1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include <algorithm> 43 #include <array> 44 #include <cstring> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 const unsigned MaxDepth = 6; 49 50 // Controls the number of uses of the value searched for possible 51 // dominating comparisons. 52 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 53 cl::Hidden, cl::init(20)); 54 55 // This optimization is known to cause performance regressions is some cases, 56 // keep it under a temporary flag for now. 57 static cl::opt<bool> 58 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 59 cl::Hidden, cl::init(true)); 60 61 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 62 /// 0). For vector types, returns the element type's bitwidth. 63 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 64 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 65 return BitWidth; 66 67 return DL.getPointerTypeSizeInBits(Ty); 68 } 69 70 namespace { 71 // Simplifying using an assume can only be done in a particular control-flow 72 // context (the context instruction provides that context). If an assume and 73 // the context instruction are not in the same block then the DT helps in 74 // figuring out if we can use it. 75 struct Query { 76 const DataLayout &DL; 77 AssumptionCache *AC; 78 const Instruction *CxtI; 79 const DominatorTree *DT; 80 // Unlike the other analyses, this may be a nullptr because not all clients 81 // provide it currently. 82 OptimizationRemarkEmitter *ORE; 83 84 /// Set of assumptions that should be excluded from further queries. 85 /// This is because of the potential for mutual recursion to cause 86 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 87 /// classic case of this is assume(x = y), which will attempt to determine 88 /// bits in x from bits in y, which will attempt to determine bits in y from 89 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 90 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 91 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 92 /// on. 93 std::array<const Value *, MaxDepth> Excluded; 94 unsigned NumExcluded; 95 96 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 97 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 99 100 Query(const Query &Q, const Value *NewExcl) 101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 102 NumExcluded(Q.NumExcluded) { 103 Excluded = Q.Excluded; 104 Excluded[NumExcluded++] = NewExcl; 105 assert(NumExcluded <= Excluded.size()); 106 } 107 108 bool isExcluded(const Value *Value) const { 109 if (NumExcluded == 0) 110 return false; 111 auto End = Excluded.begin() + NumExcluded; 112 return std::find(Excluded.begin(), End, Value) != End; 113 } 114 }; 115 } // end anonymous namespace 116 117 // Given the provided Value and, potentially, a context instruction, return 118 // the preferred context instruction (if any). 119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 120 // If we've been provided with a context instruction, then use that (provided 121 // it has been inserted). 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 // If the value is really an already-inserted instruction, then use that. 126 CxtI = dyn_cast<Instruction>(V); 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 return nullptr; 131 } 132 133 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 134 unsigned Depth, const Query &Q); 135 136 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 137 const DataLayout &DL, unsigned Depth, 138 AssumptionCache *AC, const Instruction *CxtI, 139 const DominatorTree *DT, 140 OptimizationRemarkEmitter *ORE) { 141 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 143 } 144 145 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 146 const DataLayout &DL, 147 AssumptionCache *AC, const Instruction *CxtI, 148 const DominatorTree *DT) { 149 assert(LHS->getType() == RHS->getType() && 150 "LHS and RHS should have the same type"); 151 assert(LHS->getType()->isIntOrIntVectorTy() && 152 "LHS and RHS should be integers"); 153 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 154 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 155 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 157 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 158 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 159 } 160 161 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 162 unsigned Depth, const Query &Q); 163 164 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT) { 168 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 173 const Query &Q); 174 175 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 176 bool OrZero, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT) { 180 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 181 Query(DL, AC, safeCxtI(V, CxtI), DT)); 182 } 183 184 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 185 186 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 190 } 191 192 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 193 unsigned Depth, 194 AssumptionCache *AC, const Instruction *CxtI, 195 const DominatorTree *DT) { 196 bool NonNegative, Negative; 197 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 198 return NonNegative; 199 } 200 201 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 if (auto *CI = dyn_cast<ConstantInt>(V)) 205 return CI->getValue().isStrictlyPositive(); 206 207 // TODO: We'd doing two recursive queries here. We should factor this such 208 // that only a single query is needed. 209 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 210 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 211 } 212 213 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 214 AssumptionCache *AC, const Instruction *CxtI, 215 const DominatorTree *DT) { 216 bool NonNegative, Negative; 217 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 218 return Negative; 219 } 220 221 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 222 223 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 224 const DataLayout &DL, 225 AssumptionCache *AC, const Instruction *CxtI, 226 const DominatorTree *DT) { 227 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 228 safeCxtI(V1, safeCxtI(V2, CxtI)), 229 DT)); 230 } 231 232 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 233 const Query &Q); 234 235 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 236 const DataLayout &DL, 237 unsigned Depth, AssumptionCache *AC, 238 const Instruction *CxtI, const DominatorTree *DT) { 239 return ::MaskedValueIsZero(V, Mask, Depth, 240 Query(DL, AC, safeCxtI(V, CxtI), DT)); 241 } 242 243 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT) { 250 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 251 } 252 253 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 254 bool NSW, 255 APInt &KnownZero, APInt &KnownOne, 256 APInt &KnownZero2, APInt &KnownOne2, 257 unsigned Depth, const Query &Q) { 258 if (!Add) { 259 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 260 // We know that the top bits of C-X are clear if X contains less bits 261 // than C (i.e. no wrap-around can happen). For example, 20-X is 262 // positive if we can prove that X is >= 0 and < 16. 263 if (!CLHS->getValue().isNegative()) { 264 unsigned BitWidth = KnownZero.getBitWidth(); 265 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 266 // NLZ can't be BitWidth with no sign bit 267 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 268 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 269 270 // If all of the MaskV bits are known to be zero, then we know the 271 // output top bits are zero, because we now know that the output is 272 // from [0-C]. 273 if ((KnownZero2 & MaskV) == MaskV) { 274 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 275 // Top bits known zero. 276 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 277 } 278 } 279 } 280 } 281 282 unsigned BitWidth = KnownZero.getBitWidth(); 283 284 // If an initial sequence of bits in the result is not needed, the 285 // corresponding bits in the operands are not needed. 286 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 287 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 288 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 289 290 // Carry in a 1 for a subtract, rather than a 0. 291 APInt CarryIn(BitWidth, 0); 292 if (!Add) { 293 // Sum = LHS + ~RHS + 1 294 std::swap(KnownZero2, KnownOne2); 295 CarryIn.setBit(0); 296 } 297 298 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 299 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 300 301 // Compute known bits of the carry. 302 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 303 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 304 305 // Compute set of known bits (where all three relevant bits are known). 306 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 307 APInt RHSKnown = KnownZero2 | KnownOne2; 308 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 309 APInt Known = LHSKnown & RHSKnown & CarryKnown; 310 311 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 312 "known bits of sum differ"); 313 314 // Compute known bits of the result. 315 KnownZero = ~PossibleSumOne & Known; 316 KnownOne = PossibleSumOne & Known; 317 318 // Are we still trying to solve for the sign bit? 319 if (!Known.isNegative()) { 320 if (NSW) { 321 // Adding two non-negative numbers, or subtracting a negative number from 322 // a non-negative one, can't wrap into negative. 323 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 324 KnownZero |= APInt::getSignBit(BitWidth); 325 // Adding two negative numbers, or subtracting a non-negative number from 326 // a negative one, can't wrap into non-negative. 327 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 328 KnownOne |= APInt::getSignBit(BitWidth); 329 } 330 } 331 } 332 333 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 334 APInt &KnownZero, APInt &KnownOne, 335 APInt &KnownZero2, APInt &KnownOne2, 336 unsigned Depth, const Query &Q) { 337 unsigned BitWidth = KnownZero.getBitWidth(); 338 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 339 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 340 341 bool isKnownNegative = false; 342 bool isKnownNonNegative = false; 343 // If the multiplication is known not to overflow, compute the sign bit. 344 if (NSW) { 345 if (Op0 == Op1) { 346 // The product of a number with itself is non-negative. 347 isKnownNonNegative = true; 348 } else { 349 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 350 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 351 bool isKnownNegativeOp1 = KnownOne.isNegative(); 352 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 353 // The product of two numbers with the same sign is non-negative. 354 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 355 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 356 // The product of a negative number and a non-negative number is either 357 // negative or zero. 358 if (!isKnownNonNegative) 359 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 360 isKnownNonZero(Op0, Depth, Q)) || 361 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 362 isKnownNonZero(Op1, Depth, Q)); 363 } 364 } 365 366 // If low bits are zero in either operand, output low known-0 bits. 367 // Also compute a conservative estimate for high known-0 bits. 368 // More trickiness is possible, but this is sufficient for the 369 // interesting case of alignment computation. 370 KnownOne.clearAllBits(); 371 unsigned TrailZ = KnownZero.countTrailingOnes() + 372 KnownZero2.countTrailingOnes(); 373 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 374 KnownZero2.countLeadingOnes(), 375 BitWidth) - BitWidth; 376 377 TrailZ = std::min(TrailZ, BitWidth); 378 LeadZ = std::min(LeadZ, BitWidth); 379 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 380 APInt::getHighBitsSet(BitWidth, LeadZ); 381 382 // Only make use of no-wrap flags if we failed to compute the sign bit 383 // directly. This matters if the multiplication always overflows, in 384 // which case we prefer to follow the result of the direct computation, 385 // though as the program is invoking undefined behaviour we can choose 386 // whatever we like here. 387 if (isKnownNonNegative && !KnownOne.isNegative()) 388 KnownZero.setBit(BitWidth - 1); 389 else if (isKnownNegative && !KnownZero.isNegative()) 390 KnownOne.setBit(BitWidth - 1); 391 } 392 393 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 394 APInt &KnownZero, 395 APInt &KnownOne) { 396 unsigned BitWidth = KnownZero.getBitWidth(); 397 unsigned NumRanges = Ranges.getNumOperands() / 2; 398 assert(NumRanges >= 1); 399 400 KnownZero.setAllBits(); 401 KnownOne.setAllBits(); 402 403 for (unsigned i = 0; i < NumRanges; ++i) { 404 ConstantInt *Lower = 405 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 406 ConstantInt *Upper = 407 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 408 ConstantRange Range(Lower->getValue(), Upper->getValue()); 409 410 // The first CommonPrefixBits of all values in Range are equal. 411 unsigned CommonPrefixBits = 412 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 413 414 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 415 KnownOne &= Range.getUnsignedMax() & Mask; 416 KnownZero &= ~Range.getUnsignedMax() & Mask; 417 } 418 } 419 420 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 421 SmallVector<const Value *, 16> WorkSet(1, I); 422 SmallPtrSet<const Value *, 32> Visited; 423 SmallPtrSet<const Value *, 16> EphValues; 424 425 // The instruction defining an assumption's condition itself is always 426 // considered ephemeral to that assumption (even if it has other 427 // non-ephemeral users). See r246696's test case for an example. 428 if (is_contained(I->operands(), E)) 429 return true; 430 431 while (!WorkSet.empty()) { 432 const Value *V = WorkSet.pop_back_val(); 433 if (!Visited.insert(V).second) 434 continue; 435 436 // If all uses of this value are ephemeral, then so is this value. 437 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 438 if (V == E) 439 return true; 440 441 EphValues.insert(V); 442 if (const User *U = dyn_cast<User>(V)) 443 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 444 J != JE; ++J) { 445 if (isSafeToSpeculativelyExecute(*J)) 446 WorkSet.push_back(*J); 447 } 448 } 449 } 450 451 return false; 452 } 453 454 // Is this an intrinsic that cannot be speculated but also cannot trap? 455 static bool isAssumeLikeIntrinsic(const Instruction *I) { 456 if (const CallInst *CI = dyn_cast<CallInst>(I)) 457 if (Function *F = CI->getCalledFunction()) 458 switch (F->getIntrinsicID()) { 459 default: break; 460 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 461 case Intrinsic::assume: 462 case Intrinsic::dbg_declare: 463 case Intrinsic::dbg_value: 464 case Intrinsic::invariant_start: 465 case Intrinsic::invariant_end: 466 case Intrinsic::lifetime_start: 467 case Intrinsic::lifetime_end: 468 case Intrinsic::objectsize: 469 case Intrinsic::ptr_annotation: 470 case Intrinsic::var_annotation: 471 return true; 472 } 473 474 return false; 475 } 476 477 bool llvm::isValidAssumeForContext(const Instruction *Inv, 478 const Instruction *CxtI, 479 const DominatorTree *DT) { 480 481 // There are two restrictions on the use of an assume: 482 // 1. The assume must dominate the context (or the control flow must 483 // reach the assume whenever it reaches the context). 484 // 2. The context must not be in the assume's set of ephemeral values 485 // (otherwise we will use the assume to prove that the condition 486 // feeding the assume is trivially true, thus causing the removal of 487 // the assume). 488 489 if (DT) { 490 if (DT->dominates(Inv, CxtI)) 491 return true; 492 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 493 // We don't have a DT, but this trivially dominates. 494 return true; 495 } 496 497 // With or without a DT, the only remaining case we will check is if the 498 // instructions are in the same BB. Give up if that is not the case. 499 if (Inv->getParent() != CxtI->getParent()) 500 return false; 501 502 // If we have a dom tree, then we now know that the assume doens't dominate 503 // the other instruction. If we don't have a dom tree then we can check if 504 // the assume is first in the BB. 505 if (!DT) { 506 // Search forward from the assume until we reach the context (or the end 507 // of the block); the common case is that the assume will come first. 508 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 509 IE = Inv->getParent()->end(); I != IE; ++I) 510 if (&*I == CxtI) 511 return true; 512 } 513 514 // The context comes first, but they're both in the same block. Make sure 515 // there is nothing in between that might interrupt the control flow. 516 for (BasicBlock::const_iterator I = 517 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 518 I != IE; ++I) 519 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 520 return false; 521 522 return !isEphemeralValueOf(Inv, CxtI); 523 } 524 525 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 526 APInt &KnownOne, unsigned Depth, 527 const Query &Q) { 528 // Use of assumptions is context-sensitive. If we don't have a context, we 529 // cannot use them! 530 if (!Q.AC || !Q.CxtI) 531 return; 532 533 unsigned BitWidth = KnownZero.getBitWidth(); 534 535 // Note that the patterns below need to be kept in sync with the code 536 // in AssumptionCache::updateAffectedValues. 537 538 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 539 if (!AssumeVH) 540 continue; 541 CallInst *I = cast<CallInst>(AssumeVH); 542 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 543 "Got assumption for the wrong function!"); 544 if (Q.isExcluded(I)) 545 continue; 546 547 // Warning: This loop can end up being somewhat performance sensetive. 548 // We're running this loop for once for each value queried resulting in a 549 // runtime of ~O(#assumes * #values). 550 551 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 552 "must be an assume intrinsic"); 553 554 Value *Arg = I->getArgOperand(0); 555 556 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 557 assert(BitWidth == 1 && "assume operand is not i1?"); 558 KnownZero.clearAllBits(); 559 KnownOne.setAllBits(); 560 return; 561 } 562 if (match(Arg, m_Not(m_Specific(V))) && 563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 564 assert(BitWidth == 1 && "assume operand is not i1?"); 565 KnownZero.setAllBits(); 566 KnownOne.clearAllBits(); 567 return; 568 } 569 570 // The remaining tests are all recursive, so bail out if we hit the limit. 