1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 357 const DataLayout &DL, AssumptionCache *AC, 358 const Instruction *CxtI, const DominatorTree *DT, 359 bool UseInstrInfo) { 360 return ::isKnownNonEqual(V1, V2, 0, 361 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 362 UseInstrInfo, /*ORE=*/nullptr)); 363 } 364 365 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 366 const Query &Q); 367 368 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 369 const DataLayout &DL, unsigned Depth, 370 AssumptionCache *AC, const Instruction *CxtI, 371 const DominatorTree *DT, bool UseInstrInfo) { 372 return ::MaskedValueIsZero( 373 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 374 } 375 376 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 377 unsigned Depth, const Query &Q); 378 379 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 380 const Query &Q) { 381 // FIXME: We currently have no way to represent the DemandedElts of a scalable 382 // vector 383 if (isa<ScalableVectorType>(V->getType())) 384 return 1; 385 386 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 387 APInt DemandedElts = 388 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 389 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 390 } 391 392 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 393 unsigned Depth, AssumptionCache *AC, 394 const Instruction *CxtI, 395 const DominatorTree *DT, bool UseInstrInfo) { 396 return ::ComputeNumSignBits( 397 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 398 } 399 400 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 401 bool NSW, const APInt &DemandedElts, 402 KnownBits &KnownOut, KnownBits &Known2, 403 unsigned Depth, const Query &Q) { 404 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 405 406 // If one operand is unknown and we have no nowrap information, 407 // the result will be unknown independently of the second operand. 408 if (KnownOut.isUnknown() && !NSW) 409 return; 410 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 413 } 414 415 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 416 const APInt &DemandedElts, KnownBits &Known, 417 KnownBits &Known2, unsigned Depth, 418 const Query &Q) { 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = 441 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 442 Known2.isNonZero()) || 443 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 444 } 445 } 446 447 Known = KnownBits::computeForMul(Known, Known2); 448 449 // Only make use of no-wrap flags if we failed to compute the sign bit 450 // directly. This matters if the multiplication always overflows, in 451 // which case we prefer to follow the result of the direct computation, 452 // though as the program is invoking undefined behaviour we can choose 453 // whatever we like here. 454 if (isKnownNonNegative && !Known.isNegative()) 455 Known.makeNonNegative(); 456 else if (isKnownNegative && !Known.isNonNegative()) 457 Known.makeNegative(); 458 } 459 460 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 461 KnownBits &Known) { 462 unsigned BitWidth = Known.getBitWidth(); 463 unsigned NumRanges = Ranges.getNumOperands() / 2; 464 assert(NumRanges >= 1); 465 466 Known.Zero.setAllBits(); 467 Known.One.setAllBits(); 468 469 for (unsigned i = 0; i < NumRanges; ++i) { 470 ConstantInt *Lower = 471 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 472 ConstantInt *Upper = 473 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 474 ConstantRange Range(Lower->getValue(), Upper->getValue()); 475 476 // The first CommonPrefixBits of all values in Range are equal. 477 unsigned CommonPrefixBits = 478 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 479 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 480 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 481 Known.One &= UnsignedMax & Mask; 482 Known.Zero &= ~UnsignedMax & Mask; 483 } 484 } 485 486 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 487 SmallVector<const Value *, 16> WorkSet(1, I); 488 SmallPtrSet<const Value *, 32> Visited; 489 SmallPtrSet<const Value *, 16> EphValues; 490 491 // The instruction defining an assumption's condition itself is always 492 // considered ephemeral to that assumption (even if it has other 493 // non-ephemeral users). See r246696's test case for an example. 494 if (is_contained(I->operands(), E)) 495 return true; 496 497 while (!WorkSet.empty()) { 498 const Value *V = WorkSet.pop_back_val(); 499 if (!Visited.insert(V).second) 500 continue; 501 502 // If all uses of this value are ephemeral, then so is this value. 503 if (llvm::all_of(V->users(), [&](const User *U) { 504 return EphValues.count(U); 505 })) { 506 if (V == E) 507 return true; 508 509 if (V == I || isSafeToSpeculativelyExecute(V)) { 510 EphValues.insert(V); 511 if (const User *U = dyn_cast<User>(V)) 512 append_range(WorkSet, U->operands()); 513 } 514 } 515 } 516 517 return false; 518 } 519 520 // Is this an intrinsic that cannot be speculated but also cannot trap? 521 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 522 if (const CallInst *CI = dyn_cast<CallInst>(I)) 523 if (Function *F = CI->getCalledFunction()) 524 switch (F->getIntrinsicID()) { 525 default: break; 526 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 527 case Intrinsic::assume: 528 case Intrinsic::sideeffect: 529 case Intrinsic::pseudoprobe: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::experimental_noalias_scope_decl: 538 case Intrinsic::objectsize: 539 case Intrinsic::ptr_annotation: 540 case Intrinsic::var_annotation: 541 return true; 542 } 543 544 return false; 545 } 546 547 bool llvm::isValidAssumeForContext(const Instruction *Inv, 548 const Instruction *CxtI, 549 const DominatorTree *DT) { 550 // There are two restrictions on the use of an assume: 551 // 1. The assume must dominate the context (or the control flow must 552 // reach the assume whenever it reaches the context). 553 // 2. The context must not be in the assume's set of ephemeral values 554 // (otherwise we will use the assume to prove that the condition 555 // feeding the assume is trivially true, thus causing the removal of 556 // the assume). 557 558 if (Inv->getParent() == CxtI->getParent()) { 559 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 560 // in the BB. 561 if (Inv->comesBefore(CxtI)) 562 return true; 563 564 // Don't let an assume affect itself - this would cause the problems 565 // `isEphemeralValueOf` is trying to prevent, and it would also make 566 // the loop below go out of bounds. 567 if (Inv == CxtI) 568 return false; 569 570 // The context comes first, but they're both in the same block. 571 // Make sure there is nothing in between that might interrupt 572 // the control flow, not even CxtI itself. 573 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 574 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 575 return false; 576 577 return !isEphemeralValueOf(Inv, CxtI); 578 } 579 580 // Inv and CxtI are in different blocks. 581 if (DT) { 582 if (DT->dominates(Inv, CxtI)) 583 return true; 584 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 585 // We don't have a DT, but this trivially dominates. 586 return true; 587 } 588 589 return false; 590 } 591 592 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 593 // v u> y implies v != 0. 594 if (Pred == ICmpInst::ICMP_UGT) 595 return true; 596 597 // Special-case v != 0 to also handle v != null. 598 if (Pred == ICmpInst::ICMP_NE) 599 return match(RHS, m_Zero()); 600 601 // All other predicates - rely on generic ConstantRange handling. 602 const APInt *C; 603 if (!match(RHS, m_APInt(C))) 604 return false; 605 606 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 607 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 608 } 609 610 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 611 // Use of assumptions is context-sensitive. If we don't have a context, we 612 // cannot use them! 613 if (!Q.AC || !Q.CxtI) 614 return false; 615 616 if (Q.CxtI && V->getType()->isPointerTy()) { 617 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 618 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 619 V->getType()->getPointerAddressSpace())) 620 AttrKinds.push_back(Attribute::Dereferenceable); 621 622 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 623 return true; 624 } 625 626 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 627 if (!AssumeVH) 628 continue; 629 CallInst *I = cast<CallInst>(AssumeVH); 630 assert(I->getFunction() == Q.CxtI->getFunction() && 631 "Got assumption for the wrong function!"); 632 if (Q.isExcluded(I)) 633 continue; 634 635 // Warning: This loop can end up being somewhat performance sensitive. 636 // We're running this loop for once for each value queried resulting in a 637 // runtime of ~O(#assumes * #values). 638 639 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 640 "must be an assume intrinsic"); 641 642 Value *RHS; 643 CmpInst::Predicate Pred; 644 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 645 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 646 return false; 647 648 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 649 return true; 650 } 651 652 return false; 653 } 654 655 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 656 unsigned Depth, const Query &Q) { 657 // Use of assumptions is context-sensitive. If we don't have a context, we 658 // cannot use them! 659 if (!Q.AC || !Q.CxtI) 660 return; 661 662 unsigned BitWidth = Known.getBitWidth(); 663 664 // Refine Known set if the pointer alignment is set by assume bundles. 665 if (V->getType()->isPointerTy()) { 666 if (RetainedKnowledge RK = getKnowledgeValidInContext( 667 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 668 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 669 } 670 } 671 672 // Note that the patterns below need to be kept in sync with the code 673 // in AssumptionCache::updateAffectedValues. 674 675 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 676 if (!AssumeVH) 677 continue; 678 CallInst *I = cast<CallInst>(AssumeVH); 679 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 680 "Got assumption for the wrong function!"); 681 if (Q.isExcluded(I)) 682 continue; 683 684 // Warning: This loop can end up being somewhat performance sensitive. 685 // We're running this loop for once for each value queried resulting in a 686 // runtime of ~O(#assumes * #values). 687 688 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 689 "must be an assume intrinsic"); 690 691 Value *Arg = I->getArgOperand(0); 692 693 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 assert(BitWidth == 1 && "assume operand is not i1?"); 695 Known.setAllOnes(); 696 return; 697 } 698 if (match(Arg, m_Not(m_Specific(V))) && 699 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 700 assert(BitWidth == 1 && "assume operand is not i1?"); 701 Known.setAllZero(); 702 return; 703 } 704 705 // The remaining tests are all recursive, so bail out if we hit the limit. 706 if (Depth == MaxAnalysisRecursionDepth) 707 continue; 708 709 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 710 if (!Cmp) 711 continue; 712 713 // Note that ptrtoint may change the bitwidth. 714 Value *A, *B; 715 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 716 717 CmpInst::Predicate Pred; 718 uint64_t C; 719 switch (Cmp->getPredicate()) { 720 default: 721 break; 722 case ICmpInst::ICMP_EQ: 723 // assume(v = a) 724 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 725 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 726 KnownBits RHSKnown = 727 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 728 Known.Zero |= RHSKnown.Zero; 729 Known.One |= RHSKnown.One; 730 // assume(v & b = a) 731 } else if (match(Cmp, 732 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 733 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 734 KnownBits RHSKnown = 735 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 736 KnownBits MaskKnown = 737 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 738 739 // For those bits in the mask that are known to be one, we can propagate 740 // known bits from the RHS to V. 741 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 742 Known.One |= RHSKnown.One & MaskKnown.One; 743 // assume(~(v & b) = a) 744 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 745 m_Value(A))) && 746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 747 KnownBits RHSKnown = 748 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 749 KnownBits MaskKnown = 750 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 751 752 // For those bits in the mask that are known to be one, we can propagate 753 // inverted known bits from the RHS to V. 754 Known.Zero |= RHSKnown.One & MaskKnown.One; 755 Known.One |= RHSKnown.Zero & MaskKnown.One; 756 // assume(v | b = a) 757 } else if (match(Cmp, 758 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 759 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 760 KnownBits RHSKnown = 761 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 762 KnownBits BKnown = 763 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 764 765 // For those bits in B that are known to be zero, we can propagate known 766 // bits from the RHS to V. 767 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 768 Known.One |= RHSKnown.One & BKnown.Zero; 769 // assume(~(v | b) = a) 770 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 771 m_Value(A))) && 772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 773 KnownBits RHSKnown = 774 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 775 KnownBits BKnown = 776 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 777 778 // For those bits in B that are known to be zero, we can propagate 779 // inverted known bits from the RHS to V. 780 Known.Zero |= RHSKnown.One & BKnown.Zero; 781 Known.One |= RHSKnown.Zero & BKnown.Zero; 782 // assume(v ^ b = a) 783 } else if (match(Cmp, 784 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 785 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 786 KnownBits RHSKnown = 787 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 788 KnownBits BKnown = 789 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 790 791 // For those bits in B that are known to be zero, we can propagate known 792 // bits from the RHS to V. For those bits in B that are known to be one, 793 // we can propagate inverted known bits from the RHS to V. 794 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 795 Known.One |= RHSKnown.One & BKnown.Zero; 796 Known.Zero |= RHSKnown.One & BKnown.One; 797 Known.One |= RHSKnown.Zero & BKnown.One; 798 // assume(~(v ^ b) = a) 799 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 800 m_Value(A))) && 801 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 802 KnownBits RHSKnown = 803 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 804 KnownBits BKnown = 805 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 806 807 // For those bits in B that are known to be zero, we can propagate 808 // inverted known bits from the RHS to V. For those bits in B that are 809 // known to be one, we can propagate known bits from the RHS to V. 810 Known.Zero |= RHSKnown.One & BKnown.Zero; 811 Known.One |= RHSKnown.Zero & BKnown.Zero; 812 Known.Zero |= RHSKnown.Zero & BKnown.One; 813 Known.One |= RHSKnown.One & BKnown.One; 814 // assume(v << c = a) 815 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 816 m_Value(A))) && 817 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 818 KnownBits RHSKnown = 819 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 820 821 // For those bits in RHS that are known, we can propagate them to known 822 // bits in V shifted to the right by C. 823 RHSKnown.Zero.lshrInPlace(C); 824 Known.Zero |= RHSKnown.Zero; 825 RHSKnown.One.lshrInPlace(C); 826 Known.One |= RHSKnown.One; 827 // assume(~(v << c) = a) 828 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 829 m_Value(A))) && 830 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 831 KnownBits RHSKnown = 832 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 833 // For those bits in RHS that are known, we can propagate them inverted 834 // to known bits in V shifted to the right by C. 835 RHSKnown.One.lshrInPlace(C); 836 Known.Zero |= RHSKnown.One; 837 RHSKnown.Zero.lshrInPlace(C); 838 Known.One |= RHSKnown.Zero; 839 // assume(v >> c = a) 840 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 841 m_Value(A))) && 842 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 843 KnownBits RHSKnown = 844 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 845 // For those bits in RHS that are known, we can propagate them to known 846 // bits in V shifted to the right by C. 847 Known.Zero |= RHSKnown.Zero << C; 848 Known.One |= RHSKnown.One << C; 849 // assume(~(v >> c) = a) 850 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 851 m_Value(A))) && 852 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 853 KnownBits RHSKnown = 854 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 855 // For those bits in RHS that are known, we can propagate them inverted 856 // to known bits in V shifted to the right by C. 857 Known.Zero |= RHSKnown.One << C; 858 Known.One |= RHSKnown.Zero << C; 859 } 860 break; 861 case ICmpInst::ICMP_SGE: 862 // assume(v >=_s c) where c is non-negative 863 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 864 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 865 KnownBits RHSKnown = 866 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 867 868 if (RHSKnown.isNonNegative()) { 869 // We know that the sign bit is zero. 870 Known.makeNonNegative(); 871 } 872 } 873 break; 874 case ICmpInst::ICMP_SGT: 875 // assume(v >_s c) where c is at least -1. 876 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 877 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 878 KnownBits RHSKnown = 879 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 880 881 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 882 // We know that the sign bit is zero. 883 Known.makeNonNegative(); 884 } 885 } 886 break; 887 case ICmpInst::ICMP_SLE: 888 // assume(v <=_s c) where c is negative 889 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 891 KnownBits RHSKnown = 892 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 893 894 if (RHSKnown.isNegative()) { 895 // We know that the sign bit is one. 896 Known.makeNegative(); 897 } 898 } 899 break; 900 case ICmpInst::ICMP_SLT: 901 // assume(v <_s c) where c is non-positive 902 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 904 KnownBits RHSKnown = 905 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 906 907 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 908 // We know that the sign bit is one. 909 Known.makeNegative(); 910 } 911 } 912 break; 913 case ICmpInst::ICMP_ULE: 914 // assume(v <=_u c) 915 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 916 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 917 KnownBits RHSKnown = 918 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 919 920 // Whatever high bits in c are zero are known to be zero. 921 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 922 } 923 break; 924 case ICmpInst::ICMP_ULT: 925 // assume(v <_u c) 926 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 927 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 928 KnownBits RHSKnown = 929 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 930 931 // If the RHS is known zero, then this assumption must be wrong (nothing 932 // is unsigned less than zero). Signal a conflict and get out of here. 933 if (RHSKnown.isZero()) { 934 Known.Zero.setAllBits(); 935 Known.One.setAllBits(); 936 break; 937 } 938 939 // Whatever high bits in c are zero are known to be zero (if c is a power 940 // of 2, then one more). 941 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 942 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 943 else 944 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 945 } 946 break; 947 } 948 } 949 950 // If assumptions conflict with each other or previous known bits, then we 951 // have a logical fallacy. It's possible that the assumption is not reachable, 952 // so this isn't a real bug. On the other hand, the program may have undefined 953 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 954 // clear out the known bits, try to warn the user, and hope for the best. 955 if (Known.Zero.intersects(Known.One)) { 956 Known.resetAll(); 957 958 if (Q.ORE) 959 Q.ORE->emit([&]() { 960 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 961 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 962 CxtI) 963 << "Detected conflicting code assumptions. Program may " 964 "have undefined behavior, or compiler may have " 965 "internal error."; 966 }); 967 } 968 } 969 970 /// Compute known bits from a shift operator, including those with a 971 /// non-constant shift amount. Known is the output of this function. Known2 is a 972 /// pre-allocated temporary with the same bit width as Known and on return 973 /// contains the known bit of the shift value source. KF is an 974 /// operator-specific function that, given the known-bits and a shift amount, 975 /// compute the implied known-bits of the shift operator's result respectively 976 /// for that shift amount. The results from calling KF are conservatively 977 /// combined for all permitted shift amounts. 978 static void computeKnownBitsFromShiftOperator( 979 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 980 KnownBits &Known2, unsigned Depth, const Query &Q, 981 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 982 unsigned BitWidth = Known.getBitWidth(); 983 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 984 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 985 986 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 987 // BitWidth > 64 and any upper bits are known, we'll end up returning the 988 // limit value (which implies all bits are known). 989 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 990 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 991 bool ShiftAmtIsConstant = Known.isConstant(); 992 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 993 994 if (ShiftAmtIsConstant) { 995 Known = KF(Known2, Known); 996 997 // If the known bits conflict, this must be an overflowing left shift, so 998 // the shift result is poison. We can return anything we want. Choose 0 for 999 // the best folding opportunity. 1000 if (Known.hasConflict()) 1001 Known.setAllZero(); 1002 1003 return; 1004 } 1005 1006 // If the shift amount could be greater than or equal to the bit-width of the 1007 // LHS, the value could be poison, but bail out because the check below is 1008 // expensive. 1009 // TODO: Should we just carry on? 1010 if (MaxShiftAmtIsOutOfRange) { 1011 Known.resetAll(); 1012 return; 1013 } 1014 1015 // It would be more-clearly correct to use the two temporaries for this 1016 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1017 Known.resetAll(); 1018 1019 // If we know the shifter operand is nonzero, we can sometimes infer more 1020 // known bits. However this is expensive to compute, so be lazy about it and 1021 // only compute it when absolutely necessary. 1022 Optional<bool> ShifterOperandIsNonZero; 1023 1024 // Early exit if we can't constrain any well-defined shift amount. 1025 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1026 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1027 ShifterOperandIsNonZero = 1028 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1029 if (!*ShifterOperandIsNonZero) 1030 return; 1031 } 1032 1033 Known.Zero.setAllBits(); 1034 Known.One.setAllBits(); 1035 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1036 // Combine the shifted known input bits only for those shift amounts 1037 // compatible with its known constraints. 1038 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1039 continue; 1040 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1041 continue; 1042 // If we know the shifter is nonzero, we may be able to infer more known 1043 // bits. This check is sunk down as far as possible to avoid the expensive 1044 // call to isKnownNonZero if the cheaper checks above fail. 1045 if (ShiftAmt == 0) { 1046 if (!ShifterOperandIsNonZero.hasValue()) 1047 ShifterOperandIsNonZero = 1048 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1049 if (*ShifterOperandIsNonZero) 1050 continue; 1051 } 1052 1053 Known = KnownBits::commonBits( 1054 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1055 } 1056 1057 // If the known bits conflict, the result is poison. Return a 0 and hope the 1058 // caller can further optimize that. 1059 if (Known.hasConflict()) 1060 Known.setAllZero(); 1061 } 1062 1063 static void computeKnownBitsFromOperator(const Operator *I, 1064 const APInt &DemandedElts, 1065 KnownBits &Known, unsigned Depth, 1066 const Query &Q) { 1067 unsigned BitWidth = Known.getBitWidth(); 1068 1069 KnownBits Known2(BitWidth); 1070 switch (I->getOpcode()) { 1071 default: break; 1072 case Instruction::Load: 1073 if (MDNode *MD = 1074 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1075 computeKnownBitsFromRangeMetadata(*MD, Known); 1076 break; 1077 case Instruction::And: { 1078 // If either the LHS or the RHS are Zero, the result is zero. 1079 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1080 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1081 1082 Known &= Known2; 1083 1084 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1085 // here we handle the more general case of adding any odd number by 1086 // matching the form add(x, add(x, y)) where y is odd. 1087 // TODO: This could be generalized to clearing any bit set in y where the 1088 // following bit is known to be unset in y. 1089 Value *X = nullptr, *Y = nullptr; 1090 if (!Known.Zero[0] && !Known.One[0] && 1091 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1092 Known2.resetAll(); 1093 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1094 if (Known2.countMinTrailingOnes() > 0) 1095 Known.Zero.setBit(0); 1096 } 1097 break; 1098 } 1099 case Instruction::Or: 1100 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1101 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1102 1103 Known |= Known2; 1104 break; 1105 case Instruction::Xor: 1106 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known ^= Known2; 1110 break; 1111 case Instruction::Mul: { 1112 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1113 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1114 Known, Known2, Depth, Q); 1115 break; 1116 } 1117 case Instruction::UDiv: { 1118 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1119 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1120 Known = KnownBits::udiv(Known, Known2); 1121 break; 1122 } 1123 case Instruction::Select: { 1124 const Value *LHS = nullptr, *RHS = nullptr; 1125 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1126 if (SelectPatternResult::isMinOrMax(SPF)) { 1127 computeKnownBits(RHS, Known, Depth + 1, Q); 1128 computeKnownBits(LHS, Known2, Depth + 1, Q); 1129 switch (SPF) { 1130 default: 1131 llvm_unreachable("Unhandled select pattern flavor!"); 1132 case SPF_SMAX: 1133 Known = KnownBits::smax(Known, Known2); 1134 break; 1135 case SPF_SMIN: 1136 Known = KnownBits::smin(Known, Known2); 1137 break; 1138 case SPF_UMAX: 1139 Known = KnownBits::umax(Known, Known2); 1140 break; 1141 case SPF_UMIN: 1142 Known = KnownBits::umin(Known, Known2); 1143 break; 1144 } 1145 break; 1146 } 1147 1148 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1149 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1150 1151 // Only known if known in both the LHS and RHS. 1152 Known = KnownBits::commonBits(Known, Known2); 1153 1154 if (SPF == SPF_ABS) { 1155 // RHS from matchSelectPattern returns the negation part of abs pattern. 1156 // If the negate has an NSW flag we can assume the sign bit of the result 1157 // will be 0 because that makes abs(INT_MIN) undefined. 1158 if (match(RHS, m_Neg(m_Specific(LHS))) && 1159 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1160 Known.Zero.setSignBit(); 1161 } 1162 1163 break; 1164 } 1165 case Instruction::FPTrunc: 1166 case Instruction::FPExt: 1167 case Instruction::FPToUI: 1168 case Instruction::FPToSI: 1169 case Instruction::SIToFP: 1170 case Instruction::UIToFP: 1171 break; // Can't work with floating point. 1172 case Instruction::PtrToInt: 1173 case Instruction::IntToPtr: 1174 // Fall through and handle them the same as zext/trunc. 