1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CallSite.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalAlias.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 const unsigned MaxDepth = 6;
81 
82 // Controls the number of uses of the value searched for possible
83 // dominating comparisons.
84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
85                                               cl::Hidden, cl::init(20));
86 
87 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
88 /// returns the element type's bitwidth.
89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
90   if (unsigned BitWidth = Ty->getScalarSizeInBits())
91     return BitWidth;
92 
93   return DL.getIndexTypeSizeInBits(Ty);
94 }
95 
96 namespace {
97 
98 // Simplifying using an assume can only be done in a particular control-flow
99 // context (the context instruction provides that context). If an assume and
100 // the context instruction are not in the same block then the DT helps in
101 // figuring out if we can use it.
102 struct Query {
103   const DataLayout &DL;
104   AssumptionCache *AC;
105   const Instruction *CxtI;
106   const DominatorTree *DT;
107 
108   // Unlike the other analyses, this may be a nullptr because not all clients
109   // provide it currently.
110   OptimizationRemarkEmitter *ORE;
111 
112   /// Set of assumptions that should be excluded from further queries.
113   /// This is because of the potential for mutual recursion to cause
114   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
115   /// classic case of this is assume(x = y), which will attempt to determine
116   /// bits in x from bits in y, which will attempt to determine bits in y from
117   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
118   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
119   /// (all of which can call computeKnownBits), and so on.
120   std::array<const Value *, MaxDepth> Excluded;
121 
122   /// If true, it is safe to use metadata during simplification.
123   InstrInfoQuery IIQ;
124 
125   unsigned NumExcluded = 0;
126 
127   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
128         const DominatorTree *DT, bool UseInstrInfo,
129         OptimizationRemarkEmitter *ORE = nullptr)
130       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
131 
132   Query(const Query &Q, const Value *NewExcl)
133       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
134         NumExcluded(Q.NumExcluded) {
135     Excluded = Q.Excluded;
136     Excluded[NumExcluded++] = NewExcl;
137     assert(NumExcluded <= Excluded.size());
138   }
139 
140   bool isExcluded(const Value *Value) const {
141     if (NumExcluded == 0)
142       return false;
143     auto End = Excluded.begin() + NumExcluded;
144     return std::find(Excluded.begin(), End, Value) != End;
145   }
146 };
147 
148 } // end anonymous namespace
149 
150 // Given the provided Value and, potentially, a context instruction, return
151 // the preferred context instruction (if any).
152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
153   // If we've been provided with a context instruction, then use that (provided
154   // it has been inserted).
155   if (CxtI && CxtI->getParent())
156     return CxtI;
157 
158   // If the value is really an already-inserted instruction, then use that.
159   CxtI = dyn_cast<Instruction>(V);
160   if (CxtI && CxtI->getParent())
161     return CxtI;
162 
163   return nullptr;
164 }
165 
166 static void computeKnownBits(const Value *V, KnownBits &Known,
167                              unsigned Depth, const Query &Q);
168 
169 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
170                             const DataLayout &DL, unsigned Depth,
171                             AssumptionCache *AC, const Instruction *CxtI,
172                             const DominatorTree *DT,
173                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
174   ::computeKnownBits(V, Known, Depth,
175                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
176 }
177 
178 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
179                                   const Query &Q);
180 
181 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
182                                  unsigned Depth, AssumptionCache *AC,
183                                  const Instruction *CxtI,
184                                  const DominatorTree *DT,
185                                  OptimizationRemarkEmitter *ORE,
186                                  bool UseInstrInfo) {
187   return ::computeKnownBits(
188       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
189 }
190 
191 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
192                                const DataLayout &DL, AssumptionCache *AC,
193                                const Instruction *CxtI, const DominatorTree *DT,
194                                bool UseInstrInfo) {
195   assert(LHS->getType() == RHS->getType() &&
196          "LHS and RHS should have the same type");
197   assert(LHS->getType()->isIntOrIntVectorTy() &&
198          "LHS and RHS should be integers");
199   // Look for an inverted mask: (X & ~M) op (Y & M).
200   Value *M;
201   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
202       match(RHS, m_c_And(m_Specific(M), m_Value())))
203     return true;
204   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
205       match(LHS, m_c_And(m_Specific(M), m_Value())))
206     return true;
207   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
208   KnownBits LHSKnown(IT->getBitWidth());
209   KnownBits RHSKnown(IT->getBitWidth());
210   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
211   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
212   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
213 }
214 
215 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
216   for (const User *U : CxtI->users()) {
217     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
218       if (IC->isEquality())
219         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
220           if (C->isNullValue())
221             continue;
222     return false;
223   }
224   return true;
225 }
226 
227 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
228                                    const Query &Q);
229 
230 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
231                                   bool OrZero, unsigned Depth,
232                                   AssumptionCache *AC, const Instruction *CxtI,
233                                   const DominatorTree *DT, bool UseInstrInfo) {
234   return ::isKnownToBeAPowerOfTwo(
235       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
236 }
237 
238 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
239 
240 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
241                           AssumptionCache *AC, const Instruction *CxtI,
242                           const DominatorTree *DT, bool UseInstrInfo) {
243   return ::isKnownNonZero(V, Depth,
244                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
245 }
246 
247 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
248                               unsigned Depth, AssumptionCache *AC,
249                               const Instruction *CxtI, const DominatorTree *DT,
250                               bool UseInstrInfo) {
251   KnownBits Known =
252       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
253   return Known.isNonNegative();
254 }
255 
256 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
257                            AssumptionCache *AC, const Instruction *CxtI,
258                            const DominatorTree *DT, bool UseInstrInfo) {
259   if (auto *CI = dyn_cast<ConstantInt>(V))
260     return CI->getValue().isStrictlyPositive();
261 
262   // TODO: We'd doing two recursive queries here.  We should factor this such
263   // that only a single query is needed.
264   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
265          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
266 }
267 
268 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
269                            AssumptionCache *AC, const Instruction *CxtI,
270                            const DominatorTree *DT, bool UseInstrInfo) {
271   KnownBits Known =
272       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
273   return Known.isNegative();
274 }
275 
276 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
277 
278 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
279                            const DataLayout &DL, AssumptionCache *AC,
280                            const Instruction *CxtI, const DominatorTree *DT,
281                            bool UseInstrInfo) {
282   return ::isKnownNonEqual(V1, V2,
283                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
284                                  UseInstrInfo, /*ORE=*/nullptr));
285 }
286 
287 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
288                               const Query &Q);
289 
290 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
291                              const DataLayout &DL, unsigned Depth,
292                              AssumptionCache *AC, const Instruction *CxtI,
293                              const DominatorTree *DT, bool UseInstrInfo) {
294   return ::MaskedValueIsZero(
295       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
296 }
297 
298 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
299                                    const Query &Q);
300 
301 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
302                                   unsigned Depth, AssumptionCache *AC,
303                                   const Instruction *CxtI,
304                                   const DominatorTree *DT, bool UseInstrInfo) {
305   return ::ComputeNumSignBits(
306       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
307 }
308 
309 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
310                                    bool NSW,
311                                    KnownBits &KnownOut, KnownBits &Known2,
312                                    unsigned Depth, const Query &Q) {
313   unsigned BitWidth = KnownOut.getBitWidth();
314 
315   // If an initial sequence of bits in the result is not needed, the
316   // corresponding bits in the operands are not needed.
317   KnownBits LHSKnown(BitWidth);
318   computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
319   computeKnownBits(Op1, Known2, Depth + 1, Q);
320 
321   KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
322 }
323 
324 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
325                                 KnownBits &Known, KnownBits &Known2,
326                                 unsigned Depth, const Query &Q) {
327   unsigned BitWidth = Known.getBitWidth();
328   computeKnownBits(Op1, Known, Depth + 1, Q);
329   computeKnownBits(Op0, Known2, Depth + 1, Q);
330 
331   bool isKnownNegative = false;
332   bool isKnownNonNegative = false;
333   // If the multiplication is known not to overflow, compute the sign bit.
334   if (NSW) {
335     if (Op0 == Op1) {
336       // The product of a number with itself is non-negative.
337       isKnownNonNegative = true;
338     } else {
339       bool isKnownNonNegativeOp1 = Known.isNonNegative();
340       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
341       bool isKnownNegativeOp1 = Known.isNegative();
342       bool isKnownNegativeOp0 = Known2.isNegative();
343       // The product of two numbers with the same sign is non-negative.
344       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
345         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
346       // The product of a negative number and a non-negative number is either
347       // negative or zero.
348       if (!isKnownNonNegative)
349         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
350                            isKnownNonZero(Op0, Depth, Q)) ||
351                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
352                            isKnownNonZero(Op1, Depth, Q));
353     }
354   }
355 
356   assert(!Known.hasConflict() && !Known2.hasConflict());
357   // Compute a conservative estimate for high known-0 bits.
358   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
359                              Known2.countMinLeadingZeros(),
360                              BitWidth) - BitWidth;
361   LeadZ = std::min(LeadZ, BitWidth);
362 
363   // The result of the bottom bits of an integer multiply can be
364   // inferred by looking at the bottom bits of both operands and
365   // multiplying them together.
366   // We can infer at least the minimum number of known trailing bits
367   // of both operands. Depending on number of trailing zeros, we can
368   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
369   // a and b are divisible by m and n respectively.
370   // We then calculate how many of those bits are inferrable and set
371   // the output. For example, the i8 mul:
372   //  a = XXXX1100 (12)
373   //  b = XXXX1110 (14)
374   // We know the bottom 3 bits are zero since the first can be divided by
375   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
376   // Applying the multiplication to the trimmed arguments gets:
377   //    XX11 (3)
378   //    X111 (7)
379   // -------
380   //    XX11
381   //   XX11
382   //  XX11
383   // XX11
384   // -------
385   // XXXXX01
386   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
387   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
388   // The proof for this can be described as:
389   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
390   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
391   //                    umin(countTrailingZeros(C2), C6) +
392   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
393   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
394   // %aa = shl i8 %a, C5
395   // %bb = shl i8 %b, C6
396   // %aaa = or i8 %aa, C1
397   // %bbb = or i8 %bb, C2
398   // %mul = mul i8 %aaa, %bbb
399   // %mask = and i8 %mul, C7
400   //   =>
401   // %mask = i8 ((C1*C2)&C7)
402   // Where C5, C6 describe the known bits of %a, %b
403   // C1, C2 describe the known bottom bits of %a, %b.
404   // C7 describes the mask of the known bits of the result.
405   APInt Bottom0 = Known.One;
406   APInt Bottom1 = Known2.One;
407 
408   // How many times we'd be able to divide each argument by 2 (shr by 1).
409   // This gives us the number of trailing zeros on the multiplication result.
410   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
411   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
412   unsigned TrailZero0 = Known.countMinTrailingZeros();
413   unsigned TrailZero1 = Known2.countMinTrailingZeros();
414   unsigned TrailZ = TrailZero0 + TrailZero1;
415 
416   // Figure out the fewest known-bits operand.
417   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
418                                       TrailBitsKnown1 - TrailZero1);
419   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
420 
421   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
422                       Bottom1.getLoBits(TrailBitsKnown1);
423 
424   Known.resetAll();
425   Known.Zero.setHighBits(LeadZ);
426   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
427   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
428 
429   // Only make use of no-wrap flags if we failed to compute the sign bit
430   // directly.  This matters if the multiplication always overflows, in
431   // which case we prefer to follow the result of the direct computation,
432   // though as the program is invoking undefined behaviour we can choose
433   // whatever we like here.
434   if (isKnownNonNegative && !Known.isNegative())
435     Known.makeNonNegative();
436   else if (isKnownNegative && !Known.isNonNegative())
437     Known.makeNegative();
438 }
439 
440 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
441                                              KnownBits &Known) {
442   unsigned BitWidth = Known.getBitWidth();
443   unsigned NumRanges = Ranges.getNumOperands() / 2;
444   assert(NumRanges >= 1);
445 
446   Known.Zero.setAllBits();
447   Known.One.setAllBits();
448 
449   for (unsigned i = 0; i < NumRanges; ++i) {
450     ConstantInt *Lower =
451         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
452     ConstantInt *Upper =
453         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
454     ConstantRange Range(Lower->getValue(), Upper->getValue());
455 
456     // The first CommonPrefixBits of all values in Range are equal.
457     unsigned CommonPrefixBits =
458         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
459 
460     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
461     Known.One &= Range.getUnsignedMax() & Mask;
462     Known.Zero &= ~Range.getUnsignedMax() & Mask;
463   }
464 }
465 
466 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
467   SmallVector<const Value *, 16> WorkSet(1, I);
468   SmallPtrSet<const Value *, 32> Visited;
469   SmallPtrSet<const Value *, 16> EphValues;
470 
471   // The instruction defining an assumption's condition itself is always
472   // considered ephemeral to that assumption (even if it has other
473   // non-ephemeral users). See r246696's test case for an example.
474   if (is_contained(I->operands(), E))
475     return true;
476 
477   while (!WorkSet.empty()) {
478     const Value *V = WorkSet.pop_back_val();
479     if (!Visited.insert(V).second)
480       continue;
481 
482     // If all uses of this value are ephemeral, then so is this value.
483     if (llvm::all_of(V->users(), [&](const User *U) {
484                                    return EphValues.count(U);
485                                  })) {
486       if (V == E)
487         return true;
488 
489       if (V == I || isSafeToSpeculativelyExecute(V)) {
490        EphValues.insert(V);
491        if (const User *U = dyn_cast<User>(V))
492          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
493               J != JE; ++J)
494            WorkSet.push_back(*J);
495       }
496     }
497   }
498 
499   return false;
500 }
501 
502 // Is this an intrinsic that cannot be speculated but also cannot trap?
503 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
504   if (const CallInst *CI = dyn_cast<CallInst>(I))
505     if (Function *F = CI->getCalledFunction())
506       switch (F->getIntrinsicID()) {
507       default: break;
508       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
509       case Intrinsic::assume:
510       case Intrinsic::sideeffect:
511       case Intrinsic::dbg_declare:
512       case Intrinsic::dbg_value:
513       case Intrinsic::dbg_label:
514       case Intrinsic::invariant_start:
515       case Intrinsic::invariant_end:
516       case Intrinsic::lifetime_start:
517       case Intrinsic::lifetime_end:
518       case Intrinsic::objectsize:
519       case Intrinsic::ptr_annotation:
520       case Intrinsic::var_annotation:
521         return true;
522       }
523 
524   return false;
525 }
526 
527 bool llvm::isValidAssumeForContext(const Instruction *Inv,
528                                    const Instruction *CxtI,
529                                    const DominatorTree *DT) {
530   // There are two restrictions on the use of an assume:
531   //  1. The assume must dominate the context (or the control flow must
532   //     reach the assume whenever it reaches the context).
533   //  2. The context must not be in the assume's set of ephemeral values
534   //     (otherwise we will use the assume to prove that the condition
535   //     feeding the assume is trivially true, thus causing the removal of
536   //     the assume).
537 
538   if (DT) {
539     if (DT->dominates(Inv, CxtI))
540       return true;
541   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
542     // We don't have a DT, but this trivially dominates.
543     return true;
544   }
545 
546   // With or without a DT, the only remaining case we will check is if the
547   // instructions are in the same BB.  Give up if that is not the case.
548   if (Inv->getParent() != CxtI->getParent())
549     return false;
550 
551   // If we have a dom tree, then we now know that the assume doesn't dominate
552   // the other instruction.  If we don't have a dom tree then we can check if
553   // the assume is first in the BB.
554   if (!DT) {
555     // Search forward from the assume until we reach the context (or the end
556     // of the block); the common case is that the assume will come first.
557     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
558          IE = Inv->getParent()->end(); I != IE; ++I)
559       if (&*I == CxtI)
560         return true;
561   }
562 
563   // The context comes first, but they're both in the same block. Make sure
564   // there is nothing in between that might interrupt the control flow.
565   for (BasicBlock::const_iterator I =
566          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
567        I != IE; ++I)
568     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
569       return false;
570 
571   return !isEphemeralValueOf(Inv, CxtI);
572 }
573 
574 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
575                                        unsigned Depth, const Query &Q) {
576   // Use of assumptions is context-sensitive. If we don't have a context, we
577   // cannot use them!
578   if (!Q.AC || !Q.CxtI)
579     return;
580 
581   unsigned BitWidth = Known.getBitWidth();
582 
583   // Note that the patterns below need to be kept in sync with the code
584   // in AssumptionCache::updateAffectedValues.
585 
586   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
587     if (!AssumeVH)
588       continue;
589     CallInst *I = cast<CallInst>(AssumeVH);
590     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
591            "Got assumption for the wrong function!");
592     if (Q.isExcluded(I))
593       continue;
594 
595     // Warning: This loop can end up being somewhat performance sensitive.
596     // We're running this loop for once for each value queried resulting in a
597     // runtime of ~O(#assumes * #values).
598 
599     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
600            "must be an assume intrinsic");
601 
602     Value *Arg = I->getArgOperand(0);
603 
604     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605       assert(BitWidth == 1 && "assume operand is not i1?");
606       Known.setAllOnes();
607       return;
608     }
609     if (match(Arg, m_Not(m_Specific(V))) &&
610         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
611       assert(BitWidth == 1 && "assume operand is not i1?");
612       Known.setAllZero();
613       return;
614     }
615 
616     // The remaining tests are all recursive, so bail out if we hit the limit.
617     if (Depth == MaxDepth)
618       continue;
619 
620     Value *A, *B;
621     auto m_V = m_CombineOr(m_Specific(V),
622                            m_CombineOr(m_PtrToInt(m_Specific(V)),
623                            m_BitCast(m_Specific(V))));
624 
625     CmpInst::Predicate Pred;
626     uint64_t C;
627     // assume(v = a)
628     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
629         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
630       KnownBits RHSKnown(BitWidth);
631       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
632       Known.Zero |= RHSKnown.Zero;
633       Known.One  |= RHSKnown.One;
634     // assume(v & b = a)
635     } else if (match(Arg,
636                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
637                Pred == ICmpInst::ICMP_EQ &&
638                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
639       KnownBits RHSKnown(BitWidth);
640       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
641       KnownBits MaskKnown(BitWidth);
642       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
643 
644       // For those bits in the mask that are known to be one, we can propagate
645       // known bits from the RHS to V.
646       Known.Zero |= RHSKnown.Zero & MaskKnown.One;
647       Known.One  |= RHSKnown.One  & MaskKnown.One;
648     // assume(~(v & b) = a)
649     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
650                                    m_Value(A))) &&
651                Pred == ICmpInst::ICMP_EQ &&
652                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
653       KnownBits RHSKnown(BitWidth);
654       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
655       KnownBits MaskKnown(BitWidth);
656       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
657 
658       // For those bits in the mask that are known to be one, we can propagate
659       // inverted known bits from the RHS to V.
660       Known.Zero |= RHSKnown.One  & MaskKnown.One;
661       Known.One  |= RHSKnown.Zero & MaskKnown.One;
662     // assume(v | b = a)
663     } else if (match(Arg,
664                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
665                Pred == ICmpInst::ICMP_EQ &&
666                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667       KnownBits RHSKnown(BitWidth);
668       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
669       KnownBits BKnown(BitWidth);
670       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
671 
672       // For those bits in B that are known to be zero, we can propagate known
673       // bits from the RHS to V.
674       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
675       Known.One  |= RHSKnown.One  & BKnown.Zero;
676     // assume(~(v | b) = a)
677     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
678                                    m_Value(A))) &&
679                Pred == ICmpInst::ICMP_EQ &&
680                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
681       KnownBits RHSKnown(BitWidth);
682       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
683       KnownBits BKnown(BitWidth);
684       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
685 
686       // For those bits in B that are known to be zero, we can propagate
687       // inverted known bits from the RHS to V.
688       Known.Zero |= RHSKnown.One  & BKnown.Zero;
689       Known.One  |= RHSKnown.Zero & BKnown.Zero;
690     // assume(v ^ b = a)
691     } else if (match(Arg,
692                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
693                Pred == ICmpInst::ICMP_EQ &&
694                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
695       KnownBits RHSKnown(BitWidth);
696       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
697       KnownBits BKnown(BitWidth);
698       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
699 
700       // For those bits in B that are known to be zero, we can propagate known
701       // bits from the RHS to V. For those bits in B that are known to be one,
702       // we can propagate inverted known bits from the RHS to V.
703       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
704       Known.One  |= RHSKnown.One  & BKnown.Zero;
705       Known.Zero |= RHSKnown.One  & BKnown.One;
706       Known.One  |= RHSKnown.Zero & BKnown.One;
707     // assume(~(v ^ b) = a)
708     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
709                                    m_Value(A))) &&
710                Pred == ICmpInst::ICMP_EQ &&
711                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
712       KnownBits RHSKnown(BitWidth);
713       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
714       KnownBits BKnown(BitWidth);
715       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
716 
717       // For those bits in B that are known to be zero, we can propagate
718       // inverted known bits from the RHS to V. For those bits in B that are
719       // known to be one, we can propagate known bits from the RHS to V.
