1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/IR/CallSite.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/MathExtras.h" 34 #include <cstring> 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 const unsigned MaxDepth = 6; 39 40 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 41 /// unknown returns 0). For vector types, returns the element type's bitwidth. 42 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 43 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 44 return BitWidth; 45 46 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; 47 } 48 49 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 50 APInt &KnownZero, APInt &KnownOne, 51 APInt &KnownZero2, APInt &KnownOne2, 52 const DataLayout *TD, unsigned Depth) { 53 unsigned BitWidth = KnownZero.getBitWidth(); 54 55 // If an initial sequence of bits in the result is not needed, the 56 // corresponding bits in the operands are not needed. 57 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 58 llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); 59 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 60 61 // Carry in a 1 for a subtract, rather than a 0. 62 APInt CarryIn(BitWidth, 0); 63 if (!Add) { 64 // Sum = LHS + ~RHS + 1 65 std::swap(KnownZero2, KnownOne2); 66 CarryIn.setBit(0); 67 } 68 69 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 70 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 71 72 // Compute known bits of the carry. 73 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 74 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 75 76 // Compute set of known bits (where all three relevant bits are known). 77 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 78 APInt RHSKnown = KnownZero2 | KnownOne2; 79 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 80 APInt Known = LHSKnown & RHSKnown & CarryKnown; 81 82 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 83 "known bits of sum differ"); 84 85 // Compute known bits of the result. 86 KnownZero = ~PossibleSumOne & Known; 87 KnownOne = PossibleSumOne & Known; 88 89 // Are we still trying to solve for the sign bit? 90 if (!Known.isNegative()) { 91 if (NSW) { 92 // Adding two non-negative numbers, or subtracting a negative number from 93 // a non-negative one, can't wrap into negative. 94 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 95 KnownZero |= APInt::getSignBit(BitWidth); 96 // Adding two negative numbers, or subtracting a non-negative number from 97 // a negative one, can't wrap into non-negative. 98 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 99 KnownOne |= APInt::getSignBit(BitWidth); 100 } 101 } 102 } 103 104 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 105 APInt &KnownZero, APInt &KnownOne, 106 APInt &KnownZero2, APInt &KnownOne2, 107 const DataLayout *TD, unsigned Depth) { 108 unsigned BitWidth = KnownZero.getBitWidth(); 109 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1); 110 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); 111 112 bool isKnownNegative = false; 113 bool isKnownNonNegative = false; 114 // If the multiplication is known not to overflow, compute the sign bit. 115 if (NSW) { 116 if (Op0 == Op1) { 117 // The product of a number with itself is non-negative. 118 isKnownNonNegative = true; 119 } else { 120 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 121 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 122 bool isKnownNegativeOp1 = KnownOne.isNegative(); 123 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 124 // The product of two numbers with the same sign is non-negative. 125 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 126 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 127 // The product of a negative number and a non-negative number is either 128 // negative or zero. 129 if (!isKnownNonNegative) 130 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 131 isKnownNonZero(Op0, TD, Depth)) || 132 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 133 isKnownNonZero(Op1, TD, Depth)); 134 } 135 } 136 137 // If low bits are zero in either operand, output low known-0 bits. 138 // Also compute a conserative estimate for high known-0 bits. 139 // More trickiness is possible, but this is sufficient for the 140 // interesting case of alignment computation. 141 KnownOne.clearAllBits(); 142 unsigned TrailZ = KnownZero.countTrailingOnes() + 143 KnownZero2.countTrailingOnes(); 144 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 145 KnownZero2.countLeadingOnes(), 146 BitWidth) - BitWidth; 147 148 TrailZ = std::min(TrailZ, BitWidth); 149 LeadZ = std::min(LeadZ, BitWidth); 150 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 151 APInt::getHighBitsSet(BitWidth, LeadZ); 152 153 // Only make use of no-wrap flags if we failed to compute the sign bit 154 // directly. This matters if the multiplication always overflows, in 155 // which case we prefer to follow the result of the direct computation, 156 // though as the program is invoking undefined behaviour we can choose 157 // whatever we like here. 158 if (isKnownNonNegative && !KnownOne.isNegative()) 159 KnownZero.setBit(BitWidth - 1); 160 else if (isKnownNegative && !KnownZero.isNegative()) 161 KnownOne.setBit(BitWidth - 1); 162 } 163 164 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 165 APInt &KnownZero) { 166 unsigned BitWidth = KnownZero.getBitWidth(); 167 unsigned NumRanges = Ranges.getNumOperands() / 2; 168 assert(NumRanges >= 1); 169 170 // Use the high end of the ranges to find leading zeros. 171 unsigned MinLeadingZeros = BitWidth; 172 for (unsigned i = 0; i < NumRanges; ++i) { 173 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 174 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 175 ConstantRange Range(Lower->getValue(), Upper->getValue()); 176 if (Range.isWrappedSet()) 177 MinLeadingZeros = 0; // -1 has no zeros 178 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 179 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 180 } 181 182 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 183 } 184 185 /// Determine which bits of V are known to be either zero or one and return 186 /// them in the KnownZero/KnownOne bit sets. 187 /// 188 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 189 /// we cannot optimize based on the assumption that it is zero without changing 190 /// it to be an explicit zero. If we don't change it to zero, other code could 191 /// optimized based on the contradictory assumption that it is non-zero. 192 /// Because instcombine aggressively folds operations with undef args anyway, 193 /// this won't lose us code quality. 194 /// 195 /// This function is defined on values with integer type, values with pointer 196 /// type (but only if TD is non-null), and vectors of integers. In the case 197 /// where V is a vector, known zero, and known one values are the 198 /// same width as the vector element, and the bit is set only if it is true 199 /// for all of the elements in the vector. 200 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 201 const DataLayout *TD, unsigned Depth) { 202 assert(V && "No Value?"); 203 assert(Depth <= MaxDepth && "Limit Search Depth"); 204 unsigned BitWidth = KnownZero.getBitWidth(); 205 206 assert((V->getType()->isIntOrIntVectorTy() || 207 V->getType()->getScalarType()->isPointerTy()) && 208 "Not integer or pointer type!"); 209 assert((!TD || 210 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 211 (!V->getType()->isIntOrIntVectorTy() || 212 V->getType()->getScalarSizeInBits() == BitWidth) && 213 KnownZero.getBitWidth() == BitWidth && 214 KnownOne.getBitWidth() == BitWidth && 215 "V, KnownOne and KnownZero should have same BitWidth"); 216 217 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 218 // We know all of the bits for a constant! 219 KnownOne = CI->getValue(); 220 KnownZero = ~KnownOne; 221 return; 222 } 223 // Null and aggregate-zero are all-zeros. 224 if (isa<ConstantPointerNull>(V) || 225 isa<ConstantAggregateZero>(V)) { 226 KnownOne.clearAllBits(); 227 KnownZero = APInt::getAllOnesValue(BitWidth); 228 return; 229 } 230 // Handle a constant vector by taking the intersection of the known bits of 231 // each element. There is no real need to handle ConstantVector here, because 232 // we don't handle undef in any particularly useful way. 233 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 234 // We know that CDS must be a vector of integers. Take the intersection of 235 // each element. 236 KnownZero.setAllBits(); KnownOne.setAllBits(); 237 APInt Elt(KnownZero.getBitWidth(), 0); 238 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 239 Elt = CDS->getElementAsInteger(i); 240 KnownZero &= ~Elt; 241 KnownOne &= Elt; 242 } 243 return; 244 } 245 246 // The address of an aligned GlobalValue has trailing zeros. 247 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 248 unsigned Align = GV->getAlignment(); 249 if (Align == 0 && TD) { 250 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 251 Type *ObjectType = GVar->getType()->getElementType(); 252 if (ObjectType->isSized()) { 253 // If the object is defined in the current Module, we'll be giving 254 // it the preferred alignment. Otherwise, we have to assume that it 255 // may only have the minimum ABI alignment. 