1175 LLVM_FALLTHROUGH; 1176 case Instruction::ZExt: 1177 case Instruction::Trunc: { 1178 Type *SrcTy = I->getOperand(0)->getType(); 1179 1180 unsigned SrcBitWidth; 1181 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1182 // which fall through here. 1183 Type *ScalarTy = SrcTy->getScalarType(); 1184 SrcBitWidth = ScalarTy->isPointerTy() ? 1185 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1186 Q.DL.getTypeSizeInBits(ScalarTy); 1187 1188 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1189 Known = Known.anyextOrTrunc(SrcBitWidth); 1190 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1191 Known = Known.zextOrTrunc(BitWidth); 1192 break; 1193 } 1194 case Instruction::BitCast: { 1195 Type *SrcTy = I->getOperand(0)->getType(); 1196 if (SrcTy->isIntOrPtrTy() && 1197 // TODO: For now, not handling conversions like: 1198 // (bitcast i64 %x to <2 x i32>) 1199 !I->getType()->isVectorTy()) { 1200 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1201 break; 1202 } 1203 break; 1204 } 1205 case Instruction::SExt: { 1206 // Compute the bits in the result that are not present in the input. 1207 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1208 1209 Known = Known.trunc(SrcBitWidth); 1210 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1211 // If the sign bit of the input is known set or clear, then we know the 1212 // top bits of the result. 1213 Known = Known.sext(BitWidth); 1214 break; 1215 } 1216 case Instruction::Shl: { 1217 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1218 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1219 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1220 // If this shift has "nsw" keyword, then the result is either a poison 1221 // value or has the same sign bit as the first operand. 1222 if (NSW) { 1223 if (KnownVal.Zero.isSignBitSet()) 1224 Result.Zero.setSignBit(); 1225 if (KnownVal.One.isSignBitSet()) 1226 Result.One.setSignBit(); 1227 } 1228 return Result; 1229 }; 1230 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1231 KF); 1232 // Trailing zeros of a right-shifted constant never decrease. 1233 const APInt *C; 1234 if (match(I->getOperand(0), m_APInt(C))) 1235 Known.Zero.setLowBits(C->countTrailingZeros()); 1236 break; 1237 } 1238 case Instruction::LShr: { 1239 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1240 return KnownBits::lshr(KnownVal, KnownAmt); 1241 }; 1242 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1243 KF); 1244 // Leading zeros of a left-shifted constant never decrease. 1245 const APInt *C; 1246 if (match(I->getOperand(0), m_APInt(C))) 1247 Known.Zero.setHighBits(C->countLeadingZeros()); 1248 break; 1249 } 1250 case Instruction::AShr: { 1251 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1252 return KnownBits::ashr(KnownVal, KnownAmt); 1253 }; 1254 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1255 KF); 1256 break; 1257 } 1258 case Instruction::Sub: { 1259 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1260 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1261 DemandedElts, Known, Known2, Depth, Q); 1262 break; 1263 } 1264 case Instruction::Add: { 1265 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1266 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1267 DemandedElts, Known, Known2, Depth, Q); 1268 break; 1269 } 1270 case Instruction::SRem: 1271 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1272 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1273 Known = KnownBits::srem(Known, Known2); 1274 break; 1275 1276 case Instruction::URem: 1277 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1278 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1279 Known = KnownBits::urem(Known, Known2); 1280 break; 1281 case Instruction::Alloca: 1282 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1283 break; 1284 case Instruction::GetElementPtr: { 1285 // Analyze all of the subscripts of this getelementptr instruction 1286 // to determine if we can prove known low zero bits. 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 // Accumulate the constant indices in a separate variable 1289 // to minimize the number of calls to computeForAddSub. 1290 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1291 1292 gep_type_iterator GTI = gep_type_begin(I); 1293 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1294 // TrailZ can only become smaller, short-circuit if we hit zero. 1295 if (Known.isUnknown()) 1296 break; 1297 1298 Value *Index = I->getOperand(i); 1299 1300 // Handle case when index is zero. 1301 Constant *CIndex = dyn_cast<Constant>(Index); 1302 if (CIndex && CIndex->isZeroValue()) 1303 continue; 1304 1305 if (StructType *STy = GTI.getStructTypeOrNull()) { 1306 // Handle struct member offset arithmetic. 1307 1308 assert(CIndex && 1309 "Access to structure field must be known at compile time"); 1310 1311 if (CIndex->getType()->isVectorTy()) 1312 Index = CIndex->getSplatValue(); 1313 1314 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1315 const StructLayout *SL = Q.DL.getStructLayout(STy); 1316 uint64_t Offset = SL->getElementOffset(Idx); 1317 AccConstIndices += Offset; 1318 continue; 1319 } 1320 1321 // Handle array index arithmetic. 1322 Type *IndexedTy = GTI.getIndexedType(); 1323 if (!IndexedTy->isSized()) { 1324 Known.resetAll(); 1325 break; 1326 } 1327 1328 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1329 KnownBits IndexBits(IndexBitWidth); 1330 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1331 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1332 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1333 KnownBits ScalingFactor(IndexBitWidth); 1334 // Multiply by current sizeof type. 1335 // &A[i] == A + i * sizeof(*A[i]). 1336 if (IndexTypeSize.isScalable()) { 1337 // For scalable types the only thing we know about sizeof is 1338 // that this is a multiple of the minimum size. 1339 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1340 } else if (IndexBits.isConstant()) { 1341 APInt IndexConst = IndexBits.getConstant(); 1342 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1343 IndexConst *= ScalingFactor; 1344 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1345 continue; 1346 } else { 1347 ScalingFactor = 1348 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1349 } 1350 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1351 1352 // If the offsets have a different width from the pointer, according 1353 // to the language reference we need to sign-extend or truncate them 1354 // to the width of the pointer. 1355 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1356 1357 // Note that inbounds does *not* guarantee nsw for the addition, as only 1358 // the offset is signed, while the base address is unsigned. 1359 Known = KnownBits::computeForAddSub( 1360 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1361 } 1362 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1363 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1364 Known = KnownBits::computeForAddSub( 1365 /*Add=*/true, /*NSW=*/false, Known, Index); 1366 } 1367 break; 1368 } 1369 case Instruction::PHI: { 1370 const PHINode *P = cast<PHINode>(I); 1371 // Handle the case of a simple two-predecessor recurrence PHI. 1372 // There's a lot more that could theoretically be done here, but 1373 // this is sufficient to catch some interesting cases. 1374 if (P->getNumIncomingValues() == 2) { 1375 for (unsigned i = 0; i != 2; ++i) { 1376 Value *L = P->getIncomingValue(i); 1377 Value *R = P->getIncomingValue(!i); 1378 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1379 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1380 Operator *LU = dyn_cast<Operator>(L); 1381 if (!LU) 1382 continue; 1383 unsigned Opcode = LU->getOpcode(); 1384 // Check for operations that have the property that if 1385 // both their operands have low zero bits, the result 1386 // will have low zero bits. 1387 if (Opcode == Instruction::Add || 1388 Opcode == Instruction::Sub || 1389 Opcode == Instruction::And || 1390 Opcode == Instruction::Or || 1391 Opcode == Instruction::Mul) { 1392 Value *LL = LU->getOperand(0); 1393 Value *LR = LU->getOperand(1); 1394 // Find a recurrence. 1395 if (LL == I) 1396 L = LR; 1397 else if (LR == I) 1398 L = LL; 1399 else 1400 continue; // Check for recurrence with L and R flipped. 1401 1402 // Change the context instruction to the "edge" that flows into the 1403 // phi. This is important because that is where the value is actually 1404 // "evaluated" even though it is used later somewhere else. (see also 1405 // D69571). 1406 Query RecQ = Q; 1407 1408 // Ok, we have a PHI of the form L op= R. Check for low 1409 // zero bits. 1410 RecQ.CxtI = RInst; 1411 computeKnownBits(R, Known2, Depth + 1, RecQ); 1412 1413 // We need to take the minimum number of known bits 1414 KnownBits Known3(BitWidth); 1415 RecQ.CxtI = LInst; 1416 computeKnownBits(L, Known3, Depth + 1, RecQ); 1417 1418 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1419 Known3.countMinTrailingZeros())); 1420 1421 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1422 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1423 // If initial value of recurrence is nonnegative, and we are adding 1424 // a nonnegative number with nsw, the result can only be nonnegative 1425 // or poison value regardless of the number of times we execute the 1426 // add in phi recurrence. If initial value is negative and we are 1427 // adding a negative number with nsw, the result can only be 1428 // negative or poison value. Similar arguments apply to sub and mul. 1429 // 1430 // (add non-negative, non-negative) --> non-negative 1431 // (add negative, negative) --> negative 1432 if (Opcode == Instruction::Add) { 1433 if (Known2.isNonNegative() && Known3.isNonNegative()) 1434 Known.makeNonNegative(); 1435 else if (Known2.isNegative() && Known3.isNegative()) 1436 Known.makeNegative(); 1437 } 1438 1439 // (sub nsw non-negative, negative) --> non-negative 1440 // (sub nsw negative, non-negative) --> negative 1441 else if (Opcode == Instruction::Sub && LL == I) { 1442 if (Known2.isNonNegative() && Known3.isNegative()) 1443 Known.makeNonNegative(); 1444 else if (Known2.isNegative() && Known3.isNonNegative()) 1445 Known.makeNegative(); 1446 } 1447 1448 // (mul nsw non-negative, non-negative) --> non-negative 1449 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1450 Known3.isNonNegative()) 1451 Known.makeNonNegative(); 1452 } 1453 1454 break; 1455 } 1456 } 1457 } 1458 1459 // Unreachable blocks may have zero-operand PHI nodes. 1460 if (P->getNumIncomingValues() == 0) 1461 break; 1462 1463 // Otherwise take the unions of the known bit sets of the operands, 1464 // taking conservative care to avoid excessive recursion. 1465 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1466 // Skip if every incoming value references to ourself. 1467 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1468 break; 1469 1470 Known.Zero.setAllBits(); 1471 Known.One.setAllBits(); 1472 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1473 Value *IncValue = P->getIncomingValue(u); 1474 // Skip direct self references. 1475 if (IncValue == P) continue; 1476 1477 // Change the context instruction to the "edge" that flows into the 1478 // phi. This is important because that is where the value is actually 1479 // "evaluated" even though it is used later somewhere else. (see also 1480 // D69571). 1481 Query RecQ = Q; 1482 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1483 1484 Known2 = KnownBits(BitWidth); 1485 // Recurse, but cap the recursion to one level, because we don't 1486 // want to waste time spinning around in loops. 1487 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1488 Known = KnownBits::commonBits(Known, Known2); 1489 // If all bits have been ruled out, there's no need to check 1490 // more operands. 1491 if (Known.isUnknown()) 1492 break; 1493 } 1494 } 1495 break; 1496 } 1497 case Instruction::Call: 1498 case Instruction::Invoke: 1499 // If range metadata is attached to this call, set known bits from that, 1500 // and then intersect with known bits based on other properties of the 1501 // function. 1502 if (MDNode *MD = 1503 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1504 computeKnownBitsFromRangeMetadata(*MD, Known); 1505 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1506 computeKnownBits(RV, Known2, Depth + 1, Q); 1507 Known.Zero |= Known2.Zero; 1508 Known.One |= Known2.One; 1509 } 1510 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1511 switch (II->getIntrinsicID()) { 1512 default: break; 1513 case Intrinsic::abs: { 1514 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1515 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1516 Known = Known2.abs(IntMinIsPoison); 1517 break; 1518 } 1519 case Intrinsic::bitreverse: 1520 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1521 Known.Zero |= Known2.Zero.reverseBits(); 1522 Known.One |= Known2.One.reverseBits(); 1523 break; 1524 case Intrinsic::bswap: 1525 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1526 Known.Zero |= Known2.Zero.byteSwap(); 1527 Known.One |= Known2.One.byteSwap(); 1528 break; 1529 case Intrinsic::ctlz: { 1530 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1531 // If we have a known 1, its position is our upper bound. 1532 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1533 // If this call is undefined for 0, the result will be less than 2^n. 1534 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1535 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1536 unsigned LowBits = Log2_32(PossibleLZ)+1; 1537 Known.Zero.setBitsFrom(LowBits); 1538 break; 1539 } 1540 case Intrinsic::cttz: { 1541 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1542 // If we have a known 1, its position is our upper bound. 1543 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1544 // If this call is undefined for 0, the result will be less than 2^n. 1545 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1546 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1547 unsigned LowBits = Log2_32(PossibleTZ)+1; 1548 Known.Zero.setBitsFrom(LowBits); 1549 break; 1550 } 1551 case Intrinsic::ctpop: { 1552 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1553 // We can bound the space the count needs. Also, bits known to be zero 1554 // can't contribute to the population. 1555 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1556 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1557 Known.Zero.setBitsFrom(LowBits); 1558 // TODO: we could bound KnownOne using the lower bound on the number 1559 // of bits which might be set provided by popcnt KnownOne2. 1560 break; 1561 } 1562 case Intrinsic::fshr: 1563 case Intrinsic::fshl: { 1564 const APInt *SA; 1565 if (!match(I->getOperand(2), m_APInt(SA))) 1566 break; 1567 1568 // Normalize to funnel shift left. 1569 uint64_t ShiftAmt = SA->urem(BitWidth); 1570 if (II->getIntrinsicID() == Intrinsic::fshr) 1571 ShiftAmt = BitWidth - ShiftAmt; 1572 1573 KnownBits Known3(BitWidth); 1574 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1575 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1576 1577 Known.Zero = 1578 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1579 Known.One = 1580 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1581 break; 1582 } 1583 case Intrinsic::uadd_sat: 1584 case Intrinsic::usub_sat: { 1585 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1586 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1587 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1588 1589 // Add: Leading ones of either operand are preserved. 1590 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1591 // as leading zeros in the result. 1592 unsigned LeadingKnown; 1593 if (IsAdd) 1594 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1595 Known2.countMinLeadingOnes()); 1596 else 1597 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1598 Known2.countMinLeadingOnes()); 1599 1600 Known = KnownBits::computeForAddSub( 1601 IsAdd, /* NSW */ false, Known, Known2); 1602 1603 // We select between the operation result and all-ones/zero 1604 // respectively, so we can preserve known ones/zeros. 1605 if (IsAdd) { 1606 Known.One.setHighBits(LeadingKnown); 1607 Known.Zero.clearAllBits(); 1608 } else { 1609 Known.Zero.setHighBits(LeadingKnown); 1610 Known.One.clearAllBits(); 1611 } 1612 break; 1613 } 1614 case Intrinsic::umin: 1615 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1616 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1617 Known = KnownBits::umin(Known, Known2); 1618 break; 1619 case Intrinsic::umax: 1620 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1621 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1622 Known = KnownBits::umax(Known, Known2); 1623 break; 1624 case Intrinsic::smin: 1625 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1626 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1627 Known = KnownBits::smin(Known, Known2); 1628 break; 1629 case Intrinsic::smax: 1630 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1631 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1632 Known = KnownBits::smax(Known, Known2); 1633 break; 1634 case Intrinsic::x86_sse42_crc32_64_64: 1635 Known.Zero.setBitsFrom(32); 1636 break; 1637 } 1638 } 1639 break; 1640 case Instruction::ShuffleVector: { 1641 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1642 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1643 if (!Shuf) { 1644 Known.resetAll(); 1645 return; 1646 } 1647 // For undef elements, we don't know anything about the common state of 1648 // the shuffle result. 1649 APInt DemandedLHS, DemandedRHS; 1650 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1651 Known.resetAll(); 1652 return; 1653 } 1654 Known.One.setAllBits(); 1655 Known.Zero.setAllBits(); 1656 if (!!DemandedLHS) { 1657 const Value *LHS = Shuf->getOperand(0); 1658 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1659 // If we don't know any bits, early out. 1660 if (Known.isUnknown()) 1661 break; 1662 } 1663 if (!!DemandedRHS) { 1664 const Value *RHS = Shuf->getOperand(1); 1665 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1666 Known = KnownBits::commonBits(Known, Known2); 1667 } 1668 break; 1669 } 1670 case Instruction::InsertElement: { 1671 const Value *Vec = I->getOperand(0); 1672 const Value *Elt = I->getOperand(1); 1673 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1674 // Early out if the index is non-constant or out-of-range. 1675 unsigned NumElts = DemandedElts.getBitWidth(); 1676 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1677 Known.resetAll(); 1678 return; 1679 } 1680 Known.One.setAllBits(); 1681 Known.Zero.setAllBits(); 1682 unsigned EltIdx = CIdx->getZExtValue(); 1683 // Do we demand the inserted element? 1684 if (DemandedElts[EltIdx]) { 1685 computeKnownBits(Elt, Known, Depth + 1, Q); 1686 // If we don't know any bits, early out. 1687 if (Known.isUnknown()) 1688 break; 1689 } 1690 // We don't need the base vector element that has been inserted. 1691 APInt DemandedVecElts = DemandedElts; 1692 DemandedVecElts.clearBit(EltIdx); 1693 if (!!DemandedVecElts) { 1694 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1695 Known = KnownBits::commonBits(Known, Known2); 1696 } 1697 break; 1698 } 1699 case Instruction::ExtractElement: { 1700 // Look through extract element. If the index is non-constant or 1701 // out-of-range demand all elements, otherwise just the extracted element. 1702 const Value *Vec = I->getOperand(0); 1703 const Value *Idx = I->getOperand(1); 1704 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1705 if (isa<ScalableVectorType>(Vec->getType())) { 1706 // FIXME: there's probably *something* we can do with scalable vectors 1707 Known.resetAll(); 1708 break; 1709 } 1710 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1711 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1712 if (CIdx && CIdx->getValue().ult(NumElts)) 1713 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1714 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1715 break; 1716 } 1717 case Instruction::ExtractValue: 1718 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1719 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1720 if (EVI->getNumIndices() != 1) break; 1721 if (EVI->getIndices()[0] == 0) { 1722 switch (II->getIntrinsicID()) { 1723 default: break; 1724 case Intrinsic::uadd_with_overflow: 1725 case Intrinsic::sadd_with_overflow: 1726 computeKnownBitsAddSub(true, II->getArgOperand(0), 1727 II->getArgOperand(1), false, DemandedElts, 1728 Known, Known2, Depth, Q); 1729 break; 1730 case Intrinsic::usub_with_overflow: 1731 case Intrinsic::ssub_with_overflow: 1732 computeKnownBitsAddSub(false, II->getArgOperand(0), 1733 II->getArgOperand(1), false, DemandedElts, 1734 Known, Known2, Depth, Q); 1735 break; 1736 case Intrinsic::umul_with_overflow: 1737 case Intrinsic::smul_with_overflow: 1738 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1739 DemandedElts, Known, Known2, Depth, Q); 1740 break; 1741 } 1742 } 1743 } 1744 break; 1745 case Instruction::Freeze: 1746 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1747 Depth + 1)) 1748 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1749 break; 1750 } 1751 } 1752 1753 /// Determine which bits of V are known to be either zero or one and return 1754 /// them. 1755 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1756 unsigned Depth, const Query &Q) { 1757 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1758 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1759 return Known; 1760 } 1761 1762 /// Determine which bits of V are known to be either zero or one and return 1763 /// them. 1764 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1765 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1766 computeKnownBits(V, Known, Depth, Q); 1767 return Known; 1768 } 1769 1770 /// Determine which bits of V are known to be either zero or one and return 1771 /// them in the Known bit set. 1772 /// 1773 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1774 /// we cannot optimize based on the assumption that it is zero without changing 1775 /// it to be an explicit zero. If we don't change it to zero, other code could 1776 /// optimized based on the contradictory assumption that it is non-zero. 1777 /// Because instcombine aggressively folds operations with undef args anyway, 1778 /// this won't lose us code quality. 1779 /// 1780 /// This function is defined on values with integer type, values with pointer 1781 /// type, and vectors of integers. In the case 1782 /// where V is a vector, known zero, and known one values are the 1783 /// same width as the vector element, and the bit is set only if it is true 1784 /// for all of the demanded elements in the vector specified by DemandedElts. 1785 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1786 KnownBits &Known, unsigned Depth, const Query &Q) { 1787 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1788 // No demanded elts or V is a scalable vector, better to assume we don't 1789 // know anything. 1790 Known.resetAll(); 1791 return; 1792 } 1793 1794 assert(V && "No Value?"); 1795 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1796 1797 #ifndef NDEBUG 1798 Type *Ty = V->getType(); 1799 unsigned BitWidth = Known.getBitWidth(); 1800 1801 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1802 "Not integer or pointer type!"); 1803 1804 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1805 assert( 1806 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1807 "DemandedElt width should equal the fixed vector number of elements"); 1808 } else { 1809 assert(DemandedElts == APInt(1, 1) && 1810 "DemandedElt width should be 1 for scalars"); 1811 } 1812 1813 Type *ScalarTy = Ty->getScalarType(); 1814 if (ScalarTy->isPointerTy()) { 1815 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1816 "V and Known should have same BitWidth"); 1817 } else { 1818 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1819 "V and Known should have same BitWidth"); 1820 } 1821 #endif 1822 1823 const APInt *C; 1824 if (match(V, m_APInt(C))) { 1825 // We know all of the bits for a scalar constant or a splat vector constant! 1826 Known = KnownBits::makeConstant(*C); 1827 return; 1828 } 1829 // Null and aggregate-zero are all-zeros. 1830 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1831 Known.setAllZero(); 1832 return; 1833 } 1834 // Handle a constant vector by taking the intersection of the known bits of 1835 // each element. 1836 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1837 // We know that CDV must be a vector of integers. Take the intersection of 1838 // each element. 1839 Known.Zero.setAllBits(); Known.One.setAllBits(); 1840 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1841 if (!DemandedElts[i]) 1842 continue; 1843 APInt Elt = CDV->getElementAsAPInt(i); 1844 Known.Zero &= ~Elt; 1845 Known.One &= Elt; 1846 } 1847 return; 1848 } 1849 1850 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1851 // We know that CV must be a vector of integers. Take the intersection of 1852 // each element. 1853 Known.Zero.setAllBits(); Known.One.setAllBits(); 1854 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1855 if (!DemandedElts[i]) 1856 continue; 1857 Constant *Element = CV->getAggregateElement(i); 1858 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1859 if (!ElementCI) { 1860 Known.resetAll(); 1861 return; 1862 } 1863 const APInt &Elt = ElementCI->getValue(); 1864 Known.Zero &= ~Elt; 1865 Known.One &= Elt; 1866 } 1867 return; 1868 } 1869 1870 // Start out not knowing anything. 1871 Known.resetAll(); 1872 1873 // We can't imply anything about undefs. 1874 if (isa<UndefValue>(V)) 1875 return; 1876 1877 // There's no point in looking through other users of ConstantData for 1878 // assumptions. Confirm that we've handled them all. 1879 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1880 1881 // All recursive calls that increase depth must come after this. 1882 if (Depth == MaxAnalysisRecursionDepth) 1883 return; 1884 1885 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1886 // the bits of its aliasee. 1887 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1888 if (!GA->isInterposable()) 1889 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1890 return; 1891 } 1892 1893 if (const Operator *I = dyn_cast<Operator>(V)) 1894 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1895 1896 // Aligned pointers have trailing zeros - refine Known.Zero set 1897 if (isa<PointerType>(V->getType())) { 1898 Align Alignment = V->getPointerAlignment(Q.DL); 1899 Known.Zero.setLowBits(Log2(Alignment)); 1900 } 1901 1902 // computeKnownBitsFromAssume strictly refines Known. 1903 // Therefore, we run them after computeKnownBitsFromOperator. 1904 1905 // Check whether a nearby assume intrinsic can determine some known bits. 1906 computeKnownBitsFromAssume(V, Known, Depth, Q); 1907 1908 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1909 } 1910 1911 /// Return true if the given value is known to have exactly one 1912 /// bit set when defined. For vectors return true if every element is known to 1913 /// be a power of two when defined. Supports values with integer or pointer 1914 /// types and vectors of integers. 1915 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1916 const Query &Q) { 1917 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1918 1919 // Attempt to match against constants. 1920 if (OrZero && match(V, m_Power2OrZero())) 1921 return true; 1922 if (match(V, m_Power2())) 1923 return true; 1924 1925 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1926 // it is shifted off the end then the result is undefined. 1927 if (match(V, m_Shl(m_One(), m_Value()))) 1928 return true; 1929 1930 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1931 // the bottom. If it is shifted off the bottom then the result is undefined. 1932 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1933 return true; 1934 1935 // The remaining tests are all recursive, so bail out if we hit the limit. 