other hand, the program may have undefined 1026 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1027 // clear out the known bits, try to warn the user, and hope for the best. 1028 if (Known.Zero.intersects(Known.One)) { 1029 Known.resetAll(); 1030 1031 if (Q.ORE) 1032 Q.ORE->emit([&]() { 1033 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1034 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1035 CxtI) 1036 << "Detected conflicting code assumptions. Program may " 1037 "have undefined behavior, or compiler may have " 1038 "internal error."; 1039 }); 1040 } 1041 } 1042 1043 /// Compute known bits from a shift operator, including those with a 1044 /// non-constant shift amount. Known is the output of this function. Known2 is a 1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1046 /// operator-specific functions that, given the known-zero or known-one bits 1047 /// respectively, and a shift amount, compute the implied known-zero or 1048 /// known-one bits of the shift operator's result respectively for that shift 1049 /// amount. The results from calling KZF and KOF are conservatively combined for 1050 /// all permitted shift amounts. 1051 static void computeKnownBitsFromShiftOperator( 1052 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1053 KnownBits &Known2, unsigned Depth, const Query &Q, 1054 function_ref<APInt(const APInt &, unsigned)> KZF, 1055 function_ref<APInt(const APInt &, unsigned)> KOF) { 1056 unsigned BitWidth = Known.getBitWidth(); 1057 1058 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1059 if (Known.isConstant()) { 1060 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1061 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1063 Known.Zero = KZF(Known.Zero, ShiftAmt); 1064 Known.One = KOF(Known.One, ShiftAmt); 1065 // If the known bits conflict, this must be an overflowing left shift, so 1066 // the shift result is poison. We can return anything we want. Choose 0 for 1067 // the best folding opportunity. 1068 if (Known.hasConflict()) 1069 Known.setAllZero(); 1070 1071 return; 1072 } 1073 1074 // If the shift amount could be greater than or equal to the bit-width of the 1075 // LHS, the value could be poison, but bail out because the check below is 1076 // expensive. 1077 // TODO: Should we just carry on? 1078 if (Known.getMaxValue().uge(BitWidth)) { 1079 Known.resetAll(); 1080 return; 1081 } 1082 1083 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1084 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1085 // limit value (which implies all bits are known). 1086 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1087 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1088 1089 // It would be more-clearly correct to use the two temporaries for this 1090 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1091 Known.resetAll(); 1092 1093 // If we know the shifter operand is nonzero, we can sometimes infer more 1094 // known bits. However this is expensive to compute, so be lazy about it and 1095 // only compute it when absolutely necessary. 1096 Optional<bool> ShifterOperandIsNonZero; 1097 1098 // Early exit if we can't constrain any well-defined shift amount. 1099 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1100 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1101 ShifterOperandIsNonZero = 1102 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1103 if (!*ShifterOperandIsNonZero) 1104 return; 1105 } 1106 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1112 // Combine the shifted known input bits only for those shift amounts 1113 // compatible with its known constraints. 1114 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1115 continue; 1116 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1117 continue; 1118 // If we know the shifter is nonzero, we may be able to infer more known 1119 // bits. This check is sunk down as far as possible to avoid the expensive 1120 // call to isKnownNonZero if the cheaper checks above fail. 1121 if (ShiftAmt == 0) { 1122 if (!ShifterOperandIsNonZero.hasValue()) 1123 ShifterOperandIsNonZero = 1124 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1125 if (*ShifterOperandIsNonZero) 1126 continue; 1127 } 1128 1129 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1130 Known.One &= KOF(Known2.One, ShiftAmt); 1131 } 1132 1133 // If the known bits conflict, the result is poison. Return a 0 and hope the 1134 // caller can further optimize that. 1135 if (Known.hasConflict()) 1136 Known.setAllZero(); 1137 } 1138 1139 static void computeKnownBitsFromOperator(const Operator *I, 1140 const APInt &DemandedElts, 1141 KnownBits &Known, unsigned Depth, 1142 const Query &Q) { 1143 unsigned BitWidth = Known.getBitWidth(); 1144 1145 KnownBits Known2(BitWidth); 1146 switch (I->getOpcode()) { 1147 default: break; 1148 case Instruction::Load: 1149 if (MDNode *MD = 1150 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1151 computeKnownBitsFromRangeMetadata(*MD, Known); 1152 break; 1153 case Instruction::And: { 1154 // If either the LHS or the RHS are Zero, the result is zero. 1155 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1157 1158 Known &= Known2; 1159 1160 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1161 // here we handle the more general case of adding any odd number by 1162 // matching the form add(x, add(x, y)) where y is odd. 1163 // TODO: This could be generalized to clearing any bit set in y where the 1164 // following bit is known to be unset in y. 1165 Value *X = nullptr, *Y = nullptr; 1166 if (!Known.Zero[0] && !Known.One[0] && 1167 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1168 Known2.resetAll(); 1169 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1170 if (Known2.countMinTrailingOnes() > 0) 1171 Known.Zero.setBit(0); 1172 } 1173 break; 1174 } 1175 case Instruction::Or: 1176 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1178 1179 Known |= Known2; 1180 break; 1181 case Instruction::Xor: 1182 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1183 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1184 1185 Known ^= Known2; 1186 break; 1187 case Instruction::Mul: { 1188 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1189 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::UDiv: { 1194 // For the purposes of computing leading zeros we can conservatively 1195 // treat a udiv as a logical right shift by the power of 2 known to 1196 // be less than the denominator. 1197 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1198 unsigned LeadZ = Known2.countMinLeadingZeros(); 1199 1200 Known2.resetAll(); 1201 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1202 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1203 if (RHSMaxLeadingZeros != BitWidth) 1204 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1205 1206 Known.Zero.setHighBits(LeadZ); 1207 break; 1208 } 1209 case Instruction::Select: { 1210 const Value *LHS = nullptr, *RHS = nullptr; 1211 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1212 if (SelectPatternResult::isMinOrMax(SPF)) { 1213 computeKnownBits(RHS, Known, Depth + 1, Q); 1214 computeKnownBits(LHS, Known2, Depth + 1, Q); 1215 } else { 1216 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1217 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1218 } 1219 1220 unsigned MaxHighOnes = 0; 1221 unsigned MaxHighZeros = 0; 1222 if (SPF == SPF_SMAX) { 1223 // If both sides are negative, the result is negative. 1224 if (Known.isNegative() && Known2.isNegative()) 1225 // We can derive a lower bound on the result by taking the max of the 1226 // leading one bits. 1227 MaxHighOnes = 1228 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1229 // If either side is non-negative, the result is non-negative. 1230 else if (Known.isNonNegative() || Known2.isNonNegative()) 1231 MaxHighZeros = 1; 1232 } else if (SPF == SPF_SMIN) { 1233 // If both sides are non-negative, the result is non-negative. 1234 if (Known.isNonNegative() && Known2.isNonNegative()) 1235 // We can derive an upper bound on the result by taking the max of the 1236 // leading zero bits. 1237 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1238 Known2.countMinLeadingZeros()); 1239 // If either side is negative, the result is negative. 1240 else if (Known.isNegative() || Known2.isNegative()) 1241 MaxHighOnes = 1; 1242 } else if (SPF == SPF_UMAX) { 1243 // We can derive a lower bound on the result by taking the max of the 1244 // leading one bits. 1245 MaxHighOnes = 1246 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1247 } else if (SPF == SPF_UMIN) { 1248 // We can derive an upper bound on the result by taking the max of the 1249 // leading zero bits. 1250 MaxHighZeros = 1251 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1252 } else if (SPF == SPF_ABS) { 1253 // RHS from matchSelectPattern returns the negation part of abs pattern. 1254 // If the negate has an NSW flag we can assume the sign bit of the result 1255 // will be 0 because that makes abs(INT_MIN) undefined. 1256 if (match(RHS, m_Neg(m_Specific(LHS))) && 1257 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1258 MaxHighZeros = 1; 1259 } 1260 1261 // Only known if known in both the LHS and RHS. 1262 Known.One &= Known2.One; 1263 Known.Zero &= Known2.Zero; 1264 if (MaxHighOnes > 0) 1265 Known.One.setHighBits(MaxHighOnes); 1266 if (MaxHighZeros > 0) 1267 Known.Zero.setHighBits(MaxHighZeros); 1268 break; 1269 } 1270 case Instruction::FPTrunc: 1271 case Instruction::FPExt: 1272 case Instruction::FPToUI: 1273 case Instruction::FPToSI: 1274 case Instruction::SIToFP: 1275 case Instruction::UIToFP: 1276 break; // Can't work with floating point. 1277 case Instruction::PtrToInt: 1278 case Instruction::IntToPtr: 1279 // Fall through and handle them the same as zext/trunc. 1280 LLVM_FALLTHROUGH; 1281 case Instruction::ZExt: 1282 case Instruction::Trunc: { 1283 Type *SrcTy = I->getOperand(0)->getType(); 1284 1285 unsigned SrcBitWidth; 1286 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1287 // which fall through here. 1288 Type *ScalarTy = SrcTy->getScalarType(); 1289 SrcBitWidth = ScalarTy->isPointerTy() ? 1290 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1291 Q.DL.getTypeSizeInBits(ScalarTy); 1292 1293 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1294 Known = Known.anyextOrTrunc(SrcBitWidth); 1295 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1296 Known = Known.zextOrTrunc(BitWidth); 1297 break; 1298 } 1299 case Instruction::BitCast: { 1300 Type *SrcTy = I->getOperand(0)->getType(); 1301 if (SrcTy->isIntOrPtrTy() && 1302 // TODO: For now, not handling conversions like: 1303 // (bitcast i64 %x to <2 x i32>) 1304 !I->getType()->isVectorTy()) { 1305 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1306 break; 1307 } 1308 break; 1309 } 1310 case Instruction::SExt: { 1311 // Compute the bits in the result that are not present in the input. 1312 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1313 1314 Known = Known.trunc(SrcBitWidth); 1315 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1316 // If the sign bit of the input is known set or clear, then we know the 1317 // top bits of the result. 1318 Known = Known.sext(BitWidth); 1319 break; 1320 } 1321 case Instruction::Shl: { 1322 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1323 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1324 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1325 APInt KZResult = KnownZero << ShiftAmt; 1326 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1327 // If this shift has "nsw" keyword, then the result is either a poison 1328 // value or has the same sign bit as the first operand. 1329 if (NSW && KnownZero.isSignBitSet()) 1330 KZResult.setSignBit(); 1331 return KZResult; 1332 }; 1333 1334 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1335 APInt KOResult = KnownOne << ShiftAmt; 1336 if (NSW && KnownOne.isSignBitSet()) 1337 KOResult.setSignBit(); 1338 return KOResult; 1339 }; 1340 1341 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1342 KZF, KOF); 1343 break; 1344 } 1345 case Instruction::LShr: { 1346 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1347 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1348 APInt KZResult = KnownZero.lshr(ShiftAmt); 1349 // High bits known zero. 1350 KZResult.setHighBits(ShiftAmt); 1351 return KZResult; 1352 }; 1353 1354 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1355 return KnownOne.lshr(ShiftAmt); 1356 }; 1357 1358 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1359 KZF, KOF); 1360 break; 1361 } 1362 case Instruction::AShr: { 1363 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1364 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1365 return KnownZero.ashr(ShiftAmt); 1366 }; 1367 1368 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1369 return KnownOne.ashr(ShiftAmt); 1370 }; 1371 1372 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1373 KZF, KOF); 1374 break; 1375 } 1376 case Instruction::Sub: { 1377 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1378 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1379 DemandedElts, Known, Known2, Depth, Q); 1380 break; 1381 } 1382 case Instruction::Add: { 1383 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1384 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1385 DemandedElts, Known, Known2, Depth, Q); 1386 break; 1387 } 1388 case Instruction::SRem: 1389 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1390 APInt RA = Rem->getValue().abs(); 1391 if (RA.isPowerOf2()) { 1392 APInt LowBits = RA - 1; 1393 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1394 1395 // The low bits of the first operand are unchanged by the srem. 1396 Known.Zero = Known2.Zero & LowBits; 1397 Known.One = Known2.One & LowBits; 1398 1399 // If the first operand is non-negative or has all low bits zero, then 1400 // the upper bits are all zero. 1401 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1402 Known.Zero |= ~LowBits; 1403 1404 // If the first operand is negative and not all low bits are zero, then 1405 // the upper bits are all one. 1406 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1407 Known.One |= ~LowBits; 1408 1409 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1410 break; 1411 } 1412 } 1413 1414 // The sign bit is the LHS's sign bit, except when the result of the 1415 // remainder is zero. 1416 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1417 // If it's known zero, our sign bit is also zero. 1418 if (Known2.isNonNegative()) 1419 Known.makeNonNegative(); 1420 1421 break; 1422 case Instruction::URem: { 1423 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1424 const APInt &RA = Rem->getValue(); 1425 if (RA.isPowerOf2()) { 1426 APInt LowBits = (RA - 1); 1427 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1428 Known.Zero |= ~LowBits; 1429 Known.One &= LowBits; 1430 break; 1431 } 1432 } 1433 1434 // Since the result is less than or equal to either operand, any leading 1435 // zero bits in either operand must also exist in the result. 1436 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1437 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1438 1439 unsigned Leaders = 1440 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1441 Known.resetAll(); 1442 Known.Zero.setHighBits(Leaders); 1443 break; 1444 } 1445 case Instruction::Alloca: 1446 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1447 break; 1448 case Instruction::GetElementPtr: { 1449 // Analyze all of the subscripts of this getelementptr instruction 1450 // to determine if we can prove known low zero bits. 1451 KnownBits LocalKnown(BitWidth); 1452 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1453 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1454 1455 gep_type_iterator GTI = gep_type_begin(I); 1456 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1457 // TrailZ can only become smaller, short-circuit if we hit zero. 1458 if (TrailZ == 0) 1459 break; 1460 1461 Value *Index = I->getOperand(i); 1462 if (StructType *STy = GTI.getStructTypeOrNull()) { 1463 // Handle struct member offset arithmetic. 1464 1465 // Handle case when index is vector zeroinitializer 1466 Constant *CIndex = cast<Constant>(Index); 1467 if (CIndex->isZeroValue()) 1468 continue; 1469 1470 if (CIndex->getType()->isVectorTy()) 1471 Index = CIndex->getSplatValue(); 1472 1473 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1474 const StructLayout *SL = Q.DL.getStructLayout(STy); 1475 uint64_t Offset = SL->getElementOffset(Idx); 1476 TrailZ = std::min<unsigned>(TrailZ, 1477 countTrailingZeros(Offset)); 1478 } else { 1479 // Handle array index arithmetic. 1480 Type *IndexedTy = GTI.getIndexedType(); 1481 if (!IndexedTy->isSized()) { 1482 TrailZ = 0; 1483 break; 1484 } 1485 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1486 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1487 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1488 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1489 TrailZ = std::min(TrailZ, 1490 unsigned(countTrailingZeros(TypeSize) + 1491 LocalKnown.countMinTrailingZeros())); 1492 } 1493 } 1494 1495 Known.Zero.setLowBits(TrailZ); 1496 break; 1497 } 1498 case Instruction::PHI: { 1499 const PHINode *P = cast<PHINode>(I); 1500 // Handle the case of a simple two-predecessor recurrence PHI. 1501 // There's a lot more that could theoretically be done here, but 1502 // this is sufficient to catch some interesting cases. 1503 if (P->getNumIncomingValues() == 2) { 1504 for (unsigned i = 0; i != 2; ++i) { 1505 Value *L = P->getIncomingValue(i); 1506 Value *R = P->getIncomingValue(!i); 1507 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1508 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1509 Operator *LU = dyn_cast<Operator>(L); 1510 if (!LU) 1511 continue; 1512 unsigned Opcode = LU->getOpcode(); 1513 // Check for operations that have the property that if 1514 // both their operands have low zero bits, the result 1515 // will have low zero bits. 1516 if (Opcode == Instruction::Add || 1517 Opcode == Instruction::Sub || 1518 Opcode == Instruction::And || 1519 Opcode == Instruction::Or || 1520 Opcode == Instruction::Mul) { 1521 Value *LL = LU->getOperand(0); 1522 Value *LR = LU->getOperand(1); 1523 // Find a recurrence. 1524 if (LL == I) 1525 L = LR; 1526 else if (LR == I) 1527 L = LL; 1528 else 1529 continue; // Check for recurrence with L and R flipped. 1530 1531 // Change the context instruction to the "edge" that flows into the 1532 // phi. This is important because that is where the value is actually 1533 // "evaluated" even though it is used later somewhere else. (see also 1534 // D69571). 1535 Query RecQ = Q; 1536 1537 // Ok, we have a PHI of the form L op= R. Check for low 1538 // zero bits. 1539 RecQ.CxtI = RInst; 1540 computeKnownBits(R, Known2, Depth + 1, RecQ); 1541 1542 // We need to take the minimum number of known bits 1543 KnownBits Known3(BitWidth); 1544 RecQ.CxtI = LInst; 1545 computeKnownBits(L, Known3, Depth + 1, RecQ); 1546 1547 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1548 Known3.countMinTrailingZeros())); 1549 1550 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1551 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1552 // If initial value of recurrence is nonnegative, and we are adding 1553 // a nonnegative number with nsw, the result can only be nonnegative 1554 // or poison value regardless of the number of times we execute the 1555 // add in phi recurrence. If initial value is negative and we are 1556 // adding a negative number with nsw, the result can only be 1557 // negative or poison value. Similar arguments apply to sub and mul. 1558 // 1559 // (add non-negative, non-negative) --> non-negative 1560 // (add negative, negative) --> negative 1561 if (Opcode == Instruction::Add) { 1562 if (Known2.isNonNegative() && Known3.isNonNegative()) 1563 Known.makeNonNegative(); 1564 else if (Known2.isNegative() && Known3.isNegative()) 1565 Known.makeNegative(); 1566 } 1567 1568 // (sub nsw non-negative, negative) --> non-negative 1569 // (sub nsw negative, non-negative) --> negative 1570 else if (Opcode == Instruction::Sub && LL == I) { 1571 if (Known2.isNonNegative() && Known3.isNegative()) 1572 Known.makeNonNegative(); 1573 else if (Known2.isNegative() && Known3.isNonNegative()) 1574 Known.makeNegative(); 1575 } 1576 1577 // (mul nsw non-negative, non-negative) --> non-negative 1578 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1579 Known3.isNonNegative()) 1580 Known.makeNonNegative(); 1581 } 1582 1583 break; 1584 } 1585 } 1586 } 1587 1588 // Unreachable blocks may have zero-operand PHI nodes. 1589 if (P->getNumIncomingValues() == 0) 1590 break; 1591 1592 // Otherwise take the unions of the known bit sets of the operands, 1593 // taking conservative care to avoid excessive recursion. 1594 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1595 // Skip if every incoming value references to ourself. 1596 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1597 break; 1598 1599 Known.Zero.setAllBits(); 1600 Known.One.setAllBits(); 1601 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1602 Value *IncValue = P->getIncomingValue(u); 1603 // Skip direct self references. 1604 if (IncValue == P) continue; 1605 1606 // Change the context instruction to the "edge" that flows into the 1607 // phi. This is important because that is where the value is actually 1608 // "evaluated" even though it is used later somewhere else. (see also 1609 // D69571). 1610 Query RecQ = Q; 1611 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1612 1613 Known2 = KnownBits(BitWidth); 1614 // Recurse, but cap the recursion to one level, because we don't 1615 // want to waste time spinning around in loops. 1616 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1617 Known.Zero &= Known2.Zero; 1618 Known.One &= Known2.One; 1619 // If all bits have been ruled out, there's no need to check 1620 // more operands. 1621 if (!Known.Zero && !Known.One) 1622 break; 1623 } 1624 } 1625 break; 1626 } 1627 case Instruction::Call: 1628 case Instruction::Invoke: 1629 // If range metadata is attached to this call, set known bits from that, 1630 // and then intersect with known bits based on other properties of the 1631 // function. 1632 if (MDNode *MD = 1633 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1634 computeKnownBitsFromRangeMetadata(*MD, Known); 1635 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1636 computeKnownBits(RV, Known2, Depth + 1, Q); 1637 Known.Zero |= Known2.Zero; 1638 Known.One |= Known2.One; 1639 } 1640 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1641 switch (II->getIntrinsicID()) { 1642 default: break; 1643 case Intrinsic::abs: 1644 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1645 1646 // If the source's MSB is zero then we know the rest of the bits. 1647 if (Known2.isNonNegative()) { 1648 Known.Zero |= Known2.Zero; 1649 Known.One |= Known2.One; 1650 break; 1651 } 1652 1653 // Absolute value preserves trailing zero count. 1654 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1655 1656 // If this call is undefined for INT_MIN, the result is positive. We 1657 // also know it can't be INT_MIN if there is a set bit that isn't the 1658 // sign bit. 1659 Known2.One.clearSignBit(); 1660 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1661 Known.Zero.setSignBit(); 1662 // FIXME: Handle known negative input? 1663 // FIXME: Calculate the negated Known bits and combine them? 1664 break; 1665 case Intrinsic::bitreverse: 1666 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1667 Known.Zero |= Known2.Zero.reverseBits(); 1668 Known.One |= Known2.One.reverseBits(); 1669 break; 1670 case Intrinsic::bswap: 1671 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1672 Known.Zero |= Known2.Zero.byteSwap(); 1673 Known.One |= Known2.One.byteSwap(); 1674 break; 1675 case Intrinsic::ctlz: { 1676 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1677 // If we have a known 1, its position is our upper bound. 1678 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1679 // If this call is undefined for 0, the result will be less than 2^n. 1680 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1681 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1682 unsigned LowBits = Log2_32(PossibleLZ)+1; 1683 Known.Zero.setBitsFrom(LowBits); 1684 break; 1685 } 1686 case Intrinsic::cttz: { 1687 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1688 // If we have a known 1, its position is our upper bound. 1689 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1690 // If this call is undefined for 0, the result will be less than 2^n. 1691 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1692 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1693 unsigned LowBits = Log2_32(PossibleTZ)+1; 1694 Known.Zero.setBitsFrom(LowBits); 1695 break; 1696 } 1697 case Intrinsic::ctpop: { 1698 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1699 // We can bound the space the count needs. Also, bits known to be zero 1700 // can't contribute to the population. 