256 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 257 Align = TD->getPreferredAlignment(GVar); 258 else 259 Align = TD->getABITypeAlignment(ObjectType); 260 } 261 } 262 } 263 if (Align > 0) 264 KnownZero = APInt::getLowBitsSet(BitWidth, 265 countTrailingZeros(Align)); 266 else 267 KnownZero.clearAllBits(); 268 KnownOne.clearAllBits(); 269 return; 270 } 271 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 272 // the bits of its aliasee. 273 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 274 if (GA->mayBeOverridden()) { 275 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 276 } else { 277 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); 278 } 279 return; 280 } 281 282 if (Argument *A = dyn_cast<Argument>(V)) { 283 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 284 285 if (!Align && TD && A->hasStructRetAttr()) { 286 // An sret parameter has at least the ABI alignment of the return type. 287 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 288 if (EltTy->isSized()) 289 Align = TD->getABITypeAlignment(EltTy); 290 } 291 292 if (Align) 293 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 294 return; 295 } 296 297 // Start out not knowing anything. 298 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 299 300 if (Depth == MaxDepth) 301 return; // Limit search depth. 302 303 Operator *I = dyn_cast<Operator>(V); 304 if (!I) return; 305 306 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 307 switch (I->getOpcode()) { 308 default: break; 309 case Instruction::Load: 310 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 311 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 312 break; 313 case Instruction::And: { 314 // If either the LHS or the RHS are Zero, the result is zero. 315 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 316 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 317 318 // Output known-1 bits are only known if set in both the LHS & RHS. 319 KnownOne &= KnownOne2; 320 // Output known-0 are known to be clear if zero in either the LHS | RHS. 321 KnownZero |= KnownZero2; 322 break; 323 } 324 case Instruction::Or: { 325 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 326 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 327 328 // Output known-0 bits are only known if clear in both the LHS & RHS. 329 KnownZero &= KnownZero2; 330 // Output known-1 are known to be set if set in either the LHS | RHS. 331 KnownOne |= KnownOne2; 332 break; 333 } 334 case Instruction::Xor: { 335 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 336 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 337 338 // Output known-0 bits are known if clear or set in both the LHS & RHS. 339 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 340 // Output known-1 are known to be set if set in only one of the LHS, RHS. 341 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 342 KnownZero = KnownZeroOut; 343 break; 344 } 345 case Instruction::Mul: { 346 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 347 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, 348 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); 349 break; 350 } 351 case Instruction::UDiv: { 352 // For the purposes of computing leading zeros we can conservatively 353 // treat a udiv as a logical right shift by the power of 2 known to 354 // be less than the denominator. 355 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 356 unsigned LeadZ = KnownZero2.countLeadingOnes(); 357 358 KnownOne2.clearAllBits(); 359 KnownZero2.clearAllBits(); 360 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 361 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 362 if (RHSUnknownLeadingOnes != BitWidth) 363 LeadZ = std::min(BitWidth, 364 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 365 366 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 367 break; 368 } 369 case Instruction::Select: 370 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); 371 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, 372 Depth+1); 373 374 // Only known if known in both the LHS and RHS. 375 KnownOne &= KnownOne2; 376 KnownZero &= KnownZero2; 377 break; 378 case Instruction::FPTrunc: 379 case Instruction::FPExt: 380 case Instruction::FPToUI: 381 case Instruction::FPToSI: 382 case Instruction::SIToFP: 383 case Instruction::UIToFP: 384 break; // Can't work with floating point. 385 case Instruction::PtrToInt: 386 case Instruction::IntToPtr: 387 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 388 // We can't handle these if we don't know the pointer size. 389 if (!TD) break; 390 // FALL THROUGH and handle them the same as zext/trunc. 391 case Instruction::ZExt: 392 case Instruction::Trunc: { 393 Type *SrcTy = I->getOperand(0)->getType(); 394 395 unsigned SrcBitWidth; 396 // Note that we handle pointer operands here because of inttoptr/ptrtoint 397 // which fall through here. 398 if(TD) { 399 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 400 } else { 401 SrcBitWidth = SrcTy->getScalarSizeInBits(); 402 if (!SrcBitWidth) break; 403 } 404 405 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 406 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 407 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 408 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 409 KnownZero = KnownZero.zextOrTrunc(BitWidth); 410 KnownOne = KnownOne.zextOrTrunc(BitWidth); 411 // Any top bits are known to be zero. 412 if (BitWidth > SrcBitWidth) 413 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 414 break; 415 } 416 case Instruction::BitCast: { 417 Type *SrcTy = I->getOperand(0)->getType(); 418 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 419 // TODO: For now, not handling conversions like: 420 // (bitcast i64 %x to <2 x i32>) 421 !I->getType()->isVectorTy()) { 422 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 423 break; 424 } 425 break; 426 } 427 case Instruction::SExt: { 428 // Compute the bits in the result that are not present in the input. 429 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 430 431 KnownZero = KnownZero.trunc(SrcBitWidth); 432 KnownOne = KnownOne.trunc(SrcBitWidth); 433 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 434 KnownZero = KnownZero.zext(BitWidth); 435 KnownOne = KnownOne.zext(BitWidth); 436 437 // If the sign bit of the input is known set or clear, then we know the 438 // top bits of the result. 439 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 440 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 441 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 442 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 443 break; 444 } 445 case Instruction::Shl: 446 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 447 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 448 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 449 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 450 KnownZero <<= ShiftAmt; 451 KnownOne <<= ShiftAmt; 452 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 453 break; 454 } 455 break; 456 case Instruction::LShr: 457 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 458 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 459 // Compute the new bits that are at the top now. 460 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 461 462 // Unsigned shift right. 463 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); 464 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 465 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 466 // high bits known zero. 467 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 468 break; 469 } 470 break; 471 case Instruction::AShr: 472 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 473 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 474 // Compute the new bits that are at the top now. 475 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 476 477 // Signed shift right. 478 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 479 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 480 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 481 482 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 483 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 484 KnownZero |= HighBits; 485 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 486 KnownOne |= HighBits; 487 break; 488 } 489 break; 490 case Instruction::Sub: { 491 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 492 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 493 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 494 Depth); 495 break; 496 } 497 case Instruction::Add: { 498 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 499 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 500 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 501 Depth); 502 break; 503 } 504 case Instruction::SRem: 505 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 506 APInt RA = Rem->getValue().abs(); 507 if (RA.isPowerOf2()) { 508 APInt LowBits = RA - 1; 509 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 510 511 // The low bits of the first operand are unchanged by the srem. 512 KnownZero = KnownZero2 & LowBits; 513 KnownOne = KnownOne2 & LowBits; 514 515 // If the first operand is non-negative or has all low bits zero, then 516 // the upper bits are all zero. 517 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 518 KnownZero |= ~LowBits; 519 520 // If the first operand is negative and not all low bits are zero, then 521 // the upper bits are all one. 522 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 523 KnownOne |= ~LowBits; 524 525 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 526 } 527 } 528 529 // The sign bit is the LHS's sign bit, except when the result of the 530 // remainder is zero. 531 if (KnownZero.isNonNegative()) { 532 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 533 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 534 Depth+1); 535 // If it's known zero, our sign bit is also zero. 536 if (LHSKnownZero.isNegative()) 537 KnownZero.setBit(BitWidth - 1); 538 } 539 540 break; 541 case Instruction::URem: { 542 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 543 APInt RA = Rem->getValue(); 544 if (RA.isPowerOf2()) { 545 APInt LowBits = (RA - 1); 546 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, 547 Depth+1); 548 KnownZero |= ~LowBits; 549 KnownOne &= LowBits; 550 break; 551 } 552 } 553 554 // Since the result is less than or equal to either operand, any leading 555 // zero bits in either operand must also exist in the result. 