1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/AssumptionTracker.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/MathExtras.h" 36 #include <cstring> 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 const unsigned MaxDepth = 6; 41 42 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 43 /// unknown returns 0). For vector types, returns the element type's bitwidth. 44 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 45 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 46 return BitWidth; 47 48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; 49 } 50 51 // Many of these functions have internal versions that take an assumption 52 // exclusion set. This is because of the potential for mutual recursion to 53 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 54 // classic case of this is assume(x = y), which will attempt to determine 55 // bits in x from bits in y, which will attempt to determine bits in y from 56 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 57 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 58 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 59 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 60 61 namespace { 62 // Simplifying using an assume can only be done in a particular control-flow 63 // context (the context instruction provides that context). If an assume and 64 // the context instruction are not in the same block then the DT helps in 65 // figuring out if we can use it. 66 struct Query { 67 ExclInvsSet ExclInvs; 68 AssumptionTracker *AT; 69 const Instruction *CxtI; 70 const DominatorTree *DT; 71 72 Query(AssumptionTracker *AT = nullptr, const Instruction *CxtI = nullptr, 73 const DominatorTree *DT = nullptr) 74 : AT(AT), CxtI(CxtI), DT(DT) {} 75 76 Query(const Query &Q, const Value *NewExcl) 77 : ExclInvs(Q.ExclInvs), AT(Q.AT), CxtI(Q.CxtI), DT(Q.DT) { 78 ExclInvs.insert(NewExcl); 79 } 80 }; 81 } // end anonymous namespace 82 83 // Given the provided Value and, potentially, a context instruction, returned 84 // the preferred context instruction (if any). 85 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 86 // If we've been provided with a context instruction, then use that (provided 87 // it has been inserted). 88 if (CxtI && CxtI->getParent()) 89 return CxtI; 90 91 // If the value is really an already-inserted instruction, then use that. 92 CxtI = dyn_cast<Instruction>(V); 93 if (CxtI && CxtI->getParent()) 94 return CxtI; 95 96 return nullptr; 97 } 98 99 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 100 const DataLayout *TD, unsigned Depth, 101 const Query &Q); 102 103 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 104 const DataLayout *TD, unsigned Depth, 105 AssumptionTracker *AT, const Instruction *CxtI, 106 const DominatorTree *DT) { 107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth, 108 Query(AT, safeCxtI(V, CxtI), DT)); 109 } 110 111 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 112 const DataLayout *TD, unsigned Depth, 113 const Query &Q); 114 115 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 116 const DataLayout *TD, unsigned Depth, 117 AssumptionTracker *AT, const Instruction *CxtI, 118 const DominatorTree *DT) { 119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth, 120 Query(AT, safeCxtI(V, CxtI), DT)); 121 } 122 123 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 124 const Query &Q); 125 126 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 127 AssumptionTracker *AT, 128 const Instruction *CxtI, 129 const DominatorTree *DT) { 130 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 131 Query(AT, safeCxtI(V, CxtI), DT)); 132 } 133 134 static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, 135 const Query &Q); 136 137 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, 138 AssumptionTracker *AT, const Instruction *CxtI, 139 const DominatorTree *DT) { 140 return ::isKnownNonZero(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT)); 141 } 142 143 static bool MaskedValueIsZero(Value *V, const APInt &Mask, 144 const DataLayout *TD, unsigned Depth, 145 const Query &Q); 146 147 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 148 const DataLayout *TD, unsigned Depth, 149 AssumptionTracker *AT, const Instruction *CxtI, 150 const DominatorTree *DT) { 151 return ::MaskedValueIsZero(V, Mask, TD, Depth, 152 Query(AT, safeCxtI(V, CxtI), DT)); 153 } 154 155 static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD, 156 unsigned Depth, const Query &Q); 157 158 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 159 unsigned Depth, AssumptionTracker *AT, 160 const Instruction *CxtI, 161 const DominatorTree *DT) { 162 return ::ComputeNumSignBits(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT)); 163 } 164 165 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 166 APInt &KnownZero, APInt &KnownOne, 167 APInt &KnownZero2, APInt &KnownOne2, 168 const DataLayout *TD, unsigned Depth, 169 const Query &Q) { 170 if (!Add) { 171 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 172 // We know that the top bits of C-X are clear if X contains less bits 173 // than C (i.e. no wrap-around can happen). For example, 20-X is 174 // positive if we can prove that X is >= 0 and < 16. 175 if (!CLHS->getValue().isNegative()) { 176 unsigned BitWidth = KnownZero.getBitWidth(); 177 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 178 // NLZ can't be BitWidth with no sign bit 179 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 180 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q); 181 182 // If all of the MaskV bits are known to be zero, then we know the 183 // output top bits are zero, because we now know that the output is 184 // from [0-C]. 185 if ((KnownZero2 & MaskV) == MaskV) { 186 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 187 // Top bits known zero. 188 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 189 } 190 } 191 } 192 } 193 194 unsigned BitWidth = KnownZero.getBitWidth(); 195 196 // If an initial sequence of bits in the result is not needed, the 197 // corresponding bits in the operands are not needed. 198 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 199 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q); 200 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q); 201 202 // Carry in a 1 for a subtract, rather than a 0. 203 APInt CarryIn(BitWidth, 0); 204 if (!Add) { 205 // Sum = LHS + ~RHS + 1 206 std::swap(KnownZero2, KnownOne2); 207 CarryIn.setBit(0); 208 } 209 210 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 211 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 212 213 // Compute known bits of the carry. 214 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 215 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 216 217 // Compute set of known bits (where all three relevant bits are known). 218 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 219 APInt RHSKnown = KnownZero2 | KnownOne2; 220 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 221 APInt Known = LHSKnown & RHSKnown & CarryKnown; 222 223 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 224 "known bits of sum differ"); 225 226 // Compute known bits of the result. 227 KnownZero = ~PossibleSumOne & Known; 228 KnownOne = PossibleSumOne & Known; 229 230 // Are we still trying to solve for the sign bit? 231 if (!Known.isNegative()) { 232 if (NSW) { 233 // Adding two non-negative numbers, or subtracting a negative number from 234 // a non-negative one, can't wrap into negative. 235 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 236 KnownZero |= APInt::getSignBit(BitWidth); 237 // Adding two negative numbers, or subtracting a non-negative number from 238 // a negative one, can't wrap into non-negative. 239 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 240 KnownOne |= APInt::getSignBit(BitWidth); 241 } 242 } 243 } 244 245 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 246 APInt &KnownZero, APInt &KnownOne, 247 APInt &KnownZero2, APInt &KnownOne2, 248 const DataLayout *TD, unsigned Depth, 249 const Query &Q) { 250 unsigned BitWidth = KnownZero.getBitWidth(); 251 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q); 252 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q); 253 254 bool isKnownNegative = false; 255 bool isKnownNonNegative = false; 256 // If the multiplication is known not to overflow, compute the sign bit. 257 if (NSW) { 258 if (Op0 == Op1) { 259 // The product of a number with itself is non-negative. 260 isKnownNonNegative = true; 261 } else { 262 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 263 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 264 bool isKnownNegativeOp1 = KnownOne.isNegative(); 265 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 266 // The product of two numbers with the same sign is non-negative. 267 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 268 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 269 // The product of a negative number and a non-negative number is either 270 // negative or zero. 271 if (!isKnownNonNegative) 272 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 273 isKnownNonZero(Op0, TD, Depth, Q)) || 274 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 275 isKnownNonZero(Op1, TD, Depth, Q)); 276 } 277 } 278 279 // If low bits are zero in either operand, output low known-0 bits. 280 // Also compute a conserative estimate for high known-0 bits. 281 // More trickiness is possible, but this is sufficient for the 282 // interesting case of alignment computation. 283 KnownOne.clearAllBits(); 284 unsigned TrailZ = KnownZero.countTrailingOnes() + 285 KnownZero2.countTrailingOnes(); 286 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 287 KnownZero2.countLeadingOnes(), 288 BitWidth) - BitWidth; 289 290 TrailZ = std::min(TrailZ, BitWidth); 291 LeadZ = std::min(LeadZ, BitWidth); 292 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 293 APInt::getHighBitsSet(BitWidth, LeadZ); 294 295 // Only make use of no-wrap flags if we failed to compute the sign bit 296 // directly. This matters if the multiplication always overflows, in 297 // which case we prefer to follow the result of the direct computation, 298 // though as the program is invoking undefined behaviour we can choose 299 // whatever we like here. 300 if (isKnownNonNegative && !KnownOne.isNegative()) 301 KnownZero.setBit(BitWidth - 1); 302 else if (isKnownNegative && !KnownZero.isNegative()) 303 KnownOne.setBit(BitWidth - 1); 304 } 305 306 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 307 APInt &KnownZero) { 308 unsigned BitWidth = KnownZero.getBitWidth(); 309 unsigned NumRanges = Ranges.getNumOperands() / 2; 310 assert(NumRanges >= 1); 311 312 // Use the high end of the ranges to find leading zeros. 313 unsigned MinLeadingZeros = BitWidth; 314 for (unsigned i = 0; i < NumRanges; ++i) { 315 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 316 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 317 ConstantRange Range(Lower->getValue(), Upper->getValue()); 318 if (Range.isWrappedSet()) 319 MinLeadingZeros = 0; // -1 has no zeros 320 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 321 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 322 } 323 324 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 325 } 326 327 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 328 SmallVector<const Value *, 16> WorkSet(1, I); 329 SmallPtrSet<const Value *, 32> Visited; 330 SmallPtrSet<const Value *, 16> EphValues; 331 332 while (!WorkSet.empty()) { 333 const Value *V = WorkSet.pop_back_val(); 334 if (!Visited.insert(V)) 335 continue; 336 337 // If all uses of this value are ephemeral, then so is this value. 