1701 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1702 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1703 Known.Zero.setBitsFrom(LowBits); 1704 // TODO: we could bound KnownOne using the lower bound on the number 1705 // of bits which might be set provided by popcnt KnownOne2. 1706 break; 1707 } 1708 case Intrinsic::fshr: 1709 case Intrinsic::fshl: { 1710 const APInt *SA; 1711 if (!match(I->getOperand(2), m_APInt(SA))) 1712 break; 1713 1714 // Normalize to funnel shift left. 1715 uint64_t ShiftAmt = SA->urem(BitWidth); 1716 if (II->getIntrinsicID() == Intrinsic::fshr) 1717 ShiftAmt = BitWidth - ShiftAmt; 1718 1719 KnownBits Known3(BitWidth); 1720 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1721 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1722 1723 Known.Zero = 1724 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1725 Known.One = 1726 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1727 break; 1728 } 1729 case Intrinsic::uadd_sat: 1730 case Intrinsic::usub_sat: { 1731 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1732 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1733 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1734 1735 // Add: Leading ones of either operand are preserved. 1736 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1737 // as leading zeros in the result. 1738 unsigned LeadingKnown; 1739 if (IsAdd) 1740 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1741 Known2.countMinLeadingOnes()); 1742 else 1743 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1744 Known2.countMinLeadingOnes()); 1745 1746 Known = KnownBits::computeForAddSub( 1747 IsAdd, /* NSW */ false, Known, Known2); 1748 1749 // We select between the operation result and all-ones/zero 1750 // respectively, so we can preserve known ones/zeros. 1751 if (IsAdd) { 1752 Known.One.setHighBits(LeadingKnown); 1753 Known.Zero.clearAllBits(); 1754 } else { 1755 Known.Zero.setHighBits(LeadingKnown); 1756 Known.One.clearAllBits(); 1757 } 1758 break; 1759 } 1760 case Intrinsic::x86_sse42_crc32_64_64: 1761 Known.Zero.setBitsFrom(32); 1762 break; 1763 } 1764 } 1765 break; 1766 case Instruction::ShuffleVector: { 1767 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1768 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1769 if (!Shuf) { 1770 Known.resetAll(); 1771 return; 1772 } 1773 // For undef elements, we don't know anything about the common state of 1774 // the shuffle result. 1775 APInt DemandedLHS, DemandedRHS; 1776 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1777 Known.resetAll(); 1778 return; 1779 } 1780 Known.One.setAllBits(); 1781 Known.Zero.setAllBits(); 1782 if (!!DemandedLHS) { 1783 const Value *LHS = Shuf->getOperand(0); 1784 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1785 // If we don't know any bits, early out. 1786 if (Known.isUnknown()) 1787 break; 1788 } 1789 if (!!DemandedRHS) { 1790 const Value *RHS = Shuf->getOperand(1); 1791 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1792 Known.One &= Known2.One; 1793 Known.Zero &= Known2.Zero; 1794 } 1795 break; 1796 } 1797 case Instruction::InsertElement: { 1798 const Value *Vec = I->getOperand(0); 1799 const Value *Elt = I->getOperand(1); 1800 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1801 // Early out if the index is non-constant or out-of-range. 1802 unsigned NumElts = DemandedElts.getBitWidth(); 1803 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1804 Known.resetAll(); 1805 return; 1806 } 1807 Known.One.setAllBits(); 1808 Known.Zero.setAllBits(); 1809 unsigned EltIdx = CIdx->getZExtValue(); 1810 // Do we demand the inserted element? 1811 if (DemandedElts[EltIdx]) { 1812 computeKnownBits(Elt, Known, Depth + 1, Q); 1813 // If we don't know any bits, early out. 1814 if (Known.isUnknown()) 1815 break; 1816 } 1817 // We don't need the base vector element that has been inserted. 1818 APInt DemandedVecElts = DemandedElts; 1819 DemandedVecElts.clearBit(EltIdx); 1820 if (!!DemandedVecElts) { 1821 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1822 Known.One &= Known2.One; 1823 Known.Zero &= Known2.Zero; 1824 } 1825 break; 1826 } 1827 case Instruction::ExtractElement: { 1828 // Look through extract element. If the index is non-constant or 1829 // out-of-range demand all elements, otherwise just the extracted element. 1830 const Value *Vec = I->getOperand(0); 1831 const Value *Idx = I->getOperand(1); 1832 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1833 if (isa<ScalableVectorType>(Vec->getType())) { 1834 // FIXME: there's probably *something* we can do with scalable vectors 1835 Known.resetAll(); 1836 break; 1837 } 1838 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1839 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1840 if (CIdx && CIdx->getValue().ult(NumElts)) 1841 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1842 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1843 break; 1844 } 1845 case Instruction::ExtractValue: 1846 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1847 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1848 if (EVI->getNumIndices() != 1) break; 1849 if (EVI->getIndices()[0] == 0) { 1850 switch (II->getIntrinsicID()) { 1851 default: break; 1852 case Intrinsic::uadd_with_overflow: 1853 case Intrinsic::sadd_with_overflow: 1854 computeKnownBitsAddSub(true, II->getArgOperand(0), 1855 II->getArgOperand(1), false, DemandedElts, 1856 Known, Known2, Depth, Q); 1857 break; 1858 case Intrinsic::usub_with_overflow: 1859 case Intrinsic::ssub_with_overflow: 1860 computeKnownBitsAddSub(false, II->getArgOperand(0), 1861 II->getArgOperand(1), false, DemandedElts, 1862 Known, Known2, Depth, Q); 1863 break; 1864 case Intrinsic::umul_with_overflow: 1865 case Intrinsic::smul_with_overflow: 1866 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1867 DemandedElts, Known, Known2, Depth, Q); 1868 break; 1869 } 1870 } 1871 } 1872 break; 1873 } 1874 } 1875 1876 /// Determine which bits of V are known to be either zero or one and return 1877 /// them. 1878 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1879 unsigned Depth, const Query &Q) { 1880 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1881 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1882 return Known; 1883 } 1884 1885 /// Determine which bits of V are known to be either zero or one and return 1886 /// them. 1887 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1888 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1889 computeKnownBits(V, Known, Depth, Q); 1890 return Known; 1891 } 1892 1893 /// Determine which bits of V are known to be either zero or one and return 1894 /// them in the Known bit set. 1895 /// 1896 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1897 /// we cannot optimize based on the assumption that it is zero without changing 1898 /// it to be an explicit zero. If we don't change it to zero, other code could 1899 /// optimized based on the contradictory assumption that it is non-zero. 1900 /// Because instcombine aggressively folds operations with undef args anyway, 1901 /// this won't lose us code quality. 1902 /// 1903 /// This function is defined on values with integer type, values with pointer 1904 /// type, and vectors of integers. In the case 1905 /// where V is a vector, known zero, and known one values are the 1906 /// same width as the vector element, and the bit is set only if it is true 1907 /// for all of the demanded elements in the vector specified by DemandedElts. 1908 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1909 KnownBits &Known, unsigned Depth, const Query &Q) { 1910 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1911 // No demanded elts or V is a scalable vector, better to assume we don't 1912 // know anything. 1913 Known.resetAll(); 1914 return; 1915 } 1916 1917 assert(V && "No Value?"); 1918 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1919 1920 #ifndef NDEBUG 1921 Type *Ty = V->getType(); 1922 unsigned BitWidth = Known.getBitWidth(); 1923 1924 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1925 "Not integer or pointer type!"); 1926 1927 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1928 assert( 1929 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1930 "DemandedElt width should equal the fixed vector number of elements"); 1931 } else { 1932 assert(DemandedElts == APInt(1, 1) && 1933 "DemandedElt width should be 1 for scalars"); 1934 } 1935 1936 Type *ScalarTy = Ty->getScalarType(); 1937 if (ScalarTy->isPointerTy()) { 1938 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1939 "V and Known should have same BitWidth"); 1940 } else { 1941 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1942 "V and Known should have same BitWidth"); 1943 } 1944 #endif 1945 1946 const APInt *C; 1947 if (match(V, m_APInt(C))) { 1948 // We know all of the bits for a scalar constant or a splat vector constant! 1949 Known.One = *C; 1950 Known.Zero = ~Known.One; 1951 return; 1952 } 1953 // Null and aggregate-zero are all-zeros. 1954 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1955 Known.setAllZero(); 1956 return; 1957 } 1958 // Handle a constant vector by taking the intersection of the known bits of 1959 // each element. 1960 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1961 // We know that CDV must be a vector of integers. Take the intersection of 1962 // each element. 1963 Known.Zero.setAllBits(); Known.One.setAllBits(); 1964 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1965 if (!DemandedElts[i]) 1966 continue; 1967 APInt Elt = CDV->getElementAsAPInt(i); 1968 Known.Zero &= ~Elt; 1969 Known.One &= Elt; 1970 } 1971 return; 1972 } 1973 1974 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1975 // We know that CV must be a vector of integers. Take the intersection of 1976 // each element. 1977 Known.Zero.setAllBits(); Known.One.setAllBits(); 1978 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1979 if (!DemandedElts[i]) 1980 continue; 1981 Constant *Element = CV->getAggregateElement(i); 1982 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1983 if (!ElementCI) { 1984 Known.resetAll(); 1985 return; 1986 } 1987 const APInt &Elt = ElementCI->getValue(); 1988 Known.Zero &= ~Elt; 1989 Known.One &= Elt; 1990 } 1991 return; 1992 } 1993 1994 // Start out not knowing anything. 1995 Known.resetAll(); 1996 1997 // We can't imply anything about undefs. 1998 if (isa<UndefValue>(V)) 1999 return; 2000 2001 // There's no point in looking through other users of ConstantData for 2002 // assumptions. Confirm that we've handled them all. 2003 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2004 2005 // All recursive calls that increase depth must come after this. 2006 if (Depth == MaxAnalysisRecursionDepth) 2007 return; 2008 2009 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2010 // the bits of its aliasee. 2011 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2012 if (!GA->isInterposable()) 2013 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2014 return; 2015 } 2016 2017 if (const Operator *I = dyn_cast<Operator>(V)) 2018 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2019 2020 // Aligned pointers have trailing zeros - refine Known.Zero set 2021 if (isa<PointerType>(V->getType())) { 2022 Align Alignment = V->getPointerAlignment(Q.DL); 2023 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 2024 } 2025 2026 // computeKnownBitsFromAssume strictly refines Known. 2027 // Therefore, we run them after computeKnownBitsFromOperator. 2028 2029 // Check whether a nearby assume intrinsic can determine some known bits. 2030 computeKnownBitsFromAssume(V, Known, Depth, Q); 2031 2032 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2033 } 2034 2035 /// Return true if the given value is known to have exactly one 2036 /// bit set when defined. For vectors return true if every element is known to 2037 /// be a power of two when defined. Supports values with integer or pointer 2038 /// types and vectors of integers. 2039 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2040 const Query &Q) { 2041 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2042 2043 // Attempt to match against constants. 2044 if (OrZero && match(V, m_Power2OrZero())) 2045 return true; 2046 if (match(V, m_Power2())) 2047 return true; 2048 2049 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2050 // it is shifted off the end then the result is undefined. 2051 if (match(V, m_Shl(m_One(), m_Value()))) 2052 return true; 2053 2054 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2055 // the bottom. If it is shifted off the bottom then the result is undefined. 2056 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2057 return true; 2058 2059 // The remaining tests are all recursive, so bail out if we hit the limit. 2060 if (Depth++ == MaxAnalysisRecursionDepth) 2061 return false; 2062 2063 Value *X = nullptr, *Y = nullptr; 2064 // A shift left or a logical shift right of a power of two is a power of two 2065 // or zero. 2066 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2067 match(V, m_LShr(m_Value(X), m_Value())))) 2068 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2069 2070 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2071 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2072 2073 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2074 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2075 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2076 2077 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2078 // A power of two and'd with anything is a power of two or zero. 2079 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2080 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2081 return true; 2082 // X & (-X) is always a power of two or zero. 2083 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2084 return true; 2085 return false; 2086 } 2087 2088 // Adding a power-of-two or zero to the same power-of-two or zero yields 2089 // either the original power-of-two, a larger power-of-two or zero. 2090 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2091 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2092 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2093 Q.IIQ.hasNoSignedWrap(VOBO)) { 2094 if (match(X, m_And(m_Specific(Y), m_Value())) || 2095 match(X, m_And(m_Value(), m_Specific(Y)))) 2096 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2097 return true; 2098 if (match(Y, m_And(m_Specific(X), m_Value())) || 2099 match(Y, m_And(m_Value(), m_Specific(X)))) 2100 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2101 return true; 2102 2103 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2104 KnownBits LHSBits(BitWidth); 2105 computeKnownBits(X, LHSBits, Depth, Q); 2106 2107 KnownBits RHSBits(BitWidth); 2108 computeKnownBits(Y, RHSBits, Depth, Q); 2109 // If i8 V is a power of two or zero: 2110 // ZeroBits: 1 1 1 0 1 1 1 1 2111 // ~ZeroBits: 0 0 0 1 0 0 0 0 2112 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2113 // If OrZero isn't set, we cannot give back a zero result. 2114 // Make sure either the LHS or RHS has a bit set. 2115 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2116 return true; 2117 } 2118 } 2119 2120 // An exact divide or right shift can only shift off zero bits, so the result 2121 // is a power of two only if the first operand is a power of two and not 2122 // copying a sign bit (sdiv int_min, 2). 2123 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2124 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2125 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2126 Depth, Q); 2127 } 2128 2129 return false; 2130 } 2131 2132 /// Test whether a GEP's result is known to be non-null. 2133 /// 2134 /// Uses properties inherent in a GEP to try to determine whether it is known 2135 /// to be non-null. 2136 /// 2137 /// Currently this routine does not support vector GEPs. 2138 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2139 const Query &Q) { 2140 const Function *F = nullptr; 2141 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2142 F = I->getFunction(); 2143 2144 if (!GEP->isInBounds() || 2145 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2146 return false; 2147 2148 // FIXME: Support vector-GEPs. 2149 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2150 2151 // If the base pointer is non-null, we cannot walk to a null address with an 2152 // inbounds GEP in address space zero. 2153 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2154 return true; 2155 2156 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2157 // If so, then the GEP cannot produce a null pointer, as doing so would 2158 // inherently violate the inbounds contract within address space zero. 2159 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2160 GTI != GTE; ++GTI) { 2161 // Struct types are easy -- they must always be indexed by a constant. 2162 if (StructType *STy = GTI.getStructTypeOrNull()) { 2163 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2164 unsigned ElementIdx = OpC->getZExtValue(); 2165 const StructLayout *SL = Q.DL.getStructLayout(STy); 2166 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2167 if (ElementOffset > 0) 2168 return true; 2169 continue; 2170 } 2171 2172 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2173 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2174 continue; 2175 2176 // Fast path the constant operand case both for efficiency and so we don't 2177 // increment Depth when just zipping down an all-constant GEP. 2178 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2179 if (!OpC->isZero()) 2180 return true; 2181 continue; 2182 } 2183 2184 // We post-increment Depth here because while isKnownNonZero increments it 2185 // as well, when we pop back up that increment won't persist. We don't want 2186 // to recurse 10k times just because we have 10k GEP operands. We don't 2187 // bail completely out because we want to handle constant GEPs regardless 2188 // of depth. 2189 if (Depth++ >= MaxAnalysisRecursionDepth) 2190 continue; 2191 2192 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2193 return true; 2194 } 2195 2196 return false; 2197 } 2198 2199 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2200 const Instruction *CtxI, 2201 const DominatorTree *DT) { 2202 if (isa<Constant>(V)) 2203 return false; 2204 2205 if (!CtxI || !DT) 2206 return false; 2207 2208 unsigned NumUsesExplored = 0; 2209 for (auto *U : V->users()) { 2210 // Avoid massive lists 2211 if (NumUsesExplored >= DomConditionsMaxUses) 2212 break; 2213 NumUsesExplored++; 2214 2215 // If the value is used as an argument to a call or invoke, then argument 2216 // attributes may provide an answer about null-ness. 2217 if (const auto *CB = dyn_cast<CallBase>(U)) 2218 if (auto *CalledFunc = CB->getCalledFunction()) 2219 for (const Argument &Arg : CalledFunc->args()) 2220 if (CB->getArgOperand(Arg.getArgNo()) == V && 2221 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2222 return true; 2223 2224 // If the value is used as a load/store, then the pointer must be non null. 2225 if (V == getLoadStorePointerOperand(U)) { 2226 const Instruction *I = cast<Instruction>(U); 2227 if (!NullPointerIsDefined(I->getFunction(), 2228 V->getType()->getPointerAddressSpace()) && 2229 DT->dominates(I, CtxI)) 2230 return true; 2231 } 2232 2233 // Consider only compare instructions uniquely controlling a branch 2234 CmpInst::Predicate Pred; 2235 if (!match(const_cast<User *>(U), 2236 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2237 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2238 continue; 2239 2240 SmallVector<const User *, 4> WorkList; 2241 SmallPtrSet<const User *, 4> Visited; 2242 for (auto *CmpU : U->users()) { 2243 assert(WorkList.empty() && "Should be!"); 2244 if (Visited.insert(CmpU).second) 2245 WorkList.push_back(CmpU); 2246 2247 while (!WorkList.empty()) { 2248 auto *Curr = WorkList.pop_back_val(); 2249 2250 // If a user is an AND, add all its users to the work list. We only 2251 // propagate "pred != null" condition through AND because it is only 2252 // correct to assume that all conditions of AND are met in true branch. 2253 // TODO: Support similar logic of OR and EQ predicate? 2254 if (Pred == ICmpInst::ICMP_NE) 2255 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2256 if (BO->getOpcode() == Instruction::And) { 2257 for (auto *BOU : BO->users()) 2258 if (Visited.insert(BOU).second) 2259 WorkList.push_back(BOU); 2260 continue; 2261 } 2262 2263 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2264 assert(BI->isConditional() && "uses a comparison!"); 2265 2266 BasicBlock *NonNullSuccessor = 2267 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2268 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2269 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2270 return true; 2271 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2272 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2273 return true; 2274 } 2275 } 2276 } 2277 } 2278 2279 return false; 2280 } 2281 2282 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2283 /// ensure that the value it's attached to is never Value? 'RangeType' is 2284 /// is the type of the value described by the range. 2285 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2286 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2287 assert(NumRanges >= 1); 2288 for (unsigned i = 0; i < NumRanges; ++i) { 2289 ConstantInt *Lower = 2290 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2291 ConstantInt *Upper = 2292 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2293 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2294 if (Range.contains(Value)) 2295 return false; 2296 } 2297 return true; 2298 } 2299 2300 /// Return true if the given value is known to be non-zero when defined. For 2301 /// vectors, return true if every demanded element is known to be non-zero when 2302 /// defined. For pointers, if the context instruction and dominator tree are 2303 /// specified, perform context-sensitive analysis and return true if the 2304 /// pointer couldn't possibly be null at the specified instruction. 2305 /// Supports values with integer or pointer type and vectors of integers. 2306 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2307 const Query &Q) { 2308 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2309 // vector 2310 if (isa<ScalableVectorType>(V->getType())) 2311 return false; 2312 2313 if (auto *C = dyn_cast<Constant>(V)) { 2314 if (C->isNullValue()) 2315 return false; 2316 if (isa<ConstantInt>(C)) 2317 // Must be non-zero due to null test above. 2318 return true; 2319 2320 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2321 // See the comment for IntToPtr/PtrToInt instructions below. 2322 if (CE->getOpcode() == Instruction::IntToPtr || 2323 CE->getOpcode() == Instruction::PtrToInt) 2324 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2325 Q.DL.getTypeSizeInBits(CE->getType())) 2326 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2327 } 2328 2329 // For constant vectors, check that all elements are undefined or known 2330 // non-zero to determine that the whole vector is known non-zero. 2331 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2332 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2333 if (!DemandedElts[i]) 2334 continue; 2335 Constant *Elt = C->getAggregateElement(i); 2336 if (!Elt || Elt->isNullValue()) 2337 return false; 2338 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2339 return false; 2340 } 2341 return true; 2342 } 2343 2344 // A global variable in address space 0 is non null unless extern weak 2345 // or an absolute symbol reference. Other address spaces may have null as a 2346 // valid address for a global, so we can't assume anything. 2347 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2348 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2349 GV->getType()->getAddressSpace() == 0) 2350 return true; 2351 } else 2352 return false; 2353 } 2354 2355 if (auto *I = dyn_cast<Instruction>(V)) { 2356 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2357 // If the possible ranges don't contain zero, then the value is 2358 // definitely non-zero. 2359 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2360 const APInt ZeroValue(Ty->getBitWidth(), 0); 2361 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2362 return true; 2363 } 2364 } 2365 } 2366 2367 if (isKnownNonZeroFromAssume(V, Q)) 2368 return true; 2369 2370 // Some of the tests below are recursive, so bail out if we hit the limit. 2371 if (Depth++ >= MaxAnalysisRecursionDepth) 2372 return false; 2373 2374 // Check for pointer simplifications. 2375 2376 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2377 // Alloca never returns null, malloc might. 2378 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2379 return true; 2380 2381 // A byval, inalloca may not be null in a non-default addres space. A 2382 // nonnull argument is assumed never 0. 