556 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 557 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 558 559 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 560 KnownZero2.countLeadingOnes()); 561 KnownOne.clearAllBits(); 562 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 563 break; 564 } 565 566 case Instruction::Alloca: { 567 AllocaInst *AI = cast<AllocaInst>(V); 568 unsigned Align = AI->getAlignment(); 569 if (Align == 0 && TD) 570 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 571 572 if (Align > 0) 573 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 574 break; 575 } 576 case Instruction::GetElementPtr: { 577 // Analyze all of the subscripts of this getelementptr instruction 578 // to determine if we can prove known low zero bits. 579 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 580 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 581 Depth+1); 582 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 583 584 gep_type_iterator GTI = gep_type_begin(I); 585 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 586 Value *Index = I->getOperand(i); 587 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 588 // Handle struct member offset arithmetic. 589 if (!TD) { 590 TrailZ = 0; 591 break; 592 } 593 594 // Handle case when index is vector zeroinitializer 595 Constant *CIndex = cast<Constant>(Index); 596 if (CIndex->isZeroValue()) 597 continue; 598 599 if (CIndex->getType()->isVectorTy()) 600 Index = CIndex->getSplatValue(); 601 602 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 603 const StructLayout *SL = TD->getStructLayout(STy); 604 uint64_t Offset = SL->getElementOffset(Idx); 605 TrailZ = std::min<unsigned>(TrailZ, 606 countTrailingZeros(Offset)); 607 } else { 608 // Handle array index arithmetic. 609 Type *IndexedTy = GTI.getIndexedType(); 610 if (!IndexedTy->isSized()) { 611 TrailZ = 0; 612 break; 613 } 614 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 615 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 616 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 617 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); 618 TrailZ = std::min(TrailZ, 619 unsigned(countTrailingZeros(TypeSize) + 620 LocalKnownZero.countTrailingOnes())); 621 } 622 } 623 624 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 625 break; 626 } 627 case Instruction::PHI: { 628 PHINode *P = cast<PHINode>(I); 629 // Handle the case of a simple two-predecessor recurrence PHI. 630 // There's a lot more that could theoretically be done here, but 631 // this is sufficient to catch some interesting cases. 632 if (P->getNumIncomingValues() == 2) { 633 for (unsigned i = 0; i != 2; ++i) { 634 Value *L = P->getIncomingValue(i); 635 Value *R = P->getIncomingValue(!i); 636 Operator *LU = dyn_cast<Operator>(L); 637 if (!LU) 638 continue; 639 unsigned Opcode = LU->getOpcode(); 640 // Check for operations that have the property that if 641 // both their operands have low zero bits, the result 642 // will have low zero bits. 643 if (Opcode == Instruction::Add || 644 Opcode == Instruction::Sub || 645 Opcode == Instruction::And || 646 Opcode == Instruction::Or || 647 Opcode == Instruction::Mul) { 648 Value *LL = LU->getOperand(0); 649 Value *LR = LU->getOperand(1); 650 // Find a recurrence. 651 if (LL == I) 652 L = LR; 653 else if (LR == I) 654 L = LL; 655 else 656 break; 657 // Ok, we have a PHI of the form L op= R. Check for low 658 // zero bits. 659 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1); 660 661 // We need to take the minimum number of known bits 662 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 663 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1); 664 665 KnownZero = APInt::getLowBitsSet(BitWidth, 666 std::min(KnownZero2.countTrailingOnes(), 667 KnownZero3.countTrailingOnes())); 668 break; 669 } 670 } 671 } 672 673 // Unreachable blocks may have zero-operand PHI nodes. 674 if (P->getNumIncomingValues() == 0) 675 break; 676 677 // Otherwise take the unions of the known bit sets of the operands, 678 // taking conservative care to avoid excessive recursion. 679 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 680 // Skip if every incoming value references to ourself. 681 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 682 break; 683 684 KnownZero = APInt::getAllOnesValue(BitWidth); 685 KnownOne = APInt::getAllOnesValue(BitWidth); 686 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 687 // Skip direct self references. 688 if (P->getIncomingValue(i) == P) continue; 689 690 KnownZero2 = APInt(BitWidth, 0); 691 KnownOne2 = APInt(BitWidth, 0); 692 // Recurse, but cap the recursion to one level, because we don't 693 // want to waste time spinning around in loops. 694 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 695 MaxDepth-1); 696 KnownZero &= KnownZero2; 697 KnownOne &= KnownOne2; 698 // If all bits have been ruled out, there's no need to check 699 // more operands. 700 if (!KnownZero && !KnownOne) 701 break; 702 } 703 } 704 break; 705 } 706 case Instruction::Call: 707 case Instruction::Invoke: 708 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 709 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 710 // If a range metadata is attached to this IntrinsicInst, intersect the 711 // explicit range specified by the metadata and the implicit range of 712 // the intrinsic. 713 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 714 switch (II->getIntrinsicID()) { 715 default: break; 716 case Intrinsic::ctlz: 717 case Intrinsic::cttz: { 718 unsigned LowBits = Log2_32(BitWidth)+1; 719 // If this call is undefined for 0, the result will be less than 2^n. 720 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 721 LowBits -= 1; 722 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 723 break; 724 } 725 case Intrinsic::ctpop: { 726 unsigned LowBits = Log2_32(BitWidth)+1; 727 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 728 break; 729 } 730 case Intrinsic::x86_sse42_crc32_64_64: 731 KnownZero |= APInt::getHighBitsSet(64, 32); 732 break; 733 } 734 } 735 break; 736 case Instruction::ExtractValue: 737 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 738 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 739 if (EVI->getNumIndices() != 1) break; 740 if (EVI->getIndices()[0] == 0) { 741 switch (II->getIntrinsicID()) { 742 default: break; 743 case Intrinsic::uadd_with_overflow: 744 case Intrinsic::sadd_with_overflow: 745 computeKnownBitsAddSub(true, II->getArgOperand(0), 746 II->getArgOperand(1), false, KnownZero, 747 KnownOne, KnownZero2, KnownOne2, TD, Depth); 748 break; 749 case Intrinsic::usub_with_overflow: 750 case Intrinsic::ssub_with_overflow: 751 computeKnownBitsAddSub(false, II->getArgOperand(0), 752 II->getArgOperand(1), false, KnownZero, 753 KnownOne, KnownZero2, KnownOne2, TD, Depth); 754 break; 755 case Intrinsic::umul_with_overflow: 756 case Intrinsic::smul_with_overflow: 757 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), 758 false, KnownZero, KnownOne, 759 KnownZero2, KnownOne2, TD, Depth); 760 break; 761 } 762 } 763 } 764 } 765 766 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 767 } 768 769 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 770 /// one. Convenience wrapper around computeKnownBits. 771 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 772 const DataLayout *TD, unsigned Depth) { 773 unsigned BitWidth = getBitWidth(V->getType(), TD); 774 if (!BitWidth) { 775 KnownZero = false; 776 KnownOne = false; 777 return; 778 } 779 APInt ZeroBits(BitWidth, 0); 780 APInt OneBits(BitWidth, 0); 781 computeKnownBits(V, ZeroBits, OneBits, TD, Depth); 782 KnownOne = OneBits[BitWidth - 1]; 783 KnownZero = ZeroBits[BitWidth - 1]; 784 } 785 786 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one 787 /// bit set when defined. For vectors return true if every element is known to 788 /// be a power of two when defined. Supports values with integer or pointer 789 /// types and vectors of integers. 790 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { 791 if (Constant *C = dyn_cast<Constant>(V)) { 792 if (C->isNullValue()) 793 return OrZero; 794 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 795 return CI->getValue().isPowerOf2(); 796 // TODO: Handle vector constants. 