571 if (Depth == MaxDepth) 572 continue; 573 574 Value *A, *B; 575 auto m_V = m_CombineOr(m_Specific(V), 576 m_CombineOr(m_PtrToInt(m_Specific(V)), 577 m_BitCast(m_Specific(V)))); 578 579 CmpInst::Predicate Pred; 580 ConstantInt *C; 581 // assume(v = a) 582 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 583 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 586 KnownZero |= RHSKnownZero; 587 KnownOne |= RHSKnownOne; 588 // assume(v & b = a) 589 } else if (match(Arg, 590 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 591 Pred == ICmpInst::ICMP_EQ && 592 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 593 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 594 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 595 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 596 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 597 598 // For those bits in the mask that are known to be one, we can propagate 599 // known bits from the RHS to V. 600 KnownZero |= RHSKnownZero & MaskKnownOne; 601 KnownOne |= RHSKnownOne & MaskKnownOne; 602 // assume(~(v & b) = a) 603 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 604 m_Value(A))) && 605 Pred == ICmpInst::ICMP_EQ && 606 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 607 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 608 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 609 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 610 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 611 612 // For those bits in the mask that are known to be one, we can propagate 613 // inverted known bits from the RHS to V. 614 KnownZero |= RHSKnownOne & MaskKnownOne; 615 KnownOne |= RHSKnownZero & MaskKnownOne; 616 // assume(v | b = a) 617 } else if (match(Arg, 618 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 619 Pred == ICmpInst::ICMP_EQ && 620 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 622 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 623 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 624 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 625 626 // For those bits in B that are known to be zero, we can propagate known 627 // bits from the RHS to V. 628 KnownZero |= RHSKnownZero & BKnownZero; 629 KnownOne |= RHSKnownOne & BKnownZero; 630 // assume(~(v | b) = a) 631 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 632 m_Value(A))) && 633 Pred == ICmpInst::ICMP_EQ && 634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 635 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 636 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 637 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 638 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 639 640 // For those bits in B that are known to be zero, we can propagate 641 // inverted known bits from the RHS to V. 642 KnownZero |= RHSKnownOne & BKnownZero; 643 KnownOne |= RHSKnownZero & BKnownZero; 644 // assume(v ^ b = a) 645 } else if (match(Arg, 646 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 647 Pred == ICmpInst::ICMP_EQ && 648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 649 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 650 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 651 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 652 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 653 654 // For those bits in B that are known to be zero, we can propagate known 655 // bits from the RHS to V. For those bits in B that are known to be one, 656 // we can propagate inverted known bits from the RHS to V. 657 KnownZero |= RHSKnownZero & BKnownZero; 658 KnownOne |= RHSKnownOne & BKnownZero; 659 KnownZero |= RHSKnownOne & BKnownOne; 660 KnownOne |= RHSKnownZero & BKnownOne; 661 // assume(~(v ^ b) = a) 662 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 663 m_Value(A))) && 664 Pred == ICmpInst::ICMP_EQ && 665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 666 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 667 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 668 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 669 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 670 671 // For those bits in B that are known to be zero, we can propagate 672 // inverted known bits from the RHS to V. For those bits in B that are 673 // known to be one, we can propagate known bits from the RHS to V. 674 KnownZero |= RHSKnownOne & BKnownZero; 675 KnownOne |= RHSKnownZero & BKnownZero; 676 KnownZero |= RHSKnownZero & BKnownOne; 677 KnownOne |= RHSKnownOne & BKnownOne; 678 // assume(v << c = a) 679 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 680 m_Value(A))) && 681 Pred == ICmpInst::ICMP_EQ && 682 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 683 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 684 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 685 // For those bits in RHS that are known, we can propagate them to known 686 // bits in V shifted to the right by C. 687 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 688 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 689 // assume(~(v << c) = a) 690 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 691 m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 695 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 696 // For those bits in RHS that are known, we can propagate them inverted 697 // to known bits in V shifted to the right by C. 698 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 699 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 700 // assume(v >> c = a) 701 } else if (match(Arg, 702 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 703 m_AShr(m_V, m_ConstantInt(C))), 704 m_Value(A))) && 705 Pred == ICmpInst::ICMP_EQ && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 708 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 709 // For those bits in RHS that are known, we can propagate them to known 710 // bits in V shifted to the right by C. 711 KnownZero |= RHSKnownZero << C->getZExtValue(); 712 KnownOne |= RHSKnownOne << C->getZExtValue(); 713 // assume(~(v >> c) = a) 714 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 715 m_LShr(m_V, m_ConstantInt(C)), 716 m_AShr(m_V, m_ConstantInt(C)))), 717 m_Value(A))) && 718 Pred == ICmpInst::ICMP_EQ && 719 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 720 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 721 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 722 // For those bits in RHS that are known, we can propagate them inverted 723 // to known bits in V shifted to the right by C. 724 KnownZero |= RHSKnownOne << C->getZExtValue(); 725 KnownOne |= RHSKnownZero << C->getZExtValue(); 726 // assume(v >=_s c) where c is non-negative 727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 728 Pred == ICmpInst::ICMP_SGE && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 732 733 if (RHSKnownZero.isNegative()) { 734 // We know that the sign bit is zero. 735 KnownZero |= APInt::getSignBit(BitWidth); 736 } 737 // assume(v >_s c) where c is at least -1. 738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 739 Pred == ICmpInst::ICMP_SGT && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 743 744 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 745 // We know that the sign bit is zero. 746 KnownZero |= APInt::getSignBit(BitWidth); 747 } 748 // assume(v <=_s c) where c is negative 749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 750 Pred == ICmpInst::ICMP_SLE && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 754 755 if (RHSKnownOne.isNegative()) { 756 // We know that the sign bit is one. 757 KnownOne |= APInt::getSignBit(BitWidth); 758 } 759 // assume(v <_s c) where c is non-positive 760 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 761 Pred == ICmpInst::ICMP_SLT && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 764 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 765 766 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 767 // We know that the sign bit is one. 768 KnownOne |= APInt::getSignBit(BitWidth); 769 } 770 // assume(v <=_u c) 771 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 772 Pred == ICmpInst::ICMP_ULE && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 775 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 776 777 // Whatever high bits in c are zero are known to be zero. 778 KnownZero |= 779 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 780 // assume(v <_u c) 781 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 782 Pred == ICmpInst::ICMP_ULT && 783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 784 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 785 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 786 787 // Whatever high bits in c are zero are known to be zero (if c is a power 788 // of 2, then one more). 789 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 790 KnownZero |= 791 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 792 else 793 KnownZero |= 794 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 795 } 796 } 797 798 // If assumptions conflict with each other or previous known bits, then we 799 // have a logical fallacy. It's possible that the assumption is not reachable, 800 // so this isn't a real bug. On the other hand, the program may have undefined 801 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 802 // clear out the known bits, try to warn the user, and hope for the best. 803 if ((KnownZero & KnownOne) != 0) { 804 KnownZero.clearAllBits(); 805 KnownOne.clearAllBits(); 806 807 if (Q.ORE) { 808 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 809 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 810 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 811 "have undefined behavior, or compiler may have " 812 "internal error."); 813 } 814 } 815 } 816 817 // Compute known bits from a shift operator, including those with a 818 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 819 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 820 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 821 // functors that, given the known-zero or known-one bits respectively, and a 822 // shift amount, compute the implied known-zero or known-one bits of the shift 823 // operator's result respectively for that shift amount. The results from calling 824 // KZF and KOF are conservatively combined for all permitted shift amounts. 825 static void computeKnownBitsFromShiftOperator( 826 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 827 APInt &KnownOne2, unsigned Depth, const Query &Q, 828 function_ref<APInt(const APInt &, unsigned)> KZF, 829 function_ref<APInt(const APInt &, unsigned)> KOF) { 830 unsigned BitWidth = KnownZero.getBitWidth(); 831 832 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 833 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 834 835 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 836 KnownZero = KZF(KnownZero, ShiftAmt); 837 KnownOne = KOF(KnownOne, ShiftAmt); 838 // If there is conflict between KnownZero and KnownOne, this must be an 839 // overflowing left shift, so the shift result is undefined. Clear KnownZero 840 // and KnownOne bits so that other code could propagate this undef. 841 if ((KnownZero & KnownOne) != 0) { 842 KnownZero.clearAllBits(); 843 KnownOne.clearAllBits(); 844 } 845 846 return; 847 } 848 849 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 850 851 // Note: We cannot use KnownZero.getLimitedValue() here, because if 852 // BitWidth > 64 and any upper bits are known, we'll end up returning the 853 // limit value (which implies all bits are known). 854 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 855 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 856 857 // It would be more-clearly correct to use the two temporaries for this 858 // calculation. Reusing the APInts here to prevent unnecessary allocations. 859 KnownZero.clearAllBits(); 860 KnownOne.clearAllBits(); 861 862 // If we know the shifter operand is nonzero, we can sometimes infer more 863 // known bits. However this is expensive to compute, so be lazy about it and 864 // only compute it when absolutely necessary. 865 Optional<bool> ShifterOperandIsNonZero; 866 867 // Early exit if we can't constrain any well-defined shift amount. 868 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 869 ShifterOperandIsNonZero = 870 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 871 if (!*ShifterOperandIsNonZero) 872 return; 873 } 874 875 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 876 877 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 878 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 879 // Combine the shifted known input bits only for those shift amounts 880 // compatible with its known constraints. 881 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 882 continue; 883 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 884 continue; 885 // If we know the shifter is nonzero, we may be able to infer more known 886 // bits. This check is sunk down as far as possible to avoid the expensive 887 // call to isKnownNonZero if the cheaper checks above fail. 888 if (ShiftAmt == 0) { 889 if (!ShifterOperandIsNonZero.hasValue()) 890 ShifterOperandIsNonZero = 891 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 892 if (*ShifterOperandIsNonZero) 893 continue; 894 } 895 896 KnownZero &= KZF(KnownZero2, ShiftAmt); 897 KnownOne &= KOF(KnownOne2, ShiftAmt); 898 } 899 900 // If there are no compatible shift amounts, then we've proven that the shift 901 // amount must be >= the BitWidth, and the result is undefined. We could 902 // return anything we'd like, but we need to make sure the sets of known bits 903 // stay disjoint (it should be better for some other code to actually 904 // propagate the undef than to pick a value here using known bits). 905 if ((KnownZero & KnownOne) != 0) { 906 KnownZero.clearAllBits(); 907 KnownOne.clearAllBits(); 908 } 909 } 910 911 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 912 APInt &KnownOne, unsigned Depth, 913 const Query &Q) { 914 unsigned BitWidth = KnownZero.getBitWidth(); 915 916 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 917 switch (I->getOpcode()) { 918 default: break; 919 case Instruction::Load: 920 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 921 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 922 break; 923 case Instruction::And: { 924 // If either the LHS or the RHS are Zero, the result is zero. 925 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 926 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 927 928 // Output known-1 bits are only known if set in both the LHS & RHS. 929 KnownOne &= KnownOne2; 930 // Output known-0 are known to be clear if zero in either the LHS | RHS. 931 KnownZero |= KnownZero2; 932 933 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 934 // here we handle the more general case of adding any odd number by 935 // matching the form add(x, add(x, y)) where y is odd. 936 // TODO: This could be generalized to clearing any bit set in y where the 937 // following bit is known to be unset in y. 938 Value *Y = nullptr; 939 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 940 m_Value(Y))) || 941 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 942 m_Value(Y)))) { 943 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 944 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 945 if (KnownOne3.countTrailingOnes() > 0) 946 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 947 } 948 break; 949 } 950 case Instruction::Or: { 951 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 952 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 953 954 // Output known-0 bits are only known if clear in both the LHS & RHS. 955 KnownZero &= KnownZero2; 956 // Output known-1 are known to be set if set in either the LHS | RHS. 957 KnownOne |= KnownOne2; 958 break; 959 } 960 case Instruction::Xor: { 961 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 962 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 963 964 // Output known-0 bits are known if clear or set in both the LHS & RHS. 965 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 966 // Output known-1 are known to be set if set in only one of the LHS, RHS. 967 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 968 KnownZero = KnownZeroOut; 969 break; 970 } 971 case Instruction::Mul: { 972 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 973 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 974 KnownOne, KnownZero2, KnownOne2, Depth, Q); 975 break; 976 } 977 case Instruction::UDiv: { 978 // For the purposes of computing leading zeros we can conservatively 979 // treat a udiv as a logical right shift by the power of 2 known to 980 // be less than the denominator. 981 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 982 unsigned LeadZ = KnownZero2.countLeadingOnes(); 983 984 KnownOne2.clearAllBits(); 985 KnownZero2.clearAllBits(); 986 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 987 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 988 if (RHSUnknownLeadingOnes != BitWidth) 989 LeadZ = std::min(BitWidth, 990 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 991 992 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 993 break; 994 } 995 case Instruction::Select: { 996 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 997 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 998 999 const Value *LHS; 1000 const Value *RHS; 1001 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1002 if (SelectPatternResult::isMinOrMax(SPF)) { 1003 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 1004 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 1005 } else { 1006 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 1007 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1008 } 1009 1010 unsigned MaxHighOnes = 0; 1011 unsigned MaxHighZeros = 0; 1012 if (SPF == SPF_SMAX) { 1013 // If both sides are negative, the result is negative. 1014 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 1015 // We can derive a lower bound on the result by taking the max of the 1016 // leading one bits. 1017 MaxHighOnes = 1018 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1019 // If either side is non-negative, the result is non-negative. 1020 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 1021 MaxHighZeros = 1; 1022 } else if (SPF == SPF_SMIN) { 1023 // If both sides are non-negative, the result is non-negative. 1024 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 1025 // We can derive an upper bound on the result by taking the max of the 1026 // leading zero bits. 1027 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 1028 KnownZero2.countLeadingOnes()); 1029 // If either side is negative, the result is negative. 1030 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 1031 MaxHighOnes = 1; 1032 } else if (SPF == SPF_UMAX) { 1033 // We can derive a lower bound on the result by taking the max of the 1034 // leading one bits. 1035 MaxHighOnes = 1036 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1037 } else if (SPF == SPF_UMIN) { 1038 // We can derive an upper bound on the result by taking the max of the 1039 // leading zero bits. 1040 MaxHighZeros = 1041 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1042 } 1043 1044 // Only known if known in both the LHS and RHS. 1045 KnownOne &= KnownOne2; 1046 KnownZero &= KnownZero2; 1047 if (MaxHighOnes > 0) 1048 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1049 if (MaxHighZeros > 0) 1050 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1051 break; 1052 } 1053 case Instruction::FPTrunc: 1054 case Instruction::FPExt: 1055 case Instruction::FPToUI: 1056 case Instruction::FPToSI: 1057 case Instruction::SIToFP: 1058 case Instruction::UIToFP: 1059 break; // Can't work with floating point. 1060 case Instruction::PtrToInt: 1061 case Instruction::IntToPtr: 1062 // Fall through and handle them the same as zext/trunc. 1063 LLVM_FALLTHROUGH; 1064 case Instruction::ZExt: 1065 case Instruction::Trunc: { 1066 Type *SrcTy = I->getOperand(0)->getType(); 1067 1068 unsigned SrcBitWidth; 1069 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1070 // which fall through here. 1071 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1072 1073 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1074 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1075 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1076 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1077 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1078 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1079 // Any top bits are known to be zero. 1080 if (BitWidth > SrcBitWidth) 1081 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1082 break; 1083 } 1084 case Instruction::BitCast: { 1085 Type *SrcTy = I->getOperand(0)->getType(); 1086 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1087 // TODO: For now, not handling conversions like: 1088 // (bitcast i64 %x to <2 x i32>) 1089 !I->getType()->isVectorTy()) { 1090 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1091 break; 1092 } 1093 break; 1094 } 1095 case Instruction::SExt: { 1096 // Compute the bits in the result that are not present in the input. 1097 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1098 1099 KnownZero = KnownZero.trunc(SrcBitWidth); 1100 KnownOne = KnownOne.trunc(SrcBitWidth); 1101 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1102 KnownZero = KnownZero.zext(BitWidth); 1103 KnownOne = KnownOne.zext(BitWidth); 1104 1105 // If the sign bit of the input is known set or clear, then we know the 1106 // top bits of the result. 