1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55 /// 0). For vector types, returns the element type's bitwidth.
56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
57   if (unsigned BitWidth = Ty->getScalarSizeInBits())
58     return BitWidth;
59 
60   return DL.getPointerTypeSizeInBits(Ty);
61 }
62 
63 namespace {
64 // Simplifying using an assume can only be done in a particular control-flow
65 // context (the context instruction provides that context). If an assume and
66 // the context instruction are not in the same block then the DT helps in
67 // figuring out if we can use it.
68 struct Query {
69   const DataLayout &DL;
70   AssumptionCache *AC;
71   const Instruction *CxtI;
72   const DominatorTree *DT;
73 
74   /// Set of assumptions that should be excluded from further queries.
75   /// This is because of the potential for mutual recursion to cause
76   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77   /// classic case of this is assume(x = y), which will attempt to determine
78   /// bits in x from bits in y, which will attempt to determine bits in y from
79   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82   /// on.
83   std::array<const Value*, MaxDepth> Excluded;
84   unsigned NumExcluded;
85 
86   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87         const DominatorTree *DT)
88       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
89 
90   Query(const Query &Q, const Value *NewExcl)
91       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92     Excluded = Q.Excluded;
93     Excluded[NumExcluded++] = NewExcl;
94     assert(NumExcluded <= Excluded.size());
95   }
96 
97   bool isExcluded(const Value *Value) const {
98     if (NumExcluded == 0)
99       return false;
100     auto End = Excluded.begin() + NumExcluded;
101     return std::find(Excluded.begin(), End, Value) != End;
102   }
103 };
104 } // end anonymous namespace
105 
106 // Given the provided Value and, potentially, a context instruction, return
107 // the preferred context instruction (if any).
108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109   // If we've been provided with a context instruction, then use that (provided
110   // it has been inserted).
111   if (CxtI && CxtI->getParent())
112     return CxtI;
113 
114   // If the value is really an already-inserted instruction, then use that.
115   CxtI = dyn_cast<Instruction>(V);
116   if (CxtI && CxtI->getParent())
117     return CxtI;
118 
119   return nullptr;
120 }
121 
122 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
123                              unsigned Depth, const Query &Q);
124 
125 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
126                             const DataLayout &DL, unsigned Depth,
127                             AssumptionCache *AC, const Instruction *CxtI,
128                             const DominatorTree *DT) {
129   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130                      Query(DL, AC, safeCxtI(V, CxtI), DT));
131 }
132 
133 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134                                AssumptionCache *AC, const Instruction *CxtI,
135                                const DominatorTree *DT) {
136   assert(LHS->getType() == RHS->getType() &&
137          "LHS and RHS should have the same type");
138   assert(LHS->getType()->isIntOrIntVectorTy() &&
139          "LHS and RHS should be integers");
140   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146 }
147 
148 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
149                            unsigned Depth, const Query &Q);
150 
151 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
152                           const DataLayout &DL, unsigned Depth,
153                           AssumptionCache *AC, const Instruction *CxtI,
154                           const DominatorTree *DT) {
155   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156                    Query(DL, AC, safeCxtI(V, CxtI), DT));
157 }
158 
159 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
160                                    const Query &Q);
161 
162 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
163                                   unsigned Depth, AssumptionCache *AC,
164                                   const Instruction *CxtI,
165                                   const DominatorTree *DT) {
166   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
167                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
168 }
169 
170 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
171 
172 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173                           AssumptionCache *AC, const Instruction *CxtI,
174                           const DominatorTree *DT) {
175   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
176 }
177 
178 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179                               AssumptionCache *AC, const Instruction *CxtI,
180                               const DominatorTree *DT) {
181   bool NonNegative, Negative;
182   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183   return NonNegative;
184 }
185 
186 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187                            AssumptionCache *AC, const Instruction *CxtI,
188                            const DominatorTree *DT) {
189   if (auto *CI = dyn_cast<ConstantInt>(V))
190     return CI->getValue().isStrictlyPositive();
191 
192   // TODO: We'd doing two recursive queries here.  We should factor this such
193   // that only a single query is needed.
194   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196 }
197 
198 bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199                            AssumptionCache *AC, const Instruction *CxtI,
200                            const DominatorTree *DT) {
201   bool NonNegative, Negative;
202   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203   return Negative;
204 }
205 
206 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
207 
208 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209                           AssumptionCache *AC, const Instruction *CxtI,
210                           const DominatorTree *DT) {
211   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
213                                          DT));
214 }
215 
216 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217                               const Query &Q);
218 
219 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220                              unsigned Depth, AssumptionCache *AC,
221                              const Instruction *CxtI, const DominatorTree *DT) {
222   return ::MaskedValueIsZero(V, Mask, Depth,
223                              Query(DL, AC, safeCxtI(V, CxtI), DT));
224 }
225 
226 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
227 
228 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229                                   unsigned Depth, AssumptionCache *AC,
230                                   const Instruction *CxtI,
231                                   const DominatorTree *DT) {
232   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
233 }
234 
235 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236                                    APInt &KnownZero, APInt &KnownOne,
237                                    APInt &KnownZero2, APInt &KnownOne2,
238                                    unsigned Depth, const Query &Q) {
239   if (!Add) {
240     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241       // We know that the top bits of C-X are clear if X contains less bits
242       // than C (i.e. no wrap-around can happen).  For example, 20-X is
243       // positive if we can prove that X is >= 0 and < 16.
244       if (!CLHS->getValue().isNegative()) {
245         unsigned BitWidth = KnownZero.getBitWidth();
246         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247         // NLZ can't be BitWidth with no sign bit
248         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
249         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
250 
251         // If all of the MaskV bits are known to be zero, then we know the
252         // output top bits are zero, because we now know that the output is
253         // from [0-C].
254         if ((KnownZero2 & MaskV) == MaskV) {
255           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256           // Top bits known zero.
257           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258         }
259       }
260     }
261   }
262 
263   unsigned BitWidth = KnownZero.getBitWidth();
264 
265   // If an initial sequence of bits in the result is not needed, the
266   // corresponding bits in the operands are not needed.
267   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
268   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
270 
271   // Carry in a 1 for a subtract, rather than a 0.
272   APInt CarryIn(BitWidth, 0);
273   if (!Add) {
274     // Sum = LHS + ~RHS + 1
275     std::swap(KnownZero2, KnownOne2);
276     CarryIn.setBit(0);
277   }
278 
279   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281 
282   // Compute known bits of the carry.
283   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285 
286   // Compute set of known bits (where all three relevant bits are known).
287   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288   APInt RHSKnown = KnownZero2 | KnownOne2;
289   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290   APInt Known = LHSKnown & RHSKnown & CarryKnown;
291 
292   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293          "known bits of sum differ");
294 
295   // Compute known bits of the result.
296   KnownZero = ~PossibleSumOne & Known;
297   KnownOne = PossibleSumOne & Known;
298 
299   // Are we still trying to solve for the sign bit?
300   if (!Known.isNegative()) {
301     if (NSW) {
302       // Adding two non-negative numbers, or subtracting a negative number from
303       // a non-negative one, can't wrap into negative.
304       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305         KnownZero |= APInt::getSignBit(BitWidth);
306       // Adding two negative numbers, or subtracting a non-negative number from
307       // a negative one, can't wrap into non-negative.
308       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309         KnownOne |= APInt::getSignBit(BitWidth);
310     }
311   }
312 }
313 
314 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315                                 APInt &KnownZero, APInt &KnownOne,
316                                 APInt &KnownZero2, APInt &KnownOne2,
317                                 unsigned Depth, const Query &Q) {
318   unsigned BitWidth = KnownZero.getBitWidth();
319   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
321 
322   bool isKnownNegative = false;
323   bool isKnownNonNegative = false;
324   // If the multiplication is known not to overflow, compute the sign bit.
325   if (NSW) {
326     if (Op0 == Op1) {
327       // The product of a number with itself is non-negative.
328       isKnownNonNegative = true;
329     } else {
330       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332       bool isKnownNegativeOp1 = KnownOne.isNegative();
333       bool isKnownNegativeOp0 = KnownOne2.isNegative();
334       // The product of two numbers with the same sign is non-negative.
335       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337       // The product of a negative number and a non-negative number is either
338       // negative or zero.
339       if (!isKnownNonNegative)
340         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
341                            isKnownNonZero(Op0, Depth, Q)) ||
342                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
343                            isKnownNonZero(Op1, Depth, Q));
344     }
345   }
346 
347   // If low bits are zero in either operand, output low known-0 bits.
348   // Also compute a conservative estimate for high known-0 bits.
349   // More trickiness is possible, but this is sufficient for the
350   // interesting case of alignment computation.
351   KnownOne.clearAllBits();
352   unsigned TrailZ = KnownZero.countTrailingOnes() +
353                     KnownZero2.countTrailingOnes();
354   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
355                              KnownZero2.countLeadingOnes(),
356                              BitWidth) - BitWidth;
357 
358   TrailZ = std::min(TrailZ, BitWidth);
359   LeadZ = std::min(LeadZ, BitWidth);
360   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361               APInt::getHighBitsSet(BitWidth, LeadZ);
362 
363   // Only make use of no-wrap flags if we failed to compute the sign bit
364   // directly.  This matters if the multiplication always overflows, in
365   // which case we prefer to follow the result of the direct computation,
366   // though as the program is invoking undefined behaviour we can choose
367   // whatever we like here.
368   if (isKnownNonNegative && !KnownOne.isNegative())
369     KnownZero.setBit(BitWidth - 1);
370   else if (isKnownNegative && !KnownZero.isNegative())
371     KnownOne.setBit(BitWidth - 1);
372 }
373 
374 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
375                                              APInt &KnownZero,
376                                              APInt &KnownOne) {
377   unsigned BitWidth = KnownZero.getBitWidth();
378   unsigned NumRanges = Ranges.getNumOperands() / 2;
379   assert(NumRanges >= 1);
380 
381   KnownZero.setAllBits();
382   KnownOne.setAllBits();
383 
384   for (unsigned i = 0; i < NumRanges; ++i) {
385     ConstantInt *Lower =
386         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387     ConstantInt *Upper =
388         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
389     ConstantRange Range(Lower->getValue(), Upper->getValue());
390 
391     // The first CommonPrefixBits of all values in Range are equal.
392     unsigned CommonPrefixBits =
393         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394 
395     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396     KnownOne &= Range.getUnsignedMax() & Mask;
397     KnownZero &= ~Range.getUnsignedMax() & Mask;
398   }
399 }
400 
401 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402   SmallVector<const Value *, 16> WorkSet(1, I);
403   SmallPtrSet<const Value *, 32> Visited;
404   SmallPtrSet<const Value *, 16> EphValues;
405 
406   // The instruction defining an assumption's condition itself is always
407   // considered ephemeral to that assumption (even if it has other
408   // non-ephemeral users). See r246696's test case for an example.
409   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410     return true;
411 
412   while (!WorkSet.empty()) {
413     const Value *V = WorkSet.pop_back_val();
414     if (!Visited.insert(V).second)
415       continue;
416 
417     // If all uses of this value are ephemeral, then so is this value.
418     if (std::all_of(V->user_begin(), V->user_end(),
419                     [&](const User *U) { return EphValues.count(U); })) {
420       if (V == E)
421         return true;
422 
423       EphValues.insert(V);
424       if (const User *U = dyn_cast<User>(V))
425         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426              J != JE; ++J) {
427           if (isSafeToSpeculativelyExecute(*J))
428             WorkSet.push_back(*J);
429         }
430     }
431   }
432 
433   return false;
434 }
435 
436 // Is this an intrinsic that cannot be speculated but also cannot trap?
437 static bool isAssumeLikeIntrinsic(const Instruction *I) {
438   if (const CallInst *CI = dyn_cast<CallInst>(I))
439     if (Function *F = CI->getCalledFunction())
440       switch (F->getIntrinsicID()) {
441       default: break;
442       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443       case Intrinsic::assume:
444       case Intrinsic::dbg_declare:
445       case Intrinsic::dbg_value:
446       case Intrinsic::invariant_start:
447       case Intrinsic::invariant_end:
448       case Intrinsic::lifetime_start:
449       case Intrinsic::lifetime_end:
450       case Intrinsic::objectsize:
451       case Intrinsic::ptr_annotation:
452       case Intrinsic::var_annotation:
453         return true;
454       }
455 
456   return false;
457 }
458 
459 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460                                     const DominatorTree *DT) {
461   Instruction *Inv = cast<Instruction>(V);
462 
463   // There are two restrictions on the use of an assume:
464   //  1. The assume must dominate the context (or the control flow must
465   //     reach the assume whenever it reaches the context).
466   //  2. The context must not be in the assume's set of ephemeral values
467   //     (otherwise we will use the assume to prove that the condition
468   //     feeding the assume is trivially true, thus causing the removal of
469   //     the assume).
470 
471   if (DT) {
472     if (DT->dominates(Inv, CxtI)) {
473       return true;
474     } else if (Inv->getParent() == CxtI->getParent()) {
475       // The context comes first, but they're both in the same block. Make sure
476       // there is nothing in between that might interrupt the control flow.
477       for (BasicBlock::const_iterator I =
478              std::next(BasicBlock::const_iterator(CxtI)),
479                                       IE(Inv); I != IE; ++I)
480         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
481           return false;
482 
483       return !isEphemeralValueOf(Inv, CxtI);
484     }
485 
486     return false;
487   }
488 
489   // When we don't have a DT, we do a limited search...
490   if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
491     return true;
492   } else if (Inv->getParent() == CxtI->getParent()) {
493     // Search forward from the assume until we reach the context (or the end
494     // of the block); the common case is that the assume will come first.
495     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496          IE = Inv->getParent()->end(); I != IE; ++I)
497       if (&*I == CxtI)
498         return true;
499 
500     // The context must come first...
501     for (BasicBlock::const_iterator I =
502            std::next(BasicBlock::const_iterator(CxtI)),
503                                     IE(Inv); I != IE; ++I)
504       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
505         return false;
506 
507     return !isEphemeralValueOf(Inv, CxtI);
508   }
509 
510   return false;
511 }
512 
513 bool llvm::isValidAssumeForContext(const Instruction *I,
514                                    const Instruction *CxtI,
515                                    const DominatorTree *DT) {
516   return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
517 }
518 
519 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
520                                        APInt &KnownOne, unsigned Depth,
521                                        const Query &Q) {
522   // Use of assumptions is context-sensitive. If we don't have a context, we
523   // cannot use them!
524   if (!Q.AC || !Q.CxtI)
525     return;
526 
527   unsigned BitWidth = KnownZero.getBitWidth();
528 
529   for (auto &AssumeVH : Q.AC->assumptions()) {
530     if (!AssumeVH)
531       continue;
532     CallInst *I = cast<CallInst>(AssumeVH);
533     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
534            "Got assumption for the wrong function!");
535     if (Q.isExcluded(I))
536       continue;
537 
538     // Warning: This loop can end up being somewhat performance sensetive.
539     // We're running this loop for once for each value queried resulting in a
540     // runtime of ~O(#assumes * #values).
541 
542     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
543            "must be an assume intrinsic");
544 
545     Value *Arg = I->getArgOperand(0);
546 
547     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548       assert(BitWidth == 1 && "assume operand is not i1?");
549       KnownZero.clearAllBits();
550       KnownOne.setAllBits();
551       return;
552     }
553 
554     // The remaining tests are all recursive, so bail out if we hit the limit.