338 bool FoundNEUse = false; 339 for (const User *I : V->users()) 340 if (!EphValues.count(I)) { 341 FoundNEUse = true; 342 break; 343 } 344 345 if (!FoundNEUse) { 346 if (V == E) 347 return true; 348 349 EphValues.insert(V); 350 if (const User *U = dyn_cast<User>(V)) 351 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 352 J != JE; ++J) { 353 if (isSafeToSpeculativelyExecute(*J)) 354 WorkSet.push_back(*J); 355 } 356 } 357 } 358 359 return false; 360 } 361 362 // Is this an intrinsic that cannot be speculated but also cannot trap? 363 static bool isAssumeLikeIntrinsic(const Instruction *I) { 364 if (const CallInst *CI = dyn_cast<CallInst>(I)) 365 if (Function *F = CI->getCalledFunction()) 366 switch (F->getIntrinsicID()) { 367 default: break; 368 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 369 case Intrinsic::assume: 370 case Intrinsic::dbg_declare: 371 case Intrinsic::dbg_value: 372 case Intrinsic::invariant_start: 373 case Intrinsic::invariant_end: 374 case Intrinsic::lifetime_start: 375 case Intrinsic::lifetime_end: 376 case Intrinsic::objectsize: 377 case Intrinsic::ptr_annotation: 378 case Intrinsic::var_annotation: 379 return true; 380 } 381 382 return false; 383 } 384 385 static bool isValidAssumeForContext(Value *V, const Query &Q, 386 const DataLayout *DL) { 387 Instruction *Inv = cast<Instruction>(V); 388 389 // There are two restrictions on the use of an assume: 390 // 1. The assume must dominate the context (or the control flow must 391 // reach the assume whenever it reaches the context). 392 // 2. The context must not be in the assume's set of ephemeral values 393 // (otherwise we will use the assume to prove that the condition 394 // feeding the assume is trivially true, thus causing the removal of 395 // the assume). 396 397 if (Q.DT) { 398 if (Q.DT->dominates(Inv, Q.CxtI)) { 399 return true; 400 } else if (Inv->getParent() == Q.CxtI->getParent()) { 401 // The context comes first, but they're both in the same block. Make sure 402 // there is nothing in between that might interrupt the control flow. 403 for (BasicBlock::const_iterator I = 404 std::next(BasicBlock::const_iterator(Q.CxtI)), 405 IE(Inv); I != IE; ++I) 406 if (!isSafeToSpeculativelyExecute(I, DL) && 407 !isAssumeLikeIntrinsic(I)) 408 return false; 409 410 return !isEphemeralValueOf(Inv, Q.CxtI); 411 } 412 413 return false; 414 } 415 416 // When we don't have a DT, we do a limited search... 417 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 418 return true; 419 } else if (Inv->getParent() == Q.CxtI->getParent()) { 420 // Search forward from the assume until we reach the context (or the end 421 // of the block); the common case is that the assume will come first. 422 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 423 IE = Inv->getParent()->end(); I != IE; ++I) 424 if (I == Q.CxtI) 425 return true; 426 427 // The context must come first... 428 for (BasicBlock::const_iterator I = 429 std::next(BasicBlock::const_iterator(Q.CxtI)), 430 IE(Inv); I != IE; ++I) 431 if (!isSafeToSpeculativelyExecute(I, DL) && 432 !isAssumeLikeIntrinsic(I)) 433 return false; 434 435 return !isEphemeralValueOf(Inv, Q.CxtI); 436 } 437 438 return false; 439 } 440 441 bool llvm::isValidAssumeForContext(const Instruction *I, 442 const Instruction *CxtI, 443 const DataLayout *DL, 444 const DominatorTree *DT) { 445 return ::isValidAssumeForContext(const_cast<Instruction*>(I), 446 Query(nullptr, CxtI, DT), DL); 447 } 448 449 template<typename LHS, typename RHS> 450 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 451 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 452 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 453 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 454 } 455 456 template<typename LHS, typename RHS> 457 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 458 BinaryOp_match<RHS, LHS, Instruction::And>> 459 m_c_And(const LHS &L, const RHS &R) { 460 return m_CombineOr(m_And(L, R), m_And(R, L)); 461 } 462 463 template<typename LHS, typename RHS> 464 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 465 BinaryOp_match<RHS, LHS, Instruction::Or>> 466 m_c_Or(const LHS &L, const RHS &R) { 467 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 468 } 469 470 template<typename LHS, typename RHS> 471 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 472 BinaryOp_match<RHS, LHS, Instruction::Xor>> 473 m_c_Xor(const LHS &L, const RHS &R) { 474 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 475 } 476 477 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 478 APInt &KnownOne, 479 const DataLayout *DL, 480 unsigned Depth, const Query &Q) { 481 // Use of assumptions is context-sensitive. If we don't have a context, we 482 // cannot use them! 483 if (!Q.AT || !Q.CxtI) 484 return; 485 486 unsigned BitWidth = KnownZero.getBitWidth(); 487 488 Function *F = const_cast<Function*>(Q.CxtI->getParent()->getParent()); 489 for (auto &CI : Q.AT->assumptions(F)) { 490 CallInst *I = CI; 491 if (Q.ExclInvs.count(I)) 492 continue; 493 494 if (match(I, m_Intrinsic<Intrinsic::assume>(m_Specific(V))) && 495 isValidAssumeForContext(I, Q, DL)) { 496 assert(BitWidth == 1 && "assume operand is not i1?"); 497 KnownZero.clearAllBits(); 498 KnownOne.setAllBits(); 499 return; 500 } 501 502 Value *A, *B; 503 auto m_V = m_CombineOr(m_Specific(V), 504 m_CombineOr(m_PtrToInt(m_Specific(V)), 505 m_BitCast(m_Specific(V)))); 506 507 CmpInst::Predicate Pred; 508 ConstantInt *C; 509 // assume(v = a) 510 if (match(I, m_Intrinsic<Intrinsic::assume>( 511 m_c_ICmp(Pred, m_V, m_Value(A)))) && 512 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 513 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 514 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 515 KnownZero |= RHSKnownZero; 516 KnownOne |= RHSKnownOne; 517 // assume(v & b = a) 518 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 519 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A)))) && 520 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 521 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 522 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 523 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 524 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 525 526 // For those bits in the mask that are known to be one, we can propagate 527 // known bits from the RHS to V. 528 KnownZero |= RHSKnownZero & MaskKnownOne; 529 KnownOne |= RHSKnownOne & MaskKnownOne; 530 // assume(~(v & b) = a) 531 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 532 m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 533 m_Value(A)))) && 534 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 535 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 536 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 537 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 538 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 539 540 // For those bits in the mask that are known to be one, we can propagate 541 // inverted known bits from the RHS to V. 542 KnownZero |= RHSKnownOne & MaskKnownOne; 543 KnownOne |= RHSKnownZero & MaskKnownOne; 544 // assume(v | b = a) 545 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 546 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A)))) && 547 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 548 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 549 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 550 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 551 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 552 553 // For those bits in B that are known to be zero, we can propagate known 554 // bits from the RHS to V. 555 KnownZero |= RHSKnownZero & BKnownZero; 556 KnownOne |= RHSKnownOne & BKnownZero; 557 // assume(~(v | b) = a) 558 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 559 m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 560 m_Value(A)))) && 561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 564 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 565 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 566 567 // For those bits in B that are known to be zero, we can propagate 568 // inverted known bits from the RHS to V. 569 KnownZero |= RHSKnownOne & BKnownZero; 570 KnownOne |= RHSKnownZero & BKnownZero; 571 // assume(v ^ b = a) 572 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 573 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A)))) && 574 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 575 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 576 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 577 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 578 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 579 580 // For those bits in B that are known to be zero, we can propagate known 581 // bits from the RHS to V. For those bits in B that are known to be one, 582 // we can propagate inverted known bits from the RHS to V. 583 KnownZero |= RHSKnownZero & BKnownZero; 584 KnownOne |= RHSKnownOne & BKnownZero; 585 KnownZero |= RHSKnownOne & BKnownOne; 586 KnownOne |= RHSKnownZero & BKnownOne; 587 // assume(~(v ^ b) = a) 588 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 589 m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 590 m_Value(A)))) && 591 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 592 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 593 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 594 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 595 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 596 597 // For those bits in B that are known to be zero, we can propagate 598 // inverted known bits from the RHS to V. For those bits in B that are 599 // known to be one, we can propagate known bits from the RHS to V. 600 KnownZero |= RHSKnownOne & BKnownZero; 601 KnownOne |= RHSKnownZero & BKnownZero; 602 KnownZero |= RHSKnownZero & BKnownOne; 603 KnownOne |= RHSKnownOne & BKnownOne; 604 // assume(v << c = a) 605 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 606 m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 607 m_Value(A)))) && 608 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 609 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 610 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 611 // For those bits in RHS that are known, we can propagate them to known 612 // bits in V shifted to the right by C. 613 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 614 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 615 // assume(~(v << c) = a) 616 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 617 m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 618 m_Value(A)))) && 619 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 620 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 621 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 622 // For those bits in RHS that are known, we can propagate them inverted 623 // to known bits in V shifted to the right by C. 624 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 625 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 626 // assume(v >> c = a) 627 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 628 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 629 m_AShr(m_V, 630 m_ConstantInt(C))), 631 m_Value(A)))) && 632 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 635 // For those bits in RHS that are known, we can propagate them to known 636 // bits in V shifted to the right by C. 637 KnownZero |= RHSKnownZero << C->getZExtValue(); 638 KnownOne |= RHSKnownOne << C->getZExtValue(); 639 // assume(~(v >> c) = a) 640 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 641 m_c_ICmp(Pred, m_Not(m_CombineOr( 642 m_LShr(m_V, m_ConstantInt(C)), 643 m_AShr(m_V, m_ConstantInt(C)))), 644 m_Value(A)))) && 645 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 646 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 647 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 648 // For those bits in RHS that are known, we can propagate them inverted 649 // to known bits in V shifted to the right by C. 650 KnownZero |= RHSKnownOne << C->getZExtValue(); 651 KnownOne |= RHSKnownZero << C->getZExtValue(); 652 // assume(v >=_s c) where c is non-negative 653 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 654 m_ICmp(Pred, m_V, m_Value(A)))) && 655 Pred == ICmpInst::ICMP_SGE && 656 isValidAssumeForContext(I, Q, DL)) { 657 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 658 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 659 660 if (RHSKnownZero.isNegative()) { 661 // We know that the sign bit is zero. 662 KnownZero |= APInt::getSignBit(BitWidth); 663 } 664 // assume(v >_s c) where c is at least -1. 