1936 if (Depth++ == MaxAnalysisRecursionDepth) 1937 return false; 1938 1939 Value *X = nullptr, *Y = nullptr; 1940 // A shift left or a logical shift right of a power of two is a power of two 1941 // or zero. 1942 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1943 match(V, m_LShr(m_Value(X), m_Value())))) 1944 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1945 1946 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1947 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1948 1949 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1950 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1951 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1952 1953 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1954 // A power of two and'd with anything is a power of two or zero. 1955 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1956 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1957 return true; 1958 // X & (-X) is always a power of two or zero. 1959 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1960 return true; 1961 return false; 1962 } 1963 1964 // Adding a power-of-two or zero to the same power-of-two or zero yields 1965 // either the original power-of-two, a larger power-of-two or zero. 1966 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1967 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1968 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1969 Q.IIQ.hasNoSignedWrap(VOBO)) { 1970 if (match(X, m_And(m_Specific(Y), m_Value())) || 1971 match(X, m_And(m_Value(), m_Specific(Y)))) 1972 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1973 return true; 1974 if (match(Y, m_And(m_Specific(X), m_Value())) || 1975 match(Y, m_And(m_Value(), m_Specific(X)))) 1976 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1977 return true; 1978 1979 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1980 KnownBits LHSBits(BitWidth); 1981 computeKnownBits(X, LHSBits, Depth, Q); 1982 1983 KnownBits RHSBits(BitWidth); 1984 computeKnownBits(Y, RHSBits, Depth, Q); 1985 // If i8 V is a power of two or zero: 1986 // ZeroBits: 1 1 1 0 1 1 1 1 1987 // ~ZeroBits: 0 0 0 1 0 0 0 0 1988 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1989 // If OrZero isn't set, we cannot give back a zero result. 1990 // Make sure either the LHS or RHS has a bit set. 1991 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1992 return true; 1993 } 1994 } 1995 1996 // An exact divide or right shift can only shift off zero bits, so the result 1997 // is a power of two only if the first operand is a power of two and not 1998 // copying a sign bit (sdiv int_min, 2). 1999 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2000 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2001 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2002 Depth, Q); 2003 } 2004 2005 return false; 2006 } 2007 2008 /// Test whether a GEP's result is known to be non-null. 2009 /// 2010 /// Uses properties inherent in a GEP to try to determine whether it is known 2011 /// to be non-null. 2012 /// 2013 /// Currently this routine does not support vector GEPs. 2014 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2015 const Query &Q) { 2016 const Function *F = nullptr; 2017 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2018 F = I->getFunction(); 2019 2020 if (!GEP->isInBounds() || 2021 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2022 return false; 2023 2024 // FIXME: Support vector-GEPs. 2025 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2026 2027 // If the base pointer is non-null, we cannot walk to a null address with an 2028 // inbounds GEP in address space zero. 2029 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2030 return true; 2031 2032 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2033 // If so, then the GEP cannot produce a null pointer, as doing so would 2034 // inherently violate the inbounds contract within address space zero. 2035 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2036 GTI != GTE; ++GTI) { 2037 // Struct types are easy -- they must always be indexed by a constant. 2038 if (StructType *STy = GTI.getStructTypeOrNull()) { 2039 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2040 unsigned ElementIdx = OpC->getZExtValue(); 2041 const StructLayout *SL = Q.DL.getStructLayout(STy); 2042 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2043 if (ElementOffset > 0) 2044 return true; 2045 continue; 2046 } 2047 2048 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2049 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2050 continue; 2051 2052 // Fast path the constant operand case both for efficiency and so we don't 2053 // increment Depth when just zipping down an all-constant GEP. 2054 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2055 if (!OpC->isZero()) 2056 return true; 2057 continue; 2058 } 2059 2060 // We post-increment Depth here because while isKnownNonZero increments it 2061 // as well, when we pop back up that increment won't persist. We don't want 2062 // to recurse 10k times just because we have 10k GEP operands. We don't 2063 // bail completely out because we want to handle constant GEPs regardless 2064 // of depth. 2065 if (Depth++ >= MaxAnalysisRecursionDepth) 2066 continue; 2067 2068 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2069 return true; 2070 } 2071 2072 return false; 2073 } 2074 2075 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2076 const Instruction *CtxI, 2077 const DominatorTree *DT) { 2078 if (isa<Constant>(V)) 2079 return false; 2080 2081 if (!CtxI || !DT) 2082 return false; 2083 2084 unsigned NumUsesExplored = 0; 2085 for (auto *U : V->users()) { 2086 // Avoid massive lists 2087 if (NumUsesExplored >= DomConditionsMaxUses) 2088 break; 2089 NumUsesExplored++; 2090 2091 // If the value is used as an argument to a call or invoke, then argument 2092 // attributes may provide an answer about null-ness. 2093 if (const auto *CB = dyn_cast<CallBase>(U)) 2094 if (auto *CalledFunc = CB->getCalledFunction()) 2095 for (const Argument &Arg : CalledFunc->args()) 2096 if (CB->getArgOperand(Arg.getArgNo()) == V && 2097 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2098 DT->dominates(CB, CtxI)) 2099 return true; 2100 2101 // If the value is used as a load/store, then the pointer must be non null. 2102 if (V == getLoadStorePointerOperand(U)) { 2103 const Instruction *I = cast<Instruction>(U); 2104 if (!NullPointerIsDefined(I->getFunction(), 2105 V->getType()->getPointerAddressSpace()) && 2106 DT->dominates(I, CtxI)) 2107 return true; 2108 } 2109 2110 // Consider only compare instructions uniquely controlling a branch 2111 Value *RHS; 2112 CmpInst::Predicate Pred; 2113 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2114 continue; 2115 2116 bool NonNullIfTrue; 2117 if (cmpExcludesZero(Pred, RHS)) 2118 NonNullIfTrue = true; 2119 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2120 NonNullIfTrue = false; 2121 else 2122 continue; 2123 2124 SmallVector<const User *, 4> WorkList; 2125 SmallPtrSet<const User *, 4> Visited; 2126 for (auto *CmpU : U->users()) { 2127 assert(WorkList.empty() && "Should be!"); 2128 if (Visited.insert(CmpU).second) 2129 WorkList.push_back(CmpU); 2130 2131 while (!WorkList.empty()) { 2132 auto *Curr = WorkList.pop_back_val(); 2133 2134 // If a user is an AND, add all its users to the work list. We only 2135 // propagate "pred != null" condition through AND because it is only 2136 // correct to assume that all conditions of AND are met in true branch. 2137 // TODO: Support similar logic of OR and EQ predicate? 2138 if (NonNullIfTrue) 2139 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2140 for (auto *CurrU : Curr->users()) 2141 if (Visited.insert(CurrU).second) 2142 WorkList.push_back(CurrU); 2143 continue; 2144 } 2145 2146 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2147 assert(BI->isConditional() && "uses a comparison!"); 2148 2149 BasicBlock *NonNullSuccessor = 2150 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2151 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2152 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2153 return true; 2154 } else if (NonNullIfTrue && isGuard(Curr) && 2155 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2156 return true; 2157 } 2158 } 2159 } 2160 } 2161 2162 return false; 2163 } 2164 2165 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2166 /// ensure that the value it's attached to is never Value? 'RangeType' is 2167 /// is the type of the value described by the range. 2168 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2169 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2170 assert(NumRanges >= 1); 2171 for (unsigned i = 0; i < NumRanges; ++i) { 2172 ConstantInt *Lower = 2173 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2174 ConstantInt *Upper = 2175 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2176 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2177 if (Range.contains(Value)) 2178 return false; 2179 } 2180 return true; 2181 } 2182 2183 /// Return true if the given value is known to be non-zero when defined. For 2184 /// vectors, return true if every demanded element is known to be non-zero when 2185 /// defined. For pointers, if the context instruction and dominator tree are 2186 /// specified, perform context-sensitive analysis and return true if the 2187 /// pointer couldn't possibly be null at the specified instruction. 2188 /// Supports values with integer or pointer type and vectors of integers. 2189 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2190 const Query &Q) { 2191 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2192 // vector 2193 if (isa<ScalableVectorType>(V->getType())) 2194 return false; 2195 2196 if (auto *C = dyn_cast<Constant>(V)) { 2197 if (C->isNullValue()) 2198 return false; 2199 if (isa<ConstantInt>(C)) 2200 // Must be non-zero due to null test above. 2201 return true; 2202 2203 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2204 // See the comment for IntToPtr/PtrToInt instructions below. 2205 if (CE->getOpcode() == Instruction::IntToPtr || 2206 CE->getOpcode() == Instruction::PtrToInt) 2207 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2208 .getFixedSize() <= 2209 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2210 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2211 } 2212 2213 // For constant vectors, check that all elements are undefined or known 2214 // non-zero to determine that the whole vector is known non-zero. 2215 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2216 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2217 if (!DemandedElts[i]) 2218 continue; 2219 Constant *Elt = C->getAggregateElement(i); 2220 if (!Elt || Elt->isNullValue()) 2221 return false; 2222 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2223 return false; 2224 } 2225 return true; 2226 } 2227 2228 // A global variable in address space 0 is non null unless extern weak 2229 // or an absolute symbol reference. Other address spaces may have null as a 2230 // valid address for a global, so we can't assume anything. 2231 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2232 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2233 GV->getType()->getAddressSpace() == 0) 2234 return true; 2235 } else 2236 return false; 2237 } 2238 2239 if (auto *I = dyn_cast<Instruction>(V)) { 2240 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2241 // If the possible ranges don't contain zero, then the value is 2242 // definitely non-zero. 2243 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2244 const APInt ZeroValue(Ty->getBitWidth(), 0); 2245 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2246 return true; 2247 } 2248 } 2249 } 2250 2251 if (isKnownNonZeroFromAssume(V, Q)) 2252 return true; 2253 2254 // Some of the tests below are recursive, so bail out if we hit the limit. 2255 if (Depth++ >= MaxAnalysisRecursionDepth) 2256 return false; 2257 2258 // Check for pointer simplifications. 2259 2260 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2261 // Alloca never returns null, malloc might. 2262 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2263 return true; 2264 2265 // A byval, inalloca may not be null in a non-default addres space. A 2266 // nonnull argument is assumed never 0. 2267 if (const Argument *A = dyn_cast<Argument>(V)) { 2268 if (((A->hasPassPointeeByValueCopyAttr() && 2269 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2270 A->hasNonNullAttr())) 2271 return true; 2272 } 2273 2274 // A Load tagged with nonnull metadata is never null. 2275 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2276 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2277 return true; 2278 2279 if (const auto *Call = dyn_cast<CallBase>(V)) { 2280 if (Call->isReturnNonNull()) 2281 return true; 2282 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2283 return isKnownNonZero(RP, Depth, Q); 2284 } 2285 } 2286 2287 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2288 return true; 2289 2290 // Check for recursive pointer simplifications. 2291 if (V->getType()->isPointerTy()) { 2292 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2293 // do not alter the value, or at least not the nullness property of the 2294 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2295 // 2296 // Note that we have to take special care to avoid looking through 2297 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2298 // as casts that can alter the value, e.g., AddrSpaceCasts. 2299 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2300 return isGEPKnownNonNull(GEP, Depth, Q); 2301 2302 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2303 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2304 2305 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2306 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2307 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2308 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2309 } 2310 2311 // Similar to int2ptr above, we can look through ptr2int here if the cast 2312 // is a no-op or an extend and not a truncate. 2313 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2314 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2315 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2316 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2317 2318 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2319 2320 // X | Y != 0 if X != 0 or Y != 0. 2321 Value *X = nullptr, *Y = nullptr; 2322 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2323 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2324 isKnownNonZero(Y, DemandedElts, Depth, Q); 2325 2326 // ext X != 0 if X != 0. 2327 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2328 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2329 2330 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2331 // if the lowest bit is shifted off the end. 2332 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2333 // shl nuw can't remove any non-zero bits. 2334 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2335 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2336 return isKnownNonZero(X, Depth, Q); 2337 2338 KnownBits Known(BitWidth); 2339 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2340 if (Known.One[0]) 2341 return true; 2342 } 2343 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2344 // defined if the sign bit is shifted off the end. 2345 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2346 // shr exact can only shift out zero bits. 2347 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2348 if (BO->isExact()) 2349 return isKnownNonZero(X, Depth, Q); 2350 2351 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2352 if (Known.isNegative()) 2353 return true; 2354 2355 // If the shifter operand is a constant, and all of the bits shifted 2356 // out are known to be zero, and X is known non-zero then at least one 2357 // non-zero bit must remain. 2358 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2359 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2360 // Is there a known one in the portion not shifted out? 2361 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2362 return true; 2363 // Are all the bits to be shifted out known zero? 2364 if (Known.countMinTrailingZeros() >= ShiftVal) 2365 return isKnownNonZero(X, DemandedElts, Depth, Q); 2366 } 2367 } 2368 // div exact can only produce a zero if the dividend is zero. 2369 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2370 return isKnownNonZero(X, DemandedElts, Depth, Q); 2371 } 2372 // X + Y. 2373 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2374 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2375 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2376 2377 // If X and Y are both non-negative (as signed values) then their sum is not 2378 // zero unless both X and Y are zero. 2379 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2380 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2381 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2382 return true; 2383 2384 // If X and Y are both negative (as signed values) then their sum is not 2385 // zero unless both X and Y equal INT_MIN. 2386 if (XKnown.isNegative() && YKnown.isNegative()) { 2387 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2388 // The sign bit of X is set. If some other bit is set then X is not equal 2389 // to INT_MIN. 2390 if (XKnown.One.intersects(Mask)) 2391 return true; 2392 // The sign bit of Y is set. If some other bit is set then Y is not equal 2393 // to INT_MIN. 2394 if (YKnown.One.intersects(Mask)) 2395 return true; 2396 } 2397 2398 // The sum of a non-negative number and a power of two is not zero. 2399 if (XKnown.isNonNegative() && 2400 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2401 return true; 2402 if (YKnown.isNonNegative() && 2403 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2404 return true; 2405 } 2406 // X * Y. 2407 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2408 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2409 // If X and Y are non-zero then so is X * Y as long as the multiplication 2410 // does not overflow. 2411 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2412 isKnownNonZero(X, DemandedElts, Depth, Q) && 2413 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2414 return true; 2415 } 2416 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2417 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2418 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2419 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2420 return true; 2421 } 2422 // PHI 2423 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2424 // Try and detect a recurrence that monotonically increases from a 2425 // starting value, as these are common as induction variables. 2426 if (PN->getNumIncomingValues() == 2) { 2427 Value *Start = PN->getIncomingValue(0); 2428 Value *Induction = PN->getIncomingValue(1); 2429 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2430 std::swap(Start, Induction); 2431 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2432 if (!C->isZero() && !C->isNegative()) { 2433 ConstantInt *X; 2434 if (Q.IIQ.UseInstrInfo && 2435 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2436 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2437 !X->isNegative()) 2438 return true; 2439 } 2440 } 2441 } 2442 // Check if all incoming values are non-zero using recursion. 2443 Query RecQ = Q; 2444 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2445 return llvm::all_of(PN->operands(), [&](const Use &U) { 2446 if (U.get() == PN) 2447 return true; 2448 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2449 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2450 }); 2451 } 2452 // ExtractElement 2453 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2454 const Value *Vec = EEI->getVectorOperand(); 2455 const Value *Idx = EEI->getIndexOperand(); 2456 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2457 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2458 unsigned NumElts = VecTy->getNumElements(); 2459 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2460 if (CIdx && CIdx->getValue().ult(NumElts)) 2461 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2462 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2463 } 2464 } 2465 // Freeze 2466 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2467 auto *Op = FI->getOperand(0); 2468 if (isKnownNonZero(Op, Depth, Q) && 2469 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2470 return true; 2471 } 2472 2473 KnownBits Known(BitWidth); 2474 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2475 return Known.One != 0; 2476 } 2477 2478 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2479 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2480 // vector 2481 if (isa<ScalableVectorType>(V->getType())) 2482 return false; 2483 2484 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2485 APInt DemandedElts = 2486 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2487 return isKnownNonZero(V, DemandedElts, Depth, Q); 2488 } 2489 2490 /// Return true if V2 == V1 + X, where X is known non-zero. 2491 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2492 const Query &Q) { 2493 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2494 if (!BO || BO->getOpcode() != Instruction::Add) 2495 return false; 2496 Value *Op = nullptr; 2497 if (V2 == BO->getOperand(0)) 2498 Op = BO->getOperand(1); 2499 else if (V2 == BO->getOperand(1)) 2500 Op = BO->getOperand(0); 2501 else 2502 return false; 2503 return isKnownNonZero(Op, Depth + 1, Q); 2504 } 2505 2506 2507 /// Return true if it is known that V1 != V2. 2508 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2509 const Query &Q) { 2510 if (V1 == V2) 2511 return false; 2512 if (V1->getType() != V2->getType()) 2513 // We can't look through casts yet. 2514 return false; 2515 2516 if (Depth >= MaxAnalysisRecursionDepth) 2517 return false; 2518 2519 // See if we can recurse through (exactly one of) our operands. This 2520 // requires our operation be 1-to-1 and map every input value to exactly 2521 // one output value. Such an operation is invertible. 2522 auto *O1 = dyn_cast<Operator>(V1); 2523 auto *O2 = dyn_cast<Operator>(V2); 2524 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2525 switch (O1->getOpcode()) { 2526 default: break; 2527 case Instruction::Add: 2528 case Instruction::Sub: 2529 // Assume operand order has been canonicalized 2530 if (O1->getOperand(0) == O2->getOperand(0)) 2531 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2532 Depth + 1, Q); 2533 if (O1->getOperand(1) == O2->getOperand(1)) 2534 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2535 Depth + 1, Q); 2536 break; 2537 case Instruction::Mul: { 2538 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2539 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2540 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2541 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2542 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2543 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2544 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2545 break; 2546 2547 // Assume operand order has been canonicalized 2548 if (O1->getOperand(1) == O2->getOperand(1) && 2549 isa<ConstantInt>(O1->getOperand(1)) && 2550 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2551 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2552 Depth + 1, Q); 2553 break; 2554 } 2555 case Instruction::SExt: 2556 case Instruction::ZExt: 2557 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2558 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2559 Depth + 1, Q); 2560 break; 2561 }; 2562 } 2563 2564 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2565 return true; 2566 2567 if (V1->getType()->isIntOrIntVectorTy()) { 2568 // Are any known bits in V1 contradictory to known bits in V2? If V1 2569 // has a known zero where V2 has a known one, they must not be equal. 2570 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2571 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2572 2573 if (Known1.Zero.intersects(Known2.One) || 2574 Known2.Zero.intersects(Known1.One)) 2575 return true; 2576 } 2577 return false; 2578 } 2579 2580 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2581 /// simplify operations downstream. Mask is known to be zero for bits that V 2582 /// cannot have. 2583 /// 2584 /// This function is defined on values with integer type, values with pointer 2585 /// type, and vectors of integers. In the case 2586 /// where V is a vector, the mask, known zero, and known one values are the 2587 /// same width as the vector element, and the bit is set only if it is true 2588 /// for all of the elements in the vector. 2589 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2590 const Query &Q) { 2591 KnownBits Known(Mask.getBitWidth()); 2592 computeKnownBits(V, Known, Depth, Q); 2593 return Mask.isSubsetOf(Known.Zero); 2594 } 2595 2596 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2597 // Returns the input and lower/upper bounds. 2598 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2599 const APInt *&CLow, const APInt *&CHigh) { 2600 assert(isa<Operator>(Select) && 2601 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2602 "Input should be a Select!"); 2603 2604 const Value *LHS = nullptr, *RHS = nullptr; 2605 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2606 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2607 return false; 2608 2609 if (!match(RHS, m_APInt(CLow))) 2610 return false; 2611 2612 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2613 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2614 if (getInverseMinMaxFlavor(SPF) != SPF2) 2615 return false; 2616 2617 if (!match(RHS2, m_APInt(CHigh))) 2618 return false; 2619 2620 if (SPF == SPF_SMIN) 2621 std::swap(CLow, CHigh); 2622 2623 In = LHS2; 2624 return CLow->sle(*CHigh); 2625 } 2626 2627 /// For vector constants, loop over the elements and find the constant with the 2628 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2629 /// or if any element was not analyzed; otherwise, return the count for the 2630 /// element with the minimum number of sign bits. 2631 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2632 const APInt &DemandedElts, 2633 unsigned TyBits) { 2634 const auto *CV = dyn_cast<Constant>(V); 2635 if (!CV || !isa<FixedVectorType>(CV->getType())) 2636 return 0; 2637 2638 unsigned MinSignBits = TyBits; 2639 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2640 for (unsigned i = 0; i != NumElts; ++i) { 2641 if (!DemandedElts[i]) 2642 continue; 2643 // If we find a non-ConstantInt, bail out. 2644 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2645 if (!Elt) 2646 return 0; 2647 2648 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2649 } 2650 2651 return MinSignBits; 2652 } 2653 2654 static unsigned ComputeNumSignBitsImpl(const Value *V, 2655 const APInt &DemandedElts, 2656 unsigned Depth, const Query &Q); 2657 2658 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2659 unsigned Depth, const Query &Q) { 2660 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2661 assert(Result > 0 && "At least one sign bit needs to be present!"); 2662 return Result; 2663 } 2664 2665 /// Return the number of times the sign bit of the register is replicated into 2666 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2667 /// (itself), but other cases can give us information. For example, immediately 2668 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2669 /// other, so we return 3. For vectors, return the number of sign bits for the 2670 /// vector element with the minimum number of known sign bits of the demanded 2671 /// elements in the vector specified by DemandedElts. 2672 static unsigned ComputeNumSignBitsImpl(const Value *V, 2673 const APInt &DemandedElts, 2674 unsigned Depth, const Query &Q) { 2675 Type *Ty = V->getType(); 2676 2677 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2678 // vector 2679 if (isa<ScalableVectorType>(Ty)) 2680 return 1; 2681 2682 #ifndef NDEBUG 2683 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2684 2685 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2686 assert( 2687 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2688 "DemandedElt width should equal the fixed vector number of elements"); 2689 } else { 2690 assert(DemandedElts == APInt(1, 1) && 2691 "DemandedElt width should be 1 for scalars"); 2692 } 2693 #endif 2694 2695 // We return the minimum number of sign bits that are guaranteed to be present 2696 // in V, so for undef we have to conservatively return 1. We don't have the 2697 // same behavior for poison though -- that's a FIXME today. 