2383 if (const Argument *A = dyn_cast<Argument>(V)) { 2384 if (((A->hasPassPointeeByValueCopyAttr() && 2385 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2386 A->hasNonNullAttr())) 2387 return true; 2388 } 2389 2390 // A Load tagged with nonnull metadata is never null. 2391 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2392 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2393 return true; 2394 2395 if (const auto *Call = dyn_cast<CallBase>(V)) { 2396 if (Call->isReturnNonNull()) 2397 return true; 2398 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2399 return isKnownNonZero(RP, Depth, Q); 2400 } 2401 } 2402 2403 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2404 return true; 2405 2406 // Check for recursive pointer simplifications. 2407 if (V->getType()->isPointerTy()) { 2408 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2409 // do not alter the value, or at least not the nullness property of the 2410 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2411 // 2412 // Note that we have to take special care to avoid looking through 2413 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2414 // as casts that can alter the value, e.g., AddrSpaceCasts. 2415 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2416 if (isGEPKnownNonNull(GEP, Depth, Q)) 2417 return true; 2418 2419 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2420 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2421 2422 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2423 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2424 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2425 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2426 } 2427 2428 // Similar to int2ptr above, we can look through ptr2int here if the cast 2429 // is a no-op or an extend and not a truncate. 2430 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2431 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2432 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2433 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2434 2435 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2436 2437 // X | Y != 0 if X != 0 or Y != 0. 2438 Value *X = nullptr, *Y = nullptr; 2439 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2440 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2441 isKnownNonZero(Y, DemandedElts, Depth, Q); 2442 2443 // ext X != 0 if X != 0. 2444 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2445 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2446 2447 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2448 // if the lowest bit is shifted off the end. 2449 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2450 // shl nuw can't remove any non-zero bits. 2451 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2452 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2453 return isKnownNonZero(X, Depth, Q); 2454 2455 KnownBits Known(BitWidth); 2456 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2457 if (Known.One[0]) 2458 return true; 2459 } 2460 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2461 // defined if the sign bit is shifted off the end. 2462 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2463 // shr exact can only shift out zero bits. 2464 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2465 if (BO->isExact()) 2466 return isKnownNonZero(X, Depth, Q); 2467 2468 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2469 if (Known.isNegative()) 2470 return true; 2471 2472 // If the shifter operand is a constant, and all of the bits shifted 2473 // out are known to be zero, and X is known non-zero then at least one 2474 // non-zero bit must remain. 2475 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2476 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2477 // Is there a known one in the portion not shifted out? 2478 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2479 return true; 2480 // Are all the bits to be shifted out known zero? 2481 if (Known.countMinTrailingZeros() >= ShiftVal) 2482 return isKnownNonZero(X, DemandedElts, Depth, Q); 2483 } 2484 } 2485 // div exact can only produce a zero if the dividend is zero. 2486 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2487 return isKnownNonZero(X, DemandedElts, Depth, Q); 2488 } 2489 // X + Y. 2490 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2491 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2492 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2493 2494 // If X and Y are both non-negative (as signed values) then their sum is not 2495 // zero unless both X and Y are zero. 2496 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2497 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2498 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2499 return true; 2500 2501 // If X and Y are both negative (as signed values) then their sum is not 2502 // zero unless both X and Y equal INT_MIN. 2503 if (XKnown.isNegative() && YKnown.isNegative()) { 2504 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2505 // The sign bit of X is set. If some other bit is set then X is not equal 2506 // to INT_MIN. 2507 if (XKnown.One.intersects(Mask)) 2508 return true; 2509 // The sign bit of Y is set. If some other bit is set then Y is not equal 2510 // to INT_MIN. 2511 if (YKnown.One.intersects(Mask)) 2512 return true; 2513 } 2514 2515 // The sum of a non-negative number and a power of two is not zero. 2516 if (XKnown.isNonNegative() && 2517 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2518 return true; 2519 if (YKnown.isNonNegative() && 2520 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2521 return true; 2522 } 2523 // X * Y. 2524 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2525 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2526 // If X and Y are non-zero then so is X * Y as long as the multiplication 2527 // does not overflow. 2528 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2529 isKnownNonZero(X, DemandedElts, Depth, Q) && 2530 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2531 return true; 2532 } 2533 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2534 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2535 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2536 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2537 return true; 2538 } 2539 // PHI 2540 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2541 // Try and detect a recurrence that monotonically increases from a 2542 // starting value, as these are common as induction variables. 2543 if (PN->getNumIncomingValues() == 2) { 2544 Value *Start = PN->getIncomingValue(0); 2545 Value *Induction = PN->getIncomingValue(1); 2546 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2547 std::swap(Start, Induction); 2548 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2549 if (!C->isZero() && !C->isNegative()) { 2550 ConstantInt *X; 2551 if (Q.IIQ.UseInstrInfo && 2552 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2553 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2554 !X->isNegative()) 2555 return true; 2556 } 2557 } 2558 } 2559 // Check if all incoming values are non-zero constant. 2560 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2561 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2562 }); 2563 if (AllNonZeroConstants) 2564 return true; 2565 } 2566 // ExtractElement 2567 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2568 const Value *Vec = EEI->getVectorOperand(); 2569 const Value *Idx = EEI->getIndexOperand(); 2570 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2571 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2572 unsigned NumElts = VecTy->getNumElements(); 2573 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2574 if (CIdx && CIdx->getValue().ult(NumElts)) 2575 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2576 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2577 } 2578 } 2579 2580 KnownBits Known(BitWidth); 2581 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2582 return Known.One != 0; 2583 } 2584 2585 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2586 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2587 // vector 2588 if (isa<ScalableVectorType>(V->getType())) 2589 return false; 2590 2591 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2592 APInt DemandedElts = 2593 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2594 return isKnownNonZero(V, DemandedElts, Depth, Q); 2595 } 2596 2597 /// Return true if V2 == V1 + X, where X is known non-zero. 2598 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2599 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2600 if (!BO || BO->getOpcode() != Instruction::Add) 2601 return false; 2602 Value *Op = nullptr; 2603 if (V2 == BO->getOperand(0)) 2604 Op = BO->getOperand(1); 2605 else if (V2 == BO->getOperand(1)) 2606 Op = BO->getOperand(0); 2607 else 2608 return false; 2609 return isKnownNonZero(Op, 0, Q); 2610 } 2611 2612 /// Return true if it is known that V1 != V2. 2613 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2614 if (V1 == V2) 2615 return false; 2616 if (V1->getType() != V2->getType()) 2617 // We can't look through casts yet. 2618 return false; 2619 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2620 return true; 2621 2622 if (V1->getType()->isIntOrIntVectorTy()) { 2623 // Are any known bits in V1 contradictory to known bits in V2? If V1 2624 // has a known zero where V2 has a known one, they must not be equal. 2625 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2626 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2627 2628 if (Known1.Zero.intersects(Known2.One) || 2629 Known2.Zero.intersects(Known1.One)) 2630 return true; 2631 } 2632 return false; 2633 } 2634 2635 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2636 /// simplify operations downstream. Mask is known to be zero for bits that V 2637 /// cannot have. 2638 /// 2639 /// This function is defined on values with integer type, values with pointer 2640 /// type, and vectors of integers. In the case 2641 /// where V is a vector, the mask, known zero, and known one values are the 2642 /// same width as the vector element, and the bit is set only if it is true 2643 /// for all of the elements in the vector. 2644 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2645 const Query &Q) { 2646 KnownBits Known(Mask.getBitWidth()); 2647 computeKnownBits(V, Known, Depth, Q); 2648 return Mask.isSubsetOf(Known.Zero); 2649 } 2650 2651 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2652 // Returns the input and lower/upper bounds. 2653 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2654 const APInt *&CLow, const APInt *&CHigh) { 2655 assert(isa<Operator>(Select) && 2656 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2657 "Input should be a Select!"); 2658 2659 const Value *LHS = nullptr, *RHS = nullptr; 2660 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2661 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2662 return false; 2663 2664 if (!match(RHS, m_APInt(CLow))) 2665 return false; 2666 2667 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2668 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2669 if (getInverseMinMaxFlavor(SPF) != SPF2) 2670 return false; 2671 2672 if (!match(RHS2, m_APInt(CHigh))) 2673 return false; 2674 2675 if (SPF == SPF_SMIN) 2676 std::swap(CLow, CHigh); 2677 2678 In = LHS2; 2679 return CLow->sle(*CHigh); 2680 } 2681 2682 /// For vector constants, loop over the elements and find the constant with the 2683 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2684 /// or if any element was not analyzed; otherwise, return the count for the 2685 /// element with the minimum number of sign bits. 2686 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2687 const APInt &DemandedElts, 2688 unsigned TyBits) { 2689 const auto *CV = dyn_cast<Constant>(V); 2690 if (!CV || !isa<FixedVectorType>(CV->getType())) 2691 return 0; 2692 2693 unsigned MinSignBits = TyBits; 2694 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2695 for (unsigned i = 0; i != NumElts; ++i) { 2696 if (!DemandedElts[i]) 2697 continue; 2698 // If we find a non-ConstantInt, bail out. 2699 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2700 if (!Elt) 2701 return 0; 2702 2703 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2704 } 2705 2706 return MinSignBits; 2707 } 2708 2709 static unsigned ComputeNumSignBitsImpl(const Value *V, 2710 const APInt &DemandedElts, 2711 unsigned Depth, const Query &Q); 2712 2713 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2714 unsigned Depth, const Query &Q) { 2715 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2716 assert(Result > 0 && "At least one sign bit needs to be present!"); 2717 return Result; 2718 } 2719 2720 /// Return the number of times the sign bit of the register is replicated into 2721 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2722 /// (itself), but other cases can give us information. For example, immediately 2723 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2724 /// other, so we return 3. For vectors, return the number of sign bits for the 2725 /// vector element with the minimum number of known sign bits of the demanded 2726 /// elements in the vector specified by DemandedElts. 2727 static unsigned ComputeNumSignBitsImpl(const Value *V, 2728 const APInt &DemandedElts, 2729 unsigned Depth, const Query &Q) { 2730 Type *Ty = V->getType(); 2731 2732 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2733 // vector 2734 if (isa<ScalableVectorType>(Ty)) 2735 return 1; 2736 2737 #ifndef NDEBUG 2738 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2739 2740 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2741 assert( 2742 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2743 "DemandedElt width should equal the fixed vector number of elements"); 2744 } else { 2745 assert(DemandedElts == APInt(1, 1) && 2746 "DemandedElt width should be 1 for scalars"); 2747 } 2748 #endif 2749 2750 // We return the minimum number of sign bits that are guaranteed to be present 2751 // in V, so for undef we have to conservatively return 1. We don't have the 2752 // same behavior for poison though -- that's a FIXME today. 2753 2754 Type *ScalarTy = Ty->getScalarType(); 2755 unsigned TyBits = ScalarTy->isPointerTy() ? 2756 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2757 Q.DL.getTypeSizeInBits(ScalarTy); 2758 2759 unsigned Tmp, Tmp2; 2760 unsigned FirstAnswer = 1; 2761 2762 // Note that ConstantInt is handled by the general computeKnownBits case 2763 // below. 2764 2765 if (Depth == MaxAnalysisRecursionDepth) 2766 return 1; 2767 2768 if (auto *U = dyn_cast<Operator>(V)) { 2769 switch (Operator::getOpcode(V)) { 2770 default: break; 2771 case Instruction::SExt: 2772 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2773 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2774 2775 case Instruction::SDiv: { 2776 const APInt *Denominator; 2777 // sdiv X, C -> adds log(C) sign bits. 2778 if (match(U->getOperand(1), m_APInt(Denominator))) { 2779 2780 // Ignore non-positive denominator. 2781 if (!Denominator->isStrictlyPositive()) 2782 break; 2783 2784 // Calculate the incoming numerator bits. 2785 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2786 2787 // Add floor(log(C)) bits to the numerator bits. 2788 return std::min(TyBits, NumBits + Denominator->logBase2()); 2789 } 2790 break; 2791 } 2792 2793 case Instruction::SRem: { 2794 const APInt *Denominator; 2795 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2796 // positive constant. This let us put a lower bound on the number of sign 2797 // bits. 2798 if (match(U->getOperand(1), m_APInt(Denominator))) { 2799 2800 // Ignore non-positive denominator. 2801 if (!Denominator->isStrictlyPositive()) 2802 break; 2803 2804 // Calculate the incoming numerator bits. SRem by a positive constant 2805 // can't lower the number of sign bits. 2806 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2807 2808 // Calculate the leading sign bit constraints by examining the 2809 // denominator. Given that the denominator is positive, there are two 2810 // cases: 2811 // 2812 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2813 // (1 << ceilLogBase2(C)). 2814 // 2815 // 2. the numerator is negative. Then the result range is (-C,0] and 2816 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2817 // 2818 // Thus a lower bound on the number of sign bits is `TyBits - 2819 // ceilLogBase2(C)`. 2820 2821 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2822 return std::max(NumrBits, ResBits); 2823 } 2824 break; 2825 } 2826 2827 case Instruction::AShr: { 2828 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2829 // ashr X, C -> adds C sign bits. Vectors too. 2830 const APInt *ShAmt; 2831 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2832 if (ShAmt->uge(TyBits)) 2833 break; // Bad shift. 2834 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2835 Tmp += ShAmtLimited; 2836 if (Tmp > TyBits) Tmp = TyBits; 2837 } 2838 return Tmp; 2839 } 2840 case Instruction::Shl: { 2841 const APInt *ShAmt; 2842 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2843 // shl destroys sign bits. 2844 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2845 if (ShAmt->uge(TyBits) || // Bad shift. 2846 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2847 Tmp2 = ShAmt->getZExtValue(); 2848 return Tmp - Tmp2; 2849 } 2850 break; 2851 } 2852 case Instruction::And: 2853 case Instruction::Or: 2854 case Instruction::Xor: // NOT is handled here. 2855 // Logical binary ops preserve the number of sign bits at the worst. 2856 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2857 if (Tmp != 1) { 2858 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2859 FirstAnswer = std::min(Tmp, Tmp2); 2860 // We computed what we know about the sign bits as our first 2861 // answer. Now proceed to the generic code that uses 2862 // computeKnownBits, and pick whichever answer is better. 2863 } 2864 break; 2865 2866 case Instruction::Select: { 2867 // If we have a clamp pattern, we know that the number of sign bits will 2868 // be the minimum of the clamp min/max range. 2869 const Value *X; 2870 const APInt *CLow, *CHigh; 2871 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2872 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2873 2874 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2875 if (Tmp == 1) break; 2876 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2877 return std::min(Tmp, Tmp2); 2878 } 2879 2880 case Instruction::Add: 2881 // Add can have at most one carry bit. Thus we know that the output 2882 // is, at worst, one more bit than the inputs. 2883 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2884 if (Tmp == 1) break; 2885 2886 // Special case decrementing a value (ADD X, -1): 2887 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2888 if (CRHS->isAllOnesValue()) { 2889 KnownBits Known(TyBits); 2890 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2891 2892 // If the input is known to be 0 or 1, the output is 0/-1, which is 2893 // all sign bits set. 2894 if ((Known.Zero | 1).isAllOnesValue()) 2895 return TyBits; 2896 2897 // If we are subtracting one from a positive number, there is no carry 2898 // out of the result. 2899 if (Known.isNonNegative()) 2900 return Tmp; 2901 } 2902 2903 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2904 if (Tmp2 == 1) break; 2905 return std::min(Tmp, Tmp2) - 1; 2906 2907 case Instruction::Sub: 2908 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2909 if (Tmp2 == 1) break; 2910 2911 // Handle NEG. 2912 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2913 if (CLHS->isNullValue()) { 2914 KnownBits Known(TyBits); 2915 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2916 // If the input is known to be 0 or 1, the output is 0/-1, which is 2917 // all sign bits set. 2918 if ((Known.Zero | 1).isAllOnesValue()) 2919 return TyBits; 2920 2921 // If the input is known to be positive (the sign bit is known clear), 2922 // the output of the NEG has the same number of sign bits as the 2923 // input. 2924 if (Known.isNonNegative()) 2925 return Tmp2; 2926 2927 // Otherwise, we treat this like a SUB. 2928 } 2929 2930 // Sub can have at most one carry bit. Thus we know that the output 2931 // is, at worst, one more bit than the inputs. 2932 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2933 if (Tmp == 1) break; 2934 return std::min(Tmp, Tmp2) - 1; 2935 2936 case Instruction::Mul: { 2937 // The output of the Mul can be at most twice the valid bits in the 2938 // inputs. 2939 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2940 if (SignBitsOp0 == 1) break; 2941 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2942 if (SignBitsOp1 == 1) break; 2943 unsigned OutValidBits = 2944 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2945 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2946 } 2947 2948 case Instruction::PHI: { 2949 const PHINode *PN = cast<PHINode>(U); 2950 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2951 // Don't analyze large in-degree PHIs. 2952 if (NumIncomingValues > 4) break; 2953 // Unreachable blocks may have zero-operand PHI nodes. 2954 if (NumIncomingValues == 0) break; 2955 2956 // Take the minimum of all incoming values. This can't infinitely loop 2957 // because of our depth threshold. 2958 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2959 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2960 if (Tmp == 1) return Tmp; 2961 Tmp = std::min( 2962 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2963 } 2964 return Tmp; 2965 } 2966 2967 case Instruction::Trunc: 2968 // FIXME: it's tricky to do anything useful for this, but it is an 2969 // important case for targets like X86. 2970 break; 2971 2972 case Instruction::ExtractElement: 2973 // Look through extract element. At the moment we keep this simple and 2974 // skip tracking the specific element. But at least we might find 2975 // information valid for all elements of the vector (for example if vector 2976 // is sign extended, shifted, etc). 2977 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2978 2979 case Instruction::ShuffleVector: { 2980 // Collect the minimum number of sign bits that are shared by every vector 2981 // element referenced by the shuffle. 2982 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2983 if (!Shuf) { 2984 // FIXME: Add support for shufflevector constant expressions. 2985 return 1; 2986 } 2987 APInt DemandedLHS, DemandedRHS; 2988 // For undef elements, we don't know anything about the common state of 2989 // the shuffle result. 2990 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2991 return 1; 2992 Tmp = std::numeric_limits<unsigned>::max(); 2993 if (!!DemandedLHS) { 2994 const Value *LHS = Shuf->getOperand(0); 2995 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2996 } 2997 // If we don't know anything, early out and try computeKnownBits 2998 // fall-back. 2999 if (Tmp == 1) 3000 break; 3001 if (!!DemandedRHS) { 3002 const Value *RHS = Shuf->getOperand(1); 3003 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3004 Tmp = std::min(Tmp, Tmp2); 3005 } 3006 // If we don't know anything, early out and try computeKnownBits 3007 // fall-back. 3008 if (Tmp == 1) 3009 break; 3010 assert(Tmp <= Ty->getScalarSizeInBits() && 3011 "Failed to determine minimum sign bits"); 3012 return Tmp; 3013 } 3014 case Instruction::Call: { 3015 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3016 switch (II->getIntrinsicID()) { 3017 default: break; 3018 case Intrinsic::abs: 3019 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3020 if (Tmp == 1) break; 3021 3022 // Absolute value reduces number of sign bits by at most 1. 3023 return Tmp - 1; 3024 } 3025 } 3026 } 3027 } 3028 } 3029 3030 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3031 // use this information. 3032 3033 // If we can examine all elements of a vector constant successfully, we're 3034 // done (we can't do any better than that). If not, keep trying. 3035 if (unsigned VecSignBits = 3036 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3037 return VecSignBits; 3038 3039 KnownBits Known(TyBits); 3040 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3041 3042 // If we know that the sign bit is either zero or one, determine the number of 3043 // identical bits in the top of the input value. 3044 return std::max(FirstAnswer, Known.countMinSignBits()); 3045 } 3046 3047 /// This function computes the integer multiple of Base that equals V. 3048 /// If successful, it returns true and returns the multiple in 3049 /// Multiple. If unsuccessful, it returns false. It looks 3050 /// through SExt instructions only if LookThroughSExt is true. 3051 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3052 bool LookThroughSExt, unsigned Depth) { 3053 assert(V && "No Value?"); 3054 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3055 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3056 3057 Type *T = V->getType(); 3058 3059 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3060 3061 if (Base == 0) 3062 return false; 3063 3064 if (Base == 1) { 3065 Multiple = V; 3066 return true; 3067 } 3068 3069 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3070 Constant *BaseVal = ConstantInt::get(T, Base); 3071 if (CO && CO == BaseVal) { 3072 // Multiple is 1. 