665 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 666 m_ICmp(Pred, m_V, m_Value(A)))) && 667 Pred == ICmpInst::ICMP_SGT && 668 isValidAssumeForContext(I, Q, DL)) { 669 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 670 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 671 672 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 673 // We know that the sign bit is zero. 674 KnownZero |= APInt::getSignBit(BitWidth); 675 } 676 // assume(v <=_s c) where c is negative 677 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 678 m_ICmp(Pred, m_V, m_Value(A)))) && 679 Pred == ICmpInst::ICMP_SLE && 680 isValidAssumeForContext(I, Q, DL)) { 681 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 682 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 683 684 if (RHSKnownOne.isNegative()) { 685 // We know that the sign bit is one. 686 KnownOne |= APInt::getSignBit(BitWidth); 687 } 688 // assume(v <_s c) where c is non-positive 689 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 690 m_ICmp(Pred, m_V, m_Value(A)))) && 691 Pred == ICmpInst::ICMP_SLT && 692 isValidAssumeForContext(I, Q, DL)) { 693 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 694 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 695 696 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 697 // We know that the sign bit is one. 698 KnownOne |= APInt::getSignBit(BitWidth); 699 } 700 // assume(v <=_u c) 701 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 702 m_ICmp(Pred, m_V, m_Value(A)))) && 703 Pred == ICmpInst::ICMP_ULE && 704 isValidAssumeForContext(I, Q, DL)) { 705 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 706 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 707 708 // Whatever high bits in c are zero are known to be zero. 709 KnownZero |= 710 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 711 // assume(v <_u c) 712 } else if (match(I, m_Intrinsic<Intrinsic::assume>( 713 m_ICmp(Pred, m_V, m_Value(A)))) && 714 Pred == ICmpInst::ICMP_ULT && 715 isValidAssumeForContext(I, Q, DL)) { 716 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 717 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 718 719 // Whatever high bits in c are zero are known to be zero (if c is a power 720 // of 2, then one more). 721 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I))) 722 KnownZero |= 723 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 724 else 725 KnownZero |= 726 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 727 } 728 } 729 } 730 731 /// Determine which bits of V are known to be either zero or one and return 732 /// them in the KnownZero/KnownOne bit sets. 733 /// 734 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 735 /// we cannot optimize based on the assumption that it is zero without changing 736 /// it to be an explicit zero. If we don't change it to zero, other code could 737 /// optimized based on the contradictory assumption that it is non-zero. 738 /// Because instcombine aggressively folds operations with undef args anyway, 739 /// this won't lose us code quality. 740 /// 741 /// This function is defined on values with integer type, values with pointer 742 /// type (but only if TD is non-null), and vectors of integers. In the case 743 /// where V is a vector, known zero, and known one values are the 744 /// same width as the vector element, and the bit is set only if it is true 745 /// for all of the elements in the vector. 746 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 747 const DataLayout *TD, unsigned Depth, 748 const Query &Q) { 749 assert(V && "No Value?"); 750 assert(Depth <= MaxDepth && "Limit Search Depth"); 751 unsigned BitWidth = KnownZero.getBitWidth(); 752 753 assert((V->getType()->isIntOrIntVectorTy() || 754 V->getType()->getScalarType()->isPointerTy()) && 755 "Not integer or pointer type!"); 756 assert((!TD || 757 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 758 (!V->getType()->isIntOrIntVectorTy() || 759 V->getType()->getScalarSizeInBits() == BitWidth) && 760 KnownZero.getBitWidth() == BitWidth && 761 KnownOne.getBitWidth() == BitWidth && 762 "V, KnownOne and KnownZero should have same BitWidth"); 763 764 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 765 // We know all of the bits for a constant! 766 KnownOne = CI->getValue(); 767 KnownZero = ~KnownOne; 768 return; 769 } 770 // Null and aggregate-zero are all-zeros. 771 if (isa<ConstantPointerNull>(V) || 772 isa<ConstantAggregateZero>(V)) { 773 KnownOne.clearAllBits(); 774 KnownZero = APInt::getAllOnesValue(BitWidth); 775 return; 776 } 777 // Handle a constant vector by taking the intersection of the known bits of 778 // each element. There is no real need to handle ConstantVector here, because 779 // we don't handle undef in any particularly useful way. 780 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 781 // We know that CDS must be a vector of integers. Take the intersection of 782 // each element. 783 KnownZero.setAllBits(); KnownOne.setAllBits(); 784 APInt Elt(KnownZero.getBitWidth(), 0); 785 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 786 Elt = CDS->getElementAsInteger(i); 787 KnownZero &= ~Elt; 788 KnownOne &= Elt; 789 } 790 return; 791 } 792 793 // The address of an aligned GlobalValue has trailing zeros. 794 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 795 unsigned Align = GV->getAlignment(); 796 if (Align == 0 && TD) { 797 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 798 Type *ObjectType = GVar->getType()->getElementType(); 799 if (ObjectType->isSized()) { 800 // If the object is defined in the current Module, we'll be giving 801 // it the preferred alignment. Otherwise, we have to assume that it 802 // may only have the minimum ABI alignment. 803 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 804 Align = TD->getPreferredAlignment(GVar); 805 else 806 Align = TD->getABITypeAlignment(ObjectType); 807 } 808 } 809 } 810 if (Align > 0) 811 KnownZero = APInt::getLowBitsSet(BitWidth, 812 countTrailingZeros(Align)); 813 else 814 KnownZero.clearAllBits(); 815 KnownOne.clearAllBits(); 816 return; 817 } 818 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 819 // the bits of its aliasee. 820 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 821 if (GA->mayBeOverridden()) { 822 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 823 } else { 824 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1, Q); 825 } 826 return; 827 } 828 829 if (Argument *A = dyn_cast<Argument>(V)) { 830 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 831 832 if (!Align && TD && A->hasStructRetAttr()) { 833 // An sret parameter has at least the ABI alignment of the return type. 834 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 835 if (EltTy->isSized()) 836 Align = TD->getABITypeAlignment(EltTy); 837 } 838 839 if (Align) 840 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 841 842 // Don't give up yet... there might be an assumption that provides more 843 // information... 844 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q); 845 return; 846 } 847 848 // Start out not knowing anything. 849 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 850 851 if (Depth == MaxDepth) 852 return; // Limit search depth. 853 854 // Check whether a nearby assume intrinsic can determine some known bits. 855 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q); 856 857 Operator *I = dyn_cast<Operator>(V); 858 if (!I) return; 859 860 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 861 switch (I->getOpcode()) { 862 default: break; 863 case Instruction::Load: 864 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 865 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 866 break; 867 case Instruction::And: { 868 // If either the LHS or the RHS are Zero, the result is zero. 869 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 870 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 871 872 // Output known-1 bits are only known if set in both the LHS & RHS. 873 KnownOne &= KnownOne2; 874 // Output known-0 are known to be clear if zero in either the LHS | RHS. 875 KnownZero |= KnownZero2; 876 break; 877 } 878 case Instruction::Or: { 879 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 880 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 881 882 // Output known-0 bits are only known if clear in both the LHS & RHS. 883 KnownZero &= KnownZero2; 884 // Output known-1 are known to be set if set in either the LHS | RHS. 885 KnownOne |= KnownOne2; 886 break; 887 } 888 case Instruction::Xor: { 889 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 890 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 891 892 // Output known-0 bits are known if clear or set in both the LHS & RHS. 893 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 894 // Output known-1 are known to be set if set in only one of the LHS, RHS. 895 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 896 KnownZero = KnownZeroOut; 897 break; 898 } 899 case Instruction::Mul: { 900 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 901 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, 902 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 903 Depth, Q); 904 break; 905 } 906 case Instruction::UDiv: { 907 // For the purposes of computing leading zeros we can conservatively 908 // treat a udiv as a logical right shift by the power of 2 known to 909 // be less than the denominator. 910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 911 unsigned LeadZ = KnownZero2.countLeadingOnes(); 912 913 KnownOne2.clearAllBits(); 914 KnownZero2.clearAllBits(); 915 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); 916 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 917 if (RHSUnknownLeadingOnes != BitWidth) 918 LeadZ = std::min(BitWidth, 919 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 920 921 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 922 break; 923 } 924 case Instruction::Select: 925 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q); 926 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); 927 928 // Only known if known in both the LHS and RHS. 929 KnownOne &= KnownOne2; 930 KnownZero &= KnownZero2; 931 break; 932 case Instruction::FPTrunc: 933 case Instruction::FPExt: 934 case Instruction::FPToUI: 935 case Instruction::FPToSI: 936 case Instruction::SIToFP: 937 case Instruction::UIToFP: 938 break; // Can't work with floating point. 939 case Instruction::PtrToInt: 940 case Instruction::IntToPtr: 941 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 942 // We can't handle these if we don't know the pointer size. 943 if (!TD) break; 944 // FALL THROUGH and handle them the same as zext/trunc. 945 case Instruction::ZExt: 946 case Instruction::Trunc: { 947 Type *SrcTy = I->getOperand(0)->getType(); 948 949 unsigned SrcBitWidth; 950 // Note that we handle pointer operands here because of inttoptr/ptrtoint 951 // which fall through here. 952 if(TD) { 953 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 954 } else { 955 SrcBitWidth = SrcTy->getScalarSizeInBits(); 956 if (!SrcBitWidth) break; 957 } 958 959 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 960 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 961 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 962 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 963 KnownZero = KnownZero.zextOrTrunc(BitWidth); 964 KnownOne = KnownOne.zextOrTrunc(BitWidth); 965 // Any top bits are known to be zero. 966 if (BitWidth > SrcBitWidth) 967 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 968 break; 969 } 970 case Instruction::BitCast: { 971 Type *SrcTy = I->getOperand(0)->getType(); 972 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 973 // TODO: For now, not handling conversions like: 974 // (bitcast i64 %x to <2 x i32>) 975 !I->getType()->isVectorTy()) { 976 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 977 break; 978 } 979 break; 980 } 981 case Instruction::SExt: { 982 // Compute the bits in the result that are not present in the input. 