797 } 798 799 // 1 << X is clearly a power of two if the one is not shifted off the end. If 800 // it is shifted off the end then the result is undefined. 801 if (match(V, m_Shl(m_One(), m_Value()))) 802 return true; 803 804 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 805 // bottom. If it is shifted off the bottom then the result is undefined. 806 if (match(V, m_LShr(m_SignBit(), m_Value()))) 807 return true; 808 809 // The remaining tests are all recursive, so bail out if we hit the limit. 810 if (Depth++ == MaxDepth) 811 return false; 812 813 Value *X = nullptr, *Y = nullptr; 814 // A shift of a power of two is a power of two or zero. 815 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 816 match(V, m_Shr(m_Value(X), m_Value())))) 817 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth); 818 819 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 820 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth); 821 822 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 823 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) && 824 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth); 825 826 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 827 // A power of two and'd with anything is a power of two or zero. 828 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) || 829 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth)) 830 return true; 831 // X & (-X) is always a power of two or zero. 832 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 833 return true; 834 return false; 835 } 836 837 // Adding a power-of-two or zero to the same power-of-two or zero yields 838 // either the original power-of-two, a larger power-of-two or zero. 839 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 840 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 841 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 842 if (match(X, m_And(m_Specific(Y), m_Value())) || 843 match(X, m_And(m_Value(), m_Specific(Y)))) 844 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth)) 845 return true; 846 if (match(Y, m_And(m_Specific(X), m_Value())) || 847 match(Y, m_And(m_Value(), m_Specific(X)))) 848 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth)) 849 return true; 850 851 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 852 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 853 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth); 854 855 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 856 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth); 857 // If i8 V is a power of two or zero: 858 // ZeroBits: 1 1 1 0 1 1 1 1 859 // ~ZeroBits: 0 0 0 1 0 0 0 0 860 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 861 // If OrZero isn't set, we cannot give back a zero result. 862 // Make sure either the LHS or RHS has a bit set. 863 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 864 return true; 865 } 866 } 867 868 // An exact divide or right shift can only shift off zero bits, so the result 869 // is a power of two only if the first operand is a power of two and not 870 // copying a sign bit (sdiv int_min, 2). 871 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 872 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 873 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth); 874 } 875 876 return false; 877 } 878 879 /// \brief Test whether a GEP's result is known to be non-null. 880 /// 881 /// Uses properties inherent in a GEP to try to determine whether it is known 882 /// to be non-null. 883 /// 884 /// Currently this routine does not support vector GEPs. 885 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 886 unsigned Depth) { 887 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 888 return false; 889 890 // FIXME: Support vector-GEPs. 891 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 892 893 // If the base pointer is non-null, we cannot walk to a null address with an 894 // inbounds GEP in address space zero. 895 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) 896 return true; 897 898 // Past this, if we don't have DataLayout, we can't do much. 899 if (!DL) 900 return false; 901 902 // Walk the GEP operands and see if any operand introduces a non-zero offset. 903 // If so, then the GEP cannot produce a null pointer, as doing so would 904 // inherently violate the inbounds contract within address space zero. 905 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 906 GTI != GTE; ++GTI) { 907 // Struct types are easy -- they must always be indexed by a constant. 908 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 909 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 910 unsigned ElementIdx = OpC->getZExtValue(); 911 const StructLayout *SL = DL->getStructLayout(STy); 912 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 913 if (ElementOffset > 0) 914 return true; 915 continue; 916 } 917 918 // If we have a zero-sized type, the index doesn't matter. Keep looping. 919 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 920 continue; 921 922 // Fast path the constant operand case both for efficiency and so we don't 923 // increment Depth when just zipping down an all-constant GEP. 924 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 925 if (!OpC->isZero()) 926 return true; 927 continue; 928 } 929 930 // We post-increment Depth here because while isKnownNonZero increments it 931 // as well, when we pop back up that increment won't persist. We don't want 932 // to recurse 10k times just because we have 10k GEP operands. We don't 933 // bail completely out because we want to handle constant GEPs regardless 934 // of depth. 935 if (Depth++ >= MaxDepth) 936 continue; 937 938 if (isKnownNonZero(GTI.getOperand(), DL, Depth)) 939 return true; 940 } 941 942 return false; 943 } 944 945 /// isKnownNonZero - Return true if the given value is known to be non-zero 946 /// when defined. For vectors return true if every element is known to be 947 /// non-zero when defined. Supports values with integer or pointer type and 948 /// vectors of integers. 949 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { 950 if (Constant *C = dyn_cast<Constant>(V)) { 951 if (C->isNullValue()) 952 return false; 953 if (isa<ConstantInt>(C)) 954 // Must be non-zero due to null test above. 955 return true; 956 // TODO: Handle vectors 957 return false; 958 } 959 960 // The remaining tests are all recursive, so bail out if we hit the limit. 961 if (Depth++ >= MaxDepth) 962 return false; 963 964 // Check for pointer simplifications. 965 if (V->getType()->isPointerTy()) { 966 if (isKnownNonNull(V)) 967 return true; 968 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 969 if (isGEPKnownNonNull(GEP, TD, Depth)) 970 return true; 971 } 972 973 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 974 975 // X | Y != 0 if X != 0 or Y != 0. 976 Value *X = nullptr, *Y = nullptr; 977 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 978 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 979 980 // ext X != 0 if X != 0. 981 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 982 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 983 984 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 985 // if the lowest bit is shifted off the end. 986 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 987 // shl nuw can't remove any non-zero bits. 988 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 989 if (BO->hasNoUnsignedWrap()) 990 return isKnownNonZero(X, TD, Depth); 991 992 APInt KnownZero(BitWidth, 0); 993 APInt KnownOne(BitWidth, 0); 994 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 995 if (KnownOne[0]) 996 return true; 997 } 998 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 999 // defined if the sign bit is shifted off the end. 1000 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1001 // shr exact can only shift out zero bits. 1002 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1003 if (BO->isExact()) 1004 return isKnownNonZero(X, TD, Depth); 1005 1006 bool XKnownNonNegative, XKnownNegative; 1007 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1008 if (XKnownNegative) 1009 return true; 1010 } 1011 // div exact can only produce a zero if the dividend is zero. 1012 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1013 return isKnownNonZero(X, TD, Depth); 1014 } 1015 // X + Y. 1016 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1017 bool XKnownNonNegative, XKnownNegative; 1018 bool YKnownNonNegative, YKnownNegative; 1019 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1020 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 1021 1022 // If X and Y are both non-negative (as signed values) then their sum is not 1023 // zero unless both X and Y are zero. 1024 if (XKnownNonNegative && YKnownNonNegative) 1025 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 1026 return true; 1027 1028 // If X and Y are both negative (as signed values) then their sum is not 1029 // zero unless both X and Y equal INT_MIN. 1030 if (BitWidth && XKnownNegative && YKnownNegative) { 1031 APInt KnownZero(BitWidth, 0); 1032 APInt KnownOne(BitWidth, 0); 1033 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1034 // The sign bit of X is set. If some other bit is set then X is not equal 1035 // to INT_MIN. 1036 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 1037 if ((KnownOne & Mask) != 0) 1038 return true; 1039 // The sign bit of Y is set. If some other bit is set then Y is not equal 1040 // to INT_MIN. 1041 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth); 1042 if ((KnownOne & Mask) != 0) 1043 return true; 1044 } 1045 1046 // The sum of a non-negative number and a power of two is not zero. 1047 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth)) 1048 return true; 1049 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth)) 1050 return true; 1051 } 1052 // X * Y. 1053 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1054 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1055 // If X and Y are non-zero then so is X * Y as long as the multiplication 1056 // does not overflow. 