2698 2699 Type *ScalarTy = Ty->getScalarType(); 2700 unsigned TyBits = ScalarTy->isPointerTy() ? 2701 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2702 Q.DL.getTypeSizeInBits(ScalarTy); 2703 2704 unsigned Tmp, Tmp2; 2705 unsigned FirstAnswer = 1; 2706 2707 // Note that ConstantInt is handled by the general computeKnownBits case 2708 // below. 2709 2710 if (Depth == MaxAnalysisRecursionDepth) 2711 return 1; 2712 2713 if (auto *U = dyn_cast<Operator>(V)) { 2714 switch (Operator::getOpcode(V)) { 2715 default: break; 2716 case Instruction::SExt: 2717 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2718 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2719 2720 case Instruction::SDiv: { 2721 const APInt *Denominator; 2722 // sdiv X, C -> adds log(C) sign bits. 2723 if (match(U->getOperand(1), m_APInt(Denominator))) { 2724 2725 // Ignore non-positive denominator. 2726 if (!Denominator->isStrictlyPositive()) 2727 break; 2728 2729 // Calculate the incoming numerator bits. 2730 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2731 2732 // Add floor(log(C)) bits to the numerator bits. 2733 return std::min(TyBits, NumBits + Denominator->logBase2()); 2734 } 2735 break; 2736 } 2737 2738 case Instruction::SRem: { 2739 const APInt *Denominator; 2740 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2741 // positive constant. This let us put a lower bound on the number of sign 2742 // bits. 2743 if (match(U->getOperand(1), m_APInt(Denominator))) { 2744 2745 // Ignore non-positive denominator. 2746 if (!Denominator->isStrictlyPositive()) 2747 break; 2748 2749 // Calculate the incoming numerator bits. SRem by a positive constant 2750 // can't lower the number of sign bits. 2751 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2752 2753 // Calculate the leading sign bit constraints by examining the 2754 // denominator. Given that the denominator is positive, there are two 2755 // cases: 2756 // 2757 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2758 // (1 << ceilLogBase2(C)). 2759 // 2760 // 2. the numerator is negative. Then the result range is (-C,0] and 2761 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2762 // 2763 // Thus a lower bound on the number of sign bits is `TyBits - 2764 // ceilLogBase2(C)`. 2765 2766 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2767 return std::max(NumrBits, ResBits); 2768 } 2769 break; 2770 } 2771 2772 case Instruction::AShr: { 2773 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2774 // ashr X, C -> adds C sign bits. Vectors too. 2775 const APInt *ShAmt; 2776 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2777 if (ShAmt->uge(TyBits)) 2778 break; // Bad shift. 2779 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2780 Tmp += ShAmtLimited; 2781 if (Tmp > TyBits) Tmp = TyBits; 2782 } 2783 return Tmp; 2784 } 2785 case Instruction::Shl: { 2786 const APInt *ShAmt; 2787 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2788 // shl destroys sign bits. 2789 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2790 if (ShAmt->uge(TyBits) || // Bad shift. 2791 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2792 Tmp2 = ShAmt->getZExtValue(); 2793 return Tmp - Tmp2; 2794 } 2795 break; 2796 } 2797 case Instruction::And: 2798 case Instruction::Or: 2799 case Instruction::Xor: // NOT is handled here. 2800 // Logical binary ops preserve the number of sign bits at the worst. 2801 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2802 if (Tmp != 1) { 2803 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2804 FirstAnswer = std::min(Tmp, Tmp2); 2805 // We computed what we know about the sign bits as our first 2806 // answer. Now proceed to the generic code that uses 2807 // computeKnownBits, and pick whichever answer is better. 2808 } 2809 break; 2810 2811 case Instruction::Select: { 2812 // If we have a clamp pattern, we know that the number of sign bits will 2813 // be the minimum of the clamp min/max range. 2814 const Value *X; 2815 const APInt *CLow, *CHigh; 2816 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2817 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2818 2819 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2820 if (Tmp == 1) break; 2821 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2822 return std::min(Tmp, Tmp2); 2823 } 2824 2825 case Instruction::Add: 2826 // Add can have at most one carry bit. Thus we know that the output 2827 // is, at worst, one more bit than the inputs. 2828 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2829 if (Tmp == 1) break; 2830 2831 // Special case decrementing a value (ADD X, -1): 2832 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2833 if (CRHS->isAllOnesValue()) { 2834 KnownBits Known(TyBits); 2835 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2836 2837 // If the input is known to be 0 or 1, the output is 0/-1, which is 2838 // all sign bits set. 2839 if ((Known.Zero | 1).isAllOnesValue()) 2840 return TyBits; 2841 2842 // If we are subtracting one from a positive number, there is no carry 2843 // out of the result. 2844 if (Known.isNonNegative()) 2845 return Tmp; 2846 } 2847 2848 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2849 if (Tmp2 == 1) break; 2850 return std::min(Tmp, Tmp2) - 1; 2851 2852 case Instruction::Sub: 2853 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2854 if (Tmp2 == 1) break; 2855 2856 // Handle NEG. 2857 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2858 if (CLHS->isNullValue()) { 2859 KnownBits Known(TyBits); 2860 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2861 // If the input is known to be 0 or 1, the output is 0/-1, which is 2862 // all sign bits set. 2863 if ((Known.Zero | 1).isAllOnesValue()) 2864 return TyBits; 2865 2866 // If the input is known to be positive (the sign bit is known clear), 2867 // the output of the NEG has the same number of sign bits as the 2868 // input. 2869 if (Known.isNonNegative()) 2870 return Tmp2; 2871 2872 // Otherwise, we treat this like a SUB. 2873 } 2874 2875 // Sub can have at most one carry bit. Thus we know that the output 2876 // is, at worst, one more bit than the inputs. 2877 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2878 if (Tmp == 1) break; 2879 return std::min(Tmp, Tmp2) - 1; 2880 2881 case Instruction::Mul: { 2882 // The output of the Mul can be at most twice the valid bits in the 2883 // inputs. 2884 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2885 if (SignBitsOp0 == 1) break; 2886 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2887 if (SignBitsOp1 == 1) break; 2888 unsigned OutValidBits = 2889 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2890 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2891 } 2892 2893 case Instruction::PHI: { 2894 const PHINode *PN = cast<PHINode>(U); 2895 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2896 // Don't analyze large in-degree PHIs. 2897 if (NumIncomingValues > 4) break; 2898 // Unreachable blocks may have zero-operand PHI nodes. 2899 if (NumIncomingValues == 0) break; 2900 2901 // Take the minimum of all incoming values. This can't infinitely loop 2902 // because of our depth threshold. 2903 Query RecQ = Q; 2904 Tmp = TyBits; 2905 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2906 if (Tmp == 1) return Tmp; 2907 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2908 Tmp = std::min( 2909 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2910 } 2911 return Tmp; 2912 } 2913 2914 case Instruction::Trunc: 2915 // FIXME: it's tricky to do anything useful for this, but it is an 2916 // important case for targets like X86. 2917 break; 2918 2919 case Instruction::ExtractElement: 2920 // Look through extract element. At the moment we keep this simple and 2921 // skip tracking the specific element. But at least we might find 2922 // information valid for all elements of the vector (for example if vector 2923 // is sign extended, shifted, etc). 2924 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2925 2926 case Instruction::ShuffleVector: { 2927 // Collect the minimum number of sign bits that are shared by every vector 2928 // element referenced by the shuffle. 2929 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2930 if (!Shuf) { 2931 // FIXME: Add support for shufflevector constant expressions. 2932 return 1; 2933 } 2934 APInt DemandedLHS, DemandedRHS; 2935 // For undef elements, we don't know anything about the common state of 2936 // the shuffle result. 2937 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2938 return 1; 2939 Tmp = std::numeric_limits<unsigned>::max(); 2940 if (!!DemandedLHS) { 2941 const Value *LHS = Shuf->getOperand(0); 2942 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2943 } 2944 // If we don't know anything, early out and try computeKnownBits 2945 // fall-back. 2946 if (Tmp == 1) 2947 break; 2948 if (!!DemandedRHS) { 2949 const Value *RHS = Shuf->getOperand(1); 2950 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2951 Tmp = std::min(Tmp, Tmp2); 2952 } 2953 // If we don't know anything, early out and try computeKnownBits 2954 // fall-back. 2955 if (Tmp == 1) 2956 break; 2957 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2958 return Tmp; 2959 } 2960 case Instruction::Call: { 2961 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2962 switch (II->getIntrinsicID()) { 2963 default: break; 2964 case Intrinsic::abs: 2965 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2966 if (Tmp == 1) break; 2967 2968 // Absolute value reduces number of sign bits by at most 1. 2969 return Tmp - 1; 2970 } 2971 } 2972 } 2973 } 2974 } 2975 2976 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2977 // use this information. 2978 2979 // If we can examine all elements of a vector constant successfully, we're 2980 // done (we can't do any better than that). If not, keep trying. 2981 if (unsigned VecSignBits = 2982 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2983 return VecSignBits; 2984 2985 KnownBits Known(TyBits); 2986 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2987 2988 // If we know that the sign bit is either zero or one, determine the number of 2989 // identical bits in the top of the input value. 2990 return std::max(FirstAnswer, Known.countMinSignBits()); 2991 } 2992 2993 /// This function computes the integer multiple of Base that equals V. 2994 /// If successful, it returns true and returns the multiple in 2995 /// Multiple. If unsuccessful, it returns false. It looks 2996 /// through SExt instructions only if LookThroughSExt is true. 2997 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2998 bool LookThroughSExt, unsigned Depth) { 2999 assert(V && "No Value?"); 3000 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3001 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3002 3003 Type *T = V->getType(); 3004 3005 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3006 3007 if (Base == 0) 3008 return false; 3009 3010 if (Base == 1) { 3011 Multiple = V; 3012 return true; 3013 } 3014 3015 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3016 Constant *BaseVal = ConstantInt::get(T, Base); 3017 if (CO && CO == BaseVal) { 3018 // Multiple is 1. 3019 Multiple = ConstantInt::get(T, 1); 3020 return true; 3021 } 3022 3023 if (CI && CI->getZExtValue() % Base == 0) { 3024 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3025 return true; 3026 } 3027 3028 if (Depth == MaxAnalysisRecursionDepth) return false; 3029 3030 Operator *I = dyn_cast<Operator>(V); 3031 if (!I) return false; 3032 3033 switch (I->getOpcode()) { 3034 default: break; 3035 case Instruction::SExt: 3036 if (!LookThroughSExt) return false; 3037 // otherwise fall through to ZExt 3038 LLVM_FALLTHROUGH; 3039 case Instruction::ZExt: 3040 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3041 LookThroughSExt, Depth+1); 3042 case Instruction::Shl: 3043 case Instruction::Mul: { 3044 Value *Op0 = I->getOperand(0); 3045 Value *Op1 = I->getOperand(1); 3046 3047 if (I->getOpcode() == Instruction::Shl) { 3048 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3049 if (!Op1CI) return false; 3050 // Turn Op0 << Op1 into Op0 * 2^Op1 3051 APInt Op1Int = Op1CI->getValue(); 3052 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3053 APInt API(Op1Int.getBitWidth(), 0); 3054 API.setBit(BitToSet); 3055 Op1 = ConstantInt::get(V->getContext(), API); 3056 } 3057 3058 Value *Mul0 = nullptr; 3059 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3060 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3061 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3062 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3063 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3064 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3065 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3066 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3067 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3068 3069 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3070 Multiple = ConstantExpr::getMul(MulC, Op1C); 3071 return true; 3072 } 3073 3074 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3075 if (Mul0CI->getValue() == 1) { 3076 // V == Base * Op1, so return Op1 3077 Multiple = Op1; 3078 return true; 3079 } 3080 } 3081 3082 Value *Mul1 = nullptr; 3083 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3084 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3085 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3086 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3087 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3088 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3089 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3090 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3091 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3092 3093 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3094 Multiple = ConstantExpr::getMul(MulC, Op0C); 3095 return true; 3096 } 3097 3098 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3099 if (Mul1CI->getValue() == 1) { 3100 // V == Base * Op0, so return Op0 3101 Multiple = Op0; 3102 return true; 3103 } 3104 } 3105 } 3106 } 3107 3108 // We could not determine if V is a multiple of Base. 3109 return false; 3110 } 3111 3112 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3113 const TargetLibraryInfo *TLI) { 3114 const Function *F = CB.getCalledFunction(); 3115 if (!F) 3116 return Intrinsic::not_intrinsic; 3117 3118 if (F->isIntrinsic()) 3119 return F->getIntrinsicID(); 3120 3121 // We are going to infer semantics of a library function based on mapping it 3122 // to an LLVM intrinsic. Check that the library function is available from 3123 // this callbase and in this environment. 3124 LibFunc Func; 3125 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3126 !CB.onlyReadsMemory()) 3127 return Intrinsic::not_intrinsic; 3128 3129 switch (Func) { 3130 default: 3131 break; 3132 case LibFunc_sin: 3133 case LibFunc_sinf: 3134 case LibFunc_sinl: 3135 return Intrinsic::sin; 3136 case LibFunc_cos: 3137 case LibFunc_cosf: 3138 case LibFunc_cosl: 3139 return Intrinsic::cos; 3140 case LibFunc_exp: 3141 case LibFunc_expf: 3142 case LibFunc_expl: 3143 return Intrinsic::exp; 3144 case LibFunc_exp2: 3145 case LibFunc_exp2f: 3146 case LibFunc_exp2l: 3147 return Intrinsic::exp2; 3148 case LibFunc_log: 3149 case LibFunc_logf: 3150 case LibFunc_logl: 3151 return Intrinsic::log; 3152 case LibFunc_log10: 3153 case LibFunc_log10f: 3154 case LibFunc_log10l: 3155 return Intrinsic::log10; 3156 case LibFunc_log2: 3157 case LibFunc_log2f: 3158 case LibFunc_log2l: 3159 return Intrinsic::log2; 3160 case LibFunc_fabs: 3161 case LibFunc_fabsf: 3162 case LibFunc_fabsl: 3163 return Intrinsic::fabs; 3164 case LibFunc_fmin: 3165 case LibFunc_fminf: 3166 case LibFunc_fminl: 3167 return Intrinsic::minnum; 3168 case LibFunc_fmax: 3169 case LibFunc_fmaxf: 3170 case LibFunc_fmaxl: 3171 return Intrinsic::maxnum; 3172 case LibFunc_copysign: 3173 case LibFunc_copysignf: 3174 case LibFunc_copysignl: 3175 return Intrinsic::copysign; 3176 case LibFunc_floor: 3177 case LibFunc_floorf: 3178 case LibFunc_floorl: 3179 return Intrinsic::floor; 3180 case LibFunc_ceil: 3181 case LibFunc_ceilf: 3182 case LibFunc_ceill: 3183 return Intrinsic::ceil; 3184 case LibFunc_trunc: 3185 case LibFunc_truncf: 3186 case LibFunc_truncl: 3187 return Intrinsic::trunc; 3188 case LibFunc_rint: 3189 case LibFunc_rintf: 3190 case LibFunc_rintl: 3191 return Intrinsic::rint; 3192 case LibFunc_nearbyint: 3193 case LibFunc_nearbyintf: 3194 case LibFunc_nearbyintl: 3195 return Intrinsic::nearbyint; 3196 case LibFunc_round: 3197 case LibFunc_roundf: 3198 case LibFunc_roundl: 3199 return Intrinsic::round; 3200 case LibFunc_roundeven: 3201 case LibFunc_roundevenf: 3202 case LibFunc_roundevenl: 3203 return Intrinsic::roundeven; 3204 case LibFunc_pow: 3205 case LibFunc_powf: 3206 case LibFunc_powl: 3207 return Intrinsic::pow; 3208 case LibFunc_sqrt: 3209 case LibFunc_sqrtf: 3210 case LibFunc_sqrtl: 3211 return Intrinsic::sqrt; 3212 } 3213 3214 return Intrinsic::not_intrinsic; 3215 } 3216 3217 /// Return true if we can prove that the specified FP value is never equal to 3218 /// -0.0. 3219 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3220 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3221 /// the same as +0.0 in floating-point ops. 3222 /// 3223 /// NOTE: this function will need to be revisited when we support non-default 3224 /// rounding modes! 3225 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3226 unsigned Depth) { 3227 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3228 return !CFP->getValueAPF().isNegZero(); 3229 3230 if (Depth == MaxAnalysisRecursionDepth) 3231 return false; 3232 3233 auto *Op = dyn_cast<Operator>(V); 3234 if (!Op) 3235 return false; 3236 3237 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3238 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3239 return true; 3240 3241 // sitofp and uitofp turn into +0.0 for zero. 3242 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3243 return true; 3244 3245 if (auto *Call = dyn_cast<CallInst>(Op)) { 3246 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3247 switch (IID) { 3248 default: 3249 break; 3250 // sqrt(-0.0) = -0.0, no other negative results are possible. 3251 case Intrinsic::sqrt: 3252 case Intrinsic::canonicalize: 3253 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3254 // fabs(x) != -0.0 3255 case Intrinsic::fabs: 3256 return true; 3257 } 3258 } 3259 3260 return false; 3261 } 3262 3263 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3264 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3265 /// bit despite comparing equal. 3266 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3267 const TargetLibraryInfo *TLI, 3268 bool SignBitOnly, 3269 unsigned Depth) { 3270 // TODO: This function does not do the right thing when SignBitOnly is true 3271 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3272 // which flips the sign bits of NaNs. See 3273 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3274 3275 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3276 return !CFP->getValueAPF().isNegative() || 3277 (!SignBitOnly && CFP->getValueAPF().isZero()); 3278 } 3279 3280 // Handle vector of constants. 3281 if (auto *CV = dyn_cast<Constant>(V)) { 3282 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3283 unsigned NumElts = CVFVTy->getNumElements(); 3284 for (unsigned i = 0; i != NumElts; ++i) { 3285 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3286 if (!CFP) 3287 return false; 3288 if (CFP->getValueAPF().isNegative() && 3289 (SignBitOnly || !CFP->getValueAPF().isZero())) 3290 return false; 3291 } 3292 3293 // All non-negative ConstantFPs. 3294 return true; 3295 } 3296 } 3297 3298 if (Depth == MaxAnalysisRecursionDepth) 3299 return false; 3300 3301 const Operator *I = dyn_cast<Operator>(V); 3302 if (!I) 3303 return false; 3304 3305 switch (I->getOpcode()) { 3306 default: 3307 break; 3308 // Unsigned integers are always nonnegative. 3309 case Instruction::UIToFP: 3310 return true; 3311 case Instruction::FMul: 3312 case Instruction::FDiv: 3313 // X * X is always non-negative or a NaN. 3314 // X / X is always exactly 1.0 or a NaN. 3315 if (I->getOperand(0) == I->getOperand(1) && 3316 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3317 return true; 3318 3319 LLVM_FALLTHROUGH; 3320 case Instruction::FAdd: 3321 case Instruction::FRem: 3322 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3323 Depth + 1) && 3324 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3325 Depth + 1); 3326 case Instruction::Select: 3327 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3328 Depth + 1) && 3329 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3330 Depth + 1); 3331 case Instruction::FPExt: 3332 case Instruction::FPTrunc: 3333 // Widening/narrowing never change sign. 3334 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3335 Depth + 1); 3336 case Instruction::ExtractElement: 3337 // Look through extract element. At the moment we keep this simple and skip 3338 // tracking the specific element. But at least we might find information 3339 // valid for all elements of the vector. 3340 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3341 Depth + 1); 3342 case Instruction::Call: 3343 const auto *CI = cast<CallInst>(I); 3344 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3345 switch (IID) { 3346 default: 3347 break; 3348 case Intrinsic::maxnum: { 3349 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3350 auto isPositiveNum = [&](Value *V) { 3351 if (SignBitOnly) { 3352 // With SignBitOnly, this is tricky because the result of 3353 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3354 // a constant strictly greater than 0.0. 3355 const APFloat *C; 3356 return match(V, m_APFloat(C)) && 3357 *C > APFloat::getZero(C->getSemantics()); 3358 } 3359 3360 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3361 // maxnum can't be ordered-less-than-zero. 3362 return isKnownNeverNaN(V, TLI) && 3363 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3364 }; 3365 3366 // TODO: This could be improved. We could also check that neither operand 3367 // has its sign bit set (and at least 1 is not-NAN?). 3368 return isPositiveNum(V0) || isPositiveNum(V1); 3369 } 3370 3371 case Intrinsic::maximum: 3372 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3373 Depth + 1) || 3374 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3375 Depth + 1); 3376 case Intrinsic::minnum: 3377 case Intrinsic::minimum: 3378 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3379 Depth + 1) && 3380 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3381 Depth + 1); 3382 case Intrinsic::exp: 3383 case Intrinsic::exp2: 3384 case Intrinsic::fabs: 3385 return true; 3386 3387 case Intrinsic::sqrt: 3388 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3389 if (!SignBitOnly) 3390 return true; 3391 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3392 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3393 3394 case Intrinsic::powi: 3395 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3396 // powi(x,n) is non-negative if n is even. 3397 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3398 return true; 3399 } 3400 // TODO: This is not correct. Given that exp is an integer, here are the 3401 // ways that pow can return a negative value: 3402 // 3403 // pow(x, exp) --> negative if exp is odd and x is negative. 3404 // pow(-0, exp) --> -inf if exp is negative odd. 3405 // pow(-0, exp) --> -0 if exp is positive odd. 3406 // pow(-inf, exp) --> -0 if exp is negative odd. 3407 // pow(-inf, exp) --> -inf if exp is positive odd. 3408 // 3409 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3410 // but we must return false if x == -0. Unfortunately we do not currently 3411 // have a way of expressing this constraint. See details in 3412 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3413 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3414 Depth + 1); 3415 3416 case Intrinsic::fma: 3417 case Intrinsic::fmuladd: 3418 // x*x+y is non-negative if y is non-negative. 3419 return I->getOperand(0) == I->getOperand(1) && 3420 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3421 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3422 Depth + 1); 3423 } 3424 break; 3425 } 3426 return false; 3427 } 3428 3429 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3430 const TargetLibraryInfo *TLI) { 3431 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3432 } 3433 3434 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3435 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3436 } 3437 3438 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3439 unsigned Depth) { 3440 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3441 3442 // If we're told that infinities won't happen, assume they won't. 3443 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3444 if (FPMathOp->hasNoInfs()) 3445 return true; 3446 3447 // Handle scalar constants. 3448 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3449 return !CFP->isInfinity(); 3450 3451 if (Depth == MaxAnalysisRecursionDepth) 3452 return false; 3453 3454 if (auto *Inst = dyn_cast<Instruction>(V)) { 3455 switch (Inst->getOpcode()) { 3456 case Instruction::Select: { 3457 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3458 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3459 } 3460 case Instruction::SIToFP: 3461 case Instruction::UIToFP: { 3462 // Get width of largest magnitude integer (remove a bit if signed). 3463 // This still works for a signed minimum value because the largest FP 3464 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3465 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3466 if (Inst->getOpcode() == Instruction::SIToFP) 3467 --IntSize; 3468 3469 // If the exponent of the largest finite FP value can hold the largest 3470 // integer, the result of the cast must be finite. 3471 Type *FPTy = Inst->getType()->getScalarType(); 3472 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3473 } 3474 default: 3475 break; 3476 } 3477 } 3478 3479 // try to handle fixed width vector constants 3480 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3481 if (VFVTy && isa<Constant>(V)) { 3482 // For vectors, verify that each element is not infinity. 3483 unsigned NumElts = VFVTy->getNumElements(); 3484 for (unsigned i = 0; i != NumElts; ++i) { 3485 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3486 if (!Elt) 3487 return false; 3488 if (isa<UndefValue>(Elt)) 3489 continue; 3490 auto *CElt = dyn_cast<ConstantFP>(Elt); 3491 if (!CElt || CElt->isInfinity()) 3492 return false; 3493 } 3494 // All elements were confirmed non-infinity or undefined. 3495 return true; 3496 } 3497 3498 // was not able to prove that V never contains infinity 3499 return false; 3500 } 3501 3502 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3503 unsigned Depth) { 3504 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3505 3506 // If we're told that NaNs won't happen, assume they won't. 3507 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3508 if (FPMathOp->hasNoNaNs()) 3509 return true; 3510 3511 // Handle scalar constants. 