555     if (Depth == MaxDepth)
556       continue;
557 
558     Value *A, *B;
559     auto m_V = m_CombineOr(m_Specific(V),
560                            m_CombineOr(m_PtrToInt(m_Specific(V)),
561                            m_BitCast(m_Specific(V))));
562 
563     CmpInst::Predicate Pred;
564     ConstantInt *C;
565     // assume(v = a)
566     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
567         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
568       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
569       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
570       KnownZero |= RHSKnownZero;
571       KnownOne  |= RHSKnownOne;
572     // assume(v & b = a)
573     } else if (match(Arg,
574                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
575                Pred == ICmpInst::ICMP_EQ &&
576                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
577       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
578       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
579       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
580       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
581 
582       // For those bits in the mask that are known to be one, we can propagate
583       // known bits from the RHS to V.
584       KnownZero |= RHSKnownZero & MaskKnownOne;
585       KnownOne  |= RHSKnownOne  & MaskKnownOne;
586     // assume(~(v & b) = a)
587     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588                                    m_Value(A))) &&
589                Pred == ICmpInst::ICMP_EQ &&
590                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
591       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
592       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
593       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
594       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
595 
596       // For those bits in the mask that are known to be one, we can propagate
597       // inverted known bits from the RHS to V.
598       KnownZero |= RHSKnownOne  & MaskKnownOne;
599       KnownOne  |= RHSKnownZero & MaskKnownOne;
600     // assume(v | b = a)
601     } else if (match(Arg,
602                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
603                Pred == ICmpInst::ICMP_EQ &&
604                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
606       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
607       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
608       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
609 
610       // For those bits in B that are known to be zero, we can propagate known
611       // bits from the RHS to V.
612       KnownZero |= RHSKnownZero & BKnownZero;
613       KnownOne  |= RHSKnownOne  & BKnownZero;
614     // assume(~(v | b) = a)
615     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616                                    m_Value(A))) &&
617                Pred == ICmpInst::ICMP_EQ &&
618                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
619       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
620       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
621       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
622       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
623 
624       // For those bits in B that are known to be zero, we can propagate
625       // inverted known bits from the RHS to V.
626       KnownZero |= RHSKnownOne  & BKnownZero;
627       KnownOne  |= RHSKnownZero & BKnownZero;
628     // assume(v ^ b = a)
629     } else if (match(Arg,
630                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
631                Pred == ICmpInst::ICMP_EQ &&
632                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
633       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
634       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
635       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
636       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
637 
638       // For those bits in B that are known to be zero, we can propagate known
639       // bits from the RHS to V. For those bits in B that are known to be one,
640       // we can propagate inverted known bits from the RHS to V.
641       KnownZero |= RHSKnownZero & BKnownZero;
642       KnownOne  |= RHSKnownOne  & BKnownZero;
643       KnownZero |= RHSKnownOne  & BKnownOne;
644       KnownOne  |= RHSKnownZero & BKnownOne;
645     // assume(~(v ^ b) = a)
646     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647                                    m_Value(A))) &&
648                Pred == ICmpInst::ICMP_EQ &&
649                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
650       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
651       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
652       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
653       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
654 
655       // For those bits in B that are known to be zero, we can propagate
656       // inverted known bits from the RHS to V. For those bits in B that are
657       // known to be one, we can propagate known bits from the RHS to V.
658       KnownZero |= RHSKnownOne  & BKnownZero;
659       KnownOne  |= RHSKnownZero & BKnownZero;
660       KnownZero |= RHSKnownZero & BKnownOne;
661       KnownOne  |= RHSKnownOne  & BKnownOne;
662     // assume(v << c = a)
663     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664                                    m_Value(A))) &&
665                Pred == ICmpInst::ICMP_EQ &&
666                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
668       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
669       // For those bits in RHS that are known, we can propagate them to known
670       // bits in V shifted to the right by C.
671       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
673     // assume(~(v << c) = a)
674     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675                                    m_Value(A))) &&
676                Pred == ICmpInst::ICMP_EQ &&
677                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
678       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
679       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
680       // For those bits in RHS that are known, we can propagate them inverted
681       // to known bits in V shifted to the right by C.
682       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
684     // assume(v >> c = a)
685     } else if (match(Arg,
686                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
687                                                 m_AShr(m_V, m_ConstantInt(C))),
688                               m_Value(A))) &&
689                Pred == ICmpInst::ICMP_EQ &&
690                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
691       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
692       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
693       // For those bits in RHS that are known, we can propagate them to known
694       // bits in V shifted to the right by C.
695       KnownZero |= RHSKnownZero << C->getZExtValue();
696       KnownOne  |= RHSKnownOne  << C->getZExtValue();
697     // assume(~(v >> c) = a)
698     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
699                                              m_LShr(m_V, m_ConstantInt(C)),
700                                              m_AShr(m_V, m_ConstantInt(C)))),
701                                    m_Value(A))) &&
702                Pred == ICmpInst::ICMP_EQ &&
703                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
704       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
705       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
706       // For those bits in RHS that are known, we can propagate them inverted
707       // to known bits in V shifted to the right by C.
708       KnownZero |= RHSKnownOne  << C->getZExtValue();
709       KnownOne  |= RHSKnownZero << C->getZExtValue();
710     // assume(v >=_s c) where c is non-negative
711     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
712                Pred == ICmpInst::ICMP_SGE &&
713                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
714       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
715       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
716 
717       if (RHSKnownZero.isNegative()) {
718         // We know that the sign bit is zero.
719         KnownZero |= APInt::getSignBit(BitWidth);
720       }
721     // assume(v >_s c) where c is at least -1.
722     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
723                Pred == ICmpInst::ICMP_SGT &&
724                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
725       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
726       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
727 
728       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729         // We know that the sign bit is zero.
730         KnownZero |= APInt::getSignBit(BitWidth);
731       }
732     // assume(v <=_s c) where c is negative
733     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
734                Pred == ICmpInst::ICMP_SLE &&
735                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
736       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
737       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
738 
739       if (RHSKnownOne.isNegative()) {
740         // We know that the sign bit is one.
741         KnownOne |= APInt::getSignBit(BitWidth);
742       }
743     // assume(v <_s c) where c is non-positive
744     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
745                Pred == ICmpInst::ICMP_SLT &&
746                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
747       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
748       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
749 
750       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751         // We know that the sign bit is one.
752         KnownOne |= APInt::getSignBit(BitWidth);
753       }
754     // assume(v <=_u c)
755     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
756                Pred == ICmpInst::ICMP_ULE &&
757                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
759       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
760 
761       // Whatever high bits in c are zero are known to be zero.
762       KnownZero |=
763         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764     // assume(v <_u c)
765     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
766                Pred == ICmpInst::ICMP_ULT &&
767                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
768       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
770 
771       // Whatever high bits in c are zero are known to be zero (if c is a power
772       // of 2, then one more).
773       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
774         KnownZero |=
775           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776       else
777         KnownZero |=
778           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
779     }
780   }
781 }
782 
783 // Compute known bits from a shift operator, including those with a
784 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
785 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787 // functors that, given the known-zero or known-one bits respectively, and a
788 // shift amount, compute the implied known-zero or known-one bits of the shift
789 // operator's result respectively for that shift amount. The results from calling
790 // KZF and KOF are conservatively combined for all permitted shift amounts.
791 template <typename KZFunctor, typename KOFunctor>
792 static void computeKnownBitsFromShiftOperator(Operator *I,
793               APInt &KnownZero, APInt &KnownOne,
794               APInt &KnownZero2, APInt &KnownOne2,
795               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
796   unsigned BitWidth = KnownZero.getBitWidth();
797 
798   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800 
801     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
802     KnownZero = KZF(KnownZero, ShiftAmt);
803     KnownOne  = KOF(KnownOne, ShiftAmt);
804     return;
805   }
806 
807   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
808 
809   // Note: We cannot use KnownZero.getLimitedValue() here, because if
810   // BitWidth > 64 and any upper bits are known, we'll end up returning the
811   // limit value (which implies all bits are known).
812   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814 
815   // It would be more-clearly correct to use the two temporaries for this
816   // calculation. Reusing the APInts here to prevent unnecessary allocations.
817   KnownZero.clearAllBits();
818   KnownOne.clearAllBits();
819 
820   // If we know the shifter operand is nonzero, we can sometimes infer more
821   // known bits. However this is expensive to compute, so be lazy about it and
822   // only compute it when absolutely necessary.
823   Optional<bool> ShifterOperandIsNonZero;
824 
825   // Early exit if we can't constrain any well-defined shift amount.
826   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827     ShifterOperandIsNonZero =
828         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
829     if (!*ShifterOperandIsNonZero)
830       return;
831   }
832 
833   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
834 
835   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837     // Combine the shifted known input bits only for those shift amounts
838     // compatible with its known constraints.
839     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840       continue;
841     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842       continue;
843     // If we know the shifter is nonzero, we may be able to infer more known
844     // bits. This check is sunk down as far as possible to avoid the expensive
845     // call to isKnownNonZero if the cheaper checks above fail.
846     if (ShiftAmt == 0) {
847       if (!ShifterOperandIsNonZero.hasValue())
848         ShifterOperandIsNonZero =
849             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
850       if (*ShifterOperandIsNonZero)
851         continue;
852     }
853 
854     KnownZero &= KZF(KnownZero2, ShiftAmt);
855     KnownOne  &= KOF(KnownOne2, ShiftAmt);
856   }
857 
858   // If there are no compatible shift amounts, then we've proven that the shift
859   // amount must be >= the BitWidth, and the result is undefined. We could
860   // return anything we'd like, but we need to make sure the sets of known bits
861   // stay disjoint (it should be better for some other code to actually
862   // propagate the undef than to pick a value here using known bits).
863   if ((KnownZero & KnownOne) != 0) {
864     KnownZero.clearAllBits();
865     KnownOne.clearAllBits();
866   }
867 }
868 
869 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
870                                          APInt &KnownOne, unsigned Depth,
871                                          const Query &Q) {
872   unsigned BitWidth = KnownZero.getBitWidth();
873 
874   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
875   switch (I->getOpcode()) {
876   default: break;
877   case Instruction::Load:
878     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
879       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
880     break;
881   case Instruction::And: {
882     // If either the LHS or the RHS are Zero, the result is zero.
883     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
885 
886     // Output known-1 bits are only known if set in both the LHS & RHS.
887     KnownOne &= KnownOne2;
888     // Output known-0 are known to be clear if zero in either the LHS | RHS.
889     KnownZero |= KnownZero2;
890 
891     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892     // here we handle the more general case of adding any odd number by
893     // matching the form add(x, add(x, y)) where y is odd.
894     // TODO: This could be generalized to clearing any bit set in y where the
895     // following bit is known to be unset in y.
896     Value *Y = nullptr;
897     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898                                       m_Value(Y))) ||
899         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900                                       m_Value(Y)))) {
901       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
902       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
903       if (KnownOne3.countTrailingOnes() > 0)
904         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905     }
906     break;
907   }
908   case Instruction::Or: {
909     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
911 
912     // Output known-0 bits are only known if clear in both the LHS & RHS.
913     KnownZero &= KnownZero2;
914     // Output known-1 are known to be set if set in either the LHS | RHS.
915     KnownOne |= KnownOne2;
916     break;
917   }
918   case Instruction::Xor: {
919     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
921 
922     // Output known-0 bits are known if clear or set in both the LHS & RHS.
923     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924     // Output known-1 are known to be set if set in only one of the LHS, RHS.
925     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926     KnownZero = KnownZeroOut;
927     break;
928   }
929   case Instruction::Mul: {
930     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
931     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
932                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
933     break;
934   }
935   case Instruction::UDiv: {
936     // For the purposes of computing leading zeros we can conservatively
937     // treat a udiv as a logical right shift by the power of 2 known to
938     // be less than the denominator.
939     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
940     unsigned LeadZ = KnownZero2.countLeadingOnes();
941 
942     KnownOne2.clearAllBits();
943     KnownZero2.clearAllBits();
944     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
945     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946     if (RHSUnknownLeadingOnes != BitWidth)
947       LeadZ = std::min(BitWidth,
948                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949 
950     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
951     break;
952   }
953   case Instruction::Select:
954     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
956 
957     // Only known if known in both the LHS and RHS.
958     KnownOne &= KnownOne2;
959     KnownZero &= KnownZero2;
960     break;
961   case Instruction::FPTrunc:
962   case Instruction::FPExt:
963   case Instruction::FPToUI:
964   case Instruction::FPToSI:
965   case Instruction::SIToFP:
966   case Instruction::UIToFP:
967     break; // Can't work with floating point.
968   case Instruction::PtrToInt:
969   case Instruction::IntToPtr:
970   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
971     // FALL THROUGH and handle them the same as zext/trunc.
972   case Instruction::ZExt:
973   case Instruction::Trunc: {
974     Type *SrcTy = I->getOperand(0)->getType();
975 
976     unsigned SrcBitWidth;
977     // Note that we handle pointer operands here because of inttoptr/ptrtoint
978     // which fall through here.
979     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
980 
981     assert(SrcBitWidth && "SrcBitWidth can't be zero");
982     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
984     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
985     KnownZero = KnownZero.zextOrTrunc(BitWidth);
986     KnownOne = KnownOne.zextOrTrunc(BitWidth);
987     // Any top bits are known to be zero.
988     if (BitWidth > SrcBitWidth)
989       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
990     break;
991   }
992   case Instruction::BitCast: {
993     Type *SrcTy = I->getOperand(0)->getType();
994     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
995          SrcTy->isFloatingPointTy()) &&
996         // TODO: For now, not handling conversions like:
997         // (bitcast i64 %x to <2 x i32>)
998         !I->getType()->isVectorTy()) {
999       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1000       break;
1001     }
1002     break;
1003   }
1004   case Instruction::SExt: {
1005     // Compute the bits in the result that are not present in the input.
1006     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1007 
1008     KnownZero = KnownZero.trunc(SrcBitWidth);
1009     KnownOne = KnownOne.trunc(SrcBitWidth);
1010     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1011     KnownZero = KnownZero.zext(BitWidth);
1012     KnownOne = KnownOne.zext(BitWidth);
1013 
1014     // If the sign bit of the input is known set or clear, then we know the
1015     // top bits of the result.
1016     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1017       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1018     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1019       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1020     break;
1021   }
1022   case Instruction::Shl: {
1023     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1024     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1025       return (KnownZero << ShiftAmt) |
1026              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1027     };
1028 
1029     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1030       return KnownOne << ShiftAmt;
1031     };
1032 
1033     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1034                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1035                                       KOF);
1036     break;
1037   }
1038   case Instruction::LShr: {
1039     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1040     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1041       return APIntOps::lshr(KnownZero, ShiftAmt) |
1042              // High bits known zero.
1043              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1044     };
1045 
1046     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1047       return APIntOps::lshr(KnownOne, ShiftAmt);
1048     };
1049 
1050     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1051                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1052                                       KOF);
1053     break;
1054   }
1055   case Instruction::AShr: {
1056     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1057     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1058       return APIntOps::ashr(KnownZero, ShiftAmt);
1059     };
1060 
1061     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1062       return APIntOps::ashr(KnownOne, ShiftAmt);
1063     };
1064 
1065     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1066                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1067                                       KOF);
1068     break;
1069   }
1070   case Instruction::Sub: {
1071     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1072     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1073                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1074                            Q);
1075     break;
1076   }
1077   case Instruction::Add: {
1078     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1079     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1080                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1081                            Q);
1082     break;
1083   }
1084   case Instruction::SRem:
1085     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1086       APInt RA = Rem->getValue().abs();
1087       if (RA.isPowerOf2()) {
1088         APInt LowBits = RA - 1;
1089         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1090                          Q);
1091 
1092         // The low bits of the first operand are unchanged by the srem.
1093         KnownZero = KnownZero2 & LowBits;
1094         KnownOne = KnownOne2 & LowBits;
1095 
1096         // If the first operand is non-negative or has all low bits zero, then
1097         // the upper bits are all zero.
1098         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1099           KnownZero |= ~LowBits;
1100 
1101         // If the first operand is negative and not all low bits are zero, then
1102         // the upper bits are all one.