3073 Multiple = ConstantInt::get(T, 1); 3074 return true; 3075 } 3076 3077 if (CI && CI->getZExtValue() % Base == 0) { 3078 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3079 return true; 3080 } 3081 3082 if (Depth == MaxAnalysisRecursionDepth) return false; 3083 3084 Operator *I = dyn_cast<Operator>(V); 3085 if (!I) return false; 3086 3087 switch (I->getOpcode()) { 3088 default: break; 3089 case Instruction::SExt: 3090 if (!LookThroughSExt) return false; 3091 // otherwise fall through to ZExt 3092 LLVM_FALLTHROUGH; 3093 case Instruction::ZExt: 3094 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3095 LookThroughSExt, Depth+1); 3096 case Instruction::Shl: 3097 case Instruction::Mul: { 3098 Value *Op0 = I->getOperand(0); 3099 Value *Op1 = I->getOperand(1); 3100 3101 if (I->getOpcode() == Instruction::Shl) { 3102 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3103 if (!Op1CI) return false; 3104 // Turn Op0 << Op1 into Op0 * 2^Op1 3105 APInt Op1Int = Op1CI->getValue(); 3106 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3107 APInt API(Op1Int.getBitWidth(), 0); 3108 API.setBit(BitToSet); 3109 Op1 = ConstantInt::get(V->getContext(), API); 3110 } 3111 3112 Value *Mul0 = nullptr; 3113 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3114 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3115 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3116 if (Op1C->getType()->getPrimitiveSizeInBits() < 3117 MulC->getType()->getPrimitiveSizeInBits()) 3118 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3119 if (Op1C->getType()->getPrimitiveSizeInBits() > 3120 MulC->getType()->getPrimitiveSizeInBits()) 3121 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3122 3123 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3124 Multiple = ConstantExpr::getMul(MulC, Op1C); 3125 return true; 3126 } 3127 3128 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3129 if (Mul0CI->getValue() == 1) { 3130 // V == Base * Op1, so return Op1 3131 Multiple = Op1; 3132 return true; 3133 } 3134 } 3135 3136 Value *Mul1 = nullptr; 3137 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3138 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3139 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3140 if (Op0C->getType()->getPrimitiveSizeInBits() < 3141 MulC->getType()->getPrimitiveSizeInBits()) 3142 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3143 if (Op0C->getType()->getPrimitiveSizeInBits() > 3144 MulC->getType()->getPrimitiveSizeInBits()) 3145 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3146 3147 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3148 Multiple = ConstantExpr::getMul(MulC, Op0C); 3149 return true; 3150 } 3151 3152 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3153 if (Mul1CI->getValue() == 1) { 3154 // V == Base * Op0, so return Op0 3155 Multiple = Op0; 3156 return true; 3157 } 3158 } 3159 } 3160 } 3161 3162 // We could not determine if V is a multiple of Base. 3163 return false; 3164 } 3165 3166 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3167 const TargetLibraryInfo *TLI) { 3168 const Function *F = CB.getCalledFunction(); 3169 if (!F) 3170 return Intrinsic::not_intrinsic; 3171 3172 if (F->isIntrinsic()) 3173 return F->getIntrinsicID(); 3174 3175 // We are going to infer semantics of a library function based on mapping it 3176 // to an LLVM intrinsic. Check that the library function is available from 3177 // this callbase and in this environment. 3178 LibFunc Func; 3179 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3180 !CB.onlyReadsMemory()) 3181 return Intrinsic::not_intrinsic; 3182 3183 switch (Func) { 3184 default: 3185 break; 3186 case LibFunc_sin: 3187 case LibFunc_sinf: 3188 case LibFunc_sinl: 3189 return Intrinsic::sin; 3190 case LibFunc_cos: 3191 case LibFunc_cosf: 3192 case LibFunc_cosl: 3193 return Intrinsic::cos; 3194 case LibFunc_exp: 3195 case LibFunc_expf: 3196 case LibFunc_expl: 3197 return Intrinsic::exp; 3198 case LibFunc_exp2: 3199 case LibFunc_exp2f: 3200 case LibFunc_exp2l: 3201 return Intrinsic::exp2; 3202 case LibFunc_log: 3203 case LibFunc_logf: 3204 case LibFunc_logl: 3205 return Intrinsic::log; 3206 case LibFunc_log10: 3207 case LibFunc_log10f: 3208 case LibFunc_log10l: 3209 return Intrinsic::log10; 3210 case LibFunc_log2: 3211 case LibFunc_log2f: 3212 case LibFunc_log2l: 3213 return Intrinsic::log2; 3214 case LibFunc_fabs: 3215 case LibFunc_fabsf: 3216 case LibFunc_fabsl: 3217 return Intrinsic::fabs; 3218 case LibFunc_fmin: 3219 case LibFunc_fminf: 3220 case LibFunc_fminl: 3221 return Intrinsic::minnum; 3222 case LibFunc_fmax: 3223 case LibFunc_fmaxf: 3224 case LibFunc_fmaxl: 3225 return Intrinsic::maxnum; 3226 case LibFunc_copysign: 3227 case LibFunc_copysignf: 3228 case LibFunc_copysignl: 3229 return Intrinsic::copysign; 3230 case LibFunc_floor: 3231 case LibFunc_floorf: 3232 case LibFunc_floorl: 3233 return Intrinsic::floor; 3234 case LibFunc_ceil: 3235 case LibFunc_ceilf: 3236 case LibFunc_ceill: 3237 return Intrinsic::ceil; 3238 case LibFunc_trunc: 3239 case LibFunc_truncf: 3240 case LibFunc_truncl: 3241 return Intrinsic::trunc; 3242 case LibFunc_rint: 3243 case LibFunc_rintf: 3244 case LibFunc_rintl: 3245 return Intrinsic::rint; 3246 case LibFunc_nearbyint: 3247 case LibFunc_nearbyintf: 3248 case LibFunc_nearbyintl: 3249 return Intrinsic::nearbyint; 3250 case LibFunc_round: 3251 case LibFunc_roundf: 3252 case LibFunc_roundl: 3253 return Intrinsic::round; 3254 case LibFunc_roundeven: 3255 case LibFunc_roundevenf: 3256 case LibFunc_roundevenl: 3257 return Intrinsic::roundeven; 3258 case LibFunc_pow: 3259 case LibFunc_powf: 3260 case LibFunc_powl: 3261 return Intrinsic::pow; 3262 case LibFunc_sqrt: 3263 case LibFunc_sqrtf: 3264 case LibFunc_sqrtl: 3265 return Intrinsic::sqrt; 3266 } 3267 3268 return Intrinsic::not_intrinsic; 3269 } 3270 3271 /// Return true if we can prove that the specified FP value is never equal to 3272 /// -0.0. 3273 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3274 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3275 /// the same as +0.0 in floating-point ops. 3276 /// 3277 /// NOTE: this function will need to be revisited when we support non-default 3278 /// rounding modes! 3279 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3280 unsigned Depth) { 3281 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3282 return !CFP->getValueAPF().isNegZero(); 3283 3284 if (Depth == MaxAnalysisRecursionDepth) 3285 return false; 3286 3287 auto *Op = dyn_cast<Operator>(V); 3288 if (!Op) 3289 return false; 3290 3291 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3292 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3293 return true; 3294 3295 // sitofp and uitofp turn into +0.0 for zero. 3296 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3297 return true; 3298 3299 if (auto *Call = dyn_cast<CallInst>(Op)) { 3300 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3301 switch (IID) { 3302 default: 3303 break; 3304 // sqrt(-0.0) = -0.0, no other negative results are possible. 3305 case Intrinsic::sqrt: 3306 case Intrinsic::canonicalize: 3307 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3308 // fabs(x) != -0.0 3309 case Intrinsic::fabs: 3310 return true; 3311 } 3312 } 3313 3314 return false; 3315 } 3316 3317 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3318 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3319 /// bit despite comparing equal. 3320 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3321 const TargetLibraryInfo *TLI, 3322 bool SignBitOnly, 3323 unsigned Depth) { 3324 // TODO: This function does not do the right thing when SignBitOnly is true 3325 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3326 // which flips the sign bits of NaNs. See 3327 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3328 3329 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3330 return !CFP->getValueAPF().isNegative() || 3331 (!SignBitOnly && CFP->getValueAPF().isZero()); 3332 } 3333 3334 // Handle vector of constants. 3335 if (auto *CV = dyn_cast<Constant>(V)) { 3336 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3337 unsigned NumElts = CVFVTy->getNumElements(); 3338 for (unsigned i = 0; i != NumElts; ++i) { 3339 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3340 if (!CFP) 3341 return false; 3342 if (CFP->getValueAPF().isNegative() && 3343 (SignBitOnly || !CFP->getValueAPF().isZero())) 3344 return false; 3345 } 3346 3347 // All non-negative ConstantFPs. 3348 return true; 3349 } 3350 } 3351 3352 if (Depth == MaxAnalysisRecursionDepth) 3353 return false; 3354 3355 const Operator *I = dyn_cast<Operator>(V); 3356 if (!I) 3357 return false; 3358 3359 switch (I->getOpcode()) { 3360 default: 3361 break; 3362 // Unsigned integers are always nonnegative. 3363 case Instruction::UIToFP: 3364 return true; 3365 case Instruction::FMul: 3366 case Instruction::FDiv: 3367 // X * X is always non-negative or a NaN. 3368 // X / X is always exactly 1.0 or a NaN. 3369 if (I->getOperand(0) == I->getOperand(1) && 3370 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3371 return true; 3372 3373 LLVM_FALLTHROUGH; 3374 case Instruction::FAdd: 3375 case Instruction::FRem: 3376 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3377 Depth + 1) && 3378 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3379 Depth + 1); 3380 case Instruction::Select: 3381 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3382 Depth + 1) && 3383 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3384 Depth + 1); 3385 case Instruction::FPExt: 3386 case Instruction::FPTrunc: 3387 // Widening/narrowing never change sign. 3388 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3389 Depth + 1); 3390 case Instruction::ExtractElement: 3391 // Look through extract element. At the moment we keep this simple and skip 3392 // tracking the specific element. But at least we might find information 3393 // valid for all elements of the vector. 3394 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3395 Depth + 1); 3396 case Instruction::Call: 3397 const auto *CI = cast<CallInst>(I); 3398 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3399 switch (IID) { 3400 default: 3401 break; 3402 case Intrinsic::maxnum: { 3403 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3404 auto isPositiveNum = [&](Value *V) { 3405 if (SignBitOnly) { 3406 // With SignBitOnly, this is tricky because the result of 3407 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3408 // a constant strictly greater than 0.0. 3409 const APFloat *C; 3410 return match(V, m_APFloat(C)) && 3411 *C > APFloat::getZero(C->getSemantics()); 3412 } 3413 3414 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3415 // maxnum can't be ordered-less-than-zero. 3416 return isKnownNeverNaN(V, TLI) && 3417 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3418 }; 3419 3420 // TODO: This could be improved. We could also check that neither operand 3421 // has its sign bit set (and at least 1 is not-NAN?). 3422 return isPositiveNum(V0) || isPositiveNum(V1); 3423 } 3424 3425 case Intrinsic::maximum: 3426 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3427 Depth + 1) || 3428 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3429 Depth + 1); 3430 case Intrinsic::minnum: 3431 case Intrinsic::minimum: 3432 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3433 Depth + 1) && 3434 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3435 Depth + 1); 3436 case Intrinsic::exp: 3437 case Intrinsic::exp2: 3438 case Intrinsic::fabs: 3439 return true; 3440 3441 case Intrinsic::sqrt: 3442 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3443 if (!SignBitOnly) 3444 return true; 3445 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3446 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3447 3448 case Intrinsic::powi: 3449 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3450 // powi(x,n) is non-negative if n is even. 3451 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3452 return true; 3453 } 3454 // TODO: This is not correct. Given that exp is an integer, here are the 3455 // ways that pow can return a negative value: 3456 // 3457 // pow(x, exp) --> negative if exp is odd and x is negative. 3458 // pow(-0, exp) --> -inf if exp is negative odd. 3459 // pow(-0, exp) --> -0 if exp is positive odd. 3460 // pow(-inf, exp) --> -0 if exp is negative odd. 3461 // pow(-inf, exp) --> -inf if exp is positive odd. 3462 // 3463 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3464 // but we must return false if x == -0. Unfortunately we do not currently 3465 // have a way of expressing this constraint. See details in 3466 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3467 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3468 Depth + 1); 3469 3470 case Intrinsic::fma: 3471 case Intrinsic::fmuladd: 3472 // x*x+y is non-negative if y is non-negative. 3473 return I->getOperand(0) == I->getOperand(1) && 3474 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3475 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3476 Depth + 1); 3477 } 3478 break; 3479 } 3480 return false; 3481 } 3482 3483 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3484 const TargetLibraryInfo *TLI) { 3485 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3486 } 3487 3488 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3489 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3490 } 3491 3492 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3493 unsigned Depth) { 3494 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3495 3496 // If we're told that infinities won't happen, assume they won't. 3497 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3498 if (FPMathOp->hasNoInfs()) 3499 return true; 3500 3501 // Handle scalar constants. 3502 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3503 return !CFP->isInfinity(); 3504 3505 if (Depth == MaxAnalysisRecursionDepth) 3506 return false; 3507 3508 if (auto *Inst = dyn_cast<Instruction>(V)) { 3509 switch (Inst->getOpcode()) { 3510 case Instruction::Select: { 3511 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3512 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3513 } 3514 case Instruction::UIToFP: 3515 // If the input type fits into the floating type the result is finite. 3516 return ilogb(APFloat::getLargest( 3517 Inst->getType()->getScalarType()->getFltSemantics())) >= 3518 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3519 default: 3520 break; 3521 } 3522 } 3523 3524 // try to handle fixed width vector constants 3525 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3526 if (VFVTy && isa<Constant>(V)) { 3527 // For vectors, verify that each element is not infinity. 3528 unsigned NumElts = VFVTy->getNumElements(); 3529 for (unsigned i = 0; i != NumElts; ++i) { 3530 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3531 if (!Elt) 3532 return false; 3533 if (isa<UndefValue>(Elt)) 3534 continue; 3535 auto *CElt = dyn_cast<ConstantFP>(Elt); 3536 if (!CElt || CElt->isInfinity()) 3537 return false; 3538 } 3539 // All elements were confirmed non-infinity or undefined. 3540 return true; 3541 } 3542 3543 // was not able to prove that V never contains infinity 3544 return false; 3545 } 3546 3547 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3548 unsigned Depth) { 3549 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3550 3551 // If we're told that NaNs won't happen, assume they won't. 3552 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3553 if (FPMathOp->hasNoNaNs()) 3554 return true; 3555 3556 // Handle scalar constants. 3557 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3558 return !CFP->isNaN(); 3559 3560 if (Depth == MaxAnalysisRecursionDepth) 3561 return false; 3562 3563 if (auto *Inst = dyn_cast<Instruction>(V)) { 3564 switch (Inst->getOpcode()) { 3565 case Instruction::FAdd: 3566 case Instruction::FSub: 3567 // Adding positive and negative infinity produces NaN. 3568 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3569 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3570 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3571 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3572 3573 case Instruction::FMul: 3574 // Zero multiplied with infinity produces NaN. 3575 // FIXME: If neither side can be zero fmul never produces NaN. 3576 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3577 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3578 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3579 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3580 3581 case Instruction::FDiv: 3582 case Instruction::FRem: 3583 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3584 return false; 3585 3586 case Instruction::Select: { 3587 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3588 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3589 } 3590 case Instruction::SIToFP: 3591 case Instruction::UIToFP: 3592 return true; 3593 case Instruction::FPTrunc: 3594 case Instruction::FPExt: 3595 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3596 default: 3597 break; 3598 } 3599 } 3600 3601 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3602 switch (II->getIntrinsicID()) { 3603 case Intrinsic::canonicalize: 3604 case Intrinsic::fabs: 3605 case Intrinsic::copysign: 3606 case Intrinsic::exp: 3607 case Intrinsic::exp2: 3608 case Intrinsic::floor: 3609 case Intrinsic::ceil: 3610 case Intrinsic::trunc: 3611 case Intrinsic::rint: 3612 case Intrinsic::nearbyint: 3613 case Intrinsic::round: 3614 case Intrinsic::roundeven: 3615 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3616 case Intrinsic::sqrt: 3617 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3618 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3619 case Intrinsic::minnum: 3620 case Intrinsic::maxnum: 3621 // If either operand is not NaN, the result is not NaN. 3622 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3623 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3624 default: 3625 return false; 3626 } 3627 } 3628 3629 // Try to handle fixed width vector constants 3630 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3631 if (VFVTy && isa<Constant>(V)) { 3632 // For vectors, verify that each element is not NaN. 3633 unsigned NumElts = VFVTy->getNumElements(); 3634 for (unsigned i = 0; i != NumElts; ++i) { 3635 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3636 if (!Elt) 3637 return false; 3638 if (isa<UndefValue>(Elt)) 3639 continue; 3640 auto *CElt = dyn_cast<ConstantFP>(Elt); 3641 if (!CElt || CElt->isNaN()) 3642 return false; 3643 } 3644 // All elements were confirmed not-NaN or undefined. 3645 return true; 3646 } 3647 3648 // Was not able to prove that V never contains NaN 3649 return false; 3650 } 3651 3652 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3653 3654 // All byte-wide stores are splatable, even of arbitrary variables. 3655 if (V->getType()->isIntegerTy(8)) 3656 return V; 3657 3658 LLVMContext &Ctx = V->getContext(); 3659 3660 // Undef don't care. 3661 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3662 if (isa<UndefValue>(V)) 3663 return UndefInt8; 3664 3665 // Return Undef for zero-sized type. 3666 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3667 return UndefInt8; 3668 3669 Constant *C = dyn_cast<Constant>(V); 3670 if (!C) { 3671 // Conceptually, we could handle things like: 3672 // %a = zext i8 %X to i16 3673 // %b = shl i16 %a, 8 3674 // %c = or i16 %a, %b 3675 // but until there is an example that actually needs this, it doesn't seem 3676 // worth worrying about. 3677 return nullptr; 3678 } 3679 3680 // Handle 'null' ConstantArrayZero etc. 3681 if (C->isNullValue()) 3682 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3683 3684 // Constant floating-point values can be handled as integer values if the 3685 // corresponding integer value is "byteable". An important case is 0.0. 3686 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3687 Type *Ty = nullptr; 3688 if (CFP->getType()->isHalfTy()) 3689 Ty = Type::getInt16Ty(Ctx); 3690 else if (CFP->getType()->isFloatTy()) 3691 Ty = Type::getInt32Ty(Ctx); 3692 else if (CFP->getType()->isDoubleTy()) 3693 Ty = Type::getInt64Ty(Ctx); 3694 // Don't handle long double formats, which have strange constraints. 3695 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3696 : nullptr; 3697 } 3698 3699 // We can handle constant integers that are multiple of 8 bits. 3700 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3701 if (CI->getBitWidth() % 8 == 0) { 3702 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3703 if (!CI->getValue().isSplat(8)) 3704 return nullptr; 3705 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3706 } 3707 } 3708 3709 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3710 if (CE->getOpcode() == Instruction::IntToPtr) { 3711 auto PS = DL.getPointerSizeInBits( 3712 cast<PointerType>(CE->getType())->getAddressSpace()); 3713 return isBytewiseValue( 3714 ConstantExpr::getIntegerCast(CE->getOperand(0), 3715 Type::getIntNTy(Ctx, PS), false), 3716 DL); 3717 } 3718 } 3719 3720 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3721 if (LHS == RHS) 3722 return LHS; 3723 if (!LHS || !RHS) 3724 return nullptr; 3725 if (LHS == UndefInt8) 3726 return RHS; 3727 if (RHS == UndefInt8) 3728 return LHS; 3729 return nullptr; 3730 }; 3731 3732 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3733 Value *Val = UndefInt8; 3734 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3735 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3736 return nullptr; 3737 return Val; 3738 } 3739 3740 if (isa<ConstantAggregate>(C)) { 3741 Value *Val = UndefInt8; 3742 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3743 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3744 return nullptr; 3745 return Val; 3746 } 3747 3748 // Don't try to handle the handful of other constants. 3749 return nullptr; 3750 } 3751 3752 // This is the recursive version of BuildSubAggregate. It takes a few different 3753 // arguments. Idxs is the index within the nested struct From that we are 3754 // looking at now (which is of type IndexedType). IdxSkip is the number of 3755 // indices from Idxs that should be left out when inserting into the resulting 3756 // struct. To is the result struct built so far, new insertvalue instructions 3757 // build on that. 3758 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3759 SmallVectorImpl<unsigned> &Idxs, 3760 unsigned IdxSkip, 3761 Instruction *InsertBefore) { 3762 StructType *STy = dyn_cast<StructType>(IndexedType); 3763 if (STy) { 3764 // Save the original To argument so we can modify it 3765 Value *OrigTo = To; 3766 // General case, the type indexed by Idxs is a struct 3767 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3768 // Process each struct element recursively 3769 Idxs.push_back(i); 3770 Value *PrevTo = To; 3771 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3772 InsertBefore); 3773 Idxs.pop_back(); 3774 if (!To) { 3775 // Couldn't find any inserted value for this index? Cleanup 3776 while (PrevTo != OrigTo) { 3777 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3778 PrevTo = Del->getAggregateOperand(); 3779 Del->eraseFromParent(); 3780 } 3781 // Stop processing elements 3782 break; 3783 } 3784 } 3785 // If we successfully found a value for each of our subaggregates 3786 if (To) 3787 return To; 3788 } 3789 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3790 // the struct's elements had a value that was inserted directly. In the latter 3791 // case, perhaps we can't determine each of the subelements individually, but 3792 // we might be able to find the complete struct somewhere. 3793 3794 // Find the value that is at that particular spot 3795 Value *V = FindInsertedValue(From, Idxs); 3796 3797 if (!V) 3798 return nullptr; 3799 3800 // Insert the value in the new (sub) aggregate 3801 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3802 "tmp", InsertBefore); 3803 } 3804 3805 // This helper takes a nested struct and extracts a part of it (which is again a 3806 // struct) into a new value. For example, given the struct: 3807 // { a, { b, { c, d }, e } } 3808 // and the indices "1, 1" this returns 3809 // { c, d }. 3810 // 3811 // It does this by inserting an insertvalue for each element in the resulting 3812 // struct, as opposed to just inserting a single struct. This will only work if 3813 // each of the elements of the substruct are known (ie, inserted into From by an 3814 // insertvalue instruction somewhere). 3815 // 3816 // All inserted insertvalue instructions are inserted before InsertBefore 3817 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3818 Instruction *InsertBefore) { 3819 assert(InsertBefore && "Must have someplace to insert!"); 3820 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3821 idx_range); 3822 Value *To = UndefValue::get(IndexedType); 3823 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3824 unsigned IdxSkip = Idxs.size(); 3825 3826 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3827 } 3828 3829 /// Given an aggregate and a sequence of indices, see if the scalar value 3830 /// indexed is already around as a register, for example if it was inserted 3831 /// directly into the aggregate. 