3512 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3513 return !CFP->isNaN(); 3514 3515 if (Depth == MaxAnalysisRecursionDepth) 3516 return false; 3517 3518 if (auto *Inst = dyn_cast<Instruction>(V)) { 3519 switch (Inst->getOpcode()) { 3520 case Instruction::FAdd: 3521 case Instruction::FSub: 3522 // Adding positive and negative infinity produces NaN. 3523 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3524 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3525 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3526 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3527 3528 case Instruction::FMul: 3529 // Zero multiplied with infinity produces NaN. 3530 // FIXME: If neither side can be zero fmul never produces NaN. 3531 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3532 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3533 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3534 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3535 3536 case Instruction::FDiv: 3537 case Instruction::FRem: 3538 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3539 return false; 3540 3541 case Instruction::Select: { 3542 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3543 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3544 } 3545 case Instruction::SIToFP: 3546 case Instruction::UIToFP: 3547 return true; 3548 case Instruction::FPTrunc: 3549 case Instruction::FPExt: 3550 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3551 default: 3552 break; 3553 } 3554 } 3555 3556 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3557 switch (II->getIntrinsicID()) { 3558 case Intrinsic::canonicalize: 3559 case Intrinsic::fabs: 3560 case Intrinsic::copysign: 3561 case Intrinsic::exp: 3562 case Intrinsic::exp2: 3563 case Intrinsic::floor: 3564 case Intrinsic::ceil: 3565 case Intrinsic::trunc: 3566 case Intrinsic::rint: 3567 case Intrinsic::nearbyint: 3568 case Intrinsic::round: 3569 case Intrinsic::roundeven: 3570 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3571 case Intrinsic::sqrt: 3572 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3573 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3574 case Intrinsic::minnum: 3575 case Intrinsic::maxnum: 3576 // If either operand is not NaN, the result is not NaN. 3577 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3578 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3579 default: 3580 return false; 3581 } 3582 } 3583 3584 // Try to handle fixed width vector constants 3585 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3586 if (VFVTy && isa<Constant>(V)) { 3587 // For vectors, verify that each element is not NaN. 3588 unsigned NumElts = VFVTy->getNumElements(); 3589 for (unsigned i = 0; i != NumElts; ++i) { 3590 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3591 if (!Elt) 3592 return false; 3593 if (isa<UndefValue>(Elt)) 3594 continue; 3595 auto *CElt = dyn_cast<ConstantFP>(Elt); 3596 if (!CElt || CElt->isNaN()) 3597 return false; 3598 } 3599 // All elements were confirmed not-NaN or undefined. 3600 return true; 3601 } 3602 3603 // Was not able to prove that V never contains NaN 3604 return false; 3605 } 3606 3607 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3608 3609 // All byte-wide stores are splatable, even of arbitrary variables. 3610 if (V->getType()->isIntegerTy(8)) 3611 return V; 3612 3613 LLVMContext &Ctx = V->getContext(); 3614 3615 // Undef don't care. 3616 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3617 if (isa<UndefValue>(V)) 3618 return UndefInt8; 3619 3620 // Return Undef for zero-sized type. 3621 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3622 return UndefInt8; 3623 3624 Constant *C = dyn_cast<Constant>(V); 3625 if (!C) { 3626 // Conceptually, we could handle things like: 3627 // %a = zext i8 %X to i16 3628 // %b = shl i16 %a, 8 3629 // %c = or i16 %a, %b 3630 // but until there is an example that actually needs this, it doesn't seem 3631 // worth worrying about. 3632 return nullptr; 3633 } 3634 3635 // Handle 'null' ConstantArrayZero etc. 3636 if (C->isNullValue()) 3637 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3638 3639 // Constant floating-point values can be handled as integer values if the 3640 // corresponding integer value is "byteable". An important case is 0.0. 3641 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3642 Type *Ty = nullptr; 3643 if (CFP->getType()->isHalfTy()) 3644 Ty = Type::getInt16Ty(Ctx); 3645 else if (CFP->getType()->isFloatTy()) 3646 Ty = Type::getInt32Ty(Ctx); 3647 else if (CFP->getType()->isDoubleTy()) 3648 Ty = Type::getInt64Ty(Ctx); 3649 // Don't handle long double formats, which have strange constraints. 3650 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3651 : nullptr; 3652 } 3653 3654 // We can handle constant integers that are multiple of 8 bits. 3655 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3656 if (CI->getBitWidth() % 8 == 0) { 3657 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3658 if (!CI->getValue().isSplat(8)) 3659 return nullptr; 3660 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3661 } 3662 } 3663 3664 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3665 if (CE->getOpcode() == Instruction::IntToPtr) { 3666 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3667 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3668 return isBytewiseValue( 3669 ConstantExpr::getIntegerCast(CE->getOperand(0), 3670 Type::getIntNTy(Ctx, BitWidth), false), 3671 DL); 3672 } 3673 } 3674 } 3675 3676 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3677 if (LHS == RHS) 3678 return LHS; 3679 if (!LHS || !RHS) 3680 return nullptr; 3681 if (LHS == UndefInt8) 3682 return RHS; 3683 if (RHS == UndefInt8) 3684 return LHS; 3685 return nullptr; 3686 }; 3687 3688 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3689 Value *Val = UndefInt8; 3690 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3691 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3692 return nullptr; 3693 return Val; 3694 } 3695 3696 if (isa<ConstantAggregate>(C)) { 3697 Value *Val = UndefInt8; 3698 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3699 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3700 return nullptr; 3701 return Val; 3702 } 3703 3704 // Don't try to handle the handful of other constants. 3705 return nullptr; 3706 } 3707 3708 // This is the recursive version of BuildSubAggregate. It takes a few different 3709 // arguments. Idxs is the index within the nested struct From that we are 3710 // looking at now (which is of type IndexedType). IdxSkip is the number of 3711 // indices from Idxs that should be left out when inserting into the resulting 3712 // struct. To is the result struct built so far, new insertvalue instructions 3713 // build on that. 3714 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3715 SmallVectorImpl<unsigned> &Idxs, 3716 unsigned IdxSkip, 3717 Instruction *InsertBefore) { 3718 StructType *STy = dyn_cast<StructType>(IndexedType); 3719 if (STy) { 3720 // Save the original To argument so we can modify it 3721 Value *OrigTo = To; 3722 // General case, the type indexed by Idxs is a struct 3723 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3724 // Process each struct element recursively 3725 Idxs.push_back(i); 3726 Value *PrevTo = To; 3727 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3728 InsertBefore); 3729 Idxs.pop_back(); 3730 if (!To) { 3731 // Couldn't find any inserted value for this index? Cleanup 3732 while (PrevTo != OrigTo) { 3733 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3734 PrevTo = Del->getAggregateOperand(); 3735 Del->eraseFromParent(); 3736 } 3737 // Stop processing elements 3738 break; 3739 } 3740 } 3741 // If we successfully found a value for each of our subaggregates 3742 if (To) 3743 return To; 3744 } 3745 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3746 // the struct's elements had a value that was inserted directly. In the latter 3747 // case, perhaps we can't determine each of the subelements individually, but 3748 // we might be able to find the complete struct somewhere. 3749 3750 // Find the value that is at that particular spot 3751 Value *V = FindInsertedValue(From, Idxs); 3752 3753 if (!V) 3754 return nullptr; 3755 3756 // Insert the value in the new (sub) aggregate 3757 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3758 "tmp", InsertBefore); 3759 } 3760 3761 // This helper takes a nested struct and extracts a part of it (which is again a 3762 // struct) into a new value. For example, given the struct: 3763 // { a, { b, { c, d }, e } } 3764 // and the indices "1, 1" this returns 3765 // { c, d }. 3766 // 3767 // It does this by inserting an insertvalue for each element in the resulting 3768 // struct, as opposed to just inserting a single struct. This will only work if 3769 // each of the elements of the substruct are known (ie, inserted into From by an 3770 // insertvalue instruction somewhere). 3771 // 3772 // All inserted insertvalue instructions are inserted before InsertBefore 3773 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3774 Instruction *InsertBefore) { 3775 assert(InsertBefore && "Must have someplace to insert!"); 3776 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3777 idx_range); 3778 Value *To = UndefValue::get(IndexedType); 3779 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3780 unsigned IdxSkip = Idxs.size(); 3781 3782 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3783 } 3784 3785 /// Given an aggregate and a sequence of indices, see if the scalar value 3786 /// indexed is already around as a register, for example if it was inserted 3787 /// directly into the aggregate. 3788 /// 3789 /// If InsertBefore is not null, this function will duplicate (modified) 3790 /// insertvalues when a part of a nested struct is extracted. 3791 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3792 Instruction *InsertBefore) { 3793 // Nothing to index? Just return V then (this is useful at the end of our 3794 // recursion). 3795 if (idx_range.empty()) 3796 return V; 3797 // We have indices, so V should have an indexable type. 3798 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3799 "Not looking at a struct or array?"); 3800 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3801 "Invalid indices for type?"); 3802 3803 if (Constant *C = dyn_cast<Constant>(V)) { 3804 C = C->getAggregateElement(idx_range[0]); 3805 if (!C) return nullptr; 3806 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3807 } 3808 3809 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3810 // Loop the indices for the insertvalue instruction in parallel with the 3811 // requested indices 3812 const unsigned *req_idx = idx_range.begin(); 3813 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3814 i != e; ++i, ++req_idx) { 3815 if (req_idx == idx_range.end()) { 3816 // We can't handle this without inserting insertvalues 3817 if (!InsertBefore) 3818 return nullptr; 3819 3820 // The requested index identifies a part of a nested aggregate. Handle 3821 // this specially. For example, 3822 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3823 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3824 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3825 // This can be changed into 3826 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3827 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3828 // which allows the unused 0,0 element from the nested struct to be 3829 // removed. 3830 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3831 InsertBefore); 3832 } 3833 3834 // This insert value inserts something else than what we are looking for. 3835 // See if the (aggregate) value inserted into has the value we are 3836 // looking for, then. 3837 if (*req_idx != *i) 3838 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3839 InsertBefore); 3840 } 3841 // If we end up here, the indices of the insertvalue match with those 3842 // requested (though possibly only partially). Now we recursively look at 3843 // the inserted value, passing any remaining indices. 3844 return FindInsertedValue(I->getInsertedValueOperand(), 3845 makeArrayRef(req_idx, idx_range.end()), 3846 InsertBefore); 3847 } 3848 3849 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3850 // If we're extracting a value from an aggregate that was extracted from 3851 // something else, we can extract from that something else directly instead. 3852 // However, we will need to chain I's indices with the requested indices. 3853 3854 // Calculate the number of indices required 3855 unsigned size = I->getNumIndices() + idx_range.size(); 3856 // Allocate some space to put the new indices in 3857 SmallVector<unsigned, 5> Idxs; 3858 Idxs.reserve(size); 3859 // Add indices from the extract value instruction 3860 Idxs.append(I->idx_begin(), I->idx_end()); 3861 3862 // Add requested indices 3863 Idxs.append(idx_range.begin(), idx_range.end()); 3864 3865 assert(Idxs.size() == size 3866 && "Number of indices added not correct?"); 3867 3868 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3869 } 3870 // Otherwise, we don't know (such as, extracting from a function return value 3871 // or load instruction) 3872 return nullptr; 3873 } 3874 3875 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3876 unsigned CharSize) { 3877 // Make sure the GEP has exactly three arguments. 3878 if (GEP->getNumOperands() != 3) 3879 return false; 3880 3881 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3882 // CharSize. 3883 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3884 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3885 return false; 3886 3887 // Check to make sure that the first operand of the GEP is an integer and 3888 // has value 0 so that we are sure we're indexing into the initializer. 3889 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3890 if (!FirstIdx || !FirstIdx->isZero()) 3891 return false; 3892 3893 return true; 3894 } 3895 3896 bool llvm::getConstantDataArrayInfo(const Value *V, 3897 ConstantDataArraySlice &Slice, 3898 unsigned ElementSize, uint64_t Offset) { 3899 assert(V); 3900 3901 // Look through bitcast instructions and geps. 3902 V = V->stripPointerCasts(); 3903 3904 // If the value is a GEP instruction or constant expression, treat it as an 3905 // offset. 3906 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3907 // The GEP operator should be based on a pointer to string constant, and is 3908 // indexing into the string constant. 3909 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3910 return false; 3911 3912 // If the second index isn't a ConstantInt, then this is a variable index 3913 // into the array. If this occurs, we can't say anything meaningful about 3914 // the string. 3915 uint64_t StartIdx = 0; 3916 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3917 StartIdx = CI->getZExtValue(); 3918 else 3919 return false; 3920 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3921 StartIdx + Offset); 3922 } 3923 3924 // The GEP instruction, constant or instruction, must reference a global 3925 // variable that is a constant and is initialized. The referenced constant 3926 // initializer is the array that we'll use for optimization. 3927 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3928 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3929 return false; 3930 3931 const ConstantDataArray *Array; 3932 ArrayType *ArrayTy; 3933 if (GV->getInitializer()->isNullValue()) { 3934 Type *GVTy = GV->getValueType(); 3935 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3936 // A zeroinitializer for the array; there is no ConstantDataArray. 3937 Array = nullptr; 3938 } else { 3939 const DataLayout &DL = GV->getParent()->getDataLayout(); 3940 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3941 uint64_t Length = SizeInBytes / (ElementSize / 8); 3942 if (Length <= Offset) 3943 return false; 3944 3945 Slice.Array = nullptr; 3946 Slice.Offset = 0; 3947 Slice.Length = Length - Offset; 3948 return true; 3949 } 3950 } else { 3951 // This must be a ConstantDataArray. 3952 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3953 if (!Array) 3954 return false; 3955 ArrayTy = Array->getType(); 3956 } 3957 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3958 return false; 3959 3960 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3961 if (Offset > NumElts) 3962 return false; 3963 3964 Slice.Array = Array; 3965 Slice.Offset = Offset; 3966 Slice.Length = NumElts - Offset; 3967 return true; 3968 } 3969 3970 /// This function computes the length of a null-terminated C string pointed to 3971 /// by V. If successful, it returns true and returns the string in Str. 3972 /// If unsuccessful, it returns false. 3973 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3974 uint64_t Offset, bool TrimAtNul) { 3975 ConstantDataArraySlice Slice; 3976 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3977 return false; 3978 3979 if (Slice.Array == nullptr) { 3980 if (TrimAtNul) { 3981 Str = StringRef(); 3982 return true; 3983 } 3984 if (Slice.Length == 1) { 3985 Str = StringRef("", 1); 3986 return true; 3987 } 3988 // We cannot instantiate a StringRef as we do not have an appropriate string 3989 // of 0s at hand. 3990 return false; 3991 } 3992 3993 // Start out with the entire array in the StringRef. 3994 Str = Slice.Array->getAsString(); 3995 // Skip over 'offset' bytes. 3996 Str = Str.substr(Slice.Offset); 3997 3998 if (TrimAtNul) { 3999 // Trim off the \0 and anything after it. If the array is not nul 4000 // terminated, we just return the whole end of string. The client may know 4001 // some other way that the string is length-bound. 4002 Str = Str.substr(0, Str.find('\0')); 4003 } 4004 return true; 4005 } 4006 4007 // These next two are very similar to the above, but also look through PHI 4008 // nodes. 4009 // TODO: See if we can integrate these two together. 4010 4011 /// If we can compute the length of the string pointed to by 4012 /// the specified pointer, return 'len+1'. If we can't, return 0. 4013 static uint64_t GetStringLengthH(const Value *V, 4014 SmallPtrSetImpl<const PHINode*> &PHIs, 4015 unsigned CharSize) { 4016 // Look through noop bitcast instructions. 4017 V = V->stripPointerCasts(); 4018 4019 // If this is a PHI node, there are two cases: either we have already seen it 4020 // or we haven't. 4021 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4022 if (!PHIs.insert(PN).second) 4023 return ~0ULL; // already in the set. 4024 4025 // If it was new, see if all the input strings are the same length. 4026 uint64_t LenSoFar = ~0ULL; 4027 for (Value *IncValue : PN->incoming_values()) { 4028 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4029 if (Len == 0) return 0; // Unknown length -> unknown. 4030 4031 if (Len == ~0ULL) continue; 4032 4033 if (Len != LenSoFar && LenSoFar != ~0ULL) 4034 return 0; // Disagree -> unknown. 4035 LenSoFar = Len; 4036 } 4037 4038 // Success, all agree. 4039 return LenSoFar; 4040 } 4041 4042 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4043 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4044 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4045 if (Len1 == 0) return 0; 4046 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4047 if (Len2 == 0) return 0; 4048 if (Len1 == ~0ULL) return Len2; 4049 if (Len2 == ~0ULL) return Len1; 4050 if (Len1 != Len2) return 0; 4051 return Len1; 4052 } 4053 4054 // Otherwise, see if we can read the string. 4055 ConstantDataArraySlice Slice; 4056 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4057 return 0; 4058 4059 if (Slice.Array == nullptr) 4060 return 1; 4061 4062 // Search for nul characters 4063 unsigned NullIndex = 0; 4064 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4065 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4066 break; 4067 } 4068 4069 return NullIndex + 1; 4070 } 4071 4072 /// If we can compute the length of the string pointed to by 4073 /// the specified pointer, return 'len+1'. If we can't, return 0. 4074 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4075 if (!V->getType()->isPointerTy()) 4076 return 0; 4077 4078 SmallPtrSet<const PHINode*, 32> PHIs; 4079 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4080 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4081 // an empty string as a length. 4082 return Len == ~0ULL ? 1 : Len; 4083 } 4084 4085 const Value * 4086 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4087 bool MustPreserveNullness) { 4088 assert(Call && 4089 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4090 if (const Value *RV = Call->getReturnedArgOperand()) 4091 return RV; 4092 // This can be used only as a aliasing property. 4093 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4094 Call, MustPreserveNullness)) 4095 return Call->getArgOperand(0); 4096 return nullptr; 4097 } 4098 4099 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4100 const CallBase *Call, bool MustPreserveNullness) { 4101 switch (Call->getIntrinsicID()) { 4102 case Intrinsic::launder_invariant_group: 4103 case Intrinsic::strip_invariant_group: 4104 case Intrinsic::aarch64_irg: 4105 case Intrinsic::aarch64_tagp: 4106 return true; 4107 case Intrinsic::ptrmask: 4108 return !MustPreserveNullness; 4109 default: 4110 return false; 4111 } 4112 } 4113 4114 /// \p PN defines a loop-variant pointer to an object. Check if the 4115 /// previous iteration of the loop was referring to the same object as \p PN. 4116 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4117 const LoopInfo *LI) { 4118 // Find the loop-defined value. 4119 Loop *L = LI->getLoopFor(PN->getParent()); 4120 if (PN->getNumIncomingValues() != 2) 4121 return true; 4122 4123 // Find the value from previous iteration. 4124 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4125 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4126 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4127 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4128 return true; 4129 4130 // If a new pointer is loaded in the loop, the pointer references a different 4131 // object in every iteration. E.g.: 4132 // for (i) 4133 // int *p = a[i]; 4134 // ... 4135 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4136 if (!L->isLoopInvariant(Load->getPointerOperand())) 4137 return false; 4138 return true; 4139 } 4140 4141 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4142 if (!V->getType()->isPointerTy()) 4143 return V; 4144 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4145 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4146 V = GEP->getPointerOperand(); 4147 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4148 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4149 V = cast<Operator>(V)->getOperand(0); 4150 if (!V->getType()->isPointerTy()) 4151 return V; 4152 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4153 if (GA->isInterposable()) 4154 return V; 4155 V = GA->getAliasee(); 4156 } else { 4157 if (auto *PHI = dyn_cast<PHINode>(V)) { 4158 // Look through single-arg phi nodes created by LCSSA. 4159 if (PHI->getNumIncomingValues() == 1) { 4160 V = PHI->getIncomingValue(0); 4161 continue; 4162 } 4163 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4164 // CaptureTracking can know about special capturing properties of some 4165 // intrinsics like launder.invariant.group, that can't be expressed with 4166 // the attributes, but have properties like returning aliasing pointer. 4167 // Because some analysis may assume that nocaptured pointer is not 4168 // returned from some special intrinsic (because function would have to 4169 // be marked with returns attribute), it is crucial to use this function 4170 // because it should be in sync with CaptureTracking. Not using it may 4171 // cause weird miscompilations where 2 aliasing pointers are assumed to 4172 // noalias. 4173 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4174 V = RP; 4175 continue; 4176 } 4177 } 4178 4179 return V; 4180 } 4181 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4182 } 4183 return V; 4184 } 4185 4186 void llvm::getUnderlyingObjects(const Value *V, 4187 SmallVectorImpl<const Value *> &Objects, 4188 LoopInfo *LI, unsigned MaxLookup) { 4189 SmallPtrSet<const Value *, 4> Visited; 4190 SmallVector<const Value *, 4> Worklist; 4191 Worklist.push_back(V); 4192 do { 4193 const Value *P = Worklist.pop_back_val(); 4194 P = getUnderlyingObject(P, MaxLookup); 4195 4196 if (!Visited.insert(P).second) 4197 continue; 4198 4199 if (auto *SI = dyn_cast<SelectInst>(P)) { 4200 Worklist.push_back(SI->getTrueValue()); 4201 Worklist.push_back(SI->getFalseValue()); 4202 continue; 4203 } 4204 4205 if (auto *PN = dyn_cast<PHINode>(P)) { 4206 // If this PHI changes the underlying object in every iteration of the 4207 // loop, don't look through it. Consider: 4208 // int **A; 4209 // for (i) { 4210 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4211 // Curr = A[i]; 4212 // *Prev, *Curr; 4213 // 4214 // Prev is tracking Curr one iteration behind so they refer to different 4215 // underlying objects. 4216 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4217 isSameUnderlyingObjectInLoop(PN, LI)) 4218 append_range(Worklist, PN->incoming_values()); 4219 continue; 4220 } 4221 4222 Objects.push_back(P); 4223 } while (!Worklist.empty()); 4224 } 4225 4226 /// This is the function that does the work of looking through basic 4227 /// ptrtoint+arithmetic+inttoptr sequences. 4228 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4229 do { 4230 if (const Operator *U = dyn_cast<Operator>(V)) { 4231 // If we find a ptrtoint, we can transfer control back to the 4232 // regular getUnderlyingObjectFromInt. 4233 if (U->getOpcode() == Instruction::PtrToInt) 4234 return U->getOperand(0); 4235 // If we find an add of a constant, a multiplied value, or a phi, it's 4236 // likely that the other operand will lead us to the base 4237 // object. We don't have to worry about the case where the 4238 // object address is somehow being computed by the multiply, 4239 // because our callers only care when the result is an 4240 // identifiable object. 4241 if (U->getOpcode() != Instruction::Add || 4242 (!isa<ConstantInt>(U->getOperand(1)) && 4243 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4244 !isa<PHINode>(U->getOperand(1)))) 4245 return V; 4246 V = U->getOperand(0); 4247 } else { 4248 return V; 4249 } 4250 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4251 } while (true); 4252 } 4253 4254 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4255 /// ptrtoint+arithmetic+inttoptr sequences. 4256 /// It returns false if unidentified object is found in getUnderlyingObjects. 4257 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4258 SmallVectorImpl<Value *> &Objects) { 4259 SmallPtrSet<const Value *, 16> Visited; 4260 SmallVector<const Value *, 4> Working(1, V); 4261 do { 4262 V = Working.pop_back_val(); 4263 4264 SmallVector<const Value *, 4> Objs; 4265 getUnderlyingObjects(V, Objs); 4266 4267 for (const Value *V : Objs) { 4268 if (!Visited.insert(V).second) 4269 continue; 4270 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4271 const Value *O = 4272 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4273 if (O->getType()->isPointerTy()) { 4274 Working.push_back(O); 4275 continue; 4276 } 4277 } 4278 // If getUnderlyingObjects fails to find an identifiable object, 4279 // getUnderlyingObjectsForCodeGen also fails for safety. 4280 if (!isIdentifiedObject(V)) { 4281 Objects.clear(); 4282 return false; 4283 } 4284 Objects.push_back(const_cast<Value *>(V)); 4285 } 4286 } while (!Working.empty()); 4287 return true; 4288 } 4289 4290 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4291 AllocaInst *Result = nullptr; 4292 SmallPtrSet<Value *, 4> Visited; 4293 SmallVector<Value *, 4> Worklist; 4294 4295 auto AddWork = [&](Value *V) { 4296 if (Visited.insert(V).second) 4297 Worklist.push_back(V); 4298 }; 4299 4300 AddWork(V); 4301 do { 4302 V = Worklist.pop_back_val(); 4303 assert(Visited.count(V)); 4304 4305 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4306 if (Result && Result != AI) 4307 return nullptr; 4308 Result = AI; 4309 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4310 AddWork(CI->getOperand(0)); 4311 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4312 for (Value *IncValue : PN->incoming_values()) 4313 AddWork(IncValue); 4314 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4315 AddWork(SI->getTrueValue()); 4316 AddWork(SI->getFalseValue()); 4317 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4318 if (OffsetZero && !GEP->hasAllZeroIndices()) 4319 return nullptr; 4320 AddWork(GEP->getPointerOperand()); 4321 } else { 4322 return nullptr; 4323 } 4324 } while (!Worklist.empty()); 4325 4326 return Result; 4327 } 4328 4329 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4330 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4331 for (const User *U : V->users()) { 4332 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4333 if (!II) 4334 return false; 4335 4336 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4337 continue; 4338 4339 if (AllowDroppable && II->isDroppable()) 4340 continue; 4341 4342 return false; 4343 } 4344 return true; 4345 } 4346 4347 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4348 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4349 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4350 } 4351 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4352 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4353 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4354 } 4355 4356 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4357 if (!LI.isUnordered()) 4358 return true; 4359 const Function &F = *LI.getFunction(); 4360 // Speculative load may create a race that did not exist in the source. 