983 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 984 985 KnownZero = KnownZero.trunc(SrcBitWidth); 986 KnownOne = KnownOne.trunc(SrcBitWidth); 987 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 988 KnownZero = KnownZero.zext(BitWidth); 989 KnownOne = KnownOne.zext(BitWidth); 990 991 // If the sign bit of the input is known set or clear, then we know the 992 // top bits of the result. 993 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 994 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 995 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 996 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 997 break; 998 } 999 case Instruction::Shl: 1000 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1001 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1002 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1003 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1004 KnownZero <<= ShiftAmt; 1005 KnownOne <<= ShiftAmt; 1006 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 1007 break; 1008 } 1009 break; 1010 case Instruction::LShr: 1011 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1012 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1013 // Compute the new bits that are at the top now. 1014 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1015 1016 // Unsigned shift right. 1017 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1, Q); 1018 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1019 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1020 // high bits known zero. 1021 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 1022 break; 1023 } 1024 break; 1025 case Instruction::AShr: 1026 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1027 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1028 // Compute the new bits that are at the top now. 1029 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 1030 1031 // Signed shift right. 1032 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1033 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1034 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1035 1036 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 1037 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 1038 KnownZero |= HighBits; 1039 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 1040 KnownOne |= HighBits; 1041 break; 1042 } 1043 break; 1044 case Instruction::Sub: { 1045 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1046 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1047 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 1048 Depth, Q); 1049 break; 1050 } 1051 case Instruction::Add: { 1052 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1053 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1054 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 1055 Depth, Q); 1056 break; 1057 } 1058 case Instruction::SRem: 1059 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1060 APInt RA = Rem->getValue().abs(); 1061 if (RA.isPowerOf2()) { 1062 APInt LowBits = RA - 1; 1063 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, 1064 Depth+1, Q); 1065 1066 // The low bits of the first operand are unchanged by the srem. 1067 KnownZero = KnownZero2 & LowBits; 1068 KnownOne = KnownOne2 & LowBits; 1069 1070 // If the first operand is non-negative or has all low bits zero, then 1071 // the upper bits are all zero. 1072 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1073 KnownZero |= ~LowBits; 1074 1075 // If the first operand is negative and not all low bits are zero, then 1076 // the upper bits are all one. 1077 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1078 KnownOne |= ~LowBits; 1079 1080 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1081 } 1082 } 1083 1084 // The sign bit is the LHS's sign bit, except when the result of the 1085 // remainder is zero. 1086 if (KnownZero.isNonNegative()) { 1087 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1088 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 1089 Depth+1, Q); 1090 // If it's known zero, our sign bit is also zero. 1091 if (LHSKnownZero.isNegative()) 1092 KnownZero.setBit(BitWidth - 1); 1093 } 1094 1095 break; 1096 case Instruction::URem: { 1097 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1098 APInt RA = Rem->getValue(); 1099 if (RA.isPowerOf2()) { 1100 APInt LowBits = (RA - 1); 1101 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, 1102 Depth+1, Q); 1103 KnownZero |= ~LowBits; 1104 KnownOne &= LowBits; 1105 break; 1106 } 1107 } 1108 1109 // Since the result is less than or equal to either operand, any leading 1110 // zero bits in either operand must also exist in the result. 1111 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1112 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); 1113 1114 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1115 KnownZero2.countLeadingOnes()); 1116 KnownOne.clearAllBits(); 1117 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1118 break; 1119 } 1120 1121 case Instruction::Alloca: { 1122 AllocaInst *AI = cast<AllocaInst>(V); 1123 unsigned Align = AI->getAlignment(); 1124 if (Align == 0 && TD) 1125 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 1126 1127 if (Align > 0) 1128 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1129 break; 1130 } 1131 case Instruction::GetElementPtr: { 1132 // Analyze all of the subscripts of this getelementptr instruction 1133 // to determine if we can prove known low zero bits. 1134 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1135 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 1136 Depth+1, Q); 1137 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1138 1139 gep_type_iterator GTI = gep_type_begin(I); 1140 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1141 Value *Index = I->getOperand(i); 1142 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1143 // Handle struct member offset arithmetic. 1144 if (!TD) { 1145 TrailZ = 0; 1146 break; 1147 } 1148 1149 // Handle case when index is vector zeroinitializer 1150 Constant *CIndex = cast<Constant>(Index); 1151 if (CIndex->isZeroValue()) 1152 continue; 1153 1154 if (CIndex->getType()->isVectorTy()) 1155 Index = CIndex->getSplatValue(); 1156 1157 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1158 const StructLayout *SL = TD->getStructLayout(STy); 1159 uint64_t Offset = SL->getElementOffset(Idx); 1160 TrailZ = std::min<unsigned>(TrailZ, 1161 countTrailingZeros(Offset)); 1162 } else { 1163 // Handle array index arithmetic. 1164 Type *IndexedTy = GTI.getIndexedType(); 1165 if (!IndexedTy->isSized()) { 1166 TrailZ = 0; 1167 break; 1168 } 1169 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1170 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 1171 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1172 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q); 1173 TrailZ = std::min(TrailZ, 1174 unsigned(countTrailingZeros(TypeSize) + 1175 LocalKnownZero.countTrailingOnes())); 1176 } 1177 } 1178 1179 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1180 break; 1181 } 1182 case Instruction::PHI: { 1183 PHINode *P = cast<PHINode>(I); 1184 // Handle the case of a simple two-predecessor recurrence PHI. 1185 // There's a lot more that could theoretically be done here, but 1186 // this is sufficient to catch some interesting cases. 1187 if (P->getNumIncomingValues() == 2) { 1188 for (unsigned i = 0; i != 2; ++i) { 1189 Value *L = P->getIncomingValue(i); 1190 Value *R = P->getIncomingValue(!i); 1191 Operator *LU = dyn_cast<Operator>(L); 1192 if (!LU) 1193 continue; 1194 unsigned Opcode = LU->getOpcode(); 1195 // Check for operations that have the property that if 1196 // both their operands have low zero bits, the result 1197 // will have low zero bits. 1198 if (Opcode == Instruction::Add || 1199 Opcode == Instruction::Sub || 1200 Opcode == Instruction::And || 1201 Opcode == Instruction::Or || 1202 Opcode == Instruction::Mul) { 1203 Value *LL = LU->getOperand(0); 1204 Value *LR = LU->getOperand(1); 1205 // Find a recurrence. 1206 if (LL == I) 1207 L = LR; 1208 else if (LR == I) 1209 L = LL; 1210 else 1211 break; 1212 // Ok, we have a PHI of the form L op= R. Check for low 1213 // zero bits. 1214 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q); 1215 1216 // We need to take the minimum number of known bits 1217 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1218 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q); 1219 1220 KnownZero = APInt::getLowBitsSet(BitWidth, 1221 std::min(KnownZero2.countTrailingOnes(), 1222 KnownZero3.countTrailingOnes())); 1223 break; 1224 } 1225 } 1226 } 1227 1228 // Unreachable blocks may have zero-operand PHI nodes. 1229 if (P->getNumIncomingValues() == 0) 1230 break; 1231 1232 // Otherwise take the unions of the known bit sets of the operands, 1233 // taking conservative care to avoid excessive recursion. 1234 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1235 // Skip if every incoming value references to ourself. 1236 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1237 break; 1238 1239 KnownZero = APInt::getAllOnesValue(BitWidth); 1240 KnownOne = APInt::getAllOnesValue(BitWidth); 1241 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 1242 // Skip direct self references. 1243 if (P->getIncomingValue(i) == P) continue; 1244 1245 KnownZero2 = APInt(BitWidth, 0); 1246 KnownOne2 = APInt(BitWidth, 0); 1247 // Recurse, but cap the recursion to one level, because we don't 1248 // want to waste time spinning around in loops. 1249 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 1250 MaxDepth-1, Q); 1251 KnownZero &= KnownZero2; 1252 KnownOne &= KnownOne2; 1253 // If all bits have been ruled out, there's no need to check 1254 // more operands. 1255 if (!KnownZero && !KnownOne) 1256 break; 1257 } 1258 } 1259 break; 1260 } 1261 case Instruction::Call: 1262 case Instruction::Invoke: 1263 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1264 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1265 // If a range metadata is attached to this IntrinsicInst, intersect the 1266 // explicit range specified by the metadata and the implicit range of 1267 // the intrinsic. 1268 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1269 switch (II->getIntrinsicID()) { 1270 default: break; 1271 case Intrinsic::ctlz: 1272 case Intrinsic::cttz: { 1273 unsigned LowBits = Log2_32(BitWidth)+1; 1274 // If this call is undefined for 0, the result will be less than 2^n. 1275 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1276 LowBits -= 1; 1277 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1278 break; 1279 } 1280 case Intrinsic::ctpop: { 1281 unsigned LowBits = Log2_32(BitWidth)+1; 1282 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1283 break; 1284 } 1285 case Intrinsic::x86_sse42_crc32_64_64: 1286 KnownZero |= APInt::getHighBitsSet(64, 32); 1287 break; 1288 } 1289 } 1290 break; 1291 case Instruction::ExtractValue: 1292 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1293 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1294 if (EVI->getNumIndices() != 1) break; 1295 if (EVI->getIndices()[0] == 0) { 1296 switch (II->getIntrinsicID()) { 1297 default: break; 1298 case Intrinsic::uadd_with_overflow: 1299 case Intrinsic::sadd_with_overflow: 1300 computeKnownBitsAddSub(true, II->getArgOperand(0), 1301 II->getArgOperand(1), false, KnownZero, 1302 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q); 1303 break; 1304 case Intrinsic::usub_with_overflow: 1305 case Intrinsic::ssub_with_overflow: 1306 computeKnownBitsAddSub(false, II->getArgOperand(0), 1307 II->getArgOperand(1), false, KnownZero, 1308 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q); 1309 break; 1310 case Intrinsic::umul_with_overflow: 1311 case Intrinsic::smul_with_overflow: 1312 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), 1313 false, KnownZero, KnownOne, 1314 KnownZero2, KnownOne2, TD, Depth, Q); 1315 break; 1316 } 1317 } 1318 } 1319 } 1320 1321 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1322 } 1323 1324 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 1325 /// one. Convenience wrapper around computeKnownBits. 