720       Known.Zero |= RHSKnown.One  & BKnown.Zero;
721       Known.One  |= RHSKnown.Zero & BKnown.Zero;
722       Known.Zero |= RHSKnown.Zero & BKnown.One;
723       Known.One  |= RHSKnown.One  & BKnown.One;
724     // assume(v << c = a)
725     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
726                                    m_Value(A))) &&
727                Pred == ICmpInst::ICMP_EQ &&
728                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
729                C < BitWidth) {
730       KnownBits RHSKnown(BitWidth);
731       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
732       // For those bits in RHS that are known, we can propagate them to known
733       // bits in V shifted to the right by C.
734       RHSKnown.Zero.lshrInPlace(C);
735       Known.Zero |= RHSKnown.Zero;
736       RHSKnown.One.lshrInPlace(C);
737       Known.One  |= RHSKnown.One;
738     // assume(~(v << c) = a)
739     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
740                                    m_Value(A))) &&
741                Pred == ICmpInst::ICMP_EQ &&
742                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
743                C < BitWidth) {
744       KnownBits RHSKnown(BitWidth);
745       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
746       // For those bits in RHS that are known, we can propagate them inverted
747       // to known bits in V shifted to the right by C.
748       RHSKnown.One.lshrInPlace(C);
749       Known.Zero |= RHSKnown.One;
750       RHSKnown.Zero.lshrInPlace(C);
751       Known.One  |= RHSKnown.Zero;
752     // assume(v >> c = a)
753     } else if (match(Arg,
754                      m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
755                               m_Value(A))) &&
756                Pred == ICmpInst::ICMP_EQ &&
757                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
758                C < BitWidth) {
759       KnownBits RHSKnown(BitWidth);
760       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
761       // For those bits in RHS that are known, we can propagate them to known
762       // bits in V shifted to the right by C.
763       Known.Zero |= RHSKnown.Zero << C;
764       Known.One  |= RHSKnown.One  << C;
765     // assume(~(v >> c) = a)
766     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
767                                    m_Value(A))) &&
768                Pred == ICmpInst::ICMP_EQ &&
769                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
770                C < BitWidth) {
771       KnownBits RHSKnown(BitWidth);
772       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
773       // For those bits in RHS that are known, we can propagate them inverted
774       // to known bits in V shifted to the right by C.
775       Known.Zero |= RHSKnown.One  << C;
776       Known.One  |= RHSKnown.Zero << C;
777     // assume(v >=_s c) where c is non-negative
778     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
779                Pred == ICmpInst::ICMP_SGE &&
780                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
781       KnownBits RHSKnown(BitWidth);
782       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
783 
784       if (RHSKnown.isNonNegative()) {
785         // We know that the sign bit is zero.
786         Known.makeNonNegative();
787       }
788     // assume(v >_s c) where c is at least -1.
789     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
790                Pred == ICmpInst::ICMP_SGT &&
791                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
792       KnownBits RHSKnown(BitWidth);
793       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
794 
795       if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
796         // We know that the sign bit is zero.
797         Known.makeNonNegative();
798       }
799     // assume(v <=_s c) where c is negative
800     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
801                Pred == ICmpInst::ICMP_SLE &&
802                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
803       KnownBits RHSKnown(BitWidth);
804       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
805 
806       if (RHSKnown.isNegative()) {
807         // We know that the sign bit is one.
808         Known.makeNegative();
809       }
810     // assume(v <_s c) where c is non-positive
811     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
812                Pred == ICmpInst::ICMP_SLT &&
813                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
814       KnownBits RHSKnown(BitWidth);
815       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
816 
817       if (RHSKnown.isZero() || RHSKnown.isNegative()) {
818         // We know that the sign bit is one.
819         Known.makeNegative();
820       }
821     // assume(v <=_u c)
822     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
823                Pred == ICmpInst::ICMP_ULE &&
824                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
825       KnownBits RHSKnown(BitWidth);
826       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
827 
828       // Whatever high bits in c are zero are known to be zero.
829       Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
830       // assume(v <_u c)
831     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
832                Pred == ICmpInst::ICMP_ULT &&
833                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
834       KnownBits RHSKnown(BitWidth);
835       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
836 
837       // If the RHS is known zero, then this assumption must be wrong (nothing
838       // is unsigned less than zero). Signal a conflict and get out of here.
839       if (RHSKnown.isZero()) {
840         Known.Zero.setAllBits();
841         Known.One.setAllBits();
842         break;
843       }
844 
845       // Whatever high bits in c are zero are known to be zero (if c is a power
846       // of 2, then one more).
847       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
848         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
849       else
850         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
851     }
852   }
853 
854   // If assumptions conflict with each other or previous known bits, then we
855   // have a logical fallacy. It's possible that the assumption is not reachable,
856   // so this isn't a real bug. On the other hand, the program may have undefined
857   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
858   // clear out the known bits, try to warn the user, and hope for the best.
859   if (Known.Zero.intersects(Known.One)) {
860     Known.resetAll();
861 
862     if (Q.ORE)
863       Q.ORE->emit([&]() {
864         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
865         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
866                                           CxtI)
867                << "Detected conflicting code assumptions. Program may "
868                   "have undefined behavior, or compiler may have "
869                   "internal error.";
870       });
871   }
872 }
873 
874 /// Compute known bits from a shift operator, including those with a
875 /// non-constant shift amount. Known is the output of this function. Known2 is a
876 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
877 /// operator-specific functions that, given the known-zero or known-one bits
878 /// respectively, and a shift amount, compute the implied known-zero or
879 /// known-one bits of the shift operator's result respectively for that shift
880 /// amount. The results from calling KZF and KOF are conservatively combined for
881 /// all permitted shift amounts.
882 static void computeKnownBitsFromShiftOperator(
883     const Operator *I, KnownBits &Known, KnownBits &Known2,
884     unsigned Depth, const Query &Q,
885     function_ref<APInt(const APInt &, unsigned)> KZF,
886     function_ref<APInt(const APInt &, unsigned)> KOF) {
887   unsigned BitWidth = Known.getBitWidth();
888 
889   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
890     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
891 
892     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
893     Known.Zero = KZF(Known.Zero, ShiftAmt);
894     Known.One  = KOF(Known.One, ShiftAmt);
895     // If the known bits conflict, this must be an overflowing left shift, so
896     // the shift result is poison. We can return anything we want. Choose 0 for
897     // the best folding opportunity.
898     if (Known.hasConflict())
899       Known.setAllZero();
900 
901     return;
902   }
903 
904   computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
905 
906   // If the shift amount could be greater than or equal to the bit-width of the
907   // LHS, the value could be poison, but bail out because the check below is
908   // expensive. TODO: Should we just carry on?
909   if ((~Known.Zero).uge(BitWidth)) {
910     Known.resetAll();
911     return;
912   }
913 
914   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
915   // BitWidth > 64 and any upper bits are known, we'll end up returning the
916   // limit value (which implies all bits are known).
917   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
918   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
919 
920   // It would be more-clearly correct to use the two temporaries for this
921   // calculation. Reusing the APInts here to prevent unnecessary allocations.
922   Known.resetAll();
923 
924   // If we know the shifter operand is nonzero, we can sometimes infer more
925   // known bits. However this is expensive to compute, so be lazy about it and
926   // only compute it when absolutely necessary.
927   Optional<bool> ShifterOperandIsNonZero;
928 
929   // Early exit if we can't constrain any well-defined shift amount.
930   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
931       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
932     ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
933     if (!*ShifterOperandIsNonZero)
934       return;
935   }
936 
937   computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
938 
939   Known.Zero.setAllBits();
940   Known.One.setAllBits();
941   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
942     // Combine the shifted known input bits only for those shift amounts
943     // compatible with its known constraints.
944     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
945       continue;
946     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
947       continue;
948     // If we know the shifter is nonzero, we may be able to infer more known
949     // bits. This check is sunk down as far as possible to avoid the expensive
950     // call to isKnownNonZero if the cheaper checks above fail.
951     if (ShiftAmt == 0) {
952       if (!ShifterOperandIsNonZero.hasValue())
953         ShifterOperandIsNonZero =
954             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
955       if (*ShifterOperandIsNonZero)
956         continue;
957     }
958 
959     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
960     Known.One  &= KOF(Known2.One, ShiftAmt);
961   }
962 
963   // If the known bits conflict, the result is poison. Return a 0 and hope the
964   // caller can further optimize that.
965   if (Known.hasConflict())
966     Known.setAllZero();
967 }
968 
969 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
970                                          unsigned Depth, const Query &Q) {
971   unsigned BitWidth = Known.getBitWidth();
972 
973   KnownBits Known2(Known);
974   switch (I->getOpcode()) {
975   default: break;
976   case Instruction::Load:
977     if (MDNode *MD =
978             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
979       computeKnownBitsFromRangeMetadata(*MD, Known);
980     break;
981   case Instruction::And: {
982     // If either the LHS or the RHS are Zero, the result is zero.
983     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
984     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
985 
986     // Output known-1 bits are only known if set in both the LHS & RHS.
987     Known.One &= Known2.One;
988     // Output known-0 are known to be clear if zero in either the LHS | RHS.
989     Known.Zero |= Known2.Zero;
990 
991     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
992     // here we handle the more general case of adding any odd number by
993     // matching the form add(x, add(x, y)) where y is odd.
994     // TODO: This could be generalized to clearing any bit set in y where the
995     // following bit is known to be unset in y.
996     Value *X = nullptr, *Y = nullptr;
997     if (!Known.Zero[0] && !Known.One[0] &&
998         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
999       Known2.resetAll();
1000       computeKnownBits(Y, Known2, Depth + 1, Q);
1001       if (Known2.countMinTrailingOnes() > 0)
1002         Known.Zero.setBit(0);
1003     }
1004     break;
1005   }
1006   case Instruction::Or:
1007     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1008     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1009 
1010     // Output known-0 bits are only known if clear in both the LHS & RHS.
1011     Known.Zero &= Known2.Zero;
1012     // Output known-1 are known to be set if set in either the LHS | RHS.
1013     Known.One |= Known2.One;
1014     break;
1015   case Instruction::Xor: {
1016     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1017     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1018 
1019     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1020     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1021     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1022     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1023     Known.Zero = std::move(KnownZeroOut);
1024     break;
1025   }
1026   case Instruction::Mul: {
1027     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1028     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1029                         Known2, Depth, Q);
1030     break;
1031   }
1032   case Instruction::UDiv: {
1033     // For the purposes of computing leading zeros we can conservatively
1034     // treat a udiv as a logical right shift by the power of 2 known to
1035     // be less than the denominator.
1036     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1037     unsigned LeadZ = Known2.countMinLeadingZeros();
1038 
1039     Known2.resetAll();
1040     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1041     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1042     if (RHSMaxLeadingZeros != BitWidth)
1043       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1044 
1045     Known.Zero.setHighBits(LeadZ);
1046     break;
1047   }
1048   case Instruction::Select: {
1049     const Value *LHS, *RHS;
1050     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1051     if (SelectPatternResult::isMinOrMax(SPF)) {
1052       computeKnownBits(RHS, Known, Depth + 1, Q);
1053       computeKnownBits(LHS, Known2, Depth + 1, Q);
1054     } else {
1055       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1056       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1057     }
1058 
1059     unsigned MaxHighOnes = 0;
1060     unsigned MaxHighZeros = 0;
1061     if (SPF == SPF_SMAX) {
1062       // If both sides are negative, the result is negative.
1063       if (Known.isNegative() && Known2.isNegative())
1064         // We can derive a lower bound on the result by taking the max of the
1065         // leading one bits.
1066         MaxHighOnes =
1067             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1068       // If either side is non-negative, the result is non-negative.
1069       else if (Known.isNonNegative() || Known2.isNonNegative())
1070         MaxHighZeros = 1;
1071     } else if (SPF == SPF_SMIN) {
1072       // If both sides are non-negative, the result is non-negative.
1073       if (Known.isNonNegative() && Known2.isNonNegative())
1074         // We can derive an upper bound on the result by taking the max of the
1075         // leading zero bits.
1076         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1077                                 Known2.countMinLeadingZeros());
1078       // If either side is negative, the result is negative.
1079       else if (Known.isNegative() || Known2.isNegative())
1080         MaxHighOnes = 1;
1081     } else if (SPF == SPF_UMAX) {
1082       // We can derive a lower bound on the result by taking the max of the
1083       // leading one bits.
1084       MaxHighOnes =
1085           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1086     } else if (SPF == SPF_UMIN) {
1087       // We can derive an upper bound on the result by taking the max of the
1088       // leading zero bits.
1089       MaxHighZeros =
1090           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1091     } else if (SPF == SPF_ABS) {
1092       // RHS from matchSelectPattern returns the negation part of abs pattern.
1093       // If the negate has an NSW flag we can assume the sign bit of the result
1094       // will be 0 because that makes abs(INT_MIN) undefined.
1095       if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1096         MaxHighZeros = 1;
1097     }
1098 
1099     // Only known if known in both the LHS and RHS.
1100     Known.One &= Known2.One;
1101     Known.Zero &= Known2.Zero;
1102     if (MaxHighOnes > 0)
1103       Known.One.setHighBits(MaxHighOnes);
1104     if (MaxHighZeros > 0)
1105       Known.Zero.setHighBits(MaxHighZeros);
1106     break;
1107   }
1108   case Instruction::FPTrunc:
1109   case Instruction::FPExt:
1110   case Instruction::FPToUI:
1111   case Instruction::FPToSI:
1112   case Instruction::SIToFP:
1113   case Instruction::UIToFP:
1114     break; // Can't work with floating point.
1115   case Instruction::PtrToInt:
1116   case Instruction::IntToPtr:
1117     // Fall through and handle them the same as zext/trunc.
1118     LLVM_FALLTHROUGH;
1119   case Instruction::ZExt:
1120   case Instruction::Trunc: {
1121     Type *SrcTy = I->getOperand(0)->getType();
1122 
1123     unsigned SrcBitWidth;
1124     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1125     // which fall through here.
1126     Type *ScalarTy = SrcTy->getScalarType();
1127     SrcBitWidth = ScalarTy->isPointerTy() ?
1128       Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1129       Q.DL.getTypeSizeInBits(ScalarTy);
1130 
1131     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1132     Known = Known.zextOrTrunc(SrcBitWidth);
1133     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1134     Known = Known.zextOrTrunc(BitWidth);
1135     // Any top bits are known to be zero.
1136     if (BitWidth > SrcBitWidth)
1137       Known.Zero.setBitsFrom(SrcBitWidth);
1138     break;
1139   }
1140   case Instruction::BitCast: {
1141     Type *SrcTy = I->getOperand(0)->getType();
1142     if (SrcTy->isIntOrPtrTy() &&
1143         // TODO: For now, not handling conversions like:
1144         // (bitcast i64 %x to <2 x i32>)
1145         !I->getType()->isVectorTy()) {
1146       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1147       break;
1148     }
1149     break;
1150   }
1151   case Instruction::SExt: {
1152     // Compute the bits in the result that are not present in the input.
1153     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1154 
1155     Known = Known.trunc(SrcBitWidth);
1156     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1157     // If the sign bit of the input is known set or clear, then we know the
1158     // top bits of the result.
1159     Known = Known.sext(BitWidth);
1160     break;
1161   }
1162   case Instruction::Shl: {
1163     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1164     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1165     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1166       APInt KZResult = KnownZero << ShiftAmt;
1167       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1168       // If this shift has "nsw" keyword, then the result is either a poison
1169       // value or has the same sign bit as the first operand.
1170       if (NSW && KnownZero.isSignBitSet())
1171         KZResult.setSignBit();
1172       return KZResult;
1173     };
1174 
1175     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1176       APInt KOResult = KnownOne << ShiftAmt;
1177       if (NSW && KnownOne.isSignBitSet())
1178         KOResult.setSignBit();
1179       return KOResult;
1180     };
1181 
1182     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1183     break;
1184   }
1185   case Instruction::LShr: {
1186     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1187     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1188       APInt KZResult = KnownZero.lshr(ShiftAmt);
1189       // High bits known zero.
1190       KZResult.setHighBits(ShiftAmt);
1191       return KZResult;
1192     };
1193 
1194     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1195       return KnownOne.lshr(ShiftAmt);
1196     };
1197 
1198     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1199     break;
1200   }
1201   case Instruction::AShr: {
1202     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1203     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1204       return KnownZero.ashr(ShiftAmt);
1205     };
1206 
1207     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1208       return KnownOne.ashr(ShiftAmt);
1209     };
1210 
1211     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1212     break;
1213   }
1214   case Instruction::Sub: {
1215     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1216     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1217                            Known, Known2, Depth, Q);
1218     break;
1219   }
1220   case Instruction::Add: {
1221     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1222     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1223                            Known, Known2, Depth, Q);
1224     break;
1225   }
1226   case Instruction::SRem:
1227     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1228       APInt RA = Rem->getValue().abs();
1229       if (RA.isPowerOf2()) {
1230         APInt LowBits = RA - 1;
1231         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1232 
1233         // The low bits of the first operand are unchanged by the srem.
1234         Known.Zero = Known2.Zero & LowBits;
1235         Known.One = Known2.One & LowBits;
1236 
1237         // If the first operand is non-negative or has all low bits zero, then
1238         // the upper bits are all zero.
1239         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1240           Known.Zero |= ~LowBits;
1241 
1242         // If the first operand is negative and not all low bits are zero, then
1243         // the upper bits are all one.
1244         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1245           Known.One |= ~LowBits;
1246 
1247         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1248         break;
1249       }
1250     }
1251 
1252     // The sign bit is the LHS's sign bit, except when the result of the
1253     // remainder is zero.
1254     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1255     // If it's known zero, our sign bit is also zero.
1256     if (Known2.isNonNegative())
1257       Known.makeNonNegative();
1258 
1259     break;
1260   case Instruction::URem: {
1261     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1262       const APInt &RA = Rem->getValue();
1263       if (RA.isPowerOf2()) {
1264         APInt LowBits = (RA - 1);
1265         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1266         Known.Zero |= ~LowBits;
1267         Known.One &= LowBits;
1268         break;
1269       }
1270     }
1271 
1272     // Since the result is less than or equal to either operand, any leading
1273     // zero bits in either operand must also exist in the result.
1274     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1275     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1276 
1277     unsigned Leaders =
1278         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1279     Known.resetAll();
1280     Known.Zero.setHighBits(Leaders);
1281     break;
1282   }
1283 
1284   case Instruction::Alloca: {
1285     const AllocaInst *AI = cast<AllocaInst>(I);
1286     unsigned Align = AI->getAlignment();
1287     if (Align == 0)
1288       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1289 
1290     if (Align > 0)
1291       Known.Zero.setLowBits(countTrailingZeros(Align));
1292     break;
1293   }
1294   case Instruction::GetElementPtr: {
1295     // Analyze all of the subscripts of this getelementptr instruction
1296     // to determine if we can prove known low zero bits.
1297     KnownBits LocalKnown(BitWidth);
1298     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1299     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1300 
1301     gep_type_iterator GTI = gep_type_begin(I);
1302     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1303       Value *Index = I->getOperand(i);
1304       if (StructType *STy = GTI.getStructTypeOrNull()) {
1305         // Handle struct member offset arithmetic.
1306 
1307         // Handle case when index is vector zeroinitializer
1308         Constant *CIndex = cast<Constant>(Index);
1309         if (CIndex->isZeroValue())
1310           continue;
1311 
1312         if (CIndex->getType()->isVectorTy())
1313           Index = CIndex->getSplatValue();
1314 
1315         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1316         const StructLayout *SL = Q.DL.getStructLayout(STy);
1317         uint64_t Offset = SL->getElementOffset(Idx);
1318         TrailZ = std::min<unsigned>(TrailZ,
1319                                     countTrailingZeros(Offset));
1320       } else {
1321         // Handle array index arithmetic.
1322         Type *IndexedTy = GTI.getIndexedType();
1323         if (!IndexedTy->isSized()) {
1324           TrailZ = 0;
1325           break;
1326         }
1327         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1328         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1329         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1330         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1331         TrailZ = std::min(TrailZ,
1332                           unsigned(countTrailingZeros(TypeSize) +
1333                                    LocalKnown.countMinTrailingZeros()));
1334       }
1335     }
1336 
1337     Known.Zero.setLowBits(TrailZ);
1338     break;
1339   }
1340   case Instruction::PHI: {
1341     const PHINode *P = cast<PHINode>(I);
1342     // Handle the case of a simple two-predecessor recurrence PHI.