1107 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1108 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1109 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1110 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1111 break; 1112 } 1113 case Instruction::Shl: { 1114 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1115 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1116 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1117 APInt KZResult = 1118 (KnownZero << ShiftAmt) | 1119 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1120 // If this shift has "nsw" keyword, then the result is either a poison 1121 // value or has the same sign bit as the first operand. 1122 if (NSW && KnownZero.isNegative()) 1123 KZResult.setBit(BitWidth - 1); 1124 return KZResult; 1125 }; 1126 1127 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1128 APInt KOResult = KnownOne << ShiftAmt; 1129 if (NSW && KnownOne.isNegative()) 1130 KOResult.setBit(BitWidth - 1); 1131 return KOResult; 1132 }; 1133 1134 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1135 KnownZero2, KnownOne2, Depth, Q, KZF, 1136 KOF); 1137 break; 1138 } 1139 case Instruction::LShr: { 1140 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1141 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1142 return APIntOps::lshr(KnownZero, ShiftAmt) | 1143 // High bits known zero. 1144 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1145 }; 1146 1147 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1148 return APIntOps::lshr(KnownOne, ShiftAmt); 1149 }; 1150 1151 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1152 KnownZero2, KnownOne2, Depth, Q, KZF, 1153 KOF); 1154 break; 1155 } 1156 case Instruction::AShr: { 1157 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1158 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1159 return APIntOps::ashr(KnownZero, ShiftAmt); 1160 }; 1161 1162 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1163 return APIntOps::ashr(KnownOne, ShiftAmt); 1164 }; 1165 1166 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1167 KnownZero2, KnownOne2, Depth, Q, KZF, 1168 KOF); 1169 break; 1170 } 1171 case Instruction::Sub: { 1172 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1173 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1174 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1175 Q); 1176 break; 1177 } 1178 case Instruction::Add: { 1179 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1180 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1181 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1182 Q); 1183 break; 1184 } 1185 case Instruction::SRem: 1186 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1187 APInt RA = Rem->getValue().abs(); 1188 if (RA.isPowerOf2()) { 1189 APInt LowBits = RA - 1; 1190 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1191 Q); 1192 1193 // The low bits of the first operand are unchanged by the srem. 1194 KnownZero = KnownZero2 & LowBits; 1195 KnownOne = KnownOne2 & LowBits; 1196 1197 // If the first operand is non-negative or has all low bits zero, then 1198 // the upper bits are all zero. 1199 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1200 KnownZero |= ~LowBits; 1201 1202 // If the first operand is negative and not all low bits are zero, then 1203 // the upper bits are all one. 1204 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1205 KnownOne |= ~LowBits; 1206 1207 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1208 } 1209 } 1210 1211 // The sign bit is the LHS's sign bit, except when the result of the 1212 // remainder is zero. 1213 if (KnownZero.isNonNegative()) { 1214 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1215 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1216 Q); 1217 // If it's known zero, our sign bit is also zero. 1218 if (LHSKnownZero.isNegative()) 1219 KnownZero.setBit(BitWidth - 1); 1220 } 1221 1222 break; 1223 case Instruction::URem: { 1224 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1225 const APInt &RA = Rem->getValue(); 1226 if (RA.isPowerOf2()) { 1227 APInt LowBits = (RA - 1); 1228 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1229 KnownZero |= ~LowBits; 1230 KnownOne &= LowBits; 1231 break; 1232 } 1233 } 1234 1235 // Since the result is less than or equal to either operand, any leading 1236 // zero bits in either operand must also exist in the result. 1237 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1238 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1239 1240 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1241 KnownZero2.countLeadingOnes()); 1242 KnownOne.clearAllBits(); 1243 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1244 break; 1245 } 1246 1247 case Instruction::Alloca: { 1248 const AllocaInst *AI = cast<AllocaInst>(I); 1249 unsigned Align = AI->getAlignment(); 1250 if (Align == 0) 1251 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1252 1253 if (Align > 0) 1254 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1255 break; 1256 } 1257 case Instruction::GetElementPtr: { 1258 // Analyze all of the subscripts of this getelementptr instruction 1259 // to determine if we can prove known low zero bits. 1260 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1261 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1262 Q); 1263 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1264 1265 gep_type_iterator GTI = gep_type_begin(I); 1266 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1267 Value *Index = I->getOperand(i); 1268 if (StructType *STy = GTI.getStructTypeOrNull()) { 1269 // Handle struct member offset arithmetic. 1270 1271 // Handle case when index is vector zeroinitializer 1272 Constant *CIndex = cast<Constant>(Index); 1273 if (CIndex->isZeroValue()) 1274 continue; 1275 1276 if (CIndex->getType()->isVectorTy()) 1277 Index = CIndex->getSplatValue(); 1278 1279 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1280 const StructLayout *SL = Q.DL.getStructLayout(STy); 1281 uint64_t Offset = SL->getElementOffset(Idx); 1282 TrailZ = std::min<unsigned>(TrailZ, 1283 countTrailingZeros(Offset)); 1284 } else { 1285 // Handle array index arithmetic. 1286 Type *IndexedTy = GTI.getIndexedType(); 1287 if (!IndexedTy->isSized()) { 1288 TrailZ = 0; 1289 break; 1290 } 1291 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1292 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1293 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1294 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1295 TrailZ = std::min(TrailZ, 1296 unsigned(countTrailingZeros(TypeSize) + 1297 LocalKnownZero.countTrailingOnes())); 1298 } 1299 } 1300 1301 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1302 break; 1303 } 1304 case Instruction::PHI: { 1305 const PHINode *P = cast<PHINode>(I); 1306 // Handle the case of a simple two-predecessor recurrence PHI. 1307 // There's a lot more that could theoretically be done here, but 1308 // this is sufficient to catch some interesting cases. 1309 if (P->getNumIncomingValues() == 2) { 1310 for (unsigned i = 0; i != 2; ++i) { 1311 Value *L = P->getIncomingValue(i); 1312 Value *R = P->getIncomingValue(!i); 1313 Operator *LU = dyn_cast<Operator>(L); 1314 if (!LU) 1315 continue; 1316 unsigned Opcode = LU->getOpcode(); 1317 // Check for operations that have the property that if 1318 // both their operands have low zero bits, the result 1319 // will have low zero bits. 1320 if (Opcode == Instruction::Add || 1321 Opcode == Instruction::Sub || 1322 Opcode == Instruction::And || 1323 Opcode == Instruction::Or || 1324 Opcode == Instruction::Mul) { 1325 Value *LL = LU->getOperand(0); 1326 Value *LR = LU->getOperand(1); 1327 // Find a recurrence. 1328 if (LL == I) 1329 L = LR; 1330 else if (LR == I) 1331 L = LL; 1332 else 1333 break; 1334 // Ok, we have a PHI of the form L op= R. Check for low 1335 // zero bits. 1336 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1337 1338 // We need to take the minimum number of known bits 1339 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1340 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1341 1342 KnownZero = APInt::getLowBitsSet( 1343 BitWidth, std::min(KnownZero2.countTrailingOnes(), 1344 KnownZero3.countTrailingOnes())); 1345 1346 if (DontImproveNonNegativePhiBits) 1347 break; 1348 1349 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1350 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1351 // If initial value of recurrence is nonnegative, and we are adding 1352 // a nonnegative number with nsw, the result can only be nonnegative 1353 // or poison value regardless of the number of times we execute the 1354 // add in phi recurrence. If initial value is negative and we are 1355 // adding a negative number with nsw, the result can only be 1356 // negative or poison value. Similar arguments apply to sub and mul. 1357 // 1358 // (add non-negative, non-negative) --> non-negative 1359 // (add negative, negative) --> negative 1360 if (Opcode == Instruction::Add) { 1361 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1362 KnownZero.setBit(BitWidth - 1); 1363 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1364 KnownOne.setBit(BitWidth - 1); 1365 } 1366 1367 // (sub nsw non-negative, negative) --> non-negative 1368 // (sub nsw negative, non-negative) --> negative 1369 else if (Opcode == Instruction::Sub && LL == I) { 1370 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1371 KnownZero.setBit(BitWidth - 1); 1372 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1373 KnownOne.setBit(BitWidth - 1); 1374 } 1375 1376 // (mul nsw non-negative, non-negative) --> non-negative 1377 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1378 KnownZero3.isNegative()) 1379 KnownZero.setBit(BitWidth - 1); 1380 } 1381 1382 break; 1383 } 1384 } 1385 } 1386 1387 // Unreachable blocks may have zero-operand PHI nodes. 1388 if (P->getNumIncomingValues() == 0) 1389 break; 1390 1391 // Otherwise take the unions of the known bit sets of the operands, 1392 // taking conservative care to avoid excessive recursion. 1393 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1394 // Skip if every incoming value references to ourself. 1395 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1396 break; 1397 1398 KnownZero = APInt::getAllOnesValue(BitWidth); 1399 KnownOne = APInt::getAllOnesValue(BitWidth); 1400 for (Value *IncValue : P->incoming_values()) { 1401 // Skip direct self references. 1402 if (IncValue == P) continue; 1403 1404 KnownZero2 = APInt(BitWidth, 0); 1405 KnownOne2 = APInt(BitWidth, 0); 1406 // Recurse, but cap the recursion to one level, because we don't 1407 // want to waste time spinning around in loops. 1408 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1409 KnownZero &= KnownZero2; 1410 KnownOne &= KnownOne2; 1411 // If all bits have been ruled out, there's no need to check 1412 // more operands. 1413 if (!KnownZero && !KnownOne) 1414 break; 1415 } 1416 } 1417 break; 1418 } 1419 case Instruction::Call: 1420 case Instruction::Invoke: 1421 // If range metadata is attached to this call, set known bits from that, 1422 // and then intersect with known bits based on other properties of the 1423 // function. 1424 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1425 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1426 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1427 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1428 KnownZero |= KnownZero2; 1429 KnownOne |= KnownOne2; 1430 } 1431 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1432 switch (II->getIntrinsicID()) { 1433 default: break; 1434 case Intrinsic::bitreverse: 1435 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1436 KnownZero = KnownZero2.reverseBits(); 1437 KnownOne = KnownOne2.reverseBits(); 1438 break; 1439 case Intrinsic::bswap: 1440 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1441 KnownZero |= KnownZero2.byteSwap(); 1442 KnownOne |= KnownOne2.byteSwap(); 1443 break; 1444 case Intrinsic::ctlz: 1445 case Intrinsic::cttz: { 1446 unsigned LowBits = Log2_32(BitWidth)+1; 1447 // If this call is undefined for 0, the result will be less than 2^n. 1448 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1449 LowBits -= 1; 1450 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1451 break; 1452 } 1453 case Intrinsic::ctpop: { 1454 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1455 // We can bound the space the count needs. Also, bits known to be zero 1456 // can't contribute to the population. 1457 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1458 unsigned LeadingZeros = 1459 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1460 assert(LeadingZeros <= BitWidth); 1461 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1462 KnownOne &= ~KnownZero; 1463 // TODO: we could bound KnownOne using the lower bound on the number 1464 // of bits which might be set provided by popcnt KnownOne2. 1465 break; 1466 } 1467 case Intrinsic::x86_sse42_crc32_64_64: 1468 KnownZero |= APInt::getHighBitsSet(64, 32); 1469 break; 1470 } 1471 } 1472 break; 1473 case Instruction::ExtractElement: 1474 // Look through extract element. At the moment we keep this simple and skip 1475 // tracking the specific element. But at least we might find information 1476 // valid for all elements of the vector (for example if vector is sign 1477 // extended, shifted, etc). 1478 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1479 break; 1480 case Instruction::ExtractValue: 1481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1482 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1483 if (EVI->getNumIndices() != 1) break; 1484 if (EVI->getIndices()[0] == 0) { 1485 switch (II->getIntrinsicID()) { 1486 default: break; 1487 case Intrinsic::uadd_with_overflow: 1488 case Intrinsic::sadd_with_overflow: 1489 computeKnownBitsAddSub(true, II->getArgOperand(0), 1490 II->getArgOperand(1), false, KnownZero, 1491 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1492 break; 1493 case Intrinsic::usub_with_overflow: 1494 case Intrinsic::ssub_with_overflow: 1495 computeKnownBitsAddSub(false, II->getArgOperand(0), 1496 II->getArgOperand(1), false, KnownZero, 1497 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1498 break; 1499 case Intrinsic::umul_with_overflow: 1500 case Intrinsic::smul_with_overflow: 1501 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1502 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1503 Q); 1504 break; 1505 } 1506 } 1507 } 1508 } 1509 } 1510 1511 /// Determine which bits of V are known to be either zero or one and return 1512 /// them in the KnownZero/KnownOne bit sets. 1513 /// 1514 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1515 /// we cannot optimize based on the assumption that it is zero without changing 1516 /// it to be an explicit zero. If we don't change it to zero, other code could 1517 /// optimized based on the contradictory assumption that it is non-zero. 1518 /// Because instcombine aggressively folds operations with undef args anyway, 1519 /// this won't lose us code quality. 1520 /// 1521 /// This function is defined on values with integer type, values with pointer 1522 /// type, and vectors of integers. In the case 1523 /// where V is a vector, known zero, and known one values are the 1524 /// same width as the vector element, and the bit is set only if it is true 1525 /// for all of the elements in the vector. 1526 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1527 unsigned Depth, const Query &Q) { 1528 assert(V && "No Value?"); 1529 assert(Depth <= MaxDepth && "Limit Search Depth"); 1530 unsigned BitWidth = KnownZero.getBitWidth(); 1531 1532 assert((V->getType()->isIntOrIntVectorTy() || 1533 V->getType()->getScalarType()->isPointerTy()) && 1534 "Not integer or pointer type!"); 1535 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1536 (!V->getType()->isIntOrIntVectorTy() || 1537 V->getType()->getScalarSizeInBits() == BitWidth) && 1538 KnownZero.getBitWidth() == BitWidth && 1539 KnownOne.getBitWidth() == BitWidth && 1540 "V, KnownOne and KnownZero should have same BitWidth"); 1541 1542 const APInt *C; 1543 if (match(V, m_APInt(C))) { 1544 // We know all of the bits for a scalar constant or a splat vector constant! 1545 KnownOne = *C; 1546 KnownZero = ~KnownOne; 1547 return; 1548 } 1549 // Null and aggregate-zero are all-zeros. 1550 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1551 KnownOne.clearAllBits(); 1552 KnownZero = APInt::getAllOnesValue(BitWidth); 1553 return; 1554 } 1555 // Handle a constant vector by taking the intersection of the known bits of 1556 // each element. 1557 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1558 // We know that CDS must be a vector of integers. Take the intersection of 1559 // each element. 1560 KnownZero.setAllBits(); KnownOne.setAllBits(); 1561 APInt Elt(KnownZero.getBitWidth(), 0); 1562 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1563 Elt = CDS->getElementAsInteger(i); 1564 KnownZero &= ~Elt; 1565 KnownOne &= Elt; 1566 } 1567 return; 1568 } 1569 1570 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1571 // We know that CV must be a vector of integers. Take the intersection of 1572 // each element. 1573 KnownZero.setAllBits(); KnownOne.setAllBits(); 1574 APInt Elt(KnownZero.getBitWidth(), 0); 1575 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1576 Constant *Element = CV->getAggregateElement(i); 1577 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1578 if (!ElementCI) { 1579 KnownZero.clearAllBits(); 1580 KnownOne.clearAllBits(); 1581 return; 1582 } 1583 Elt = ElementCI->getValue(); 1584 KnownZero &= ~Elt; 1585 KnownOne &= Elt; 1586 } 1587 return; 1588 } 1589 1590 // Start out not knowing anything. 1591 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1592 1593 // We can't imply anything about undefs. 1594 if (isa<UndefValue>(V)) 1595 return; 1596 1597 // There's no point in looking through other users of ConstantData for 1598 // assumptions. Confirm that we've handled them all. 1599 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1600 1601 // Limit search depth. 1602 // All recursive calls that increase depth must come after this. 1603 if (Depth == MaxDepth) 1604 return; 1605 1606 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1607 // the bits of its aliasee. 1608 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1609 if (!GA->isInterposable()) 1610 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1611 return; 1612 } 1613 1614 if (const Operator *I = dyn_cast<Operator>(V)) 1615 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1616 1617 // Aligned pointers have trailing zeros - refine KnownZero set 1618 if (V->getType()->isPointerTy()) { 1619 unsigned Align = V->getPointerAlignment(Q.DL); 1620 if (Align) 1621 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1622 } 1623 1624 // computeKnownBitsFromAssume strictly refines KnownZero and 1625 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1626 1627 // Check whether a nearby assume intrinsic can determine some known bits. 1628 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1629 1630 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1631 } 1632 1633 /// Determine whether the sign bit is known to be zero or one. 1634 /// Convenience wrapper around computeKnownBits. 1635 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1636 unsigned Depth, const Query &Q) { 1637 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1638 if (!BitWidth) { 1639 KnownZero = false; 1640 KnownOne = false; 1641 return; 1642 } 1643 APInt ZeroBits(BitWidth, 0); 1644 APInt OneBits(BitWidth, 0); 1645 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1646 KnownOne = OneBits[BitWidth - 1]; 1647 KnownZero = ZeroBits[BitWidth - 1]; 1648 } 1649 1650 /// Return true if the given value is known to have exactly one 1651 /// bit set when defined. For vectors return true if every element is known to 1652 /// be a power of two when defined. Supports values with integer or pointer 1653 /// types and vectors of integers. 1654 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1655 const Query &Q) { 1656 if (const Constant *C = dyn_cast<Constant>(V)) { 1657 if (C->isNullValue()) 1658 return OrZero; 1659 1660 const APInt *ConstIntOrConstSplatInt; 1661 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1662 return ConstIntOrConstSplatInt->isPowerOf2(); 1663 } 1664 1665 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1666 // it is shifted off the end then the result is undefined. 