1326 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1327 const DataLayout *TD, unsigned Depth, 1328 const Query &Q) { 1329 unsigned BitWidth = getBitWidth(V->getType(), TD); 1330 if (!BitWidth) { 1331 KnownZero = false; 1332 KnownOne = false; 1333 return; 1334 } 1335 APInt ZeroBits(BitWidth, 0); 1336 APInt OneBits(BitWidth, 0); 1337 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q); 1338 KnownOne = OneBits[BitWidth - 1]; 1339 KnownZero = ZeroBits[BitWidth - 1]; 1340 } 1341 1342 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one 1343 /// bit set when defined. For vectors return true if every element is known to 1344 /// be a power of two when defined. Supports values with integer or pointer 1345 /// types and vectors of integers. 1346 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1347 const Query &Q) { 1348 if (Constant *C = dyn_cast<Constant>(V)) { 1349 if (C->isNullValue()) 1350 return OrZero; 1351 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1352 return CI->getValue().isPowerOf2(); 1353 // TODO: Handle vector constants. 1354 } 1355 1356 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1357 // it is shifted off the end then the result is undefined. 1358 if (match(V, m_Shl(m_One(), m_Value()))) 1359 return true; 1360 1361 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1362 // bottom. If it is shifted off the bottom then the result is undefined. 1363 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1364 return true; 1365 1366 // The remaining tests are all recursive, so bail out if we hit the limit. 1367 if (Depth++ == MaxDepth) 1368 return false; 1369 1370 Value *X = nullptr, *Y = nullptr; 1371 // A shift of a power of two is a power of two or zero. 1372 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1373 match(V, m_Shr(m_Value(X), m_Value())))) 1374 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q); 1375 1376 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1377 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1378 1379 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1380 return 1381 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1382 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1383 1384 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1385 // A power of two and'd with anything is a power of two or zero. 1386 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) || 1387 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q)) 1388 return true; 1389 // X & (-X) is always a power of two or zero. 1390 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1391 return true; 1392 return false; 1393 } 1394 1395 // Adding a power-of-two or zero to the same power-of-two or zero yields 1396 // either the original power-of-two, a larger power-of-two or zero. 1397 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1398 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1399 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1400 if (match(X, m_And(m_Specific(Y), m_Value())) || 1401 match(X, m_And(m_Value(), m_Specific(Y)))) 1402 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1403 return true; 1404 if (match(Y, m_And(m_Specific(X), m_Value())) || 1405 match(Y, m_And(m_Value(), m_Specific(X)))) 1406 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1407 return true; 1408 1409 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1410 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1411 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q); 1412 1413 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1414 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q); 1415 // If i8 V is a power of two or zero: 1416 // ZeroBits: 1 1 1 0 1 1 1 1 1417 // ~ZeroBits: 0 0 0 1 0 0 0 0 1418 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1419 // If OrZero isn't set, we cannot give back a zero result. 1420 // Make sure either the LHS or RHS has a bit set. 1421 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1422 return true; 1423 } 1424 } 1425 1426 // An exact divide or right shift can only shift off zero bits, so the result 1427 // is a power of two only if the first operand is a power of two and not 1428 // copying a sign bit (sdiv int_min, 2). 1429 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1430 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1431 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1432 Depth, Q); 1433 } 1434 1435 return false; 1436 } 1437 1438 /// \brief Test whether a GEP's result is known to be non-null. 1439 /// 1440 /// Uses properties inherent in a GEP to try to determine whether it is known 1441 /// to be non-null. 1442 /// 1443 /// Currently this routine does not support vector GEPs. 1444 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 1445 unsigned Depth, const Query &Q) { 1446 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1447 return false; 1448 1449 // FIXME: Support vector-GEPs. 1450 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1451 1452 // If the base pointer is non-null, we cannot walk to a null address with an 1453 // inbounds GEP in address space zero. 1454 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1455 return true; 1456 1457 // Past this, if we don't have DataLayout, we can't do much. 1458 if (!DL) 1459 return false; 1460 1461 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1462 // If so, then the GEP cannot produce a null pointer, as doing so would 1463 // inherently violate the inbounds contract within address space zero. 1464 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1465 GTI != GTE; ++GTI) { 1466 // Struct types are easy -- they must always be indexed by a constant. 1467 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1468 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1469 unsigned ElementIdx = OpC->getZExtValue(); 1470 const StructLayout *SL = DL->getStructLayout(STy); 1471 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1472 if (ElementOffset > 0) 1473 return true; 1474 continue; 1475 } 1476 1477 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1478 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 1479 continue; 1480 1481 // Fast path the constant operand case both for efficiency and so we don't 1482 // increment Depth when just zipping down an all-constant GEP. 1483 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1484 if (!OpC->isZero()) 1485 return true; 1486 continue; 1487 } 1488 1489 // We post-increment Depth here because while isKnownNonZero increments it 1490 // as well, when we pop back up that increment won't persist. We don't want 1491 // to recurse 10k times just because we have 10k GEP operands. We don't 1492 // bail completely out because we want to handle constant GEPs regardless 1493 // of depth. 1494 if (Depth++ >= MaxDepth) 1495 continue; 1496 1497 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1498 return true; 1499 } 1500 1501 return false; 1502 } 1503 1504 /// isKnownNonZero - Return true if the given value is known to be non-zero 1505 /// when defined. For vectors return true if every element is known to be 1506 /// non-zero when defined. Supports values with integer or pointer type and 1507 /// vectors of integers. 1508 bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, 1509 const Query &Q) { 1510 if (Constant *C = dyn_cast<Constant>(V)) { 1511 if (C->isNullValue()) 1512 return false; 1513 if (isa<ConstantInt>(C)) 1514 // Must be non-zero due to null test above. 1515 return true; 1516 // TODO: Handle vectors 1517 return false; 1518 } 1519 1520 // The remaining tests are all recursive, so bail out if we hit the limit. 1521 if (Depth++ >= MaxDepth) 1522 return false; 1523 1524 // Check for pointer simplifications. 1525 if (V->getType()->isPointerTy()) { 1526 if (isKnownNonNull(V)) 1527 return true; 1528 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1529 if (isGEPKnownNonNull(GEP, TD, Depth, Q)) 1530 return true; 1531 } 1532 1533 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 1534 1535 // X | Y != 0 if X != 0 or Y != 0. 1536 Value *X = nullptr, *Y = nullptr; 1537 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1538 return isKnownNonZero(X, TD, Depth, Q) || 1539 isKnownNonZero(Y, TD, Depth, Q); 1540 1541 // ext X != 0 if X != 0. 1542 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1543 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q); 1544 1545 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1546 // if the lowest bit is shifted off the end. 1547 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1548 // shl nuw can't remove any non-zero bits. 1549 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1550 if (BO->hasNoUnsignedWrap()) 1551 return isKnownNonZero(X, TD, Depth, Q); 1552 1553 APInt KnownZero(BitWidth, 0); 1554 APInt KnownOne(BitWidth, 0); 1555 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q); 1556 if (KnownOne[0]) 1557 return true; 1558 } 1559 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1560 // defined if the sign bit is shifted off the end. 1561 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1562 // shr exact can only shift out zero bits. 1563 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1564 if (BO->isExact()) 1565 return isKnownNonZero(X, TD, Depth, Q); 1566 1567 bool XKnownNonNegative, XKnownNegative; 1568 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q); 1569 if (XKnownNegative) 1570 return true; 1571 } 1572 // div exact can only produce a zero if the dividend is zero. 1573 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1574 return isKnownNonZero(X, TD, Depth, Q); 1575 } 1576 // X + Y. 1577 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1578 bool XKnownNonNegative, XKnownNegative; 1579 bool YKnownNonNegative, YKnownNegative; 1580 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q); 1581 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q); 1582 1583 // If X and Y are both non-negative (as signed values) then their sum is not 1584 // zero unless both X and Y are zero. 1585 if (XKnownNonNegative && YKnownNonNegative) 1586 if (isKnownNonZero(X, TD, Depth, Q) || 1587 isKnownNonZero(Y, TD, Depth, Q)) 1588 return true; 1589 1590 // If X and Y are both negative (as signed values) then their sum is not 1591 // zero unless both X and Y equal INT_MIN. 1592 if (BitWidth && XKnownNegative && YKnownNegative) { 1593 APInt KnownZero(BitWidth, 0); 1594 APInt KnownOne(BitWidth, 0); 1595 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1596 // The sign bit of X is set. If some other bit is set then X is not equal 1597 // to INT_MIN. 1598 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q); 1599 if ((KnownOne & Mask) != 0) 1600 return true; 1601 // The sign bit of Y is set. If some other bit is set then Y is not equal 1602 // to INT_MIN. 1603 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q); 1604 if ((KnownOne & Mask) != 0) 1605 return true; 1606 } 1607 1608 // The sum of a non-negative number and a power of two is not zero. 1609 if (XKnownNonNegative && 1610 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q)) 1611 return true; 1612 if (YKnownNonNegative && 1613 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q)) 1614 return true; 1615 } 1616 // X * Y. 1617 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1618 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1619 // If X and Y are non-zero then so is X * Y as long as the multiplication 1620 // does not overflow. 