1343     // There's a lot more that could theoretically be done here, but
1344     // this is sufficient to catch some interesting cases.
1345     if (P->getNumIncomingValues() == 2) {
1346       for (unsigned i = 0; i != 2; ++i) {
1347         Value *L = P->getIncomingValue(i);
1348         Value *R = P->getIncomingValue(!i);
1349         Operator *LU = dyn_cast<Operator>(L);
1350         if (!LU)
1351           continue;
1352         unsigned Opcode = LU->getOpcode();
1353         // Check for operations that have the property that if
1354         // both their operands have low zero bits, the result
1355         // will have low zero bits.
1356         if (Opcode == Instruction::Add ||
1357             Opcode == Instruction::Sub ||
1358             Opcode == Instruction::And ||
1359             Opcode == Instruction::Or ||
1360             Opcode == Instruction::Mul) {
1361           Value *LL = LU->getOperand(0);
1362           Value *LR = LU->getOperand(1);
1363           // Find a recurrence.
1364           if (LL == I)
1365             L = LR;
1366           else if (LR == I)
1367             L = LL;
1368           else
1369             break;
1370           // Ok, we have a PHI of the form L op= R. Check for low
1371           // zero bits.
1372           computeKnownBits(R, Known2, Depth + 1, Q);
1373 
1374           // We need to take the minimum number of known bits
1375           KnownBits Known3(Known);
1376           computeKnownBits(L, Known3, Depth + 1, Q);
1377 
1378           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1379                                          Known3.countMinTrailingZeros()));
1380 
1381           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1382           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1383             // If initial value of recurrence is nonnegative, and we are adding
1384             // a nonnegative number with nsw, the result can only be nonnegative
1385             // or poison value regardless of the number of times we execute the
1386             // add in phi recurrence. If initial value is negative and we are
1387             // adding a negative number with nsw, the result can only be
1388             // negative or poison value. Similar arguments apply to sub and mul.
1389             //
1390             // (add non-negative, non-negative) --> non-negative
1391             // (add negative, negative) --> negative
1392             if (Opcode == Instruction::Add) {
1393               if (Known2.isNonNegative() && Known3.isNonNegative())
1394                 Known.makeNonNegative();
1395               else if (Known2.isNegative() && Known3.isNegative())
1396                 Known.makeNegative();
1397             }
1398 
1399             // (sub nsw non-negative, negative) --> non-negative
1400             // (sub nsw negative, non-negative) --> negative
1401             else if (Opcode == Instruction::Sub && LL == I) {
1402               if (Known2.isNonNegative() && Known3.isNegative())
1403                 Known.makeNonNegative();
1404               else if (Known2.isNegative() && Known3.isNonNegative())
1405                 Known.makeNegative();
1406             }
1407 
1408             // (mul nsw non-negative, non-negative) --> non-negative
1409             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1410                      Known3.isNonNegative())
1411               Known.makeNonNegative();
1412           }
1413 
1414           break;
1415         }
1416       }
1417     }
1418 
1419     // Unreachable blocks may have zero-operand PHI nodes.
1420     if (P->getNumIncomingValues() == 0)
1421       break;
1422 
1423     // Otherwise take the unions of the known bit sets of the operands,
1424     // taking conservative care to avoid excessive recursion.
1425     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1426       // Skip if every incoming value references to ourself.
1427       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1428         break;
1429 
1430       Known.Zero.setAllBits();
1431       Known.One.setAllBits();
1432       for (Value *IncValue : P->incoming_values()) {
1433         // Skip direct self references.
1434         if (IncValue == P) continue;
1435 
1436         Known2 = KnownBits(BitWidth);
1437         // Recurse, but cap the recursion to one level, because we don't
1438         // want to waste time spinning around in loops.
1439         computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1440         Known.Zero &= Known2.Zero;
1441         Known.One &= Known2.One;
1442         // If all bits have been ruled out, there's no need to check
1443         // more operands.
1444         if (!Known.Zero && !Known.One)
1445           break;
1446       }
1447     }
1448     break;
1449   }
1450   case Instruction::Call:
1451   case Instruction::Invoke:
1452     // If range metadata is attached to this call, set known bits from that,
1453     // and then intersect with known bits based on other properties of the
1454     // function.
1455     if (MDNode *MD =
1456             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1457       computeKnownBitsFromRangeMetadata(*MD, Known);
1458     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1459       computeKnownBits(RV, Known2, Depth + 1, Q);
1460       Known.Zero |= Known2.Zero;
1461       Known.One |= Known2.One;
1462     }
1463     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1464       switch (II->getIntrinsicID()) {
1465       default: break;
1466       case Intrinsic::bitreverse:
1467         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1468         Known.Zero |= Known2.Zero.reverseBits();
1469         Known.One |= Known2.One.reverseBits();
1470         break;
1471       case Intrinsic::bswap:
1472         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1473         Known.Zero |= Known2.Zero.byteSwap();
1474         Known.One |= Known2.One.byteSwap();
1475         break;
1476       case Intrinsic::ctlz: {
1477         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1478         // If we have a known 1, its position is our upper bound.
1479         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1480         // If this call is undefined for 0, the result will be less than 2^n.
1481         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1482           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1483         unsigned LowBits = Log2_32(PossibleLZ)+1;
1484         Known.Zero.setBitsFrom(LowBits);
1485         break;
1486       }
1487       case Intrinsic::cttz: {
1488         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1489         // If we have a known 1, its position is our upper bound.
1490         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1491         // If this call is undefined for 0, the result will be less than 2^n.
1492         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1493           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1494         unsigned LowBits = Log2_32(PossibleTZ)+1;
1495         Known.Zero.setBitsFrom(LowBits);
1496         break;
1497       }
1498       case Intrinsic::ctpop: {
1499         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1500         // We can bound the space the count needs.  Also, bits known to be zero
1501         // can't contribute to the population.
1502         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1503         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1504         Known.Zero.setBitsFrom(LowBits);
1505         // TODO: we could bound KnownOne using the lower bound on the number
1506         // of bits which might be set provided by popcnt KnownOne2.
1507         break;
1508       }
1509       case Intrinsic::x86_sse42_crc32_64_64:
1510         Known.Zero.setBitsFrom(32);
1511         break;
1512       }
1513     }
1514     break;
1515   case Instruction::ExtractElement:
1516     // Look through extract element. At the moment we keep this simple and skip
1517     // tracking the specific element. But at least we might find information
1518     // valid for all elements of the vector (for example if vector is sign
1519     // extended, shifted, etc).
1520     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1521     break;
1522   case Instruction::ExtractValue:
1523     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1524       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1525       if (EVI->getNumIndices() != 1) break;
1526       if (EVI->getIndices()[0] == 0) {
1527         switch (II->getIntrinsicID()) {
1528         default: break;
1529         case Intrinsic::uadd_with_overflow:
1530         case Intrinsic::sadd_with_overflow:
1531           computeKnownBitsAddSub(true, II->getArgOperand(0),
1532                                  II->getArgOperand(1), false, Known, Known2,
1533                                  Depth, Q);
1534           break;
1535         case Intrinsic::usub_with_overflow:
1536         case Intrinsic::ssub_with_overflow:
1537           computeKnownBitsAddSub(false, II->getArgOperand(0),
1538                                  II->getArgOperand(1), false, Known, Known2,
1539                                  Depth, Q);
1540           break;
1541         case Intrinsic::umul_with_overflow:
1542         case Intrinsic::smul_with_overflow:
1543           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1544                               Known, Known2, Depth, Q);
1545           break;
1546         }
1547       }
1548     }
1549   }
1550 }
1551 
1552 /// Determine which bits of V are known to be either zero or one and return
1553 /// them.
1554 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1555   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1556   computeKnownBits(V, Known, Depth, Q);
1557   return Known;
1558 }
1559 
1560 /// Determine which bits of V are known to be either zero or one and return
1561 /// them in the Known bit set.
1562 ///
1563 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1564 /// we cannot optimize based on the assumption that it is zero without changing
1565 /// it to be an explicit zero.  If we don't change it to zero, other code could
1566 /// optimized based on the contradictory assumption that it is non-zero.
1567 /// Because instcombine aggressively folds operations with undef args anyway,
1568 /// this won't lose us code quality.
1569 ///
1570 /// This function is defined on values with integer type, values with pointer
1571 /// type, and vectors of integers.  In the case
1572 /// where V is a vector, known zero, and known one values are the
1573 /// same width as the vector element, and the bit is set only if it is true
1574 /// for all of the elements in the vector.
1575 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1576                       const Query &Q) {
1577   assert(V && "No Value?");
1578   assert(Depth <= MaxDepth && "Limit Search Depth");
1579   unsigned BitWidth = Known.getBitWidth();
1580 
1581   assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1582           V->getType()->isPtrOrPtrVectorTy()) &&
1583          "Not integer or pointer type!");
1584 
1585   Type *ScalarTy = V->getType()->getScalarType();
1586   unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1587     Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1588   assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1589   (void)BitWidth;
1590   (void)ExpectedWidth;
1591 
1592   const APInt *C;
1593   if (match(V, m_APInt(C))) {
1594     // We know all of the bits for a scalar constant or a splat vector constant!
1595     Known.One = *C;
1596     Known.Zero = ~Known.One;
1597     return;
1598   }
1599   // Null and aggregate-zero are all-zeros.
1600   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1601     Known.setAllZero();
1602     return;
1603   }
1604   // Handle a constant vector by taking the intersection of the known bits of
1605   // each element.
1606   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1607     // We know that CDS must be a vector of integers. Take the intersection of
1608     // each element.
1609     Known.Zero.setAllBits(); Known.One.setAllBits();
1610     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1611       APInt Elt = CDS->getElementAsAPInt(i);
1612       Known.Zero &= ~Elt;
1613       Known.One &= Elt;
1614     }
1615     return;
1616   }
1617 
1618   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1619     // We know that CV must be a vector of integers. Take the intersection of
1620     // each element.
1621     Known.Zero.setAllBits(); Known.One.setAllBits();
1622     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1623       Constant *Element = CV->getAggregateElement(i);
1624       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1625       if (!ElementCI) {
1626         Known.resetAll();
1627         return;
1628       }
1629       const APInt &Elt = ElementCI->getValue();
1630       Known.Zero &= ~Elt;
1631       Known.One &= Elt;
1632     }
1633     return;
1634   }
1635 
1636   // Start out not knowing anything.
1637   Known.resetAll();
1638 
1639   // We can't imply anything about undefs.
1640   if (isa<UndefValue>(V))
1641     return;
1642 
1643   // There's no point in looking through other users of ConstantData for
1644   // assumptions.  Confirm that we've handled them all.
1645   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1646 
1647   // Limit search depth.
1648   // All recursive calls that increase depth must come after this.
1649   if (Depth == MaxDepth)
1650     return;
1651 
1652   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1653   // the bits of its aliasee.
1654   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1655     if (!GA->isInterposable())
1656       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1657     return;
1658   }
1659 
1660   if (const Operator *I = dyn_cast<Operator>(V))
1661     computeKnownBitsFromOperator(I, Known, Depth, Q);
1662 
1663   // Aligned pointers have trailing zeros - refine Known.Zero set
1664   if (V->getType()->isPointerTy()) {
1665     unsigned Align = V->getPointerAlignment(Q.DL);
1666     if (Align)
1667       Known.Zero.setLowBits(countTrailingZeros(Align));
1668   }
1669 
1670   // computeKnownBitsFromAssume strictly refines Known.
1671   // Therefore, we run them after computeKnownBitsFromOperator.
1672 
1673   // Check whether a nearby assume intrinsic can determine some known bits.
1674   computeKnownBitsFromAssume(V, Known, Depth, Q);
1675 
1676   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1677 }
1678 
1679 /// Return true if the given value is known to have exactly one
1680 /// bit set when defined. For vectors return true if every element is known to
1681 /// be a power of two when defined. Supports values with integer or pointer
1682 /// types and vectors of integers.
1683 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1684                             const Query &Q) {
1685   assert(Depth <= MaxDepth && "Limit Search Depth");
1686 
1687   // Attempt to match against constants.
1688   if (OrZero && match(V, m_Power2OrZero()))
1689       return true;
1690   if (match(V, m_Power2()))
1691       return true;
1692 
1693   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1694   // it is shifted off the end then the result is undefined.
1695   if (match(V, m_Shl(m_One(), m_Value())))
1696     return true;
1697 
1698   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1699   // the bottom.  If it is shifted off the bottom then the result is undefined.
1700   if (match(V, m_LShr(m_SignMask(), m_Value())))
1701     return true;
1702 
1703   // The remaining tests are all recursive, so bail out if we hit the limit.
1704   if (Depth++ == MaxDepth)
1705     return false;
1706 
1707   Value *X = nullptr, *Y = nullptr;
1708   // A shift left or a logical shift right of a power of two is a power of two
1709   // or zero.
1710   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1711                  match(V, m_LShr(m_Value(X), m_Value()))))
1712     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1713 
1714   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1715     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1716 
1717   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1718     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1719            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1720 
1721   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1722     // A power of two and'd with anything is a power of two or zero.
1723     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1724         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1725       return true;
1726     // X & (-X) is always a power of two or zero.
1727     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1728       return true;
1729     return false;
1730   }
1731 
1732   // Adding a power-of-two or zero to the same power-of-two or zero yields
1733   // either the original power-of-two, a larger power-of-two or zero.
1734   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1735     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1736     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1737         Q.IIQ.hasNoSignedWrap(VOBO)) {
1738       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1739           match(X, m_And(m_Value(), m_Specific(Y))))
1740         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1741           return true;
1742       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1743           match(Y, m_And(m_Value(), m_Specific(X))))
1744         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1745           return true;
1746 
1747       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1748       KnownBits LHSBits(BitWidth);
1749       computeKnownBits(X, LHSBits, Depth, Q);
1750 
1751       KnownBits RHSBits(BitWidth);
1752       computeKnownBits(Y, RHSBits, Depth, Q);
1753       // If i8 V is a power of two or zero:
1754       //  ZeroBits: 1 1 1 0 1 1 1 1
1755       // ~ZeroBits: 0 0 0 1 0 0 0 0
1756       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1757         // If OrZero isn't set, we cannot give back a zero result.
1758         // Make sure either the LHS or RHS has a bit set.
1759         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1760           return true;
1761     }
1762   }
1763 
1764   // An exact divide or right shift can only shift off zero bits, so the result
1765   // is a power of two only if the first operand is a power of two and not
1766   // copying a sign bit (sdiv int_min, 2).
1767   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1768       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1769     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1770                                   Depth, Q);
1771   }
1772 
1773   return false;
1774 }
1775 
1776 /// Test whether a GEP's result is known to be non-null.
1777 ///
1778 /// Uses properties inherent in a GEP to try to determine whether it is known
1779 /// to be non-null.
1780 ///
1781 /// Currently this routine does not support vector GEPs.
1782 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1783                               const Query &Q) {
1784   const Function *F = nullptr;
1785   if (const Instruction *I = dyn_cast<Instruction>(GEP))
1786     F = I->getFunction();
1787 
1788   if (!GEP->isInBounds() ||
1789       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1790     return false;
1791 
1792   // FIXME: Support vector-GEPs.
1793   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1794 
1795   // If the base pointer is non-null, we cannot walk to a null address with an
1796   // inbounds GEP in address space zero.
1797   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1798     return true;
1799 
1800   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1801   // If so, then the GEP cannot produce a null pointer, as doing so would
1802   // inherently violate the inbounds contract within address space zero.
1803   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1804        GTI != GTE; ++GTI) {
1805     // Struct types are easy -- they must always be indexed by a constant.
1806     if (StructType *STy = GTI.getStructTypeOrNull()) {
1807       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1808       unsigned ElementIdx = OpC->getZExtValue();
1809       const StructLayout *SL = Q.DL.getStructLayout(STy);
1810       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1811       if (ElementOffset > 0)
1812         return true;
1813       continue;
1814     }
1815 
1816     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1817     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1818       continue;
1819 
1820     // Fast path the constant operand case both for efficiency and so we don't
1821     // increment Depth when just zipping down an all-constant GEP.
1822     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1823       if (!OpC->isZero())
1824         return true;
1825       continue;
1826     }
1827 
1828     // We post-increment Depth here because while isKnownNonZero increments it
1829     // as well, when we pop back up that increment won't persist. We don't want
1830     // to recurse 10k times just because we have 10k GEP operands. We don't
1831     // bail completely out because we want to handle constant GEPs regardless
1832     // of depth.
1833     if (Depth++ >= MaxDepth)
1834       continue;
1835 
1836     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1837       return true;
1838   }
1839 
1840   return false;
1841 }
1842 
1843 static bool isKnownNonNullFromDominatingCondition(const Value *V,
1844                                                   const Instruction *CtxI,
1845                                                   const DominatorTree *DT) {
1846   assert(V->getType()->isPointerTy() && "V must be pointer type");
1847   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1848 
1849   if (!CtxI || !DT)
1850     return false;
1851 
1852   unsigned NumUsesExplored = 0;
1853   for (auto *U : V->users()) {
1854     // Avoid massive lists
1855     if (NumUsesExplored >= DomConditionsMaxUses)
1856       break;
1857     NumUsesExplored++;
1858 
1859     // If the value is used as an argument to a call or invoke, then argument
1860     // attributes may provide an answer about null-ness.
1861     if (auto CS = ImmutableCallSite(U))
1862       if (auto *CalledFunc = CS.getCalledFunction())
1863         for (const Argument &Arg : CalledFunc->args())
1864           if (CS.getArgOperand(Arg.getArgNo()) == V &&
1865               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1866             return true;
1867 
1868     // Consider only compare instructions uniquely controlling a branch
1869     CmpInst::Predicate Pred;
1870     if (!match(const_cast<User *>(U),
1871                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1872         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1873       continue;
1874 
1875     SmallVector<const User *, 4> WorkList;
1876     SmallPtrSet<const User *, 4> Visited;
1877     for (auto *CmpU : U->users()) {
1878       assert(WorkList.empty() && "Should be!");
1879       if (Visited.insert(CmpU).second)
1880         WorkList.push_back(CmpU);
1881 
1882       while (!WorkList.empty()) {
1883         auto *Curr = WorkList.pop_back_val();
1884 
1885         // If a user is an AND, add all its users to the work list. We only
1886         // propagate "pred != null" condition through AND because it is only
1887         // correct to assume that all conditions of AND are met in true branch.
1888         // TODO: Support similar logic of OR and EQ predicate?
1889         if (Pred == ICmpInst::ICMP_NE)
1890           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1891             if (BO->getOpcode() == Instruction::And) {
1892               for (auto *BOU : BO->users())
1893                 if (Visited.insert(BOU).second)
1894                   WorkList.push_back(BOU);
1895               continue;
1896             }
1897 
1898         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1899           assert(BI->isConditional() && "uses a comparison!");
1900 
1901           BasicBlock *NonNullSuccessor =
1902               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1903           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1904           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1905             return true;
1906         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1907                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
1908           return true;
1909         }
1910       }
1911     }
1912   }
1913 
1914   return false;
1915 }
1916 
1917 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1918 /// ensure that the value it's attached to is never Value?  'RangeType' is
1919 /// is the type of the value described by the range.
1920 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1921   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1922   assert(NumRanges >= 1);
1923   for (unsigned i = 0; i < NumRanges; ++i) {
1924     ConstantInt *Lower =
1925         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1926     ConstantInt *Upper =
1927         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1928     ConstantRange Range(Lower->getValue(), Upper->getValue());
1929     if (Range.contains(Value))
1930       return false;
1931   }
1932   return true;
1933 }
1934 
1935 /// Return true if the given value is known to be non-zero when defined. For
1936 /// vectors, return true if every element is known to be non-zero when
1937 /// defined. For pointers, if the context instruction and dominator tree are
1938 /// specified, perform context-sensitive analysis and return true if the
1939 /// pointer couldn't possibly be null at the specified instruction.
1940 /// Supports values with integer or pointer type and vectors of integers.
1941 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1942   if (auto *C = dyn_cast<Constant>(V)) {
1943     if (C->isNullValue())
1944       return false;
1945     if (isa<ConstantInt>(C))
1946       // Must be non-zero due to null test above.
1947       return true;
1948 
1949     // For constant vectors, check that all elements are undefined or known
1950     // non-zero to determine that the whole vector is known non-zero.
1951     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1952       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1953         Constant *Elt = C->getAggregateElement(i);
1954         if (!Elt || Elt->isNullValue())
1955           return false;
1956         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1957           return false;
1958       }
1959       return true;
1960     }
1961 
1962     // A global variable in address space 0 is non null unless extern weak
1963     // or an absolute symbol reference. Other address spaces may have null as a
1964     // valid address for a global, so we can't assume anything.