3832 /// 3833 /// If InsertBefore is not null, this function will duplicate (modified) 3834 /// insertvalues when a part of a nested struct is extracted. 3835 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3836 Instruction *InsertBefore) { 3837 // Nothing to index? Just return V then (this is useful at the end of our 3838 // recursion). 3839 if (idx_range.empty()) 3840 return V; 3841 // We have indices, so V should have an indexable type. 3842 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3843 "Not looking at a struct or array?"); 3844 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3845 "Invalid indices for type?"); 3846 3847 if (Constant *C = dyn_cast<Constant>(V)) { 3848 C = C->getAggregateElement(idx_range[0]); 3849 if (!C) return nullptr; 3850 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3851 } 3852 3853 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3854 // Loop the indices for the insertvalue instruction in parallel with the 3855 // requested indices 3856 const unsigned *req_idx = idx_range.begin(); 3857 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3858 i != e; ++i, ++req_idx) { 3859 if (req_idx == idx_range.end()) { 3860 // We can't handle this without inserting insertvalues 3861 if (!InsertBefore) 3862 return nullptr; 3863 3864 // The requested index identifies a part of a nested aggregate. Handle 3865 // this specially. For example, 3866 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3867 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3868 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3869 // This can be changed into 3870 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3871 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3872 // which allows the unused 0,0 element from the nested struct to be 3873 // removed. 3874 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3875 InsertBefore); 3876 } 3877 3878 // This insert value inserts something else than what we are looking for. 3879 // See if the (aggregate) value inserted into has the value we are 3880 // looking for, then. 3881 if (*req_idx != *i) 3882 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3883 InsertBefore); 3884 } 3885 // If we end up here, the indices of the insertvalue match with those 3886 // requested (though possibly only partially). Now we recursively look at 3887 // the inserted value, passing any remaining indices. 3888 return FindInsertedValue(I->getInsertedValueOperand(), 3889 makeArrayRef(req_idx, idx_range.end()), 3890 InsertBefore); 3891 } 3892 3893 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3894 // If we're extracting a value from an aggregate that was extracted from 3895 // something else, we can extract from that something else directly instead. 3896 // However, we will need to chain I's indices with the requested indices. 3897 3898 // Calculate the number of indices required 3899 unsigned size = I->getNumIndices() + idx_range.size(); 3900 // Allocate some space to put the new indices in 3901 SmallVector<unsigned, 5> Idxs; 3902 Idxs.reserve(size); 3903 // Add indices from the extract value instruction 3904 Idxs.append(I->idx_begin(), I->idx_end()); 3905 3906 // Add requested indices 3907 Idxs.append(idx_range.begin(), idx_range.end()); 3908 3909 assert(Idxs.size() == size 3910 && "Number of indices added not correct?"); 3911 3912 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3913 } 3914 // Otherwise, we don't know (such as, extracting from a function return value 3915 // or load instruction) 3916 return nullptr; 3917 } 3918 3919 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3920 unsigned CharSize) { 3921 // Make sure the GEP has exactly three arguments. 3922 if (GEP->getNumOperands() != 3) 3923 return false; 3924 3925 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3926 // CharSize. 3927 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3928 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3929 return false; 3930 3931 // Check to make sure that the first operand of the GEP is an integer and 3932 // has value 0 so that we are sure we're indexing into the initializer. 3933 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3934 if (!FirstIdx || !FirstIdx->isZero()) 3935 return false; 3936 3937 return true; 3938 } 3939 3940 bool llvm::getConstantDataArrayInfo(const Value *V, 3941 ConstantDataArraySlice &Slice, 3942 unsigned ElementSize, uint64_t Offset) { 3943 assert(V); 3944 3945 // Look through bitcast instructions and geps. 3946 V = V->stripPointerCasts(); 3947 3948 // If the value is a GEP instruction or constant expression, treat it as an 3949 // offset. 3950 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3951 // The GEP operator should be based on a pointer to string constant, and is 3952 // indexing into the string constant. 3953 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3954 return false; 3955 3956 // If the second index isn't a ConstantInt, then this is a variable index 3957 // into the array. If this occurs, we can't say anything meaningful about 3958 // the string. 3959 uint64_t StartIdx = 0; 3960 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3961 StartIdx = CI->getZExtValue(); 3962 else 3963 return false; 3964 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3965 StartIdx + Offset); 3966 } 3967 3968 // The GEP instruction, constant or instruction, must reference a global 3969 // variable that is a constant and is initialized. The referenced constant 3970 // initializer is the array that we'll use for optimization. 3971 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3972 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3973 return false; 3974 3975 const ConstantDataArray *Array; 3976 ArrayType *ArrayTy; 3977 if (GV->getInitializer()->isNullValue()) { 3978 Type *GVTy = GV->getValueType(); 3979 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3980 // A zeroinitializer for the array; there is no ConstantDataArray. 3981 Array = nullptr; 3982 } else { 3983 const DataLayout &DL = GV->getParent()->getDataLayout(); 3984 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3985 uint64_t Length = SizeInBytes / (ElementSize / 8); 3986 if (Length <= Offset) 3987 return false; 3988 3989 Slice.Array = nullptr; 3990 Slice.Offset = 0; 3991 Slice.Length = Length - Offset; 3992 return true; 3993 } 3994 } else { 3995 // This must be a ConstantDataArray. 3996 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3997 if (!Array) 3998 return false; 3999 ArrayTy = Array->getType(); 4000 } 4001 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4002 return false; 4003 4004 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4005 if (Offset > NumElts) 4006 return false; 4007 4008 Slice.Array = Array; 4009 Slice.Offset = Offset; 4010 Slice.Length = NumElts - Offset; 4011 return true; 4012 } 4013 4014 /// This function computes the length of a null-terminated C string pointed to 4015 /// by V. If successful, it returns true and returns the string in Str. 4016 /// If unsuccessful, it returns false. 4017 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4018 uint64_t Offset, bool TrimAtNul) { 4019 ConstantDataArraySlice Slice; 4020 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4021 return false; 4022 4023 if (Slice.Array == nullptr) { 4024 if (TrimAtNul) { 4025 Str = StringRef(); 4026 return true; 4027 } 4028 if (Slice.Length == 1) { 4029 Str = StringRef("", 1); 4030 return true; 4031 } 4032 // We cannot instantiate a StringRef as we do not have an appropriate string 4033 // of 0s at hand. 4034 return false; 4035 } 4036 4037 // Start out with the entire array in the StringRef. 4038 Str = Slice.Array->getAsString(); 4039 // Skip over 'offset' bytes. 4040 Str = Str.substr(Slice.Offset); 4041 4042 if (TrimAtNul) { 4043 // Trim off the \0 and anything after it. If the array is not nul 4044 // terminated, we just return the whole end of string. The client may know 4045 // some other way that the string is length-bound. 4046 Str = Str.substr(0, Str.find('\0')); 4047 } 4048 return true; 4049 } 4050 4051 // These next two are very similar to the above, but also look through PHI 4052 // nodes. 4053 // TODO: See if we can integrate these two together. 4054 4055 /// If we can compute the length of the string pointed to by 4056 /// the specified pointer, return 'len+1'. If we can't, return 0. 4057 static uint64_t GetStringLengthH(const Value *V, 4058 SmallPtrSetImpl<const PHINode*> &PHIs, 4059 unsigned CharSize) { 4060 // Look through noop bitcast instructions. 4061 V = V->stripPointerCasts(); 4062 4063 // If this is a PHI node, there are two cases: either we have already seen it 4064 // or we haven't. 4065 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4066 if (!PHIs.insert(PN).second) 4067 return ~0ULL; // already in the set. 4068 4069 // If it was new, see if all the input strings are the same length. 4070 uint64_t LenSoFar = ~0ULL; 4071 for (Value *IncValue : PN->incoming_values()) { 4072 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4073 if (Len == 0) return 0; // Unknown length -> unknown. 4074 4075 if (Len == ~0ULL) continue; 4076 4077 if (Len != LenSoFar && LenSoFar != ~0ULL) 4078 return 0; // Disagree -> unknown. 4079 LenSoFar = Len; 4080 } 4081 4082 // Success, all agree. 4083 return LenSoFar; 4084 } 4085 4086 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4087 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4088 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4089 if (Len1 == 0) return 0; 4090 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4091 if (Len2 == 0) return 0; 4092 if (Len1 == ~0ULL) return Len2; 4093 if (Len2 == ~0ULL) return Len1; 4094 if (Len1 != Len2) return 0; 4095 return Len1; 4096 } 4097 4098 // Otherwise, see if we can read the string. 4099 ConstantDataArraySlice Slice; 4100 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4101 return 0; 4102 4103 if (Slice.Array == nullptr) 4104 return 1; 4105 4106 // Search for nul characters 4107 unsigned NullIndex = 0; 4108 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4109 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4110 break; 4111 } 4112 4113 return NullIndex + 1; 4114 } 4115 4116 /// If we can compute the length of the string pointed to by 4117 /// the specified pointer, return 'len+1'. If we can't, return 0. 4118 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4119 if (!V->getType()->isPointerTy()) 4120 return 0; 4121 4122 SmallPtrSet<const PHINode*, 32> PHIs; 4123 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4124 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4125 // an empty string as a length. 4126 return Len == ~0ULL ? 1 : Len; 4127 } 4128 4129 const Value * 4130 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4131 bool MustPreserveNullness) { 4132 assert(Call && 4133 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4134 if (const Value *RV = Call->getReturnedArgOperand()) 4135 return RV; 4136 // This can be used only as a aliasing property. 4137 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4138 Call, MustPreserveNullness)) 4139 return Call->getArgOperand(0); 4140 return nullptr; 4141 } 4142 4143 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4144 const CallBase *Call, bool MustPreserveNullness) { 4145 switch (Call->getIntrinsicID()) { 4146 case Intrinsic::launder_invariant_group: 4147 case Intrinsic::strip_invariant_group: 4148 case Intrinsic::aarch64_irg: 4149 case Intrinsic::aarch64_tagp: 4150 return true; 4151 case Intrinsic::ptrmask: 4152 return !MustPreserveNullness; 4153 default: 4154 return false; 4155 } 4156 } 4157 4158 /// \p PN defines a loop-variant pointer to an object. Check if the 4159 /// previous iteration of the loop was referring to the same object as \p PN. 4160 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4161 const LoopInfo *LI) { 4162 // Find the loop-defined value. 4163 Loop *L = LI->getLoopFor(PN->getParent()); 4164 if (PN->getNumIncomingValues() != 2) 4165 return true; 4166 4167 // Find the value from previous iteration. 4168 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4169 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4170 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4171 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4172 return true; 4173 4174 // If a new pointer is loaded in the loop, the pointer references a different 4175 // object in every iteration. E.g.: 4176 // for (i) 4177 // int *p = a[i]; 4178 // ... 4179 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4180 if (!L->isLoopInvariant(Load->getPointerOperand())) 4181 return false; 4182 return true; 4183 } 4184 4185 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4186 if (!V->getType()->isPointerTy()) 4187 return V; 4188 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4189 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4190 V = GEP->getPointerOperand(); 4191 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4192 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4193 V = cast<Operator>(V)->getOperand(0); 4194 if (!V->getType()->isPointerTy()) 4195 return V; 4196 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4197 if (GA->isInterposable()) 4198 return V; 4199 V = GA->getAliasee(); 4200 } else { 4201 if (auto *PHI = dyn_cast<PHINode>(V)) { 4202 // Look through single-arg phi nodes created by LCSSA. 4203 if (PHI->getNumIncomingValues() == 1) { 4204 V = PHI->getIncomingValue(0); 4205 continue; 4206 } 4207 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4208 // CaptureTracking can know about special capturing properties of some 4209 // intrinsics like launder.invariant.group, that can't be expressed with 4210 // the attributes, but have properties like returning aliasing pointer. 4211 // Because some analysis may assume that nocaptured pointer is not 4212 // returned from some special intrinsic (because function would have to 4213 // be marked with returns attribute), it is crucial to use this function 4214 // because it should be in sync with CaptureTracking. Not using it may 4215 // cause weird miscompilations where 2 aliasing pointers are assumed to 4216 // noalias. 4217 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4218 V = RP; 4219 continue; 4220 } 4221 } 4222 4223 return V; 4224 } 4225 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4226 } 4227 return V; 4228 } 4229 4230 void llvm::getUnderlyingObjects(const Value *V, 4231 SmallVectorImpl<const Value *> &Objects, 4232 LoopInfo *LI, unsigned MaxLookup) { 4233 SmallPtrSet<const Value *, 4> Visited; 4234 SmallVector<const Value *, 4> Worklist; 4235 Worklist.push_back(V); 4236 do { 4237 const Value *P = Worklist.pop_back_val(); 4238 P = getUnderlyingObject(P, MaxLookup); 4239 4240 if (!Visited.insert(P).second) 4241 continue; 4242 4243 if (auto *SI = dyn_cast<SelectInst>(P)) { 4244 Worklist.push_back(SI->getTrueValue()); 4245 Worklist.push_back(SI->getFalseValue()); 4246 continue; 4247 } 4248 4249 if (auto *PN = dyn_cast<PHINode>(P)) { 4250 // If this PHI changes the underlying object in every iteration of the 4251 // loop, don't look through it. Consider: 4252 // int **A; 4253 // for (i) { 4254 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4255 // Curr = A[i]; 4256 // *Prev, *Curr; 4257 // 4258 // Prev is tracking Curr one iteration behind so they refer to different 4259 // underlying objects. 4260 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4261 isSameUnderlyingObjectInLoop(PN, LI)) 4262 for (Value *IncValue : PN->incoming_values()) 4263 Worklist.push_back(IncValue); 4264 continue; 4265 } 4266 4267 Objects.push_back(P); 4268 } while (!Worklist.empty()); 4269 } 4270 4271 /// This is the function that does the work of looking through basic 4272 /// ptrtoint+arithmetic+inttoptr sequences. 4273 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4274 do { 4275 if (const Operator *U = dyn_cast<Operator>(V)) { 4276 // If we find a ptrtoint, we can transfer control back to the 4277 // regular getUnderlyingObjectFromInt. 4278 if (U->getOpcode() == Instruction::PtrToInt) 4279 return U->getOperand(0); 4280 // If we find an add of a constant, a multiplied value, or a phi, it's 4281 // likely that the other operand will lead us to the base 4282 // object. We don't have to worry about the case where the 4283 // object address is somehow being computed by the multiply, 4284 // because our callers only care when the result is an 4285 // identifiable object. 4286 if (U->getOpcode() != Instruction::Add || 4287 (!isa<ConstantInt>(U->getOperand(1)) && 4288 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4289 !isa<PHINode>(U->getOperand(1)))) 4290 return V; 4291 V = U->getOperand(0); 4292 } else { 4293 return V; 4294 } 4295 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4296 } while (true); 4297 } 4298 4299 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4300 /// ptrtoint+arithmetic+inttoptr sequences. 4301 /// It returns false if unidentified object is found in getUnderlyingObjects. 4302 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4303 SmallVectorImpl<Value *> &Objects) { 4304 SmallPtrSet<const Value *, 16> Visited; 4305 SmallVector<const Value *, 4> Working(1, V); 4306 do { 4307 V = Working.pop_back_val(); 4308 4309 SmallVector<const Value *, 4> Objs; 4310 getUnderlyingObjects(V, Objs); 4311 4312 for (const Value *V : Objs) { 4313 if (!Visited.insert(V).second) 4314 continue; 4315 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4316 const Value *O = 4317 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4318 if (O->getType()->isPointerTy()) { 4319 Working.push_back(O); 4320 continue; 4321 } 4322 } 4323 // If getUnderlyingObjects fails to find an identifiable object, 4324 // getUnderlyingObjectsForCodeGen also fails for safety. 4325 if (!isIdentifiedObject(V)) { 4326 Objects.clear(); 4327 return false; 4328 } 4329 Objects.push_back(const_cast<Value *>(V)); 4330 } 4331 } while (!Working.empty()); 4332 return true; 4333 } 4334 4335 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4336 AllocaInst *Result = nullptr; 4337 SmallPtrSet<Value *, 4> Visited; 4338 SmallVector<Value *, 4> Worklist; 4339 4340 auto AddWork = [&](Value *V) { 4341 if (Visited.insert(V).second) 4342 Worklist.push_back(V); 4343 }; 4344 4345 AddWork(V); 4346 do { 4347 V = Worklist.pop_back_val(); 4348 assert(Visited.count(V)); 4349 4350 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4351 if (Result && Result != AI) 4352 return nullptr; 4353 Result = AI; 4354 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4355 AddWork(CI->getOperand(0)); 4356 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4357 for (Value *IncValue : PN->incoming_values()) 4358 AddWork(IncValue); 4359 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4360 AddWork(SI->getTrueValue()); 4361 AddWork(SI->getFalseValue()); 4362 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4363 if (OffsetZero && !GEP->hasAllZeroIndices()) 4364 return nullptr; 4365 AddWork(GEP->getPointerOperand()); 4366 } else { 4367 return nullptr; 4368 } 4369 } while (!Worklist.empty()); 4370 4371 return Result; 4372 } 4373 4374 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4375 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4376 for (const User *U : V->users()) { 4377 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4378 if (!II) 4379 return false; 4380 4381 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4382 continue; 4383 4384 if (AllowDroppable && II->isDroppable()) 4385 continue; 4386 4387 return false; 4388 } 4389 return true; 4390 } 4391 4392 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4393 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4394 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4395 } 4396 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4397 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4398 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4399 } 4400 4401 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4402 if (!LI.isUnordered()) 4403 return true; 4404 const Function &F = *LI.getFunction(); 4405 // Speculative load may create a race that did not exist in the source. 4406 return F.hasFnAttribute(Attribute::SanitizeThread) || 4407 // Speculative load may load data from dirty regions. 4408 F.hasFnAttribute(Attribute::SanitizeAddress) || 4409 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4410 } 4411 4412 4413 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4414 const Instruction *CtxI, 4415 const DominatorTree *DT) { 4416 const Operator *Inst = dyn_cast<Operator>(V); 4417 if (!Inst) 4418 return false; 4419 4420 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4421 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4422 if (C->canTrap()) 4423 return false; 4424 4425 switch (Inst->getOpcode()) { 4426 default: 4427 return true; 4428 case Instruction::UDiv: 4429 case Instruction::URem: { 4430 // x / y is undefined if y == 0. 4431 const APInt *V; 4432 if (match(Inst->getOperand(1), m_APInt(V))) 4433 return *V != 0; 4434 return false; 4435 } 4436 case Instruction::SDiv: 4437 case Instruction::SRem: { 4438 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4439 const APInt *Numerator, *Denominator; 4440 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4441 return false; 4442 // We cannot hoist this division if the denominator is 0. 4443 if (*Denominator == 0) 4444 return false; 4445 // It's safe to hoist if the denominator is not 0 or -1. 4446 if (*Denominator != -1) 4447 return true; 4448 // At this point we know that the denominator is -1. It is safe to hoist as 4449 // long we know that the numerator is not INT_MIN. 4450 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4451 return !Numerator->isMinSignedValue(); 4452 // The numerator *might* be MinSignedValue. 4453 return false; 4454 } 4455 case Instruction::Load: { 4456 const LoadInst *LI = cast<LoadInst>(Inst); 4457 if (mustSuppressSpeculation(*LI)) 4458 return false; 4459 const DataLayout &DL = LI->getModule()->getDataLayout(); 4460 return isDereferenceableAndAlignedPointer( 4461 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4462 DL, CtxI, DT); 4463 } 4464 case Instruction::Call: { 4465 auto *CI = cast<const CallInst>(Inst); 4466 const Function *Callee = CI->getCalledFunction(); 4467 4468 // The called function could have undefined behavior or side-effects, even 4469 // if marked readnone nounwind. 4470 return Callee && Callee->isSpeculatable(); 4471 } 4472 case Instruction::VAArg: 4473 case Instruction::Alloca: 4474 case Instruction::Invoke: 4475 case Instruction::CallBr: 4476 case Instruction::PHI: 4477 case Instruction::Store: 4478 case Instruction::Ret: 4479 case Instruction::Br: 4480 case Instruction::IndirectBr: 4481 case Instruction::Switch: 4482 case Instruction::Unreachable: 4483 case Instruction::Fence: 4484 case Instruction::AtomicRMW: 4485 case Instruction::AtomicCmpXchg: 4486 case Instruction::LandingPad: 4487 case Instruction::Resume: 4488 case Instruction::CatchSwitch: 4489 case Instruction::CatchPad: 4490 case Instruction::CatchRet: 4491 case Instruction::CleanupPad: 4492 case Instruction::CleanupRet: 4493 return false; // Misc instructions which have effects 4494 } 4495 } 4496 4497 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4498 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4499 } 4500 4501 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4502 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4503 switch (OR) { 4504 case ConstantRange::OverflowResult::MayOverflow: 4505 return OverflowResult::MayOverflow; 4506 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4507 return OverflowResult::AlwaysOverflowsLow; 4508 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4509 return OverflowResult::AlwaysOverflowsHigh; 4510 case ConstantRange::OverflowResult::NeverOverflows: 4511 return OverflowResult::NeverOverflows; 4512 } 4513 llvm_unreachable("Unknown OverflowResult"); 4514 } 4515 4516 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4517 static ConstantRange computeConstantRangeIncludingKnownBits( 4518 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4519 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4520 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4521 KnownBits Known = computeKnownBits( 4522 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4523 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4524 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4525 ConstantRange::PreferredRangeType RangeType = 4526 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4527 return CR1.intersectWith(CR2, RangeType); 4528 } 4529 4530 OverflowResult llvm::computeOverflowForUnsignedMul( 4531 const Value *LHS, const Value *RHS, const DataLayout &DL, 4532 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4533 bool UseInstrInfo) { 4534 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4535 nullptr, UseInstrInfo); 4536 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4537 nullptr, UseInstrInfo); 4538 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4539 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4540 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4541 } 4542 4543 OverflowResult 4544 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4545 const DataLayout &DL, AssumptionCache *AC, 4546 const Instruction *CxtI, 4547 const DominatorTree *DT, bool UseInstrInfo) { 4548 // Multiplying n * m significant bits yields a result of n + m significant 4549 // bits. If the total number of significant bits does not exceed the 4550 // result bit width (minus 1), there is no overflow. 