4361 return F.hasFnAttribute(Attribute::SanitizeThread) || 4362 // Speculative load may load data from dirty regions. 4363 F.hasFnAttribute(Attribute::SanitizeAddress) || 4364 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4365 } 4366 4367 4368 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4369 const Instruction *CtxI, 4370 const DominatorTree *DT) { 4371 const Operator *Inst = dyn_cast<Operator>(V); 4372 if (!Inst) 4373 return false; 4374 4375 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4376 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4377 if (C->canTrap()) 4378 return false; 4379 4380 switch (Inst->getOpcode()) { 4381 default: 4382 return true; 4383 case Instruction::UDiv: 4384 case Instruction::URem: { 4385 // x / y is undefined if y == 0. 4386 const APInt *V; 4387 if (match(Inst->getOperand(1), m_APInt(V))) 4388 return *V != 0; 4389 return false; 4390 } 4391 case Instruction::SDiv: 4392 case Instruction::SRem: { 4393 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4394 const APInt *Numerator, *Denominator; 4395 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4396 return false; 4397 // We cannot hoist this division if the denominator is 0. 4398 if (*Denominator == 0) 4399 return false; 4400 // It's safe to hoist if the denominator is not 0 or -1. 4401 if (!Denominator->isAllOnesValue()) 4402 return true; 4403 // At this point we know that the denominator is -1. It is safe to hoist as 4404 // long we know that the numerator is not INT_MIN. 4405 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4406 return !Numerator->isMinSignedValue(); 4407 // The numerator *might* be MinSignedValue. 4408 return false; 4409 } 4410 case Instruction::Load: { 4411 const LoadInst *LI = cast<LoadInst>(Inst); 4412 if (mustSuppressSpeculation(*LI)) 4413 return false; 4414 const DataLayout &DL = LI->getModule()->getDataLayout(); 4415 return isDereferenceableAndAlignedPointer( 4416 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4417 DL, CtxI, DT); 4418 } 4419 case Instruction::Call: { 4420 auto *CI = cast<const CallInst>(Inst); 4421 const Function *Callee = CI->getCalledFunction(); 4422 4423 // The called function could have undefined behavior or side-effects, even 4424 // if marked readnone nounwind. 4425 return Callee && Callee->isSpeculatable(); 4426 } 4427 case Instruction::VAArg: 4428 case Instruction::Alloca: 4429 case Instruction::Invoke: 4430 case Instruction::CallBr: 4431 case Instruction::PHI: 4432 case Instruction::Store: 4433 case Instruction::Ret: 4434 case Instruction::Br: 4435 case Instruction::IndirectBr: 4436 case Instruction::Switch: 4437 case Instruction::Unreachable: 4438 case Instruction::Fence: 4439 case Instruction::AtomicRMW: 4440 case Instruction::AtomicCmpXchg: 4441 case Instruction::LandingPad: 4442 case Instruction::Resume: 4443 case Instruction::CatchSwitch: 4444 case Instruction::CatchPad: 4445 case Instruction::CatchRet: 4446 case Instruction::CleanupPad: 4447 case Instruction::CleanupRet: 4448 return false; // Misc instructions which have effects 4449 } 4450 } 4451 4452 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4453 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4454 } 4455 4456 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4457 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4458 switch (OR) { 4459 case ConstantRange::OverflowResult::MayOverflow: 4460 return OverflowResult::MayOverflow; 4461 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4462 return OverflowResult::AlwaysOverflowsLow; 4463 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4464 return OverflowResult::AlwaysOverflowsHigh; 4465 case ConstantRange::OverflowResult::NeverOverflows: 4466 return OverflowResult::NeverOverflows; 4467 } 4468 llvm_unreachable("Unknown OverflowResult"); 4469 } 4470 4471 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4472 static ConstantRange computeConstantRangeIncludingKnownBits( 4473 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4474 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4475 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4476 KnownBits Known = computeKnownBits( 4477 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4478 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4479 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4480 ConstantRange::PreferredRangeType RangeType = 4481 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4482 return CR1.intersectWith(CR2, RangeType); 4483 } 4484 4485 OverflowResult llvm::computeOverflowForUnsignedMul( 4486 const Value *LHS, const Value *RHS, const DataLayout &DL, 4487 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4488 bool UseInstrInfo) { 4489 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4490 nullptr, UseInstrInfo); 4491 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4492 nullptr, UseInstrInfo); 4493 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4494 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4495 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4496 } 4497 4498 OverflowResult 4499 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4500 const DataLayout &DL, AssumptionCache *AC, 4501 const Instruction *CxtI, 4502 const DominatorTree *DT, bool UseInstrInfo) { 4503 // Multiplying n * m significant bits yields a result of n + m significant 4504 // bits. If the total number of significant bits does not exceed the 4505 // result bit width (minus 1), there is no overflow. 4506 // This means if we have enough leading sign bits in the operands 4507 // we can guarantee that the result does not overflow. 4508 // Ref: "Hacker's Delight" by Henry Warren 4509 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4510 4511 // Note that underestimating the number of sign bits gives a more 4512 // conservative answer. 4513 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4514 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4515 4516 // First handle the easy case: if we have enough sign bits there's 4517 // definitely no overflow. 4518 if (SignBits > BitWidth + 1) 4519 return OverflowResult::NeverOverflows; 4520 4521 // There are two ambiguous cases where there can be no overflow: 4522 // SignBits == BitWidth + 1 and 4523 // SignBits == BitWidth 4524 // The second case is difficult to check, therefore we only handle the 4525 // first case. 4526 if (SignBits == BitWidth + 1) { 4527 // It overflows only when both arguments are negative and the true 4528 // product is exactly the minimum negative number. 4529 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4530 // For simplicity we just check if at least one side is not negative. 4531 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4532 nullptr, UseInstrInfo); 4533 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4534 nullptr, UseInstrInfo); 4535 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4536 return OverflowResult::NeverOverflows; 4537 } 4538 return OverflowResult::MayOverflow; 4539 } 4540 4541 OverflowResult llvm::computeOverflowForUnsignedAdd( 4542 const Value *LHS, const Value *RHS, const DataLayout &DL, 4543 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4544 bool UseInstrInfo) { 4545 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4546 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4547 nullptr, UseInstrInfo); 4548 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4549 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4550 nullptr, UseInstrInfo); 4551 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4552 } 4553 4554 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4555 const Value *RHS, 4556 const AddOperator *Add, 4557 const DataLayout &DL, 4558 AssumptionCache *AC, 4559 const Instruction *CxtI, 4560 const DominatorTree *DT) { 4561 if (Add && Add->hasNoSignedWrap()) { 4562 return OverflowResult::NeverOverflows; 4563 } 4564 4565 // If LHS and RHS each have at least two sign bits, the addition will look 4566 // like 4567 // 4568 // XX..... + 4569 // YY..... 4570 // 4571 // If the carry into the most significant position is 0, X and Y can't both 4572 // be 1 and therefore the carry out of the addition is also 0. 4573 // 4574 // If the carry into the most significant position is 1, X and Y can't both 4575 // be 0 and therefore the carry out of the addition is also 1. 4576 // 4577 // Since the carry into the most significant position is always equal to 4578 // the carry out of the addition, there is no signed overflow. 4579 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4580 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4581 return OverflowResult::NeverOverflows; 4582 4583 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4584 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4585 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4586 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4587 OverflowResult OR = 4588 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4589 if (OR != OverflowResult::MayOverflow) 4590 return OR; 4591 4592 // The remaining code needs Add to be available. Early returns if not so. 4593 if (!Add) 4594 return OverflowResult::MayOverflow; 4595 4596 // If the sign of Add is the same as at least one of the operands, this add 4597 // CANNOT overflow. If this can be determined from the known bits of the 4598 // operands the above signedAddMayOverflow() check will have already done so. 4599 // The only other way to improve on the known bits is from an assumption, so 4600 // call computeKnownBitsFromAssume() directly. 4601 bool LHSOrRHSKnownNonNegative = 4602 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4603 bool LHSOrRHSKnownNegative = 4604 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4605 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4606 KnownBits AddKnown(LHSRange.getBitWidth()); 4607 computeKnownBitsFromAssume( 4608 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4609 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4610 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4611 return OverflowResult::NeverOverflows; 4612 } 4613 4614 return OverflowResult::MayOverflow; 4615 } 4616 4617 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4618 const Value *RHS, 4619 const DataLayout &DL, 4620 AssumptionCache *AC, 4621 const Instruction *CxtI, 4622 const DominatorTree *DT) { 4623 // Checking for conditions implied by dominating conditions may be expensive. 4624 // Limit it to usub_with_overflow calls for now. 4625 if (match(CxtI, 4626 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4627 if (auto C = 4628 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4629 if (*C) 4630 return OverflowResult::NeverOverflows; 4631 return OverflowResult::AlwaysOverflowsLow; 4632 } 4633 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4634 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4635 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4636 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4637 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4638 } 4639 4640 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4641 const Value *RHS, 4642 const DataLayout &DL, 4643 AssumptionCache *AC, 4644 const Instruction *CxtI, 4645 const DominatorTree *DT) { 4646 // If LHS and RHS each have at least two sign bits, the subtraction 4647 // cannot overflow. 4648 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4649 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4650 return OverflowResult::NeverOverflows; 4651 4652 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4653 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4654 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4655 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4656 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4657 } 4658 4659 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4660 const DominatorTree &DT) { 4661 SmallVector<const BranchInst *, 2> GuardingBranches; 4662 SmallVector<const ExtractValueInst *, 2> Results; 4663 4664 for (const User *U : WO->users()) { 4665 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4666 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4667 4668 if (EVI->getIndices()[0] == 0) 4669 Results.push_back(EVI); 4670 else { 4671 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4672 4673 for (const auto *U : EVI->users()) 4674 if (const auto *B = dyn_cast<BranchInst>(U)) { 4675 assert(B->isConditional() && "How else is it using an i1?"); 4676 GuardingBranches.push_back(B); 4677 } 4678 } 4679 } else { 4680 // We are using the aggregate directly in a way we don't want to analyze 4681 // here (storing it to a global, say). 4682 return false; 4683 } 4684 } 4685 4686 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4687 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4688 if (!NoWrapEdge.isSingleEdge()) 4689 return false; 4690 4691 // Check if all users of the add are provably no-wrap. 4692 for (const auto *Result : Results) { 4693 // If the extractvalue itself is not executed on overflow, the we don't 4694 // need to check each use separately, since domination is transitive. 4695 if (DT.dominates(NoWrapEdge, Result->getParent())) 4696 continue; 4697 4698 for (auto &RU : Result->uses()) 4699 if (!DT.dominates(NoWrapEdge, RU)) 4700 return false; 4701 } 4702 4703 return true; 4704 }; 4705 4706 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4707 } 4708 4709 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4710 // See whether I has flags that may create poison 4711 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4712 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4713 return true; 4714 } 4715 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4716 if (ExactOp->isExact()) 4717 return true; 4718 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4719 auto FMF = FP->getFastMathFlags(); 4720 if (FMF.noNaNs() || FMF.noInfs()) 4721 return true; 4722 } 4723 4724 unsigned Opcode = Op->getOpcode(); 4725 4726 // Check whether opcode is a poison/undef-generating operation 4727 switch (Opcode) { 4728 case Instruction::Shl: 4729 case Instruction::AShr: 4730 case Instruction::LShr: { 4731 // Shifts return poison if shiftwidth is larger than the bitwidth. 4732 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4733 SmallVector<Constant *, 4> ShiftAmounts; 4734 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4735 unsigned NumElts = FVTy->getNumElements(); 4736 for (unsigned i = 0; i < NumElts; ++i) 4737 ShiftAmounts.push_back(C->getAggregateElement(i)); 4738 } else if (isa<ScalableVectorType>(C->getType())) 4739 return true; // Can't tell, just return true to be safe 4740 else 4741 ShiftAmounts.push_back(C); 4742 4743 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4744 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4745 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4746 }); 4747 return !Safe; 4748 } 4749 return true; 4750 } 4751 case Instruction::FPToSI: 4752 case Instruction::FPToUI: 4753 // fptosi/ui yields poison if the resulting value does not fit in the 4754 // destination type. 4755 return true; 4756 case Instruction::Call: 4757 case Instruction::CallBr: 4758 case Instruction::Invoke: { 4759 const auto *CB = cast<CallBase>(Op); 4760 return !CB->hasRetAttr(Attribute::NoUndef); 4761 } 4762 case Instruction::InsertElement: 4763 case Instruction::ExtractElement: { 4764 // If index exceeds the length of the vector, it returns poison 4765 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4766 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4767 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4768 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4769 return true; 4770 return false; 4771 } 4772 case Instruction::ShuffleVector: { 4773 // shufflevector may return undef. 4774 if (PoisonOnly) 4775 return false; 4776 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4777 ? cast<ConstantExpr>(Op)->getShuffleMask() 4778 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4779 return is_contained(Mask, UndefMaskElem); 4780 } 4781 case Instruction::FNeg: 4782 case Instruction::PHI: 4783 case Instruction::Select: 4784 case Instruction::URem: 4785 case Instruction::SRem: 4786 case Instruction::ExtractValue: 4787 case Instruction::InsertValue: 4788 case Instruction::Freeze: 4789 case Instruction::ICmp: 4790 case Instruction::FCmp: 4791 return false; 4792 case Instruction::GetElementPtr: { 4793 const auto *GEP = cast<GEPOperator>(Op); 4794 return GEP->isInBounds(); 4795 } 4796 default: { 4797 const auto *CE = dyn_cast<ConstantExpr>(Op); 4798 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4799 return false; 4800 else if (Instruction::isBinaryOp(Opcode)) 4801 return false; 4802 // Be conservative and return true. 4803 return true; 4804 } 4805 } 4806 } 4807 4808 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4809 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4810 } 4811 4812 bool llvm::canCreatePoison(const Operator *Op) { 4813 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4814 } 4815 4816 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4817 const Value *V, unsigned Depth) { 4818 if (ValAssumedPoison == V) 4819 return true; 4820 4821 const unsigned MaxDepth = 2; 4822 if (Depth >= MaxDepth) 4823 return false; 4824 4825 const auto *I = dyn_cast<Instruction>(V); 4826 if (I && propagatesPoison(cast<Operator>(I))) { 4827 return any_of(I->operands(), [=](const Value *Op) { 4828 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4829 }); 4830 } 4831 return false; 4832 } 4833 4834 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 4835 unsigned Depth) { 4836 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 4837 return true; 4838 4839 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 4840 return true; 4841 4842 const unsigned MaxDepth = 2; 4843 if (Depth >= MaxDepth) 4844 return false; 4845 4846 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 4847 if (I && !canCreatePoison(cast<Operator>(I))) { 4848 return all_of(I->operands(), [=](const Value *Op) { 4849 return impliesPoison(Op, V, Depth + 1); 4850 }); 4851 } 4852 return false; 4853 } 4854 4855 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 4856 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 4857 } 4858 4859 static bool programUndefinedIfUndefOrPoison(const Value *V, 4860 bool PoisonOnly); 4861 4862 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4863 AssumptionCache *AC, 4864 const Instruction *CtxI, 4865 const DominatorTree *DT, 4866 unsigned Depth, bool PoisonOnly) { 4867 if (Depth >= MaxAnalysisRecursionDepth) 4868 return false; 4869 4870 if (isa<MetadataAsValue>(V)) 4871 return false; 4872 4873 if (const auto *A = dyn_cast<Argument>(V)) { 4874 if (A->hasAttribute(Attribute::NoUndef)) 4875 return true; 4876 } 4877 4878 if (auto *C = dyn_cast<Constant>(V)) { 4879 if (isa<UndefValue>(C)) 4880 return PoisonOnly && !isa<PoisonValue>(C); 4881 4882 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4883 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4884 return true; 4885 4886 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4887 return (PoisonOnly ? !C->containsPoisonElement() 4888 : !C->containsUndefOrPoisonElement()) && 4889 !C->containsConstantExpression(); 4890 } 4891 4892 // Strip cast operations from a pointer value. 4893 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4894 // inbounds with zero offset. To guarantee that the result isn't poison, the 4895 // stripped pointer is checked as it has to be pointing into an allocated 4896 // object or be null `null` to ensure `inbounds` getelement pointers with a 4897 // zero offset could not produce poison. 4898 // It can strip off addrspacecast that do not change bit representation as 4899 // well. We believe that such addrspacecast is equivalent to no-op. 4900 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4901 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4902 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4903 return true; 4904 4905 auto OpCheck = [&](const Value *V) { 4906 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4907 PoisonOnly); 4908 }; 4909 4910 if (auto *Opr = dyn_cast<Operator>(V)) { 4911 // If the value is a freeze instruction, then it can never 4912 // be undef or poison. 4913 if (isa<FreezeInst>(V)) 4914 return true; 4915 4916 if (const auto *CB = dyn_cast<CallBase>(V)) { 4917 if (CB->hasRetAttr(Attribute::NoUndef)) 4918 return true; 4919 } 4920 4921 if (const auto *PN = dyn_cast<PHINode>(V)) { 4922 unsigned Num = PN->getNumIncomingValues(); 4923 bool IsWellDefined = true; 4924 for (unsigned i = 0; i < Num; ++i) { 4925 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4926 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4927 DT, Depth + 1, PoisonOnly)) { 4928 IsWellDefined = false; 4929 break; 4930 } 4931 } 4932 if (IsWellDefined) 4933 return true; 4934 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4935 return true; 4936 } 4937 4938 if (auto *I = dyn_cast<LoadInst>(V)) 4939 if (I->getMetadata(LLVMContext::MD_noundef)) 4940 return true; 4941 4942 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4943 return true; 4944 4945 // CxtI may be null or a cloned instruction. 4946 if (!CtxI || !CtxI->getParent() || !DT) 4947 return false; 4948 4949 auto *DNode = DT->getNode(CtxI->getParent()); 4950 if (!DNode) 4951 // Unreachable block 4952 return false; 4953 4954 // If V is used as a branch condition before reaching CtxI, V cannot be 4955 // undef or poison. 4956 // br V, BB1, BB2 4957 // BB1: 4958 // CtxI ; V cannot be undef or poison here 4959 auto *Dominator = DNode->getIDom(); 4960 while (Dominator) { 4961 auto *TI = Dominator->getBlock()->getTerminator(); 4962 4963 Value *Cond = nullptr; 4964 if (auto BI = dyn_cast<BranchInst>(TI)) { 4965 if (BI->isConditional()) 4966 Cond = BI->getCondition(); 4967 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4968 Cond = SI->getCondition(); 4969 } 4970 4971 if (Cond) { 4972 if (Cond == V) 4973 return true; 4974 else if (PoisonOnly && isa<Operator>(Cond)) { 4975 // For poison, we can analyze further 4976 auto *Opr = cast<Operator>(Cond); 4977 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 4978 return true; 4979 } 4980 } 4981 4982 Dominator = Dominator->getIDom(); 4983 } 4984 4985 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4986 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4987 return true; 4988 4989 return false; 4990 } 4991 4992 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4993 const Instruction *CtxI, 4994 const DominatorTree *DT, 4995 unsigned Depth) { 4996 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4997 } 4998 4999 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5000 const Instruction *CtxI, 5001 const DominatorTree *DT, unsigned Depth) { 5002 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5003 } 5004 5005 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5006 const DataLayout &DL, 5007 AssumptionCache *AC, 5008 const Instruction *CxtI, 5009 const DominatorTree *DT) { 5010 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5011 Add, DL, AC, CxtI, DT); 5012 } 5013 5014 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5015 const Value *RHS, 5016 const DataLayout &DL, 5017 AssumptionCache *AC, 5018 const Instruction *CxtI, 5019 const DominatorTree *DT) { 5020 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5021 } 5022 5023 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5024 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5025 // of time because it's possible for another thread to interfere with it for an 5026 // arbitrary length of time, but programs aren't allowed to rely on that. 5027 5028 // If there is no successor, then execution can't transfer to it. 5029 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5030 return !CRI->unwindsToCaller(); 5031 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5032 return !CatchSwitch->unwindsToCaller(); 5033 if (isa<ResumeInst>(I)) 5034 return false; 5035 if (isa<ReturnInst>(I)) 5036 return false; 5037 if (isa<UnreachableInst>(I)) 5038 return false; 5039 5040 // Calls can throw, or contain an infinite loop, or kill the process. 5041 if (const auto *CB = dyn_cast<CallBase>(I)) { 5042 // Call sites that throw have implicit non-local control flow. 5043 if (!CB->doesNotThrow()) 5044 return false; 5045 5046 // A function which doens't throw and has "willreturn" attribute will 5047 // always return. 5048 if (CB->hasFnAttr(Attribute::WillReturn)) 5049 return true; 5050 5051 // FIXME: Temporarily assume that all side-effect free intrinsics will 5052 // return. Remove this workaround once all intrinsics are appropriately 5053 // annotated. 5054 return isa<IntrinsicInst>(CB) && CB->onlyReadsMemory(); 5055 } 5056 5057 // Other instructions return normally. 5058 return true; 5059 } 5060 5061 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5062 // TODO: This is slightly conservative for invoke instruction since exiting 5063 // via an exception *is* normal control for them. 5064 for (const Instruction &I : *BB) 5065 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5066 return false; 5067 return true; 5068 } 5069 5070 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5071 const Loop *L) { 5072 // The loop header is guaranteed to be executed for every iteration. 5073 // 5074 // FIXME: Relax this constraint to cover all basic blocks that are 5075 // guaranteed to be executed at every iteration. 5076 if (I->getParent() != L->getHeader()) return false; 5077 5078 for (const Instruction &LI : *L->getHeader()) { 5079 if (&LI == I) return true; 5080 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5081 } 5082 llvm_unreachable("Instruction not contained in its own parent basic block."); 5083 } 5084 5085 bool llvm::propagatesPoison(const Operator *I) { 5086 switch (I->getOpcode()) { 5087 case Instruction::Freeze: 5088 case Instruction::Select: 5089 case Instruction::PHI: 5090 case Instruction::Call: 5091 case Instruction::Invoke: 5092 return false; 5093 case Instruction::ICmp: 5094 case Instruction::FCmp: 5095 case Instruction::GetElementPtr: 5096 return true; 5097 default: 5098 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5099 return true; 5100 5101 // Be conservative and return false. 5102 return false; 5103 } 5104 } 5105 5106 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5107 SmallPtrSetImpl<const Value *> &Operands) { 5108 switch (I->getOpcode()) { 5109 case Instruction::Store: 5110 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5111 break; 5112 5113 case Instruction::Load: 5114 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5115 break; 5116 5117 case Instruction::AtomicCmpXchg: 5118 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5119 break; 5120 5121 case Instruction::AtomicRMW: 5122 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5123 break; 5124 5125 case Instruction::UDiv: 5126 case Instruction::SDiv: 5127 case Instruction::URem: 5128 case Instruction::SRem: 5129 Operands.insert(I->getOperand(1)); 5130 break; 5131 5132 case Instruction::Call: 5133 case Instruction::Invoke: { 5134 const CallBase *CB = cast<CallBase>(I); 5135 if (CB->isIndirectCall()) 5136 Operands.insert(CB->getCalledOperand()); 5137 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5138 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5139 Operands.insert(CB->getArgOperand(i)); 5140 } 5141 break; 5142 } 5143 5144 default: 5145 break; 5146 } 5147 } 5148 5149 bool llvm::mustTriggerUB(const Instruction *I, 5150 const SmallSet<const Value *, 16>& KnownPoison) { 5151 SmallPtrSet<const Value *, 4> NonPoisonOps; 5152 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5153 5154 for (const auto *V : NonPoisonOps) 5155 if (KnownPoison.count(V)) 5156 return true; 5157 5158 return false; 5159 } 5160 5161 static bool programUndefinedIfUndefOrPoison(const Value *V, 5162 bool PoisonOnly) { 5163 // We currently only look for uses of values within the same basic 5164 // block, as that makes it easier to guarantee that the uses will be 5165 // executed given that Inst is executed. 5166 // 5167 // FIXME: Expand this to consider uses beyond the same basic block. To do 5168 // this, look out for the distinction between post-dominance and strong 5169 // post-dominance. 