1965     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1966       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1967           GV->getType()->getAddressSpace() == 0)
1968         return true;
1969     } else
1970       return false;
1971   }
1972 
1973   if (auto *I = dyn_cast<Instruction>(V)) {
1974     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
1975       // If the possible ranges don't contain zero, then the value is
1976       // definitely non-zero.
1977       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1978         const APInt ZeroValue(Ty->getBitWidth(), 0);
1979         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1980           return true;
1981       }
1982     }
1983   }
1984 
1985   // Some of the tests below are recursive, so bail out if we hit the limit.
1986   if (Depth++ >= MaxDepth)
1987     return false;
1988 
1989   // Check for pointer simplifications.
1990   if (V->getType()->isPointerTy()) {
1991     // Alloca never returns null, malloc might.
1992     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1993       return true;
1994 
1995     // A byval, inalloca, or nonnull argument is never null.
1996     if (const Argument *A = dyn_cast<Argument>(V))
1997       if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1998         return true;
1999 
2000     // A Load tagged with nonnull metadata is never null.
2001     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2002       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2003         return true;
2004 
2005     if (auto CS = ImmutableCallSite(V)) {
2006       if (CS.isReturnNonNull())
2007         return true;
2008       if (const auto *RP = getArgumentAliasingToReturnedPointer(CS))
2009         return isKnownNonZero(RP, Depth, Q);
2010     }
2011   }
2012 
2013 
2014   // Check for recursive pointer simplifications.
2015   if (V->getType()->isPointerTy()) {
2016     if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2017       return true;
2018 
2019     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2020       if (isGEPKnownNonNull(GEP, Depth, Q))
2021         return true;
2022   }
2023 
2024   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2025 
2026   // X | Y != 0 if X != 0 or Y != 0.
2027   Value *X = nullptr, *Y = nullptr;
2028   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2029     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2030 
2031   // ext X != 0 if X != 0.
2032   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2033     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2034 
2035   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2036   // if the lowest bit is shifted off the end.
2037   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2038     // shl nuw can't remove any non-zero bits.
2039     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2040     if (Q.IIQ.hasNoUnsignedWrap(BO))
2041       return isKnownNonZero(X, Depth, Q);
2042 
2043     KnownBits Known(BitWidth);
2044     computeKnownBits(X, Known, Depth, Q);
2045     if (Known.One[0])
2046       return true;
2047   }
2048   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2049   // defined if the sign bit is shifted off the end.
2050   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2051     // shr exact can only shift out zero bits.
2052     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2053     if (BO->isExact())
2054       return isKnownNonZero(X, Depth, Q);
2055 
2056     KnownBits Known = computeKnownBits(X, Depth, Q);
2057     if (Known.isNegative())
2058       return true;
2059 
2060     // If the shifter operand is a constant, and all of the bits shifted
2061     // out are known to be zero, and X is known non-zero then at least one
2062     // non-zero bit must remain.
2063     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2064       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2065       // Is there a known one in the portion not shifted out?
2066       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2067         return true;
2068       // Are all the bits to be shifted out known zero?
2069       if (Known.countMinTrailingZeros() >= ShiftVal)
2070         return isKnownNonZero(X, Depth, Q);
2071     }
2072   }
2073   // div exact can only produce a zero if the dividend is zero.
2074   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2075     return isKnownNonZero(X, Depth, Q);
2076   }
2077   // X + Y.
2078   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2079     KnownBits XKnown = computeKnownBits(X, Depth, Q);
2080     KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2081 
2082     // If X and Y are both non-negative (as signed values) then their sum is not
2083     // zero unless both X and Y are zero.
2084     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2085       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2086         return true;
2087 
2088     // If X and Y are both negative (as signed values) then their sum is not
2089     // zero unless both X and Y equal INT_MIN.
2090     if (XKnown.isNegative() && YKnown.isNegative()) {
2091       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2092       // The sign bit of X is set.  If some other bit is set then X is not equal
2093       // to INT_MIN.
2094       if (XKnown.One.intersects(Mask))
2095         return true;
2096       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2097       // to INT_MIN.
2098       if (YKnown.One.intersects(Mask))
2099         return true;
2100     }
2101 
2102     // The sum of a non-negative number and a power of two is not zero.
2103     if (XKnown.isNonNegative() &&
2104         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2105       return true;
2106     if (YKnown.isNonNegative() &&
2107         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2108       return true;
2109   }
2110   // X * Y.
2111   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2112     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2113     // If X and Y are non-zero then so is X * Y as long as the multiplication
2114     // does not overflow.
2115     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2116         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2117       return true;
2118   }
2119   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2120   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2121     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2122         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2123       return true;
2124   }
2125   // PHI
2126   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2127     // Try and detect a recurrence that monotonically increases from a
2128     // starting value, as these are common as induction variables.
2129     if (PN->getNumIncomingValues() == 2) {
2130       Value *Start = PN->getIncomingValue(0);
2131       Value *Induction = PN->getIncomingValue(1);
2132       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2133         std::swap(Start, Induction);
2134       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2135         if (!C->isZero() && !C->isNegative()) {
2136           ConstantInt *X;
2137           if (Q.IIQ.UseInstrInfo &&
2138               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2139                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2140               !X->isNegative())
2141             return true;
2142         }
2143       }
2144     }
2145     // Check if all incoming values are non-zero constant.
2146     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2147       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2148     });
2149     if (AllNonZeroConstants)
2150       return true;
2151   }
2152 
2153   KnownBits Known(BitWidth);
2154   computeKnownBits(V, Known, Depth, Q);
2155   return Known.One != 0;
2156 }
2157 
2158 /// Return true if V2 == V1 + X, where X is known non-zero.
2159 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2160   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2161   if (!BO || BO->getOpcode() != Instruction::Add)
2162     return false;
2163   Value *Op = nullptr;
2164   if (V2 == BO->getOperand(0))
2165     Op = BO->getOperand(1);
2166   else if (V2 == BO->getOperand(1))
2167     Op = BO->getOperand(0);
2168   else
2169     return false;
2170   return isKnownNonZero(Op, 0, Q);
2171 }
2172 
2173 /// Return true if it is known that V1 != V2.
2174 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2175   if (V1 == V2)
2176     return false;
2177   if (V1->getType() != V2->getType())
2178     // We can't look through casts yet.
2179     return false;
2180   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2181     return true;
2182 
2183   if (V1->getType()->isIntOrIntVectorTy()) {
2184     // Are any known bits in V1 contradictory to known bits in V2? If V1
2185     // has a known zero where V2 has a known one, they must not be equal.
2186     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2187     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2188 
2189     if (Known1.Zero.intersects(Known2.One) ||
2190         Known2.Zero.intersects(Known1.One))
2191       return true;
2192   }
2193   return false;
2194 }
2195 
2196 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2197 /// simplify operations downstream. Mask is known to be zero for bits that V
2198 /// cannot have.
2199 ///
2200 /// This function is defined on values with integer type, values with pointer
2201 /// type, and vectors of integers.  In the case
2202 /// where V is a vector, the mask, known zero, and known one values are the
2203 /// same width as the vector element, and the bit is set only if it is true
2204 /// for all of the elements in the vector.
2205 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2206                        const Query &Q) {
2207   KnownBits Known(Mask.getBitWidth());
2208   computeKnownBits(V, Known, Depth, Q);
2209   return Mask.isSubsetOf(Known.Zero);
2210 }
2211 
2212 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2213 // Returns the input and lower/upper bounds.
2214 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2215                                 const APInt *&CLow, const APInt *&CHigh) {
2216   assert(isa<Operator>(Select) &&
2217          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2218          "Input should be a Select!");
2219 
2220   const Value *LHS, *RHS, *LHS2, *RHS2;
2221   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2222   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2223     return false;
2224 
2225   if (!match(RHS, m_APInt(CLow)))
2226     return false;
2227 
2228   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2229   if (getInverseMinMaxFlavor(SPF) != SPF2)
2230     return false;
2231 
2232   if (!match(RHS2, m_APInt(CHigh)))
2233     return false;
2234 
2235   if (SPF == SPF_SMIN)
2236     std::swap(CLow, CHigh);
2237 
2238   In = LHS2;
2239   return CLow->sle(*CHigh);
2240 }
2241 
2242 /// For vector constants, loop over the elements and find the constant with the
2243 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2244 /// or if any element was not analyzed; otherwise, return the count for the
2245 /// element with the minimum number of sign bits.
2246 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2247                                                  unsigned TyBits) {
2248   const auto *CV = dyn_cast<Constant>(V);
2249   if (!CV || !CV->getType()->isVectorTy())
2250     return 0;
2251 
2252   unsigned MinSignBits = TyBits;
2253   unsigned NumElts = CV->getType()->getVectorNumElements();
2254   for (unsigned i = 0; i != NumElts; ++i) {
2255     // If we find a non-ConstantInt, bail out.
2256     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2257     if (!Elt)
2258       return 0;
2259 
2260     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2261   }
2262 
2263   return MinSignBits;
2264 }
2265 
2266 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2267                                        const Query &Q);
2268 
2269 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2270                                    const Query &Q) {
2271   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2272   assert(Result > 0 && "At least one sign bit needs to be present!");
2273   return Result;
2274 }
2275 
2276 /// Return the number of times the sign bit of the register is replicated into
2277 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2278 /// (itself), but other cases can give us information. For example, immediately
2279 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2280 /// other, so we return 3. For vectors, return the number of sign bits for the
2281 /// vector element with the minimum number of known sign bits.
2282 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2283                                        const Query &Q) {
2284   assert(Depth <= MaxDepth && "Limit Search Depth");
2285 
2286   // We return the minimum number of sign bits that are guaranteed to be present
2287   // in V, so for undef we have to conservatively return 1.  We don't have the
2288   // same behavior for poison though -- that's a FIXME today.
2289 
2290   Type *ScalarTy = V->getType()->getScalarType();
2291   unsigned TyBits = ScalarTy->isPointerTy() ?
2292     Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2293     Q.DL.getTypeSizeInBits(ScalarTy);
2294 
2295   unsigned Tmp, Tmp2;
2296   unsigned FirstAnswer = 1;
2297 
2298   // Note that ConstantInt is handled by the general computeKnownBits case
2299   // below.
2300 
2301   if (Depth == MaxDepth)
2302     return 1;  // Limit search depth.
2303 
2304   const Operator *U = dyn_cast<Operator>(V);
2305   switch (Operator::getOpcode(V)) {
2306   default: break;
2307   case Instruction::SExt:
2308     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2309     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2310 
2311   case Instruction::SDiv: {
2312     const APInt *Denominator;
2313     // sdiv X, C -> adds log(C) sign bits.
2314     if (match(U->getOperand(1), m_APInt(Denominator))) {
2315 
2316       // Ignore non-positive denominator.
2317       if (!Denominator->isStrictlyPositive())
2318         break;
2319 
2320       // Calculate the incoming numerator bits.
2321       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2322 
2323       // Add floor(log(C)) bits to the numerator bits.
2324       return std::min(TyBits, NumBits + Denominator->logBase2());
2325     }
2326     break;
2327   }
2328 
2329   case Instruction::SRem: {
2330     const APInt *Denominator;
2331     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2332     // positive constant.  This let us put a lower bound on the number of sign
2333     // bits.
2334     if (match(U->getOperand(1), m_APInt(Denominator))) {
2335 
2336       // Ignore non-positive denominator.
2337       if (!Denominator->isStrictlyPositive())
2338         break;
2339 
2340       // Calculate the incoming numerator bits. SRem by a positive constant
2341       // can't lower the number of sign bits.
2342       unsigned NumrBits =
2343           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2344 
2345       // Calculate the leading sign bit constraints by examining the
2346       // denominator.  Given that the denominator is positive, there are two
2347       // cases:
2348       //
2349       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2350       //     (1 << ceilLogBase2(C)).
2351       //
2352       //  2. the numerator is negative.  Then the result range is (-C,0] and
2353       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2354       //
2355       // Thus a lower bound on the number of sign bits is `TyBits -
2356       // ceilLogBase2(C)`.
2357 
2358       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2359       return std::max(NumrBits, ResBits);
2360     }
2361     break;
2362   }
2363 
2364   case Instruction::AShr: {
2365     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2366     // ashr X, C   -> adds C sign bits.  Vectors too.
2367     const APInt *ShAmt;
2368     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2369       if (ShAmt->uge(TyBits))
2370         break;  // Bad shift.
2371       unsigned ShAmtLimited = ShAmt->getZExtValue();
2372       Tmp += ShAmtLimited;
2373       if (Tmp > TyBits) Tmp = TyBits;
2374     }
2375     return Tmp;
2376   }
2377   case Instruction::Shl: {
2378     const APInt *ShAmt;
2379     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2380       // shl destroys sign bits.
2381       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2382       if (ShAmt->uge(TyBits) ||      // Bad shift.
2383           ShAmt->uge(Tmp)) break;    // Shifted all sign bits out.
2384       Tmp2 = ShAmt->getZExtValue();
2385       return Tmp - Tmp2;
2386     }
2387     break;
2388   }
2389   case Instruction::And:
2390   case Instruction::Or:
2391   case Instruction::Xor:    // NOT is handled here.
2392     // Logical binary ops preserve the number of sign bits at the worst.
2393     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2394     if (Tmp != 1) {
2395       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2396       FirstAnswer = std::min(Tmp, Tmp2);
2397       // We computed what we know about the sign bits as our first
2398       // answer. Now proceed to the generic code that uses
2399       // computeKnownBits, and pick whichever answer is better.
2400     }
2401     break;
2402 
2403   case Instruction::Select: {
2404     // If we have a clamp pattern, we know that the number of sign bits will be
2405     // the minimum of the clamp min/max range.
2406     const Value *X;
2407     const APInt *CLow, *CHigh;
2408     if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2409       return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2410 
2411     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2412     if (Tmp == 1) break;
2413     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2414     return std::min(Tmp, Tmp2);
2415   }
2416 
2417   case Instruction::Add:
2418     // Add can have at most one carry bit.  Thus we know that the output
2419     // is, at worst, one more bit than the inputs.
2420     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2421     if (Tmp == 1) break;
2422 
2423     // Special case decrementing a value (ADD X, -1):
2424     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2425       if (CRHS->isAllOnesValue()) {
2426         KnownBits Known(TyBits);
2427         computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2428 
2429         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2430         // sign bits set.
2431         if ((Known.Zero | 1).isAllOnesValue())
2432           return TyBits;
2433 
2434         // If we are subtracting one from a positive number, there is no carry
2435         // out of the result.
2436         if (Known.isNonNegative())
2437           return Tmp;
2438       }
2439 
2440     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2441     if (Tmp2 == 1) break;
2442     return std::min(Tmp, Tmp2)-1;
2443 
2444   case Instruction::Sub:
2445     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2446     if (Tmp2 == 1) break;
2447 
2448     // Handle NEG.
2449     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2450       if (CLHS->isNullValue()) {
2451         KnownBits Known(TyBits);
2452         computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2453         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2454         // sign bits set.
2455         if ((Known.Zero | 1).isAllOnesValue())
2456           return TyBits;
2457 
2458         // If the input is known to be positive (the sign bit is known clear),
2459         // the output of the NEG has the same number of sign bits as the input.
2460         if (Known.isNonNegative())
2461           return Tmp2;
2462 
2463         // Otherwise, we treat this like a SUB.
2464       }
2465 
2466     // Sub can have at most one carry bit.  Thus we know that the output
2467     // is, at worst, one more bit than the inputs.
2468     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2469     if (Tmp == 1) break;
2470     return std::min(Tmp, Tmp2)-1;
2471 
2472   case Instruction::Mul: {
2473     // The output of the Mul can be at most twice the valid bits in the inputs.
2474     unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2475     if (SignBitsOp0 == 1) break;
2476     unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2477     if (SignBitsOp1 == 1) break;
2478     unsigned OutValidBits =
2479         (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2480     return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2481   }
2482 
2483   case Instruction::PHI: {
2484     const PHINode *PN = cast<PHINode>(U);
2485     unsigned NumIncomingValues = PN->getNumIncomingValues();
2486     // Don't analyze large in-degree PHIs.
2487     if (NumIncomingValues > 4) break;
2488     // Unreachable blocks may have zero-operand PHI nodes.
2489     if (NumIncomingValues == 0) break;
2490 
2491     // Take the minimum of all incoming values.  This can't infinitely loop
2492     // because of our depth threshold.
2493     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2494     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2495       if (Tmp == 1) return Tmp;
2496       Tmp = std::min(
2497           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2498     }
2499     return Tmp;
2500   }
2501 
2502   case Instruction::Trunc:
2503     // FIXME: it's tricky to do anything useful for this, but it is an important
2504     // case for targets like X86.
2505     break;
2506 
2507   case Instruction::ExtractElement:
2508     // Look through extract element. At the moment we keep this simple and skip
2509     // tracking the specific element. But at least we might find information
2510     // valid for all elements of the vector (for example if vector is sign
2511     // extended, shifted, etc).
2512     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2513   }
2514 
2515   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2516   // use this information.
2517 
2518   // If we can examine all elements of a vector constant successfully, we're
2519   // done (we can't do any better than that). If not, keep trying.
2520   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2521     return VecSignBits;
2522 
2523   KnownBits Known(TyBits);
2524   computeKnownBits(V, Known, Depth, Q);
2525 
2526   // If we know that the sign bit is either zero or one, determine the number of
2527   // identical bits in the top of the input value.
2528   return std::max(FirstAnswer, Known.countMinSignBits());
2529 }
2530 
2531 /// This function computes the integer multiple of Base that equals V.
2532 /// If successful, it returns true and returns the multiple in
2533 /// Multiple. If unsuccessful, it returns false. It looks
2534 /// through SExt instructions only if LookThroughSExt is true.
2535 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2536                            bool LookThroughSExt, unsigned Depth) {
2537   const unsigned MaxDepth = 6;
2538 
2539   assert(V && "No Value?");
2540   assert(Depth <= MaxDepth && "Limit Search Depth");
2541   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2542 
2543   Type *T = V->getType();
2544 
2545   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2546 
2547   if (Base == 0)
2548     return false;
2549 
2550   if (Base == 1) {
2551     Multiple = V;
2552     return true;
2553   }
2554 
2555   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2556   Constant *BaseVal = ConstantInt::get(T, Base);
2557   if (CO && CO == BaseVal) {
2558     // Multiple is 1.
2559     Multiple = ConstantInt::get(T, 1);
2560     return true;
2561   }
2562 
2563   if (CI && CI->getZExtValue() % Base == 0) {
2564     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2565     return true;
2566   }
2567 
2568   if (Depth == MaxDepth) return false;  // Limit search depth.
2569 
2570   Operator *I = dyn_cast<Operator>(V);
2571   if (!I) return false;
2572 
2573   switch (I->getOpcode()) {
2574   default: break;
2575   case Instruction::SExt:
2576     if (!LookThroughSExt) return false;
2577     // otherwise fall through to ZExt
2578     LLVM_FALLTHROUGH;
2579   case Instruction::ZExt:
2580     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2581                            LookThroughSExt, Depth+1);
2582   case Instruction::Shl:
2583   case Instruction::Mul: {
2584     Value *Op0 = I->getOperand(0);
2585     Value *Op1 = I->getOperand(1);
2586 
2587     if (I->getOpcode() == Instruction::Shl) {
2588       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2589       if (!Op1CI) return false;
2590       // Turn Op0 << Op1 into Op0 * 2^Op1
2591       APInt Op1Int = Op1CI->getValue();
2592       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2593       APInt API(Op1Int.getBitWidth(), 0);
2594       API.setBit(BitToSet);
2595       Op1 = ConstantInt::get(V->getContext(), API);
2596     }
2597 
2598     Value *Mul0 = nullptr;
2599     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2600       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2601         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2602           if (Op1C->getType()->getPrimitiveSizeInBits() <
2603               MulC->getType()->getPrimitiveSizeInBits())
2604             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2605           if (Op1C->getType()->getPrimitiveSizeInBits() >
2606               MulC->getType()->getPrimitiveSizeInBits())
2607             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2608 
2609           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2610           Multiple = ConstantExpr::getMul(MulC, Op1C);
2611           return true;
2612         }
2613 
2614       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2615         if (Mul0CI->getValue() == 1) {
2616           // V == Base * Op1, so return Op1
2617           Multiple = Op1;
2618           return true;
2619         }
2620     }
2621 
2622     Value *Mul1 = nullptr;
2623     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2624       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2625         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2626           if (Op0C->getType()->getPrimitiveSizeInBits() <
2627               MulC->getType()->getPrimitiveSizeInBits())
2628             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2629           if (Op0C->getType()->getPrimitiveSizeInBits() >
2630               MulC->getType()->getPrimitiveSizeInBits())
2631             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2632 
2633           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2634           Multiple = ConstantExpr::getMul(MulC, Op0C);
2635           return true;
2636         }
2637 
2638       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2639         if (Mul1CI->getValue() == 1) {
2640           // V == Base * Op0, so return Op0
2641           Multiple = Op0;
2642           return true;
2643         }
2644     }
2645   }
2646   }
2647 
2648   // We could not determine if V is a multiple of Base.