1667 if (match(V, m_Shl(m_One(), m_Value()))) 1668 return true; 1669 1670 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1671 // bottom. If it is shifted off the bottom then the result is undefined. 1672 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1673 return true; 1674 1675 // The remaining tests are all recursive, so bail out if we hit the limit. 1676 if (Depth++ == MaxDepth) 1677 return false; 1678 1679 Value *X = nullptr, *Y = nullptr; 1680 // A shift left or a logical shift right of a power of two is a power of two 1681 // or zero. 1682 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1683 match(V, m_LShr(m_Value(X), m_Value())))) 1684 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1685 1686 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1687 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1688 1689 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1690 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1691 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1692 1693 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1694 // A power of two and'd with anything is a power of two or zero. 1695 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1696 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1697 return true; 1698 // X & (-X) is always a power of two or zero. 1699 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1700 return true; 1701 return false; 1702 } 1703 1704 // Adding a power-of-two or zero to the same power-of-two or zero yields 1705 // either the original power-of-two, a larger power-of-two or zero. 1706 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1707 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1708 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1709 if (match(X, m_And(m_Specific(Y), m_Value())) || 1710 match(X, m_And(m_Value(), m_Specific(Y)))) 1711 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1712 return true; 1713 if (match(Y, m_And(m_Specific(X), m_Value())) || 1714 match(Y, m_And(m_Value(), m_Specific(X)))) 1715 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1716 return true; 1717 1718 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1719 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1720 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1721 1722 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1723 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1724 // If i8 V is a power of two or zero: 1725 // ZeroBits: 1 1 1 0 1 1 1 1 1726 // ~ZeroBits: 0 0 0 1 0 0 0 0 1727 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1728 // If OrZero isn't set, we cannot give back a zero result. 1729 // Make sure either the LHS or RHS has a bit set. 1730 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1731 return true; 1732 } 1733 } 1734 1735 // An exact divide or right shift can only shift off zero bits, so the result 1736 // is a power of two only if the first operand is a power of two and not 1737 // copying a sign bit (sdiv int_min, 2). 1738 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1739 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1740 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1741 Depth, Q); 1742 } 1743 1744 return false; 1745 } 1746 1747 /// \brief Test whether a GEP's result is known to be non-null. 1748 /// 1749 /// Uses properties inherent in a GEP to try to determine whether it is known 1750 /// to be non-null. 1751 /// 1752 /// Currently this routine does not support vector GEPs. 1753 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1754 const Query &Q) { 1755 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1756 return false; 1757 1758 // FIXME: Support vector-GEPs. 1759 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1760 1761 // If the base pointer is non-null, we cannot walk to a null address with an 1762 // inbounds GEP in address space zero. 1763 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1764 return true; 1765 1766 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1767 // If so, then the GEP cannot produce a null pointer, as doing so would 1768 // inherently violate the inbounds contract within address space zero. 1769 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1770 GTI != GTE; ++GTI) { 1771 // Struct types are easy -- they must always be indexed by a constant. 1772 if (StructType *STy = GTI.getStructTypeOrNull()) { 1773 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1774 unsigned ElementIdx = OpC->getZExtValue(); 1775 const StructLayout *SL = Q.DL.getStructLayout(STy); 1776 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1777 if (ElementOffset > 0) 1778 return true; 1779 continue; 1780 } 1781 1782 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1783 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1784 continue; 1785 1786 // Fast path the constant operand case both for efficiency and so we don't 1787 // increment Depth when just zipping down an all-constant GEP. 1788 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1789 if (!OpC->isZero()) 1790 return true; 1791 continue; 1792 } 1793 1794 // We post-increment Depth here because while isKnownNonZero increments it 1795 // as well, when we pop back up that increment won't persist. We don't want 1796 // to recurse 10k times just because we have 10k GEP operands. We don't 1797 // bail completely out because we want to handle constant GEPs regardless 1798 // of depth. 1799 if (Depth++ >= MaxDepth) 1800 continue; 1801 1802 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1803 return true; 1804 } 1805 1806 return false; 1807 } 1808 1809 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1810 /// ensure that the value it's attached to is never Value? 'RangeType' is 1811 /// is the type of the value described by the range. 1812 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1813 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1814 assert(NumRanges >= 1); 1815 for (unsigned i = 0; i < NumRanges; ++i) { 1816 ConstantInt *Lower = 1817 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1818 ConstantInt *Upper = 1819 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1820 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1821 if (Range.contains(Value)) 1822 return false; 1823 } 1824 return true; 1825 } 1826 1827 /// Return true if the given value is known to be non-zero when defined. 1828 /// For vectors return true if every element is known to be non-zero when 1829 /// defined. Supports values with integer or pointer type and vectors of 1830 /// integers. 1831 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1832 if (auto *C = dyn_cast<Constant>(V)) { 1833 if (C->isNullValue()) 1834 return false; 1835 if (isa<ConstantInt>(C)) 1836 // Must be non-zero due to null test above. 1837 return true; 1838 1839 // For constant vectors, check that all elements are undefined or known 1840 // non-zero to determine that the whole vector is known non-zero. 1841 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1842 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1843 Constant *Elt = C->getAggregateElement(i); 1844 if (!Elt || Elt->isNullValue()) 1845 return false; 1846 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1847 return false; 1848 } 1849 return true; 1850 } 1851 1852 return false; 1853 } 1854 1855 if (auto *I = dyn_cast<Instruction>(V)) { 1856 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1857 // If the possible ranges don't contain zero, then the value is 1858 // definitely non-zero. 1859 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1860 const APInt ZeroValue(Ty->getBitWidth(), 0); 1861 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1862 return true; 1863 } 1864 } 1865 } 1866 1867 // The remaining tests are all recursive, so bail out if we hit the limit. 1868 if (Depth++ >= MaxDepth) 1869 return false; 1870 1871 // Check for pointer simplifications. 1872 if (V->getType()->isPointerTy()) { 1873 if (isKnownNonNull(V)) 1874 return true; 1875 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1876 if (isGEPKnownNonNull(GEP, Depth, Q)) 1877 return true; 1878 } 1879 1880 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1881 1882 // X | Y != 0 if X != 0 or Y != 0. 1883 Value *X = nullptr, *Y = nullptr; 1884 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1885 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1886 1887 // ext X != 0 if X != 0. 1888 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1889 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1890 1891 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1892 // if the lowest bit is shifted off the end. 1893 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1894 // shl nuw can't remove any non-zero bits. 1895 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1896 if (BO->hasNoUnsignedWrap()) 1897 return isKnownNonZero(X, Depth, Q); 1898 1899 APInt KnownZero(BitWidth, 0); 1900 APInt KnownOne(BitWidth, 0); 1901 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1902 if (KnownOne[0]) 1903 return true; 1904 } 1905 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1906 // defined if the sign bit is shifted off the end. 1907 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1908 // shr exact can only shift out zero bits. 1909 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1910 if (BO->isExact()) 1911 return isKnownNonZero(X, Depth, Q); 1912 1913 bool XKnownNonNegative, XKnownNegative; 1914 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1915 if (XKnownNegative) 1916 return true; 1917 1918 // If the shifter operand is a constant, and all of the bits shifted 1919 // out are known to be zero, and X is known non-zero then at least one 1920 // non-zero bit must remain. 1921 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1922 APInt KnownZero(BitWidth, 0); 1923 APInt KnownOne(BitWidth, 0); 1924 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1925 1926 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1927 // Is there a known one in the portion not shifted out? 1928 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1929 return true; 1930 // Are all the bits to be shifted out known zero? 1931 if (KnownZero.countTrailingOnes() >= ShiftVal) 1932 return isKnownNonZero(X, Depth, Q); 1933 } 1934 } 1935 // div exact can only produce a zero if the dividend is zero. 1936 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1937 return isKnownNonZero(X, Depth, Q); 1938 } 1939 // X + Y. 1940 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1941 bool XKnownNonNegative, XKnownNegative; 1942 bool YKnownNonNegative, YKnownNegative; 1943 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1944 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1945 1946 // If X and Y are both non-negative (as signed values) then their sum is not 1947 // zero unless both X and Y are zero. 1948 if (XKnownNonNegative && YKnownNonNegative) 1949 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1950 return true; 1951 1952 // If X and Y are both negative (as signed values) then their sum is not 1953 // zero unless both X and Y equal INT_MIN. 1954 if (BitWidth && XKnownNegative && YKnownNegative) { 1955 APInt KnownZero(BitWidth, 0); 1956 APInt KnownOne(BitWidth, 0); 1957 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1958 // The sign bit of X is set. If some other bit is set then X is not equal 1959 // to INT_MIN. 1960 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1961 if ((KnownOne & Mask) != 0) 1962 return true; 1963 // The sign bit of Y is set. If some other bit is set then Y is not equal 1964 // to INT_MIN. 1965 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1966 if ((KnownOne & Mask) != 0) 1967 return true; 1968 } 1969 1970 // The sum of a non-negative number and a power of two is not zero. 1971 if (XKnownNonNegative && 1972 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1973 return true; 1974 if (YKnownNonNegative && 1975 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1976 return true; 1977 } 1978 // X * Y. 1979 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1980 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1981 // If X and Y are non-zero then so is X * Y as long as the multiplication 1982 // does not overflow. 1983 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1984 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1985 return true; 1986 } 1987 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1988 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1989 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1990 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1991 return true; 1992 } 1993 // PHI 1994 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1995 // Try and detect a recurrence that monotonically increases from a 1996 // starting value, as these are common as induction variables. 1997 if (PN->getNumIncomingValues() == 2) { 1998 Value *Start = PN->getIncomingValue(0); 1999 Value *Induction = PN->getIncomingValue(1); 2000 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2001 std::swap(Start, Induction); 2002 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2003 if (!C->isZero() && !C->isNegative()) { 2004 ConstantInt *X; 2005 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2006 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2007 !X->isNegative()) 2008 return true; 2009 } 2010 } 2011 } 2012 // Check if all incoming values are non-zero constant. 2013 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 2014 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 2015 }); 2016 if (AllNonZeroConstants) 2017 return true; 2018 } 2019 2020 if (!BitWidth) return false; 2021 APInt KnownZero(BitWidth, 0); 2022 APInt KnownOne(BitWidth, 0); 2023 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2024 return KnownOne != 0; 2025 } 2026 2027 /// Return true if V2 == V1 + X, where X is known non-zero. 2028 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2029 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2030 if (!BO || BO->getOpcode() != Instruction::Add) 2031 return false; 2032 Value *Op = nullptr; 2033 if (V2 == BO->getOperand(0)) 2034 Op = BO->getOperand(1); 2035 else if (V2 == BO->getOperand(1)) 2036 Op = BO->getOperand(0); 2037 else 2038 return false; 2039 return isKnownNonZero(Op, 0, Q); 2040 } 2041 2042 /// Return true if it is known that V1 != V2. 2043 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2044 if (V1->getType()->isVectorTy() || V1 == V2) 2045 return false; 2046 if (V1->getType() != V2->getType()) 2047 // We can't look through casts yet. 2048 return false; 2049 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2050 return true; 2051 2052 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2053 // Are any known bits in V1 contradictory to known bits in V2? If V1 2054 // has a known zero where V2 has a known one, they must not be equal. 2055 auto BitWidth = Ty->getBitWidth(); 2056 APInt KnownZero1(BitWidth, 0); 2057 APInt KnownOne1(BitWidth, 0); 2058 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2059 APInt KnownZero2(BitWidth, 0); 2060 APInt KnownOne2(BitWidth, 0); 2061 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2062 2063 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2064 if (OppositeBits.getBoolValue()) 2065 return true; 2066 } 2067 return false; 2068 } 2069 2070 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2071 /// simplify operations downstream. Mask is known to be zero for bits that V 2072 /// cannot have. 2073 /// 2074 /// This function is defined on values with integer type, values with pointer 2075 /// type, and vectors of integers. In the case 2076 /// where V is a vector, the mask, known zero, and known one values are the 2077 /// same width as the vector element, and the bit is set only if it is true 2078 /// for all of the elements in the vector. 2079 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2080 const Query &Q) { 2081 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2082 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2083 return (KnownZero & Mask) == Mask; 2084 } 2085 2086 /// For vector constants, loop over the elements and find the constant with the 2087 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2088 /// or if any element was not analyzed; otherwise, return the count for the 2089 /// element with the minimum number of sign bits. 2090 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2091 unsigned TyBits) { 2092 const auto *CV = dyn_cast<Constant>(V); 2093 if (!CV || !CV->getType()->isVectorTy()) 2094 return 0; 2095 2096 unsigned MinSignBits = TyBits; 2097 unsigned NumElts = CV->getType()->getVectorNumElements(); 2098 for (unsigned i = 0; i != NumElts; ++i) { 2099 // If we find a non-ConstantInt, bail out. 2100 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2101 if (!Elt) 2102 return 0; 2103 2104 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2105 APInt EltVal = Elt->getValue(); 2106 if (EltVal.isNegative()) 2107 EltVal = ~EltVal; 2108 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2109 } 2110 2111 return MinSignBits; 2112 } 2113 2114 /// Return the number of times the sign bit of the register is replicated into 2115 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2116 /// (itself), but other cases can give us information. For example, immediately 2117 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2118 /// other, so we return 3. For vectors, return the number of sign bits for the 2119 /// vector element with the mininum number of known sign bits. 2120 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2121 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2122 unsigned Tmp, Tmp2; 2123 unsigned FirstAnswer = 1; 2124 2125 // Note that ConstantInt is handled by the general computeKnownBits case 2126 // below. 2127 2128 if (Depth == MaxDepth) 2129 return 1; // Limit search depth. 2130 2131 const Operator *U = dyn_cast<Operator>(V); 2132 switch (Operator::getOpcode(V)) { 2133 default: break; 2134 case Instruction::SExt: 2135 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2136 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2137 2138 case Instruction::SDiv: { 2139 const APInt *Denominator; 2140 // sdiv X, C -> adds log(C) sign bits. 2141 if (match(U->getOperand(1), m_APInt(Denominator))) { 2142 2143 // Ignore non-positive denominator. 2144 if (!Denominator->isStrictlyPositive()) 2145 break; 2146 2147 // Calculate the incoming numerator bits. 2148 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2149 2150 // Add floor(log(C)) bits to the numerator bits. 2151 return std::min(TyBits, NumBits + Denominator->logBase2()); 2152 } 2153 break; 2154 } 2155 2156 case Instruction::SRem: { 2157 const APInt *Denominator; 2158 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2159 // positive constant. This let us put a lower bound on the number of sign 2160 // bits. 2161 if (match(U->getOperand(1), m_APInt(Denominator))) { 2162 2163 // Ignore non-positive denominator. 2164 if (!Denominator->isStrictlyPositive()) 2165 break; 2166 2167 // Calculate the incoming numerator bits. SRem by a positive constant 2168 // can't lower the number of sign bits. 2169 unsigned NumrBits = 2170 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2171 2172 // Calculate the leading sign bit constraints by examining the 2173 // denominator. Given that the denominator is positive, there are two 2174 // cases: 2175 // 2176 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2177 // (1 << ceilLogBase2(C)). 2178 // 2179 // 2. the numerator is negative. Then the result range is (-C,0] and 2180 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2181 // 2182 // Thus a lower bound on the number of sign bits is `TyBits - 2183 // ceilLogBase2(C)`. 2184 2185 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2186 return std::max(NumrBits, ResBits); 2187 } 2188 break; 2189 } 2190 2191 case Instruction::AShr: { 2192 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2193 // ashr X, C -> adds C sign bits. Vectors too. 2194 const APInt *ShAmt; 2195 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2196 Tmp += ShAmt->getZExtValue(); 2197 if (Tmp > TyBits) Tmp = TyBits; 2198 } 2199 return Tmp; 2200 } 2201 case Instruction::Shl: { 2202 const APInt *ShAmt; 2203 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2204 // shl destroys sign bits. 2205 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2206 Tmp2 = ShAmt->getZExtValue(); 2207 if (Tmp2 >= TyBits || // Bad shift. 