1057 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1058 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 1059 return true; 1060 } 1061 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1062 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1063 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 1064 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 1065 return true; 1066 } 1067 1068 if (!BitWidth) return false; 1069 APInt KnownZero(BitWidth, 0); 1070 APInt KnownOne(BitWidth, 0); 1071 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1072 return KnownOne != 0; 1073 } 1074 1075 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1076 /// this predicate to simplify operations downstream. Mask is known to be zero 1077 /// for bits that V cannot have. 1078 /// 1079 /// This function is defined on values with integer type, values with pointer 1080 /// type (but only if TD is non-null), and vectors of integers. In the case 1081 /// where V is a vector, the mask, known zero, and known one values are the 1082 /// same width as the vector element, and the bit is set only if it is true 1083 /// for all of the elements in the vector. 1084 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 1085 const DataLayout *TD, unsigned Depth) { 1086 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1087 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1088 return (KnownZero & Mask) == Mask; 1089 } 1090 1091 1092 1093 /// ComputeNumSignBits - Return the number of times the sign bit of the 1094 /// register is replicated into the other bits. We know that at least 1 bit 1095 /// is always equal to the sign bit (itself), but other cases can give us 1096 /// information. For example, immediately after an "ashr X, 2", we know that 1097 /// the top 3 bits are all equal to each other, so we return 3. 1098 /// 1099 /// 'Op' must have a scalar integer type. 1100 /// 1101 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 1102 unsigned Depth) { 1103 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1104 "ComputeNumSignBits requires a DataLayout object to operate " 1105 "on non-integer values!"); 1106 Type *Ty = V->getType(); 1107 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1108 Ty->getScalarSizeInBits(); 1109 unsigned Tmp, Tmp2; 1110 unsigned FirstAnswer = 1; 1111 1112 // Note that ConstantInt is handled by the general computeKnownBits case 1113 // below. 1114 1115 if (Depth == 6) 1116 return 1; // Limit search depth. 1117 1118 Operator *U = dyn_cast<Operator>(V); 1119 switch (Operator::getOpcode(V)) { 1120 default: break; 1121 case Instruction::SExt: 1122 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1123 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1124 1125 case Instruction::AShr: { 1126 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1127 // ashr X, C -> adds C sign bits. Vectors too. 1128 const APInt *ShAmt; 1129 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1130 Tmp += ShAmt->getZExtValue(); 1131 if (Tmp > TyBits) Tmp = TyBits; 1132 } 1133 return Tmp; 1134 } 1135 case Instruction::Shl: { 1136 const APInt *ShAmt; 1137 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1138 // shl destroys sign bits. 1139 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1140 Tmp2 = ShAmt->getZExtValue(); 1141 if (Tmp2 >= TyBits || // Bad shift. 1142 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1143 return Tmp - Tmp2; 1144 } 1145 break; 1146 } 1147 case Instruction::And: 1148 case Instruction::Or: 1149 case Instruction::Xor: // NOT is handled here. 1150 // Logical binary ops preserve the number of sign bits at the worst. 1151 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1152 if (Tmp != 1) { 1153 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1154 FirstAnswer = std::min(Tmp, Tmp2); 1155 // We computed what we know about the sign bits as our first 1156 // answer. Now proceed to the generic code that uses 1157 // computeKnownBits, and pick whichever answer is better. 1158 } 1159 break; 1160 1161 case Instruction::Select: 1162 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1163 if (Tmp == 1) return 1; // Early out. 1164 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1165 return std::min(Tmp, Tmp2); 1166 1167 case Instruction::Add: 1168 // Add can have at most one carry bit. Thus we know that the output 1169 // is, at worst, one more bit than the inputs. 1170 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1171 if (Tmp == 1) return 1; // Early out. 1172 1173 // Special case decrementing a value (ADD X, -1): 1174 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1175 if (CRHS->isAllOnesValue()) { 1176 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1177 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 1178 1179 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1180 // sign bits set. 1181 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1182 return TyBits; 1183 1184 // If we are subtracting one from a positive number, there is no carry 1185 // out of the result. 1186 if (KnownZero.isNegative()) 1187 return Tmp; 1188 } 1189 1190 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1191 if (Tmp2 == 1) return 1; 1192 return std::min(Tmp, Tmp2)-1; 1193 1194 case Instruction::Sub: 1195 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1196 if (Tmp2 == 1) return 1; 1197 1198 // Handle NEG. 1199 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1200 if (CLHS->isNullValue()) { 1201 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1202 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 1203 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1204 // sign bits set. 1205 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1206 return TyBits; 1207 1208 // If the input is known to be positive (the sign bit is known clear), 1209 // the output of the NEG has the same number of sign bits as the input. 1210 if (KnownZero.isNegative()) 1211 return Tmp2; 1212 1213 // Otherwise, we treat this like a SUB. 1214 } 1215 1216 // Sub can have at most one carry bit. Thus we know that the output 1217 // is, at worst, one more bit than the inputs. 1218 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1219 if (Tmp == 1) return 1; // Early out. 1220 return std::min(Tmp, Tmp2)-1; 1221 1222 case Instruction::PHI: { 1223 PHINode *PN = cast<PHINode>(U); 1224 // Don't analyze large in-degree PHIs. 1225 if (PN->getNumIncomingValues() > 4) break; 1226 1227 // Take the minimum of all incoming values. This can't infinitely loop 1228 // because of our depth threshold. 1229 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1230 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1231 if (Tmp == 1) return Tmp; 1232 Tmp = std::min(Tmp, 1233 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1234 } 1235 return Tmp; 1236 } 1237 1238 case Instruction::Trunc: 1239 // FIXME: it's tricky to do anything useful for this, but it is an important 1240 // case for targets like X86. 1241 break; 1242 } 1243 1244 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1245 // use this information. 1246 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1247 APInt Mask; 1248 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1249 1250 if (KnownZero.isNegative()) { // sign bit is 0 1251 Mask = KnownZero; 1252 } else if (KnownOne.isNegative()) { // sign bit is 1; 1253 Mask = KnownOne; 1254 } else { 1255 // Nothing known. 1256 return FirstAnswer; 1257 } 1258 1259 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1260 // the number of identical bits in the top of the input value. 1261 Mask = ~Mask; 1262 Mask <<= Mask.getBitWidth()-TyBits; 1263 // Return # leading zeros. We use 'min' here in case Val was zero before 1264 // shifting. We don't want to return '64' as for an i32 "0". 1265 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1266 } 1267 1268 /// ComputeMultiple - This function computes the integer multiple of Base that 1269 /// equals V. If successful, it returns true and returns the multiple in 1270 /// Multiple. If unsuccessful, it returns false. It looks 1271 /// through SExt instructions only if LookThroughSExt is true. 1272 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1273 bool LookThroughSExt, unsigned Depth) { 1274 const unsigned MaxDepth = 6; 1275 1276 assert(V && "No Value?"); 1277 assert(Depth <= MaxDepth && "Limit Search Depth"); 1278 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1279 1280 Type *T = V->getType(); 1281 1282 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1283 1284 if (Base == 0) 1285 return false; 1286 1287 if (Base == 1) { 1288 Multiple = V; 1289 return true; 1290 } 1291 1292 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1293 Constant *BaseVal = ConstantInt::get(T, Base); 1294 if (CO && CO == BaseVal) { 1295 // Multiple is 1. 