2649   return false;
2650 }
2651 
2652 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2653                                             const TargetLibraryInfo *TLI) {
2654   const Function *F = ICS.getCalledFunction();
2655   if (!F)
2656     return Intrinsic::not_intrinsic;
2657 
2658   if (F->isIntrinsic())
2659     return F->getIntrinsicID();
2660 
2661   if (!TLI)
2662     return Intrinsic::not_intrinsic;
2663 
2664   LibFunc Func;
2665   // We're going to make assumptions on the semantics of the functions, check
2666   // that the target knows that it's available in this environment and it does
2667   // not have local linkage.
2668   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2669     return Intrinsic::not_intrinsic;
2670 
2671   if (!ICS.onlyReadsMemory())
2672     return Intrinsic::not_intrinsic;
2673 
2674   // Otherwise check if we have a call to a function that can be turned into a
2675   // vector intrinsic.
2676   switch (Func) {
2677   default:
2678     break;
2679   case LibFunc_sin:
2680   case LibFunc_sinf:
2681   case LibFunc_sinl:
2682     return Intrinsic::sin;
2683   case LibFunc_cos:
2684   case LibFunc_cosf:
2685   case LibFunc_cosl:
2686     return Intrinsic::cos;
2687   case LibFunc_exp:
2688   case LibFunc_expf:
2689   case LibFunc_expl:
2690     return Intrinsic::exp;
2691   case LibFunc_exp2:
2692   case LibFunc_exp2f:
2693   case LibFunc_exp2l:
2694     return Intrinsic::exp2;
2695   case LibFunc_log:
2696   case LibFunc_logf:
2697   case LibFunc_logl:
2698     return Intrinsic::log;
2699   case LibFunc_log10:
2700   case LibFunc_log10f:
2701   case LibFunc_log10l:
2702     return Intrinsic::log10;
2703   case LibFunc_log2:
2704   case LibFunc_log2f:
2705   case LibFunc_log2l:
2706     return Intrinsic::log2;
2707   case LibFunc_fabs:
2708   case LibFunc_fabsf:
2709   case LibFunc_fabsl:
2710     return Intrinsic::fabs;
2711   case LibFunc_fmin:
2712   case LibFunc_fminf:
2713   case LibFunc_fminl:
2714     return Intrinsic::minnum;
2715   case LibFunc_fmax:
2716   case LibFunc_fmaxf:
2717   case LibFunc_fmaxl:
2718     return Intrinsic::maxnum;
2719   case LibFunc_copysign:
2720   case LibFunc_copysignf:
2721   case LibFunc_copysignl:
2722     return Intrinsic::copysign;
2723   case LibFunc_floor:
2724   case LibFunc_floorf:
2725   case LibFunc_floorl:
2726     return Intrinsic::floor;
2727   case LibFunc_ceil:
2728   case LibFunc_ceilf:
2729   case LibFunc_ceill:
2730     return Intrinsic::ceil;
2731   case LibFunc_trunc:
2732   case LibFunc_truncf:
2733   case LibFunc_truncl:
2734     return Intrinsic::trunc;
2735   case LibFunc_rint:
2736   case LibFunc_rintf:
2737   case LibFunc_rintl:
2738     return Intrinsic::rint;
2739   case LibFunc_nearbyint:
2740   case LibFunc_nearbyintf:
2741   case LibFunc_nearbyintl:
2742     return Intrinsic::nearbyint;
2743   case LibFunc_round:
2744   case LibFunc_roundf:
2745   case LibFunc_roundl:
2746     return Intrinsic::round;
2747   case LibFunc_pow:
2748   case LibFunc_powf:
2749   case LibFunc_powl:
2750     return Intrinsic::pow;
2751   case LibFunc_sqrt:
2752   case LibFunc_sqrtf:
2753   case LibFunc_sqrtl:
2754     return Intrinsic::sqrt;
2755   }
2756 
2757   return Intrinsic::not_intrinsic;
2758 }
2759 
2760 /// Return true if we can prove that the specified FP value is never equal to
2761 /// -0.0.
2762 ///
2763 /// NOTE: this function will need to be revisited when we support non-default
2764 /// rounding modes!
2765 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2766                                 unsigned Depth) {
2767   if (auto *CFP = dyn_cast<ConstantFP>(V))
2768     return !CFP->getValueAPF().isNegZero();
2769 
2770   // Limit search depth.
2771   if (Depth == MaxDepth)
2772     return false;
2773 
2774   auto *Op = dyn_cast<Operator>(V);
2775   if (!Op)
2776     return false;
2777 
2778   // Check if the nsz fast-math flag is set.
2779   if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2780     if (FPO->hasNoSignedZeros())
2781       return true;
2782 
2783   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2784   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2785     return true;
2786 
2787   // sitofp and uitofp turn into +0.0 for zero.
2788   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2789     return true;
2790 
2791   if (auto *Call = dyn_cast<CallInst>(Op)) {
2792     Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2793     switch (IID) {
2794     default:
2795       break;
2796     // sqrt(-0.0) = -0.0, no other negative results are possible.
2797     case Intrinsic::sqrt:
2798     case Intrinsic::canonicalize:
2799       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2800     // fabs(x) != -0.0
2801     case Intrinsic::fabs:
2802       return true;
2803     }
2804   }
2805 
2806   return false;
2807 }
2808 
2809 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2810 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2811 /// bit despite comparing equal.
2812 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2813                                             const TargetLibraryInfo *TLI,
2814                                             bool SignBitOnly,
2815                                             unsigned Depth) {
2816   // TODO: This function does not do the right thing when SignBitOnly is true
2817   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2818   // which flips the sign bits of NaNs.  See
2819   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2820 
2821   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2822     return !CFP->getValueAPF().isNegative() ||
2823            (!SignBitOnly && CFP->getValueAPF().isZero());
2824   }
2825 
2826   // Handle vector of constants.
2827   if (auto *CV = dyn_cast<Constant>(V)) {
2828     if (CV->getType()->isVectorTy()) {
2829       unsigned NumElts = CV->getType()->getVectorNumElements();
2830       for (unsigned i = 0; i != NumElts; ++i) {
2831         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2832         if (!CFP)
2833           return false;
2834         if (CFP->getValueAPF().isNegative() &&
2835             (SignBitOnly || !CFP->getValueAPF().isZero()))
2836           return false;
2837       }
2838 
2839       // All non-negative ConstantFPs.
2840       return true;
2841     }
2842   }
2843 
2844   if (Depth == MaxDepth)
2845     return false; // Limit search depth.
2846 
2847   const Operator *I = dyn_cast<Operator>(V);
2848   if (!I)
2849     return false;
2850 
2851   switch (I->getOpcode()) {
2852   default:
2853     break;
2854   // Unsigned integers are always nonnegative.
2855   case Instruction::UIToFP:
2856     return true;
2857   case Instruction::FMul:
2858     // x*x is always non-negative or a NaN.
2859     if (I->getOperand(0) == I->getOperand(1) &&
2860         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2861       return true;
2862 
2863     LLVM_FALLTHROUGH;
2864   case Instruction::FAdd:
2865   case Instruction::FDiv:
2866   case Instruction::FRem:
2867     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2868                                            Depth + 1) &&
2869            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2870                                            Depth + 1);
2871   case Instruction::Select:
2872     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2873                                            Depth + 1) &&
2874            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2875                                            Depth + 1);
2876   case Instruction::FPExt:
2877   case Instruction::FPTrunc:
2878     // Widening/narrowing never change sign.
2879     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2880                                            Depth + 1);
2881   case Instruction::ExtractElement:
2882     // Look through extract element. At the moment we keep this simple and skip
2883     // tracking the specific element. But at least we might find information
2884     // valid for all elements of the vector.
2885     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2886                                            Depth + 1);
2887   case Instruction::Call:
2888     const auto *CI = cast<CallInst>(I);
2889     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2890     switch (IID) {
2891     default:
2892       break;
2893     case Intrinsic::maxnum:
2894       return (isKnownNeverNaN(I->getOperand(0), TLI) &&
2895               cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
2896                                               SignBitOnly, Depth + 1)) ||
2897             (isKnownNeverNaN(I->getOperand(1), TLI) &&
2898               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
2899                                               SignBitOnly, Depth + 1));
2900 
2901     case Intrinsic::minnum:
2902       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2903                                              Depth + 1) &&
2904              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2905                                              Depth + 1);
2906     case Intrinsic::exp:
2907     case Intrinsic::exp2:
2908     case Intrinsic::fabs:
2909       return true;
2910 
2911     case Intrinsic::sqrt:
2912       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
2913       if (!SignBitOnly)
2914         return true;
2915       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2916                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
2917 
2918     case Intrinsic::powi:
2919       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
2920         // powi(x,n) is non-negative if n is even.
2921         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
2922           return true;
2923       }
2924       // TODO: This is not correct.  Given that exp is an integer, here are the
2925       // ways that pow can return a negative value:
2926       //
2927       //   pow(x, exp)    --> negative if exp is odd and x is negative.
2928       //   pow(-0, exp)   --> -inf if exp is negative odd.
2929       //   pow(-0, exp)   --> -0 if exp is positive odd.
2930       //   pow(-inf, exp) --> -0 if exp is negative odd.
2931       //   pow(-inf, exp) --> -inf if exp is positive odd.
2932       //
2933       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2934       // but we must return false if x == -0.  Unfortunately we do not currently
2935       // have a way of expressing this constraint.  See details in
2936       // https://llvm.org/bugs/show_bug.cgi?id=31702.
2937       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2938                                              Depth + 1);
2939 
2940     case Intrinsic::fma:
2941     case Intrinsic::fmuladd:
2942       // x*x+y is non-negative if y is non-negative.
2943       return I->getOperand(0) == I->getOperand(1) &&
2944              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2945              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2946                                              Depth + 1);
2947     }
2948     break;
2949   }
2950   return false;
2951 }
2952 
2953 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2954                                        const TargetLibraryInfo *TLI) {
2955   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2956 }
2957 
2958 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2959   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2960 }
2961 
2962 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
2963                            unsigned Depth) {
2964   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2965 
2966   // If we're told that NaNs won't happen, assume they won't.
2967   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2968     if (FPMathOp->hasNoNaNs())
2969       return true;
2970 
2971   // Handle scalar constants.
2972   if (auto *CFP = dyn_cast<ConstantFP>(V))
2973     return !CFP->isNaN();
2974 
2975   if (Depth == MaxDepth)
2976     return false;
2977 
2978   if (auto *Inst = dyn_cast<Instruction>(V)) {
2979     switch (Inst->getOpcode()) {
2980     case Instruction::FAdd:
2981     case Instruction::FMul:
2982     case Instruction::FSub:
2983     case Instruction::FDiv:
2984     case Instruction::FRem: {
2985       // TODO: Need isKnownNeverInfinity
2986       return false;
2987     }
2988     case Instruction::Select: {
2989       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
2990              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
2991     }
2992     case Instruction::SIToFP:
2993     case Instruction::UIToFP:
2994       return true;
2995     case Instruction::FPTrunc:
2996     case Instruction::FPExt:
2997       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
2998     default:
2999       break;
3000     }
3001   }
3002 
3003   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3004     switch (II->getIntrinsicID()) {
3005     case Intrinsic::canonicalize:
3006     case Intrinsic::fabs:
3007     case Intrinsic::copysign:
3008     case Intrinsic::exp:
3009     case Intrinsic::exp2:
3010     case Intrinsic::floor:
3011     case Intrinsic::ceil:
3012     case Intrinsic::trunc:
3013     case Intrinsic::rint:
3014     case Intrinsic::nearbyint:
3015     case Intrinsic::round:
3016       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3017     case Intrinsic::sqrt:
3018       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3019              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3020     default:
3021       return false;
3022     }
3023   }
3024 
3025   // Bail out for constant expressions, but try to handle vector constants.
3026   if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3027     return false;
3028 
3029   // For vectors, verify that each element is not NaN.
3030   unsigned NumElts = V->getType()->getVectorNumElements();
3031   for (unsigned i = 0; i != NumElts; ++i) {
3032     Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3033     if (!Elt)
3034       return false;
3035     if (isa<UndefValue>(Elt))
3036       continue;
3037     auto *CElt = dyn_cast<ConstantFP>(Elt);
3038     if (!CElt || CElt->isNaN())
3039       return false;
3040   }
3041   // All elements were confirmed not-NaN or undefined.
3042   return true;
3043 }
3044 
3045 Value *llvm::isBytewiseValue(Value *V) {
3046 
3047   // All byte-wide stores are splatable, even of arbitrary variables.
3048   if (V->getType()->isIntegerTy(8))
3049     return V;
3050 
3051   LLVMContext &Ctx = V->getContext();
3052 
3053   // Undef don't care.
3054   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3055   if (isa<UndefValue>(V))
3056     return UndefInt8;
3057 
3058   Constant *C = dyn_cast<Constant>(V);
3059   if (!C) {
3060     // Conceptually, we could handle things like:
3061     //   %a = zext i8 %X to i16
3062     //   %b = shl i16 %a, 8
3063     //   %c = or i16 %a, %b
3064     // but until there is an example that actually needs this, it doesn't seem
3065     // worth worrying about.
3066     return nullptr;
3067   }
3068 
3069   // Handle 'null' ConstantArrayZero etc.
3070   if (C->isNullValue())
3071     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3072 
3073   // Constant floating-point values can be handled as integer values if the
3074   // corresponding integer value is "byteable".  An important case is 0.0.
3075   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3076     Type *Ty = nullptr;
3077     if (CFP->getType()->isHalfTy())
3078       Ty = Type::getInt16Ty(Ctx);
3079     else if (CFP->getType()->isFloatTy())
3080       Ty = Type::getInt32Ty(Ctx);
3081     else if (CFP->getType()->isDoubleTy())
3082       Ty = Type::getInt64Ty(Ctx);
3083     // Don't handle long double formats, which have strange constraints.
3084     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
3085   }
3086 
3087   // We can handle constant integers that are multiple of 8 bits.
3088   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3089     if (CI->getBitWidth() % 8 == 0) {
3090       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3091       if (!CI->getValue().isSplat(8))
3092         return nullptr;
3093       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3094     }
3095   }
3096 
3097   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3098     if (LHS == RHS)
3099       return LHS;
3100     if (!LHS || !RHS)
3101       return nullptr;
3102     if (LHS == UndefInt8)
3103       return RHS;
3104     if (RHS == UndefInt8)
3105       return LHS;
3106     return nullptr;
3107   };
3108 
3109   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3110     Value *Val = UndefInt8;
3111     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3112       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
3113         return nullptr;
3114     return Val;
3115   }
3116 
3117   if (isa<ConstantVector>(C)) {
3118     Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
3119     return Splat ? isBytewiseValue(Splat) : nullptr;
3120   }
3121 
3122   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
3123     Value *Val = UndefInt8;
3124     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3125       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
3126         return nullptr;
3127     return Val;
3128   }
3129 
3130   // Don't try to handle the handful of other constants.
3131   return nullptr;
3132 }
3133 
3134 // This is the recursive version of BuildSubAggregate. It takes a few different
3135 // arguments. Idxs is the index within the nested struct From that we are
3136 // looking at now (which is of type IndexedType). IdxSkip is the number of
3137 // indices from Idxs that should be left out when inserting into the resulting
3138 // struct. To is the result struct built so far, new insertvalue instructions
3139 // build on that.
3140 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3141                                 SmallVectorImpl<unsigned> &Idxs,
3142                                 unsigned IdxSkip,
3143                                 Instruction *InsertBefore) {
3144   StructType *STy = dyn_cast<StructType>(IndexedType);
3145   if (STy) {
3146     // Save the original To argument so we can modify it
3147     Value *OrigTo = To;
3148     // General case, the type indexed by Idxs is a struct
3149     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3150       // Process each struct element recursively
3151       Idxs.push_back(i);
3152       Value *PrevTo = To;
3153       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3154                              InsertBefore);
3155       Idxs.pop_back();
3156       if (!To) {
3157         // Couldn't find any inserted value for this index? Cleanup
3158         while (PrevTo != OrigTo) {
3159           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3160           PrevTo = Del->getAggregateOperand();
3161           Del->eraseFromParent();
3162         }
3163         // Stop processing elements
3164         break;
3165       }
3166     }
3167     // If we successfully found a value for each of our subaggregates
3168     if (To)
3169       return To;
3170   }
3171   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3172   // the struct's elements had a value that was inserted directly. In the latter
3173   // case, perhaps we can't determine each of the subelements individually, but
3174   // we might be able to find the complete struct somewhere.
3175 
3176   // Find the value that is at that particular spot
3177   Value *V = FindInsertedValue(From, Idxs);
3178 
3179   if (!V)
3180     return nullptr;
3181 
3182   // Insert the value in the new (sub) aggregate
3183   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3184                                  "tmp", InsertBefore);
3185 }
3186 
3187 // This helper takes a nested struct and extracts a part of it (which is again a
3188 // struct) into a new value. For example, given the struct:
3189 // { a, { b, { c, d }, e } }
3190 // and the indices "1, 1" this returns
3191 // { c, d }.
3192 //
3193 // It does this by inserting an insertvalue for each element in the resulting
3194 // struct, as opposed to just inserting a single struct. This will only work if
3195 // each of the elements of the substruct are known (ie, inserted into From by an
3196 // insertvalue instruction somewhere).
3197 //
3198 // All inserted insertvalue instructions are inserted before InsertBefore
3199 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3200                                 Instruction *InsertBefore) {
3201   assert(InsertBefore && "Must have someplace to insert!");
3202   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3203                                                              idx_range);
3204   Value *To = UndefValue::get(IndexedType);
3205   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3206   unsigned IdxSkip = Idxs.size();
3207 
3208   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3209 }
3210 
3211 /// Given an aggregate and a sequence of indices, see if the scalar value
3212 /// indexed is already around as a register, for example if it was inserted
3213 /// directly into the aggregate.
3214 ///
3215 /// If InsertBefore is not null, this function will duplicate (modified)
3216 /// insertvalues when a part of a nested struct is extracted.
3217 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3218                                Instruction *InsertBefore) {
3219   // Nothing to index? Just return V then (this is useful at the end of our
3220   // recursion).
3221   if (idx_range.empty())
3222     return V;
3223   // We have indices, so V should have an indexable type.
3224   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3225          "Not looking at a struct or array?");
3226   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3227          "Invalid indices for type?");
3228 
3229   if (Constant *C = dyn_cast<Constant>(V)) {
3230     C = C->getAggregateElement(idx_range[0]);
3231     if (!C) return nullptr;
3232     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3233   }
3234 
3235   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3236     // Loop the indices for the insertvalue instruction in parallel with the
3237     // requested indices
3238     const unsigned *req_idx = idx_range.begin();
3239     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3240          i != e; ++i, ++req_idx) {
3241       if (req_idx == idx_range.end()) {
3242         // We can't handle this without inserting insertvalues
3243         if (!InsertBefore)
3244           return nullptr;
3245 
3246         // The requested index identifies a part of a nested aggregate. Handle
3247         // this specially. For example,
3248         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3249         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3250         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3251         // This can be changed into
3252         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3253         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3254         // which allows the unused 0,0 element from the nested struct to be
3255         // removed.
3256         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3257                                  InsertBefore);
3258       }
3259 
3260       // This insert value inserts something else than what we are looking for.
3261       // See if the (aggregate) value inserted into has the value we are
3262       // looking for, then.
3263       if (*req_idx != *i)
3264         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3265                                  InsertBefore);
3266     }
3267     // If we end up here, the indices of the insertvalue match with those
3268     // requested (though possibly only partially). Now we recursively look at
3269     // the inserted value, passing any remaining indices.
3270     return FindInsertedValue(I->getInsertedValueOperand(),
3271                              makeArrayRef(req_idx, idx_range.end()),
3272                              InsertBefore);
3273   }
3274 
3275   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3276     // If we're extracting a value from an aggregate that was extracted from
3277     // something else, we can extract from that something else directly instead.
3278     // However, we will need to chain I's indices with the requested indices.
3279 
3280     // Calculate the number of indices required
3281     unsigned size = I->getNumIndices() + idx_range.size();
3282     // Allocate some space to put the new indices in
3283     SmallVector<unsigned, 5> Idxs;
3284     Idxs.reserve(size);
3285     // Add indices from the extract value instruction
3286     Idxs.append(I->idx_begin(), I->idx_end());
3287 
3288     // Add requested indices
3289     Idxs.append(idx_range.begin(), idx_range.end());
3290 
3291     assert(Idxs.size() == size
3292            && "Number of indices added not correct?");
3293 
3294     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3295   }
3296   // Otherwise, we don't know (such as, extracting from a function return value
3297   // or load instruction)
3298   return nullptr;
3299 }
3300 
3301 /// Analyze the specified pointer to see if it can be expressed as a base
3302 /// pointer plus a constant offset. Return the base and offset to the caller.