2208 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2209 return Tmp - Tmp2; 2210 } 2211 break; 2212 } 2213 case Instruction::And: 2214 case Instruction::Or: 2215 case Instruction::Xor: // NOT is handled here. 2216 // Logical binary ops preserve the number of sign bits at the worst. 2217 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2218 if (Tmp != 1) { 2219 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2220 FirstAnswer = std::min(Tmp, Tmp2); 2221 // We computed what we know about the sign bits as our first 2222 // answer. Now proceed to the generic code that uses 2223 // computeKnownBits, and pick whichever answer is better. 2224 } 2225 break; 2226 2227 case Instruction::Select: 2228 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2229 if (Tmp == 1) return 1; // Early out. 2230 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2231 return std::min(Tmp, Tmp2); 2232 2233 case Instruction::Add: 2234 // Add can have at most one carry bit. Thus we know that the output 2235 // is, at worst, one more bit than the inputs. 2236 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2237 if (Tmp == 1) return 1; // Early out. 2238 2239 // Special case decrementing a value (ADD X, -1): 2240 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2241 if (CRHS->isAllOnesValue()) { 2242 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2243 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2244 2245 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2246 // sign bits set. 2247 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2248 return TyBits; 2249 2250 // If we are subtracting one from a positive number, there is no carry 2251 // out of the result. 2252 if (KnownZero.isNegative()) 2253 return Tmp; 2254 } 2255 2256 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2257 if (Tmp2 == 1) return 1; 2258 return std::min(Tmp, Tmp2)-1; 2259 2260 case Instruction::Sub: 2261 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2262 if (Tmp2 == 1) return 1; 2263 2264 // Handle NEG. 2265 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2266 if (CLHS->isNullValue()) { 2267 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2268 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2269 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2270 // sign bits set. 2271 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2272 return TyBits; 2273 2274 // If the input is known to be positive (the sign bit is known clear), 2275 // the output of the NEG has the same number of sign bits as the input. 2276 if (KnownZero.isNegative()) 2277 return Tmp2; 2278 2279 // Otherwise, we treat this like a SUB. 2280 } 2281 2282 // Sub can have at most one carry bit. Thus we know that the output 2283 // is, at worst, one more bit than the inputs. 2284 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2285 if (Tmp == 1) return 1; // Early out. 2286 return std::min(Tmp, Tmp2)-1; 2287 2288 case Instruction::PHI: { 2289 const PHINode *PN = cast<PHINode>(U); 2290 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2291 // Don't analyze large in-degree PHIs. 2292 if (NumIncomingValues > 4) break; 2293 // Unreachable blocks may have zero-operand PHI nodes. 2294 if (NumIncomingValues == 0) break; 2295 2296 // Take the minimum of all incoming values. This can't infinitely loop 2297 // because of our depth threshold. 2298 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2299 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2300 if (Tmp == 1) return Tmp; 2301 Tmp = std::min( 2302 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2303 } 2304 return Tmp; 2305 } 2306 2307 case Instruction::Trunc: 2308 // FIXME: it's tricky to do anything useful for this, but it is an important 2309 // case for targets like X86. 2310 break; 2311 2312 case Instruction::ExtractElement: 2313 // Look through extract element. At the moment we keep this simple and skip 2314 // tracking the specific element. But at least we might find information 2315 // valid for all elements of the vector (for example if vector is sign 2316 // extended, shifted, etc). 2317 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2318 } 2319 2320 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2321 // use this information. 2322 2323 // If we can examine all elements of a vector constant successfully, we're 2324 // done (we can't do any better than that). If not, keep trying. 2325 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2326 return VecSignBits; 2327 2328 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2329 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2330 2331 // If we know that the sign bit is either zero or one, determine the number of 2332 // identical bits in the top of the input value. 2333 if (KnownZero.isNegative()) 2334 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2335 2336 if (KnownOne.isNegative()) 2337 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2338 2339 // computeKnownBits gave us no extra information about the top bits. 2340 return FirstAnswer; 2341 } 2342 2343 /// This function computes the integer multiple of Base that equals V. 2344 /// If successful, it returns true and returns the multiple in 2345 /// Multiple. If unsuccessful, it returns false. It looks 2346 /// through SExt instructions only if LookThroughSExt is true. 2347 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2348 bool LookThroughSExt, unsigned Depth) { 2349 const unsigned MaxDepth = 6; 2350 2351 assert(V && "No Value?"); 2352 assert(Depth <= MaxDepth && "Limit Search Depth"); 2353 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2354 2355 Type *T = V->getType(); 2356 2357 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2358 2359 if (Base == 0) 2360 return false; 2361 2362 if (Base == 1) { 2363 Multiple = V; 2364 return true; 2365 } 2366 2367 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2368 Constant *BaseVal = ConstantInt::get(T, Base); 2369 if (CO && CO == BaseVal) { 2370 // Multiple is 1. 2371 Multiple = ConstantInt::get(T, 1); 2372 return true; 2373 } 2374 2375 if (CI && CI->getZExtValue() % Base == 0) { 2376 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2377 return true; 2378 } 2379 2380 if (Depth == MaxDepth) return false; // Limit search depth. 2381 2382 Operator *I = dyn_cast<Operator>(V); 2383 if (!I) return false; 2384 2385 switch (I->getOpcode()) { 2386 default: break; 2387 case Instruction::SExt: 2388 if (!LookThroughSExt) return false; 2389 // otherwise fall through to ZExt 2390 case Instruction::ZExt: 2391 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2392 LookThroughSExt, Depth+1); 2393 case Instruction::Shl: 2394 case Instruction::Mul: { 2395 Value *Op0 = I->getOperand(0); 2396 Value *Op1 = I->getOperand(1); 2397 2398 if (I->getOpcode() == Instruction::Shl) { 2399 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2400 if (!Op1CI) return false; 2401 // Turn Op0 << Op1 into Op0 * 2^Op1 2402 APInt Op1Int = Op1CI->getValue(); 2403 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2404 APInt API(Op1Int.getBitWidth(), 0); 2405 API.setBit(BitToSet); 2406 Op1 = ConstantInt::get(V->getContext(), API); 2407 } 2408 2409 Value *Mul0 = nullptr; 2410 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2411 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2412 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2413 if (Op1C->getType()->getPrimitiveSizeInBits() < 2414 MulC->getType()->getPrimitiveSizeInBits()) 2415 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2416 if (Op1C->getType()->getPrimitiveSizeInBits() > 2417 MulC->getType()->getPrimitiveSizeInBits()) 2418 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2419 2420 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2421 Multiple = ConstantExpr::getMul(MulC, Op1C); 2422 return true; 2423 } 2424 2425 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2426 if (Mul0CI->getValue() == 1) { 2427 // V == Base * Op1, so return Op1 2428 Multiple = Op1; 2429 return true; 2430 } 2431 } 2432 2433 Value *Mul1 = nullptr; 2434 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2435 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2436 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2437 if (Op0C->getType()->getPrimitiveSizeInBits() < 2438 MulC->getType()->getPrimitiveSizeInBits()) 2439 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2440 if (Op0C->getType()->getPrimitiveSizeInBits() > 2441 MulC->getType()->getPrimitiveSizeInBits()) 2442 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2443 2444 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2445 Multiple = ConstantExpr::getMul(MulC, Op0C); 2446 return true; 2447 } 2448 2449 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2450 if (Mul1CI->getValue() == 1) { 2451 // V == Base * Op0, so return Op0 2452 Multiple = Op0; 2453 return true; 2454 } 2455 } 2456 } 2457 } 2458 2459 // We could not determine if V is a multiple of Base. 2460 return false; 2461 } 2462 2463 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2464 const TargetLibraryInfo *TLI) { 2465 const Function *F = ICS.getCalledFunction(); 2466 if (!F) 2467 return Intrinsic::not_intrinsic; 2468 2469 if (F->isIntrinsic()) 2470 return F->getIntrinsicID(); 2471 2472 if (!TLI) 2473 return Intrinsic::not_intrinsic; 2474 2475 LibFunc Func; 2476 // We're going to make assumptions on the semantics of the functions, check 2477 // that the target knows that it's available in this environment and it does 2478 // not have local linkage. 2479 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2480 return Intrinsic::not_intrinsic; 2481 2482 if (!ICS.onlyReadsMemory()) 2483 return Intrinsic::not_intrinsic; 2484 2485 // Otherwise check if we have a call to a function that can be turned into a 2486 // vector intrinsic. 2487 switch (Func) { 2488 default: 2489 break; 2490 case LibFunc_sin: 2491 case LibFunc_sinf: 2492 case LibFunc_sinl: 2493 return Intrinsic::sin; 2494 case LibFunc_cos: 2495 case LibFunc_cosf: 2496 case LibFunc_cosl: 2497 return Intrinsic::cos; 2498 case LibFunc_exp: 2499 case LibFunc_expf: 2500 case LibFunc_expl: 2501 return Intrinsic::exp; 2502 case LibFunc_exp2: 2503 case LibFunc_exp2f: 2504 case LibFunc_exp2l: 2505 return Intrinsic::exp2; 2506 case LibFunc_log: 2507 case LibFunc_logf: 2508 case LibFunc_logl: 2509 return Intrinsic::log; 2510 case LibFunc_log10: 2511 case LibFunc_log10f: 2512 case LibFunc_log10l: 2513 return Intrinsic::log10; 2514 case LibFunc_log2: 2515 case LibFunc_log2f: 2516 case LibFunc_log2l: 2517 return Intrinsic::log2; 2518 case LibFunc_fabs: 2519 case LibFunc_fabsf: 2520 case LibFunc_fabsl: 2521 return Intrinsic::fabs; 2522 case LibFunc_fmin: 2523 case LibFunc_fminf: 2524 case LibFunc_fminl: 2525 return Intrinsic::minnum; 2526 case LibFunc_fmax: 2527 case LibFunc_fmaxf: 2528 case LibFunc_fmaxl: 2529 return Intrinsic::maxnum; 2530 case LibFunc_copysign: 2531 case LibFunc_copysignf: 2532 case LibFunc_copysignl: 2533 return Intrinsic::copysign; 2534 case LibFunc_floor: 2535 case LibFunc_floorf: 2536 case LibFunc_floorl: 2537 return Intrinsic::floor; 2538 case LibFunc_ceil: 2539 case LibFunc_ceilf: 2540 case LibFunc_ceill: 2541 return Intrinsic::ceil; 2542 case LibFunc_trunc: 2543 case LibFunc_truncf: 2544 case LibFunc_truncl: 2545 return Intrinsic::trunc; 2546 case LibFunc_rint: 2547 case LibFunc_rintf: 2548 case LibFunc_rintl: 2549 return Intrinsic::rint; 2550 case LibFunc_nearbyint: 2551 case LibFunc_nearbyintf: 2552 case LibFunc_nearbyintl: 2553 return Intrinsic::nearbyint; 2554 case LibFunc_round: 2555 case LibFunc_roundf: 2556 case LibFunc_roundl: 2557 return Intrinsic::round; 2558 case LibFunc_pow: 2559 case LibFunc_powf: 2560 case LibFunc_powl: 2561 return Intrinsic::pow; 2562 case LibFunc_sqrt: 2563 case LibFunc_sqrtf: 2564 case LibFunc_sqrtl: 2565 if (ICS->hasNoNaNs()) 2566 return Intrinsic::sqrt; 2567 return Intrinsic::not_intrinsic; 2568 } 2569 2570 return Intrinsic::not_intrinsic; 2571 } 2572 2573 /// Return true if we can prove that the specified FP value is never equal to 2574 /// -0.0. 2575 /// 2576 /// NOTE: this function will need to be revisited when we support non-default 2577 /// rounding modes! 2578 /// 2579 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2580 unsigned Depth) { 2581 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2582 return !CFP->getValueAPF().isNegZero(); 2583 2584 if (Depth == MaxDepth) 2585 return false; // Limit search depth. 2586 2587 const Operator *I = dyn_cast<Operator>(V); 2588 if (!I) return false; 2589 2590 // Check if the nsz fast-math flag is set 2591 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2592 if (FPO->hasNoSignedZeros()) 2593 return true; 2594 2595 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2596 if (I->getOpcode() == Instruction::FAdd) 2597 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2598 if (CFP->isNullValue()) 2599 return true; 2600 2601 // sitofp and uitofp turn into +0.0 for zero. 2602 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2603 return true; 2604 2605 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2606 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2607 switch (IID) { 2608 default: 2609 break; 2610 // sqrt(-0.0) = -0.0, no other negative results are possible. 2611 case Intrinsic::sqrt: 2612 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2613 // fabs(x) != -0.0 2614 case Intrinsic::fabs: 2615 return true; 2616 } 2617 } 2618 2619 return false; 2620 } 2621 2622 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2623 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2624 /// bit despite comparing equal. 2625 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2626 const TargetLibraryInfo *TLI, 2627 bool SignBitOnly, 2628 unsigned Depth) { 2629 // TODO: This function does not do the right thing when SignBitOnly is true 2630 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2631 // which flips the sign bits of NaNs. See 2632 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2633 2634 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2635 return !CFP->getValueAPF().isNegative() || 2636 (!SignBitOnly && CFP->getValueAPF().isZero()); 2637 } 2638 2639 if (Depth == MaxDepth) 2640 return false; // Limit search depth. 2641 2642 const Operator *I = dyn_cast<Operator>(V); 2643 if (!I) 2644 return false; 2645 2646 switch (I->getOpcode()) { 2647 default: 2648 break; 2649 // Unsigned integers are always nonnegative. 2650 case Instruction::UIToFP: 2651 return true; 2652 case Instruction::FMul: 2653 // x*x is always non-negative or a NaN. 2654 if (I->getOperand(0) == I->getOperand(1) && 2655 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2656 return true; 2657 2658 LLVM_FALLTHROUGH; 2659 case Instruction::FAdd: 2660 case Instruction::FDiv: 2661 case Instruction::FRem: 2662 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2663 Depth + 1) && 2664 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2665 Depth + 1); 2666 case Instruction::Select: 2667 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2668 Depth + 1) && 2669 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2670 Depth + 1); 2671 case Instruction::FPExt: 2672 case Instruction::FPTrunc: 2673 // Widening/narrowing never change sign. 2674 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2675 Depth + 1); 2676 case Instruction::Call: 2677 const auto *CI = cast<CallInst>(I); 2678 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2679 switch (IID) { 2680 default: 2681 break; 2682 case Intrinsic::maxnum: 2683 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2684 Depth + 1) || 2685 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2686 Depth + 1); 2687 case Intrinsic::minnum: 2688 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2689 Depth + 1) && 2690 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2691 Depth + 1); 2692 case Intrinsic::exp: 2693 case Intrinsic::exp2: 2694 case Intrinsic::fabs: 2695 return true; 2696 2697 case Intrinsic::sqrt: 2698 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2699 if (!SignBitOnly) 2700 return true; 2701 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2702 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2703 2704 case Intrinsic::powi: 2705 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2706 // powi(x,n) is non-negative if n is even. 2707 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2708 return true; 2709 } 2710 // TODO: This is not correct. Given that exp is an integer, here are the 2711 // ways that pow can return a negative value: 2712 // 2713 // pow(x, exp) --> negative if exp is odd and x is negative. 2714 // pow(-0, exp) --> -inf if exp is negative odd. 2715 // pow(-0, exp) --> -0 if exp is positive odd. 2716 // pow(-inf, exp) --> -0 if exp is negative odd. 2717 // pow(-inf, exp) --> -inf if exp is positive odd. 2718 // 2719 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2720 // but we must return false if x == -0. Unfortunately we do not currently 2721 // have a way of expressing this constraint. See details in 2722 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2723 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2724 Depth + 1); 2725 2726 case Intrinsic::fma: 2727 case Intrinsic::fmuladd: 2728 // x*x+y is non-negative if y is non-negative. 2729 return I->getOperand(0) == I->getOperand(1) && 2730 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2731 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2732 Depth + 1); 2733 } 2734 break; 2735 } 2736 return false; 2737 } 2738 2739 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2740 const TargetLibraryInfo *TLI) { 2741 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2742 } 2743 2744 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2745 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2746 } 2747 2748 /// If the specified value can be set by repeating the same byte in memory, 2749 /// return the i8 value that it is represented with. This is 2750 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2751 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2752 /// byte store (e.g. i16 0x1234), return null. 2753 Value *llvm::isBytewiseValue(Value *V) { 2754 // All byte-wide stores are splatable, even of arbitrary variables. 2755 if (V->getType()->isIntegerTy(8)) return V; 2756 2757 // Handle 'null' ConstantArrayZero etc. 2758 if (Constant *C = dyn_cast<Constant>(V)) 2759 if (C->isNullValue()) 2760 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2761 2762 // Constant float and double values can be handled as integer values if the 2763 // corresponding integer value is "byteable". An important case is 0.0. 2764 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2765 if (CFP->getType()->isFloatTy()) 2766 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2767 if (CFP->getType()->isDoubleTy()) 2768 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2769 // Don't handle long double formats, which have strange constraints. 2770 } 2771 2772 // We can handle constant integers that are multiple of 8 bits. 2773 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2774 if (CI->getBitWidth() % 8 == 0) { 2775 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2776 2777 if (!CI->getValue().isSplat(8)) 2778 return nullptr; 2779 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2780 } 2781 } 2782 2783 // A ConstantDataArray/Vector is splatable if all its members are equal and 2784 // also splatable. 2785 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2786 Value *Elt = CA->getElementAsConstant(0); 2787 Value *Val = isBytewiseValue(Elt); 2788 if (!Val) 2789 return nullptr; 2790 2791 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2792 if (CA->getElementAsConstant(I) != Elt) 2793 return nullptr; 2794 2795 return Val; 2796 } 2797 2798 // Conceptually, we could handle things like: 2799 // %a = zext i8 %X to i16 2800 // %b = shl i16 %a, 8 2801 // %c = or i16 %a, %b 2802 // but until there is an example that actually needs this, it doesn't seem 2803 // worth worrying about. 