1296 Multiple = ConstantInt::get(T, 1); 1297 return true; 1298 } 1299 1300 if (CI && CI->getZExtValue() % Base == 0) { 1301 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1302 return true; 1303 } 1304 1305 if (Depth == MaxDepth) return false; // Limit search depth. 1306 1307 Operator *I = dyn_cast<Operator>(V); 1308 if (!I) return false; 1309 1310 switch (I->getOpcode()) { 1311 default: break; 1312 case Instruction::SExt: 1313 if (!LookThroughSExt) return false; 1314 // otherwise fall through to ZExt 1315 case Instruction::ZExt: 1316 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1317 LookThroughSExt, Depth+1); 1318 case Instruction::Shl: 1319 case Instruction::Mul: { 1320 Value *Op0 = I->getOperand(0); 1321 Value *Op1 = I->getOperand(1); 1322 1323 if (I->getOpcode() == Instruction::Shl) { 1324 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1325 if (!Op1CI) return false; 1326 // Turn Op0 << Op1 into Op0 * 2^Op1 1327 APInt Op1Int = Op1CI->getValue(); 1328 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1329 APInt API(Op1Int.getBitWidth(), 0); 1330 API.setBit(BitToSet); 1331 Op1 = ConstantInt::get(V->getContext(), API); 1332 } 1333 1334 Value *Mul0 = nullptr; 1335 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1336 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1337 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1338 if (Op1C->getType()->getPrimitiveSizeInBits() < 1339 MulC->getType()->getPrimitiveSizeInBits()) 1340 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1341 if (Op1C->getType()->getPrimitiveSizeInBits() > 1342 MulC->getType()->getPrimitiveSizeInBits()) 1343 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1344 1345 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1346 Multiple = ConstantExpr::getMul(MulC, Op1C); 1347 return true; 1348 } 1349 1350 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1351 if (Mul0CI->getValue() == 1) { 1352 // V == Base * Op1, so return Op1 1353 Multiple = Op1; 1354 return true; 1355 } 1356 } 1357 1358 Value *Mul1 = nullptr; 1359 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1360 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1361 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1362 if (Op0C->getType()->getPrimitiveSizeInBits() < 1363 MulC->getType()->getPrimitiveSizeInBits()) 1364 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1365 if (Op0C->getType()->getPrimitiveSizeInBits() > 1366 MulC->getType()->getPrimitiveSizeInBits()) 1367 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1368 1369 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1370 Multiple = ConstantExpr::getMul(MulC, Op0C); 1371 return true; 1372 } 1373 1374 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1375 if (Mul1CI->getValue() == 1) { 1376 // V == Base * Op0, so return Op0 1377 Multiple = Op0; 1378 return true; 1379 } 1380 } 1381 } 1382 } 1383 1384 // We could not determine if V is a multiple of Base. 1385 return false; 1386 } 1387 1388 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1389 /// value is never equal to -0.0. 1390 /// 1391 /// NOTE: this function will need to be revisited when we support non-default 1392 /// rounding modes! 1393 /// 1394 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1395 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1396 return !CFP->getValueAPF().isNegZero(); 1397 1398 if (Depth == 6) 1399 return 1; // Limit search depth. 1400 1401 const Operator *I = dyn_cast<Operator>(V); 1402 if (!I) return false; 1403 1404 // Check if the nsz fast-math flag is set 1405 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 1406 if (FPO->hasNoSignedZeros()) 1407 return true; 1408 1409 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1410 if (I->getOpcode() == Instruction::FAdd) 1411 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 1412 if (CFP->isNullValue()) 1413 return true; 1414 1415 // sitofp and uitofp turn into +0.0 for zero. 1416 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1417 return true; 1418 1419 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1420 // sqrt(-0.0) = -0.0, no other negative results are possible. 1421 if (II->getIntrinsicID() == Intrinsic::sqrt) 1422 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1423 1424 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1425 if (const Function *F = CI->getCalledFunction()) { 1426 if (F->isDeclaration()) { 1427 // abs(x) != -0.0 1428 if (F->getName() == "abs") return true; 1429 // fabs[lf](x) != -0.0 1430 if (F->getName() == "fabs") return true; 1431 if (F->getName() == "fabsf") return true; 1432 if (F->getName() == "fabsl") return true; 1433 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1434 F->getName() == "sqrtl") 1435 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1436 } 1437 } 1438 1439 return false; 1440 } 1441 1442 /// isBytewiseValue - If the specified value can be set by repeating the same 1443 /// byte in memory, return the i8 value that it is represented with. This is 1444 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1445 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1446 /// byte store (e.g. i16 0x1234), return null. 1447 Value *llvm::isBytewiseValue(Value *V) { 1448 // All byte-wide stores are splatable, even of arbitrary variables. 1449 if (V->getType()->isIntegerTy(8)) return V; 1450 1451 // Handle 'null' ConstantArrayZero etc. 1452 if (Constant *C = dyn_cast<Constant>(V)) 1453 if (C->isNullValue()) 1454 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1455 1456 // Constant float and double values can be handled as integer values if the 1457 // corresponding integer value is "byteable". An important case is 0.0. 1458 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1459 if (CFP->getType()->isFloatTy()) 1460 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1461 if (CFP->getType()->isDoubleTy()) 1462 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1463 // Don't handle long double formats, which have strange constraints. 1464 } 1465 1466 // We can handle constant integers that are power of two in size and a 1467 // multiple of 8 bits. 1468 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1469 unsigned Width = CI->getBitWidth(); 1470 if (isPowerOf2_32(Width) && Width > 8) { 1471 // We can handle this value if the recursive binary decomposition is the 1472 // same at all levels. 1473 APInt Val = CI->getValue(); 1474 APInt Val2; 1475 while (Val.getBitWidth() != 8) { 1476 unsigned NextWidth = Val.getBitWidth()/2; 1477 Val2 = Val.lshr(NextWidth); 1478 Val2 = Val2.trunc(Val.getBitWidth()/2); 1479 Val = Val.trunc(Val.getBitWidth()/2); 1480 1481 // If the top/bottom halves aren't the same, reject it. 1482 if (Val != Val2) 1483 return nullptr; 1484 } 1485 return ConstantInt::get(V->getContext(), Val); 1486 } 1487 } 1488 1489 // A ConstantDataArray/Vector is splatable if all its members are equal and 1490 // also splatable. 1491 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1492 Value *Elt = CA->getElementAsConstant(0); 1493 Value *Val = isBytewiseValue(Elt); 1494 if (!Val) 1495 return nullptr; 1496 1497 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1498 if (CA->getElementAsConstant(I) != Elt) 1499 return nullptr; 1500 1501 return Val; 1502 } 1503 1504 // Conceptually, we could handle things like: 1505 // %a = zext i8 %X to i16 1506 // %b = shl i16 %a, 8 1507 // %c = or i16 %a, %b 1508 // but until there is an example that actually needs this, it doesn't seem 1509 // worth worrying about. 1510 return nullptr; 1511 } 1512 1513 1514 // This is the recursive version of BuildSubAggregate. It takes a few different 1515 // arguments. Idxs is the index within the nested struct From that we are 1516 // looking at now (which is of type IndexedType). IdxSkip is the number of 1517 // indices from Idxs that should be left out when inserting into the resulting 1518 // struct. To is the result struct built so far, new insertvalue instructions 1519 // build on that. 1520 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1521 SmallVectorImpl<unsigned> &Idxs, 1522 unsigned IdxSkip, 1523 Instruction *InsertBefore) { 1524 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 1525 if (STy) { 1526 // Save the original To argument so we can modify it 1527 Value *OrigTo = To; 1528 // General case, the type indexed by Idxs is a struct 1529 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1530 // Process each struct element recursively 1531 Idxs.push_back(i); 1532 Value *PrevTo = To; 1533 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1534 InsertBefore); 1535 Idxs.pop_back(); 1536 if (!To) { 1537 // Couldn't find any inserted value for this index? Cleanup 1538 while (PrevTo != OrigTo) { 1539 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1540 PrevTo = Del->getAggregateOperand(); 1541 Del->eraseFromParent(); 1542 } 1543 // Stop processing elements 1544 break; 1545 } 1546 } 1547 // If we successfully found a value for each of our subaggregates 1548 if (To) 1549 return To; 1550 } 1551 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1552 // the struct's elements had a value that was inserted directly. In the latter 1553 // case, perhaps we can't determine each of the subelements individually, but 1554 // we might be able to find the complete struct somewhere. 