1103         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1104           KnownOne |= ~LowBits;
1105 
1106         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1107       }
1108     }
1109 
1110     // The sign bit is the LHS's sign bit, except when the result of the
1111     // remainder is zero.
1112     if (KnownZero.isNonNegative()) {
1113       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1114       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1115                        Q);
1116       // If it's known zero, our sign bit is also zero.
1117       if (LHSKnownZero.isNegative())
1118         KnownZero.setBit(BitWidth - 1);
1119     }
1120 
1121     break;
1122   case Instruction::URem: {
1123     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1124       APInt RA = Rem->getValue();
1125       if (RA.isPowerOf2()) {
1126         APInt LowBits = (RA - 1);
1127         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1128         KnownZero |= ~LowBits;
1129         KnownOne &= LowBits;
1130         break;
1131       }
1132     }
1133 
1134     // Since the result is less than or equal to either operand, any leading
1135     // zero bits in either operand must also exist in the result.
1136     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1137     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1138 
1139     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1140                                 KnownZero2.countLeadingOnes());
1141     KnownOne.clearAllBits();
1142     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1143     break;
1144   }
1145 
1146   case Instruction::Alloca: {
1147     AllocaInst *AI = cast<AllocaInst>(I);
1148     unsigned Align = AI->getAlignment();
1149     if (Align == 0)
1150       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1151 
1152     if (Align > 0)
1153       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1154     break;
1155   }
1156   case Instruction::GetElementPtr: {
1157     // Analyze all of the subscripts of this getelementptr instruction
1158     // to determine if we can prove known low zero bits.
1159     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1160     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1161                      Q);
1162     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1163 
1164     gep_type_iterator GTI = gep_type_begin(I);
1165     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1166       Value *Index = I->getOperand(i);
1167       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1168         // Handle struct member offset arithmetic.
1169 
1170         // Handle case when index is vector zeroinitializer
1171         Constant *CIndex = cast<Constant>(Index);
1172         if (CIndex->isZeroValue())
1173           continue;
1174 
1175         if (CIndex->getType()->isVectorTy())
1176           Index = CIndex->getSplatValue();
1177 
1178         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1179         const StructLayout *SL = Q.DL.getStructLayout(STy);
1180         uint64_t Offset = SL->getElementOffset(Idx);
1181         TrailZ = std::min<unsigned>(TrailZ,
1182                                     countTrailingZeros(Offset));
1183       } else {
1184         // Handle array index arithmetic.
1185         Type *IndexedTy = GTI.getIndexedType();
1186         if (!IndexedTy->isSized()) {
1187           TrailZ = 0;
1188           break;
1189         }
1190         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1191         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1192         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1193         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1194         TrailZ = std::min(TrailZ,
1195                           unsigned(countTrailingZeros(TypeSize) +
1196                                    LocalKnownZero.countTrailingOnes()));
1197       }
1198     }
1199 
1200     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1201     break;
1202   }
1203   case Instruction::PHI: {
1204     PHINode *P = cast<PHINode>(I);
1205     // Handle the case of a simple two-predecessor recurrence PHI.
1206     // There's a lot more that could theoretically be done here, but
1207     // this is sufficient to catch some interesting cases.
1208     if (P->getNumIncomingValues() == 2) {
1209       for (unsigned i = 0; i != 2; ++i) {
1210         Value *L = P->getIncomingValue(i);
1211         Value *R = P->getIncomingValue(!i);
1212         Operator *LU = dyn_cast<Operator>(L);
1213         if (!LU)
1214           continue;
1215         unsigned Opcode = LU->getOpcode();
1216         // Check for operations that have the property that if
1217         // both their operands have low zero bits, the result
1218         // will have low zero bits.
1219         if (Opcode == Instruction::Add ||
1220             Opcode == Instruction::Sub ||
1221             Opcode == Instruction::And ||
1222             Opcode == Instruction::Or ||
1223             Opcode == Instruction::Mul) {
1224           Value *LL = LU->getOperand(0);
1225           Value *LR = LU->getOperand(1);
1226           // Find a recurrence.
1227           if (LL == I)
1228             L = LR;
1229           else if (LR == I)
1230             L = LL;
1231           else
1232             break;
1233           // Ok, we have a PHI of the form L op= R. Check for low
1234           // zero bits.
1235           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1236 
1237           // We need to take the minimum number of known bits
1238           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1239           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1240 
1241           KnownZero = APInt::getLowBitsSet(BitWidth,
1242                                            std::min(KnownZero2.countTrailingOnes(),
1243                                                     KnownZero3.countTrailingOnes()));
1244           break;
1245         }
1246       }
1247     }
1248 
1249     // Unreachable blocks may have zero-operand PHI nodes.
1250     if (P->getNumIncomingValues() == 0)
1251       break;
1252 
1253     // Otherwise take the unions of the known bit sets of the operands,
1254     // taking conservative care to avoid excessive recursion.
1255     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1256       // Skip if every incoming value references to ourself.
1257       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1258         break;
1259 
1260       KnownZero = APInt::getAllOnesValue(BitWidth);
1261       KnownOne = APInt::getAllOnesValue(BitWidth);
1262       for (Value *IncValue : P->incoming_values()) {
1263         // Skip direct self references.
1264         if (IncValue == P) continue;
1265 
1266         KnownZero2 = APInt(BitWidth, 0);
1267         KnownOne2 = APInt(BitWidth, 0);
1268         // Recurse, but cap the recursion to one level, because we don't
1269         // want to waste time spinning around in loops.
1270         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1271         KnownZero &= KnownZero2;
1272         KnownOne &= KnownOne2;
1273         // If all bits have been ruled out, there's no need to check
1274         // more operands.
1275         if (!KnownZero && !KnownOne)
1276           break;
1277       }
1278     }
1279     break;
1280   }
1281   case Instruction::Call:
1282   case Instruction::Invoke:
1283     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1284       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1285     // If a range metadata is attached to this IntrinsicInst, intersect the
1286     // explicit range specified by the metadata and the implicit range of
1287     // the intrinsic.
1288     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1289       switch (II->getIntrinsicID()) {
1290       default: break;
1291       case Intrinsic::bswap:
1292         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1293         KnownZero |= KnownZero2.byteSwap();
1294         KnownOne |= KnownOne2.byteSwap();
1295         break;
1296       case Intrinsic::ctlz:
1297       case Intrinsic::cttz: {
1298         unsigned LowBits = Log2_32(BitWidth)+1;
1299         // If this call is undefined for 0, the result will be less than 2^n.
1300         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1301           LowBits -= 1;
1302         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1303         break;
1304       }
1305       case Intrinsic::ctpop: {
1306         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1307         // We can bound the space the count needs.  Also, bits known to be zero
1308         // can't contribute to the population.
1309         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1310         unsigned LeadingZeros =
1311           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1312         assert(LeadingZeros <= BitWidth);
1313         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1314         KnownOne &= ~KnownZero;
1315         // TODO: we could bound KnownOne using the lower bound on the number
1316         // of bits which might be set provided by popcnt KnownOne2.
1317         break;
1318       }
1319       case Intrinsic::fabs: {
1320         Type *Ty = II->getType();
1321         APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1322         KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1323         break;
1324       }
1325       case Intrinsic::x86_sse42_crc32_64_64:
1326         KnownZero |= APInt::getHighBitsSet(64, 32);
1327         break;
1328       }
1329     }
1330     break;
1331   case Instruction::ExtractValue:
1332     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1333       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1334       if (EVI->getNumIndices() != 1) break;
1335       if (EVI->getIndices()[0] == 0) {
1336         switch (II->getIntrinsicID()) {
1337         default: break;
1338         case Intrinsic::uadd_with_overflow:
1339         case Intrinsic::sadd_with_overflow:
1340           computeKnownBitsAddSub(true, II->getArgOperand(0),
1341                                  II->getArgOperand(1), false, KnownZero,
1342                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1343           break;
1344         case Intrinsic::usub_with_overflow:
1345         case Intrinsic::ssub_with_overflow:
1346           computeKnownBitsAddSub(false, II->getArgOperand(0),
1347                                  II->getArgOperand(1), false, KnownZero,
1348                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1349           break;
1350         case Intrinsic::umul_with_overflow:
1351         case Intrinsic::smul_with_overflow:
1352           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1353                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1354                               Q);
1355           break;
1356         }
1357       }
1358     }
1359   }
1360 }
1361 
1362 /// Determine which bits of V are known to be either zero or one and return
1363 /// them in the KnownZero/KnownOne bit sets.
1364 ///
1365 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1366 /// we cannot optimize based on the assumption that it is zero without changing
1367 /// it to be an explicit zero.  If we don't change it to zero, other code could
1368 /// optimized based on the contradictory assumption that it is non-zero.
1369 /// Because instcombine aggressively folds operations with undef args anyway,
1370 /// this won't lose us code quality.
1371 ///
1372 /// This function is defined on values with integer type, values with pointer
1373 /// type, and vectors of integers.  In the case
1374 /// where V is a vector, known zero, and known one values are the
1375 /// same width as the vector element, and the bit is set only if it is true
1376 /// for all of the elements in the vector.
1377 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1378                       unsigned Depth, const Query &Q) {
1379   assert(V && "No Value?");
1380   assert(Depth <= MaxDepth && "Limit Search Depth");
1381   unsigned BitWidth = KnownZero.getBitWidth();
1382 
1383   assert((V->getType()->isIntOrIntVectorTy() ||
1384           V->getType()->isFPOrFPVectorTy() ||
1385           V->getType()->getScalarType()->isPointerTy()) &&
1386          "Not integer, floating point, or pointer type!");
1387   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1388          (!V->getType()->isIntOrIntVectorTy() ||
1389           V->getType()->getScalarSizeInBits() == BitWidth) &&
1390          KnownZero.getBitWidth() == BitWidth &&
1391          KnownOne.getBitWidth() == BitWidth &&
1392          "V, KnownOne and KnownZero should have same BitWidth");
1393 
1394   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1395     // We know all of the bits for a constant!
1396     KnownOne = CI->getValue();
1397     KnownZero = ~KnownOne;
1398     return;
1399   }
1400   // Null and aggregate-zero are all-zeros.
1401   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1402     KnownOne.clearAllBits();
1403     KnownZero = APInt::getAllOnesValue(BitWidth);
1404     return;
1405   }
1406   // Handle a constant vector by taking the intersection of the known bits of
1407   // each element.
1408   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1409     // We know that CDS must be a vector of integers. Take the intersection of
1410     // each element.
1411     KnownZero.setAllBits(); KnownOne.setAllBits();
1412     APInt Elt(KnownZero.getBitWidth(), 0);
1413     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1414       Elt = CDS->getElementAsInteger(i);
1415       KnownZero &= ~Elt;
1416       KnownOne &= Elt;
1417     }
1418     return;
1419   }
1420 
1421   if (auto *CV = dyn_cast<ConstantVector>(V)) {
1422     // We know that CV must be a vector of integers. Take the intersection of
1423     // each element.
1424     KnownZero.setAllBits(); KnownOne.setAllBits();
1425     APInt Elt(KnownZero.getBitWidth(), 0);
1426     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1427       Constant *Element = CV->getAggregateElement(i);
1428       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1429       if (!ElementCI) {
1430         KnownZero.clearAllBits();
1431         KnownOne.clearAllBits();
1432         return;
1433       }
1434       Elt = ElementCI->getValue();
1435       KnownZero &= ~Elt;
1436       KnownOne &= Elt;
1437     }
1438     return;
1439   }
1440 
1441   // Start out not knowing anything.
1442   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1443 
1444   // Limit search depth.
1445   // All recursive calls that increase depth must come after this.
1446   if (Depth == MaxDepth)
1447     return;
1448 
1449   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1450   // the bits of its aliasee.
1451   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1452     if (!GA->isInterposable())
1453       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1454     return;
1455   }
1456 
1457   if (Operator *I = dyn_cast<Operator>(V))
1458     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1459 
1460   // Aligned pointers have trailing zeros - refine KnownZero set
1461   if (V->getType()->isPointerTy()) {
1462     unsigned Align = V->getPointerAlignment(Q.DL);
1463     if (Align)
1464       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1465   }
1466 
1467   // computeKnownBitsFromAssume strictly refines KnownZero and
1468   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1469 
1470   // Check whether a nearby assume intrinsic can determine some known bits.
1471   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1472 
1473   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1474 }
1475 
1476 /// Determine whether the sign bit is known to be zero or one.
1477 /// Convenience wrapper around computeKnownBits.
1478 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1479                     unsigned Depth, const Query &Q) {
1480   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1481   if (!BitWidth) {
1482     KnownZero = false;
1483     KnownOne = false;
1484     return;
1485   }
1486   APInt ZeroBits(BitWidth, 0);
1487   APInt OneBits(BitWidth, 0);
1488   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1489   KnownOne = OneBits[BitWidth - 1];
1490   KnownZero = ZeroBits[BitWidth - 1];
1491 }
1492 
1493 /// Return true if the given value is known to have exactly one
1494 /// bit set when defined. For vectors return true if every element is known to
1495 /// be a power of two when defined. Supports values with integer or pointer
1496 /// types and vectors of integers.
1497 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1498                             const Query &Q) {
1499   if (Constant *C = dyn_cast<Constant>(V)) {
1500     if (C->isNullValue())
1501       return OrZero;
1502 
1503     const APInt *ConstIntOrConstSplatInt;
1504     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1505       return ConstIntOrConstSplatInt->isPowerOf2();
1506   }
1507 
1508   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1509   // it is shifted off the end then the result is undefined.
1510   if (match(V, m_Shl(m_One(), m_Value())))
1511     return true;
1512 
1513   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1514   // bottom.  If it is shifted off the bottom then the result is undefined.
1515   if (match(V, m_LShr(m_SignBit(), m_Value())))
1516     return true;
1517 
1518   // The remaining tests are all recursive, so bail out if we hit the limit.
1519   if (Depth++ == MaxDepth)
1520     return false;
1521 
1522   Value *X = nullptr, *Y = nullptr;
1523   // A shift left or a logical shift right of a power of two is a power of two
1524   // or zero.
1525   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1526                  match(V, m_LShr(m_Value(X), m_Value()))))
1527     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1528 
1529   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1530     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1531 
1532   if (SelectInst *SI = dyn_cast<SelectInst>(V))
1533     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1534            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1535 
1536   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1537     // A power of two and'd with anything is a power of two or zero.
1538     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1539         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1540       return true;
1541     // X & (-X) is always a power of two or zero.
1542     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1543       return true;
1544     return false;
1545   }
1546 
1547   // Adding a power-of-two or zero to the same power-of-two or zero yields
1548   // either the original power-of-two, a larger power-of-two or zero.
1549   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1550     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1551     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1552       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1553           match(X, m_And(m_Value(), m_Specific(Y))))
1554         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1555           return true;
1556       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1557           match(Y, m_And(m_Value(), m_Specific(X))))
1558         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1559           return true;
1560 
1561       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1562       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1563       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1564 
1565       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1566       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1567       // If i8 V is a power of two or zero:
1568       //  ZeroBits: 1 1 1 0 1 1 1 1
1569       // ~ZeroBits: 0 0 0 1 0 0 0 0
1570       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1571         // If OrZero isn't set, we cannot give back a zero result.
1572         // Make sure either the LHS or RHS has a bit set.
1573         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1574           return true;
1575     }
1576   }
1577 
1578   // An exact divide or right shift can only shift off zero bits, so the result
1579   // is a power of two only if the first operand is a power of two and not
1580   // copying a sign bit (sdiv int_min, 2).
1581   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1582       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1583     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1584                                   Depth, Q);
1585   }
1586 
1587   return false;
1588 }
1589 
1590 /// \brief Test whether a GEP's result is known to be non-null.