2804 return nullptr; 2805 } 2806 2807 2808 // This is the recursive version of BuildSubAggregate. It takes a few different 2809 // arguments. Idxs is the index within the nested struct From that we are 2810 // looking at now (which is of type IndexedType). IdxSkip is the number of 2811 // indices from Idxs that should be left out when inserting into the resulting 2812 // struct. To is the result struct built so far, new insertvalue instructions 2813 // build on that. 2814 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2815 SmallVectorImpl<unsigned> &Idxs, 2816 unsigned IdxSkip, 2817 Instruction *InsertBefore) { 2818 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2819 if (STy) { 2820 // Save the original To argument so we can modify it 2821 Value *OrigTo = To; 2822 // General case, the type indexed by Idxs is a struct 2823 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2824 // Process each struct element recursively 2825 Idxs.push_back(i); 2826 Value *PrevTo = To; 2827 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2828 InsertBefore); 2829 Idxs.pop_back(); 2830 if (!To) { 2831 // Couldn't find any inserted value for this index? Cleanup 2832 while (PrevTo != OrigTo) { 2833 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2834 PrevTo = Del->getAggregateOperand(); 2835 Del->eraseFromParent(); 2836 } 2837 // Stop processing elements 2838 break; 2839 } 2840 } 2841 // If we successfully found a value for each of our subaggregates 2842 if (To) 2843 return To; 2844 } 2845 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2846 // the struct's elements had a value that was inserted directly. In the latter 2847 // case, perhaps we can't determine each of the subelements individually, but 2848 // we might be able to find the complete struct somewhere. 2849 2850 // Find the value that is at that particular spot 2851 Value *V = FindInsertedValue(From, Idxs); 2852 2853 if (!V) 2854 return nullptr; 2855 2856 // Insert the value in the new (sub) aggregrate 2857 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2858 "tmp", InsertBefore); 2859 } 2860 2861 // This helper takes a nested struct and extracts a part of it (which is again a 2862 // struct) into a new value. For example, given the struct: 2863 // { a, { b, { c, d }, e } } 2864 // and the indices "1, 1" this returns 2865 // { c, d }. 2866 // 2867 // It does this by inserting an insertvalue for each element in the resulting 2868 // struct, as opposed to just inserting a single struct. This will only work if 2869 // each of the elements of the substruct are known (ie, inserted into From by an 2870 // insertvalue instruction somewhere). 2871 // 2872 // All inserted insertvalue instructions are inserted before InsertBefore 2873 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2874 Instruction *InsertBefore) { 2875 assert(InsertBefore && "Must have someplace to insert!"); 2876 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2877 idx_range); 2878 Value *To = UndefValue::get(IndexedType); 2879 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2880 unsigned IdxSkip = Idxs.size(); 2881 2882 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2883 } 2884 2885 /// Given an aggregrate and an sequence of indices, see if 2886 /// the scalar value indexed is already around as a register, for example if it 2887 /// were inserted directly into the aggregrate. 2888 /// 2889 /// If InsertBefore is not null, this function will duplicate (modified) 2890 /// insertvalues when a part of a nested struct is extracted. 2891 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2892 Instruction *InsertBefore) { 2893 // Nothing to index? Just return V then (this is useful at the end of our 2894 // recursion). 2895 if (idx_range.empty()) 2896 return V; 2897 // We have indices, so V should have an indexable type. 2898 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2899 "Not looking at a struct or array?"); 2900 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2901 "Invalid indices for type?"); 2902 2903 if (Constant *C = dyn_cast<Constant>(V)) { 2904 C = C->getAggregateElement(idx_range[0]); 2905 if (!C) return nullptr; 2906 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2907 } 2908 2909 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2910 // Loop the indices for the insertvalue instruction in parallel with the 2911 // requested indices 2912 const unsigned *req_idx = idx_range.begin(); 2913 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2914 i != e; ++i, ++req_idx) { 2915 if (req_idx == idx_range.end()) { 2916 // We can't handle this without inserting insertvalues 2917 if (!InsertBefore) 2918 return nullptr; 2919 2920 // The requested index identifies a part of a nested aggregate. Handle 2921 // this specially. For example, 2922 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2923 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2924 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2925 // This can be changed into 2926 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2927 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2928 // which allows the unused 0,0 element from the nested struct to be 2929 // removed. 2930 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2931 InsertBefore); 2932 } 2933 2934 // This insert value inserts something else than what we are looking for. 2935 // See if the (aggregate) value inserted into has the value we are 2936 // looking for, then. 2937 if (*req_idx != *i) 2938 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2939 InsertBefore); 2940 } 2941 // If we end up here, the indices of the insertvalue match with those 2942 // requested (though possibly only partially). Now we recursively look at 2943 // the inserted value, passing any remaining indices. 2944 return FindInsertedValue(I->getInsertedValueOperand(), 2945 makeArrayRef(req_idx, idx_range.end()), 2946 InsertBefore); 2947 } 2948 2949 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2950 // If we're extracting a value from an aggregate that was extracted from 2951 // something else, we can extract from that something else directly instead. 2952 // However, we will need to chain I's indices with the requested indices. 2953 2954 // Calculate the number of indices required 2955 unsigned size = I->getNumIndices() + idx_range.size(); 2956 // Allocate some space to put the new indices in 2957 SmallVector<unsigned, 5> Idxs; 2958 Idxs.reserve(size); 2959 // Add indices from the extract value instruction 2960 Idxs.append(I->idx_begin(), I->idx_end()); 2961 2962 // Add requested indices 2963 Idxs.append(idx_range.begin(), idx_range.end()); 2964 2965 assert(Idxs.size() == size 2966 && "Number of indices added not correct?"); 2967 2968 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2969 } 2970 // Otherwise, we don't know (such as, extracting from a function return value 2971 // or load instruction) 2972 return nullptr; 2973 } 2974 2975 /// Analyze the specified pointer to see if it can be expressed as a base 2976 /// pointer plus a constant offset. Return the base and offset to the caller. 2977 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2978 const DataLayout &DL) { 2979 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2980 APInt ByteOffset(BitWidth, 0); 2981 2982 // We walk up the defs but use a visited set to handle unreachable code. In 2983 // that case, we stop after accumulating the cycle once (not that it 2984 // matters). 2985 SmallPtrSet<Value *, 16> Visited; 2986 while (Visited.insert(Ptr).second) { 2987 if (Ptr->getType()->isVectorTy()) 2988 break; 2989 2990 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2991 // If one of the values we have visited is an addrspacecast, then 2992 // the pointer type of this GEP may be different from the type 2993 // of the Ptr parameter which was passed to this function. This 2994 // means when we construct GEPOffset, we need to use the size 2995 // of GEP's pointer type rather than the size of the original 2996 // pointer type. 2997 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2998 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2999 break; 3000 3001 ByteOffset += GEPOffset.getSExtValue(); 3002 3003 Ptr = GEP->getPointerOperand(); 3004 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3005 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3006 Ptr = cast<Operator>(Ptr)->getOperand(0); 3007 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3008 if (GA->isInterposable()) 3009 break; 3010 Ptr = GA->getAliasee(); 3011 } else { 3012 break; 3013 } 3014 } 3015 Offset = ByteOffset.getSExtValue(); 3016 return Ptr; 3017 } 3018 3019 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 3020 // Make sure the GEP has exactly three arguments. 3021 if (GEP->getNumOperands() != 3) 3022 return false; 3023 3024 // Make sure the index-ee is a pointer to array of i8. 3025 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3026 if (!AT || !AT->getElementType()->isIntegerTy(8)) 3027 return false; 3028 3029 // Check to make sure that the first operand of the GEP is an integer and 3030 // has value 0 so that we are sure we're indexing into the initializer. 3031 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3032 if (!FirstIdx || !FirstIdx->isZero()) 3033 return false; 3034 3035 return true; 3036 } 3037 3038 /// This function computes the length of a null-terminated C string pointed to 3039 /// by V. If successful, it returns true and returns the string in Str. 3040 /// If unsuccessful, it returns false. 3041 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3042 uint64_t Offset, bool TrimAtNul) { 3043 assert(V); 3044 3045 // Look through bitcast instructions and geps. 3046 V = V->stripPointerCasts(); 3047 3048 // If the value is a GEP instruction or constant expression, treat it as an 3049 // offset. 3050 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3051 // The GEP operator should be based on a pointer to string constant, and is 3052 // indexing into the string constant. 3053 if (!isGEPBasedOnPointerToString(GEP)) 3054 return false; 3055 3056 // If the second index isn't a ConstantInt, then this is a variable index 3057 // into the array. If this occurs, we can't say anything meaningful about 3058 // the string. 3059 uint64_t StartIdx = 0; 3060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3061 StartIdx = CI->getZExtValue(); 3062 else 3063 return false; 3064 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3065 TrimAtNul); 3066 } 3067 3068 // The GEP instruction, constant or instruction, must reference a global 3069 // variable that is a constant and is initialized. The referenced constant 3070 // initializer is the array that we'll use for optimization. 3071 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3072 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3073 return false; 3074 3075 // Handle the all-zeros case. 3076 if (GV->getInitializer()->isNullValue()) { 3077 // This is a degenerate case. The initializer is constant zero so the 3078 // length of the string must be zero. 3079 Str = ""; 3080 return true; 3081 } 3082 3083 // This must be a ConstantDataArray. 3084 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3085 if (!Array || !Array->isString()) 3086 return false; 3087 3088 // Get the number of elements in the array. 3089 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3090 3091 // Start out with the entire array in the StringRef. 3092 Str = Array->getAsString(); 3093 3094 if (Offset > NumElts) 3095 return false; 3096 3097 // Skip over 'offset' bytes. 3098 Str = Str.substr(Offset); 3099 3100 if (TrimAtNul) { 3101 // Trim off the \0 and anything after it. If the array is not nul 3102 // terminated, we just return the whole end of string. The client may know 3103 // some other way that the string is length-bound. 3104 Str = Str.substr(0, Str.find('\0')); 3105 } 3106 return true; 3107 } 3108 3109 // These next two are very similar to the above, but also look through PHI 3110 // nodes. 3111 // TODO: See if we can integrate these two together. 3112 3113 /// If we can compute the length of the string pointed to by 3114 /// the specified pointer, return 'len+1'. If we can't, return 0. 3115 static uint64_t GetStringLengthH(const Value *V, 3116 SmallPtrSetImpl<const PHINode*> &PHIs) { 3117 // Look through noop bitcast instructions. 3118 V = V->stripPointerCasts(); 3119 3120 // If this is a PHI node, there are two cases: either we have already seen it 3121 // or we haven't. 3122 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3123 if (!PHIs.insert(PN).second) 3124 return ~0ULL; // already in the set. 3125 3126 // If it was new, see if all the input strings are the same length. 3127 uint64_t LenSoFar = ~0ULL; 3128 for (Value *IncValue : PN->incoming_values()) { 3129 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3130 if (Len == 0) return 0; // Unknown length -> unknown. 3131 3132 if (Len == ~0ULL) continue; 3133 3134 if (Len != LenSoFar && LenSoFar != ~0ULL) 3135 return 0; // Disagree -> unknown. 3136 LenSoFar = Len; 3137 } 3138 3139 // Success, all agree. 3140 return LenSoFar; 3141 } 3142 3143 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3144 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3145 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3146 if (Len1 == 0) return 0; 3147 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3148 if (Len2 == 0) return 0; 3149 if (Len1 == ~0ULL) return Len2; 3150 if (Len2 == ~0ULL) return Len1; 3151 if (Len1 != Len2) return 0; 3152 return Len1; 3153 } 3154 3155 // Otherwise, see if we can read the string. 3156 StringRef StrData; 3157 if (!getConstantStringInfo(V, StrData)) 3158 return 0; 3159 3160 return StrData.size()+1; 3161 } 3162 3163 /// If we can compute the length of the string pointed to by 3164 /// the specified pointer, return 'len+1'. If we can't, return 0. 3165 uint64_t llvm::GetStringLength(const Value *V) { 3166 if (!V->getType()->isPointerTy()) return 0; 3167 3168 SmallPtrSet<const PHINode*, 32> PHIs; 3169 uint64_t Len = GetStringLengthH(V, PHIs); 3170 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3171 // an empty string as a length. 3172 return Len == ~0ULL ? 1 : Len; 3173 } 3174 3175 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3176 /// previous iteration of the loop was referring to the same object as \p PN. 3177 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3178 const LoopInfo *LI) { 3179 // Find the loop-defined value. 3180 Loop *L = LI->getLoopFor(PN->getParent()); 3181 if (PN->getNumIncomingValues() != 2) 3182 return true; 3183 3184 // Find the value from previous iteration. 3185 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3186 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3187 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3188 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3189 return true; 3190 3191 // If a new pointer is loaded in the loop, the pointer references a different 3192 // object in every iteration. E.g.: 3193 // for (i) 3194 // int *p = a[i]; 3195 // ... 3196 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3197 if (!L->isLoopInvariant(Load->getPointerOperand())) 3198 return false; 3199 return true; 3200 } 3201 3202 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3203 unsigned MaxLookup) { 3204 if (!V->getType()->isPointerTy()) 3205 return V; 3206 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3207 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3208 V = GEP->getPointerOperand(); 3209 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3210 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3211 V = cast<Operator>(V)->getOperand(0); 3212 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3213 if (GA->isInterposable()) 3214 return V; 3215 V = GA->getAliasee(); 3216 } else { 3217 if (auto CS = CallSite(V)) 3218 if (Value *RV = CS.getReturnedArgOperand()) { 3219 V = RV; 3220 continue; 3221 } 3222 3223 // See if InstructionSimplify knows any relevant tricks. 3224 if (Instruction *I = dyn_cast<Instruction>(V)) 3225 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3226 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3227 V = Simplified; 3228 continue; 3229 } 3230 3231 return V; 3232 } 3233 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3234 } 3235 return V; 3236 } 3237 3238 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3239 const DataLayout &DL, LoopInfo *LI, 3240 unsigned MaxLookup) { 3241 SmallPtrSet<Value *, 4> Visited; 3242 SmallVector<Value *, 4> Worklist; 3243 Worklist.push_back(V); 3244 do { 3245 Value *P = Worklist.pop_back_val(); 3246 P = GetUnderlyingObject(P, DL, MaxLookup); 3247 3248 if (!Visited.insert(P).second) 3249 continue; 3250 3251 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3252 Worklist.push_back(SI->getTrueValue()); 3253 Worklist.push_back(SI->getFalseValue()); 3254 continue; 3255 } 3256 3257 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3258 // If this PHI changes the underlying object in every iteration of the 3259 // loop, don't look through it. Consider: 3260 // int **A; 3261 // for (i) { 3262 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3263 // Curr = A[i]; 3264 // *Prev, *Curr; 3265 // 3266 // Prev is tracking Curr one iteration behind so they refer to different 3267 // underlying objects. 3268 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3269 isSameUnderlyingObjectInLoop(PN, LI)) 3270 for (Value *IncValue : PN->incoming_values()) 3271 Worklist.push_back(IncValue); 3272 continue; 3273 } 3274 3275 Objects.push_back(P); 3276 } while (!Worklist.empty()); 3277 } 3278 3279 /// Return true if the only users of this pointer are lifetime markers. 3280 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3281 for (const User *U : V->users()) { 3282 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3283 if (!II) return false; 3284 3285 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3286 II->getIntrinsicID() != Intrinsic::lifetime_end) 3287 return false; 3288 } 3289 return true; 3290 } 3291 3292 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3293 const Instruction *CtxI, 3294 const DominatorTree *DT) { 3295 const Operator *Inst = dyn_cast<Operator>(V); 3296 if (!Inst) 3297 return false; 3298 3299 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3300 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3301 if (C->canTrap()) 3302 return false; 3303 3304 switch (Inst->getOpcode()) { 3305 default: 3306 return true; 3307 case Instruction::UDiv: 3308 case Instruction::URem: { 3309 // x / y is undefined if y == 0. 3310 const APInt *V; 3311 if (match(Inst->getOperand(1), m_APInt(V))) 3312 return *V != 0; 3313 return false; 3314 } 3315 case Instruction::SDiv: 3316 case Instruction::SRem: { 3317 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3318 const APInt *Numerator, *Denominator; 3319 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3320 return false; 3321 // We cannot hoist this division if the denominator is 0. 3322 if (*Denominator == 0) 3323 return false; 3324 // It's safe to hoist if the denominator is not 0 or -1. 3325 if (*Denominator != -1) 3326 return true; 3327 // At this point we know that the denominator is -1. It is safe to hoist as 3328 // long we know that the numerator is not INT_MIN. 3329 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3330 return !Numerator->isMinSignedValue(); 3331 // The numerator *might* be MinSignedValue. 3332 return false; 3333 } 3334 case Instruction::Load: { 3335 const LoadInst *LI = cast<LoadInst>(Inst); 3336 if (!LI->isUnordered() || 3337 // Speculative load may create a race that did not exist in the source. 3338 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3339 // Speculative load may load data from dirty regions. 3340 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3341 return false; 3342 const DataLayout &DL = LI->getModule()->getDataLayout(); 3343 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3344 LI->getAlignment(), DL, CtxI, DT); 3345 } 3346 case Instruction::Call: { 3347 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3348 switch (II->getIntrinsicID()) { 3349 // These synthetic intrinsics have no side-effects and just mark 3350 // information about their operands. 