3303 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
3304                                               const DataLayout &DL) {
3305   unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
3306   APInt ByteOffset(BitWidth, 0);
3307 
3308   // We walk up the defs but use a visited set to handle unreachable code. In
3309   // that case, we stop after accumulating the cycle once (not that it
3310   // matters).
3311   SmallPtrSet<Value *, 16> Visited;
3312   while (Visited.insert(Ptr).second) {
3313     if (Ptr->getType()->isVectorTy())
3314       break;
3315 
3316     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
3317       // If one of the values we have visited is an addrspacecast, then
3318       // the pointer type of this GEP may be different from the type
3319       // of the Ptr parameter which was passed to this function.  This
3320       // means when we construct GEPOffset, we need to use the size
3321       // of GEP's pointer type rather than the size of the original
3322       // pointer type.
3323       APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
3324       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3325         break;
3326 
3327       ByteOffset += GEPOffset.getSExtValue();
3328 
3329       Ptr = GEP->getPointerOperand();
3330     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3331                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3332       Ptr = cast<Operator>(Ptr)->getOperand(0);
3333     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3334       if (GA->isInterposable())
3335         break;
3336       Ptr = GA->getAliasee();
3337     } else {
3338       break;
3339     }
3340   }
3341   Offset = ByteOffset.getSExtValue();
3342   return Ptr;
3343 }
3344 
3345 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3346                                        unsigned CharSize) {
3347   // Make sure the GEP has exactly three arguments.
3348   if (GEP->getNumOperands() != 3)
3349     return false;
3350 
3351   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3352   // CharSize.
3353   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3354   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3355     return false;
3356 
3357   // Check to make sure that the first operand of the GEP is an integer and
3358   // has value 0 so that we are sure we're indexing into the initializer.
3359   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3360   if (!FirstIdx || !FirstIdx->isZero())
3361     return false;
3362 
3363   return true;
3364 }
3365 
3366 bool llvm::getConstantDataArrayInfo(const Value *V,
3367                                     ConstantDataArraySlice &Slice,
3368                                     unsigned ElementSize, uint64_t Offset) {
3369   assert(V);
3370 
3371   // Look through bitcast instructions and geps.
3372   V = V->stripPointerCasts();
3373 
3374   // If the value is a GEP instruction or constant expression, treat it as an
3375   // offset.
3376   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3377     // The GEP operator should be based on a pointer to string constant, and is
3378     // indexing into the string constant.
3379     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3380       return false;
3381 
3382     // If the second index isn't a ConstantInt, then this is a variable index
3383     // into the array.  If this occurs, we can't say anything meaningful about
3384     // the string.
3385     uint64_t StartIdx = 0;
3386     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3387       StartIdx = CI->getZExtValue();
3388     else
3389       return false;
3390     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3391                                     StartIdx + Offset);
3392   }
3393 
3394   // The GEP instruction, constant or instruction, must reference a global
3395   // variable that is a constant and is initialized. The referenced constant
3396   // initializer is the array that we'll use for optimization.
3397   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3398   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3399     return false;
3400 
3401   const ConstantDataArray *Array;
3402   ArrayType *ArrayTy;
3403   if (GV->getInitializer()->isNullValue()) {
3404     Type *GVTy = GV->getValueType();
3405     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3406       // A zeroinitializer for the array; there is no ConstantDataArray.
3407       Array = nullptr;
3408     } else {
3409       const DataLayout &DL = GV->getParent()->getDataLayout();
3410       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3411       uint64_t Length = SizeInBytes / (ElementSize / 8);
3412       if (Length <= Offset)
3413         return false;
3414 
3415       Slice.Array = nullptr;
3416       Slice.Offset = 0;
3417       Slice.Length = Length - Offset;
3418       return true;
3419     }
3420   } else {
3421     // This must be a ConstantDataArray.
3422     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3423     if (!Array)
3424       return false;
3425     ArrayTy = Array->getType();
3426   }
3427   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3428     return false;
3429 
3430   uint64_t NumElts = ArrayTy->getArrayNumElements();
3431   if (Offset > NumElts)
3432     return false;
3433 
3434   Slice.Array = Array;
3435   Slice.Offset = Offset;
3436   Slice.Length = NumElts - Offset;
3437   return true;
3438 }
3439 
3440 /// This function computes the length of a null-terminated C string pointed to
3441 /// by V. If successful, it returns true and returns the string in Str.
3442 /// If unsuccessful, it returns false.
3443 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3444                                  uint64_t Offset, bool TrimAtNul) {
3445   ConstantDataArraySlice Slice;
3446   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3447     return false;
3448 
3449   if (Slice.Array == nullptr) {
3450     if (TrimAtNul) {
3451       Str = StringRef();
3452       return true;
3453     }
3454     if (Slice.Length == 1) {
3455       Str = StringRef("", 1);
3456       return true;
3457     }
3458     // We cannot instantiate a StringRef as we do not have an appropriate string
3459     // of 0s at hand.
3460     return false;
3461   }
3462 
3463   // Start out with the entire array in the StringRef.
3464   Str = Slice.Array->getAsString();
3465   // Skip over 'offset' bytes.
3466   Str = Str.substr(Slice.Offset);
3467 
3468   if (TrimAtNul) {
3469     // Trim off the \0 and anything after it.  If the array is not nul
3470     // terminated, we just return the whole end of string.  The client may know
3471     // some other way that the string is length-bound.
3472     Str = Str.substr(0, Str.find('\0'));
3473   }
3474   return true;
3475 }
3476 
3477 // These next two are very similar to the above, but also look through PHI
3478 // nodes.
3479 // TODO: See if we can integrate these two together.
3480 
3481 /// If we can compute the length of the string pointed to by
3482 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3483 static uint64_t GetStringLengthH(const Value *V,
3484                                  SmallPtrSetImpl<const PHINode*> &PHIs,
3485                                  unsigned CharSize) {
3486   // Look through noop bitcast instructions.
3487   V = V->stripPointerCasts();
3488 
3489   // If this is a PHI node, there are two cases: either we have already seen it
3490   // or we haven't.
3491   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3492     if (!PHIs.insert(PN).second)
3493       return ~0ULL;  // already in the set.
3494 
3495     // If it was new, see if all the input strings are the same length.
3496     uint64_t LenSoFar = ~0ULL;
3497     for (Value *IncValue : PN->incoming_values()) {
3498       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3499       if (Len == 0) return 0; // Unknown length -> unknown.
3500 
3501       if (Len == ~0ULL) continue;
3502 
3503       if (Len != LenSoFar && LenSoFar != ~0ULL)
3504         return 0;    // Disagree -> unknown.
3505       LenSoFar = Len;
3506     }
3507 
3508     // Success, all agree.
3509     return LenSoFar;
3510   }
3511 
3512   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3513   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3514     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3515     if (Len1 == 0) return 0;
3516     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3517     if (Len2 == 0) return 0;
3518     if (Len1 == ~0ULL) return Len2;
3519     if (Len2 == ~0ULL) return Len1;
3520     if (Len1 != Len2) return 0;
3521     return Len1;
3522   }
3523 
3524   // Otherwise, see if we can read the string.
3525   ConstantDataArraySlice Slice;
3526   if (!getConstantDataArrayInfo(V, Slice, CharSize))
3527     return 0;
3528 
3529   if (Slice.Array == nullptr)
3530     return 1;
3531 
3532   // Search for nul characters
3533   unsigned NullIndex = 0;
3534   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3535     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3536       break;
3537   }
3538 
3539   return NullIndex + 1;
3540 }
3541 
3542 /// If we can compute the length of the string pointed to by
3543 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3544 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3545   if (!V->getType()->isPointerTy())
3546     return 0;
3547 
3548   SmallPtrSet<const PHINode*, 32> PHIs;
3549   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3550   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3551   // an empty string as a length.
3552   return Len == ~0ULL ? 1 : Len;
3553 }
3554 
3555 const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) {
3556   assert(CS &&
3557          "getArgumentAliasingToReturnedPointer only works on nonnull CallSite");
3558   if (const Value *RV = CS.getReturnedArgOperand())
3559     return RV;
3560   // This can be used only as a aliasing property.
3561   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS))
3562     return CS.getArgOperand(0);
3563   return nullptr;
3564 }
3565 
3566 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3567     ImmutableCallSite CS) {
3568   return CS.getIntrinsicID() == Intrinsic::launder_invariant_group ||
3569          CS.getIntrinsicID() == Intrinsic::strip_invariant_group;
3570 }
3571 
3572 /// \p PN defines a loop-variant pointer to an object.  Check if the
3573 /// previous iteration of the loop was referring to the same object as \p PN.
3574 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3575                                          const LoopInfo *LI) {
3576   // Find the loop-defined value.
3577   Loop *L = LI->getLoopFor(PN->getParent());
3578   if (PN->getNumIncomingValues() != 2)
3579     return true;
3580 
3581   // Find the value from previous iteration.
3582   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3583   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3584     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3585   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3586     return true;
3587 
3588   // If a new pointer is loaded in the loop, the pointer references a different
3589   // object in every iteration.  E.g.:
3590   //    for (i)
3591   //       int *p = a[i];
3592   //       ...
3593   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3594     if (!L->isLoopInvariant(Load->getPointerOperand()))
3595       return false;
3596   return true;
3597 }
3598 
3599 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3600                                  unsigned MaxLookup) {
3601   if (!V->getType()->isPointerTy())
3602     return V;
3603   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3604     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3605       V = GEP->getPointerOperand();
3606     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3607                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3608       V = cast<Operator>(V)->getOperand(0);
3609     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3610       if (GA->isInterposable())
3611         return V;
3612       V = GA->getAliasee();
3613     } else if (isa<AllocaInst>(V)) {
3614       // An alloca can't be further simplified.
3615       return V;
3616     } else {
3617       if (auto CS = CallSite(V)) {
3618         // CaptureTracking can know about special capturing properties of some
3619         // intrinsics like launder.invariant.group, that can't be expressed with
3620         // the attributes, but have properties like returning aliasing pointer.
3621         // Because some analysis may assume that nocaptured pointer is not
3622         // returned from some special intrinsic (because function would have to
3623         // be marked with returns attribute), it is crucial to use this function
3624         // because it should be in sync with CaptureTracking. Not using it may
3625         // cause weird miscompilations where 2 aliasing pointers are assumed to
3626         // noalias.
3627         if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) {
3628           V = RP;
3629           continue;
3630         }
3631       }
3632 
3633       // See if InstructionSimplify knows any relevant tricks.
3634       if (Instruction *I = dyn_cast<Instruction>(V))
3635         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3636         if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3637           V = Simplified;
3638           continue;
3639         }
3640 
3641       return V;
3642     }
3643     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3644   }
3645   return V;
3646 }
3647 
3648 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3649                                 const DataLayout &DL, LoopInfo *LI,
3650                                 unsigned MaxLookup) {
3651   SmallPtrSet<Value *, 4> Visited;
3652   SmallVector<Value *, 4> Worklist;
3653   Worklist.push_back(V);
3654   do {
3655     Value *P = Worklist.pop_back_val();
3656     P = GetUnderlyingObject(P, DL, MaxLookup);
3657 
3658     if (!Visited.insert(P).second)
3659       continue;
3660 
3661     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3662       Worklist.push_back(SI->getTrueValue());
3663       Worklist.push_back(SI->getFalseValue());
3664       continue;
3665     }
3666 
3667     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3668       // If this PHI changes the underlying object in every iteration of the
3669       // loop, don't look through it.  Consider:
3670       //   int **A;
3671       //   for (i) {
3672       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3673       //     Curr = A[i];
3674       //     *Prev, *Curr;
3675       //
3676       // Prev is tracking Curr one iteration behind so they refer to different
3677       // underlying objects.
3678       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3679           isSameUnderlyingObjectInLoop(PN, LI))
3680         for (Value *IncValue : PN->incoming_values())
3681           Worklist.push_back(IncValue);
3682       continue;
3683     }
3684 
3685     Objects.push_back(P);
3686   } while (!Worklist.empty());
3687 }
3688 
3689 /// This is the function that does the work of looking through basic
3690 /// ptrtoint+arithmetic+inttoptr sequences.
3691 static const Value *getUnderlyingObjectFromInt(const Value *V) {
3692   do {
3693     if (const Operator *U = dyn_cast<Operator>(V)) {
3694       // If we find a ptrtoint, we can transfer control back to the
3695       // regular getUnderlyingObjectFromInt.
3696       if (U->getOpcode() == Instruction::PtrToInt)
3697         return U->getOperand(0);
3698       // If we find an add of a constant, a multiplied value, or a phi, it's
3699       // likely that the other operand will lead us to the base
3700       // object. We don't have to worry about the case where the
3701       // object address is somehow being computed by the multiply,
3702       // because our callers only care when the result is an
3703       // identifiable object.
3704       if (U->getOpcode() != Instruction::Add ||
3705           (!isa<ConstantInt>(U->getOperand(1)) &&
3706            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3707            !isa<PHINode>(U->getOperand(1))))
3708         return V;
3709       V = U->getOperand(0);
3710     } else {
3711       return V;
3712     }
3713     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3714   } while (true);
3715 }
3716 
3717 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3718 /// ptrtoint+arithmetic+inttoptr sequences.
3719 /// It returns false if unidentified object is found in GetUnderlyingObjects.
3720 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3721                           SmallVectorImpl<Value *> &Objects,
3722                           const DataLayout &DL) {
3723   SmallPtrSet<const Value *, 16> Visited;
3724   SmallVector<const Value *, 4> Working(1, V);
3725   do {
3726     V = Working.pop_back_val();
3727 
3728     SmallVector<Value *, 4> Objs;
3729     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3730 
3731     for (Value *V : Objs) {
3732       if (!Visited.insert(V).second)
3733         continue;
3734       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3735         const Value *O =
3736           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3737         if (O->getType()->isPointerTy()) {
3738           Working.push_back(O);
3739           continue;
3740         }
3741       }
3742       // If GetUnderlyingObjects fails to find an identifiable object,
3743       // getUnderlyingObjectsForCodeGen also fails for safety.
3744       if (!isIdentifiedObject(V)) {
3745         Objects.clear();
3746         return false;
3747       }
3748       Objects.push_back(const_cast<Value *>(V));
3749     }
3750   } while (!Working.empty());
3751   return true;
3752 }
3753 
3754 /// Return true if the only users of this pointer are lifetime markers.
3755 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3756   for (const User *U : V->users()) {
3757     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3758     if (!II) return false;
3759 
3760     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3761         II->getIntrinsicID() != Intrinsic::lifetime_end)
3762       return false;
3763   }
3764   return true;
3765 }
3766 
3767 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3768                                         const Instruction *CtxI,
3769                                         const DominatorTree *DT) {
3770   const Operator *Inst = dyn_cast<Operator>(V);
3771   if (!Inst)
3772     return false;
3773 
3774   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3775     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3776       if (C->canTrap())
3777         return false;
3778 
3779   switch (Inst->getOpcode()) {
3780   default:
3781     return true;
3782   case Instruction::UDiv:
3783   case Instruction::URem: {
3784     // x / y is undefined if y == 0.
3785     const APInt *V;
3786     if (match(Inst->getOperand(1), m_APInt(V)))
3787       return *V != 0;
3788     return false;
3789   }
3790   case Instruction::SDiv:
3791   case Instruction::SRem: {
3792     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3793     const APInt *Numerator, *Denominator;
3794     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3795       return false;
3796     // We cannot hoist this division if the denominator is 0.
3797     if (*Denominator == 0)
3798       return false;
3799     // It's safe to hoist if the denominator is not 0 or -1.
3800     if (*Denominator != -1)
3801       return true;
3802     // At this point we know that the denominator is -1.  It is safe to hoist as
3803     // long we know that the numerator is not INT_MIN.
3804     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3805       return !Numerator->isMinSignedValue();
3806     // The numerator *might* be MinSignedValue.
3807     return false;
3808   }
3809   case Instruction::Load: {
3810     const LoadInst *LI = cast<LoadInst>(Inst);
3811     if (!LI->isUnordered() ||
3812         // Speculative load may create a race that did not exist in the source.
3813         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3814         // Speculative load may load data from dirty regions.
3815         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3816         LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3817       return false;
3818     const DataLayout &DL = LI->getModule()->getDataLayout();
3819     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3820                                               LI->getAlignment(), DL, CtxI, DT);
3821   }
3822   case Instruction::Call: {
3823     auto *CI = cast<const CallInst>(Inst);
3824     const Function *Callee = CI->getCalledFunction();
3825 
3826     // The called function could have undefined behavior or side-effects, even
3827     // if marked readnone nounwind.
3828     return Callee && Callee->isSpeculatable();
3829   }
3830   case Instruction::VAArg:
3831   case Instruction::Alloca:
3832   case Instruction::Invoke:
3833   case Instruction::PHI:
3834   case Instruction::Store:
3835   case Instruction::Ret:
3836   case Instruction::Br:
3837   case Instruction::IndirectBr:
3838   case Instruction::Switch:
3839   case Instruction::Unreachable:
3840   case Instruction::Fence:
3841   case Instruction::AtomicRMW:
3842   case Instruction::AtomicCmpXchg:
3843   case Instruction::LandingPad:
3844   case Instruction::Resume:
3845   case Instruction::CatchSwitch:
3846   case Instruction::CatchPad:
3847   case Instruction::CatchRet:
3848   case Instruction::CleanupPad:
3849   case Instruction::CleanupRet:
3850     return false; // Misc instructions which have effects
3851   }
3852 }
3853 
3854 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3855   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3856 }
3857 
3858 OverflowResult llvm::computeOverflowForUnsignedMul(
3859     const Value *LHS, const Value *RHS, const DataLayout &DL,
3860     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3861     bool UseInstrInfo) {
3862   // Multiplying n * m significant bits yields a result of n + m significant
3863   // bits. If the total number of significant bits does not exceed the
3864   // result bit width (minus 1), there is no overflow.
3865   // This means if we have enough leading zero bits in the operands
3866   // we can guarantee that the result does not overflow.
3867   // Ref: "Hacker's Delight" by Henry Warren
3868   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3869   KnownBits LHSKnown(BitWidth);
3870   KnownBits RHSKnown(BitWidth);
3871   computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3872                    UseInstrInfo);
3873   computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3874                    UseInstrInfo);
3875   // Note that underestimating the number of zero bits gives a more
3876   // conservative answer.
3877   unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3878                       RHSKnown.countMinLeadingZeros();
3879   // First handle the easy case: if we have enough zero bits there's
3880   // definitely no overflow.
3881   if (ZeroBits >= BitWidth)
3882     return OverflowResult::NeverOverflows;
3883 
3884   // Get the largest possible values for each operand.
3885   APInt LHSMax = ~LHSKnown.Zero;
3886   APInt RHSMax = ~RHSKnown.Zero;
3887 
3888   // We know the multiply operation doesn't overflow if the maximum values for
3889   // each operand will not overflow after we multiply them together.
3890   bool MaxOverflow;
3891   (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
3892   if (!MaxOverflow)
3893     return OverflowResult::NeverOverflows;
3894 
3895   // We know it always overflows if multiplying the smallest possible values for
3896   // the operands also results in overflow.
3897   bool MinOverflow;
3898   (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
3899   if (MinOverflow)
3900     return OverflowResult::AlwaysOverflows;
3901 
3902   return OverflowResult::MayOverflow;
3903 }
3904 
3905 OverflowResult
3906 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
3907                                   const DataLayout &DL, AssumptionCache *AC,
3908                                   const Instruction *CxtI,
3909                                   const DominatorTree *DT, bool UseInstrInfo) {
3910   // Multiplying n * m significant bits yields a result of n + m significant
3911   // bits. If the total number of significant bits does not exceed the
3912   // result bit width (minus 1), there is no overflow.
3913   // This means if we have enough leading sign bits in the operands
3914   // we can guarantee that the result does not overflow.
3915   // Ref: "Hacker's Delight" by Henry Warren
3916   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3917 
3918   // Note that underestimating the number of sign bits gives a more
3919   // conservative answer.
3920   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
3921                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
3922 
3923   // First handle the easy case: if we have enough sign bits there's
3924   // definitely no overflow.
3925   if (SignBits > BitWidth + 1)
3926     return OverflowResult::NeverOverflows;
3927 
3928   // There are two ambiguous cases where there can be no overflow:
3929   //   SignBits == BitWidth + 1    and
3930   //   SignBits == BitWidth
3931   // The second case is difficult to check, therefore we only handle the
3932   // first case.