1591 ///
1592 /// Uses properties inherent in a GEP to try to determine whether it is known
1593 /// to be non-null.
1594 ///
1595 /// Currently this routine does not support vector GEPs.
1596 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1597                               const Query &Q) {
1598   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1599     return false;
1600 
1601   // FIXME: Support vector-GEPs.
1602   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1603 
1604   // If the base pointer is non-null, we cannot walk to a null address with an
1605   // inbounds GEP in address space zero.
1606   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1607     return true;
1608 
1609   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1610   // If so, then the GEP cannot produce a null pointer, as doing so would
1611   // inherently violate the inbounds contract within address space zero.
1612   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1613        GTI != GTE; ++GTI) {
1614     // Struct types are easy -- they must always be indexed by a constant.
1615     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1616       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1617       unsigned ElementIdx = OpC->getZExtValue();
1618       const StructLayout *SL = Q.DL.getStructLayout(STy);
1619       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1620       if (ElementOffset > 0)
1621         return true;
1622       continue;
1623     }
1624 
1625     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1626     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1627       continue;
1628 
1629     // Fast path the constant operand case both for efficiency and so we don't
1630     // increment Depth when just zipping down an all-constant GEP.
1631     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1632       if (!OpC->isZero())
1633         return true;
1634       continue;
1635     }
1636 
1637     // We post-increment Depth here because while isKnownNonZero increments it
1638     // as well, when we pop back up that increment won't persist. We don't want
1639     // to recurse 10k times just because we have 10k GEP operands. We don't
1640     // bail completely out because we want to handle constant GEPs regardless
1641     // of depth.
1642     if (Depth++ >= MaxDepth)
1643       continue;
1644 
1645     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1646       return true;
1647   }
1648 
1649   return false;
1650 }
1651 
1652 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1653 /// ensure that the value it's attached to is never Value?  'RangeType' is
1654 /// is the type of the value described by the range.
1655 static bool rangeMetadataExcludesValue(MDNode* Ranges, const APInt& Value) {
1656   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1657   assert(NumRanges >= 1);
1658   for (unsigned i = 0; i < NumRanges; ++i) {
1659     ConstantInt *Lower =
1660         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1661     ConstantInt *Upper =
1662         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1663     ConstantRange Range(Lower->getValue(), Upper->getValue());
1664     if (Range.contains(Value))
1665       return false;
1666   }
1667   return true;
1668 }
1669 
1670 /// Return true if the given value is known to be non-zero when defined.
1671 /// For vectors return true if every element is known to be non-zero when
1672 /// defined. Supports values with integer or pointer type and vectors of
1673 /// integers.
1674 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1675   if (auto *C = dyn_cast<Constant>(V)) {
1676     if (C->isNullValue())
1677       return false;
1678     if (isa<ConstantInt>(C))
1679       // Must be non-zero due to null test above.
1680       return true;
1681 
1682     // For constant vectors, check that all elements are undefined or known
1683     // non-zero to determine that the whole vector is known non-zero.
1684     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1685       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1686         Constant *Elt = C->getAggregateElement(i);
1687         if (!Elt || Elt->isNullValue())
1688           return false;
1689         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1690           return false;
1691       }
1692       return true;
1693     }
1694 
1695     return false;
1696   }
1697 
1698   if (auto *I = dyn_cast<Instruction>(V)) {
1699     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1700       // If the possible ranges don't contain zero, then the value is
1701       // definitely non-zero.
1702       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1703         const APInt ZeroValue(Ty->getBitWidth(), 0);
1704         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1705           return true;
1706       }
1707     }
1708   }
1709 
1710   // The remaining tests are all recursive, so bail out if we hit the limit.
1711   if (Depth++ >= MaxDepth)
1712     return false;
1713 
1714   // Check for pointer simplifications.
1715   if (V->getType()->isPointerTy()) {
1716     if (isKnownNonNull(V))
1717       return true;
1718     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1719       if (isGEPKnownNonNull(GEP, Depth, Q))
1720         return true;
1721   }
1722 
1723   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1724 
1725   // X | Y != 0 if X != 0 or Y != 0.
1726   Value *X = nullptr, *Y = nullptr;
1727   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1728     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1729 
1730   // ext X != 0 if X != 0.
1731   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1732     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1733 
1734   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1735   // if the lowest bit is shifted off the end.
1736   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1737     // shl nuw can't remove any non-zero bits.
1738     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1739     if (BO->hasNoUnsignedWrap())
1740       return isKnownNonZero(X, Depth, Q);
1741 
1742     APInt KnownZero(BitWidth, 0);
1743     APInt KnownOne(BitWidth, 0);
1744     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1745     if (KnownOne[0])
1746       return true;
1747   }
1748   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1749   // defined if the sign bit is shifted off the end.
1750   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1751     // shr exact can only shift out zero bits.
1752     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1753     if (BO->isExact())
1754       return isKnownNonZero(X, Depth, Q);
1755 
1756     bool XKnownNonNegative, XKnownNegative;
1757     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1758     if (XKnownNegative)
1759       return true;
1760 
1761     // If the shifter operand is a constant, and all of the bits shifted
1762     // out are known to be zero, and X is known non-zero then at least one
1763     // non-zero bit must remain.
1764     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1765       APInt KnownZero(BitWidth, 0);
1766       APInt KnownOne(BitWidth, 0);
1767       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1768 
1769       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1770       // Is there a known one in the portion not shifted out?
1771       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1772         return true;
1773       // Are all the bits to be shifted out known zero?
1774       if (KnownZero.countTrailingOnes() >= ShiftVal)
1775         return isKnownNonZero(X, Depth, Q);
1776     }
1777   }
1778   // div exact can only produce a zero if the dividend is zero.
1779   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1780     return isKnownNonZero(X, Depth, Q);
1781   }
1782   // X + Y.
1783   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1784     bool XKnownNonNegative, XKnownNegative;
1785     bool YKnownNonNegative, YKnownNegative;
1786     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1787     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1788 
1789     // If X and Y are both non-negative (as signed values) then their sum is not
1790     // zero unless both X and Y are zero.
1791     if (XKnownNonNegative && YKnownNonNegative)
1792       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1793         return true;
1794 
1795     // If X and Y are both negative (as signed values) then their sum is not
1796     // zero unless both X and Y equal INT_MIN.
1797     if (BitWidth && XKnownNegative && YKnownNegative) {
1798       APInt KnownZero(BitWidth, 0);
1799       APInt KnownOne(BitWidth, 0);
1800       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1801       // The sign bit of X is set.  If some other bit is set then X is not equal
1802       // to INT_MIN.
1803       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1804       if ((KnownOne & Mask) != 0)
1805         return true;
1806       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1807       // to INT_MIN.
1808       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1809       if ((KnownOne & Mask) != 0)
1810         return true;
1811     }
1812 
1813     // The sum of a non-negative number and a power of two is not zero.
1814     if (XKnownNonNegative &&
1815         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1816       return true;
1817     if (YKnownNonNegative &&
1818         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1819       return true;
1820   }
1821   // X * Y.
1822   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1823     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1824     // If X and Y are non-zero then so is X * Y as long as the multiplication
1825     // does not overflow.
1826     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1827         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1828       return true;
1829   }
1830   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1831   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1832     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1833         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1834       return true;
1835   }
1836   // PHI
1837   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1838     // Try and detect a recurrence that monotonically increases from a
1839     // starting value, as these are common as induction variables.
1840     if (PN->getNumIncomingValues() == 2) {
1841       Value *Start = PN->getIncomingValue(0);
1842       Value *Induction = PN->getIncomingValue(1);
1843       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1844         std::swap(Start, Induction);
1845       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1846         if (!C->isZero() && !C->isNegative()) {
1847           ConstantInt *X;
1848           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1849                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1850               !X->isNegative())
1851             return true;
1852         }
1853       }
1854     }
1855     // Check if all incoming values are non-zero constant.
1856     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1857       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1858     });
1859     if (AllNonZeroConstants)
1860       return true;
1861   }
1862 
1863   if (!BitWidth) return false;
1864   APInt KnownZero(BitWidth, 0);
1865   APInt KnownOne(BitWidth, 0);
1866   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1867   return KnownOne != 0;
1868 }
1869 
1870 /// Return true if V2 == V1 + X, where X is known non-zero.
1871 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
1872   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1873   if (!BO || BO->getOpcode() != Instruction::Add)
1874     return false;
1875   Value *Op = nullptr;
1876   if (V2 == BO->getOperand(0))
1877     Op = BO->getOperand(1);
1878   else if (V2 == BO->getOperand(1))
1879     Op = BO->getOperand(0);
1880   else
1881     return false;
1882   return isKnownNonZero(Op, 0, Q);
1883 }
1884 
1885 /// Return true if it is known that V1 != V2.
1886 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
1887   if (V1->getType()->isVectorTy() || V1 == V2)
1888     return false;
1889   if (V1->getType() != V2->getType())
1890     // We can't look through casts yet.
1891     return false;
1892   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1893     return true;
1894 
1895   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1896     // Are any known bits in V1 contradictory to known bits in V2? If V1
1897     // has a known zero where V2 has a known one, they must not be equal.
1898     auto BitWidth = Ty->getBitWidth();
1899     APInt KnownZero1(BitWidth, 0);
1900     APInt KnownOne1(BitWidth, 0);
1901     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1902     APInt KnownZero2(BitWidth, 0);
1903     APInt KnownOne2(BitWidth, 0);
1904     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1905 
1906     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1907     if (OppositeBits.getBoolValue())
1908       return true;
1909   }
1910   return false;
1911 }
1912 
1913 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
1914 /// simplify operations downstream. Mask is known to be zero for bits that V
1915 /// cannot have.
1916 ///
1917 /// This function is defined on values with integer type, values with pointer
1918 /// type, and vectors of integers.  In the case
1919 /// where V is a vector, the mask, known zero, and known one values are the
1920 /// same width as the vector element, and the bit is set only if it is true
1921 /// for all of the elements in the vector.
1922 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1923                        const Query &Q) {
1924   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1925   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1926   return (KnownZero & Mask) == Mask;
1927 }
1928 
1929 
1930 
1931 /// Return the number of times the sign bit of the register is replicated into
1932 /// the other bits. We know that at least 1 bit is always equal to the sign bit
1933 /// (itself), but other cases can give us information. For example, immediately
1934 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1935 /// other, so we return 3.
1936 ///
1937 /// 'Op' must have a scalar integer type.
1938 ///
1939 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1940   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
1941   unsigned Tmp, Tmp2;
1942   unsigned FirstAnswer = 1;
1943 
1944   // Note that ConstantInt is handled by the general computeKnownBits case
1945   // below.
1946 
1947   if (Depth == 6)
1948     return 1;  // Limit search depth.
1949 
1950   Operator *U = dyn_cast<Operator>(V);
1951   switch (Operator::getOpcode(V)) {
1952   default: break;
1953   case Instruction::SExt:
1954     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1955     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
1956 
1957   case Instruction::SDiv: {
1958     const APInt *Denominator;
1959     // sdiv X, C -> adds log(C) sign bits.
1960     if (match(U->getOperand(1), m_APInt(Denominator))) {
1961 
1962       // Ignore non-positive denominator.
1963       if (!Denominator->isStrictlyPositive())
1964         break;
1965 
1966       // Calculate the incoming numerator bits.
1967       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1968 
1969       // Add floor(log(C)) bits to the numerator bits.
1970       return std::min(TyBits, NumBits + Denominator->logBase2());
1971     }
1972     break;
1973   }
1974 
1975   case Instruction::SRem: {
1976     const APInt *Denominator;
1977     // srem X, C -> we know that the result is within [-C+1,C) when C is a
1978     // positive constant.  This let us put a lower bound on the number of sign
1979     // bits.
1980     if (match(U->getOperand(1), m_APInt(Denominator))) {
1981 
1982       // Ignore non-positive denominator.
1983       if (!Denominator->isStrictlyPositive())
1984         break;
1985 
1986       // Calculate the incoming numerator bits. SRem by a positive constant
1987       // can't lower the number of sign bits.
1988       unsigned NumrBits =
1989           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1990 
1991       // Calculate the leading sign bit constraints by examining the
1992       // denominator.  Given that the denominator is positive, there are two
1993       // cases:
1994       //
1995       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
1996       //     (1 << ceilLogBase2(C)).
1997       //
1998       //  2. the numerator is negative.  Then the result range is (-C,0] and
1999       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2000       //
2001       // Thus a lower bound on the number of sign bits is `TyBits -
2002       // ceilLogBase2(C)`.
2003 
2004       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2005       return std::max(NumrBits, ResBits);
2006     }
2007     break;
2008   }
2009 
2010   case Instruction::AShr: {
2011     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2012     // ashr X, C   -> adds C sign bits.  Vectors too.
2013     const APInt *ShAmt;
2014     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2015       Tmp += ShAmt->getZExtValue();
2016       if (Tmp > TyBits) Tmp = TyBits;
2017     }
2018     return Tmp;
2019   }
2020   case Instruction::Shl: {
2021     const APInt *ShAmt;
2022     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2023       // shl destroys sign bits.
2024       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2025       Tmp2 = ShAmt->getZExtValue();
2026       if (Tmp2 >= TyBits ||      // Bad shift.
2027           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2028       return Tmp - Tmp2;
2029     }
2030     break;
2031   }
2032   case Instruction::And:
2033   case Instruction::Or:
2034   case Instruction::Xor:    // NOT is handled here.
2035     // Logical binary ops preserve the number of sign bits at the worst.
2036     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2037     if (Tmp != 1) {
2038       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2039       FirstAnswer = std::min(Tmp, Tmp2);
2040       // We computed what we know about the sign bits as our first
2041       // answer. Now proceed to the generic code that uses
2042       // computeKnownBits, and pick whichever answer is better.
2043     }
2044     break;
2045 
2046   case Instruction::Select:
2047     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2048     if (Tmp == 1) return 1;  // Early out.
2049     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2050     return std::min(Tmp, Tmp2);
2051 
2052   case Instruction::Add:
2053     // Add can have at most one carry bit.  Thus we know that the output
2054     // is, at worst, one more bit than the inputs.
2055     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2056     if (Tmp == 1) return 1;  // Early out.
2057 
2058     // Special case decrementing a value (ADD X, -1):
2059     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2060       if (CRHS->isAllOnesValue()) {
2061         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2062         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2063 
2064         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2065         // sign bits set.
2066         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2067           return TyBits;
2068 
2069         // If we are subtracting one from a positive number, there is no carry
2070         // out of the result.
2071         if (KnownZero.isNegative())
2072           return Tmp;
2073       }
2074 
2075     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2076     if (Tmp2 == 1) return 1;
2077     return std::min(Tmp, Tmp2)-1;
2078 
2079   case Instruction::Sub:
2080     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2081     if (Tmp2 == 1) return 1;
2082 
2083     // Handle NEG.
2084     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2085       if (CLHS->isNullValue()) {
2086         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2087         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2088         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2089         // sign bits set.
2090         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2091           return TyBits;
2092 
2093         // If the input is known to be positive (the sign bit is known clear),
2094         // the output of the NEG has the same number of sign bits as the input.
2095         if (KnownZero.isNegative())
2096           return Tmp2;
2097 
2098         // Otherwise, we treat this like a SUB.
2099       }
2100 
2101     // Sub can have at most one carry bit.  Thus we know that the output
2102     // is, at worst, one more bit than the inputs.
2103     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2104     if (Tmp == 1) return 1;  // Early out.
2105     return std::min(Tmp, Tmp2)-1;
2106 
2107   case Instruction::PHI: {
2108     PHINode *PN = cast<PHINode>(U);
2109     unsigned NumIncomingValues = PN->getNumIncomingValues();
2110     // Don't analyze large in-degree PHIs.