3351 // FIXME: There are other no-op synthetic instructions that potentially 3352 // should be considered at least *safe* to speculate... 3353 case Intrinsic::dbg_declare: 3354 case Intrinsic::dbg_value: 3355 return true; 3356 3357 case Intrinsic::bitreverse: 3358 case Intrinsic::bswap: 3359 case Intrinsic::ctlz: 3360 case Intrinsic::ctpop: 3361 case Intrinsic::cttz: 3362 case Intrinsic::objectsize: 3363 case Intrinsic::sadd_with_overflow: 3364 case Intrinsic::smul_with_overflow: 3365 case Intrinsic::ssub_with_overflow: 3366 case Intrinsic::uadd_with_overflow: 3367 case Intrinsic::umul_with_overflow: 3368 case Intrinsic::usub_with_overflow: 3369 return true; 3370 // These intrinsics are defined to have the same behavior as libm 3371 // functions except for setting errno. 3372 case Intrinsic::sqrt: 3373 case Intrinsic::fma: 3374 case Intrinsic::fmuladd: 3375 return true; 3376 // These intrinsics are defined to have the same behavior as libm 3377 // functions, and the corresponding libm functions never set errno. 3378 case Intrinsic::trunc: 3379 case Intrinsic::copysign: 3380 case Intrinsic::fabs: 3381 case Intrinsic::minnum: 3382 case Intrinsic::maxnum: 3383 return true; 3384 // These intrinsics are defined to have the same behavior as libm 3385 // functions, which never overflow when operating on the IEEE754 types 3386 // that we support, and never set errno otherwise. 3387 case Intrinsic::ceil: 3388 case Intrinsic::floor: 3389 case Intrinsic::nearbyint: 3390 case Intrinsic::rint: 3391 case Intrinsic::round: 3392 return true; 3393 // These intrinsics do not correspond to any libm function, and 3394 // do not set errno. 3395 case Intrinsic::powi: 3396 return true; 3397 // TODO: are convert_{from,to}_fp16 safe? 3398 // TODO: can we list target-specific intrinsics here? 3399 default: break; 3400 } 3401 } 3402 return false; // The called function could have undefined behavior or 3403 // side-effects, even if marked readnone nounwind. 3404 } 3405 case Instruction::VAArg: 3406 case Instruction::Alloca: 3407 case Instruction::Invoke: 3408 case Instruction::PHI: 3409 case Instruction::Store: 3410 case Instruction::Ret: 3411 case Instruction::Br: 3412 case Instruction::IndirectBr: 3413 case Instruction::Switch: 3414 case Instruction::Unreachable: 3415 case Instruction::Fence: 3416 case Instruction::AtomicRMW: 3417 case Instruction::AtomicCmpXchg: 3418 case Instruction::LandingPad: 3419 case Instruction::Resume: 3420 case Instruction::CatchSwitch: 3421 case Instruction::CatchPad: 3422 case Instruction::CatchRet: 3423 case Instruction::CleanupPad: 3424 case Instruction::CleanupRet: 3425 return false; // Misc instructions which have effects 3426 } 3427 } 3428 3429 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3430 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3431 } 3432 3433 /// Return true if we know that the specified value is never null. 3434 bool llvm::isKnownNonNull(const Value *V) { 3435 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3436 3437 // Alloca never returns null, malloc might. 3438 if (isa<AllocaInst>(V)) return true; 3439 3440 // A byval, inalloca, or nonnull argument is never null. 3441 if (const Argument *A = dyn_cast<Argument>(V)) 3442 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3443 3444 // A global variable in address space 0 is non null unless extern weak 3445 // or an absolute symbol reference. Other address spaces may have null as a 3446 // valid address for a global, so we can't assume anything. 3447 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3448 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3449 GV->getType()->getAddressSpace() == 0; 3450 3451 // A Load tagged with nonnull metadata is never null. 3452 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3453 return LI->getMetadata(LLVMContext::MD_nonnull); 3454 3455 if (auto CS = ImmutableCallSite(V)) 3456 if (CS.isReturnNonNull()) 3457 return true; 3458 3459 return false; 3460 } 3461 3462 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3463 const Instruction *CtxI, 3464 const DominatorTree *DT) { 3465 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3466 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3467 assert(CtxI && "Context instruction required for analysis"); 3468 assert(DT && "Dominator tree required for analysis"); 3469 3470 unsigned NumUsesExplored = 0; 3471 for (auto *U : V->users()) { 3472 // Avoid massive lists 3473 if (NumUsesExplored >= DomConditionsMaxUses) 3474 break; 3475 NumUsesExplored++; 3476 // Consider only compare instructions uniquely controlling a branch 3477 CmpInst::Predicate Pred; 3478 if (!match(const_cast<User *>(U), 3479 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3480 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3481 continue; 3482 3483 for (auto *CmpU : U->users()) { 3484 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3485 assert(BI->isConditional() && "uses a comparison!"); 3486 3487 BasicBlock *NonNullSuccessor = 3488 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3489 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3490 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3491 return true; 3492 } else if (Pred == ICmpInst::ICMP_NE && 3493 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3494 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3495 return true; 3496 } 3497 } 3498 } 3499 3500 return false; 3501 } 3502 3503 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3504 const DominatorTree *DT) { 3505 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3506 return false; 3507 3508 if (isKnownNonNull(V)) 3509 return true; 3510 3511 if (!CtxI || !DT) 3512 return false; 3513 3514 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3515 } 3516 3517 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3518 const Value *RHS, 3519 const DataLayout &DL, 3520 AssumptionCache *AC, 3521 const Instruction *CxtI, 3522 const DominatorTree *DT) { 3523 // Multiplying n * m significant bits yields a result of n + m significant 3524 // bits. If the total number of significant bits does not exceed the 3525 // result bit width (minus 1), there is no overflow. 3526 // This means if we have enough leading zero bits in the operands 3527 // we can guarantee that the result does not overflow. 3528 // Ref: "Hacker's Delight" by Henry Warren 3529 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3530 APInt LHSKnownZero(BitWidth, 0); 3531 APInt LHSKnownOne(BitWidth, 0); 3532 APInt RHSKnownZero(BitWidth, 0); 3533 APInt RHSKnownOne(BitWidth, 0); 3534 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3535 DT); 3536 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3537 DT); 3538 // Note that underestimating the number of zero bits gives a more 3539 // conservative answer. 3540 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3541 RHSKnownZero.countLeadingOnes(); 3542 // First handle the easy case: if we have enough zero bits there's 3543 // definitely no overflow. 3544 if (ZeroBits >= BitWidth) 3545 return OverflowResult::NeverOverflows; 3546 3547 // Get the largest possible values for each operand. 3548 APInt LHSMax = ~LHSKnownZero; 3549 APInt RHSMax = ~RHSKnownZero; 3550 3551 // We know the multiply operation doesn't overflow if the maximum values for 3552 // each operand will not overflow after we multiply them together. 3553 bool MaxOverflow; 3554 LHSMax.umul_ov(RHSMax, MaxOverflow); 3555 if (!MaxOverflow) 3556 return OverflowResult::NeverOverflows; 3557 3558 // We know it always overflows if multiplying the smallest possible values for 3559 // the operands also results in overflow. 3560 bool MinOverflow; 3561 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3562 if (MinOverflow) 3563 return OverflowResult::AlwaysOverflows; 3564 3565 return OverflowResult::MayOverflow; 3566 } 3567 3568 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3569 const Value *RHS, 3570 const DataLayout &DL, 3571 AssumptionCache *AC, 3572 const Instruction *CxtI, 3573 const DominatorTree *DT) { 3574 bool LHSKnownNonNegative, LHSKnownNegative; 3575 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3576 AC, CxtI, DT); 3577 if (LHSKnownNonNegative || LHSKnownNegative) { 3578 bool RHSKnownNonNegative, RHSKnownNegative; 3579 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3580 AC, CxtI, DT); 3581 3582 if (LHSKnownNegative && RHSKnownNegative) { 3583 // The sign bit is set in both cases: this MUST overflow. 3584 // Create a simple add instruction, and insert it into the struct. 3585 return OverflowResult::AlwaysOverflows; 3586 } 3587 3588 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3589 // The sign bit is clear in both cases: this CANNOT overflow. 3590 // Create a simple add instruction, and insert it into the struct. 3591 return OverflowResult::NeverOverflows; 3592 } 3593 } 3594 3595 return OverflowResult::MayOverflow; 3596 } 3597 3598 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3599 const Value *RHS, 3600 const AddOperator *Add, 3601 const DataLayout &DL, 3602 AssumptionCache *AC, 3603 const Instruction *CxtI, 3604 const DominatorTree *DT) { 3605 if (Add && Add->hasNoSignedWrap()) { 3606 return OverflowResult::NeverOverflows; 3607 } 3608 3609 bool LHSKnownNonNegative, LHSKnownNegative; 3610 bool RHSKnownNonNegative, RHSKnownNegative; 3611 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3612 AC, CxtI, DT); 3613 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3614 AC, CxtI, DT); 3615 3616 if ((LHSKnownNonNegative && RHSKnownNegative) || 3617 (LHSKnownNegative && RHSKnownNonNegative)) { 3618 // The sign bits are opposite: this CANNOT overflow. 3619 return OverflowResult::NeverOverflows; 3620 } 3621 3622 // The remaining code needs Add to be available. Early returns if not so. 3623 if (!Add) 3624 return OverflowResult::MayOverflow; 3625 3626 // If the sign of Add is the same as at least one of the operands, this add 3627 // CANNOT overflow. This is particularly useful when the sum is 3628 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3629 // operands. 3630 bool LHSOrRHSKnownNonNegative = 3631 (LHSKnownNonNegative || RHSKnownNonNegative); 3632 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3633 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3634 bool AddKnownNonNegative, AddKnownNegative; 3635 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3636 /*Depth=*/0, AC, CxtI, DT); 3637 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3638 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3639 return OverflowResult::NeverOverflows; 3640 } 3641 } 3642 3643 return OverflowResult::MayOverflow; 3644 } 3645 3646 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3647 const DominatorTree &DT) { 3648 #ifndef NDEBUG 3649 auto IID = II->getIntrinsicID(); 3650 assert((IID == Intrinsic::sadd_with_overflow || 3651 IID == Intrinsic::uadd_with_overflow || 3652 IID == Intrinsic::ssub_with_overflow || 3653 IID == Intrinsic::usub_with_overflow || 3654 IID == Intrinsic::smul_with_overflow || 3655 IID == Intrinsic::umul_with_overflow) && 3656 "Not an overflow intrinsic!"); 3657 #endif 3658 3659 SmallVector<const BranchInst *, 2> GuardingBranches; 3660 SmallVector<const ExtractValueInst *, 2> Results; 3661 3662 for (const User *U : II->users()) { 3663 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3664 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3665 3666 if (EVI->getIndices()[0] == 0) 3667 Results.push_back(EVI); 3668 else { 3669 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3670 3671 for (const auto *U : EVI->users()) 3672 if (const auto *B = dyn_cast<BranchInst>(U)) { 3673 assert(B->isConditional() && "How else is it using an i1?"); 3674 GuardingBranches.push_back(B); 3675 } 3676 } 3677 } else { 3678 // We are using the aggregate directly in a way we don't want to analyze 3679 // here (storing it to a global, say). 3680 return false; 3681 } 3682 } 3683 3684 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3685 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3686 if (!NoWrapEdge.isSingleEdge()) 3687 return false; 3688 3689 // Check if all users of the add are provably no-wrap. 3690 for (const auto *Result : Results) { 3691 // If the extractvalue itself is not executed on overflow, the we don't 3692 // need to check each use separately, since domination is transitive. 3693 if (DT.dominates(NoWrapEdge, Result->getParent())) 3694 continue; 3695 3696 for (auto &RU : Result->uses()) 3697 if (!DT.dominates(NoWrapEdge, RU)) 3698 return false; 3699 } 3700 3701 return true; 3702 }; 3703 3704 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3705 } 3706 3707 3708 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3709 const DataLayout &DL, 3710 AssumptionCache *AC, 3711 const Instruction *CxtI, 3712 const DominatorTree *DT) { 3713 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3714 Add, DL, AC, CxtI, DT); 3715 } 3716 3717 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3718 const Value *RHS, 3719 const DataLayout &DL, 3720 AssumptionCache *AC, 3721 const Instruction *CxtI, 3722 const DominatorTree *DT) { 3723 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3724 } 3725 3726 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3727 // A memory operation returns normally if it isn't volatile. A volatile 3728 // operation is allowed to trap. 3729 // 3730 // An atomic operation isn't guaranteed to return in a reasonable amount of 3731 // time because it's possible for another thread to interfere with it for an 3732 // arbitrary length of time, but programs aren't allowed to rely on that. 3733 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3734 return !LI->isVolatile(); 3735 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3736 return !SI->isVolatile(); 3737 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3738 return !CXI->isVolatile(); 3739 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3740 return !RMWI->isVolatile(); 3741 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3742 return !MII->isVolatile(); 3743 3744 // If there is no successor, then execution can't transfer to it. 3745 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3746 return !CRI->unwindsToCaller(); 3747 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3748 return !CatchSwitch->unwindsToCaller(); 3749 if (isa<ResumeInst>(I)) 3750 return false; 3751 if (isa<ReturnInst>(I)) 3752 return false; 3753 3754 // Calls can throw, or contain an infinite loop, or kill the process. 3755 if (auto CS = ImmutableCallSite(I)) { 3756 // Call sites that throw have implicit non-local control flow. 3757 if (!CS.doesNotThrow()) 3758 return false; 3759 3760 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3761 // etc. and thus not return. However, LLVM already assumes that 3762 // 3763 // - Thread exiting actions are modeled as writes to memory invisible to 3764 // the program. 3765 // 3766 // - Loops that don't have side effects (side effects are volatile/atomic 3767 // stores and IO) always terminate (see http://llvm.org/PR965). 3768 // Furthermore IO itself is also modeled as writes to memory invisible to 3769 // the program. 3770 // 3771 // We rely on those assumptions here, and use the memory effects of the call 3772 // target as a proxy for checking that it always returns. 3773 3774 // FIXME: This isn't aggressive enough; a call which only writes to a global 3775 // is guaranteed to return. 3776 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3777 match(I, m_Intrinsic<Intrinsic::assume>()); 3778 } 3779 3780 // Other instructions return normally. 3781 return true; 3782 } 3783 3784 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3785 const Loop *L) { 3786 // The loop header is guaranteed to be executed for every iteration. 3787 // 3788 // FIXME: Relax this constraint to cover all basic blocks that are 3789 // guaranteed to be executed at every iteration. 3790 if (I->getParent() != L->getHeader()) return false; 3791 3792 for (const Instruction &LI : *L->getHeader()) { 3793 if (&LI == I) return true; 3794 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3795 } 3796 llvm_unreachable("Instruction not contained in its own parent basic block."); 3797 } 3798 3799 bool llvm::propagatesFullPoison(const Instruction *I) { 3800 switch (I->getOpcode()) { 3801 case Instruction::Add: 3802 case Instruction::Sub: 3803 case Instruction::Xor: 3804 case Instruction::Trunc: 3805 case Instruction::BitCast: 3806 case Instruction::AddrSpaceCast: 3807 // These operations all propagate poison unconditionally. Note that poison 3808 // is not any particular value, so xor or subtraction of poison with 3809 // itself still yields poison, not zero. 3810 return true; 3811 3812 case Instruction::AShr: 3813 case Instruction::SExt: 3814 // For these operations, one bit of the input is replicated across 3815 // multiple output bits. A replicated poison bit is still poison. 3816 return true; 3817 3818 case Instruction::Shl: { 3819 // Left shift *by* a poison value is poison. The number of 3820 // positions to shift is unsigned, so no negative values are 3821 // possible there. Left shift by zero places preserves poison. So 3822 // it only remains to consider left shift of poison by a positive 3823 // number of places. 3824 // 3825 // A left shift by a positive number of places leaves the lowest order bit 3826 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3827 // make the poison operand violate that flag, yielding a fresh full-poison 3828 // value. 3829 auto *OBO = cast<OverflowingBinaryOperator>(I); 3830 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3831 } 3832 3833 case Instruction::Mul: { 3834 // A multiplication by zero yields a non-poison zero result, so we need to 3835 // rule out zero as an operand. Conservatively, multiplication by a 3836 // non-zero constant is not multiplication by zero. 3837 // 3838 // Multiplication by a non-zero constant can leave some bits 3839 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3840 // order bit unpoisoned. So we need to consider that. 3841 // 3842 // Multiplication by 1 preserves poison. If the multiplication has a 3843 // no-wrap flag, then we can make the poison operand violate that flag 3844 // when multiplied by any integer other than 0 and 1. 3845 auto *OBO = cast<OverflowingBinaryOperator>(I); 3846 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3847 for (Value *V : OBO->operands()) { 3848 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3849 // A ConstantInt cannot yield poison, so we can assume that it is 3850 // the other operand that is poison. 3851 return !CI->isZero(); 3852 } 3853 } 3854 } 3855 return false; 3856 } 3857 3858 case Instruction::ICmp: 3859 // Comparing poison with any value yields poison. This is why, for 3860 // instance, x s< (x +nsw 1) can be folded to true. 3861 return true; 3862 3863 case Instruction::GetElementPtr: 3864 // A GEP implicitly represents a sequence of additions, subtractions, 3865 // truncations, sign extensions and multiplications. The multiplications 3866 // are by the non-zero sizes of some set of types, so we do not have to be 3867 // concerned with multiplication by zero. If the GEP is in-bounds, then 3868 // these operations are implicitly no-signed-wrap so poison is propagated 3869 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3870 return cast<GEPOperator>(I)->isInBounds(); 3871 3872 default: 3873 return false; 3874 } 3875 } 3876 3877 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3878 switch (I->getOpcode()) { 3879 case Instruction::Store: 3880 return cast<StoreInst>(I)->getPointerOperand(); 3881 3882 case Instruction::Load: 3883 return cast<LoadInst>(I)->getPointerOperand(); 3884 3885 case Instruction::AtomicCmpXchg: 3886 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3887 3888 case Instruction::AtomicRMW: 3889 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3890 3891 case Instruction::UDiv: 3892 case Instruction::SDiv: 3893 case Instruction::URem: 3894 case Instruction::SRem: 3895 return I->getOperand(1); 3896 3897 default: 3898 return nullptr; 3899 } 3900 } 3901 3902 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3903 // We currently only look for uses of poison values within the same basic 3904 // block, as that makes it easier to guarantee that the uses will be 3905 // executed given that PoisonI is executed. 