1621 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1622 isKnownNonZero(X, TD, Depth, Q) && 1623 isKnownNonZero(Y, TD, Depth, Q)) 1624 return true; 1625 } 1626 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1627 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1628 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) && 1629 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q)) 1630 return true; 1631 } 1632 1633 if (!BitWidth) return false; 1634 APInt KnownZero(BitWidth, 0); 1635 APInt KnownOne(BitWidth, 0); 1636 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); 1637 return KnownOne != 0; 1638 } 1639 1640 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1641 /// this predicate to simplify operations downstream. Mask is known to be zero 1642 /// for bits that V cannot have. 1643 /// 1644 /// This function is defined on values with integer type, values with pointer 1645 /// type (but only if TD is non-null), and vectors of integers. In the case 1646 /// where V is a vector, the mask, known zero, and known one values are the 1647 /// same width as the vector element, and the bit is set only if it is true 1648 /// for all of the elements in the vector. 1649 bool MaskedValueIsZero(Value *V, const APInt &Mask, 1650 const DataLayout *TD, unsigned Depth, 1651 const Query &Q) { 1652 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1653 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); 1654 return (KnownZero & Mask) == Mask; 1655 } 1656 1657 1658 1659 /// ComputeNumSignBits - Return the number of times the sign bit of the 1660 /// register is replicated into the other bits. We know that at least 1 bit 1661 /// is always equal to the sign bit (itself), but other cases can give us 1662 /// information. For example, immediately after an "ashr X, 2", we know that 1663 /// the top 3 bits are all equal to each other, so we return 3. 1664 /// 1665 /// 'Op' must have a scalar integer type. 1666 /// 1667 unsigned ComputeNumSignBits(Value *V, const DataLayout *TD, 1668 unsigned Depth, const Query &Q) { 1669 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1670 "ComputeNumSignBits requires a DataLayout object to operate " 1671 "on non-integer values!"); 1672 Type *Ty = V->getType(); 1673 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1674 Ty->getScalarSizeInBits(); 1675 unsigned Tmp, Tmp2; 1676 unsigned FirstAnswer = 1; 1677 1678 // Note that ConstantInt is handled by the general computeKnownBits case 1679 // below. 1680 1681 if (Depth == 6) 1682 return 1; // Limit search depth. 1683 1684 Operator *U = dyn_cast<Operator>(V); 1685 switch (Operator::getOpcode(V)) { 1686 default: break; 1687 case Instruction::SExt: 1688 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1689 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp; 1690 1691 case Instruction::AShr: { 1692 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1693 // ashr X, C -> adds C sign bits. Vectors too. 1694 const APInt *ShAmt; 1695 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1696 Tmp += ShAmt->getZExtValue(); 1697 if (Tmp > TyBits) Tmp = TyBits; 1698 } 1699 return Tmp; 1700 } 1701 case Instruction::Shl: { 1702 const APInt *ShAmt; 1703 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1704 // shl destroys sign bits. 1705 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1706 Tmp2 = ShAmt->getZExtValue(); 1707 if (Tmp2 >= TyBits || // Bad shift. 1708 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1709 return Tmp - Tmp2; 1710 } 1711 break; 1712 } 1713 case Instruction::And: 1714 case Instruction::Or: 1715 case Instruction::Xor: // NOT is handled here. 1716 // Logical binary ops preserve the number of sign bits at the worst. 1717 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1718 if (Tmp != 1) { 1719 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1720 FirstAnswer = std::min(Tmp, Tmp2); 1721 // We computed what we know about the sign bits as our first 1722 // answer. Now proceed to the generic code that uses 1723 // computeKnownBits, and pick whichever answer is better. 1724 } 1725 break; 1726 1727 case Instruction::Select: 1728 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1729 if (Tmp == 1) return 1; // Early out. 1730 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q); 1731 return std::min(Tmp, Tmp2); 1732 1733 case Instruction::Add: 1734 // Add can have at most one carry bit. Thus we know that the output 1735 // is, at worst, one more bit than the inputs. 1736 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1737 if (Tmp == 1) return 1; // Early out. 1738 1739 // Special case decrementing a value (ADD X, -1): 1740 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1741 if (CRHS->isAllOnesValue()) { 1742 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1743 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1744 1745 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1746 // sign bits set. 1747 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1748 return TyBits; 1749 1750 // If we are subtracting one from a positive number, there is no carry 1751 // out of the result. 1752 if (KnownZero.isNegative()) 1753 return Tmp; 1754 } 1755 1756 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1757 if (Tmp2 == 1) return 1; 1758 return std::min(Tmp, Tmp2)-1; 1759 1760 case Instruction::Sub: 1761 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1762 if (Tmp2 == 1) return 1; 1763 1764 // Handle NEG. 1765 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1766 if (CLHS->isNullValue()) { 1767 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1768 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 1769 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1770 // sign bits set. 1771 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1772 return TyBits; 1773 1774 // If the input is known to be positive (the sign bit is known clear), 1775 // the output of the NEG has the same number of sign bits as the input. 1776 if (KnownZero.isNegative()) 1777 return Tmp2; 1778 1779 // Otherwise, we treat this like a SUB. 1780 } 1781 1782 // Sub can have at most one carry bit. Thus we know that the output 1783 // is, at worst, one more bit than the inputs. 1784 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1785 if (Tmp == 1) return 1; // Early out. 1786 return std::min(Tmp, Tmp2)-1; 1787 1788 case Instruction::PHI: { 1789 PHINode *PN = cast<PHINode>(U); 1790 // Don't analyze large in-degree PHIs. 1791 if (PN->getNumIncomingValues() > 4) break; 1792 1793 // Take the minimum of all incoming values. This can't infinitely loop 1794 // because of our depth threshold. 1795 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q); 1796 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1797 if (Tmp == 1) return Tmp; 1798 Tmp = std::min(Tmp, 1799 ComputeNumSignBits(PN->getIncomingValue(i), TD, 1800 Depth+1, Q)); 1801 } 1802 return Tmp; 1803 } 1804 1805 case Instruction::Trunc: 1806 // FIXME: it's tricky to do anything useful for this, but it is an important 1807 // case for targets like X86. 1808 break; 1809 } 1810 1811 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1812 // use this information. 1813 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1814 APInt Mask; 1815 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); 1816 1817 if (KnownZero.isNegative()) { // sign bit is 0 1818 Mask = KnownZero; 1819 } else if (KnownOne.isNegative()) { // sign bit is 1; 1820 Mask = KnownOne; 1821 } else { 1822 // Nothing known. 1823 return FirstAnswer; 1824 } 1825 1826 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1827 // the number of identical bits in the top of the input value. 1828 Mask = ~Mask; 1829 Mask <<= Mask.getBitWidth()-TyBits; 1830 // Return # leading zeros. We use 'min' here in case Val was zero before 1831 // shifting. We don't want to return '64' as for an i32 "0". 1832 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1833 } 1834 1835 /// ComputeMultiple - This function computes the integer multiple of Base that 1836 /// equals V. If successful, it returns true and returns the multiple in 1837 /// Multiple. If unsuccessful, it returns false. It looks 1838 /// through SExt instructions only if LookThroughSExt is true. 1839 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1840 bool LookThroughSExt, unsigned Depth) { 1841 const unsigned MaxDepth = 6; 1842 1843 assert(V && "No Value?"); 1844 assert(Depth <= MaxDepth && "Limit Search Depth"); 1845 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1846 1847 Type *T = V->getType(); 1848 1849 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1850 1851 if (Base == 0) 1852 return false; 1853 1854 if (Base == 1) { 1855 Multiple = V; 1856 return true; 1857 } 1858 1859 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1860 Constant *BaseVal = ConstantInt::get(T, Base); 1861 if (CO && CO == BaseVal) { 1862 // Multiple is 1. 1863 Multiple = ConstantInt::get(T, 1); 1864 return true; 1865 } 1866 1867 if (CI && CI->getZExtValue() % Base == 0) { 1868 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1869 return true; 1870 } 1871 1872 if (Depth == MaxDepth) return false; // Limit search depth. 1873 1874 Operator *I = dyn_cast<Operator>(V); 1875 if (!I) return false; 1876 1877 switch (I->getOpcode()) { 1878 default: break; 1879 case Instruction::SExt: 1880 if (!LookThroughSExt) return false; 1881 // otherwise fall through to ZExt 1882 case Instruction::ZExt: 1883 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1884 LookThroughSExt, Depth+1); 1885 case Instruction::Shl: 1886 case Instruction::Mul: { 1887 Value *Op0 = I->getOperand(0); 1888 Value *Op1 = I->getOperand(1); 1889 1890 if (I->getOpcode() == Instruction::Shl) { 1891 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1892 if (!Op1CI) return false; 1893 // Turn Op0 << Op1 into Op0 * 2^Op1 1894 APInt Op1Int = Op1CI->getValue(); 1895 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1896 APInt API(Op1Int.getBitWidth(), 0); 1897 API.setBit(BitToSet); 1898 Op1 = ConstantInt::get(V->getContext(), API); 1899 } 1900 1901 Value *Mul0 = nullptr; 1902 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1903 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1904 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1905 if (Op1C->getType()->getPrimitiveSizeInBits() < 1906 MulC->getType()->getPrimitiveSizeInBits()) 1907 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1908 if (Op1C->getType()->getPrimitiveSizeInBits() > 1909 MulC->getType()->getPrimitiveSizeInBits()) 1910 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1911 1912 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1913 Multiple = ConstantExpr::getMul(MulC, Op1C); 1914 return true; 1915 } 1916 1917 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1918 if (Mul0CI->getValue() == 1) { 1919 // V == Base * Op1, so return Op1 1920 Multiple = Op1; 1921 return true; 1922 } 1923 } 1924 1925 Value *Mul1 = nullptr; 1926 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1927 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1928 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1929 if (Op0C->getType()->getPrimitiveSizeInBits() < 1930 MulC->getType()->getPrimitiveSizeInBits()) 1931 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1932 if (Op0C->getType()->getPrimitiveSizeInBits() > 1933 MulC->getType()->getPrimitiveSizeInBits()) 1934 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1935 1936 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1937 Multiple = ConstantExpr::getMul(MulC, Op0C); 1938 return true; 1939 } 1940 1941 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1942 if (Mul1CI->getValue() == 1) { 1943 // V == Base * Op0, so return Op0 1944 Multiple = Op0; 1945 return true; 1946 } 1947 } 1948 } 1949 } 1950 1951 // We could not determine if V is a multiple of Base. 1952 return false; 1953 } 1954 1955 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1956 /// value is never equal to -0.0. 1957 /// 1958 /// NOTE: this function will need to be revisited when we support non-default 1959 /// rounding modes! 1960 /// 1961 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1962 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1963 return !CFP->getValueAPF().isNegZero(); 1964 1965 if (Depth == 6) 1966 return 1; // Limit search depth. 