2111     if (NumIncomingValues > 4) break;
2112     // Unreachable blocks may have zero-operand PHI nodes.
2113     if (NumIncomingValues == 0) break;
2114 
2115     // Take the minimum of all incoming values.  This can't infinitely loop
2116     // because of our depth threshold.
2117     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2118     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2119       if (Tmp == 1) return Tmp;
2120       Tmp = std::min(
2121           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2122     }
2123     return Tmp;
2124   }
2125 
2126   case Instruction::Trunc:
2127     // FIXME: it's tricky to do anything useful for this, but it is an important
2128     // case for targets like X86.
2129     break;
2130   }
2131 
2132   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2133   // use this information.
2134   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2135   APInt Mask;
2136   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2137 
2138   if (KnownZero.isNegative()) {        // sign bit is 0
2139     Mask = KnownZero;
2140   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2141     Mask = KnownOne;
2142   } else {
2143     // Nothing known.
2144     return FirstAnswer;
2145   }
2146 
2147   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2148   // the number of identical bits in the top of the input value.
2149   Mask = ~Mask;
2150   Mask <<= Mask.getBitWidth()-TyBits;
2151   // Return # leading zeros.  We use 'min' here in case Val was zero before
2152   // shifting.  We don't want to return '64' as for an i32 "0".
2153   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2154 }
2155 
2156 /// This function computes the integer multiple of Base that equals V.
2157 /// If successful, it returns true and returns the multiple in
2158 /// Multiple. If unsuccessful, it returns false. It looks
2159 /// through SExt instructions only if LookThroughSExt is true.
2160 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2161                            bool LookThroughSExt, unsigned Depth) {
2162   const unsigned MaxDepth = 6;
2163 
2164   assert(V && "No Value?");
2165   assert(Depth <= MaxDepth && "Limit Search Depth");
2166   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2167 
2168   Type *T = V->getType();
2169 
2170   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2171 
2172   if (Base == 0)
2173     return false;
2174 
2175   if (Base == 1) {
2176     Multiple = V;
2177     return true;
2178   }
2179 
2180   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2181   Constant *BaseVal = ConstantInt::get(T, Base);
2182   if (CO && CO == BaseVal) {
2183     // Multiple is 1.
2184     Multiple = ConstantInt::get(T, 1);
2185     return true;
2186   }
2187 
2188   if (CI && CI->getZExtValue() % Base == 0) {
2189     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2190     return true;
2191   }
2192 
2193   if (Depth == MaxDepth) return false;  // Limit search depth.
2194 
2195   Operator *I = dyn_cast<Operator>(V);
2196   if (!I) return false;
2197 
2198   switch (I->getOpcode()) {
2199   default: break;
2200   case Instruction::SExt:
2201     if (!LookThroughSExt) return false;
2202     // otherwise fall through to ZExt
2203   case Instruction::ZExt:
2204     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2205                            LookThroughSExt, Depth+1);
2206   case Instruction::Shl:
2207   case Instruction::Mul: {
2208     Value *Op0 = I->getOperand(0);
2209     Value *Op1 = I->getOperand(1);
2210 
2211     if (I->getOpcode() == Instruction::Shl) {
2212       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2213       if (!Op1CI) return false;
2214       // Turn Op0 << Op1 into Op0 * 2^Op1
2215       APInt Op1Int = Op1CI->getValue();
2216       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2217       APInt API(Op1Int.getBitWidth(), 0);
2218       API.setBit(BitToSet);
2219       Op1 = ConstantInt::get(V->getContext(), API);
2220     }
2221 
2222     Value *Mul0 = nullptr;
2223     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2224       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2225         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2226           if (Op1C->getType()->getPrimitiveSizeInBits() <
2227               MulC->getType()->getPrimitiveSizeInBits())
2228             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2229           if (Op1C->getType()->getPrimitiveSizeInBits() >
2230               MulC->getType()->getPrimitiveSizeInBits())
2231             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2232 
2233           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2234           Multiple = ConstantExpr::getMul(MulC, Op1C);
2235           return true;
2236         }
2237 
2238       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2239         if (Mul0CI->getValue() == 1) {
2240           // V == Base * Op1, so return Op1
2241           Multiple = Op1;
2242           return true;
2243         }
2244     }
2245 
2246     Value *Mul1 = nullptr;
2247     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2248       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2249         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2250           if (Op0C->getType()->getPrimitiveSizeInBits() <
2251               MulC->getType()->getPrimitiveSizeInBits())
2252             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2253           if (Op0C->getType()->getPrimitiveSizeInBits() >
2254               MulC->getType()->getPrimitiveSizeInBits())
2255             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2256 
2257           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2258           Multiple = ConstantExpr::getMul(MulC, Op0C);
2259           return true;
2260         }
2261 
2262       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2263         if (Mul1CI->getValue() == 1) {
2264           // V == Base * Op0, so return Op0
2265           Multiple = Op0;
2266           return true;
2267         }
2268     }
2269   }
2270   }
2271 
2272   // We could not determine if V is a multiple of Base.
2273   return false;
2274 }
2275 
2276 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2277                                             const TargetLibraryInfo *TLI) {
2278   const Function *F = ICS.getCalledFunction();
2279   if (!F)
2280     return Intrinsic::not_intrinsic;
2281 
2282   if (F->isIntrinsic())
2283     return F->getIntrinsicID();
2284 
2285   if (!TLI)
2286     return Intrinsic::not_intrinsic;
2287 
2288   LibFunc::Func Func;
2289   // We're going to make assumptions on the semantics of the functions, check
2290   // that the target knows that it's available in this environment and it does
2291   // not have local linkage.
2292   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2293     return Intrinsic::not_intrinsic;
2294 
2295   if (!ICS.onlyReadsMemory())
2296     return Intrinsic::not_intrinsic;
2297 
2298   // Otherwise check if we have a call to a function that can be turned into a
2299   // vector intrinsic.
2300   switch (Func) {
2301   default:
2302     break;
2303   case LibFunc::sin:
2304   case LibFunc::sinf:
2305   case LibFunc::sinl:
2306     return Intrinsic::sin;
2307   case LibFunc::cos:
2308   case LibFunc::cosf:
2309   case LibFunc::cosl:
2310     return Intrinsic::cos;
2311   case LibFunc::exp:
2312   case LibFunc::expf:
2313   case LibFunc::expl:
2314     return Intrinsic::exp;
2315   case LibFunc::exp2:
2316   case LibFunc::exp2f:
2317   case LibFunc::exp2l:
2318     return Intrinsic::exp2;
2319   case LibFunc::log:
2320   case LibFunc::logf:
2321   case LibFunc::logl:
2322     return Intrinsic::log;
2323   case LibFunc::log10:
2324   case LibFunc::log10f:
2325   case LibFunc::log10l:
2326     return Intrinsic::log10;
2327   case LibFunc::log2:
2328   case LibFunc::log2f:
2329   case LibFunc::log2l:
2330     return Intrinsic::log2;
2331   case LibFunc::fabs:
2332   case LibFunc::fabsf:
2333   case LibFunc::fabsl:
2334     return Intrinsic::fabs;
2335   case LibFunc::fmin:
2336   case LibFunc::fminf:
2337   case LibFunc::fminl:
2338     return Intrinsic::minnum;
2339   case LibFunc::fmax:
2340   case LibFunc::fmaxf:
2341   case LibFunc::fmaxl:
2342     return Intrinsic::maxnum;
2343   case LibFunc::copysign:
2344   case LibFunc::copysignf:
2345   case LibFunc::copysignl:
2346     return Intrinsic::copysign;
2347   case LibFunc::floor:
2348   case LibFunc::floorf:
2349   case LibFunc::floorl:
2350     return Intrinsic::floor;
2351   case LibFunc::ceil:
2352   case LibFunc::ceilf:
2353   case LibFunc::ceill:
2354     return Intrinsic::ceil;
2355   case LibFunc::trunc:
2356   case LibFunc::truncf:
2357   case LibFunc::truncl:
2358     return Intrinsic::trunc;
2359   case LibFunc::rint:
2360   case LibFunc::rintf:
2361   case LibFunc::rintl:
2362     return Intrinsic::rint;
2363   case LibFunc::nearbyint:
2364   case LibFunc::nearbyintf:
2365   case LibFunc::nearbyintl:
2366     return Intrinsic::nearbyint;
2367   case LibFunc::round:
2368   case LibFunc::roundf:
2369   case LibFunc::roundl:
2370     return Intrinsic::round;
2371   case LibFunc::pow:
2372   case LibFunc::powf:
2373   case LibFunc::powl:
2374     return Intrinsic::pow;
2375   case LibFunc::sqrt:
2376   case LibFunc::sqrtf:
2377   case LibFunc::sqrtl:
2378     if (ICS->hasNoNaNs())
2379       return Intrinsic::sqrt;
2380     return Intrinsic::not_intrinsic;
2381   }
2382 
2383   return Intrinsic::not_intrinsic;
2384 }
2385 
2386 /// Return true if we can prove that the specified FP value is never equal to
2387 /// -0.0.
2388 ///
2389 /// NOTE: this function will need to be revisited when we support non-default
2390 /// rounding modes!
2391 ///
2392 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2393                                 unsigned Depth) {
2394   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2395     return !CFP->getValueAPF().isNegZero();
2396 
2397   // FIXME: Magic number! At the least, this should be given a name because it's
2398   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2399   // expose it as a parameter, so it can be used for testing / experimenting.
2400   if (Depth == 6)
2401     return false;  // Limit search depth.
2402 
2403   const Operator *I = dyn_cast<Operator>(V);
2404   if (!I) return false;
2405 
2406   // Check if the nsz fast-math flag is set
2407   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2408     if (FPO->hasNoSignedZeros())
2409       return true;
2410 
2411   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2412   if (I->getOpcode() == Instruction::FAdd)
2413     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2414       if (CFP->isNullValue())
2415         return true;
2416 
2417   // sitofp and uitofp turn into +0.0 for zero.
2418   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2419     return true;
2420 
2421   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2422     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2423     switch (IID) {
2424     default:
2425       break;
2426     // sqrt(-0.0) = -0.0, no other negative results are possible.
2427     case Intrinsic::sqrt:
2428       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2429     // fabs(x) != -0.0
2430     case Intrinsic::fabs:
2431       return true;
2432     }
2433   }
2434 
2435   return false;
2436 }
2437 
2438 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2439                                        const TargetLibraryInfo *TLI,
2440                                        unsigned Depth) {
2441   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2442     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2443 
2444   // FIXME: Magic number! At the least, this should be given a name because it's
2445   // used similarly in CannotBeNegativeZero(). A better fix may be to
2446   // expose it as a parameter, so it can be used for testing / experimenting.
2447   if (Depth == 6)
2448     return false;  // Limit search depth.
2449 
2450   const Operator *I = dyn_cast<Operator>(V);
2451   if (!I) return false;
2452 
2453   switch (I->getOpcode()) {
2454   default: break;
2455   // Unsigned integers are always nonnegative.
2456   case Instruction::UIToFP:
2457     return true;
2458   case Instruction::FMul:
2459     // x*x is always non-negative or a NaN.
2460     if (I->getOperand(0) == I->getOperand(1))
2461       return true;
2462     // Fall through
2463   case Instruction::FAdd:
2464   case Instruction::FDiv:
2465   case Instruction::FRem:
2466     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2467            CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2468   case Instruction::Select:
2469     return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2470            CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2471   case Instruction::FPExt:
2472   case Instruction::FPTrunc:
2473     // Widening/narrowing never change sign.
2474     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2475   case Instruction::Call:
2476     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2477     switch (IID) {
2478     default:
2479       break;
2480     case Intrinsic::maxnum:
2481       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2482              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2483     case Intrinsic::minnum:
2484       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2485              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2486     case Intrinsic::exp:
2487     case Intrinsic::exp2:
2488     case Intrinsic::fabs:
2489     case Intrinsic::sqrt:
2490       return true;
2491     case Intrinsic::powi:
2492       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2493         // powi(x,n) is non-negative if n is even.
2494         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2495           return true;
2496       }
2497       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2498     case Intrinsic::fma:
2499     case Intrinsic::fmuladd:
2500       // x*x+y is non-negative if y is non-negative.
2501       return I->getOperand(0) == I->getOperand(1) &&
2502              CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2503     }
2504     break;
2505   }
2506   return false;
2507 }
2508 
2509 /// If the specified value can be set by repeating the same byte in memory,
2510 /// return the i8 value that it is represented with.  This is
2511 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2512 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2513 /// byte store (e.g. i16 0x1234), return null.
2514 Value *llvm::isBytewiseValue(Value *V) {
2515   // All byte-wide stores are splatable, even of arbitrary variables.
2516   if (V->getType()->isIntegerTy(8)) return V;
2517 
2518   // Handle 'null' ConstantArrayZero etc.
2519   if (Constant *C = dyn_cast<Constant>(V))
2520     if (C->isNullValue())
2521       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2522 
2523   // Constant float and double values can be handled as integer values if the
2524   // corresponding integer value is "byteable".  An important case is 0.0.
2525   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2526     if (CFP->getType()->isFloatTy())
2527       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2528     if (CFP->getType()->isDoubleTy())
2529       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2530     // Don't handle long double formats, which have strange constraints.
2531   }
2532 
2533   // We can handle constant integers that are multiple of 8 bits.
2534   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2535     if (CI->getBitWidth() % 8 == 0) {
2536       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2537 
2538       if (!CI->getValue().isSplat(8))
2539         return nullptr;
2540       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2541     }
2542   }
2543 
2544   // A ConstantDataArray/Vector is splatable if all its members are equal and
2545   // also splatable.
2546   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2547     Value *Elt = CA->getElementAsConstant(0);
2548     Value *Val = isBytewiseValue(Elt);
2549     if (!Val)
2550       return nullptr;
2551 
2552     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2553       if (CA->getElementAsConstant(I) != Elt)
2554         return nullptr;
2555 
2556     return Val;
2557   }
2558 
2559   // Conceptually, we could handle things like:
2560   //   %a = zext i8 %X to i16
2561   //   %b = shl i16 %a, 8
2562   //   %c = or i16 %a, %b
2563   // but until there is an example that actually needs this, it doesn't seem
2564   // worth worrying about.
2565   return nullptr;
2566 }
2567 
2568 
2569 // This is the recursive version of BuildSubAggregate. It takes a few different
2570 // arguments. Idxs is the index within the nested struct From that we are
2571 // looking at now (which is of type IndexedType). IdxSkip is the number of
2572 // indices from Idxs that should be left out when inserting into the resulting
2573 // struct. To is the result struct built so far, new insertvalue instructions
2574 // build on that.
2575 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2576                                 SmallVectorImpl<unsigned> &Idxs,
2577                                 unsigned IdxSkip,
2578                                 Instruction *InsertBefore) {
2579   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2580   if (STy) {
2581     // Save the original To argument so we can modify it
2582     Value *OrigTo = To;
2583     // General case, the type indexed by Idxs is a struct
2584     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2585       // Process each struct element recursively
2586       Idxs.push_back(i);
2587       Value *PrevTo = To;
2588       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2589                              InsertBefore);
2590       Idxs.pop_back();
2591       if (!To) {
2592         // Couldn't find any inserted value for this index? Cleanup
2593         while (PrevTo != OrigTo) {
2594           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2595           PrevTo = Del->getAggregateOperand();
2596           Del->eraseFromParent();
2597         }
2598         // Stop processing elements
2599         break;
2600       }
2601     }
2602     // If we successfully found a value for each of our subaggregates
2603     if (To)
2604       return To;
2605   }
2606   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2607   // the struct's elements had a value that was inserted directly. In the latter
2608   // case, perhaps we can't determine each of the subelements individually, but
2609   // we might be able to find the complete struct somewhere.