3906 // 3907 // FIXME: Expand this to consider uses beyond the same basic block. To do 3908 // this, look out for the distinction between post-dominance and strong 3909 // post-dominance. 3910 const BasicBlock *BB = PoisonI->getParent(); 3911 3912 // Set of instructions that we have proved will yield poison if PoisonI 3913 // does. 3914 SmallSet<const Value *, 16> YieldsPoison; 3915 SmallSet<const BasicBlock *, 4> Visited; 3916 YieldsPoison.insert(PoisonI); 3917 Visited.insert(PoisonI->getParent()); 3918 3919 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3920 3921 unsigned Iter = 0; 3922 while (Iter++ < MaxDepth) { 3923 for (auto &I : make_range(Begin, End)) { 3924 if (&I != PoisonI) { 3925 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3926 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3927 return true; 3928 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3929 return false; 3930 } 3931 3932 // Mark poison that propagates from I through uses of I. 3933 if (YieldsPoison.count(&I)) { 3934 for (const User *User : I.users()) { 3935 const Instruction *UserI = cast<Instruction>(User); 3936 if (propagatesFullPoison(UserI)) 3937 YieldsPoison.insert(User); 3938 } 3939 } 3940 } 3941 3942 if (auto *NextBB = BB->getSingleSuccessor()) { 3943 if (Visited.insert(NextBB).second) { 3944 BB = NextBB; 3945 Begin = BB->getFirstNonPHI()->getIterator(); 3946 End = BB->end(); 3947 continue; 3948 } 3949 } 3950 3951 break; 3952 }; 3953 return false; 3954 } 3955 3956 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3957 if (FMF.noNaNs()) 3958 return true; 3959 3960 if (auto *C = dyn_cast<ConstantFP>(V)) 3961 return !C->isNaN(); 3962 return false; 3963 } 3964 3965 static bool isKnownNonZero(const Value *V) { 3966 if (auto *C = dyn_cast<ConstantFP>(V)) 3967 return !C->isZero(); 3968 return false; 3969 } 3970 3971 /// Match non-obvious integer minimum and maximum sequences. 3972 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3973 Value *CmpLHS, Value *CmpRHS, 3974 Value *TrueVal, Value *FalseVal, 3975 Value *&LHS, Value *&RHS) { 3976 // Assume success. If there's no match, callers should not use these anyway. 3977 LHS = TrueVal; 3978 RHS = FalseVal; 3979 3980 // Recognize variations of: 3981 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3982 const APInt *C1; 3983 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3984 const APInt *C2; 3985 3986 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3987 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3988 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3989 return {SPF_SMAX, SPNB_NA, false}; 3990 3991 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3992 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3993 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3994 return {SPF_SMIN, SPNB_NA, false}; 3995 3996 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3997 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3998 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3999 return {SPF_UMAX, SPNB_NA, false}; 4000 4001 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4002 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4003 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4004 return {SPF_UMIN, SPNB_NA, false}; 4005 } 4006 4007 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4008 return {SPF_UNKNOWN, SPNB_NA, false}; 4009 4010 // Z = X -nsw Y 4011 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4012 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4013 if (match(TrueVal, m_Zero()) && 4014 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4015 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4016 4017 // Z = X -nsw Y 4018 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4019 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4020 if (match(FalseVal, m_Zero()) && 4021 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4022 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4023 4024 if (!match(CmpRHS, m_APInt(C1))) 4025 return {SPF_UNKNOWN, SPNB_NA, false}; 4026 4027 // An unsigned min/max can be written with a signed compare. 4028 const APInt *C2; 4029 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4030 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4031 // Is the sign bit set? 4032 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4033 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4034 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4035 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4036 4037 // Is the sign bit clear? 4038 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4039 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4040 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4041 C2->isMinSignedValue()) 4042 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4043 } 4044 4045 // Look through 'not' ops to find disguised signed min/max. 4046 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4047 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4048 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4049 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4050 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4051 4052 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4053 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4054 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4055 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4056 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4057 4058 return {SPF_UNKNOWN, SPNB_NA, false}; 4059 } 4060 4061 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4062 FastMathFlags FMF, 4063 Value *CmpLHS, Value *CmpRHS, 4064 Value *TrueVal, Value *FalseVal, 4065 Value *&LHS, Value *&RHS) { 4066 LHS = CmpLHS; 4067 RHS = CmpRHS; 4068 4069 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4070 // return inconsistent results between implementations. 4071 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4072 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4073 // Therefore we behave conservatively and only proceed if at least one of the 4074 // operands is known to not be zero, or if we don't care about signed zeroes. 4075 switch (Pred) { 4076 default: break; 4077 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4078 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4079 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4080 !isKnownNonZero(CmpRHS)) 4081 return {SPF_UNKNOWN, SPNB_NA, false}; 4082 } 4083 4084 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4085 bool Ordered = false; 4086 4087 // When given one NaN and one non-NaN input: 4088 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4089 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4090 // ordered comparison fails), which could be NaN or non-NaN. 4091 // so here we discover exactly what NaN behavior is required/accepted. 4092 if (CmpInst::isFPPredicate(Pred)) { 4093 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4094 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4095 4096 if (LHSSafe && RHSSafe) { 4097 // Both operands are known non-NaN. 4098 NaNBehavior = SPNB_RETURNS_ANY; 4099 } else if (CmpInst::isOrdered(Pred)) { 4100 // An ordered comparison will return false when given a NaN, so it 4101 // returns the RHS. 4102 Ordered = true; 4103 if (LHSSafe) 4104 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4105 NaNBehavior = SPNB_RETURNS_NAN; 4106 else if (RHSSafe) 4107 NaNBehavior = SPNB_RETURNS_OTHER; 4108 else 4109 // Completely unsafe. 4110 return {SPF_UNKNOWN, SPNB_NA, false}; 4111 } else { 4112 Ordered = false; 4113 // An unordered comparison will return true when given a NaN, so it 4114 // returns the LHS. 4115 if (LHSSafe) 4116 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4117 NaNBehavior = SPNB_RETURNS_OTHER; 4118 else if (RHSSafe) 4119 NaNBehavior = SPNB_RETURNS_NAN; 4120 else 4121 // Completely unsafe. 4122 return {SPF_UNKNOWN, SPNB_NA, false}; 4123 } 4124 } 4125 4126 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4127 std::swap(CmpLHS, CmpRHS); 4128 Pred = CmpInst::getSwappedPredicate(Pred); 4129 if (NaNBehavior == SPNB_RETURNS_NAN) 4130 NaNBehavior = SPNB_RETURNS_OTHER; 4131 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4132 NaNBehavior = SPNB_RETURNS_NAN; 4133 Ordered = !Ordered; 4134 } 4135 4136 // ([if]cmp X, Y) ? X : Y 4137 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4138 switch (Pred) { 4139 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4140 case ICmpInst::ICMP_UGT: 4141 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4142 case ICmpInst::ICMP_SGT: 4143 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4144 case ICmpInst::ICMP_ULT: 4145 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4146 case ICmpInst::ICMP_SLT: 4147 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4148 case FCmpInst::FCMP_UGT: 4149 case FCmpInst::FCMP_UGE: 4150 case FCmpInst::FCMP_OGT: 4151 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4152 case FCmpInst::FCMP_ULT: 4153 case FCmpInst::FCMP_ULE: 4154 case FCmpInst::FCMP_OLT: 4155 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4156 } 4157 } 4158 4159 const APInt *C1; 4160 if (match(CmpRHS, m_APInt(C1))) { 4161 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4162 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4163 4164 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4165 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4166 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4167 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4168 } 4169 4170 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4171 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4172 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4173 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4174 } 4175 } 4176 } 4177 4178 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4179 } 4180 4181 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4182 Instruction::CastOps *CastOp) { 4183 auto *Cast1 = dyn_cast<CastInst>(V1); 4184 if (!Cast1) 4185 return nullptr; 4186 4187 *CastOp = Cast1->getOpcode(); 4188 Type *SrcTy = Cast1->getSrcTy(); 4189 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4190 // If V1 and V2 are both the same cast from the same type, look through V1. 4191 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4192 return Cast2->getOperand(0); 4193 return nullptr; 4194 } 4195 4196 auto *C = dyn_cast<Constant>(V2); 4197 if (!C) 4198 return nullptr; 4199 4200 Constant *CastedTo = nullptr; 4201 switch (*CastOp) { 4202 case Instruction::ZExt: 4203 if (CmpI->isUnsigned()) 4204 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4205 break; 4206 case Instruction::SExt: 4207 if (CmpI->isSigned()) 4208 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4209 break; 4210 case Instruction::Trunc: 4211 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4212 break; 4213 case Instruction::FPTrunc: 4214 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4215 break; 4216 case Instruction::FPExt: 4217 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4218 break; 4219 case Instruction::FPToUI: 4220 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4221 break; 4222 case Instruction::FPToSI: 4223 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4224 break; 4225 case Instruction::UIToFP: 4226 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4227 break; 4228 case Instruction::SIToFP: 4229 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4230 break; 4231 default: 4232 break; 4233 } 4234 4235 if (!CastedTo) 4236 return nullptr; 4237 4238 // Make sure the cast doesn't lose any information. 4239 Constant *CastedBack = 4240 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4241 if (CastedBack != C) 4242 return nullptr; 4243 4244 return CastedTo; 4245 } 4246 4247 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4248 Instruction::CastOps *CastOp) { 4249 SelectInst *SI = dyn_cast<SelectInst>(V); 4250 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4251 4252 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4253 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4254 4255 CmpInst::Predicate Pred = CmpI->getPredicate(); 4256 Value *CmpLHS = CmpI->getOperand(0); 4257 Value *CmpRHS = CmpI->getOperand(1); 4258 Value *TrueVal = SI->getTrueValue(); 4259 Value *FalseVal = SI->getFalseValue(); 4260 FastMathFlags FMF; 4261 if (isa<FPMathOperator>(CmpI)) 4262 FMF = CmpI->getFastMathFlags(); 4263 4264 // Bail out early. 4265 if (CmpI->isEquality()) 4266 return {SPF_UNKNOWN, SPNB_NA, false}; 4267 4268 // Deal with type mismatches. 4269 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4270 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4271 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4272 cast<CastInst>(TrueVal)->getOperand(0), C, 4273 LHS, RHS); 4274 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4275 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4276 C, cast<CastInst>(FalseVal)->getOperand(0), 4277 LHS, RHS); 4278 } 4279 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4280 LHS, RHS); 4281 } 4282 4283 /// Return true if "icmp Pred LHS RHS" is always true. 4284 static bool isTruePredicate(CmpInst::Predicate Pred, 4285 const Value *LHS, const Value *RHS, 4286 const DataLayout &DL, unsigned Depth, 4287 AssumptionCache *AC, const Instruction *CxtI, 4288 const DominatorTree *DT) { 4289 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4290 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4291 return true; 4292 4293 switch (Pred) { 4294 default: 4295 return false; 4296 4297 case CmpInst::ICMP_SLE: { 4298 const APInt *C; 4299 4300 // LHS s<= LHS +_{nsw} C if C >= 0 4301 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4302 return !C->isNegative(); 4303 return false; 4304 } 4305 4306 case CmpInst::ICMP_ULE: { 4307 const APInt *C; 4308 4309 // LHS u<= LHS +_{nuw} C for any C 4310 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4311 return true; 4312 4313 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4314 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4315 const Value *&X, 4316 const APInt *&CA, const APInt *&CB) { 4317 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4318 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4319 return true; 4320 4321 // If X & C == 0 then (X | C) == X +_{nuw} C 4322 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4323 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4324 unsigned BitWidth = CA->getBitWidth(); 4325 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4326 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4327 4328 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4329 return true; 4330 } 4331 4332 return false; 4333 }; 4334 4335 const Value *X; 4336 const APInt *CLHS, *CRHS; 4337 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4338 return CLHS->ule(*CRHS); 4339 4340 return false; 4341 } 4342 } 4343 } 4344 4345 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4346 /// ALHS ARHS" is true. Otherwise, return None. 4347 static Optional<bool> 4348 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4349 const Value *ARHS, const Value *BLHS, 4350 const Value *BRHS, const DataLayout &DL, 4351 unsigned Depth, AssumptionCache *AC, 4352 const Instruction *CxtI, const DominatorTree *DT) { 4353 switch (Pred) { 4354 default: 4355 return None; 4356 4357 case CmpInst::ICMP_SLT: 4358 case CmpInst::ICMP_SLE: 4359 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4360 DT) && 4361 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4362 return true; 4363 return None; 4364 4365 case CmpInst::ICMP_ULT: 4366 case CmpInst::ICMP_ULE: 4367 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4368 DT) && 4369 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4370 return true; 4371 return None; 4372 } 4373 } 4374 4375 /// Return true if the operands of the two compares match. IsSwappedOps is true 4376 /// when the operands match, but are swapped. 4377 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4378 const Value *BLHS, const Value *BRHS, 4379 bool &IsSwappedOps) { 4380 4381 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4382 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4383 return IsMatchingOps || IsSwappedOps; 4384 } 4385 4386 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4387 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4388 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4389 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4390 const Value *ALHS, 4391 const Value *ARHS, 4392 CmpInst::Predicate BPred, 4393 const Value *BLHS, 4394 const Value *BRHS, 4395 bool IsSwappedOps) { 4396 // Canonicalize the operands so they're matching. 4397 if (IsSwappedOps) { 4398 std::swap(BLHS, BRHS); 4399 BPred = ICmpInst::getSwappedPredicate(BPred); 4400 } 4401 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4402 return true; 4403 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4404 return false; 4405 4406 return None; 4407 } 4408 4409 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4410 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4411 /// C2" is false. Otherwise, return None if we can't infer anything. 4412 static Optional<bool> 4413 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4414 const ConstantInt *C1, 4415 CmpInst::Predicate BPred, 4416 const Value *BLHS, const ConstantInt *C2) { 4417 assert(ALHS == BLHS && "LHS operands must match."); 4418 ConstantRange DomCR = 4419 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4420 ConstantRange CR = 4421 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4422 ConstantRange Intersection = DomCR.intersectWith(CR); 4423 ConstantRange Difference = DomCR.difference(CR); 4424 if (Intersection.isEmptySet()) 4425 return false; 4426 if (Difference.isEmptySet()) 4427 return true; 4428 return None; 4429 } 4430 4431 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4432 const DataLayout &DL, bool InvertAPred, 4433 unsigned Depth, AssumptionCache *AC, 4434 const Instruction *CxtI, 4435 const DominatorTree *DT) { 4436 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4437 if (LHS->getType() != RHS->getType()) 4438 return None; 4439 4440 Type *OpTy = LHS->getType(); 4441 assert(OpTy->getScalarType()->isIntegerTy(1)); 4442 4443 // LHS ==> RHS by definition 4444 if (!InvertAPred && LHS == RHS) 4445 return true; 4446 4447 if (OpTy->isVectorTy()) 4448 // TODO: extending the code below to handle vectors 4449 return None; 4450 assert(OpTy->isIntegerTy(1) && "implied by above"); 4451 4452 ICmpInst::Predicate APred, BPred; 4453 Value *ALHS, *ARHS; 4454 Value *BLHS, *BRHS; 4455 4456 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4457 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4458 return None; 4459 4460 if (InvertAPred) 4461 APred = CmpInst::getInversePredicate(APred); 4462 4463 // Can we infer anything when the two compares have matching operands? 4464 bool IsSwappedOps; 4465 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4466 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4467 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4468 return Implication; 4469 // No amount of additional analysis will infer the second condition, so 4470 // early exit. 4471 return None; 4472 } 4473 4474 // Can we infer anything when the LHS operands match and the RHS operands are 4475 // constants (not necessarily matching)? 4476 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4477 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4478 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4479 cast<ConstantInt>(BRHS))) 4480 return Implication; 4481 // No amount of additional analysis will infer the second condition, so 4482 // early exit. 4483 return None; 4484 } 4485 4486 if (APred == BPred) 4487 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4488 CxtI, DT); 4489 4490 return None; 4491 } 4492