1555 1556 // Find the value that is at that particular spot 1557 Value *V = FindInsertedValue(From, Idxs); 1558 1559 if (!V) 1560 return nullptr; 1561 1562 // Insert the value in the new (sub) aggregrate 1563 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1564 "tmp", InsertBefore); 1565 } 1566 1567 // This helper takes a nested struct and extracts a part of it (which is again a 1568 // struct) into a new value. For example, given the struct: 1569 // { a, { b, { c, d }, e } } 1570 // and the indices "1, 1" this returns 1571 // { c, d }. 1572 // 1573 // It does this by inserting an insertvalue for each element in the resulting 1574 // struct, as opposed to just inserting a single struct. This will only work if 1575 // each of the elements of the substruct are known (ie, inserted into From by an 1576 // insertvalue instruction somewhere). 1577 // 1578 // All inserted insertvalue instructions are inserted before InsertBefore 1579 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1580 Instruction *InsertBefore) { 1581 assert(InsertBefore && "Must have someplace to insert!"); 1582 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1583 idx_range); 1584 Value *To = UndefValue::get(IndexedType); 1585 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1586 unsigned IdxSkip = Idxs.size(); 1587 1588 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1589 } 1590 1591 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1592 /// the scalar value indexed is already around as a register, for example if it 1593 /// were inserted directly into the aggregrate. 1594 /// 1595 /// If InsertBefore is not null, this function will duplicate (modified) 1596 /// insertvalues when a part of a nested struct is extracted. 1597 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1598 Instruction *InsertBefore) { 1599 // Nothing to index? Just return V then (this is useful at the end of our 1600 // recursion). 1601 if (idx_range.empty()) 1602 return V; 1603 // We have indices, so V should have an indexable type. 1604 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1605 "Not looking at a struct or array?"); 1606 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1607 "Invalid indices for type?"); 1608 1609 if (Constant *C = dyn_cast<Constant>(V)) { 1610 C = C->getAggregateElement(idx_range[0]); 1611 if (!C) return nullptr; 1612 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1613 } 1614 1615 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1616 // Loop the indices for the insertvalue instruction in parallel with the 1617 // requested indices 1618 const unsigned *req_idx = idx_range.begin(); 1619 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1620 i != e; ++i, ++req_idx) { 1621 if (req_idx == idx_range.end()) { 1622 // We can't handle this without inserting insertvalues 1623 if (!InsertBefore) 1624 return nullptr; 1625 1626 // The requested index identifies a part of a nested aggregate. Handle 1627 // this specially. For example, 1628 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1629 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1630 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1631 // This can be changed into 1632 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1633 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1634 // which allows the unused 0,0 element from the nested struct to be 1635 // removed. 1636 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1637 InsertBefore); 1638 } 1639 1640 // This insert value inserts something else than what we are looking for. 1641 // See if the (aggregrate) value inserted into has the value we are 1642 // looking for, then. 1643 if (*req_idx != *i) 1644 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1645 InsertBefore); 1646 } 1647 // If we end up here, the indices of the insertvalue match with those 1648 // requested (though possibly only partially). Now we recursively look at 1649 // the inserted value, passing any remaining indices. 1650 return FindInsertedValue(I->getInsertedValueOperand(), 1651 makeArrayRef(req_idx, idx_range.end()), 1652 InsertBefore); 1653 } 1654 1655 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1656 // If we're extracting a value from an aggregrate that was extracted from 1657 // something else, we can extract from that something else directly instead. 1658 // However, we will need to chain I's indices with the requested indices. 1659 1660 // Calculate the number of indices required 1661 unsigned size = I->getNumIndices() + idx_range.size(); 1662 // Allocate some space to put the new indices in 1663 SmallVector<unsigned, 5> Idxs; 1664 Idxs.reserve(size); 1665 // Add indices from the extract value instruction 1666 Idxs.append(I->idx_begin(), I->idx_end()); 1667 1668 // Add requested indices 1669 Idxs.append(idx_range.begin(), idx_range.end()); 1670 1671 assert(Idxs.size() == size 1672 && "Number of indices added not correct?"); 1673 1674 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1675 } 1676 // Otherwise, we don't know (such as, extracting from a function return value 1677 // or load instruction) 1678 return nullptr; 1679 } 1680 1681 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1682 /// it can be expressed as a base pointer plus a constant offset. Return the 1683 /// base and offset to the caller. 1684 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1685 const DataLayout *DL) { 1686 // Without DataLayout, conservatively assume 64-bit offsets, which is 1687 // the widest we support. 1688 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64; 1689 APInt ByteOffset(BitWidth, 0); 1690 while (1) { 1691 if (Ptr->getType()->isVectorTy()) 1692 break; 1693 1694 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1695 if (DL) { 1696 APInt GEPOffset(BitWidth, 0); 1697 if (!GEP->accumulateConstantOffset(*DL, GEPOffset)) 1698 break; 1699 1700 ByteOffset += GEPOffset; 1701 } 1702 1703 Ptr = GEP->getPointerOperand(); 1704 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 1705 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 1706 Ptr = cast<Operator>(Ptr)->getOperand(0); 1707 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1708 if (GA->mayBeOverridden()) 1709 break; 1710 Ptr = GA->getAliasee(); 1711 } else { 1712 break; 1713 } 1714 } 1715 Offset = ByteOffset.getSExtValue(); 1716 return Ptr; 1717 } 1718 1719 1720 /// getConstantStringInfo - This function computes the length of a 1721 /// null-terminated C string pointed to by V. If successful, it returns true 1722 /// and returns the string in Str. If unsuccessful, it returns false. 1723 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1724 uint64_t Offset, bool TrimAtNul) { 1725 assert(V); 1726 1727 // Look through bitcast instructions and geps. 1728 V = V->stripPointerCasts(); 1729 1730 // If the value is a GEP instructionor constant expression, treat it as an 1731 // offset. 1732 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1733 // Make sure the GEP has exactly three arguments. 1734 if (GEP->getNumOperands() != 3) 1735 return false; 1736 1737 // Make sure the index-ee is a pointer to array of i8. 1738 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1739 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1740 if (!AT || !AT->getElementType()->isIntegerTy(8)) 1741 return false; 1742 1743 // Check to make sure that the first operand of the GEP is an integer and 1744 // has value 0 so that we are sure we're indexing into the initializer. 1745 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1746 if (!FirstIdx || !FirstIdx->isZero()) 1747 return false; 1748 1749 // If the second index isn't a ConstantInt, then this is a variable index 1750 // into the array. If this occurs, we can't say anything meaningful about 1751 // the string. 1752 uint64_t StartIdx = 0; 1753 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1754 StartIdx = CI->getZExtValue(); 1755 else 1756 return false; 1757 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1758 } 1759 1760 // The GEP instruction, constant or instruction, must reference a global 1761 // variable that is a constant and is initialized. The referenced constant 1762 // initializer is the array that we'll use for optimization. 1763 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1764 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1765 return false; 1766 1767 // Handle the all-zeros case 1768 if (GV->getInitializer()->isNullValue()) { 1769 // This is a degenerate case. The initializer is constant zero so the 1770 // length of the string must be zero. 1771 Str = ""; 1772 return true; 1773 } 1774 1775 // Must be a Constant Array 1776 const ConstantDataArray *Array = 1777 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1778 if (!Array || !Array->isString()) 1779 return false; 1780 1781 // Get the number of elements in the array 1782 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1783 1784 // Start out with the entire array in the StringRef. 