2610 
2611   // Find the value that is at that particular spot
2612   Value *V = FindInsertedValue(From, Idxs);
2613 
2614   if (!V)
2615     return nullptr;
2616 
2617   // Insert the value in the new (sub) aggregrate
2618   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2619                                        "tmp", InsertBefore);
2620 }
2621 
2622 // This helper takes a nested struct and extracts a part of it (which is again a
2623 // struct) into a new value. For example, given the struct:
2624 // { a, { b, { c, d }, e } }
2625 // and the indices "1, 1" this returns
2626 // { c, d }.
2627 //
2628 // It does this by inserting an insertvalue for each element in the resulting
2629 // struct, as opposed to just inserting a single struct. This will only work if
2630 // each of the elements of the substruct are known (ie, inserted into From by an
2631 // insertvalue instruction somewhere).
2632 //
2633 // All inserted insertvalue instructions are inserted before InsertBefore
2634 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2635                                 Instruction *InsertBefore) {
2636   assert(InsertBefore && "Must have someplace to insert!");
2637   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2638                                                              idx_range);
2639   Value *To = UndefValue::get(IndexedType);
2640   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2641   unsigned IdxSkip = Idxs.size();
2642 
2643   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2644 }
2645 
2646 /// Given an aggregrate and an sequence of indices, see if
2647 /// the scalar value indexed is already around as a register, for example if it
2648 /// were inserted directly into the aggregrate.
2649 ///
2650 /// If InsertBefore is not null, this function will duplicate (modified)
2651 /// insertvalues when a part of a nested struct is extracted.
2652 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2653                                Instruction *InsertBefore) {
2654   // Nothing to index? Just return V then (this is useful at the end of our
2655   // recursion).
2656   if (idx_range.empty())
2657     return V;
2658   // We have indices, so V should have an indexable type.
2659   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2660          "Not looking at a struct or array?");
2661   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2662          "Invalid indices for type?");
2663 
2664   if (Constant *C = dyn_cast<Constant>(V)) {
2665     C = C->getAggregateElement(idx_range[0]);
2666     if (!C) return nullptr;
2667     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2668   }
2669 
2670   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2671     // Loop the indices for the insertvalue instruction in parallel with the
2672     // requested indices
2673     const unsigned *req_idx = idx_range.begin();
2674     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2675          i != e; ++i, ++req_idx) {
2676       if (req_idx == idx_range.end()) {
2677         // We can't handle this without inserting insertvalues
2678         if (!InsertBefore)
2679           return nullptr;
2680 
2681         // The requested index identifies a part of a nested aggregate. Handle
2682         // this specially. For example,
2683         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2684         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2685         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2686         // This can be changed into
2687         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2688         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2689         // which allows the unused 0,0 element from the nested struct to be
2690         // removed.
2691         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2692                                  InsertBefore);
2693       }
2694 
2695       // This insert value inserts something else than what we are looking for.
2696       // See if the (aggregate) value inserted into has the value we are
2697       // looking for, then.
2698       if (*req_idx != *i)
2699         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2700                                  InsertBefore);
2701     }
2702     // If we end up here, the indices of the insertvalue match with those
2703     // requested (though possibly only partially). Now we recursively look at
2704     // the inserted value, passing any remaining indices.
2705     return FindInsertedValue(I->getInsertedValueOperand(),
2706                              makeArrayRef(req_idx, idx_range.end()),
2707                              InsertBefore);
2708   }
2709 
2710   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2711     // If we're extracting a value from an aggregate that was extracted from
2712     // something else, we can extract from that something else directly instead.
2713     // However, we will need to chain I's indices with the requested indices.
2714 
2715     // Calculate the number of indices required
2716     unsigned size = I->getNumIndices() + idx_range.size();
2717     // Allocate some space to put the new indices in
2718     SmallVector<unsigned, 5> Idxs;
2719     Idxs.reserve(size);
2720     // Add indices from the extract value instruction
2721     Idxs.append(I->idx_begin(), I->idx_end());
2722 
2723     // Add requested indices
2724     Idxs.append(idx_range.begin(), idx_range.end());
2725 
2726     assert(Idxs.size() == size
2727            && "Number of indices added not correct?");
2728 
2729     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2730   }
2731   // Otherwise, we don't know (such as, extracting from a function return value
2732   // or load instruction)
2733   return nullptr;
2734 }
2735 
2736 /// Analyze the specified pointer to see if it can be expressed as a base
2737 /// pointer plus a constant offset. Return the base and offset to the caller.
2738 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2739                                               const DataLayout &DL) {
2740   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2741   APInt ByteOffset(BitWidth, 0);
2742 
2743   // We walk up the defs but use a visited set to handle unreachable code. In
2744   // that case, we stop after accumulating the cycle once (not that it
2745   // matters).
2746   SmallPtrSet<Value *, 16> Visited;
2747   while (Visited.insert(Ptr).second) {
2748     if (Ptr->getType()->isVectorTy())
2749       break;
2750 
2751     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2752       APInt GEPOffset(BitWidth, 0);
2753       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2754         break;
2755 
2756       ByteOffset += GEPOffset;
2757 
2758       Ptr = GEP->getPointerOperand();
2759     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2760                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2761       Ptr = cast<Operator>(Ptr)->getOperand(0);
2762     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2763       if (GA->isInterposable())
2764         break;
2765       Ptr = GA->getAliasee();
2766     } else {
2767       break;
2768     }
2769   }
2770   Offset = ByteOffset.getSExtValue();
2771   return Ptr;
2772 }
2773 
2774 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2775   // Make sure the GEP has exactly three arguments.
2776   if (GEP->getNumOperands() != 3)
2777     return false;
2778 
2779   // Make sure the index-ee is a pointer to array of i8.
2780   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2781   if (!AT || !AT->getElementType()->isIntegerTy(8))
2782     return false;
2783 
2784   // Check to make sure that the first operand of the GEP is an integer and
2785   // has value 0 so that we are sure we're indexing into the initializer.
2786   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2787   if (!FirstIdx || !FirstIdx->isZero())
2788     return false;
2789 
2790   return true;
2791 }
2792 
2793 /// This function computes the length of a null-terminated C string pointed to
2794 /// by V. If successful, it returns true and returns the string in Str.
2795 /// If unsuccessful, it returns false.
2796 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2797                                  uint64_t Offset, bool TrimAtNul) {
2798   assert(V);
2799 
2800   // Look through bitcast instructions and geps.
2801   V = V->stripPointerCasts();
2802 
2803   // If the value is a GEP instruction or constant expression, treat it as an
2804   // offset.
2805   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2806     // The GEP operator should be based on a pointer to string constant, and is
2807     // indexing into the string constant.
2808     if (!isGEPBasedOnPointerToString(GEP))
2809       return false;
2810 
2811     // If the second index isn't a ConstantInt, then this is a variable index
2812     // into the array.  If this occurs, we can't say anything meaningful about
2813     // the string.
2814     uint64_t StartIdx = 0;
2815     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2816       StartIdx = CI->getZExtValue();
2817     else
2818       return false;
2819     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2820                                  TrimAtNul);
2821   }
2822 
2823   // The GEP instruction, constant or instruction, must reference a global
2824   // variable that is a constant and is initialized. The referenced constant
2825   // initializer is the array that we'll use for optimization.
2826   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2827   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2828     return false;
2829 
2830   // Handle the all-zeros case.
2831   if (GV->getInitializer()->isNullValue()) {
2832     // This is a degenerate case. The initializer is constant zero so the
2833     // length of the string must be zero.
2834     Str = "";
2835     return true;
2836   }
2837 
2838   // This must be a ConstantDataArray.
2839   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
2840   if (!Array || !Array->isString())
2841     return false;
2842 
2843   // Get the number of elements in the array.
2844   uint64_t NumElts = Array->getType()->getArrayNumElements();
2845 
2846   // Start out with the entire array in the StringRef.
2847   Str = Array->getAsString();
2848 
2849   if (Offset > NumElts)
2850     return false;
2851 
2852   // Skip over 'offset' bytes.
2853   Str = Str.substr(Offset);
2854 
2855   if (TrimAtNul) {
2856     // Trim off the \0 and anything after it.  If the array is not nul
2857     // terminated, we just return the whole end of string.  The client may know
2858     // some other way that the string is length-bound.
2859     Str = Str.substr(0, Str.find('\0'));
2860   }
2861   return true;
2862 }
2863 
2864 // These next two are very similar to the above, but also look through PHI
2865 // nodes.
2866 // TODO: See if we can integrate these two together.
2867 
2868 /// If we can compute the length of the string pointed to by
2869 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2870 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2871   // Look through noop bitcast instructions.
2872   V = V->stripPointerCasts();
2873 
2874   // If this is a PHI node, there are two cases: either we have already seen it
2875   // or we haven't.
2876   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2877     if (!PHIs.insert(PN).second)
2878       return ~0ULL;  // already in the set.
2879 
2880     // If it was new, see if all the input strings are the same length.
2881     uint64_t LenSoFar = ~0ULL;
2882     for (Value *IncValue : PN->incoming_values()) {
2883       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2884       if (Len == 0) return 0; // Unknown length -> unknown.
2885 
2886       if (Len == ~0ULL) continue;
2887 
2888       if (Len != LenSoFar && LenSoFar != ~0ULL)
2889         return 0;    // Disagree -> unknown.
2890       LenSoFar = Len;
2891     }
2892 
2893     // Success, all agree.
2894     return LenSoFar;
2895   }
2896 
2897   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2898   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2899     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2900     if (Len1 == 0) return 0;
2901     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2902     if (Len2 == 0) return 0;
2903     if (Len1 == ~0ULL) return Len2;
2904     if (Len2 == ~0ULL) return Len1;
2905     if (Len1 != Len2) return 0;
2906     return Len1;
2907   }
2908 
2909   // Otherwise, see if we can read the string.
2910   StringRef StrData;
2911   if (!getConstantStringInfo(V, StrData))
2912     return 0;
2913 
2914   return StrData.size()+1;
2915 }
2916 
2917 /// If we can compute the length of the string pointed to by
2918 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2919 uint64_t llvm::GetStringLength(Value *V) {
2920   if (!V->getType()->isPointerTy()) return 0;
2921 
2922   SmallPtrSet<PHINode*, 32> PHIs;
2923   uint64_t Len = GetStringLengthH(V, PHIs);
2924   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2925   // an empty string as a length.
2926   return Len == ~0ULL ? 1 : Len;
2927 }
2928 
2929 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
2930 /// previous iteration of the loop was referring to the same object as \p PN.
2931 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2932   // Find the loop-defined value.
2933   Loop *L = LI->getLoopFor(PN->getParent());
2934   if (PN->getNumIncomingValues() != 2)
2935     return true;
2936 
2937   // Find the value from previous iteration.
2938   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2939   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2940     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2941   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2942     return true;
2943 
2944   // If a new pointer is loaded in the loop, the pointer references a different
2945   // object in every iteration.  E.g.:
2946   //    for (i)
2947   //       int *p = a[i];
2948   //       ...
2949   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2950     if (!L->isLoopInvariant(Load->getPointerOperand()))
2951       return false;
2952   return true;
2953 }
2954 
2955 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2956                                  unsigned MaxLookup) {
2957   if (!V->getType()->isPointerTy())
2958     return V;
2959   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2960     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2961       V = GEP->getPointerOperand();
2962     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2963                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
2964       V = cast<Operator>(V)->getOperand(0);
2965     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2966       if (GA->isInterposable())
2967         return V;
2968       V = GA->getAliasee();
2969     } else {
2970       // See if InstructionSimplify knows any relevant tricks.
2971       if (Instruction *I = dyn_cast<Instruction>(V))
2972         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
2973         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
2974           V = Simplified;
2975           continue;
2976         }
2977 
2978       return V;
2979     }
2980     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2981   }
2982   return V;
2983 }
2984 
2985 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
2986                                 const DataLayout &DL, LoopInfo *LI,
2987                                 unsigned MaxLookup) {
2988   SmallPtrSet<Value *, 4> Visited;
2989   SmallVector<Value *, 4> Worklist;
2990   Worklist.push_back(V);
2991   do {
2992     Value *P = Worklist.pop_back_val();
2993     P = GetUnderlyingObject(P, DL, MaxLookup);
2994 
2995     if (!Visited.insert(P).second)
2996       continue;
2997 
2998     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2999       Worklist.push_back(SI->getTrueValue());
3000       Worklist.push_back(SI->getFalseValue());
3001       continue;
3002     }
3003 
3004     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3005       // If this PHI changes the underlying object in every iteration of the
3006       // loop, don't look through it.  Consider:
3007       //   int **A;
3008       //   for (i) {
3009       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3010       //     Curr = A[i];
3011       //     *Prev, *Curr;
3012       //
3013       // Prev is tracking Curr one iteration behind so they refer to different
3014       // underlying objects.
3015       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3016           isSameUnderlyingObjectInLoop(PN, LI))
3017         for (Value *IncValue : PN->incoming_values())
3018           Worklist.push_back(IncValue);
3019       continue;
3020     }
3021 
3022     Objects.push_back(P);
3023   } while (!Worklist.empty());
3024 }
3025 
3026 /// Return true if the only users of this pointer are lifetime markers.
3027 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3028   for (const User *U : V->users()) {
3029     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3030     if (!II) return false;
3031 
3032     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3033         II->getIntrinsicID() != Intrinsic::lifetime_end)
3034       return false;
3035   }
3036   return true;
3037 }
3038 
3039 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3040                                         const Instruction *CtxI,
3041                                         const DominatorTree *DT,
3042                                         const TargetLibraryInfo *TLI) {
3043   const Operator *Inst = dyn_cast<Operator>(V);
3044   if (!Inst)
3045     return false;
3046 
3047   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3048     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3049       if (C->canTrap())
3050         return false;
3051 
3052   switch (Inst->getOpcode()) {
3053   default:
3054     return true;
3055   case Instruction::UDiv:
3056   case Instruction::URem: {
3057     // x / y is undefined if y == 0.
3058     const APInt *V;
3059     if (match(Inst->getOperand(1), m_APInt(V)))
3060       return *V != 0;
3061     return false;
3062   }
3063   case Instruction::SDiv:
3064   case Instruction::SRem: {
3065     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3066     const APInt *Numerator, *Denominator;
3067     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3068       return false;
3069     // We cannot hoist this division if the denominator is 0.
3070     if (*Denominator == 0)
3071       return false;
3072     // It's safe to hoist if the denominator is not 0 or -1.
3073     if (*Denominator != -1)
3074       return true;
3075     // At this point we know that the denominator is -1.  It is safe to hoist as
3076     // long we know that the numerator is not INT_MIN.
3077     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3078       return !Numerator->isMinSignedValue();
3079     // The numerator *might* be MinSignedValue.
3080     return false;
3081   }
3082   case Instruction::Load: {
3083     const LoadInst *LI = cast<LoadInst>(Inst);
3084     if (!LI->isUnordered() ||
3085         // Speculative load may create a race that did not exist in the source.
3086         LI->getParent()->getParent()->hasFnAttribute(
3087             Attribute::SanitizeThread) ||
3088         // Speculative load may load data from dirty regions.
3089         LI->getParent()->getParent()->hasFnAttribute(
3090             Attribute::SanitizeAddress))
3091       return false;
3092     const DataLayout &DL = LI->getModule()->getDataLayout();
3093     return isDereferenceableAndAlignedPointer(
3094         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
3095   }
3096   case Instruction::Call: {
3097     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3098       switch (II->getIntrinsicID()) {
3099       // These synthetic intrinsics have no side-effects and just mark
3100       // information about their operands.
3101       // FIXME: There are other no-op synthetic instructions that potentially
3102       // should be considered at least *safe* to speculate...