1967 1968 const Operator *I = dyn_cast<Operator>(V); 1969 if (!I) return false; 1970 1971 // Check if the nsz fast-math flag is set 1972 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 1973 if (FPO->hasNoSignedZeros()) 1974 return true; 1975 1976 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1977 if (I->getOpcode() == Instruction::FAdd) 1978 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 1979 if (CFP->isNullValue()) 1980 return true; 1981 1982 // sitofp and uitofp turn into +0.0 for zero. 1983 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1984 return true; 1985 1986 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1987 // sqrt(-0.0) = -0.0, no other negative results are possible. 1988 if (II->getIntrinsicID() == Intrinsic::sqrt) 1989 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1990 1991 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1992 if (const Function *F = CI->getCalledFunction()) { 1993 if (F->isDeclaration()) { 1994 // abs(x) != -0.0 1995 if (F->getName() == "abs") return true; 1996 // fabs[lf](x) != -0.0 1997 if (F->getName() == "fabs") return true; 1998 if (F->getName() == "fabsf") return true; 1999 if (F->getName() == "fabsl") return true; 2000 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2001 F->getName() == "sqrtl") 2002 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2003 } 2004 } 2005 2006 return false; 2007 } 2008 2009 /// isBytewiseValue - If the specified value can be set by repeating the same 2010 /// byte in memory, return the i8 value that it is represented with. This is 2011 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2012 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2013 /// byte store (e.g. i16 0x1234), return null. 2014 Value *llvm::isBytewiseValue(Value *V) { 2015 // All byte-wide stores are splatable, even of arbitrary variables. 2016 if (V->getType()->isIntegerTy(8)) return V; 2017 2018 // Handle 'null' ConstantArrayZero etc. 2019 if (Constant *C = dyn_cast<Constant>(V)) 2020 if (C->isNullValue()) 2021 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2022 2023 // Constant float and double values can be handled as integer values if the 2024 // corresponding integer value is "byteable". An important case is 0.0. 2025 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2026 if (CFP->getType()->isFloatTy()) 2027 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2028 if (CFP->getType()->isDoubleTy()) 2029 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2030 // Don't handle long double formats, which have strange constraints. 2031 } 2032 2033 // We can handle constant integers that are power of two in size and a 2034 // multiple of 8 bits. 2035 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2036 unsigned Width = CI->getBitWidth(); 2037 if (isPowerOf2_32(Width) && Width > 8) { 2038 // We can handle this value if the recursive binary decomposition is the 2039 // same at all levels. 2040 APInt Val = CI->getValue(); 2041 APInt Val2; 2042 while (Val.getBitWidth() != 8) { 2043 unsigned NextWidth = Val.getBitWidth()/2; 2044 Val2 = Val.lshr(NextWidth); 2045 Val2 = Val2.trunc(Val.getBitWidth()/2); 2046 Val = Val.trunc(Val.getBitWidth()/2); 2047 2048 // If the top/bottom halves aren't the same, reject it. 2049 if (Val != Val2) 2050 return nullptr; 2051 } 2052 return ConstantInt::get(V->getContext(), Val); 2053 } 2054 } 2055 2056 // A ConstantDataArray/Vector is splatable if all its members are equal and 2057 // also splatable. 2058 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2059 Value *Elt = CA->getElementAsConstant(0); 2060 Value *Val = isBytewiseValue(Elt); 2061 if (!Val) 2062 return nullptr; 2063 2064 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2065 if (CA->getElementAsConstant(I) != Elt) 2066 return nullptr; 2067 2068 return Val; 2069 } 2070 2071 // Conceptually, we could handle things like: 2072 // %a = zext i8 %X to i16 2073 // %b = shl i16 %a, 8 2074 // %c = or i16 %a, %b 2075 // but until there is an example that actually needs this, it doesn't seem 2076 // worth worrying about. 2077 return nullptr; 2078 } 2079 2080 2081 // This is the recursive version of BuildSubAggregate. It takes a few different 2082 // arguments. Idxs is the index within the nested struct From that we are 2083 // looking at now (which is of type IndexedType). IdxSkip is the number of 2084 // indices from Idxs that should be left out when inserting into the resulting 2085 // struct. To is the result struct built so far, new insertvalue instructions 2086 // build on that. 2087 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2088 SmallVectorImpl<unsigned> &Idxs, 2089 unsigned IdxSkip, 2090 Instruction *InsertBefore) { 2091 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2092 if (STy) { 2093 // Save the original To argument so we can modify it 2094 Value *OrigTo = To; 2095 // General case, the type indexed by Idxs is a struct 2096 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2097 // Process each struct element recursively 2098 Idxs.push_back(i); 2099 Value *PrevTo = To; 2100 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2101 InsertBefore); 2102 Idxs.pop_back(); 2103 if (!To) { 2104 // Couldn't find any inserted value for this index? Cleanup 2105 while (PrevTo != OrigTo) { 2106 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2107 PrevTo = Del->getAggregateOperand(); 2108 Del->eraseFromParent(); 2109 } 2110 // Stop processing elements 2111 break; 2112 } 2113 } 2114 // If we successfully found a value for each of our subaggregates 2115 if (To) 2116 return To; 2117 } 2118 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2119 // the struct's elements had a value that was inserted directly. In the latter 2120 // case, perhaps we can't determine each of the subelements individually, but 2121 // we might be able to find the complete struct somewhere. 2122 2123 // Find the value that is at that particular spot 2124 Value *V = FindInsertedValue(From, Idxs); 2125 2126 if (!V) 2127 return nullptr; 2128 2129 // Insert the value in the new (sub) aggregrate 2130 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2131 "tmp", InsertBefore); 2132 } 2133 2134 // This helper takes a nested struct and extracts a part of it (which is again a 2135 // struct) into a new value. For example, given the struct: 2136 // { a, { b, { c, d }, e } } 2137 // and the indices "1, 1" this returns 2138 // { c, d }. 2139 // 2140 // It does this by inserting an insertvalue for each element in the resulting 2141 // struct, as opposed to just inserting a single struct. This will only work if 2142 // each of the elements of the substruct are known (ie, inserted into From by an 2143 // insertvalue instruction somewhere). 2144 // 2145 // All inserted insertvalue instructions are inserted before InsertBefore 2146 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2147 Instruction *InsertBefore) { 2148 assert(InsertBefore && "Must have someplace to insert!"); 2149 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2150 idx_range); 2151 Value *To = UndefValue::get(IndexedType); 2152 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2153 unsigned IdxSkip = Idxs.size(); 2154 2155 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2156 } 2157 2158 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 2159 /// the scalar value indexed is already around as a register, for example if it 2160 /// were inserted directly into the aggregrate. 2161 /// 2162 /// If InsertBefore is not null, this function will duplicate (modified) 2163 /// insertvalues when a part of a nested struct is extracted. 2164 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2165 Instruction *InsertBefore) { 2166 // Nothing to index? Just return V then (this is useful at the end of our 2167 // recursion). 2168 if (idx_range.empty()) 2169 return V; 2170 // We have indices, so V should have an indexable type. 2171 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2172 "Not looking at a struct or array?"); 2173 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2174 "Invalid indices for type?"); 2175 2176 if (Constant *C = dyn_cast<Constant>(V)) { 2177 C = C->getAggregateElement(idx_range[0]); 2178 if (!C) return nullptr; 2179 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2180 } 2181 2182 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2183 // Loop the indices for the insertvalue instruction in parallel with the 2184 // requested indices 2185 const unsigned *req_idx = idx_range.begin(); 2186 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2187 i != e; ++i, ++req_idx) { 2188 if (req_idx == idx_range.end()) { 2189 // We can't handle this without inserting insertvalues 2190 if (!InsertBefore) 2191 return nullptr; 2192 2193 // The requested index identifies a part of a nested aggregate. Handle 2194 // this specially. For example, 2195 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2196 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2197 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2198 // This can be changed into 2199 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2200 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2201 // which allows the unused 0,0 element from the nested struct to be 2202 // removed. 2203 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2204 InsertBefore); 2205 } 2206 2207 // This insert value inserts something else than what we are looking for. 2208 // See if the (aggregrate) value inserted into has the value we are 2209 // looking for, then. 2210 if (*req_idx != *i) 2211 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2212 InsertBefore); 2213 } 2214 // If we end up here, the indices of the insertvalue match with those 2215 // requested (though possibly only partially). Now we recursively look at 2216 // the inserted value, passing any remaining indices. 2217 return FindInsertedValue(I->getInsertedValueOperand(), 2218 makeArrayRef(req_idx, idx_range.end()), 2219 InsertBefore); 2220 } 2221 2222 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2223 // If we're extracting a value from an aggregrate that was extracted from 2224 // something else, we can extract from that something else directly instead. 2225 // However, we will need to chain I's indices with the requested indices. 2226 2227 // Calculate the number of indices required 2228 unsigned size = I->getNumIndices() + idx_range.size(); 2229 // Allocate some space to put the new indices in 2230 SmallVector<unsigned, 5> Idxs; 2231 Idxs.reserve(size); 2232 // Add indices from the extract value instruction 2233 Idxs.append(I->idx_begin(), I->idx_end()); 2234 2235 // Add requested indices 2236 Idxs.append(idx_range.begin(), idx_range.end()); 2237 2238 assert(Idxs.size() == size 2239 && "Number of indices added not correct?"); 2240 2241 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2242 } 2243 // Otherwise, we don't know (such as, extracting from a function return value 2244 // or load instruction) 2245 return nullptr; 2246 } 2247 2248 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 2249 /// it can be expressed as a base pointer plus a constant offset. Return the 2250 /// base and offset to the caller. 2251 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2252 const DataLayout *DL) { 2253 // Without DataLayout, conservatively assume 64-bit offsets, which is 2254 // the widest we support. 2255 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64; 2256 APInt ByteOffset(BitWidth, 0); 2257 while (1) { 2258 if (Ptr->getType()->isVectorTy()) 2259 break; 2260 2261 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2262 if (DL) { 2263 APInt GEPOffset(BitWidth, 0); 2264 if (!GEP->accumulateConstantOffset(*DL, GEPOffset)) 2265 break; 2266 2267 ByteOffset += GEPOffset; 2268 } 2269 2270 Ptr = GEP->getPointerOperand(); 2271 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2272 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2273 Ptr = cast<Operator>(Ptr)->getOperand(0); 2274 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2275 if (GA->mayBeOverridden()) 2276 break; 2277 Ptr = GA->getAliasee(); 2278 } else { 2279 break; 2280 } 2281 } 2282 Offset = ByteOffset.getSExtValue(); 2283 return Ptr; 2284 } 2285 2286 2287 /// getConstantStringInfo - This function computes the length of a 2288 /// null-terminated C string pointed to by V. If successful, it returns true 2289 /// and returns the string in Str. If unsuccessful, it returns false. 