5170 const BasicBlock *BB = nullptr; 5171 BasicBlock::const_iterator Begin; 5172 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5173 BB = Inst->getParent(); 5174 Begin = Inst->getIterator(); 5175 Begin++; 5176 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5177 BB = &Arg->getParent()->getEntryBlock(); 5178 Begin = BB->begin(); 5179 } else { 5180 return false; 5181 } 5182 5183 BasicBlock::const_iterator End = BB->end(); 5184 5185 if (!PoisonOnly) { 5186 // Be conservative & just check whether a value is passed to a noundef 5187 // argument. 5188 // Instructions that raise UB with a poison operand are well-defined 5189 // or have unclear semantics when the input is partially undef. 5190 // For example, 'udiv x, (undef | 1)' isn't UB. 5191 5192 for (auto &I : make_range(Begin, End)) { 5193 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5194 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5195 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5196 CB->getArgOperand(i) == V) 5197 return true; 5198 } 5199 } 5200 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5201 break; 5202 } 5203 return false; 5204 } 5205 5206 // Set of instructions that we have proved will yield poison if Inst 5207 // does. 5208 SmallSet<const Value *, 16> YieldsPoison; 5209 SmallSet<const BasicBlock *, 4> Visited; 5210 5211 YieldsPoison.insert(V); 5212 auto Propagate = [&](const User *User) { 5213 if (propagatesPoison(cast<Operator>(User))) 5214 YieldsPoison.insert(User); 5215 }; 5216 for_each(V->users(), Propagate); 5217 Visited.insert(BB); 5218 5219 unsigned Iter = 0; 5220 while (Iter++ < MaxAnalysisRecursionDepth) { 5221 for (auto &I : make_range(Begin, End)) { 5222 if (mustTriggerUB(&I, YieldsPoison)) 5223 return true; 5224 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5225 return false; 5226 5227 // Mark poison that propagates from I through uses of I. 5228 if (YieldsPoison.count(&I)) 5229 for_each(I.users(), Propagate); 5230 } 5231 5232 if (auto *NextBB = BB->getSingleSuccessor()) { 5233 if (Visited.insert(NextBB).second) { 5234 BB = NextBB; 5235 Begin = BB->getFirstNonPHI()->getIterator(); 5236 End = BB->end(); 5237 continue; 5238 } 5239 } 5240 5241 break; 5242 } 5243 return false; 5244 } 5245 5246 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5247 return ::programUndefinedIfUndefOrPoison(Inst, false); 5248 } 5249 5250 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5251 return ::programUndefinedIfUndefOrPoison(Inst, true); 5252 } 5253 5254 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5255 if (FMF.noNaNs()) 5256 return true; 5257 5258 if (auto *C = dyn_cast<ConstantFP>(V)) 5259 return !C->isNaN(); 5260 5261 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5262 if (!C->getElementType()->isFloatingPointTy()) 5263 return false; 5264 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5265 if (C->getElementAsAPFloat(I).isNaN()) 5266 return false; 5267 } 5268 return true; 5269 } 5270 5271 if (isa<ConstantAggregateZero>(V)) 5272 return true; 5273 5274 return false; 5275 } 5276 5277 static bool isKnownNonZero(const Value *V) { 5278 if (auto *C = dyn_cast<ConstantFP>(V)) 5279 return !C->isZero(); 5280 5281 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5282 if (!C->getElementType()->isFloatingPointTy()) 5283 return false; 5284 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5285 if (C->getElementAsAPFloat(I).isZero()) 5286 return false; 5287 } 5288 return true; 5289 } 5290 5291 return false; 5292 } 5293 5294 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5295 /// Given non-min/max outer cmp/select from the clamp pattern this 5296 /// function recognizes if it can be substitued by a "canonical" min/max 5297 /// pattern. 5298 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5299 Value *CmpLHS, Value *CmpRHS, 5300 Value *TrueVal, Value *FalseVal, 5301 Value *&LHS, Value *&RHS) { 5302 // Try to match 5303 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5304 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5305 // and return description of the outer Max/Min. 5306 5307 // First, check if select has inverse order: 5308 if (CmpRHS == FalseVal) { 5309 std::swap(TrueVal, FalseVal); 5310 Pred = CmpInst::getInversePredicate(Pred); 5311 } 5312 5313 // Assume success now. If there's no match, callers should not use these anyway. 5314 LHS = TrueVal; 5315 RHS = FalseVal; 5316 5317 const APFloat *FC1; 5318 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5319 return {SPF_UNKNOWN, SPNB_NA, false}; 5320 5321 const APFloat *FC2; 5322 switch (Pred) { 5323 case CmpInst::FCMP_OLT: 5324 case CmpInst::FCMP_OLE: 5325 case CmpInst::FCMP_ULT: 5326 case CmpInst::FCMP_ULE: 5327 if (match(FalseVal, 5328 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5329 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5330 *FC1 < *FC2) 5331 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5332 break; 5333 case CmpInst::FCMP_OGT: 5334 case CmpInst::FCMP_OGE: 5335 case CmpInst::FCMP_UGT: 5336 case CmpInst::FCMP_UGE: 5337 if (match(FalseVal, 5338 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5339 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5340 *FC1 > *FC2) 5341 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5342 break; 5343 default: 5344 break; 5345 } 5346 5347 return {SPF_UNKNOWN, SPNB_NA, false}; 5348 } 5349 5350 /// Recognize variations of: 5351 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5352 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5353 Value *CmpLHS, Value *CmpRHS, 5354 Value *TrueVal, Value *FalseVal) { 5355 // Swap the select operands and predicate to match the patterns below. 5356 if (CmpRHS != TrueVal) { 5357 Pred = ICmpInst::getSwappedPredicate(Pred); 5358 std::swap(TrueVal, FalseVal); 5359 } 5360 const APInt *C1; 5361 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5362 const APInt *C2; 5363 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5364 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5365 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5366 return {SPF_SMAX, SPNB_NA, false}; 5367 5368 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5369 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5370 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5371 return {SPF_SMIN, SPNB_NA, false}; 5372 5373 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5374 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5375 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5376 return {SPF_UMAX, SPNB_NA, false}; 5377 5378 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5379 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5380 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5381 return {SPF_UMIN, SPNB_NA, false}; 5382 } 5383 return {SPF_UNKNOWN, SPNB_NA, false}; 5384 } 5385 5386 /// Recognize variations of: 5387 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5388 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5389 Value *CmpLHS, Value *CmpRHS, 5390 Value *TVal, Value *FVal, 5391 unsigned Depth) { 5392 // TODO: Allow FP min/max with nnan/nsz. 5393 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5394 5395 Value *A = nullptr, *B = nullptr; 5396 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5397 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5398 return {SPF_UNKNOWN, SPNB_NA, false}; 5399 5400 Value *C = nullptr, *D = nullptr; 5401 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5402 if (L.Flavor != R.Flavor) 5403 return {SPF_UNKNOWN, SPNB_NA, false}; 5404 5405 // We have something like: x Pred y ? min(a, b) : min(c, d). 5406 // Try to match the compare to the min/max operations of the select operands. 5407 // First, make sure we have the right compare predicate. 5408 switch (L.Flavor) { 5409 case SPF_SMIN: 5410 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5411 Pred = ICmpInst::getSwappedPredicate(Pred); 5412 std::swap(CmpLHS, CmpRHS); 5413 } 5414 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5415 break; 5416 return {SPF_UNKNOWN, SPNB_NA, false}; 5417 case SPF_SMAX: 5418 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5419 Pred = ICmpInst::getSwappedPredicate(Pred); 5420 std::swap(CmpLHS, CmpRHS); 5421 } 5422 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5423 break; 5424 return {SPF_UNKNOWN, SPNB_NA, false}; 5425 case SPF_UMIN: 5426 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5427 Pred = ICmpInst::getSwappedPredicate(Pred); 5428 std::swap(CmpLHS, CmpRHS); 5429 } 5430 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5431 break; 5432 return {SPF_UNKNOWN, SPNB_NA, false}; 5433 case SPF_UMAX: 5434 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5435 Pred = ICmpInst::getSwappedPredicate(Pred); 5436 std::swap(CmpLHS, CmpRHS); 5437 } 5438 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5439 break; 5440 return {SPF_UNKNOWN, SPNB_NA, false}; 5441 default: 5442 return {SPF_UNKNOWN, SPNB_NA, false}; 5443 } 5444 5445 // If there is a common operand in the already matched min/max and the other 5446 // min/max operands match the compare operands (either directly or inverted), 5447 // then this is min/max of the same flavor. 5448 5449 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5450 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5451 if (D == B) { 5452 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5453 match(A, m_Not(m_Specific(CmpRHS))))) 5454 return {L.Flavor, SPNB_NA, false}; 5455 } 5456 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5457 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5458 if (C == B) { 5459 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5460 match(A, m_Not(m_Specific(CmpRHS))))) 5461 return {L.Flavor, SPNB_NA, false}; 5462 } 5463 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5464 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5465 if (D == A) { 5466 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5467 match(B, m_Not(m_Specific(CmpRHS))))) 5468 return {L.Flavor, SPNB_NA, false}; 5469 } 5470 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5471 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5472 if (C == A) { 5473 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5474 match(B, m_Not(m_Specific(CmpRHS))))) 5475 return {L.Flavor, SPNB_NA, false}; 5476 } 5477 5478 return {SPF_UNKNOWN, SPNB_NA, false}; 5479 } 5480 5481 /// If the input value is the result of a 'not' op, constant integer, or vector 5482 /// splat of a constant integer, return the bitwise-not source value. 5483 /// TODO: This could be extended to handle non-splat vector integer constants. 5484 static Value *getNotValue(Value *V) { 5485 Value *NotV; 5486 if (match(V, m_Not(m_Value(NotV)))) 5487 return NotV; 5488 5489 const APInt *C; 5490 if (match(V, m_APInt(C))) 5491 return ConstantInt::get(V->getType(), ~(*C)); 5492 5493 return nullptr; 5494 } 5495 5496 /// Match non-obvious integer minimum and maximum sequences. 5497 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5498 Value *CmpLHS, Value *CmpRHS, 5499 Value *TrueVal, Value *FalseVal, 5500 Value *&LHS, Value *&RHS, 5501 unsigned Depth) { 5502 // Assume success. If there's no match, callers should not use these anyway. 5503 LHS = TrueVal; 5504 RHS = FalseVal; 5505 5506 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5507 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5508 return SPR; 5509 5510 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5511 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5512 return SPR; 5513 5514 // Look through 'not' ops to find disguised min/max. 5515 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5516 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5517 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5518 switch (Pred) { 5519 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5520 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5521 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5522 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5523 default: break; 5524 } 5525 } 5526 5527 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5528 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5529 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5530 switch (Pred) { 5531 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5532 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5533 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5534 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5535 default: break; 5536 } 5537 } 5538 5539 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5540 return {SPF_UNKNOWN, SPNB_NA, false}; 5541 5542 // Z = X -nsw Y 5543 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5544 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5545 if (match(TrueVal, m_Zero()) && 5546 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5547 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5548 5549 // Z = X -nsw Y 5550 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5551 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5552 if (match(FalseVal, m_Zero()) && 5553 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5554 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5555 5556 const APInt *C1; 5557 if (!match(CmpRHS, m_APInt(C1))) 5558 return {SPF_UNKNOWN, SPNB_NA, false}; 5559 5560 // An unsigned min/max can be written with a signed compare. 5561 const APInt *C2; 5562 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5563 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5564 // Is the sign bit set? 5565 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5566 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5567 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5568 C2->isMaxSignedValue()) 5569 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5570 5571 // Is the sign bit clear? 5572 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5573 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5574 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5575 C2->isMinSignedValue()) 5576 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5577 } 5578 5579 return {SPF_UNKNOWN, SPNB_NA, false}; 5580 } 5581 5582 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5583 assert(X && Y && "Invalid operand"); 5584 5585 // X = sub (0, Y) || X = sub nsw (0, Y) 5586 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5587 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5588 return true; 5589 5590 // Y = sub (0, X) || Y = sub nsw (0, X) 5591 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5592 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5593 return true; 5594 5595 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5596 Value *A, *B; 5597 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5598 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5599 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5600 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5601 } 5602 5603 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5604 FastMathFlags FMF, 5605 Value *CmpLHS, Value *CmpRHS, 5606 Value *TrueVal, Value *FalseVal, 5607 Value *&LHS, Value *&RHS, 5608 unsigned Depth) { 5609 if (CmpInst::isFPPredicate(Pred)) { 5610 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5611 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5612 // purpose of identifying min/max. Disregard vector constants with undefined 5613 // elements because those can not be back-propagated for analysis. 5614 Value *OutputZeroVal = nullptr; 5615 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5616 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5617 OutputZeroVal = TrueVal; 5618 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5619 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5620 OutputZeroVal = FalseVal; 5621 5622 if (OutputZeroVal) { 5623 if (match(CmpLHS, m_AnyZeroFP())) 5624 CmpLHS = OutputZeroVal; 5625 if (match(CmpRHS, m_AnyZeroFP())) 5626 CmpRHS = OutputZeroVal; 5627 } 5628 } 5629 5630 LHS = CmpLHS; 5631 RHS = CmpRHS; 5632 5633 // Signed zero may return inconsistent results between implementations. 5634 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5635 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5636 // Therefore, we behave conservatively and only proceed if at least one of the 5637 // operands is known to not be zero or if we don't care about signed zero. 5638 switch (Pred) { 5639 default: break; 5640 // FIXME: Include OGT/OLT/UGT/ULT. 5641 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5642 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5643 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5644 !isKnownNonZero(CmpRHS)) 5645 return {SPF_UNKNOWN, SPNB_NA, false}; 5646 } 5647 5648 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5649 bool Ordered = false; 5650 5651 // When given one NaN and one non-NaN input: 5652 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5653 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5654 // ordered comparison fails), which could be NaN or non-NaN. 5655 // so here we discover exactly what NaN behavior is required/accepted. 5656 if (CmpInst::isFPPredicate(Pred)) { 5657 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5658 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5659 5660 if (LHSSafe && RHSSafe) { 5661 // Both operands are known non-NaN. 5662 NaNBehavior = SPNB_RETURNS_ANY; 5663 } else if (CmpInst::isOrdered(Pred)) { 5664 // An ordered comparison will return false when given a NaN, so it 5665 // returns the RHS. 5666 Ordered = true; 5667 if (LHSSafe) 5668 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5669 NaNBehavior = SPNB_RETURNS_NAN; 5670 else if (RHSSafe) 5671 NaNBehavior = SPNB_RETURNS_OTHER; 5672 else 5673 // Completely unsafe. 5674 return {SPF_UNKNOWN, SPNB_NA, false}; 5675 } else { 5676 Ordered = false; 5677 // An unordered comparison will return true when given a NaN, so it 5678 // returns the LHS. 5679 if (LHSSafe) 5680 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5681 NaNBehavior = SPNB_RETURNS_OTHER; 5682 else if (RHSSafe) 5683 NaNBehavior = SPNB_RETURNS_NAN; 5684 else 5685 // Completely unsafe. 5686 return {SPF_UNKNOWN, SPNB_NA, false}; 5687 } 5688 } 5689 5690 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5691 std::swap(CmpLHS, CmpRHS); 5692 Pred = CmpInst::getSwappedPredicate(Pred); 5693 if (NaNBehavior == SPNB_RETURNS_NAN) 5694 NaNBehavior = SPNB_RETURNS_OTHER; 5695 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5696 NaNBehavior = SPNB_RETURNS_NAN; 5697 Ordered = !Ordered; 5698 } 5699 5700 // ([if]cmp X, Y) ? X : Y 5701 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5702 switch (Pred) { 5703 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5704 case ICmpInst::ICMP_UGT: 5705 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5706 case ICmpInst::ICMP_SGT: 5707 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5708 case ICmpInst::ICMP_ULT: 5709 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5710 case ICmpInst::ICMP_SLT: 5711 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5712 case FCmpInst::FCMP_UGT: 5713 case FCmpInst::FCMP_UGE: 5714 case FCmpInst::FCMP_OGT: 5715 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5716 case FCmpInst::FCMP_ULT: 5717 case FCmpInst::FCMP_ULE: 5718 case FCmpInst::FCMP_OLT: 5719 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5720 } 5721 } 5722 5723 if (isKnownNegation(TrueVal, FalseVal)) { 5724 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5725 // match against either LHS or sext(LHS). 5726 auto MaybeSExtCmpLHS = 5727 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5728 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5729 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5730 if (match(TrueVal, MaybeSExtCmpLHS)) { 5731 // Set the return values. If the compare uses the negated value (-X >s 0), 5732 // swap the return values because the negated value is always 'RHS'. 5733 LHS = TrueVal; 5734 RHS = FalseVal; 5735 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5736 std::swap(LHS, RHS); 5737 5738 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5739 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5740 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5741 return {SPF_ABS, SPNB_NA, false}; 5742 5743 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5744 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5745 return {SPF_ABS, SPNB_NA, false}; 5746 5747 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5748 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5749 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5750 return {SPF_NABS, SPNB_NA, false}; 5751 } 5752 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5753 // Set the return values. If the compare uses the negated value (-X >s 0), 5754 // swap the return values because the negated value is always 'RHS'. 5755 LHS = FalseVal; 5756 RHS = TrueVal; 5757 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5758 std::swap(LHS, RHS); 5759 5760 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5761 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5762 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5763 return {SPF_NABS, SPNB_NA, false}; 5764 5765 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5766 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5767 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5768 return {SPF_ABS, SPNB_NA, false}; 5769 } 5770 } 5771 5772 if (CmpInst::isIntPredicate(Pred)) 5773 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5774 5775 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5776 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5777 // semantics than minNum. Be conservative in such case. 5778 if (NaNBehavior != SPNB_RETURNS_ANY || 5779 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5780 !isKnownNonZero(CmpRHS))) 5781 return {SPF_UNKNOWN, SPNB_NA, false}; 5782 5783 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5784 } 5785 5786 /// Helps to match a select pattern in case of a type mismatch. 5787 /// 5788 /// The function processes the case when type of true and false values of a 5789 /// select instruction differs from type of the cmp instruction operands because 5790 /// of a cast instruction. The function checks if it is legal to move the cast 5791 /// operation after "select". If yes, it returns the new second value of 5792 /// "select" (with the assumption that cast is moved): 5793 /// 1. As operand of cast instruction when both values of "select" are same cast 5794 /// instructions. 5795 /// 2. As restored constant (by applying reverse cast operation) when the first 5796 /// value of the "select" is a cast operation and the second value is a 5797 /// constant. 5798 /// NOTE: We return only the new second value because the first value could be 5799 /// accessed as operand of cast instruction. 5800 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5801 Instruction::CastOps *CastOp) { 5802 auto *Cast1 = dyn_cast<CastInst>(V1); 5803 if (!Cast1) 5804 return nullptr; 5805 5806 *CastOp = Cast1->getOpcode(); 5807 Type *SrcTy = Cast1->getSrcTy(); 5808 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5809 // If V1 and V2 are both the same cast from the same type, look through V1. 5810 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5811 return Cast2->getOperand(0); 5812 return nullptr; 5813 } 5814 5815 auto *C = dyn_cast<Constant>(V2); 5816 if (!C) 5817 return nullptr; 5818 5819 Constant *CastedTo = nullptr; 5820 switch (*CastOp) { 5821 case Instruction::ZExt: 5822 if (CmpI->isUnsigned()) 5823 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5824 break; 5825 case Instruction::SExt: 5826 if (CmpI->isSigned()) 5827 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5828 break; 5829 case Instruction::Trunc: 5830 Constant *CmpConst; 5831 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5832 CmpConst->getType() == SrcTy) { 5833 // Here we have the following case: 5834 // 5835 // %cond = cmp iN %x, CmpConst 5836 // %tr = trunc iN %x to iK 5837 // %narrowsel = select i1 %cond, iK %t, iK C 5838 // 5839 // We can always move trunc after select operation: 5840 // 5841 // %cond = cmp iN %x, CmpConst 5842 // %widesel = select i1 %cond, iN %x, iN CmpConst 5843 // %tr = trunc iN %widesel to iK 5844 // 5845 // Note that C could be extended in any way because we don't care about 5846 // upper bits after truncation. It can't be abs pattern, because it would 5847 // look like: 5848 // 5849 // select i1 %cond, x, -x. 5850 // 5851 // So only min/max pattern could be matched. Such match requires widened C 5852 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5853 // CmpConst == C is checked below. 5854 CastedTo = CmpConst; 5855 } else { 5856 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5857 } 5858 break; 5859 case Instruction::FPTrunc: 5860 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5861 break; 5862 case Instruction::FPExt: 5863 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5864 break; 5865 case Instruction::FPToUI: 5866 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5867 break; 5868 case Instruction::FPToSI: 5869 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5870 break; 5871 case Instruction::UIToFP: 5872 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5873 break; 5874 case Instruction::SIToFP: 5875 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5876 break; 5877 default: 5878 break; 5879 } 5880 5881 if (!CastedTo) 5882 return nullptr; 5883 5884 // Make sure the cast doesn't lose any information. 5885 Constant *CastedBack = 5886 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5887 if (CastedBack != C) 5888 return nullptr; 5889 5890 return CastedTo; 5891 } 5892 5893 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5894 Instruction::CastOps *CastOp, 5895 unsigned Depth) { 5896 if (Depth >= MaxAnalysisRecursionDepth) 5897 return {SPF_UNKNOWN, SPNB_NA, false}; 5898 5899 SelectInst *SI = dyn_cast<SelectInst>(V); 5900 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5901 5902 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5903 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5904 5905 Value *TrueVal = SI->getTrueValue(); 5906 Value *FalseVal = SI->getFalseValue(); 5907 5908 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5909 CastOp, Depth); 5910 } 5911 5912 SelectPatternResult llvm::matchDecomposedSelectPattern( 5913 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5914 Instruction::CastOps *CastOp, unsigned Depth) { 5915 CmpInst::Predicate Pred = CmpI->getPredicate(); 5916 Value *CmpLHS = CmpI->getOperand(0); 5917 Value *CmpRHS = CmpI->getOperand(1); 5918 FastMathFlags FMF; 5919 if (isa<FPMathOperator>(CmpI)) 5920 FMF = CmpI->getFastMathFlags(); 5921 5922 // Bail out early. 5923 if (CmpI->isEquality()) 5924 return {SPF_UNKNOWN, SPNB_NA, false}; 5925 5926 // Deal with type mismatches. 5927 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5928 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5929 // If this is a potential fmin/fmax with a cast to integer, then ignore 5930 // -0.0 because there is no corresponding integer value. 5931 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5932 FMF.setNoSignedZeros(); 5933 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5934 cast<CastInst>(TrueVal)->getOperand(0), C, 5935 LHS, RHS, Depth); 5936 } 5937 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5938 // If this is a potential fmin/fmax with a cast to integer, then ignore 5939 // -0.0 because there is no corresponding integer value. 5940 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5941 FMF.setNoSignedZeros(); 5942 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5943 C, cast<CastInst>(FalseVal)->getOperand(0), 5944 LHS, RHS, Depth); 5945 } 5946 } 5947 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5948 LHS, RHS, Depth); 5949 } 5950 5951 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5952 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5953 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5954 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5955 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5956 if (SPF == SPF_FMINNUM) 5957 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5958 if (SPF == SPF_FMAXNUM) 5959 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5960 llvm_unreachable("unhandled!"); 5961 } 5962 5963 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5964 if (SPF == SPF_SMIN) return SPF_SMAX; 5965 if (SPF == SPF_UMIN) return SPF_UMAX; 5966 if (SPF == SPF_SMAX) return SPF_SMIN; 5967 if (SPF == SPF_UMAX) return SPF_UMIN; 5968 llvm_unreachable("unhandled!"); 5969 } 5970 5971 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5972 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5973 } 5974 5975 std::pair<Intrinsic::ID, bool> 5976 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5977 // Check if VL contains select instructions that can be folded into a min/max 5978 // vector intrinsic and return the intrinsic if it is possible. 