4551 // This means if we have enough leading sign bits in the operands 4552 // we can guarantee that the result does not overflow. 4553 // Ref: "Hacker's Delight" by Henry Warren 4554 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4555 4556 // Note that underestimating the number of sign bits gives a more 4557 // conservative answer. 4558 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4559 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4560 4561 // First handle the easy case: if we have enough sign bits there's 4562 // definitely no overflow. 4563 if (SignBits > BitWidth + 1) 4564 return OverflowResult::NeverOverflows; 4565 4566 // There are two ambiguous cases where there can be no overflow: 4567 // SignBits == BitWidth + 1 and 4568 // SignBits == BitWidth 4569 // The second case is difficult to check, therefore we only handle the 4570 // first case. 4571 if (SignBits == BitWidth + 1) { 4572 // It overflows only when both arguments are negative and the true 4573 // product is exactly the minimum negative number. 4574 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4575 // For simplicity we just check if at least one side is not negative. 4576 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4577 nullptr, UseInstrInfo); 4578 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4579 nullptr, UseInstrInfo); 4580 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4581 return OverflowResult::NeverOverflows; 4582 } 4583 return OverflowResult::MayOverflow; 4584 } 4585 4586 OverflowResult llvm::computeOverflowForUnsignedAdd( 4587 const Value *LHS, const Value *RHS, const DataLayout &DL, 4588 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4589 bool UseInstrInfo) { 4590 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4591 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4592 nullptr, UseInstrInfo); 4593 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4594 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4595 nullptr, UseInstrInfo); 4596 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4597 } 4598 4599 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4600 const Value *RHS, 4601 const AddOperator *Add, 4602 const DataLayout &DL, 4603 AssumptionCache *AC, 4604 const Instruction *CxtI, 4605 const DominatorTree *DT) { 4606 if (Add && Add->hasNoSignedWrap()) { 4607 return OverflowResult::NeverOverflows; 4608 } 4609 4610 // If LHS and RHS each have at least two sign bits, the addition will look 4611 // like 4612 // 4613 // XX..... + 4614 // YY..... 4615 // 4616 // If the carry into the most significant position is 0, X and Y can't both 4617 // be 1 and therefore the carry out of the addition is also 0. 4618 // 4619 // If the carry into the most significant position is 1, X and Y can't both 4620 // be 0 and therefore the carry out of the addition is also 1. 4621 // 4622 // Since the carry into the most significant position is always equal to 4623 // the carry out of the addition, there is no signed overflow. 4624 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4625 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4626 return OverflowResult::NeverOverflows; 4627 4628 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4629 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4630 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4631 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4632 OverflowResult OR = 4633 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4634 if (OR != OverflowResult::MayOverflow) 4635 return OR; 4636 4637 // The remaining code needs Add to be available. Early returns if not so. 4638 if (!Add) 4639 return OverflowResult::MayOverflow; 4640 4641 // If the sign of Add is the same as at least one of the operands, this add 4642 // CANNOT overflow. If this can be determined from the known bits of the 4643 // operands the above signedAddMayOverflow() check will have already done so. 4644 // The only other way to improve on the known bits is from an assumption, so 4645 // call computeKnownBitsFromAssume() directly. 4646 bool LHSOrRHSKnownNonNegative = 4647 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4648 bool LHSOrRHSKnownNegative = 4649 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4650 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4651 KnownBits AddKnown(LHSRange.getBitWidth()); 4652 computeKnownBitsFromAssume( 4653 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4654 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4655 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4656 return OverflowResult::NeverOverflows; 4657 } 4658 4659 return OverflowResult::MayOverflow; 4660 } 4661 4662 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4663 const Value *RHS, 4664 const DataLayout &DL, 4665 AssumptionCache *AC, 4666 const Instruction *CxtI, 4667 const DominatorTree *DT) { 4668 // Checking for conditions implied by dominating conditions may be expensive. 4669 // Limit it to usub_with_overflow calls for now. 4670 if (match(CxtI, 4671 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4672 if (auto C = 4673 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4674 if (*C) 4675 return OverflowResult::NeverOverflows; 4676 return OverflowResult::AlwaysOverflowsLow; 4677 } 4678 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4679 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4680 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4681 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4682 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4683 } 4684 4685 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4686 const Value *RHS, 4687 const DataLayout &DL, 4688 AssumptionCache *AC, 4689 const Instruction *CxtI, 4690 const DominatorTree *DT) { 4691 // If LHS and RHS each have at least two sign bits, the subtraction 4692 // cannot overflow. 4693 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4694 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4695 return OverflowResult::NeverOverflows; 4696 4697 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4698 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4699 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4700 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4701 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4702 } 4703 4704 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4705 const DominatorTree &DT) { 4706 SmallVector<const BranchInst *, 2> GuardingBranches; 4707 SmallVector<const ExtractValueInst *, 2> Results; 4708 4709 for (const User *U : WO->users()) { 4710 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4711 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4712 4713 if (EVI->getIndices()[0] == 0) 4714 Results.push_back(EVI); 4715 else { 4716 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4717 4718 for (const auto *U : EVI->users()) 4719 if (const auto *B = dyn_cast<BranchInst>(U)) { 4720 assert(B->isConditional() && "How else is it using an i1?"); 4721 GuardingBranches.push_back(B); 4722 } 4723 } 4724 } else { 4725 // We are using the aggregate directly in a way we don't want to analyze 4726 // here (storing it to a global, say). 4727 return false; 4728 } 4729 } 4730 4731 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4732 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4733 if (!NoWrapEdge.isSingleEdge()) 4734 return false; 4735 4736 // Check if all users of the add are provably no-wrap. 4737 for (const auto *Result : Results) { 4738 // If the extractvalue itself is not executed on overflow, the we don't 4739 // need to check each use separately, since domination is transitive. 4740 if (DT.dominates(NoWrapEdge, Result->getParent())) 4741 continue; 4742 4743 for (auto &RU : Result->uses()) 4744 if (!DT.dominates(NoWrapEdge, RU)) 4745 return false; 4746 } 4747 4748 return true; 4749 }; 4750 4751 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4752 } 4753 4754 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4755 // See whether I has flags that may create poison 4756 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4757 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4758 return true; 4759 } 4760 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4761 if (ExactOp->isExact()) 4762 return true; 4763 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4764 auto FMF = FP->getFastMathFlags(); 4765 if (FMF.noNaNs() || FMF.noInfs()) 4766 return true; 4767 } 4768 4769 unsigned Opcode = Op->getOpcode(); 4770 4771 // Check whether opcode is a poison/undef-generating operation 4772 switch (Opcode) { 4773 case Instruction::Shl: 4774 case Instruction::AShr: 4775 case Instruction::LShr: { 4776 // Shifts return poison if shiftwidth is larger than the bitwidth. 4777 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4778 SmallVector<Constant *, 4> ShiftAmounts; 4779 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4780 unsigned NumElts = FVTy->getNumElements(); 4781 for (unsigned i = 0; i < NumElts; ++i) 4782 ShiftAmounts.push_back(C->getAggregateElement(i)); 4783 } else if (isa<ScalableVectorType>(C->getType())) 4784 return true; // Can't tell, just return true to be safe 4785 else 4786 ShiftAmounts.push_back(C); 4787 4788 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4789 auto *CI = dyn_cast<ConstantInt>(C); 4790 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4791 }); 4792 return !Safe; 4793 } 4794 return true; 4795 } 4796 case Instruction::FPToSI: 4797 case Instruction::FPToUI: 4798 // fptosi/ui yields poison if the resulting value does not fit in the 4799 // destination type. 4800 return true; 4801 case Instruction::Call: 4802 case Instruction::CallBr: 4803 case Instruction::Invoke: { 4804 const auto *CB = cast<CallBase>(Op); 4805 return !CB->hasRetAttr(Attribute::NoUndef); 4806 } 4807 case Instruction::InsertElement: 4808 case Instruction::ExtractElement: { 4809 // If index exceeds the length of the vector, it returns poison 4810 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4811 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4812 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4813 if (!Idx || 4814 Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue()) 4815 return true; 4816 return false; 4817 } 4818 case Instruction::ShuffleVector: { 4819 // shufflevector may return undef. 4820 if (PoisonOnly) 4821 return false; 4822 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4823 ? cast<ConstantExpr>(Op)->getShuffleMask() 4824 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4825 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4826 } 4827 case Instruction::FNeg: 4828 case Instruction::PHI: 4829 case Instruction::Select: 4830 case Instruction::URem: 4831 case Instruction::SRem: 4832 case Instruction::ExtractValue: 4833 case Instruction::InsertValue: 4834 case Instruction::Freeze: 4835 case Instruction::ICmp: 4836 case Instruction::FCmp: 4837 return false; 4838 case Instruction::GetElementPtr: { 4839 const auto *GEP = cast<GEPOperator>(Op); 4840 return GEP->isInBounds(); 4841 } 4842 default: { 4843 const auto *CE = dyn_cast<ConstantExpr>(Op); 4844 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4845 return false; 4846 else if (Instruction::isBinaryOp(Opcode)) 4847 return false; 4848 // Be conservative and return true. 4849 return true; 4850 } 4851 } 4852 } 4853 4854 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4855 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4856 } 4857 4858 bool llvm::canCreatePoison(const Operator *Op) { 4859 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4860 } 4861 4862 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4863 const Instruction *CtxI, 4864 const DominatorTree *DT, 4865 unsigned Depth) { 4866 if (Depth >= MaxAnalysisRecursionDepth) 4867 return false; 4868 4869 if (const auto *A = dyn_cast<Argument>(V)) { 4870 if (A->hasAttribute(Attribute::NoUndef)) 4871 return true; 4872 } 4873 4874 if (auto *C = dyn_cast<Constant>(V)) { 4875 if (isa<UndefValue>(C)) 4876 return false; 4877 4878 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4879 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4880 return true; 4881 4882 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4883 return !C->containsConstantExpression() && !C->containsUndefElement(); 4884 } 4885 4886 // Strip cast operations from a pointer value. 4887 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4888 // inbounds with zero offset. To guarantee that the result isn't poison, the 4889 // stripped pointer is checked as it has to be pointing into an allocated 4890 // object or be null `null` to ensure `inbounds` getelement pointers with a 4891 // zero offset could not produce poison. 4892 // It can strip off addrspacecast that do not change bit representation as 4893 // well. We believe that such addrspacecast is equivalent to no-op. 4894 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4895 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4896 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4897 return true; 4898 4899 auto OpCheck = [&](const Value *V) { 4900 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4901 }; 4902 4903 if (auto *Opr = dyn_cast<Operator>(V)) { 4904 // If the value is a freeze instruction, then it can never 4905 // be undef or poison. 4906 if (isa<FreezeInst>(V)) 4907 return true; 4908 4909 if (const auto *CB = dyn_cast<CallBase>(V)) { 4910 if (CB->hasRetAttr(Attribute::NoUndef)) 4911 return true; 4912 } 4913 4914 if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4915 return true; 4916 } 4917 4918 if (auto *I = dyn_cast<Instruction>(V)) { 4919 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4920 // Note: once we have an agreement that poison is a value-wise concept, 4921 // we can remove the isIntegerTy(1) constraint. 4922 return true; 4923 } 4924 4925 // CxtI may be null or a cloned instruction. 4926 if (!CtxI || !CtxI->getParent() || !DT) 4927 return false; 4928 4929 auto *DNode = DT->getNode(CtxI->getParent()); 4930 if (!DNode) 4931 // Unreachable block 4932 return false; 4933 4934 // If V is used as a branch condition before reaching CtxI, V cannot be 4935 // undef or poison. 4936 // br V, BB1, BB2 4937 // BB1: 4938 // CtxI ; V cannot be undef or poison here 4939 auto *Dominator = DNode->getIDom(); 4940 while (Dominator) { 4941 auto *TI = Dominator->getBlock()->getTerminator(); 4942 4943 if (auto BI = dyn_cast<BranchInst>(TI)) { 4944 if (BI->isConditional() && BI->getCondition() == V) 4945 return true; 4946 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4947 if (SI->getCondition() == V) 4948 return true; 4949 } 4950 4951 Dominator = Dominator->getIDom(); 4952 } 4953 4954 return false; 4955 } 4956 4957 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4958 const DataLayout &DL, 4959 AssumptionCache *AC, 4960 const Instruction *CxtI, 4961 const DominatorTree *DT) { 4962 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4963 Add, DL, AC, CxtI, DT); 4964 } 4965 4966 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4967 const Value *RHS, 4968 const DataLayout &DL, 4969 AssumptionCache *AC, 4970 const Instruction *CxtI, 4971 const DominatorTree *DT) { 4972 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4973 } 4974 4975 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4976 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4977 // of time because it's possible for another thread to interfere with it for an 4978 // arbitrary length of time, but programs aren't allowed to rely on that. 4979 4980 // If there is no successor, then execution can't transfer to it. 4981 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4982 return !CRI->unwindsToCaller(); 4983 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4984 return !CatchSwitch->unwindsToCaller(); 4985 if (isa<ResumeInst>(I)) 4986 return false; 4987 if (isa<ReturnInst>(I)) 4988 return false; 4989 if (isa<UnreachableInst>(I)) 4990 return false; 4991 4992 // Calls can throw, or contain an infinite loop, or kill the process. 4993 if (const auto *CB = dyn_cast<CallBase>(I)) { 4994 // Call sites that throw have implicit non-local control flow. 4995 if (!CB->doesNotThrow()) 4996 return false; 4997 4998 // A function which doens't throw and has "willreturn" attribute will 4999 // always return. 5000 if (CB->hasFnAttr(Attribute::WillReturn)) 5001 return true; 5002 5003 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5004 // etc. and thus not return. However, LLVM already assumes that 5005 // 5006 // - Thread exiting actions are modeled as writes to memory invisible to 5007 // the program. 5008 // 5009 // - Loops that don't have side effects (side effects are volatile/atomic 5010 // stores and IO) always terminate (see http://llvm.org/PR965). 5011 // Furthermore IO itself is also modeled as writes to memory invisible to 5012 // the program. 5013 // 5014 // We rely on those assumptions here, and use the memory effects of the call 5015 // target as a proxy for checking that it always returns. 5016 5017 // FIXME: This isn't aggressive enough; a call which only writes to a global 5018 // is guaranteed to return. 5019 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5020 } 5021 5022 // Other instructions return normally. 5023 return true; 5024 } 5025 5026 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5027 // TODO: This is slightly conservative for invoke instruction since exiting 5028 // via an exception *is* normal control for them. 5029 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5030 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5031 return false; 5032 return true; 5033 } 5034 5035 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5036 const Loop *L) { 5037 // The loop header is guaranteed to be executed for every iteration. 5038 // 5039 // FIXME: Relax this constraint to cover all basic blocks that are 5040 // guaranteed to be executed at every iteration. 5041 if (I->getParent() != L->getHeader()) return false; 5042 5043 for (const Instruction &LI : *L->getHeader()) { 5044 if (&LI == I) return true; 5045 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5046 } 5047 llvm_unreachable("Instruction not contained in its own parent basic block."); 5048 } 5049 5050 bool llvm::propagatesPoison(const Instruction *I) { 5051 switch (I->getOpcode()) { 5052 case Instruction::Freeze: 5053 case Instruction::Select: 5054 case Instruction::PHI: 5055 case Instruction::Call: 5056 case Instruction::Invoke: 5057 return false; 5058 case Instruction::ICmp: 5059 case Instruction::FCmp: 5060 case Instruction::GetElementPtr: 5061 return true; 5062 default: 5063 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5064 return true; 5065 5066 // Be conservative and return false. 5067 return false; 5068 } 5069 } 5070 5071 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5072 SmallPtrSetImpl<const Value *> &Operands) { 5073 switch (I->getOpcode()) { 5074 case Instruction::Store: 5075 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5076 break; 5077 5078 case Instruction::Load: 5079 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5080 break; 5081 5082 case Instruction::AtomicCmpXchg: 5083 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5084 break; 5085 5086 case Instruction::AtomicRMW: 5087 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5088 break; 5089 5090 case Instruction::UDiv: 5091 case Instruction::SDiv: 5092 case Instruction::URem: 5093 case Instruction::SRem: 5094 Operands.insert(I->getOperand(1)); 5095 break; 5096 5097 case Instruction::Call: 5098 case Instruction::Invoke: { 5099 const CallBase *CB = cast<CallBase>(I); 5100 if (CB->isIndirectCall()) 5101 Operands.insert(CB->getCalledOperand()); 5102 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5103 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5104 Operands.insert(CB->getArgOperand(i)); 5105 } 5106 break; 5107 } 5108 5109 default: 5110 break; 5111 } 5112 } 5113 5114 bool llvm::mustTriggerUB(const Instruction *I, 5115 const SmallSet<const Value *, 16>& KnownPoison) { 5116 SmallPtrSet<const Value *, 4> NonPoisonOps; 5117 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5118 5119 for (const auto *V : NonPoisonOps) 5120 if (KnownPoison.count(V)) 5121 return true; 5122 5123 return false; 5124 } 5125 5126 5127 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 5128 // We currently only look for uses of poison values within the same basic 5129 // block, as that makes it easier to guarantee that the uses will be 5130 // executed given that PoisonI is executed. 5131 // 5132 // FIXME: Expand this to consider uses beyond the same basic block. To do 5133 // this, look out for the distinction between post-dominance and strong 5134 // post-dominance. 5135 const BasicBlock *BB = PoisonI->getParent(); 5136 5137 // Set of instructions that we have proved will yield poison if PoisonI 5138 // does. 5139 SmallSet<const Value *, 16> YieldsPoison; 5140 SmallSet<const BasicBlock *, 4> Visited; 5141 YieldsPoison.insert(PoisonI); 5142 Visited.insert(PoisonI->getParent()); 5143 5144 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 5145 5146 unsigned Iter = 0; 5147 while (Iter++ < MaxAnalysisRecursionDepth) { 5148 for (auto &I : make_range(Begin, End)) { 5149 if (&I != PoisonI) { 5150 if (mustTriggerUB(&I, YieldsPoison)) 5151 return true; 5152 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5153 return false; 5154 } 5155 5156 // Mark poison that propagates from I through uses of I. 5157 if (YieldsPoison.count(&I)) { 5158 for (const User *User : I.users()) { 5159 const Instruction *UserI = cast<Instruction>(User); 5160 if (propagatesPoison(UserI)) 5161 YieldsPoison.insert(User); 5162 } 5163 } 5164 } 5165 5166 if (auto *NextBB = BB->getSingleSuccessor()) { 5167 if (Visited.insert(NextBB).second) { 5168 BB = NextBB; 5169 Begin = BB->getFirstNonPHI()->getIterator(); 5170 End = BB->end(); 5171 continue; 5172 } 5173 } 5174 5175 break; 5176 } 5177 return false; 5178 } 5179 5180 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5181 if (FMF.noNaNs()) 5182 return true; 5183 5184 if (auto *C = dyn_cast<ConstantFP>(V)) 5185 return !C->isNaN(); 5186 5187 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5188 if (!C->getElementType()->isFloatingPointTy()) 5189 return false; 5190 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5191 if (C->getElementAsAPFloat(I).isNaN()) 5192 return false; 5193 } 5194 return true; 5195 } 5196 5197 if (isa<ConstantAggregateZero>(V)) 5198 return true; 5199 5200 return false; 5201 } 5202 5203 static bool isKnownNonZero(const Value *V) { 5204 if (auto *C = dyn_cast<ConstantFP>(V)) 5205 return !C->isZero(); 5206 5207 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5208 if (!C->getElementType()->isFloatingPointTy()) 5209 return false; 5210 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5211 if (C->getElementAsAPFloat(I).isZero()) 5212 return false; 5213 } 5214 return true; 5215 } 5216 5217 return false; 5218 } 5219 5220 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5221 /// Given non-min/max outer cmp/select from the clamp pattern this 5222 /// function recognizes if it can be substitued by a "canonical" min/max 5223 /// pattern. 5224 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5225 Value *CmpLHS, Value *CmpRHS, 5226 Value *TrueVal, Value *FalseVal, 5227 Value *&LHS, Value *&RHS) { 5228 // Try to match 5229 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5230 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5231 // and return description of the outer Max/Min. 5232 5233 // First, check if select has inverse order: 5234 if (CmpRHS == FalseVal) { 5235 std::swap(TrueVal, FalseVal); 5236 Pred = CmpInst::getInversePredicate(Pred); 5237 } 5238 5239 // Assume success now. If there's no match, callers should not use these anyway. 