2290 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2291 uint64_t Offset, bool TrimAtNul) { 2292 assert(V); 2293 2294 // Look through bitcast instructions and geps. 2295 V = V->stripPointerCasts(); 2296 2297 // If the value is a GEP instructionor constant expression, treat it as an 2298 // offset. 2299 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2300 // Make sure the GEP has exactly three arguments. 2301 if (GEP->getNumOperands() != 3) 2302 return false; 2303 2304 // Make sure the index-ee is a pointer to array of i8. 2305 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2306 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2307 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2308 return false; 2309 2310 // Check to make sure that the first operand of the GEP is an integer and 2311 // has value 0 so that we are sure we're indexing into the initializer. 2312 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2313 if (!FirstIdx || !FirstIdx->isZero()) 2314 return false; 2315 2316 // If the second index isn't a ConstantInt, then this is a variable index 2317 // into the array. If this occurs, we can't say anything meaningful about 2318 // the string. 2319 uint64_t StartIdx = 0; 2320 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2321 StartIdx = CI->getZExtValue(); 2322 else 2323 return false; 2324 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 2325 } 2326 2327 // The GEP instruction, constant or instruction, must reference a global 2328 // variable that is a constant and is initialized. The referenced constant 2329 // initializer is the array that we'll use for optimization. 2330 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2331 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2332 return false; 2333 2334 // Handle the all-zeros case 2335 if (GV->getInitializer()->isNullValue()) { 2336 // This is a degenerate case. The initializer is constant zero so the 2337 // length of the string must be zero. 2338 Str = ""; 2339 return true; 2340 } 2341 2342 // Must be a Constant Array 2343 const ConstantDataArray *Array = 2344 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2345 if (!Array || !Array->isString()) 2346 return false; 2347 2348 // Get the number of elements in the array 2349 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2350 2351 // Start out with the entire array in the StringRef. 2352 Str = Array->getAsString(); 2353 2354 if (Offset > NumElts) 2355 return false; 2356 2357 // Skip over 'offset' bytes. 2358 Str = Str.substr(Offset); 2359 2360 if (TrimAtNul) { 2361 // Trim off the \0 and anything after it. If the array is not nul 2362 // terminated, we just return the whole end of string. The client may know 2363 // some other way that the string is length-bound. 2364 Str = Str.substr(0, Str.find('\0')); 2365 } 2366 return true; 2367 } 2368 2369 // These next two are very similar to the above, but also look through PHI 2370 // nodes. 2371 // TODO: See if we can integrate these two together. 2372 2373 /// GetStringLengthH - If we can compute the length of the string pointed to by 2374 /// the specified pointer, return 'len+1'. If we can't, return 0. 2375 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2376 // Look through noop bitcast instructions. 2377 V = V->stripPointerCasts(); 2378 2379 // If this is a PHI node, there are two cases: either we have already seen it 2380 // or we haven't. 2381 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2382 if (!PHIs.insert(PN)) 2383 return ~0ULL; // already in the set. 2384 2385 // If it was new, see if all the input strings are the same length. 2386 uint64_t LenSoFar = ~0ULL; 2387 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2388 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 2389 if (Len == 0) return 0; // Unknown length -> unknown. 2390 2391 if (Len == ~0ULL) continue; 2392 2393 if (Len != LenSoFar && LenSoFar != ~0ULL) 2394 return 0; // Disagree -> unknown. 2395 LenSoFar = Len; 2396 } 2397 2398 // Success, all agree. 2399 return LenSoFar; 2400 } 2401 2402 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2403 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2404 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2405 if (Len1 == 0) return 0; 2406 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2407 if (Len2 == 0) return 0; 2408 if (Len1 == ~0ULL) return Len2; 2409 if (Len2 == ~0ULL) return Len1; 2410 if (Len1 != Len2) return 0; 2411 return Len1; 2412 } 2413 2414 // Otherwise, see if we can read the string. 2415 StringRef StrData; 2416 if (!getConstantStringInfo(V, StrData)) 2417 return 0; 2418 2419 return StrData.size()+1; 2420 } 2421 2422 /// GetStringLength - If we can compute the length of the string pointed to by 2423 /// the specified pointer, return 'len+1'. If we can't, return 0. 2424 uint64_t llvm::GetStringLength(Value *V) { 2425 if (!V->getType()->isPointerTy()) return 0; 2426 2427 SmallPtrSet<PHINode*, 32> PHIs; 2428 uint64_t Len = GetStringLengthH(V, PHIs); 2429 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2430 // an empty string as a length. 2431 return Len == ~0ULL ? 1 : Len; 2432 } 2433 2434 Value * 2435 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 2436 if (!V->getType()->isPointerTy()) 2437 return V; 2438 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2439 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2440 V = GEP->getPointerOperand(); 2441 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2442 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2443 V = cast<Operator>(V)->getOperand(0); 2444 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2445 if (GA->mayBeOverridden()) 2446 return V; 2447 V = GA->getAliasee(); 2448 } else { 2449 // See if InstructionSimplify knows any relevant tricks. 2450 if (Instruction *I = dyn_cast<Instruction>(V)) 2451 // TODO: Acquire a DominatorTree and AssumptionTracker and use them. 2452 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) { 2453 V = Simplified; 2454 continue; 2455 } 2456 2457 return V; 2458 } 2459 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2460 } 2461 return V; 2462 } 2463 2464 void 2465 llvm::GetUnderlyingObjects(Value *V, 2466 SmallVectorImpl<Value *> &Objects, 2467 const DataLayout *TD, 2468 unsigned MaxLookup) { 2469 SmallPtrSet<Value *, 4> Visited; 2470 SmallVector<Value *, 4> Worklist; 2471 Worklist.push_back(V); 2472 do { 2473 Value *P = Worklist.pop_back_val(); 2474 P = GetUnderlyingObject(P, TD, MaxLookup); 2475 2476 if (!Visited.insert(P)) 2477 continue; 2478 2479 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2480 Worklist.push_back(SI->getTrueValue()); 2481 Worklist.push_back(SI->getFalseValue()); 2482 continue; 2483 } 2484 2485 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2486 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2487 Worklist.push_back(PN->getIncomingValue(i)); 2488 continue; 2489 } 2490 2491 Objects.push_back(P); 2492 } while (!Worklist.empty()); 2493 } 2494 2495 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 2496 /// are lifetime markers. 2497 /// 2498 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2499 for (const User *U : V->users()) { 2500 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2501 if (!II) return false; 2502 2503 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2504 II->getIntrinsicID() != Intrinsic::lifetime_end) 2505 return false; 2506 } 2507 return true; 2508 } 2509 2510 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 2511 const DataLayout *TD) { 2512 const Operator *Inst = dyn_cast<Operator>(V); 2513 if (!Inst) 2514 return false; 2515 2516 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 2517 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 2518 if (C->canTrap()) 2519 return false; 2520 2521 switch (Inst->getOpcode()) { 2522 default: 2523 return true; 2524 case Instruction::UDiv: 2525 case Instruction::URem: 2526 // x / y is undefined if y == 0, but calculations like x / 3 are safe. 2527 return isKnownNonZero(Inst->getOperand(1), TD); 2528 case Instruction::SDiv: 2529 case Instruction::SRem: { 2530 Value *Op = Inst->getOperand(1); 2531 // x / y is undefined if y == 0 2532 if (!isKnownNonZero(Op, TD)) 2533 return false; 2534 // x / y might be undefined if y == -1 2535 unsigned BitWidth = getBitWidth(Op->getType(), TD); 2536 if (BitWidth == 0) 2537 return false; 2538 APInt KnownZero(BitWidth, 0); 2539 APInt KnownOne(BitWidth, 0); 2540 computeKnownBits(Op, KnownZero, KnownOne, TD); 2541 return !!KnownZero; 2542 } 2543 case Instruction::Load: { 2544 const LoadInst *LI = cast<LoadInst>(Inst); 2545 if (!LI->isUnordered() || 2546 // Speculative load may create a race that did not exist in the source. 2547 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 2548 return false; 2549 return LI->getPointerOperand()->isDereferenceablePointer(TD); 2550 } 2551 case Instruction::Call: { 2552 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2553 switch (II->getIntrinsicID()) { 2554 // These synthetic intrinsics have no side-effects and just mark 2555 // information about their operands. 2556 // FIXME: There are other no-op synthetic instructions that potentially 2557 // should be considered at least *safe* to speculate... 2558 case Intrinsic::dbg_declare: 2559 case Intrinsic::dbg_value: 2560 return true; 2561 2562 case Intrinsic::bswap: 2563 case Intrinsic::ctlz: 2564 case Intrinsic::ctpop: 2565 case Intrinsic::cttz: 2566 case Intrinsic::objectsize: 2567 case Intrinsic::sadd_with_overflow: 2568 case Intrinsic::smul_with_overflow: 2569 case Intrinsic::ssub_with_overflow: 2570 case Intrinsic::uadd_with_overflow: 2571 case Intrinsic::umul_with_overflow: 2572 case Intrinsic::usub_with_overflow: 2573 return true; 2574 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2575 // errno like libm sqrt would. 2576 case Intrinsic::sqrt: 2577 case Intrinsic::fma: 2578 case Intrinsic::fmuladd: 2579 case Intrinsic::fabs: 2580 return true; 2581 // TODO: some fp intrinsics are marked as having the same error handling 2582 // as libm. They're safe to speculate when they won't error. 2583 // TODO: are convert_{from,to}_fp16 safe? 2584 // TODO: can we list target-specific intrinsics here? 2585 default: break; 2586 } 2587 } 2588 return false; // The called function could have undefined behavior or 2589 // side-effects, even if marked readnone nounwind. 2590 } 2591 case Instruction::VAArg: 2592 case Instruction::Alloca: 2593 case Instruction::Invoke: 2594 case Instruction::PHI: 2595 case Instruction::Store: 2596 case Instruction::Ret: 2597 case Instruction::Br: 2598 case Instruction::IndirectBr: 2599 case Instruction::Switch: 2600 case Instruction::Unreachable: 2601 case Instruction::Fence: 2602 case Instruction::LandingPad: 2603 case Instruction::AtomicRMW: 2604 case Instruction::AtomicCmpXchg: 2605 case Instruction::Resume: 2606 return false; // Misc instructions which have effects 2607 } 2608 } 2609 2610 /// isKnownNonNull - Return true if we know that the specified value is never 2611 /// null. 2612 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2613 // Alloca never returns null, malloc might. 2614 if (isa<AllocaInst>(V)) return true; 2615 2616 // A byval, inalloca, or nonnull argument is never null. 2617 if (const Argument *A = dyn_cast<Argument>(V)) 2618 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 2619 2620 // Global values are not null unless extern weak. 2621 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2622 return !GV->hasExternalWeakLinkage(); 2623 2624 if (ImmutableCallSite CS = V) 2625 if (CS.isReturnNonNull()) 2626 return true; 2627 2628 // operator new never returns null. 2629 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2630 return true; 2631 2632 return false; 2633 } 2634