3103       case Intrinsic::dbg_declare:
3104       case Intrinsic::dbg_value:
3105         return true;
3106 
3107       case Intrinsic::bswap:
3108       case Intrinsic::ctlz:
3109       case Intrinsic::ctpop:
3110       case Intrinsic::cttz:
3111       case Intrinsic::objectsize:
3112       case Intrinsic::sadd_with_overflow:
3113       case Intrinsic::smul_with_overflow:
3114       case Intrinsic::ssub_with_overflow:
3115       case Intrinsic::uadd_with_overflow:
3116       case Intrinsic::umul_with_overflow:
3117       case Intrinsic::usub_with_overflow:
3118         return true;
3119       // These intrinsics are defined to have the same behavior as libm
3120       // functions except for setting errno.
3121       case Intrinsic::sqrt:
3122       case Intrinsic::fma:
3123       case Intrinsic::fmuladd:
3124         return true;
3125       // These intrinsics are defined to have the same behavior as libm
3126       // functions, and the corresponding libm functions never set errno.
3127       case Intrinsic::trunc:
3128       case Intrinsic::copysign:
3129       case Intrinsic::fabs:
3130       case Intrinsic::minnum:
3131       case Intrinsic::maxnum:
3132         return true;
3133       // These intrinsics are defined to have the same behavior as libm
3134       // functions, which never overflow when operating on the IEEE754 types
3135       // that we support, and never set errno otherwise.
3136       case Intrinsic::ceil:
3137       case Intrinsic::floor:
3138       case Intrinsic::nearbyint:
3139       case Intrinsic::rint:
3140       case Intrinsic::round:
3141         return true;
3142       // TODO: are convert_{from,to}_fp16 safe?
3143       // TODO: can we list target-specific intrinsics here?
3144       default: break;
3145       }
3146     }
3147     return false; // The called function could have undefined behavior or
3148                   // side-effects, even if marked readnone nounwind.
3149   }
3150   case Instruction::VAArg:
3151   case Instruction::Alloca:
3152   case Instruction::Invoke:
3153   case Instruction::PHI:
3154   case Instruction::Store:
3155   case Instruction::Ret:
3156   case Instruction::Br:
3157   case Instruction::IndirectBr:
3158   case Instruction::Switch:
3159   case Instruction::Unreachable:
3160   case Instruction::Fence:
3161   case Instruction::AtomicRMW:
3162   case Instruction::AtomicCmpXchg:
3163   case Instruction::LandingPad:
3164   case Instruction::Resume:
3165   case Instruction::CatchSwitch:
3166   case Instruction::CatchPad:
3167   case Instruction::CatchRet:
3168   case Instruction::CleanupPad:
3169   case Instruction::CleanupRet:
3170     return false; // Misc instructions which have effects
3171   }
3172 }
3173 
3174 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3175   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3176 }
3177 
3178 /// Return true if we know that the specified value is never null.
3179 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3180   assert(V->getType()->isPointerTy() && "V must be pointer type");
3181 
3182   // Alloca never returns null, malloc might.
3183   if (isa<AllocaInst>(V)) return true;
3184 
3185   // A byval, inalloca, or nonnull argument is never null.
3186   if (const Argument *A = dyn_cast<Argument>(V))
3187     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3188 
3189   // A global variable in address space 0 is non null unless extern weak.
3190   // Other address spaces may have null as a valid address for a global,
3191   // so we can't assume anything.
3192   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3193     return !GV->hasExternalWeakLinkage() &&
3194            GV->getType()->getAddressSpace() == 0;
3195 
3196   // A Load tagged with nonnull metadata is never null.
3197   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3198     return LI->getMetadata(LLVMContext::MD_nonnull);
3199 
3200   if (auto CS = ImmutableCallSite(V))
3201     if (CS.isReturnNonNull())
3202       return true;
3203 
3204   return false;
3205 }
3206 
3207 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3208                                                   const Instruction *CtxI,
3209                                                   const DominatorTree *DT) {
3210   assert(V->getType()->isPointerTy() && "V must be pointer type");
3211 
3212   unsigned NumUsesExplored = 0;
3213   for (auto *U : V->users()) {
3214     // Avoid massive lists
3215     if (NumUsesExplored >= DomConditionsMaxUses)
3216       break;
3217     NumUsesExplored++;
3218     // Consider only compare instructions uniquely controlling a branch
3219     CmpInst::Predicate Pred;
3220     if (!match(const_cast<User *>(U),
3221                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3222         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3223       continue;
3224 
3225     for (auto *CmpU : U->users()) {
3226       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3227         assert(BI->isConditional() && "uses a comparison!");
3228 
3229         BasicBlock *NonNullSuccessor =
3230             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3231         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3232         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3233           return true;
3234       } else if (Pred == ICmpInst::ICMP_NE &&
3235                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3236                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3237         return true;
3238       }
3239     }
3240   }
3241 
3242   return false;
3243 }
3244 
3245 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3246                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3247   if (isKnownNonNull(V, TLI))
3248     return true;
3249 
3250   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3251 }
3252 
3253 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3254                                                    const DataLayout &DL,
3255                                                    AssumptionCache *AC,
3256                                                    const Instruction *CxtI,
3257                                                    const DominatorTree *DT) {
3258   // Multiplying n * m significant bits yields a result of n + m significant
3259   // bits. If the total number of significant bits does not exceed the
3260   // result bit width (minus 1), there is no overflow.
3261   // This means if we have enough leading zero bits in the operands
3262   // we can guarantee that the result does not overflow.
3263   // Ref: "Hacker's Delight" by Henry Warren
3264   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3265   APInt LHSKnownZero(BitWidth, 0);
3266   APInt LHSKnownOne(BitWidth, 0);
3267   APInt RHSKnownZero(BitWidth, 0);
3268   APInt RHSKnownOne(BitWidth, 0);
3269   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3270                    DT);
3271   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3272                    DT);
3273   // Note that underestimating the number of zero bits gives a more
3274   // conservative answer.
3275   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3276                       RHSKnownZero.countLeadingOnes();
3277   // First handle the easy case: if we have enough zero bits there's
3278   // definitely no overflow.
3279   if (ZeroBits >= BitWidth)
3280     return OverflowResult::NeverOverflows;
3281 
3282   // Get the largest possible values for each operand.
3283   APInt LHSMax = ~LHSKnownZero;
3284   APInt RHSMax = ~RHSKnownZero;
3285 
3286   // We know the multiply operation doesn't overflow if the maximum values for
3287   // each operand will not overflow after we multiply them together.
3288   bool MaxOverflow;
3289   LHSMax.umul_ov(RHSMax, MaxOverflow);
3290   if (!MaxOverflow)
3291     return OverflowResult::NeverOverflows;
3292 
3293   // We know it always overflows if multiplying the smallest possible values for
3294   // the operands also results in overflow.
3295   bool MinOverflow;
3296   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3297   if (MinOverflow)
3298     return OverflowResult::AlwaysOverflows;
3299 
3300   return OverflowResult::MayOverflow;
3301 }
3302 
3303 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3304                                                    const DataLayout &DL,
3305                                                    AssumptionCache *AC,
3306                                                    const Instruction *CxtI,
3307                                                    const DominatorTree *DT) {
3308   bool LHSKnownNonNegative, LHSKnownNegative;
3309   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3310                  AC, CxtI, DT);
3311   if (LHSKnownNonNegative || LHSKnownNegative) {
3312     bool RHSKnownNonNegative, RHSKnownNegative;
3313     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3314                    AC, CxtI, DT);
3315 
3316     if (LHSKnownNegative && RHSKnownNegative) {
3317       // The sign bit is set in both cases: this MUST overflow.
3318       // Create a simple add instruction, and insert it into the struct.
3319       return OverflowResult::AlwaysOverflows;
3320     }
3321 
3322     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3323       // The sign bit is clear in both cases: this CANNOT overflow.
3324       // Create a simple add instruction, and insert it into the struct.
3325       return OverflowResult::NeverOverflows;
3326     }
3327   }
3328 
3329   return OverflowResult::MayOverflow;
3330 }
3331 
3332 static OverflowResult computeOverflowForSignedAdd(
3333     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3334     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3335   if (Add && Add->hasNoSignedWrap()) {
3336     return OverflowResult::NeverOverflows;
3337   }
3338 
3339   bool LHSKnownNonNegative, LHSKnownNegative;
3340   bool RHSKnownNonNegative, RHSKnownNegative;
3341   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3342                  AC, CxtI, DT);
3343   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3344                  AC, CxtI, DT);
3345 
3346   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3347       (LHSKnownNegative && RHSKnownNonNegative)) {
3348     // The sign bits are opposite: this CANNOT overflow.
3349     return OverflowResult::NeverOverflows;
3350   }
3351 
3352   // The remaining code needs Add to be available. Early returns if not so.
3353   if (!Add)
3354     return OverflowResult::MayOverflow;
3355 
3356   // If the sign of Add is the same as at least one of the operands, this add
3357   // CANNOT overflow. This is particularly useful when the sum is
3358   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3359   // operands.
3360   bool LHSOrRHSKnownNonNegative =
3361       (LHSKnownNonNegative || RHSKnownNonNegative);
3362   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3363   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3364     bool AddKnownNonNegative, AddKnownNegative;
3365     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3366                    /*Depth=*/0, AC, CxtI, DT);
3367     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3368         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3369       return OverflowResult::NeverOverflows;
3370     }
3371   }
3372 
3373   return OverflowResult::MayOverflow;
3374 }
3375 
3376 bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
3377 #ifndef NDEBUG
3378   auto IID = II->getIntrinsicID();
3379   assert((IID == Intrinsic::sadd_with_overflow ||
3380           IID == Intrinsic::uadd_with_overflow ||
3381           IID == Intrinsic::ssub_with_overflow ||
3382           IID == Intrinsic::usub_with_overflow ||
3383           IID == Intrinsic::smul_with_overflow ||
3384           IID == Intrinsic::umul_with_overflow) &&
3385          "Not an overflow intrinsic!");
3386 #endif
3387 
3388   SmallVector<BranchInst *, 2> GuardingBranches;
3389   SmallVector<ExtractValueInst *, 2> Results;
3390 
3391   for (User *U : II->users()) {
3392     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3393       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3394 
3395       if (EVI->getIndices()[0] == 0)
3396         Results.push_back(EVI);
3397       else {
3398         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3399 
3400         for (auto *U : EVI->users())
3401           if (auto *B = dyn_cast<BranchInst>(U)) {
3402             assert(B->isConditional() && "How else is it using an i1?");
3403             GuardingBranches.push_back(B);
3404           }
3405       }
3406     } else {
3407       // We are using the aggregate directly in a way we don't want to analyze
3408       // here (storing it to a global, say).
3409       return false;
3410     }
3411   }
3412 
3413   auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
3414     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3415     if (!NoWrapEdge.isSingleEdge())
3416       return false;
3417 
3418     // Check if all users of the add are provably no-wrap.
3419     for (auto *Result : Results) {
3420       // If the extractvalue itself is not executed on overflow, the we don't
3421       // need to check each use separately, since domination is transitive.
3422       if (DT.dominates(NoWrapEdge, Result->getParent()))
3423         continue;
3424 
3425       for (auto &RU : Result->uses())
3426         if (!DT.dominates(NoWrapEdge, RU))
3427           return false;
3428     }
3429 
3430     return true;
3431   };
3432 
3433   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3434 }
3435 
3436 
3437 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3438                                                  const DataLayout &DL,
3439                                                  AssumptionCache *AC,
3440                                                  const Instruction *CxtI,
3441                                                  const DominatorTree *DT) {
3442   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3443                                        Add, DL, AC, CxtI, DT);
3444 }
3445 
3446 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3447                                                  const DataLayout &DL,
3448                                                  AssumptionCache *AC,
3449                                                  const Instruction *CxtI,
3450                                                  const DominatorTree *DT) {
3451   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3452 }
3453 
3454 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3455   // FIXME: This conservative implementation can be relaxed. E.g. most
3456   // atomic operations are guaranteed to terminate on most platforms
3457   // and most functions terminate.
3458 
3459   return !I->isAtomic() &&       // atomics may never succeed on some platforms
3460          !isa<CallInst>(I) &&    // could throw and might not terminate
3461          !isa<InvokeInst>(I) &&  // might not terminate and could throw to
3462                                  //   non-successor (see bug 24185 for details).
3463          !isa<ResumeInst>(I) &&  // has no successors
3464          !isa<ReturnInst>(I);    // has no successors
3465 }
3466 
3467 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3468                                                   const Loop *L) {
3469   // The loop header is guaranteed to be executed for every iteration.
3470   //
3471   // FIXME: Relax this constraint to cover all basic blocks that are
3472   // guaranteed to be executed at every iteration.
3473   if (I->getParent() != L->getHeader()) return false;
3474 
3475   for (const Instruction &LI : *L->getHeader()) {
3476     if (&LI == I) return true;
3477     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3478   }
3479   llvm_unreachable("Instruction not contained in its own parent basic block.");
3480 }
3481 
3482 bool llvm::propagatesFullPoison(const Instruction *I) {
3483   switch (I->getOpcode()) {
3484     case Instruction::Add:
3485     case Instruction::Sub:
3486     case Instruction::Xor:
3487     case Instruction::Trunc:
3488     case Instruction::BitCast:
3489     case Instruction::AddrSpaceCast:
3490       // These operations all propagate poison unconditionally. Note that poison
3491       // is not any particular value, so xor or subtraction of poison with
3492       // itself still yields poison, not zero.
3493       return true;
3494 
3495     case Instruction::AShr:
3496     case Instruction::SExt:
3497       // For these operations, one bit of the input is replicated across
3498       // multiple output bits. A replicated poison bit is still poison.
3499       return true;
3500 
3501     case Instruction::Shl: {
3502       // Left shift *by* a poison value is poison. The number of
3503       // positions to shift is unsigned, so no negative values are
3504       // possible there. Left shift by zero places preserves poison. So
3505       // it only remains to consider left shift of poison by a positive
3506       // number of places.
3507       //
3508       // A left shift by a positive number of places leaves the lowest order bit
3509       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3510       // make the poison operand violate that flag, yielding a fresh full-poison
3511       // value.
3512       auto *OBO = cast<OverflowingBinaryOperator>(I);
3513       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3514     }
3515 
3516     case Instruction::Mul: {
3517       // A multiplication by zero yields a non-poison zero result, so we need to
3518       // rule out zero as an operand. Conservatively, multiplication by a
3519       // non-zero constant is not multiplication by zero.
3520       //
3521       // Multiplication by a non-zero constant can leave some bits
3522       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3523       // order bit unpoisoned. So we need to consider that.
3524       //
3525       // Multiplication by 1 preserves poison. If the multiplication has a
3526       // no-wrap flag, then we can make the poison operand violate that flag
3527       // when multiplied by any integer other than 0 and 1.
3528       auto *OBO = cast<OverflowingBinaryOperator>(I);
3529       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3530         for (Value *V : OBO->operands()) {
3531           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3532             // A ConstantInt cannot yield poison, so we can assume that it is
3533             // the other operand that is poison.
3534             return !CI->isZero();
3535           }
3536         }
3537       }
3538       return false;
3539     }
3540 
3541     case Instruction::ICmp:
3542       // Comparing poison with any value yields poison.  This is why, for
3543       // instance, x s< (x +nsw 1) can be folded to true.