3933   if (SignBits == BitWidth + 1) {
3934     // It overflows only when both arguments are negative and the true
3935     // product is exactly the minimum negative number.
3936     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
3937     // For simplicity we just check if at least one side is not negative.
3938     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
3939                                           nullptr, UseInstrInfo);
3940     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
3941                                           nullptr, UseInstrInfo);
3942     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
3943       return OverflowResult::NeverOverflows;
3944   }
3945   return OverflowResult::MayOverflow;
3946 }
3947 
3948 OverflowResult llvm::computeOverflowForUnsignedAdd(
3949     const Value *LHS, const Value *RHS, const DataLayout &DL,
3950     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3951     bool UseInstrInfo) {
3952   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
3953                                         nullptr, UseInstrInfo);
3954   if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3955     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
3956                                           nullptr, UseInstrInfo);
3957 
3958     if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
3959       // The sign bit is set in both cases: this MUST overflow.
3960       // Create a simple add instruction, and insert it into the struct.
3961       return OverflowResult::AlwaysOverflows;
3962     }
3963 
3964     if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
3965       // The sign bit is clear in both cases: this CANNOT overflow.
3966       // Create a simple add instruction, and insert it into the struct.
3967       return OverflowResult::NeverOverflows;
3968     }
3969   }
3970 
3971   return OverflowResult::MayOverflow;
3972 }
3973 
3974 /// Return true if we can prove that adding the two values of the
3975 /// knownbits will not overflow.
3976 /// Otherwise return false.
3977 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3978                                     const KnownBits &RHSKnown) {
3979   // Addition of two 2's complement numbers having opposite signs will never
3980   // overflow.
3981   if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3982       (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3983     return true;
3984 
3985   // If either of the values is known to be non-negative, adding them can only
3986   // overflow if the second is also non-negative, so we can assume that.
3987   // Two non-negative numbers will only overflow if there is a carry to the
3988   // sign bit, so we can check if even when the values are as big as possible
3989   // there is no overflow to the sign bit.
3990   if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3991     APInt MaxLHS = ~LHSKnown.Zero;
3992     MaxLHS.clearSignBit();
3993     APInt MaxRHS = ~RHSKnown.Zero;
3994     MaxRHS.clearSignBit();
3995     APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3996     return Result.isSignBitClear();
3997   }
3998 
3999   // If either of the values is known to be negative, adding them can only
4000   // overflow if the second is also negative, so we can assume that.
4001   // Two negative number will only overflow if there is no carry to the sign
4002   // bit, so we can check if even when the values are as small as possible
4003   // there is overflow to the sign bit.
4004   if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
4005     APInt MinLHS = LHSKnown.One;
4006     MinLHS.clearSignBit();
4007     APInt MinRHS = RHSKnown.One;
4008     MinRHS.clearSignBit();
4009     APInt Result = std::move(MinLHS) + std::move(MinRHS);
4010     return Result.isSignBitSet();
4011   }
4012 
4013   // If we reached here it means that we know nothing about the sign bits.
4014   // In this case we can't know if there will be an overflow, since by
4015   // changing the sign bits any two values can be made to overflow.
4016   return false;
4017 }
4018 
4019 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4020                                                   const Value *RHS,
4021                                                   const AddOperator *Add,
4022                                                   const DataLayout &DL,
4023                                                   AssumptionCache *AC,
4024                                                   const Instruction *CxtI,
4025                                                   const DominatorTree *DT) {
4026   if (Add && Add->hasNoSignedWrap()) {
4027     return OverflowResult::NeverOverflows;
4028   }
4029 
4030   // If LHS and RHS each have at least two sign bits, the addition will look
4031   // like
4032   //
4033   // XX..... +
4034   // YY.....
4035   //
4036   // If the carry into the most significant position is 0, X and Y can't both
4037   // be 1 and therefore the carry out of the addition is also 0.
4038   //
4039   // If the carry into the most significant position is 1, X and Y can't both
4040   // be 0 and therefore the carry out of the addition is also 1.
4041   //
4042   // Since the carry into the most significant position is always equal to
4043   // the carry out of the addition, there is no signed overflow.
4044   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4045       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4046     return OverflowResult::NeverOverflows;
4047 
4048   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4049   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4050 
4051   if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
4052     return OverflowResult::NeverOverflows;
4053 
4054   // The remaining code needs Add to be available. Early returns if not so.
4055   if (!Add)
4056     return OverflowResult::MayOverflow;
4057 
4058   // If the sign of Add is the same as at least one of the operands, this add
4059   // CANNOT overflow. This is particularly useful when the sum is
4060   // @llvm.assume'ed non-negative rather than proved so from analyzing its
4061   // operands.
4062   bool LHSOrRHSKnownNonNegative =
4063       (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
4064   bool LHSOrRHSKnownNegative =
4065       (LHSKnown.isNegative() || RHSKnown.isNegative());
4066   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4067     KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
4068     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4069         (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
4070       return OverflowResult::NeverOverflows;
4071     }
4072   }
4073 
4074   return OverflowResult::MayOverflow;
4075 }
4076 
4077 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4078                                                    const Value *RHS,
4079                                                    const DataLayout &DL,
4080                                                    AssumptionCache *AC,
4081                                                    const Instruction *CxtI,
4082                                                    const DominatorTree *DT) {
4083   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
4084   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4085   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4086   if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
4087     return OverflowResult::NeverOverflows;
4088 
4089   return OverflowResult::MayOverflow;
4090 }
4091 
4092 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4093                                                  const Value *RHS,
4094                                                  const DataLayout &DL,
4095                                                  AssumptionCache *AC,
4096                                                  const Instruction *CxtI,
4097                                                  const DominatorTree *DT) {
4098   // If LHS and RHS each have at least two sign bits, the subtraction
4099   // cannot overflow.
4100   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4101       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4102     return OverflowResult::NeverOverflows;
4103 
4104   KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
4105 
4106   KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
4107 
4108   // Subtraction of two 2's complement numbers having identical signs will
4109   // never overflow.
4110   if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
4111       (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
4112     return OverflowResult::NeverOverflows;
4113 
4114   // TODO: implement logic similar to checkRippleForAdd
4115   return OverflowResult::MayOverflow;
4116 }
4117 
4118 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
4119                                      const DominatorTree &DT) {
4120 #ifndef NDEBUG
4121   auto IID = II->getIntrinsicID();
4122   assert((IID == Intrinsic::sadd_with_overflow ||
4123           IID == Intrinsic::uadd_with_overflow ||
4124           IID == Intrinsic::ssub_with_overflow ||
4125           IID == Intrinsic::usub_with_overflow ||
4126           IID == Intrinsic::smul_with_overflow ||
4127           IID == Intrinsic::umul_with_overflow) &&
4128          "Not an overflow intrinsic!");
4129 #endif
4130 
4131   SmallVector<const BranchInst *, 2> GuardingBranches;
4132   SmallVector<const ExtractValueInst *, 2> Results;
4133 
4134   for (const User *U : II->users()) {
4135     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4136       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4137 
4138       if (EVI->getIndices()[0] == 0)
4139         Results.push_back(EVI);
4140       else {
4141         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4142 
4143         for (const auto *U : EVI->users())
4144           if (const auto *B = dyn_cast<BranchInst>(U)) {
4145             assert(B->isConditional() && "How else is it using an i1?");
4146             GuardingBranches.push_back(B);
4147           }
4148       }
4149     } else {
4150       // We are using the aggregate directly in a way we don't want to analyze
4151       // here (storing it to a global, say).
4152       return false;
4153     }
4154   }
4155 
4156   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4157     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4158     if (!NoWrapEdge.isSingleEdge())
4159       return false;
4160 
4161     // Check if all users of the add are provably no-wrap.
4162     for (const auto *Result : Results) {
4163       // If the extractvalue itself is not executed on overflow, the we don't
4164       // need to check each use separately, since domination is transitive.
4165       if (DT.dominates(NoWrapEdge, Result->getParent()))
4166         continue;
4167 
4168       for (auto &RU : Result->uses())
4169         if (!DT.dominates(NoWrapEdge, RU))
4170           return false;
4171     }
4172 
4173     return true;
4174   };
4175 
4176   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4177 }
4178 
4179 
4180 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4181                                                  const DataLayout &DL,
4182                                                  AssumptionCache *AC,
4183                                                  const Instruction *CxtI,
4184                                                  const DominatorTree *DT) {
4185   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4186                                        Add, DL, AC, CxtI, DT);
4187 }
4188 
4189 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4190                                                  const Value *RHS,
4191                                                  const DataLayout &DL,
4192                                                  AssumptionCache *AC,
4193                                                  const Instruction *CxtI,
4194                                                  const DominatorTree *DT) {
4195   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4196 }
4197 
4198 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4199   // A memory operation returns normally if it isn't volatile. A volatile
4200   // operation is allowed to trap.
4201   //
4202   // An atomic operation isn't guaranteed to return in a reasonable amount of
4203   // time because it's possible for another thread to interfere with it for an
4204   // arbitrary length of time, but programs aren't allowed to rely on that.
4205   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4206     return !LI->isVolatile();
4207   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4208     return !SI->isVolatile();
4209   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4210     return !CXI->isVolatile();
4211   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4212     return !RMWI->isVolatile();
4213   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4214     return !MII->isVolatile();
4215 
4216   // If there is no successor, then execution can't transfer to it.
4217   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4218     return !CRI->unwindsToCaller();
4219   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4220     return !CatchSwitch->unwindsToCaller();
4221   if (isa<ResumeInst>(I))
4222     return false;
4223   if (isa<ReturnInst>(I))
4224     return false;
4225   if (isa<UnreachableInst>(I))
4226     return false;
4227 
4228   // Calls can throw, or contain an infinite loop, or kill the process.
4229   if (auto CS = ImmutableCallSite(I)) {
4230     // Call sites that throw have implicit non-local control flow.
4231     if (!CS.doesNotThrow())
4232       return false;
4233 
4234     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4235     // etc. and thus not return.  However, LLVM already assumes that
4236     //
4237     //  - Thread exiting actions are modeled as writes to memory invisible to
4238     //    the program.
4239     //
4240     //  - Loops that don't have side effects (side effects are volatile/atomic
4241     //    stores and IO) always terminate (see http://llvm.org/PR965).
4242     //    Furthermore IO itself is also modeled as writes to memory invisible to
4243     //    the program.
4244     //
4245     // We rely on those assumptions here, and use the memory effects of the call
4246     // target as a proxy for checking that it always returns.
4247 
4248     // FIXME: This isn't aggressive enough; a call which only writes to a global
4249     // is guaranteed to return.
4250     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
4251            match(I, m_Intrinsic<Intrinsic::assume>()) ||
4252            match(I, m_Intrinsic<Intrinsic::sideeffect>());
4253   }
4254 
4255   // Other instructions return normally.
4256   return true;
4257 }
4258 
4259 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4260   // TODO: This is slightly consdervative for invoke instruction since exiting
4261   // via an exception *is* normal control for them.
4262   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4263     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4264       return false;
4265   return true;
4266 }
4267 
4268 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4269                                                   const Loop *L) {
4270   // The loop header is guaranteed to be executed for every iteration.
4271   //
4272   // FIXME: Relax this constraint to cover all basic blocks that are
4273   // guaranteed to be executed at every iteration.
4274   if (I->getParent() != L->getHeader()) return false;
4275 
4276   for (const Instruction &LI : *L->getHeader()) {
4277     if (&LI == I) return true;
4278     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4279   }
4280   llvm_unreachable("Instruction not contained in its own parent basic block.");
4281 }
4282 
4283 bool llvm::propagatesFullPoison(const Instruction *I) {
4284   switch (I->getOpcode()) {
4285   case Instruction::Add:
4286   case Instruction::Sub:
4287   case Instruction::Xor:
4288   case Instruction::Trunc:
4289   case Instruction::BitCast:
4290   case Instruction::AddrSpaceCast:
4291   case Instruction::Mul:
4292   case Instruction::Shl:
4293   case Instruction::GetElementPtr:
4294     // These operations all propagate poison unconditionally. Note that poison
4295     // is not any particular value, so xor or subtraction of poison with
4296     // itself still yields poison, not zero.
4297     return true;
4298 
4299   case Instruction::AShr:
4300   case Instruction::SExt:
4301     // For these operations, one bit of the input is replicated across
4302     // multiple output bits. A replicated poison bit is still poison.
4303     return true;
4304 
4305   case Instruction::ICmp:
4306     // Comparing poison with any value yields poison.  This is why, for
4307     // instance, x s< (x +nsw 1) can be folded to true.
4308     return true;
4309 
4310   default:
4311     return false;
4312   }
4313 }
4314 
4315 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4316   switch (I->getOpcode()) {
4317     case Instruction::Store:
4318       return cast<StoreInst>(I)->getPointerOperand();
4319 
4320     case Instruction::Load:
4321       return cast<LoadInst>(I)->getPointerOperand();
4322 
4323     case Instruction::AtomicCmpXchg:
4324       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4325 
4326     case Instruction::AtomicRMW:
4327       return cast<AtomicRMWInst>(I)->getPointerOperand();
4328 
4329     case Instruction::UDiv:
4330     case Instruction::SDiv:
4331     case Instruction::URem:
4332     case Instruction::SRem:
4333       return I->getOperand(1);
4334 
4335     default:
4336       return nullptr;
4337   }
4338 }
4339 
4340 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4341   // We currently only look for uses of poison values within the same basic
4342   // block, as that makes it easier to guarantee that the uses will be
4343   // executed given that PoisonI is executed.
4344   //
4345   // FIXME: Expand this to consider uses beyond the same basic block. To do
4346   // this, look out for the distinction between post-dominance and strong
4347   // post-dominance.
4348   const BasicBlock *BB = PoisonI->getParent();
4349 
4350   // Set of instructions that we have proved will yield poison if PoisonI
4351   // does.
4352   SmallSet<const Value *, 16> YieldsPoison;
4353   SmallSet<const BasicBlock *, 4> Visited;
4354   YieldsPoison.insert(PoisonI);
4355   Visited.insert(PoisonI->getParent());
4356 
4357   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4358 
4359   unsigned Iter = 0;
4360   while (Iter++ < MaxDepth) {
4361     for (auto &I : make_range(Begin, End)) {
4362       if (&I != PoisonI) {
4363         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4364         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4365           return true;
4366         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4367           return false;
4368       }
4369 
4370       // Mark poison that propagates from I through uses of I.
4371       if (YieldsPoison.count(&I)) {
4372         for (const User *User : I.users()) {
4373           const Instruction *UserI = cast<Instruction>(User);
4374           if (propagatesFullPoison(UserI))
4375             YieldsPoison.insert(User);
4376         }
4377       }
4378     }
4379 
4380     if (auto *NextBB = BB->getSingleSuccessor()) {
4381       if (Visited.insert(NextBB).second) {
4382         BB = NextBB;
4383         Begin = BB->getFirstNonPHI()->getIterator();
4384         End = BB->end();
4385         continue;
4386       }
4387     }
4388 
4389     break;
4390   }
4391   return false;
4392 }
4393 
4394 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4395   if (FMF.noNaNs())
4396     return true;
4397 
4398   if (auto *C = dyn_cast<ConstantFP>(V))
4399     return !C->isNaN();
4400   return false;
4401 }
4402 
4403 static bool isKnownNonZero(const Value *V) {
4404   if (auto *C = dyn_cast<ConstantFP>(V))
4405     return !C->isZero();
4406   return false;
4407 }
4408 
4409 /// Match clamp pattern for float types without care about NaNs or signed zeros.
4410 /// Given non-min/max outer cmp/select from the clamp pattern this
4411 /// function recognizes if it can be substitued by a "canonical" min/max
4412 /// pattern.
4413 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4414                                                Value *CmpLHS, Value *CmpRHS,
4415                                                Value *TrueVal, Value *FalseVal,
4416                                                Value *&LHS, Value *&RHS) {
4417   // Try to match
4418   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4419   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4420   // and return description of the outer Max/Min.
4421 
4422   // First, check if select has inverse order:
4423   if (CmpRHS == FalseVal) {
4424     std::swap(TrueVal, FalseVal);
4425     Pred = CmpInst::getInversePredicate(Pred);
4426   }
4427 
4428   // Assume success now. If there's no match, callers should not use these anyway.
4429   LHS = TrueVal;
4430   RHS = FalseVal;
4431 
4432   const APFloat *FC1;
4433   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4434     return {SPF_UNKNOWN, SPNB_NA, false};
4435 
4436   const APFloat *FC2;
4437   switch (Pred) {
4438   case CmpInst::FCMP_OLT:
4439   case CmpInst::FCMP_OLE:
4440   case CmpInst::FCMP_ULT:
4441   case CmpInst::FCMP_ULE:
4442     if (match(FalseVal,
4443               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4444                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4445         FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4446       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4447     break;
4448   case CmpInst::FCMP_OGT:
4449   case CmpInst::FCMP_OGE:
4450   case CmpInst::FCMP_UGT:
4451   case CmpInst::FCMP_UGE:
4452     if (match(FalseVal,
4453               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4454                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4455         FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4456       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4457     break;
4458   default:
4459     break;
4460   }
4461 
4462   return {SPF_UNKNOWN, SPNB_NA, false};
4463 }
4464 
4465 /// Recognize variations of:
4466 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4467 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4468                                       Value *CmpLHS, Value *CmpRHS,
4469                                       Value *TrueVal, Value *FalseVal) {
4470   // Swap the select operands and predicate to match the patterns below.
4471   if (CmpRHS != TrueVal) {
4472     Pred = ICmpInst::getSwappedPredicate(Pred);
4473     std::swap(TrueVal, FalseVal);
4474   }
4475   const APInt *C1;
4476   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4477     const APInt *C2;
4478     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4479     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4480         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4481       return {SPF_SMAX, SPNB_NA, false};
4482 
4483     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4484     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4485         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4486       return {SPF_SMIN, SPNB_NA, false};
4487 
4488     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4489     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4490         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4491       return {SPF_UMAX, SPNB_NA, false};
4492 
4493     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4494     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4495         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4496       return {SPF_UMIN, SPNB_NA, false};
4497   }
4498   return {SPF_UNKNOWN, SPNB_NA, false};
4499 }
4500 
4501 /// Recognize variations of:
4502 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4503 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4504                                                Value *CmpLHS, Value *CmpRHS,
4505                                                Value *TVal, Value *FVal,
4506                                                unsigned Depth) {
4507   // TODO: Allow FP min/max with nnan/nsz.
4508   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4509 
4510   Value *A, *B;
4511   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4512   if (!SelectPatternResult::isMinOrMax(L.Flavor))
4513     return {SPF_UNKNOWN, SPNB_NA, false};
4514 
4515   Value *C, *D;
4516   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4517   if (L.Flavor != R.Flavor)
4518     return {SPF_UNKNOWN, SPNB_NA, false};
4519 
4520   // We have something like: x Pred y ? min(a, b) : min(c, d).
4521   // Try to match the compare to the min/max operations of the select operands.
4522   // First, make sure we have the right compare predicate.
4523   switch (L.Flavor) {
4524   case SPF_SMIN:
4525     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4526       Pred = ICmpInst::getSwappedPredicate(Pred);
4527       std::swap(CmpLHS, CmpRHS);
4528     }
4529     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4530       break;
4531     return {SPF_UNKNOWN, SPNB_NA, false};
4532   case SPF_SMAX:
4533     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4534       Pred = ICmpInst::getSwappedPredicate(Pred);
4535       std::swap(CmpLHS, CmpRHS);
4536     }
4537     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4538       break;
4539     return {SPF_UNKNOWN, SPNB_NA, false};
4540   case SPF_UMIN:
4541     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4542       Pred = ICmpInst::getSwappedPredicate(Pred);
4543       std::swap(CmpLHS, CmpRHS);
4544     }
4545     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4546       break;
4547     return {SPF_UNKNOWN, SPNB_NA, false};
4548   case SPF_UMAX:
4549     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4550       Pred = ICmpInst::getSwappedPredicate(Pred);
4551       std::swap(CmpLHS, CmpRHS);
4552     }
4553     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4554       break;
4555     return {SPF_UNKNOWN, SPNB_NA, false};
4556   default:
4557     return {SPF_UNKNOWN, SPNB_NA, false};
4558   }
4559 
4560   // If there is a common operand in the already matched min/max and the other
4561   // min/max operands match the compare operands (either directly or inverted),
4562   // then this is min/max of the same flavor.