5979 // TODO: Support floating point min/max. 5980 bool AllCmpSingleUse = true; 5981 SelectPatternResult SelectPattern; 5982 SelectPattern.Flavor = SPF_UNKNOWN; 5983 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5984 Value *LHS, *RHS; 5985 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5986 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5987 CurrentPattern.Flavor == SPF_FMINNUM || 5988 CurrentPattern.Flavor == SPF_FMAXNUM || 5989 !I->getType()->isIntOrIntVectorTy()) 5990 return false; 5991 if (SelectPattern.Flavor != SPF_UNKNOWN && 5992 SelectPattern.Flavor != CurrentPattern.Flavor) 5993 return false; 5994 SelectPattern = CurrentPattern; 5995 AllCmpSingleUse &= 5996 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5997 return true; 5998 })) { 5999 switch (SelectPattern.Flavor) { 6000 case SPF_SMIN: 6001 return {Intrinsic::smin, AllCmpSingleUse}; 6002 case SPF_UMIN: 6003 return {Intrinsic::umin, AllCmpSingleUse}; 6004 case SPF_SMAX: 6005 return {Intrinsic::smax, AllCmpSingleUse}; 6006 case SPF_UMAX: 6007 return {Intrinsic::umax, AllCmpSingleUse}; 6008 default: 6009 llvm_unreachable("unexpected select pattern flavor"); 6010 } 6011 } 6012 return {Intrinsic::not_intrinsic, false}; 6013 } 6014 6015 /// Return true if "icmp Pred LHS RHS" is always true. 6016 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6017 const Value *RHS, const DataLayout &DL, 6018 unsigned Depth) { 6019 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6020 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6021 return true; 6022 6023 switch (Pred) { 6024 default: 6025 return false; 6026 6027 case CmpInst::ICMP_SLE: { 6028 const APInt *C; 6029 6030 // LHS s<= LHS +_{nsw} C if C >= 0 6031 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6032 return !C->isNegative(); 6033 return false; 6034 } 6035 6036 case CmpInst::ICMP_ULE: { 6037 const APInt *C; 6038 6039 // LHS u<= LHS +_{nuw} C for any C 6040 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6041 return true; 6042 6043 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6044 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6045 const Value *&X, 6046 const APInt *&CA, const APInt *&CB) { 6047 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6048 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6049 return true; 6050 6051 // If X & C == 0 then (X | C) == X +_{nuw} C 6052 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6053 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6054 KnownBits Known(CA->getBitWidth()); 6055 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6056 /*CxtI*/ nullptr, /*DT*/ nullptr); 6057 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6058 return true; 6059 } 6060 6061 return false; 6062 }; 6063 6064 const Value *X; 6065 const APInt *CLHS, *CRHS; 6066 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6067 return CLHS->ule(*CRHS); 6068 6069 return false; 6070 } 6071 } 6072 } 6073 6074 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6075 /// ALHS ARHS" is true. Otherwise, return None. 6076 static Optional<bool> 6077 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6078 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6079 const DataLayout &DL, unsigned Depth) { 6080 switch (Pred) { 6081 default: 6082 return None; 6083 6084 case CmpInst::ICMP_SLT: 6085 case CmpInst::ICMP_SLE: 6086 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6087 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6088 return true; 6089 return None; 6090 6091 case CmpInst::ICMP_ULT: 6092 case CmpInst::ICMP_ULE: 6093 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6094 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6095 return true; 6096 return None; 6097 } 6098 } 6099 6100 /// Return true if the operands of the two compares match. IsSwappedOps is true 6101 /// when the operands match, but are swapped. 6102 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6103 const Value *BLHS, const Value *BRHS, 6104 bool &IsSwappedOps) { 6105 6106 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6107 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6108 return IsMatchingOps || IsSwappedOps; 6109 } 6110 6111 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6112 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6113 /// Otherwise, return None if we can't infer anything. 6114 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6115 CmpInst::Predicate BPred, 6116 bool AreSwappedOps) { 6117 // Canonicalize the predicate as if the operands were not commuted. 6118 if (AreSwappedOps) 6119 BPred = ICmpInst::getSwappedPredicate(BPred); 6120 6121 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6122 return true; 6123 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6124 return false; 6125 6126 return None; 6127 } 6128 6129 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6130 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6131 /// Otherwise, return None if we can't infer anything. 6132 static Optional<bool> 6133 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6134 const ConstantInt *C1, 6135 CmpInst::Predicate BPred, 6136 const ConstantInt *C2) { 6137 ConstantRange DomCR = 6138 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6139 ConstantRange CR = 6140 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6141 ConstantRange Intersection = DomCR.intersectWith(CR); 6142 ConstantRange Difference = DomCR.difference(CR); 6143 if (Intersection.isEmptySet()) 6144 return false; 6145 if (Difference.isEmptySet()) 6146 return true; 6147 return None; 6148 } 6149 6150 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6151 /// false. Otherwise, return None if we can't infer anything. 6152 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6153 CmpInst::Predicate BPred, 6154 const Value *BLHS, const Value *BRHS, 6155 const DataLayout &DL, bool LHSIsTrue, 6156 unsigned Depth) { 6157 Value *ALHS = LHS->getOperand(0); 6158 Value *ARHS = LHS->getOperand(1); 6159 6160 // The rest of the logic assumes the LHS condition is true. If that's not the 6161 // case, invert the predicate to make it so. 6162 CmpInst::Predicate APred = 6163 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6164 6165 // Can we infer anything when the two compares have matching operands? 6166 bool AreSwappedOps; 6167 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6168 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6169 APred, BPred, AreSwappedOps)) 6170 return Implication; 6171 // No amount of additional analysis will infer the second condition, so 6172 // early exit. 6173 return None; 6174 } 6175 6176 // Can we infer anything when the LHS operands match and the RHS operands are 6177 // constants (not necessarily matching)? 6178 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6179 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6180 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6181 return Implication; 6182 // No amount of additional analysis will infer the second condition, so 6183 // early exit. 6184 return None; 6185 } 6186 6187 if (APred == BPred) 6188 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6189 return None; 6190 } 6191 6192 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6193 /// false. Otherwise, return None if we can't infer anything. We expect the 6194 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6195 static Optional<bool> 6196 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6197 const Value *RHSOp0, const Value *RHSOp1, 6198 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6199 // The LHS must be an 'or', 'and', or a 'select' instruction. 6200 assert((LHS->getOpcode() == Instruction::And || 6201 LHS->getOpcode() == Instruction::Or || 6202 LHS->getOpcode() == Instruction::Select) && 6203 "Expected LHS to be 'and', 'or', or 'select'."); 6204 6205 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6206 6207 // If the result of an 'or' is false, then we know both legs of the 'or' are 6208 // false. Similarly, if the result of an 'and' is true, then we know both 6209 // legs of the 'and' are true. 6210 const Value *ALHS, *ARHS; 6211 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6212 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6213 // FIXME: Make this non-recursion. 6214 if (Optional<bool> Implication = isImpliedCondition( 6215 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6216 return Implication; 6217 if (Optional<bool> Implication = isImpliedCondition( 6218 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6219 return Implication; 6220 return None; 6221 } 6222 return None; 6223 } 6224 6225 Optional<bool> 6226 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6227 const Value *RHSOp0, const Value *RHSOp1, 6228 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6229 // Bail out when we hit the limit. 6230 if (Depth == MaxAnalysisRecursionDepth) 6231 return None; 6232 6233 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6234 // example. 6235 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6236 return None; 6237 6238 Type *OpTy = LHS->getType(); 6239 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6240 6241 // FIXME: Extending the code below to handle vectors. 6242 if (OpTy->isVectorTy()) 6243 return None; 6244 6245 assert(OpTy->isIntegerTy(1) && "implied by above"); 6246 6247 // Both LHS and RHS are icmps. 6248 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6249 if (LHSCmp) 6250 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6251 Depth); 6252 6253 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6254 /// the RHS to be an icmp. 6255 /// FIXME: Add support for and/or/select on the RHS. 6256 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6257 if ((LHSI->getOpcode() == Instruction::And || 6258 LHSI->getOpcode() == Instruction::Or || 6259 LHSI->getOpcode() == Instruction::Select)) 6260 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6261 Depth); 6262 } 6263 return None; 6264 } 6265 6266 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6267 const DataLayout &DL, bool LHSIsTrue, 6268 unsigned Depth) { 6269 // LHS ==> RHS by definition 6270 if (LHS == RHS) 6271 return LHSIsTrue; 6272 6273 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6274 if (RHSCmp) 6275 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6276 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6277 LHSIsTrue, Depth); 6278 return None; 6279 } 6280 6281 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6282 // condition dominating ContextI or nullptr, if no condition is found. 6283 static std::pair<Value *, bool> 6284 getDomPredecessorCondition(const Instruction *ContextI) { 6285 if (!ContextI || !ContextI->getParent()) 6286 return {nullptr, false}; 6287 6288 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6289 // dominator tree (eg, from a SimplifyQuery) instead? 6290 const BasicBlock *ContextBB = ContextI->getParent(); 6291 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6292 if (!PredBB) 6293 return {nullptr, false}; 6294 6295 // We need a conditional branch in the predecessor. 6296 Value *PredCond; 6297 BasicBlock *TrueBB, *FalseBB; 6298 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6299 return {nullptr, false}; 6300 6301 // The branch should get simplified. Don't bother simplifying this condition. 6302 if (TrueBB == FalseBB) 6303 return {nullptr, false}; 6304 6305 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6306 "Predecessor block does not point to successor?"); 6307 6308 // Is this condition implied by the predecessor condition? 6309 return {PredCond, TrueBB == ContextBB}; 6310 } 6311 6312 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6313 const Instruction *ContextI, 6314 const DataLayout &DL) { 6315 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6316 auto PredCond = getDomPredecessorCondition(ContextI); 6317 if (PredCond.first) 6318 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6319 return None; 6320 } 6321 6322 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6323 const Value *LHS, const Value *RHS, 6324 const Instruction *ContextI, 6325 const DataLayout &DL) { 6326 auto PredCond = getDomPredecessorCondition(ContextI); 6327 if (PredCond.first) 6328 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6329 PredCond.second); 6330 return None; 6331 } 6332 6333 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6334 APInt &Upper, const InstrInfoQuery &IIQ) { 6335 unsigned Width = Lower.getBitWidth(); 6336 const APInt *C; 6337 switch (BO.getOpcode()) { 6338 case Instruction::Add: 6339 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6340 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6341 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6342 // 'add nuw x, C' produces [C, UINT_MAX]. 6343 Lower = *C; 6344 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6345 if (C->isNegative()) { 6346 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6347 Lower = APInt::getSignedMinValue(Width); 6348 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6349 } else { 6350 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6351 Lower = APInt::getSignedMinValue(Width) + *C; 6352 Upper = APInt::getSignedMaxValue(Width) + 1; 6353 } 6354 } 6355 } 6356 break; 6357 6358 case Instruction::And: 6359 if (match(BO.getOperand(1), m_APInt(C))) 6360 // 'and x, C' produces [0, C]. 6361 Upper = *C + 1; 6362 break; 6363 6364 case Instruction::Or: 6365 if (match(BO.getOperand(1), m_APInt(C))) 6366 // 'or x, C' produces [C, UINT_MAX]. 6367 Lower = *C; 6368 break; 6369 6370 case Instruction::AShr: 6371 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6372 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6373 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6374 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6375 } else if (match(BO.getOperand(0), m_APInt(C))) { 6376 unsigned ShiftAmount = Width - 1; 6377 if (!C->isNullValue() && IIQ.isExact(&BO)) 6378 ShiftAmount = C->countTrailingZeros(); 6379 if (C->isNegative()) { 6380 // 'ashr C, x' produces [C, C >> (Width-1)] 6381 Lower = *C; 6382 Upper = C->ashr(ShiftAmount) + 1; 6383 } else { 6384 // 'ashr C, x' produces [C >> (Width-1), C] 6385 Lower = C->ashr(ShiftAmount); 6386 Upper = *C + 1; 6387 } 6388 } 6389 break; 6390 6391 case Instruction::LShr: 6392 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6393 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6394 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6395 } else if (match(BO.getOperand(0), m_APInt(C))) { 6396 // 'lshr C, x' produces [C >> (Width-1), C]. 6397 unsigned ShiftAmount = Width - 1; 6398 if (!C->isNullValue() && IIQ.isExact(&BO)) 6399 ShiftAmount = C->countTrailingZeros(); 6400 Lower = C->lshr(ShiftAmount); 6401 Upper = *C + 1; 6402 } 6403 break; 6404 6405 case Instruction::Shl: 6406 if (match(BO.getOperand(0), m_APInt(C))) { 6407 if (IIQ.hasNoUnsignedWrap(&BO)) { 6408 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6409 Lower = *C; 6410 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6411 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6412 if (C->isNegative()) { 6413 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6414 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6415 Lower = C->shl(ShiftAmount); 6416 Upper = *C + 1; 6417 } else { 6418 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6419 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6420 Lower = *C; 6421 Upper = C->shl(ShiftAmount) + 1; 6422 } 6423 } 6424 } 6425 break; 6426 6427 case Instruction::SDiv: 6428 if (match(BO.getOperand(1), m_APInt(C))) { 6429 APInt IntMin = APInt::getSignedMinValue(Width); 6430 APInt IntMax = APInt::getSignedMaxValue(Width); 6431 if (C->isAllOnesValue()) { 6432 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6433 // where C != -1 and C != 0 and C != 1 6434 Lower = IntMin + 1; 6435 Upper = IntMax + 1; 6436 } else if (C->countLeadingZeros() < Width - 1) { 6437 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6438 // where C != -1 and C != 0 and C != 1 6439 Lower = IntMin.sdiv(*C); 6440 Upper = IntMax.sdiv(*C); 6441 if (Lower.sgt(Upper)) 6442 std::swap(Lower, Upper); 6443 Upper = Upper + 1; 6444 assert(Upper != Lower && "Upper part of range has wrapped!"); 6445 } 6446 } else if (match(BO.getOperand(0), m_APInt(C))) { 6447 if (C->isMinSignedValue()) { 6448 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6449 Lower = *C; 6450 Upper = Lower.lshr(1) + 1; 6451 } else { 6452 // 'sdiv C, x' produces [-|C|, |C|]. 6453 Upper = C->abs() + 1; 6454 Lower = (-Upper) + 1; 6455 } 6456 } 6457 break; 6458 6459 case Instruction::UDiv: 6460 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6461 // 'udiv x, C' produces [0, UINT_MAX / C]. 6462 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6463 } else if (match(BO.getOperand(0), m_APInt(C))) { 6464 // 'udiv C, x' produces [0, C]. 6465 Upper = *C + 1; 6466 } 6467 break; 6468 6469 case Instruction::SRem: 6470 if (match(BO.getOperand(1), m_APInt(C))) { 6471 // 'srem x, C' produces (-|C|, |C|). 6472 Upper = C->abs(); 6473 Lower = (-Upper) + 1; 6474 } 6475 break; 6476 6477 case Instruction::URem: 6478 if (match(BO.getOperand(1), m_APInt(C))) 6479 // 'urem x, C' produces [0, C). 6480 Upper = *C; 6481 break; 6482 6483 default: 6484 break; 6485 } 6486 } 6487 6488 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6489 APInt &Upper) { 6490 unsigned Width = Lower.getBitWidth(); 6491 const APInt *C; 6492 switch (II.getIntrinsicID()) { 6493 case Intrinsic::ctpop: 6494 case Intrinsic::ctlz: 6495 case Intrinsic::cttz: 6496 // Maximum of set/clear bits is the bit width. 6497 assert(Lower == 0 && "Expected lower bound to be zero"); 6498 Upper = Width + 1; 6499 break; 6500 case Intrinsic::uadd_sat: 6501 // uadd.sat(x, C) produces [C, UINT_MAX]. 6502 if (match(II.getOperand(0), m_APInt(C)) || 6503 match(II.getOperand(1), m_APInt(C))) 6504 Lower = *C; 6505 break; 6506 case Intrinsic::sadd_sat: 6507 if (match(II.getOperand(0), m_APInt(C)) || 6508 match(II.getOperand(1), m_APInt(C))) { 6509 if (C->isNegative()) { 6510 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6511 Lower = APInt::getSignedMinValue(Width); 6512 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6513 } else { 6514 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6515 Lower = APInt::getSignedMinValue(Width) + *C; 6516 Upper = APInt::getSignedMaxValue(Width) + 1; 6517 } 6518 } 6519 break; 6520 case Intrinsic::usub_sat: 6521 // usub.sat(C, x) produces [0, C]. 6522 if (match(II.getOperand(0), m_APInt(C))) 6523 Upper = *C + 1; 6524 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6525 else if (match(II.getOperand(1), m_APInt(C))) 6526 Upper = APInt::getMaxValue(Width) - *C + 1; 6527 break; 6528 case Intrinsic::ssub_sat: 6529 if (match(II.getOperand(0), m_APInt(C))) { 6530 if (C->isNegative()) { 6531 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6532 Lower = APInt::getSignedMinValue(Width); 6533 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6534 } else { 6535 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6536 Lower = *C - APInt::getSignedMaxValue(Width); 6537 Upper = APInt::getSignedMaxValue(Width) + 1; 6538 } 6539 } else if (match(II.getOperand(1), m_APInt(C))) { 6540 if (C->isNegative()) { 6541 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6542 Lower = APInt::getSignedMinValue(Width) - *C; 6543 Upper = APInt::getSignedMaxValue(Width) + 1; 6544 } else { 6545 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6546 Lower = APInt::getSignedMinValue(Width); 6547 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6548 } 6549 } 6550 break; 6551 case Intrinsic::umin: 6552 case Intrinsic::umax: 6553 case Intrinsic::smin: 6554 case Intrinsic::smax: 6555 if (!match(II.getOperand(0), m_APInt(C)) && 6556 !match(II.getOperand(1), m_APInt(C))) 6557 break; 6558 6559 switch (II.getIntrinsicID()) { 6560 case Intrinsic::umin: 6561 Upper = *C + 1; 6562 break; 6563 case Intrinsic::umax: 6564 Lower = *C; 6565 break; 6566 case Intrinsic::smin: 6567 Lower = APInt::getSignedMinValue(Width); 6568 Upper = *C + 1; 6569 break; 6570 case Intrinsic::smax: 6571 Lower = *C; 6572 Upper = APInt::getSignedMaxValue(Width) + 1; 6573 break; 6574 default: 6575 llvm_unreachable("Must be min/max intrinsic"); 6576 } 6577 break; 6578 case Intrinsic::abs: 6579 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6580 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6581 if (match(II.getOperand(1), m_One())) 6582 Upper = APInt::getSignedMaxValue(Width) + 1; 6583 else 6584 Upper = APInt::getSignedMinValue(Width) + 1; 6585 break; 6586 default: 6587 break; 6588 } 6589 } 6590 6591 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6592 APInt &Upper, const InstrInfoQuery &IIQ) { 6593 const Value *LHS = nullptr, *RHS = nullptr; 6594 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6595 if (R.Flavor == SPF_UNKNOWN) 6596 return; 6597 6598 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6599 6600 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6601 // If the negation part of the abs (in RHS) has the NSW flag, 6602 // then the result of abs(X) is [0..SIGNED_MAX], 6603 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6604 Lower = APInt::getNullValue(BitWidth); 6605 if (match(RHS, m_Neg(m_Specific(LHS))) && 6606 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6607 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6608 else 6609 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6610 return; 6611 } 6612 6613 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6614 // The result of -abs(X) is <= 0. 6615 Lower = APInt::getSignedMinValue(BitWidth); 6616 Upper = APInt(BitWidth, 1); 6617 return; 6618 } 6619 6620 const APInt *C; 6621 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6622 return; 6623 6624 switch (R.Flavor) { 6625 case SPF_UMIN: 6626 Upper = *C + 1; 6627 break; 6628 case SPF_UMAX: 6629 Lower = *C; 6630 break; 6631 case SPF_SMIN: 6632 Lower = APInt::getSignedMinValue(BitWidth); 6633 Upper = *C + 1; 6634 break; 6635 case SPF_SMAX: 6636 Lower = *C; 6637 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6638 break; 6639 default: 6640 break; 6641 } 6642 } 6643 6644 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6645 AssumptionCache *AC, 6646 const Instruction *CtxI, 6647 unsigned Depth) { 6648 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6649 6650 if (Depth == MaxAnalysisRecursionDepth) 6651 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6652 6653 const APInt *C; 6654 if (match(V, m_APInt(C))) 6655 return ConstantRange(*C); 6656 6657 InstrInfoQuery IIQ(UseInstrInfo); 6658 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6659 APInt Lower = APInt(BitWidth, 0); 6660 APInt Upper = APInt(BitWidth, 0); 6661 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6662 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6663 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6664 setLimitsForIntrinsic(*II, Lower, Upper); 6665 else if (auto *SI = dyn_cast<SelectInst>(V)) 6666 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6667 6668 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6669 6670 if (auto *I = dyn_cast<Instruction>(V)) 6671 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6672 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6673 6674 if (CtxI && AC) { 6675 // Try to restrict the range based on information from assumptions. 6676 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6677 if (!AssumeVH) 6678 continue; 6679 CallInst *I = cast<CallInst>(AssumeVH); 6680 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6681 "Got assumption for the wrong function!"); 6682 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6683 "must be an assume intrinsic"); 6684 6685 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6686 continue; 6687 Value *Arg = I->getArgOperand(0); 6688 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6689 // Currently we just use information from comparisons. 6690 if (!Cmp || Cmp->getOperand(0) != V) 6691 continue; 6692 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6693 AC, I, Depth + 1); 6694 CR = CR.intersectWith( 6695 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6696 } 6697 } 6698 6699 return CR; 6700 } 6701 6702 static Optional<int64_t> 6703 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6704 // Skip over the first indices. 6705 gep_type_iterator GTI = gep_type_begin(GEP); 6706 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6707 /*skip along*/; 6708 6709 // Compute the offset implied by the rest of the indices. 6710 int64_t Offset = 0; 6711 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6712 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6713 if (!OpC) 6714 return None; 6715 if (OpC->isZero()) 6716 continue; // No offset. 6717 6718 // Handle struct indices, which add their field offset to the pointer. 6719 if (StructType *STy = GTI.getStructTypeOrNull()) { 6720 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6721 continue; 6722 } 6723 6724 // Otherwise, we have a sequential type like an array or fixed-length 6725 // vector. Multiply the index by the ElementSize. 6726 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6727 if (Size.isScalable()) 6728 return None; 6729 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6730 } 6731 6732 return Offset; 6733 } 6734 6735 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6736 const DataLayout &DL) { 6737 Ptr1 = Ptr1->stripPointerCasts(); 6738 Ptr2 = Ptr2->stripPointerCasts(); 6739 6740 // Handle the trivial case first. 6741 if (Ptr1 == Ptr2) { 6742 return 0; 6743 } 6744 6745 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6746 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6747 6748 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6749 // as in "P" and "gep P, 1". 6750 // Also do this iteratively to handle the the following case: 6751 // Ptr_t1 = GEP Ptr1, c1 6752 // Ptr_t2 = GEP Ptr_t1, c2 6753 // Ptr2 = GEP Ptr_t2, c3 6754 // where we will return c1+c2+c3. 6755 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6756 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6757 // are the same, and return the difference between offsets. 6758 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6759 const Value *Ptr) -> Optional<int64_t> { 6760 const GEPOperator *GEP_T = GEP; 6761 int64_t OffsetVal = 0; 6762 bool HasSameBase = false; 6763 while (GEP_T) { 6764 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6765 if (!Offset) 6766 return None; 6767 OffsetVal += *Offset; 6768 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6769 if (Op0 == Ptr) { 6770 HasSameBase = true; 6771 break; 6772 } 6773 GEP_T = dyn_cast<GEPOperator>(Op0); 6774 } 6775 if (!HasSameBase) 6776 return None; 6777 return OffsetVal; 6778 }; 6779 6780 if (GEP1) { 6781 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6782 if (Offset) 6783 return -*Offset; 6784 } 6785 if (GEP2) { 6786 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6787 if (Offset) 6788 return Offset; 6789 } 6790 6791 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6792 // base. After that base, they may have some number of common (and 6793 // potentially variable) indices. After that they handle some constant 6794 // offset, which determines their offset from each other. At this point, we 6795 // handle no other case. 6796 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6797 return None; 6798 6799 // Skip any common indices and track the GEP types. 6800 unsigned Idx = 1; 6801 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6802 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6803 break; 6804 6805 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6806 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6807 if (!Offset1 || !Offset2) 6808 return None; 6809 return *Offset2 - *Offset1; 6810 } 6811