1785 Str = Array->getAsString(); 1786 1787 if (Offset > NumElts) 1788 return false; 1789 1790 // Skip over 'offset' bytes. 1791 Str = Str.substr(Offset); 1792 1793 if (TrimAtNul) { 1794 // Trim off the \0 and anything after it. If the array is not nul 1795 // terminated, we just return the whole end of string. The client may know 1796 // some other way that the string is length-bound. 1797 Str = Str.substr(0, Str.find('\0')); 1798 } 1799 return true; 1800 } 1801 1802 // These next two are very similar to the above, but also look through PHI 1803 // nodes. 1804 // TODO: See if we can integrate these two together. 1805 1806 /// GetStringLengthH - If we can compute the length of the string pointed to by 1807 /// the specified pointer, return 'len+1'. If we can't, return 0. 1808 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 1809 // Look through noop bitcast instructions. 1810 V = V->stripPointerCasts(); 1811 1812 // If this is a PHI node, there are two cases: either we have already seen it 1813 // or we haven't. 1814 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1815 if (!PHIs.insert(PN)) 1816 return ~0ULL; // already in the set. 1817 1818 // If it was new, see if all the input strings are the same length. 1819 uint64_t LenSoFar = ~0ULL; 1820 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1821 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1822 if (Len == 0) return 0; // Unknown length -> unknown. 1823 1824 if (Len == ~0ULL) continue; 1825 1826 if (Len != LenSoFar && LenSoFar != ~0ULL) 1827 return 0; // Disagree -> unknown. 1828 LenSoFar = Len; 1829 } 1830 1831 // Success, all agree. 1832 return LenSoFar; 1833 } 1834 1835 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1836 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1837 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1838 if (Len1 == 0) return 0; 1839 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1840 if (Len2 == 0) return 0; 1841 if (Len1 == ~0ULL) return Len2; 1842 if (Len2 == ~0ULL) return Len1; 1843 if (Len1 != Len2) return 0; 1844 return Len1; 1845 } 1846 1847 // Otherwise, see if we can read the string. 1848 StringRef StrData; 1849 if (!getConstantStringInfo(V, StrData)) 1850 return 0; 1851 1852 return StrData.size()+1; 1853 } 1854 1855 /// GetStringLength - If we can compute the length of the string pointed to by 1856 /// the specified pointer, return 'len+1'. If we can't, return 0. 1857 uint64_t llvm::GetStringLength(Value *V) { 1858 if (!V->getType()->isPointerTy()) return 0; 1859 1860 SmallPtrSet<PHINode*, 32> PHIs; 1861 uint64_t Len = GetStringLengthH(V, PHIs); 1862 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1863 // an empty string as a length. 1864 return Len == ~0ULL ? 1 : Len; 1865 } 1866 1867 Value * 1868 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 1869 if (!V->getType()->isPointerTy()) 1870 return V; 1871 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1872 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1873 V = GEP->getPointerOperand(); 1874 } else if (Operator::getOpcode(V) == Instruction::BitCast || 1875 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 1876 V = cast<Operator>(V)->getOperand(0); 1877 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1878 if (GA->mayBeOverridden()) 1879 return V; 1880 V = GA->getAliasee(); 1881 } else { 1882 // See if InstructionSimplify knows any relevant tricks. 1883 if (Instruction *I = dyn_cast<Instruction>(V)) 1884 // TODO: Acquire a DominatorTree and use it. 1885 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) { 1886 V = Simplified; 1887 continue; 1888 } 1889 1890 return V; 1891 } 1892 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1893 } 1894 return V; 1895 } 1896 1897 void 1898 llvm::GetUnderlyingObjects(Value *V, 1899 SmallVectorImpl<Value *> &Objects, 1900 const DataLayout *TD, 1901 unsigned MaxLookup) { 1902 SmallPtrSet<Value *, 4> Visited; 1903 SmallVector<Value *, 4> Worklist; 1904 Worklist.push_back(V); 1905 do { 1906 Value *P = Worklist.pop_back_val(); 1907 P = GetUnderlyingObject(P, TD, MaxLookup); 1908 1909 if (!Visited.insert(P)) 1910 continue; 1911 1912 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 1913 Worklist.push_back(SI->getTrueValue()); 1914 Worklist.push_back(SI->getFalseValue()); 1915 continue; 1916 } 1917 1918 if (PHINode *PN = dyn_cast<PHINode>(P)) { 1919 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1920 Worklist.push_back(PN->getIncomingValue(i)); 1921 continue; 1922 } 1923 1924 Objects.push_back(P); 1925 } while (!Worklist.empty()); 1926 } 1927 1928 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1929 /// are lifetime markers. 1930 /// 1931 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1932 for (const User *U : V->users()) { 1933 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1934 if (!II) return false; 1935 1936 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1937 II->getIntrinsicID() != Intrinsic::lifetime_end) 1938 return false; 1939 } 1940 return true; 1941 } 1942 1943 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1944 const DataLayout *TD) { 1945 const Operator *Inst = dyn_cast<Operator>(V); 1946 if (!Inst) 1947 return false; 1948 1949 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1950 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1951 if (C->canTrap()) 1952 return false; 1953 1954 switch (Inst->getOpcode()) { 1955 default: 1956 return true; 1957 case Instruction::UDiv: 1958 case Instruction::URem: 1959 // x / y is undefined if y == 0, but calculations like x / 3 are safe. 1960 return isKnownNonZero(Inst->getOperand(1), TD); 1961 case Instruction::SDiv: 1962 case Instruction::SRem: { 1963 Value *Op = Inst->getOperand(1); 1964 // x / y is undefined if y == 0 1965 if (!isKnownNonZero(Op, TD)) 1966 return false; 1967 // x / y might be undefined if y == -1 1968 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1969 if (BitWidth == 0) 1970 return false; 1971 APInt KnownZero(BitWidth, 0); 1972 APInt KnownOne(BitWidth, 0); 1973 computeKnownBits(Op, KnownZero, KnownOne, TD); 1974 return !!KnownZero; 1975 } 1976 case Instruction::Load: { 1977 const LoadInst *LI = cast<LoadInst>(Inst); 1978 if (!LI->isUnordered() || 1979 // Speculative load may create a race that did not exist in the source. 1980 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 1981 return false; 1982 return LI->getPointerOperand()->isDereferenceablePointer(TD); 1983 } 1984 case Instruction::Call: { 1985 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1986 switch (II->getIntrinsicID()) { 1987 // These synthetic intrinsics have no side-effects and just mark 1988 // information about their operands. 1989 // FIXME: There are other no-op synthetic instructions that potentially 1990 // should be considered at least *safe* to speculate... 1991 case Intrinsic::dbg_declare: 1992 case Intrinsic::dbg_value: 1993 return true; 1994 1995 case Intrinsic::bswap: 1996 case Intrinsic::ctlz: 1997 case Intrinsic::ctpop: 1998 case Intrinsic::cttz: 1999 case Intrinsic::objectsize: 2000 case Intrinsic::sadd_with_overflow: 2001 case Intrinsic::smul_with_overflow: 2002 case Intrinsic::ssub_with_overflow: 2003 case Intrinsic::uadd_with_overflow: 2004 case Intrinsic::umul_with_overflow: 2005 case Intrinsic::usub_with_overflow: 2006 return true; 2007 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2008 // errno like libm sqrt would. 2009 case Intrinsic::sqrt: 2010 case Intrinsic::fma: 2011 case Intrinsic::fmuladd: 2012 case Intrinsic::fabs: 2013 return true; 2014 // TODO: some fp intrinsics are marked as having the same error handling 2015 // as libm. They're safe to speculate when they won't error. 2016 // TODO: are convert_{from,to}_fp16 safe? 2017 // TODO: can we list target-specific intrinsics here? 2018 default: break; 2019 } 2020 } 2021 return false; // The called function could have undefined behavior or 2022 // side-effects, even if marked readnone nounwind. 2023 } 2024 case Instruction::VAArg: 2025 case Instruction::Alloca: 2026 case Instruction::Invoke: 2027 case Instruction::PHI: 2028 case Instruction::Store: 2029 case Instruction::Ret: 2030 case Instruction::Br: 2031 case Instruction::IndirectBr: 2032 case Instruction::Switch: 2033 case Instruction::Unreachable: 2034 case Instruction::Fence: 2035 case Instruction::LandingPad: 2036 case Instruction::AtomicRMW: 2037 case Instruction::AtomicCmpXchg: 2038 case Instruction::Resume: 2039 return false; // Misc instructions which have effects 2040 } 2041 } 2042 2043 /// isKnownNonNull - Return true if we know that the specified value is never 2044 /// null. 2045 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2046 // Alloca never returns null, malloc might. 2047 if (isa<AllocaInst>(V)) return true; 2048 2049 // A byval, inalloca, or nonnull argument is never null. 2050 if (const Argument *A = dyn_cast<Argument>(V)) 2051 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 2052 2053 // Global values are not null unless extern weak. 2054 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2055 return !GV->hasExternalWeakLinkage(); 2056 2057 if (ImmutableCallSite CS = V) 2058 if (CS.isReturnNonNull()) 2059 return true; 2060 2061 // operator new never returns null. 2062 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2063 return true; 2064 2065 return false; 2066 } 2067