3544       return true;
3545 
3546     case Instruction::GetElementPtr:
3547       // A GEP implicitly represents a sequence of additions, subtractions,
3548       // truncations, sign extensions and multiplications. The multiplications
3549       // are by the non-zero sizes of some set of types, so we do not have to be
3550       // concerned with multiplication by zero. If the GEP is in-bounds, then
3551       // these operations are implicitly no-signed-wrap so poison is propagated
3552       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3553       return cast<GEPOperator>(I)->isInBounds();
3554 
3555     default:
3556       return false;
3557   }
3558 }
3559 
3560 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3561   switch (I->getOpcode()) {
3562     case Instruction::Store:
3563       return cast<StoreInst>(I)->getPointerOperand();
3564 
3565     case Instruction::Load:
3566       return cast<LoadInst>(I)->getPointerOperand();
3567 
3568     case Instruction::AtomicCmpXchg:
3569       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3570 
3571     case Instruction::AtomicRMW:
3572       return cast<AtomicRMWInst>(I)->getPointerOperand();
3573 
3574     case Instruction::UDiv:
3575     case Instruction::SDiv:
3576     case Instruction::URem:
3577     case Instruction::SRem:
3578       return I->getOperand(1);
3579 
3580     default:
3581       return nullptr;
3582   }
3583 }
3584 
3585 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3586   // We currently only look for uses of poison values within the same basic
3587   // block, as that makes it easier to guarantee that the uses will be
3588   // executed given that PoisonI is executed.
3589   //
3590   // FIXME: Expand this to consider uses beyond the same basic block. To do
3591   // this, look out for the distinction between post-dominance and strong
3592   // post-dominance.
3593   const BasicBlock *BB = PoisonI->getParent();
3594 
3595   // Set of instructions that we have proved will yield poison if PoisonI
3596   // does.
3597   SmallSet<const Value *, 16> YieldsPoison;
3598   SmallSet<const BasicBlock *, 4> Visited;
3599   YieldsPoison.insert(PoisonI);
3600   Visited.insert(PoisonI->getParent());
3601 
3602   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3603 
3604   unsigned Iter = 0;
3605   while (Iter++ < MaxDepth) {
3606     for (auto &I : make_range(Begin, End)) {
3607       if (&I != PoisonI) {
3608         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3609         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3610           return true;
3611         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3612           return false;
3613       }
3614 
3615       // Mark poison that propagates from I through uses of I.
3616       if (YieldsPoison.count(&I)) {
3617         for (const User *User : I.users()) {
3618           const Instruction *UserI = cast<Instruction>(User);
3619           if (propagatesFullPoison(UserI))
3620             YieldsPoison.insert(User);
3621         }
3622       }
3623     }
3624 
3625     if (auto *NextBB = BB->getSingleSuccessor()) {
3626       if (Visited.insert(NextBB).second) {
3627         BB = NextBB;
3628         Begin = BB->getFirstNonPHI()->getIterator();
3629         End = BB->end();
3630         continue;
3631       }
3632     }
3633 
3634     break;
3635   };
3636   return false;
3637 }
3638 
3639 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3640   if (FMF.noNaNs())
3641     return true;
3642 
3643   if (auto *C = dyn_cast<ConstantFP>(V))
3644     return !C->isNaN();
3645   return false;
3646 }
3647 
3648 static bool isKnownNonZero(Value *V) {
3649   if (auto *C = dyn_cast<ConstantFP>(V))
3650     return !C->isZero();
3651   return false;
3652 }
3653 
3654 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3655                                               FastMathFlags FMF,
3656                                               Value *CmpLHS, Value *CmpRHS,
3657                                               Value *TrueVal, Value *FalseVal,
3658                                               Value *&LHS, Value *&RHS) {
3659   LHS = CmpLHS;
3660   RHS = CmpRHS;
3661 
3662   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3663   // return inconsistent results between implementations.
3664   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3665   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3666   // Therefore we behave conservatively and only proceed if at least one of the
3667   // operands is known to not be zero, or if we don't care about signed zeroes.
3668   switch (Pred) {
3669   default: break;
3670   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3671   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3672     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3673         !isKnownNonZero(CmpRHS))
3674       return {SPF_UNKNOWN, SPNB_NA, false};
3675   }
3676 
3677   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3678   bool Ordered = false;
3679 
3680   // When given one NaN and one non-NaN input:
3681   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3682   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3683   //     ordered comparison fails), which could be NaN or non-NaN.
3684   // so here we discover exactly what NaN behavior is required/accepted.
3685   if (CmpInst::isFPPredicate(Pred)) {
3686     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3687     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3688 
3689     if (LHSSafe && RHSSafe) {
3690       // Both operands are known non-NaN.
3691       NaNBehavior = SPNB_RETURNS_ANY;
3692     } else if (CmpInst::isOrdered(Pred)) {
3693       // An ordered comparison will return false when given a NaN, so it
3694       // returns the RHS.
3695       Ordered = true;
3696       if (LHSSafe)
3697         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3698         NaNBehavior = SPNB_RETURNS_NAN;
3699       else if (RHSSafe)
3700         NaNBehavior = SPNB_RETURNS_OTHER;
3701       else
3702         // Completely unsafe.
3703         return {SPF_UNKNOWN, SPNB_NA, false};
3704     } else {
3705       Ordered = false;
3706       // An unordered comparison will return true when given a NaN, so it
3707       // returns the LHS.
3708       if (LHSSafe)
3709         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3710         NaNBehavior = SPNB_RETURNS_OTHER;
3711       else if (RHSSafe)
3712         NaNBehavior = SPNB_RETURNS_NAN;
3713       else
3714         // Completely unsafe.
3715         return {SPF_UNKNOWN, SPNB_NA, false};
3716     }
3717   }
3718 
3719   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3720     std::swap(CmpLHS, CmpRHS);
3721     Pred = CmpInst::getSwappedPredicate(Pred);
3722     if (NaNBehavior == SPNB_RETURNS_NAN)
3723       NaNBehavior = SPNB_RETURNS_OTHER;
3724     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3725       NaNBehavior = SPNB_RETURNS_NAN;
3726     Ordered = !Ordered;
3727   }
3728 
3729   // ([if]cmp X, Y) ? X : Y
3730   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3731     switch (Pred) {
3732     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3733     case ICmpInst::ICMP_UGT:
3734     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3735     case ICmpInst::ICMP_SGT:
3736     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3737     case ICmpInst::ICMP_ULT:
3738     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3739     case ICmpInst::ICMP_SLT:
3740     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3741     case FCmpInst::FCMP_UGT:
3742     case FCmpInst::FCMP_UGE:
3743     case FCmpInst::FCMP_OGT:
3744     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3745     case FCmpInst::FCMP_ULT:
3746     case FCmpInst::FCMP_ULE:
3747     case FCmpInst::FCMP_OLT:
3748     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3749     }
3750   }
3751 
3752   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3753     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3754         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3755 
3756       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3757       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3758       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3759         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3760       }
3761 
3762       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3763       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3764       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3765         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3766       }
3767     }
3768 
3769     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3770     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3771       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3772           ~C1->getValue() == C2->getValue() &&
3773           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3774            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3775         LHS = TrueVal;
3776         RHS = FalseVal;
3777         return {SPF_SMIN, SPNB_NA, false};
3778       }
3779     }
3780   }
3781 
3782   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3783 
3784   return {SPF_UNKNOWN, SPNB_NA, false};
3785 }
3786 
3787 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3788                               Instruction::CastOps *CastOp) {
3789   CastInst *CI = dyn_cast<CastInst>(V1);
3790   Constant *C = dyn_cast<Constant>(V2);
3791   if (!CI)
3792     return nullptr;
3793   *CastOp = CI->getOpcode();
3794 
3795   if (auto *CI2 = dyn_cast<CastInst>(V2)) {
3796     // If V1 and V2 are both the same cast from the same type, we can look
3797     // through V1.
3798     if (CI2->getOpcode() == CI->getOpcode() &&
3799         CI2->getSrcTy() == CI->getSrcTy())
3800       return CI2->getOperand(0);
3801     return nullptr;
3802   } else if (!C) {
3803     return nullptr;
3804   }
3805 
3806   Constant *CastedTo = nullptr;
3807 
3808   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3809     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3810 
3811   if (isa<SExtInst>(CI) && CmpI->isSigned())
3812     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3813 
3814   if (isa<TruncInst>(CI))
3815     CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3816 
3817   if (isa<FPTruncInst>(CI))
3818     CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3819 
3820   if (isa<FPExtInst>(CI))
3821     CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3822 
3823   if (isa<FPToUIInst>(CI))
3824     CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3825 
3826   if (isa<FPToSIInst>(CI))
3827     CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3828 
3829   if (isa<UIToFPInst>(CI))
3830     CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3831 
3832   if (isa<SIToFPInst>(CI))
3833     CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3834 
3835   if (!CastedTo)
3836     return nullptr;
3837 
3838   Constant *CastedBack =
3839       ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3840   // Make sure the cast doesn't lose any information.
3841   if (CastedBack != C)
3842     return nullptr;
3843 
3844   return CastedTo;
3845 }
3846 
3847 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
3848                                              Instruction::CastOps *CastOp) {
3849   SelectInst *SI = dyn_cast<SelectInst>(V);
3850   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3851 
3852   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3853   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3854 
3855   CmpInst::Predicate Pred = CmpI->getPredicate();
3856   Value *CmpLHS = CmpI->getOperand(0);
3857   Value *CmpRHS = CmpI->getOperand(1);
3858   Value *TrueVal = SI->getTrueValue();
3859   Value *FalseVal = SI->getFalseValue();
3860   FastMathFlags FMF;
3861   if (isa<FPMathOperator>(CmpI))
3862     FMF = CmpI->getFastMathFlags();
3863 
3864   // Bail out early.
3865   if (CmpI->isEquality())
3866     return {SPF_UNKNOWN, SPNB_NA, false};
3867 
3868   // Deal with type mismatches.
3869   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
3870     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
3871       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3872                                   cast<CastInst>(TrueVal)->getOperand(0), C,
3873                                   LHS, RHS);
3874     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
3875       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3876                                   C, cast<CastInst>(FalseVal)->getOperand(0),
3877                                   LHS, RHS);
3878   }
3879   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
3880                               LHS, RHS);
3881 }
3882 
3883 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3884   const unsigned NumRanges = Ranges.getNumOperands() / 2;
3885   assert(NumRanges >= 1 && "Must have at least one range!");
3886   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3887 
3888   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3889   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3890 
3891   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3892 
3893   for (unsigned i = 1; i < NumRanges; ++i) {
3894     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3895     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3896 
3897     // Note: unionWith will potentially create a range that contains values not
3898     // contained in any of the original N ranges.
3899     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3900   }
3901 
3902   return CR;
3903 }
3904 
3905 /// Return true if "icmp Pred LHS RHS" is always true.
3906 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3907                             const DataLayout &DL, unsigned Depth,
3908                             AssumptionCache *AC, const Instruction *CxtI,
3909                             const DominatorTree *DT) {
3910   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
3911   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3912     return true;
3913 
3914   switch (Pred) {
3915   default:
3916     return false;
3917 
3918   case CmpInst::ICMP_SLE: {
3919     const APInt *C;
3920 
3921     // LHS s<= LHS +_{nsw} C   if C >= 0
3922     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
3923       return !C->isNegative();
3924     return false;
3925   }
3926 
3927   case CmpInst::ICMP_ULE: {
3928     const APInt *C;
3929 
3930     // LHS u<= LHS +_{nuw} C   for any C
3931     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
3932       return true;
3933 
3934     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3935     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3936                                        const APInt *&CA, const APInt *&CB) {
3937       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3938           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3939         return true;
3940 
3941       // If X & C == 0 then (X | C) == X +_{nuw} C
3942       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3943           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3944         unsigned BitWidth = CA->getBitWidth();
3945         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3946         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3947 
3948         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3949           return true;
3950       }
3951 
3952       return false;
3953     };
3954 
3955     Value *X;
3956     const APInt *CLHS, *CRHS;
3957     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3958       return CLHS->ule(*CRHS);
3959 
3960     return false;
3961   }
3962   }
3963 }
3964 
3965 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
3966 /// ALHS ARHS" is true.  Otherwise, return None.
3967 static Optional<bool>
3968 isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
3969                       Value *BLHS, Value *BRHS, const DataLayout &DL,
3970                       unsigned Depth, AssumptionCache *AC,
3971                       const Instruction *CxtI, const DominatorTree *DT) {
3972   switch (Pred) {
3973   default:
3974     return None;
3975 
3976   case CmpInst::ICMP_SLT:
3977   case CmpInst::ICMP_SLE:
3978     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3979                         DT) &&
3980         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3981       return true;
3982     return None;
3983 
3984   case CmpInst::ICMP_ULT:
3985   case CmpInst::ICMP_ULE:
3986     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3987                         DT) &&
3988         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3989       return true;
3990     return None;
3991   }
3992 }
3993 
3994 /// Return true if the operands of the two compares match.  IsSwappedOps is true
3995 /// when the operands match, but are swapped.
3996 static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
3997                           bool &IsSwappedOps) {
3998 
3999   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4000   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4001   return IsMatchingOps || IsSwappedOps;
4002 }
4003 
4004 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4005 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4006 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4007 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4008                                                     Value *ALHS, Value *ARHS,
4009                                                     CmpInst::Predicate BPred,
4010                                                     Value *BLHS, Value *BRHS,
4011                                                     bool IsSwappedOps) {
4012   // Canonicalize the operands so they're matching.
4013   if (IsSwappedOps) {
4014     std::swap(BLHS, BRHS);
4015     BPred = ICmpInst::getSwappedPredicate(BPred);
4016   }
4017   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4018     return true;
4019   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4020     return false;
4021 
4022   return None;
4023 }
4024 
4025 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4026 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4027 /// C2" is false.  Otherwise, return None if we can't infer anything.
4028 static Optional<bool>
4029 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
4030                                  ConstantInt *C1, CmpInst::Predicate BPred,
4031                                  Value *BLHS, ConstantInt *C2) {
4032   assert(ALHS == BLHS && "LHS operands must match.");
4033   ConstantRange DomCR =
4034       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4035   ConstantRange CR =
4036       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4037   ConstantRange Intersection = DomCR.intersectWith(CR);
4038   ConstantRange Difference = DomCR.difference(CR);
4039   if (Intersection.isEmptySet())
4040     return false;
4041   if (Difference.isEmptySet())
4042     return true;
4043   return None;
4044 }
4045 
4046 Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
4047                                         const DataLayout &DL, bool InvertAPred,
4048                                         unsigned Depth, AssumptionCache *AC,
4049                                         const Instruction *CxtI,
4050                                         const DominatorTree *DT) {
4051   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4052   if (LHS->getType() != RHS->getType())
4053     return None;
4054 
4055   Type *OpTy = LHS->getType();
4056   assert(OpTy->getScalarType()->isIntegerTy(1));
4057 
4058   // LHS ==> RHS by definition
4059   if (!InvertAPred && LHS == RHS)
4060     return true;
4061 
4062   if (OpTy->isVectorTy())
4063     // TODO: extending the code below to handle vectors
4064     return None;
4065   assert(OpTy->isIntegerTy(1) && "implied by above");
4066 
4067   ICmpInst::Predicate APred, BPred;
4068   Value *ALHS, *ARHS;
4069   Value *BLHS, *BRHS;
4070 
4071   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4072       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4073     return None;
4074 
4075   if (InvertAPred)
4076     APred = CmpInst::getInversePredicate(APred);
4077 
4078   // Can we infer anything when the two compares have matching operands?
4079   bool IsSwappedOps;
4080   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4081     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4082             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4083       return Implication;
4084     // No amount of additional analysis will infer the second condition, so
4085     // early exit.
4086     return None;
4087   }
4088 
4089   // Can we infer anything when the LHS operands match and the RHS operands are
4090   // constants (not necessarily matching)?
4091   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4092     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4093             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4094             cast<ConstantInt>(BRHS)))
4095       return Implication;
4096     // No amount of additional analysis will infer the second condition, so
4097     // early exit.
4098     return None;
4099   }
4100 
4101   if (APred == BPred)
4102     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4103                                  CxtI, DT);
4104 
4105   return None;
4106 }
4107