4563 
4564   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4565   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4566   if (D == B) {
4567     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4568                                          match(A, m_Not(m_Specific(CmpRHS)))))
4569       return {L.Flavor, SPNB_NA, false};
4570   }
4571   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4572   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4573   if (C == B) {
4574     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4575                                          match(A, m_Not(m_Specific(CmpRHS)))))
4576       return {L.Flavor, SPNB_NA, false};
4577   }
4578   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4579   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4580   if (D == A) {
4581     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4582                                          match(B, m_Not(m_Specific(CmpRHS)))))
4583       return {L.Flavor, SPNB_NA, false};
4584   }
4585   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4586   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4587   if (C == A) {
4588     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4589                                          match(B, m_Not(m_Specific(CmpRHS)))))
4590       return {L.Flavor, SPNB_NA, false};
4591   }
4592 
4593   return {SPF_UNKNOWN, SPNB_NA, false};
4594 }
4595 
4596 /// Match non-obvious integer minimum and maximum sequences.
4597 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4598                                        Value *CmpLHS, Value *CmpRHS,
4599                                        Value *TrueVal, Value *FalseVal,
4600                                        Value *&LHS, Value *&RHS,
4601                                        unsigned Depth) {
4602   // Assume success. If there's no match, callers should not use these anyway.
4603   LHS = TrueVal;
4604   RHS = FalseVal;
4605 
4606   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4607   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4608     return SPR;
4609 
4610   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4611   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4612     return SPR;
4613 
4614   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4615     return {SPF_UNKNOWN, SPNB_NA, false};
4616 
4617   // Z = X -nsw Y
4618   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4619   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4620   if (match(TrueVal, m_Zero()) &&
4621       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4622     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4623 
4624   // Z = X -nsw Y
4625   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4626   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4627   if (match(FalseVal, m_Zero()) &&
4628       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4629     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4630 
4631   const APInt *C1;
4632   if (!match(CmpRHS, m_APInt(C1)))
4633     return {SPF_UNKNOWN, SPNB_NA, false};
4634 
4635   // An unsigned min/max can be written with a signed compare.
4636   const APInt *C2;
4637   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4638       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4639     // Is the sign bit set?
4640     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4641     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4642     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4643         C2->isMaxSignedValue())
4644       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4645 
4646     // Is the sign bit clear?
4647     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4648     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4649     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4650         C2->isMinSignedValue())
4651       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4652   }
4653 
4654   // Look through 'not' ops to find disguised signed min/max.
4655   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4656   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4657   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4658       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4659     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4660 
4661   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4662   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4663   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4664       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4665     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4666 
4667   return {SPF_UNKNOWN, SPNB_NA, false};
4668 }
4669 
4670 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4671   assert(X && Y && "Invalid operand");
4672 
4673   // X = sub (0, Y) || X = sub nsw (0, Y)
4674   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4675       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4676     return true;
4677 
4678   // Y = sub (0, X) || Y = sub nsw (0, X)
4679   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4680       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4681     return true;
4682 
4683   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4684   Value *A, *B;
4685   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4686                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4687          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4688                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4689 }
4690 
4691 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4692                                               FastMathFlags FMF,
4693                                               Value *CmpLHS, Value *CmpRHS,
4694                                               Value *TrueVal, Value *FalseVal,
4695                                               Value *&LHS, Value *&RHS,
4696                                               unsigned Depth) {
4697   LHS = CmpLHS;
4698   RHS = CmpRHS;
4699 
4700   // Signed zero may return inconsistent results between implementations.
4701   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4702   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4703   // Therefore, we behave conservatively and only proceed if at least one of the
4704   // operands is known to not be zero or if we don't care about signed zero.
4705   switch (Pred) {
4706   default: break;
4707   // FIXME: Include OGT/OLT/UGT/ULT.
4708   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4709   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4710     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4711         !isKnownNonZero(CmpRHS))
4712       return {SPF_UNKNOWN, SPNB_NA, false};
4713   }
4714 
4715   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4716   bool Ordered = false;
4717 
4718   // When given one NaN and one non-NaN input:
4719   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4720   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4721   //     ordered comparison fails), which could be NaN or non-NaN.
4722   // so here we discover exactly what NaN behavior is required/accepted.
4723   if (CmpInst::isFPPredicate(Pred)) {
4724     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4725     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4726 
4727     if (LHSSafe && RHSSafe) {
4728       // Both operands are known non-NaN.
4729       NaNBehavior = SPNB_RETURNS_ANY;
4730     } else if (CmpInst::isOrdered(Pred)) {
4731       // An ordered comparison will return false when given a NaN, so it
4732       // returns the RHS.
4733       Ordered = true;
4734       if (LHSSafe)
4735         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4736         NaNBehavior = SPNB_RETURNS_NAN;
4737       else if (RHSSafe)
4738         NaNBehavior = SPNB_RETURNS_OTHER;
4739       else
4740         // Completely unsafe.
4741         return {SPF_UNKNOWN, SPNB_NA, false};
4742     } else {
4743       Ordered = false;
4744       // An unordered comparison will return true when given a NaN, so it
4745       // returns the LHS.
4746       if (LHSSafe)
4747         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4748         NaNBehavior = SPNB_RETURNS_OTHER;
4749       else if (RHSSafe)
4750         NaNBehavior = SPNB_RETURNS_NAN;
4751       else
4752         // Completely unsafe.
4753         return {SPF_UNKNOWN, SPNB_NA, false};
4754     }
4755   }
4756 
4757   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4758     std::swap(CmpLHS, CmpRHS);
4759     Pred = CmpInst::getSwappedPredicate(Pred);
4760     if (NaNBehavior == SPNB_RETURNS_NAN)
4761       NaNBehavior = SPNB_RETURNS_OTHER;
4762     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4763       NaNBehavior = SPNB_RETURNS_NAN;
4764     Ordered = !Ordered;
4765   }
4766 
4767   // ([if]cmp X, Y) ? X : Y
4768   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4769     switch (Pred) {
4770     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4771     case ICmpInst::ICMP_UGT:
4772     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4773     case ICmpInst::ICMP_SGT:
4774     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4775     case ICmpInst::ICMP_ULT:
4776     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4777     case ICmpInst::ICMP_SLT:
4778     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4779     case FCmpInst::FCMP_UGT:
4780     case FCmpInst::FCMP_UGE:
4781     case FCmpInst::FCMP_OGT:
4782     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4783     case FCmpInst::FCMP_ULT:
4784     case FCmpInst::FCMP_ULE:
4785     case FCmpInst::FCMP_OLT:
4786     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4787     }
4788   }
4789 
4790   if (isKnownNegation(TrueVal, FalseVal)) {
4791     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4792     // match against either LHS or sext(LHS).
4793     auto MaybeSExtCmpLHS =
4794         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4795     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4796     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4797     if (match(TrueVal, MaybeSExtCmpLHS)) {
4798       // Set the return values. If the compare uses the negated value (-X >s 0),
4799       // swap the return values because the negated value is always 'RHS'.
4800       LHS = TrueVal;
4801       RHS = FalseVal;
4802       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4803         std::swap(LHS, RHS);
4804 
4805       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4806       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4807       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4808         return {SPF_ABS, SPNB_NA, false};
4809 
4810       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4811       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4812       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4813         return {SPF_NABS, SPNB_NA, false};
4814     }
4815     else if (match(FalseVal, MaybeSExtCmpLHS)) {
4816       // Set the return values. If the compare uses the negated value (-X >s 0),
4817       // swap the return values because the negated value is always 'RHS'.
4818       LHS = FalseVal;
4819       RHS = TrueVal;
4820       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4821         std::swap(LHS, RHS);
4822 
4823       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4824       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4825       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4826         return {SPF_NABS, SPNB_NA, false};
4827 
4828       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4829       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4830       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4831         return {SPF_ABS, SPNB_NA, false};
4832     }
4833   }
4834 
4835   if (CmpInst::isIntPredicate(Pred))
4836     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4837 
4838   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4839   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4840   // semantics than minNum. Be conservative in such case.
4841   if (NaNBehavior != SPNB_RETURNS_ANY ||
4842       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4843        !isKnownNonZero(CmpRHS)))
4844     return {SPF_UNKNOWN, SPNB_NA, false};
4845 
4846   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4847 }
4848 
4849 /// Helps to match a select pattern in case of a type mismatch.
4850 ///
4851 /// The function processes the case when type of true and false values of a
4852 /// select instruction differs from type of the cmp instruction operands because
4853 /// of a cast instruction. The function checks if it is legal to move the cast
4854 /// operation after "select". If yes, it returns the new second value of
4855 /// "select" (with the assumption that cast is moved):
4856 /// 1. As operand of cast instruction when both values of "select" are same cast
4857 /// instructions.
4858 /// 2. As restored constant (by applying reverse cast operation) when the first
4859 /// value of the "select" is a cast operation and the second value is a
4860 /// constant.
4861 /// NOTE: We return only the new second value because the first value could be
4862 /// accessed as operand of cast instruction.
4863 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4864                               Instruction::CastOps *CastOp) {
4865   auto *Cast1 = dyn_cast<CastInst>(V1);
4866   if (!Cast1)
4867     return nullptr;
4868 
4869   *CastOp = Cast1->getOpcode();
4870   Type *SrcTy = Cast1->getSrcTy();
4871   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4872     // If V1 and V2 are both the same cast from the same type, look through V1.
4873     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4874       return Cast2->getOperand(0);
4875     return nullptr;
4876   }
4877 
4878   auto *C = dyn_cast<Constant>(V2);
4879   if (!C)
4880     return nullptr;
4881 
4882   Constant *CastedTo = nullptr;
4883   switch (*CastOp) {
4884   case Instruction::ZExt:
4885     if (CmpI->isUnsigned())
4886       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4887     break;
4888   case Instruction::SExt:
4889     if (CmpI->isSigned())
4890       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4891     break;
4892   case Instruction::Trunc:
4893     Constant *CmpConst;
4894     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4895         CmpConst->getType() == SrcTy) {
4896       // Here we have the following case:
4897       //
4898       //   %cond = cmp iN %x, CmpConst
4899       //   %tr = trunc iN %x to iK
4900       //   %narrowsel = select i1 %cond, iK %t, iK C
4901       //
4902       // We can always move trunc after select operation:
4903       //
4904       //   %cond = cmp iN %x, CmpConst
4905       //   %widesel = select i1 %cond, iN %x, iN CmpConst
4906       //   %tr = trunc iN %widesel to iK
4907       //
4908       // Note that C could be extended in any way because we don't care about
4909       // upper bits after truncation. It can't be abs pattern, because it would
4910       // look like:
4911       //
4912       //   select i1 %cond, x, -x.
4913       //
4914       // So only min/max pattern could be matched. Such match requires widened C
4915       // == CmpConst. That is why set widened C = CmpConst, condition trunc
4916       // CmpConst == C is checked below.
4917       CastedTo = CmpConst;
4918     } else {
4919       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4920     }
4921     break;
4922   case Instruction::FPTrunc:
4923     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4924     break;
4925   case Instruction::FPExt:
4926     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4927     break;
4928   case Instruction::FPToUI:
4929     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4930     break;
4931   case Instruction::FPToSI:
4932     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4933     break;
4934   case Instruction::UIToFP:
4935     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4936     break;
4937   case Instruction::SIToFP:
4938     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4939     break;
4940   default:
4941     break;
4942   }
4943 
4944   if (!CastedTo)
4945     return nullptr;
4946 
4947   // Make sure the cast doesn't lose any information.
4948   Constant *CastedBack =
4949       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
4950   if (CastedBack != C)
4951     return nullptr;
4952 
4953   return CastedTo;
4954 }
4955 
4956 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
4957                                              Instruction::CastOps *CastOp,
4958                                              unsigned Depth) {
4959   if (Depth >= MaxDepth)
4960     return {SPF_UNKNOWN, SPNB_NA, false};
4961 
4962   SelectInst *SI = dyn_cast<SelectInst>(V);
4963   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4964 
4965   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4966   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4967 
4968   CmpInst::Predicate Pred = CmpI->getPredicate();
4969   Value *CmpLHS = CmpI->getOperand(0);
4970   Value *CmpRHS = CmpI->getOperand(1);
4971   Value *TrueVal = SI->getTrueValue();
4972   Value *FalseVal = SI->getFalseValue();
4973   FastMathFlags FMF;
4974   if (isa<FPMathOperator>(CmpI))
4975     FMF = CmpI->getFastMathFlags();
4976 
4977   // Bail out early.
4978   if (CmpI->isEquality())
4979     return {SPF_UNKNOWN, SPNB_NA, false};
4980 
4981   // Deal with type mismatches.
4982   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4983     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
4984       // If this is a potential fmin/fmax with a cast to integer, then ignore
4985       // -0.0 because there is no corresponding integer value.
4986       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4987         FMF.setNoSignedZeros();
4988       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4989                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4990                                   LHS, RHS, Depth);
4991     }
4992     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
4993       // If this is a potential fmin/fmax with a cast to integer, then ignore
4994       // -0.0 because there is no corresponding integer value.
4995       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4996         FMF.setNoSignedZeros();
4997       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4998                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4999                                   LHS, RHS, Depth);
5000     }
5001   }
5002   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5003                               LHS, RHS, Depth);
5004 }
5005 
5006 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5007   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5008   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5009   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5010   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5011   if (SPF == SPF_FMINNUM)
5012     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5013   if (SPF == SPF_FMAXNUM)
5014     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5015   llvm_unreachable("unhandled!");
5016 }
5017 
5018 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5019   if (SPF == SPF_SMIN) return SPF_SMAX;
5020   if (SPF == SPF_UMIN) return SPF_UMAX;
5021   if (SPF == SPF_SMAX) return SPF_SMIN;
5022   if (SPF == SPF_UMAX) return SPF_UMIN;
5023   llvm_unreachable("unhandled!");
5024 }
5025 
5026 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5027   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5028 }
5029 
5030 /// Return true if "icmp Pred LHS RHS" is always true.
5031 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5032                             const Value *RHS, const DataLayout &DL,
5033                             unsigned Depth) {
5034   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5035   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5036     return true;
5037 
5038   switch (Pred) {
5039   default:
5040     return false;
5041 
5042   case CmpInst::ICMP_SLE: {
5043     const APInt *C;
5044 
5045     // LHS s<= LHS +_{nsw} C   if C >= 0
5046     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5047       return !C->isNegative();
5048     return false;
5049   }
5050 
5051   case CmpInst::ICMP_ULE: {
5052     const APInt *C;
5053 
5054     // LHS u<= LHS +_{nuw} C   for any C
5055     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5056       return true;
5057 
5058     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5059     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5060                                        const Value *&X,
5061                                        const APInt *&CA, const APInt *&CB) {
5062       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5063           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5064         return true;
5065 
5066       // If X & C == 0 then (X | C) == X +_{nuw} C
5067       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5068           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5069         KnownBits Known(CA->getBitWidth());
5070         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5071                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5072         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5073           return true;
5074       }
5075 
5076       return false;
5077     };
5078 
5079     const Value *X;
5080     const APInt *CLHS, *CRHS;
5081     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5082       return CLHS->ule(*CRHS);
5083 
5084     return false;
5085   }
5086   }
5087 }
5088 
5089 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5090 /// ALHS ARHS" is true.  Otherwise, return None.
5091 static Optional<bool>
5092 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5093                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5094                       const DataLayout &DL, unsigned Depth) {
5095   switch (Pred) {
5096   default:
5097     return None;
5098 
5099   case CmpInst::ICMP_SLT:
5100   case CmpInst::ICMP_SLE:
5101     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5102         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5103       return true;
5104     return None;
5105 
5106   case CmpInst::ICMP_ULT:
5107   case CmpInst::ICMP_ULE:
5108     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5109         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5110       return true;
5111     return None;
5112   }
5113 }
5114 
5115 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5116 /// when the operands match, but are swapped.
5117 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5118                           const Value *BLHS, const Value *BRHS,
5119                           bool &IsSwappedOps) {
5120 
5121   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5122   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5123   return IsMatchingOps || IsSwappedOps;
5124 }
5125 
5126 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
5127 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
5128 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
5129 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5130                                                     const Value *ALHS,
5131                                                     const Value *ARHS,
5132                                                     CmpInst::Predicate BPred,
5133                                                     const Value *BLHS,
5134                                                     const Value *BRHS,
5135                                                     bool IsSwappedOps) {
5136   // Canonicalize the operands so they're matching.
5137   if (IsSwappedOps) {
5138     std::swap(BLHS, BRHS);
5139     BPred = ICmpInst::getSwappedPredicate(BPred);
5140   }
5141   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5142     return true;
5143   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5144     return false;
5145 
5146   return None;
5147 }
5148 
5149 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
5150 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
5151 /// C2" is false.  Otherwise, return None if we can't infer anything.
5152 static Optional<bool>
5153 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
5154                                  const ConstantInt *C1,
5155                                  CmpInst::Predicate BPred,
5156                                  const Value *BLHS, const ConstantInt *C2) {
5157   assert(ALHS == BLHS && "LHS operands must match.");
5158   ConstantRange DomCR =
5159       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5160   ConstantRange CR =
5161       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5162   ConstantRange Intersection = DomCR.intersectWith(CR);
5163   ConstantRange Difference = DomCR.difference(CR);
5164   if (Intersection.isEmptySet())
5165     return false;
5166   if (Difference.isEmptySet())
5167     return true;
5168   return None;
5169 }
5170 
5171 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5172 /// false.  Otherwise, return None if we can't infer anything.
5173 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5174                                          const ICmpInst *RHS,
5175                                          const DataLayout &DL, bool LHSIsTrue,
5176                                          unsigned Depth) {
5177   Value *ALHS = LHS->getOperand(0);
5178   Value *ARHS = LHS->getOperand(1);
5179   // The rest of the logic assumes the LHS condition is true.  If that's not the
5180   // case, invert the predicate to make it so.
5181   ICmpInst::Predicate APred =
5182       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5183 
5184   Value *BLHS = RHS->getOperand(0);
5185   Value *BRHS = RHS->getOperand(1);
5186   ICmpInst::Predicate BPred = RHS->getPredicate();
5187 
5188   // Can we infer anything when the two compares have matching operands?
5189   bool IsSwappedOps;
5190   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
5191     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5192             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
5193       return Implication;
5194     // No amount of additional analysis will infer the second condition, so
5195     // early exit.
5196     return None;
5197   }
5198 
5199   // Can we infer anything when the LHS operands match and the RHS operands are
5200   // constants (not necessarily matching)?
5201   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5202     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5203             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
5204             cast<ConstantInt>(BRHS)))
5205       return Implication;
5206     // No amount of additional analysis will infer the second condition, so
5207     // early exit.
5208     return None;
5209   }
5210 
5211   if (APred == BPred)
5212     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5213   return None;
5214 }
5215 
5216 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5217 /// false.  Otherwise, return None if we can't infer anything.  We expect the
5218 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5219 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5220                                          const ICmpInst *RHS,
5221                                          const DataLayout &DL, bool LHSIsTrue,
5222                                          unsigned Depth) {
5223   // The LHS must be an 'or' or an 'and' instruction.
5224   assert((LHS->getOpcode() == Instruction::And ||
5225           LHS->getOpcode() == Instruction::Or) &&
5226          "Expected LHS to be 'and' or 'or'.");
5227 
5228   assert(Depth <= MaxDepth && "Hit recursion limit");
5229 
5230   // If the result of an 'or' is false, then we know both legs of the 'or' are
5231   // false.  Similarly, if the result of an 'and' is true, then we know both
5232   // legs of the 'and' are true.
5233   Value *ALHS, *ARHS;
5234   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5235       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5236     // FIXME: Make this non-recursion.
5237     if (Optional<bool> Implication =
5238             isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5239       return Implication;
5240     if (Optional<bool> Implication =
5241             isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5242       return Implication;
5243     return None;
5244   }
5245   return None;
5246 }
5247 
5248 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5249                                         const DataLayout &DL, bool LHSIsTrue,
5250                                         unsigned Depth) {
5251   // Bail out when we hit the limit.
5252   if (Depth == MaxDepth)
5253     return None;
5254 
5255   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5256   // example.
5257   if (LHS->getType() != RHS->getType())
5258     return None;
5259 
5260   Type *OpTy = LHS->getType();
5261   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5262 
5263   // LHS ==> RHS by definition
5264   if (LHS == RHS)
5265     return LHSIsTrue;
5266 
5267   // FIXME: Extending the code below to handle vectors.
5268   if (OpTy->isVectorTy())
5269     return None;
5270 
5271   assert(OpTy->isIntegerTy(1) && "implied by above");
5272 
5273   // Both LHS and RHS are icmps.
5274   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5275   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5276   if (LHSCmp && RHSCmp)
5277     return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5278 
5279   // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
5280   // an icmp. FIXME: Add support for and/or on the RHS.
5281   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5282   if (LHSBO && RHSCmp) {
5283     if ((LHSBO->getOpcode() == Instruction::And ||
5284          LHSBO->getOpcode() == Instruction::Or))
5285       return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5286   }
5287   return None;
5288 }
5289