5240 LHS = TrueVal; 5241 RHS = FalseVal; 5242 5243 const APFloat *FC1; 5244 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5245 return {SPF_UNKNOWN, SPNB_NA, false}; 5246 5247 const APFloat *FC2; 5248 switch (Pred) { 5249 case CmpInst::FCMP_OLT: 5250 case CmpInst::FCMP_OLE: 5251 case CmpInst::FCMP_ULT: 5252 case CmpInst::FCMP_ULE: 5253 if (match(FalseVal, 5254 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5255 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5256 *FC1 < *FC2) 5257 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5258 break; 5259 case CmpInst::FCMP_OGT: 5260 case CmpInst::FCMP_OGE: 5261 case CmpInst::FCMP_UGT: 5262 case CmpInst::FCMP_UGE: 5263 if (match(FalseVal, 5264 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5265 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5266 *FC1 > *FC2) 5267 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5268 break; 5269 default: 5270 break; 5271 } 5272 5273 return {SPF_UNKNOWN, SPNB_NA, false}; 5274 } 5275 5276 /// Recognize variations of: 5277 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5278 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5279 Value *CmpLHS, Value *CmpRHS, 5280 Value *TrueVal, Value *FalseVal) { 5281 // Swap the select operands and predicate to match the patterns below. 5282 if (CmpRHS != TrueVal) { 5283 Pred = ICmpInst::getSwappedPredicate(Pred); 5284 std::swap(TrueVal, FalseVal); 5285 } 5286 const APInt *C1; 5287 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5288 const APInt *C2; 5289 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5290 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5291 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5292 return {SPF_SMAX, SPNB_NA, false}; 5293 5294 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5295 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5296 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5297 return {SPF_SMIN, SPNB_NA, false}; 5298 5299 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5300 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5301 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5302 return {SPF_UMAX, SPNB_NA, false}; 5303 5304 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5305 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5306 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5307 return {SPF_UMIN, SPNB_NA, false}; 5308 } 5309 return {SPF_UNKNOWN, SPNB_NA, false}; 5310 } 5311 5312 /// Recognize variations of: 5313 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5314 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5315 Value *CmpLHS, Value *CmpRHS, 5316 Value *TVal, Value *FVal, 5317 unsigned Depth) { 5318 // TODO: Allow FP min/max with nnan/nsz. 5319 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5320 5321 Value *A = nullptr, *B = nullptr; 5322 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5323 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5324 return {SPF_UNKNOWN, SPNB_NA, false}; 5325 5326 Value *C = nullptr, *D = nullptr; 5327 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5328 if (L.Flavor != R.Flavor) 5329 return {SPF_UNKNOWN, SPNB_NA, false}; 5330 5331 // We have something like: x Pred y ? min(a, b) : min(c, d). 5332 // Try to match the compare to the min/max operations of the select operands. 5333 // First, make sure we have the right compare predicate. 5334 switch (L.Flavor) { 5335 case SPF_SMIN: 5336 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5337 Pred = ICmpInst::getSwappedPredicate(Pred); 5338 std::swap(CmpLHS, CmpRHS); 5339 } 5340 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5341 break; 5342 return {SPF_UNKNOWN, SPNB_NA, false}; 5343 case SPF_SMAX: 5344 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5345 Pred = ICmpInst::getSwappedPredicate(Pred); 5346 std::swap(CmpLHS, CmpRHS); 5347 } 5348 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5349 break; 5350 return {SPF_UNKNOWN, SPNB_NA, false}; 5351 case SPF_UMIN: 5352 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5353 Pred = ICmpInst::getSwappedPredicate(Pred); 5354 std::swap(CmpLHS, CmpRHS); 5355 } 5356 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5357 break; 5358 return {SPF_UNKNOWN, SPNB_NA, false}; 5359 case SPF_UMAX: 5360 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5361 Pred = ICmpInst::getSwappedPredicate(Pred); 5362 std::swap(CmpLHS, CmpRHS); 5363 } 5364 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5365 break; 5366 return {SPF_UNKNOWN, SPNB_NA, false}; 5367 default: 5368 return {SPF_UNKNOWN, SPNB_NA, false}; 5369 } 5370 5371 // If there is a common operand in the already matched min/max and the other 5372 // min/max operands match the compare operands (either directly or inverted), 5373 // then this is min/max of the same flavor. 5374 5375 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5376 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5377 if (D == B) { 5378 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5379 match(A, m_Not(m_Specific(CmpRHS))))) 5380 return {L.Flavor, SPNB_NA, false}; 5381 } 5382 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5383 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5384 if (C == B) { 5385 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5386 match(A, m_Not(m_Specific(CmpRHS))))) 5387 return {L.Flavor, SPNB_NA, false}; 5388 } 5389 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5390 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5391 if (D == A) { 5392 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5393 match(B, m_Not(m_Specific(CmpRHS))))) 5394 return {L.Flavor, SPNB_NA, false}; 5395 } 5396 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5397 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5398 if (C == A) { 5399 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5400 match(B, m_Not(m_Specific(CmpRHS))))) 5401 return {L.Flavor, SPNB_NA, false}; 5402 } 5403 5404 return {SPF_UNKNOWN, SPNB_NA, false}; 5405 } 5406 5407 /// If the input value is the result of a 'not' op, constant integer, or vector 5408 /// splat of a constant integer, return the bitwise-not source value. 5409 /// TODO: This could be extended to handle non-splat vector integer constants. 5410 static Value *getNotValue(Value *V) { 5411 Value *NotV; 5412 if (match(V, m_Not(m_Value(NotV)))) 5413 return NotV; 5414 5415 const APInt *C; 5416 if (match(V, m_APInt(C))) 5417 return ConstantInt::get(V->getType(), ~(*C)); 5418 5419 return nullptr; 5420 } 5421 5422 /// Match non-obvious integer minimum and maximum sequences. 5423 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5424 Value *CmpLHS, Value *CmpRHS, 5425 Value *TrueVal, Value *FalseVal, 5426 Value *&LHS, Value *&RHS, 5427 unsigned Depth) { 5428 // Assume success. If there's no match, callers should not use these anyway. 5429 LHS = TrueVal; 5430 RHS = FalseVal; 5431 5432 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5433 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5434 return SPR; 5435 5436 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5437 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5438 return SPR; 5439 5440 // Look through 'not' ops to find disguised min/max. 5441 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5442 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5443 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5444 switch (Pred) { 5445 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5446 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5447 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5448 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5449 default: break; 5450 } 5451 } 5452 5453 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5454 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5455 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5456 switch (Pred) { 5457 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5458 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5459 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5460 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5461 default: break; 5462 } 5463 } 5464 5465 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5466 return {SPF_UNKNOWN, SPNB_NA, false}; 5467 5468 // Z = X -nsw Y 5469 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5470 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5471 if (match(TrueVal, m_Zero()) && 5472 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5473 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5474 5475 // Z = X -nsw Y 5476 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5477 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5478 if (match(FalseVal, m_Zero()) && 5479 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5480 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5481 5482 const APInt *C1; 5483 if (!match(CmpRHS, m_APInt(C1))) 5484 return {SPF_UNKNOWN, SPNB_NA, false}; 5485 5486 // An unsigned min/max can be written with a signed compare. 5487 const APInt *C2; 5488 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5489 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5490 // Is the sign bit set? 5491 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5492 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5493 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5494 C2->isMaxSignedValue()) 5495 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5496 5497 // Is the sign bit clear? 5498 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5499 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5500 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5501 C2->isMinSignedValue()) 5502 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5503 } 5504 5505 return {SPF_UNKNOWN, SPNB_NA, false}; 5506 } 5507 5508 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5509 assert(X && Y && "Invalid operand"); 5510 5511 // X = sub (0, Y) || X = sub nsw (0, Y) 5512 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5513 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5514 return true; 5515 5516 // Y = sub (0, X) || Y = sub nsw (0, X) 5517 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5518 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5519 return true; 5520 5521 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5522 Value *A, *B; 5523 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5524 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5525 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5526 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5527 } 5528 5529 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5530 FastMathFlags FMF, 5531 Value *CmpLHS, Value *CmpRHS, 5532 Value *TrueVal, Value *FalseVal, 5533 Value *&LHS, Value *&RHS, 5534 unsigned Depth) { 5535 if (CmpInst::isFPPredicate(Pred)) { 5536 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5537 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5538 // purpose of identifying min/max. Disregard vector constants with undefined 5539 // elements because those can not be back-propagated for analysis. 5540 Value *OutputZeroVal = nullptr; 5541 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5542 !cast<Constant>(TrueVal)->containsUndefElement()) 5543 OutputZeroVal = TrueVal; 5544 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5545 !cast<Constant>(FalseVal)->containsUndefElement()) 5546 OutputZeroVal = FalseVal; 5547 5548 if (OutputZeroVal) { 5549 if (match(CmpLHS, m_AnyZeroFP())) 5550 CmpLHS = OutputZeroVal; 5551 if (match(CmpRHS, m_AnyZeroFP())) 5552 CmpRHS = OutputZeroVal; 5553 } 5554 } 5555 5556 LHS = CmpLHS; 5557 RHS = CmpRHS; 5558 5559 // Signed zero may return inconsistent results between implementations. 5560 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5561 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5562 // Therefore, we behave conservatively and only proceed if at least one of the 5563 // operands is known to not be zero or if we don't care about signed zero. 5564 switch (Pred) { 5565 default: break; 5566 // FIXME: Include OGT/OLT/UGT/ULT. 5567 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5568 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5569 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5570 !isKnownNonZero(CmpRHS)) 5571 return {SPF_UNKNOWN, SPNB_NA, false}; 5572 } 5573 5574 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5575 bool Ordered = false; 5576 5577 // When given one NaN and one non-NaN input: 5578 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5579 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5580 // ordered comparison fails), which could be NaN or non-NaN. 5581 // so here we discover exactly what NaN behavior is required/accepted. 5582 if (CmpInst::isFPPredicate(Pred)) { 5583 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5584 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5585 5586 if (LHSSafe && RHSSafe) { 5587 // Both operands are known non-NaN. 5588 NaNBehavior = SPNB_RETURNS_ANY; 5589 } else if (CmpInst::isOrdered(Pred)) { 5590 // An ordered comparison will return false when given a NaN, so it 5591 // returns the RHS. 5592 Ordered = true; 5593 if (LHSSafe) 5594 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5595 NaNBehavior = SPNB_RETURNS_NAN; 5596 else if (RHSSafe) 5597 NaNBehavior = SPNB_RETURNS_OTHER; 5598 else 5599 // Completely unsafe. 5600 return {SPF_UNKNOWN, SPNB_NA, false}; 5601 } else { 5602 Ordered = false; 5603 // An unordered comparison will return true when given a NaN, so it 5604 // returns the LHS. 5605 if (LHSSafe) 5606 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5607 NaNBehavior = SPNB_RETURNS_OTHER; 5608 else if (RHSSafe) 5609 NaNBehavior = SPNB_RETURNS_NAN; 5610 else 5611 // Completely unsafe. 5612 return {SPF_UNKNOWN, SPNB_NA, false}; 5613 } 5614 } 5615 5616 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5617 std::swap(CmpLHS, CmpRHS); 5618 Pred = CmpInst::getSwappedPredicate(Pred); 5619 if (NaNBehavior == SPNB_RETURNS_NAN) 5620 NaNBehavior = SPNB_RETURNS_OTHER; 5621 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5622 NaNBehavior = SPNB_RETURNS_NAN; 5623 Ordered = !Ordered; 5624 } 5625 5626 // ([if]cmp X, Y) ? X : Y 5627 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5628 switch (Pred) { 5629 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5630 case ICmpInst::ICMP_UGT: 5631 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5632 case ICmpInst::ICMP_SGT: 5633 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5634 case ICmpInst::ICMP_ULT: 5635 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5636 case ICmpInst::ICMP_SLT: 5637 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5638 case FCmpInst::FCMP_UGT: 5639 case FCmpInst::FCMP_UGE: 5640 case FCmpInst::FCMP_OGT: 5641 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5642 case FCmpInst::FCMP_ULT: 5643 case FCmpInst::FCMP_ULE: 5644 case FCmpInst::FCMP_OLT: 5645 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5646 } 5647 } 5648 5649 if (isKnownNegation(TrueVal, FalseVal)) { 5650 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5651 // match against either LHS or sext(LHS). 5652 auto MaybeSExtCmpLHS = 5653 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5654 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5655 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5656 if (match(TrueVal, MaybeSExtCmpLHS)) { 5657 // Set the return values. If the compare uses the negated value (-X >s 0), 5658 // swap the return values because the negated value is always 'RHS'. 5659 LHS = TrueVal; 5660 RHS = FalseVal; 5661 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5662 std::swap(LHS, RHS); 5663 5664 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5665 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5666 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5667 return {SPF_ABS, SPNB_NA, false}; 5668 5669 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5670 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5671 return {SPF_ABS, SPNB_NA, false}; 5672 5673 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5674 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5675 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5676 return {SPF_NABS, SPNB_NA, false}; 5677 } 5678 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5679 // Set the return values. If the compare uses the negated value (-X >s 0), 5680 // swap the return values because the negated value is always 'RHS'. 5681 LHS = FalseVal; 5682 RHS = TrueVal; 5683 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5684 std::swap(LHS, RHS); 5685 5686 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5687 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5688 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5689 return {SPF_NABS, SPNB_NA, false}; 5690 5691 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5692 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5693 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5694 return {SPF_ABS, SPNB_NA, false}; 5695 } 5696 } 5697 5698 if (CmpInst::isIntPredicate(Pred)) 5699 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5700 5701 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5702 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5703 // semantics than minNum. Be conservative in such case. 5704 if (NaNBehavior != SPNB_RETURNS_ANY || 5705 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5706 !isKnownNonZero(CmpRHS))) 5707 return {SPF_UNKNOWN, SPNB_NA, false}; 5708 5709 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5710 } 5711 5712 /// Helps to match a select pattern in case of a type mismatch. 5713 /// 5714 /// The function processes the case when type of true and false values of a 5715 /// select instruction differs from type of the cmp instruction operands because 5716 /// of a cast instruction. The function checks if it is legal to move the cast 5717 /// operation after "select". If yes, it returns the new second value of 5718 /// "select" (with the assumption that cast is moved): 5719 /// 1. As operand of cast instruction when both values of "select" are same cast 5720 /// instructions. 5721 /// 2. As restored constant (by applying reverse cast operation) when the first 5722 /// value of the "select" is a cast operation and the second value is a 5723 /// constant. 5724 /// NOTE: We return only the new second value because the first value could be 5725 /// accessed as operand of cast instruction. 5726 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5727 Instruction::CastOps *CastOp) { 5728 auto *Cast1 = dyn_cast<CastInst>(V1); 5729 if (!Cast1) 5730 return nullptr; 5731 5732 *CastOp = Cast1->getOpcode(); 5733 Type *SrcTy = Cast1->getSrcTy(); 5734 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5735 // If V1 and V2 are both the same cast from the same type, look through V1. 5736 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5737 return Cast2->getOperand(0); 5738 return nullptr; 5739 } 5740 5741 auto *C = dyn_cast<Constant>(V2); 5742 if (!C) 5743 return nullptr; 5744 5745 Constant *CastedTo = nullptr; 5746 switch (*CastOp) { 5747 case Instruction::ZExt: 5748 if (CmpI->isUnsigned()) 5749 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5750 break; 5751 case Instruction::SExt: 5752 if (CmpI->isSigned()) 5753 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5754 break; 5755 case Instruction::Trunc: 5756 Constant *CmpConst; 5757 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5758 CmpConst->getType() == SrcTy) { 5759 // Here we have the following case: 5760 // 5761 // %cond = cmp iN %x, CmpConst 5762 // %tr = trunc iN %x to iK 5763 // %narrowsel = select i1 %cond, iK %t, iK C 5764 // 5765 // We can always move trunc after select operation: 5766 // 5767 // %cond = cmp iN %x, CmpConst 5768 // %widesel = select i1 %cond, iN %x, iN CmpConst 5769 // %tr = trunc iN %widesel to iK 5770 // 5771 // Note that C could be extended in any way because we don't care about 5772 // upper bits after truncation. It can't be abs pattern, because it would 5773 // look like: 5774 // 5775 // select i1 %cond, x, -x. 5776 // 5777 // So only min/max pattern could be matched. Such match requires widened C 5778 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5779 // CmpConst == C is checked below. 5780 CastedTo = CmpConst; 5781 } else { 5782 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5783 } 5784 break; 5785 case Instruction::FPTrunc: 5786 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5787 break; 5788 case Instruction::FPExt: 5789 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5790 break; 5791 case Instruction::FPToUI: 5792 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5793 break; 5794 case Instruction::FPToSI: 5795 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5796 break; 5797 case Instruction::UIToFP: 5798 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5799 break; 5800 case Instruction::SIToFP: 5801 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5802 break; 5803 default: 5804 break; 5805 } 5806 5807 if (!CastedTo) 5808 return nullptr; 5809 5810 // Make sure the cast doesn't lose any information. 5811 Constant *CastedBack = 5812 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5813 if (CastedBack != C) 5814 return nullptr; 5815 5816 return CastedTo; 5817 } 5818 5819 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5820 Instruction::CastOps *CastOp, 5821 unsigned Depth) { 5822 if (Depth >= MaxAnalysisRecursionDepth) 5823 return {SPF_UNKNOWN, SPNB_NA, false}; 5824 5825 SelectInst *SI = dyn_cast<SelectInst>(V); 5826 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5827 5828 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5829 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5830 5831 Value *TrueVal = SI->getTrueValue(); 5832 Value *FalseVal = SI->getFalseValue(); 5833 5834 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5835 CastOp, Depth); 5836 } 5837 5838 SelectPatternResult llvm::matchDecomposedSelectPattern( 5839 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5840 Instruction::CastOps *CastOp, unsigned Depth) { 5841 CmpInst::Predicate Pred = CmpI->getPredicate(); 5842 Value *CmpLHS = CmpI->getOperand(0); 5843 Value *CmpRHS = CmpI->getOperand(1); 5844 FastMathFlags FMF; 5845 if (isa<FPMathOperator>(CmpI)) 5846 FMF = CmpI->getFastMathFlags(); 5847 5848 // Bail out early. 5849 if (CmpI->isEquality()) 5850 return {SPF_UNKNOWN, SPNB_NA, false}; 5851 5852 // Deal with type mismatches. 5853 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5854 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5855 // If this is a potential fmin/fmax with a cast to integer, then ignore 5856 // -0.0 because there is no corresponding integer value. 5857 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5858 FMF.setNoSignedZeros(); 5859 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5860 cast<CastInst>(TrueVal)->getOperand(0), C, 5861 LHS, RHS, Depth); 5862 } 5863 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5864 // If this is a potential fmin/fmax with a cast to integer, then ignore 5865 // -0.0 because there is no corresponding integer value. 5866 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5867 FMF.setNoSignedZeros(); 5868 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5869 C, cast<CastInst>(FalseVal)->getOperand(0), 5870 LHS, RHS, Depth); 5871 } 5872 } 5873 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5874 LHS, RHS, Depth); 5875 } 5876 5877 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5878 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5879 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5880 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5881 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5882 if (SPF == SPF_FMINNUM) 5883 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5884 if (SPF == SPF_FMAXNUM) 5885 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5886 llvm_unreachable("unhandled!"); 5887 } 5888 5889 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5890 if (SPF == SPF_SMIN) return SPF_SMAX; 5891 if (SPF == SPF_UMIN) return SPF_UMAX; 5892 if (SPF == SPF_SMAX) return SPF_SMIN; 5893 if (SPF == SPF_UMAX) return SPF_UMIN; 5894 llvm_unreachable("unhandled!"); 5895 } 5896 5897 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5898 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5899 } 5900 5901 /// Return true if "icmp Pred LHS RHS" is always true. 5902 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5903 const Value *RHS, const DataLayout &DL, 5904 unsigned Depth) { 5905 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5906 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5907 return true; 5908 5909 switch (Pred) { 5910 default: 5911 return false; 5912 5913 case CmpInst::ICMP_SLE: { 5914 const APInt *C; 5915 5916 // LHS s<= LHS +_{nsw} C if C >= 0 5917 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5918 return !C->isNegative(); 5919 return false; 5920 } 5921 5922 case CmpInst::ICMP_ULE: { 5923 const APInt *C; 5924 5925 // LHS u<= LHS +_{nuw} C for any C 5926 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5927 return true; 5928 5929 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5930 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5931 const Value *&X, 5932 const APInt *&CA, const APInt *&CB) { 5933 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5934 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5935 return true; 5936 5937 // If X & C == 0 then (X | C) == X +_{nuw} C 5938 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5939 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5940 KnownBits Known(CA->getBitWidth()); 5941 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5942 /*CxtI*/ nullptr, /*DT*/ nullptr); 5943 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5944 return true; 5945 } 5946 5947 return false; 5948 }; 5949 5950 const Value *X; 5951 const APInt *CLHS, *CRHS; 5952 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5953 return CLHS->ule(*CRHS); 5954 5955 return false; 5956 } 5957 } 5958 } 5959 5960 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5961 /// ALHS ARHS" is true. Otherwise, return None. 5962 static Optional<bool> 5963 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5964 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5965 const DataLayout &DL, unsigned Depth) { 5966 switch (Pred) { 5967 default: 5968 return None; 5969 5970 case CmpInst::ICMP_SLT: 5971 case CmpInst::ICMP_SLE: 5972 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5973 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5974 return true; 5975 return None; 5976 5977 case CmpInst::ICMP_ULT: 5978 case CmpInst::ICMP_ULE: 5979 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5980 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5981 return true; 5982 return None; 5983 } 5984 } 5985 5986 /// Return true if the operands of the two compares match. IsSwappedOps is true 5987 /// when the operands match, but are swapped. 5988 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5989 const Value *BLHS, const Value *BRHS, 5990 bool &IsSwappedOps) { 5991 5992 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5993 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5994 return IsMatchingOps || IsSwappedOps; 5995 } 5996 5997 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5998 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5999 /// Otherwise, return None if we can't infer anything. 6000 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6001 CmpInst::Predicate BPred, 6002 bool AreSwappedOps) { 6003 // Canonicalize the predicate as if the operands were not commuted. 6004 if (AreSwappedOps) 6005 BPred = ICmpInst::getSwappedPredicate(BPred); 6006 6007 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6008 return true; 6009 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6010 return false; 6011 6012 return None; 6013 } 6014 6015 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6016 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6017 /// Otherwise, return None if we can't infer anything. 6018 static Optional<bool> 6019 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6020 const ConstantInt *C1, 6021 CmpInst::Predicate BPred, 6022 const ConstantInt *C2) { 6023 ConstantRange DomCR = 6024 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6025 ConstantRange CR = 6026 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6027 ConstantRange Intersection = DomCR.intersectWith(CR); 6028 ConstantRange Difference = DomCR.difference(CR); 6029 if (Intersection.isEmptySet()) 6030 return false; 6031 if (Difference.isEmptySet()) 6032 return true; 6033 return None; 6034 } 6035 6036 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6037 /// false. Otherwise, return None if we can't infer anything. 6038 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6039 CmpInst::Predicate BPred, 6040 const Value *BLHS, const Value *BRHS, 6041 const DataLayout &DL, bool LHSIsTrue, 6042 unsigned Depth) { 6043 Value *ALHS = LHS->getOperand(0); 6044 Value *ARHS = LHS->getOperand(1); 6045 6046 // The rest of the logic assumes the LHS condition is true. If that's not the 6047 // case, invert the predicate to make it so. 6048 CmpInst::Predicate APred = 6049 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6050 6051 // Can we infer anything when the two compares have matching operands? 6052 bool AreSwappedOps; 6053 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6054 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6055 APred, BPred, AreSwappedOps)) 6056 return Implication; 6057 // No amount of additional analysis will infer the second condition, so 6058 // early exit. 6059 return None; 6060 } 6061 6062 // Can we infer anything when the LHS operands match and the RHS operands are 6063 // constants (not necessarily matching)? 6064 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6065 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6066 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6067 return Implication; 6068 // No amount of additional analysis will infer the second condition, so 6069 // early exit. 6070 return None; 6071 } 6072 6073 if (APred == BPred) 6074 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6075 return None; 6076 } 6077 6078 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6079 /// false. Otherwise, return None if we can't infer anything. We expect the 6080 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6081 static Optional<bool> 6082 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6083 const Value *RHSOp0, const Value *RHSOp1, 6084 6085 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6086 // The LHS must be an 'or' or an 'and' instruction. 6087 assert((LHS->getOpcode() == Instruction::And || 6088 LHS->getOpcode() == Instruction::Or) && 6089 "Expected LHS to be 'and' or 'or'."); 6090 6091 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6092 6093 // If the result of an 'or' is false, then we know both legs of the 'or' are 6094 // false. Similarly, if the result of an 'and' is true, then we know both 6095 // legs of the 'and' are true. 6096 Value *ALHS, *ARHS; 6097 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6098 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6099 // FIXME: Make this non-recursion. 6100 if (Optional<bool> Implication = isImpliedCondition( 6101 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6102 return Implication; 6103 if (Optional<bool> Implication = isImpliedCondition( 6104 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6105 return Implication; 6106 return None; 6107 } 6108 return None; 6109 } 6110 6111 Optional<bool> 6112 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6113 const Value *RHSOp0, const Value *RHSOp1, 6114 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6115 // Bail out when we hit the limit. 6116 if (Depth == MaxAnalysisRecursionDepth) 6117 return None; 6118 6119 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6120 // example. 6121 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6122 return None; 6123 6124 Type *OpTy = LHS->getType(); 6125 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6126 6127 // FIXME: Extending the code below to handle vectors. 6128 if (OpTy->isVectorTy()) 6129 return None; 6130 6131 assert(OpTy->isIntegerTy(1) && "implied by above"); 6132 6133 // Both LHS and RHS are icmps. 6134 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6135 if (LHSCmp) 6136 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6137 Depth); 6138 6139 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6140 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6141 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6142 if (LHSBO) { 6143 if ((LHSBO->getOpcode() == Instruction::And || 6144 LHSBO->getOpcode() == Instruction::Or)) 6145 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6146 Depth); 6147 } 6148 return None; 6149 } 6150 6151 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6152 const DataLayout &DL, bool LHSIsTrue, 6153 unsigned Depth) { 6154 // LHS ==> RHS by definition 6155 if (LHS == RHS) 6156 return LHSIsTrue; 6157 6158 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6159 if (RHSCmp) 6160 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6161 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6162 LHSIsTrue, Depth); 6163 return None; 6164 } 6165 6166 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6167 // condition dominating ContextI or nullptr, if no condition is found. 6168 static std::pair<Value *, bool> 6169 getDomPredecessorCondition(const Instruction *ContextI) { 6170 if (!ContextI || !ContextI->getParent()) 6171 return {nullptr, false}; 6172 6173 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6174 // dominator tree (eg, from a SimplifyQuery) instead? 6175 const BasicBlock *ContextBB = ContextI->getParent(); 6176 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6177 if (!PredBB) 6178 return {nullptr, false}; 6179 6180 // We need a conditional branch in the predecessor. 6181 Value *PredCond; 6182 BasicBlock *TrueBB, *FalseBB; 6183 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6184 return {nullptr, false}; 6185 6186 // The branch should get simplified. Don't bother simplifying this condition. 6187 if (TrueBB == FalseBB) 6188 return {nullptr, false}; 6189 6190 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6191 "Predecessor block does not point to successor?"); 6192 6193 // Is this condition implied by the predecessor condition? 6194 return {PredCond, TrueBB == ContextBB}; 6195 } 6196 6197 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6198 const Instruction *ContextI, 6199 const DataLayout &DL) { 6200 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6201 auto PredCond = getDomPredecessorCondition(ContextI); 6202 if (PredCond.first) 6203 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6204 return None; 6205 } 6206 6207 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6208 const Value *LHS, const Value *RHS, 6209 const Instruction *ContextI, 6210 const DataLayout &DL) { 6211 auto PredCond = getDomPredecessorCondition(ContextI); 6212 if (PredCond.first) 6213 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6214 PredCond.second); 6215 return None; 6216 } 6217 6218 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6219 APInt &Upper, const InstrInfoQuery &IIQ) { 6220 unsigned Width = Lower.getBitWidth(); 6221 const APInt *C; 6222 switch (BO.getOpcode()) { 6223 case Instruction::Add: 6224 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6225 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6226 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6227 // 'add nuw x, C' produces [C, UINT_MAX]. 6228 Lower = *C; 6229 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6230 if (C->isNegative()) { 6231 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6232 Lower = APInt::getSignedMinValue(Width); 6233 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6234 } else { 6235 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6236 Lower = APInt::getSignedMinValue(Width) + *C; 6237 Upper = APInt::getSignedMaxValue(Width) + 1; 6238 } 6239 } 6240 } 6241 break; 6242 6243 case Instruction::And: 6244 if (match(BO.getOperand(1), m_APInt(C))) 6245 // 'and x, C' produces [0, C]. 6246 Upper = *C + 1; 6247 break; 6248 6249 case Instruction::Or: 6250 if (match(BO.getOperand(1), m_APInt(C))) 6251 // 'or x, C' produces [C, UINT_MAX]. 6252 Lower = *C; 6253 break; 6254 6255 case Instruction::AShr: 6256 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6257 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6258 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6259 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6260 } else if (match(BO.getOperand(0), m_APInt(C))) { 6261 unsigned ShiftAmount = Width - 1; 6262 if (!C->isNullValue() && IIQ.isExact(&BO)) 6263 ShiftAmount = C->countTrailingZeros(); 6264 if (C->isNegative()) { 6265 // 'ashr C, x' produces [C, C >> (Width-1)] 6266 Lower = *C; 6267 Upper = C->ashr(ShiftAmount) + 1; 6268 } else { 6269 // 'ashr C, x' produces [C >> (Width-1), C] 6270 Lower = C->ashr(ShiftAmount); 6271 Upper = *C + 1; 6272 } 6273 } 6274 break; 6275 6276 case Instruction::LShr: 6277 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6278 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6279 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6280 } else if (match(BO.getOperand(0), m_APInt(C))) { 6281 // 'lshr C, x' produces [C >> (Width-1), C]. 6282 unsigned ShiftAmount = Width - 1; 6283 if (!C->isNullValue() && IIQ.isExact(&BO)) 6284 ShiftAmount = C->countTrailingZeros(); 6285 Lower = C->lshr(ShiftAmount); 6286 Upper = *C + 1; 6287 } 6288 break; 6289 6290 case Instruction::Shl: 6291 if (match(BO.getOperand(0), m_APInt(C))) { 6292 if (IIQ.hasNoUnsignedWrap(&BO)) { 6293 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6294 Lower = *C; 6295 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6296 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6297 if (C->isNegative()) { 6298 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6299 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6300 Lower = C->shl(ShiftAmount); 6301 Upper = *C + 1; 6302 } else { 6303 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6304 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6305 Lower = *C; 6306 Upper = C->shl(ShiftAmount) + 1; 6307 } 6308 } 6309 } 6310 break; 6311 6312 case Instruction::SDiv: 6313 if (match(BO.getOperand(1), m_APInt(C))) { 6314 APInt IntMin = APInt::getSignedMinValue(Width); 6315 APInt IntMax = APInt::getSignedMaxValue(Width); 6316 if (C->isAllOnesValue()) { 6317 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6318 // where C != -1 and C != 0 and C != 1 6319 Lower = IntMin + 1; 6320 Upper = IntMax + 1; 6321 } else if (C->countLeadingZeros() < Width - 1) { 6322 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6323 // where C != -1 and C != 0 and C != 1 6324 Lower = IntMin.sdiv(*C); 6325 Upper = IntMax.sdiv(*C); 6326 if (Lower.sgt(Upper)) 6327 std::swap(Lower, Upper); 6328 Upper = Upper + 1; 6329 assert(Upper != Lower && "Upper part of range has wrapped!"); 6330 } 6331 } else if (match(BO.getOperand(0), m_APInt(C))) { 6332 if (C->isMinSignedValue()) { 6333 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6334 Lower = *C; 6335 Upper = Lower.lshr(1) + 1; 6336 } else { 6337 // 'sdiv C, x' produces [-|C|, |C|]. 6338 Upper = C->abs() + 1; 6339 Lower = (-Upper) + 1; 6340 } 6341 } 6342 break; 6343 6344 case Instruction::UDiv: 6345 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6346 // 'udiv x, C' produces [0, UINT_MAX / C]. 6347 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6348 } else if (match(BO.getOperand(0), m_APInt(C))) { 6349 // 'udiv C, x' produces [0, C]. 6350 Upper = *C + 1; 6351 } 6352 break; 6353 6354 case Instruction::SRem: 6355 if (match(BO.getOperand(1), m_APInt(C))) { 6356 // 'srem x, C' produces (-|C|, |C|). 6357 Upper = C->abs(); 6358 Lower = (-Upper) + 1; 6359 } 6360 break; 6361 6362 case Instruction::URem: 6363 if (match(BO.getOperand(1), m_APInt(C))) 6364 // 'urem x, C' produces [0, C). 6365 Upper = *C; 6366 break; 6367 6368 default: 6369 break; 6370 } 6371 } 6372 6373 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6374 APInt &Upper) { 6375 unsigned Width = Lower.getBitWidth(); 6376 const APInt *C; 6377 switch (II.getIntrinsicID()) { 6378 case Intrinsic::uadd_sat: 6379 // uadd.sat(x, C) produces [C, UINT_MAX]. 6380 if (match(II.getOperand(0), m_APInt(C)) || 6381 match(II.getOperand(1), m_APInt(C))) 6382 Lower = *C; 6383 break; 6384 case Intrinsic::sadd_sat: 6385 if (match(II.getOperand(0), m_APInt(C)) || 6386 match(II.getOperand(1), m_APInt(C))) { 6387 if (C->isNegative()) { 6388 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6389 Lower = APInt::getSignedMinValue(Width); 6390 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6391 } else { 6392 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6393 Lower = APInt::getSignedMinValue(Width) + *C; 6394 Upper = APInt::getSignedMaxValue(Width) + 1; 6395 } 6396 } 6397 break; 6398 case Intrinsic::usub_sat: 6399 // usub.sat(C, x) produces [0, C]. 6400 if (match(II.getOperand(0), m_APInt(C))) 6401 Upper = *C + 1; 6402 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6403 else if (match(II.getOperand(1), m_APInt(C))) 6404 Upper = APInt::getMaxValue(Width) - *C + 1; 6405 break; 6406 case Intrinsic::ssub_sat: 6407 if (match(II.getOperand(0), m_APInt(C))) { 6408 if (C->isNegative()) { 6409 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6410 Lower = APInt::getSignedMinValue(Width); 6411 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6412 } else { 6413 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6414 Lower = *C - APInt::getSignedMaxValue(Width); 6415 Upper = APInt::getSignedMaxValue(Width) + 1; 6416 } 6417 } else if (match(II.getOperand(1), m_APInt(C))) { 6418 if (C->isNegative()) { 6419 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6420 Lower = APInt::getSignedMinValue(Width) - *C; 6421 Upper = APInt::getSignedMaxValue(Width) + 1; 6422 } else { 6423 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6424 Lower = APInt::getSignedMinValue(Width); 6425 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6426 } 6427 } 6428 break; 6429 case Intrinsic::umin: 6430 case Intrinsic::umax: 6431 case Intrinsic::smin: 6432 case Intrinsic::smax: 6433 if (!match(II.getOperand(0), m_APInt(C)) && 6434 !match(II.getOperand(1), m_APInt(C))) 6435 break; 6436 6437 switch (II.getIntrinsicID()) { 6438 case Intrinsic::umin: 6439 Upper = *C + 1; 6440 break; 6441 case Intrinsic::umax: 6442 Lower = *C; 6443 break; 6444 case Intrinsic::smin: 6445 Lower = APInt::getSignedMinValue(Width); 6446 Upper = *C + 1; 6447 break; 6448 case Intrinsic::smax: 6449 Lower = *C; 6450 Upper = APInt::getSignedMaxValue(Width) + 1; 6451 break; 6452 default: 6453 llvm_unreachable("Must be min/max intrinsic"); 6454 } 6455 break; 6456 case Intrinsic::abs: 6457 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6458 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6459 if (match(II.getOperand(1), m_One())) 6460 Upper = APInt::getSignedMaxValue(Width) + 1; 6461 else 6462 Upper = APInt::getSignedMinValue(Width) + 1; 6463 break; 6464 default: 6465 break; 6466 } 6467 } 6468 6469 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6470 APInt &Upper, const InstrInfoQuery &IIQ) { 6471 const Value *LHS = nullptr, *RHS = nullptr; 6472 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6473 if (R.Flavor == SPF_UNKNOWN) 6474 return; 6475 6476 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6477 6478 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6479 // If the negation part of the abs (in RHS) has the NSW flag, 6480 // then the result of abs(X) is [0..SIGNED_MAX], 6481 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6482 Lower = APInt::getNullValue(BitWidth); 6483 if (match(RHS, m_Neg(m_Specific(LHS))) && 6484 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6485 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6486 else 6487 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6488 return; 6489 } 6490 6491 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6492 // The result of -abs(X) is <= 0. 6493 Lower = APInt::getSignedMinValue(BitWidth); 6494 Upper = APInt(BitWidth, 1); 6495 return; 6496 } 6497 6498 const APInt *C; 6499 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6500 return; 6501 6502 switch (R.Flavor) { 6503 case SPF_UMIN: 6504 Upper = *C + 1; 6505 break; 6506 case SPF_UMAX: 6507 Lower = *C; 6508 break; 6509 case SPF_SMIN: 6510 Lower = APInt::getSignedMinValue(BitWidth); 6511 Upper = *C + 1; 6512 break; 6513 case SPF_SMAX: 6514 Lower = *C; 6515 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6516 break; 6517 default: 6518 break; 6519 } 6520 } 6521 6522 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6523 AssumptionCache *AC, 6524 const Instruction *CtxI, 6525 unsigned Depth) { 6526 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6527 6528 if (Depth == MaxAnalysisRecursionDepth) 6529 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6530 6531 const APInt *C; 6532 if (match(V, m_APInt(C))) 6533 return ConstantRange(*C); 6534 6535 InstrInfoQuery IIQ(UseInstrInfo); 6536 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6537 APInt Lower = APInt(BitWidth, 0); 6538 APInt Upper = APInt(BitWidth, 0); 6539 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6540 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6541 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6542 setLimitsForIntrinsic(*II, Lower, Upper); 6543 else if (auto *SI = dyn_cast<SelectInst>(V)) 6544 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6545 6546 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6547 6548 if (auto *I = dyn_cast<Instruction>(V)) 6549 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6550 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6551 6552 if (CtxI && AC) { 6553 // Try to restrict the range based on information from assumptions. 6554 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6555 if (!AssumeVH) 6556 continue; 6557 CallInst *I = cast<CallInst>(AssumeVH); 6558 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6559 "Got assumption for the wrong function!"); 6560 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6561 "must be an assume intrinsic"); 6562 6563 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6564 continue; 6565 Value *Arg = I->getArgOperand(0); 6566 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6567 // Currently we just use information from comparisons. 6568 if (!Cmp || Cmp->getOperand(0) != V) 6569 continue; 6570 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6571 AC, I, Depth + 1); 6572 CR = CR.intersectWith( 6573 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6574 } 6575 } 6576 6577 return CR; 6578 } 6579 6580 static Optional<int64_t> 6581 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6582 // Skip over the first indices. 6583 gep_type_iterator GTI = gep_type_begin(GEP); 6584 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6585 /*skip along*/; 6586 6587 // Compute the offset implied by the rest of the indices. 6588 int64_t Offset = 0; 6589 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6590 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6591 if (!OpC) 6592 return None; 6593 if (OpC->isZero()) 6594 continue; // No offset. 6595 6596 // Handle struct indices, which add their field offset to the pointer. 6597 if (StructType *STy = GTI.getStructTypeOrNull()) { 6598 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6599 continue; 6600 } 6601 6602 // Otherwise, we have a sequential type like an array or fixed-length 6603 // vector. Multiply the index by the ElementSize. 6604 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6605 if (Size.isScalable()) 6606 return None; 6607 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6608 } 6609 6610 return Offset; 6611 } 6612 6613 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6614 const DataLayout &DL) { 6615 Ptr1 = Ptr1->stripPointerCasts(); 6616 Ptr2 = Ptr2->stripPointerCasts(); 6617 6618 // Handle the trivial case first. 6619 if (Ptr1 == Ptr2) { 6620 return 0; 6621 } 6622 6623 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6624 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6625 6626 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6627 // as in "P" and "gep P, 1". 6628 // Also do this iteratively to handle the the following case: 6629 // Ptr_t1 = GEP Ptr1, c1 6630 // Ptr_t2 = GEP Ptr_t1, c2 6631 // Ptr2 = GEP Ptr_t2, c3 6632 // where we will return c1+c2+c3. 6633 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6634 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6635 // are the same, and return the difference between offsets. 6636 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6637 const Value *Ptr) -> Optional<int64_t> { 6638 const GEPOperator *GEP_T = GEP; 6639 int64_t OffsetVal = 0; 6640 bool HasSameBase = false; 6641 while (GEP_T) { 6642 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6643 if (!Offset) 6644 return None; 6645 OffsetVal += *Offset; 6646 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6647 if (Op0 == Ptr) { 6648 HasSameBase = true; 6649 break; 6650 } 6651 GEP_T = dyn_cast<GEPOperator>(Op0); 6652 } 6653 if (!HasSameBase) 6654 return None; 6655 return OffsetVal; 6656 }; 6657 6658 if (GEP1) { 6659 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6660 if (Offset) 6661 return -*Offset; 6662 } 6663 if (GEP2) { 6664 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6665 if (Offset) 6666 return Offset; 6667 } 6668 6669 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6670 // base. After that base, they may have some number of common (and 6671 // potentially variable) indices. After that they handle some constant 6672 // offset, which determines their offset from each other. At this point, we 6673 // handle no other case. 6674 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6675 return None; 6676 6677 // Skip any common indices and track the GEP types. 6678 unsigned Idx = 1; 6679 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6680 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6681 break; 6682 6683 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6684 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6685 if (!Offset1 || !Offset2) 6686 return None; 6687 return *Offset2 - *Offset1; 6688 } 6689