1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Support/MathExtras.h" 43 #include <algorithm> 44 #include <array> 45 #include <cstring> 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 const unsigned MaxDepth = 6; 50 51 // Controls the number of uses of the value searched for possible 52 // dominating comparisons. 53 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 54 cl::Hidden, cl::init(20)); 55 56 // This optimization is known to cause performance regressions is some cases, 57 // keep it under a temporary flag for now. 58 static cl::opt<bool> 59 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 60 cl::Hidden, cl::init(true)); 61 62 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 63 /// returns the element type's bitwidth. 64 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 65 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 66 return BitWidth; 67 68 return DL.getPointerTypeSizeInBits(Ty); 69 } 70 71 namespace { 72 // Simplifying using an assume can only be done in a particular control-flow 73 // context (the context instruction provides that context). If an assume and 74 // the context instruction are not in the same block then the DT helps in 75 // figuring out if we can use it. 76 struct Query { 77 const DataLayout &DL; 78 AssumptionCache *AC; 79 const Instruction *CxtI; 80 const DominatorTree *DT; 81 // Unlike the other analyses, this may be a nullptr because not all clients 82 // provide it currently. 83 OptimizationRemarkEmitter *ORE; 84 85 /// Set of assumptions that should be excluded from further queries. 86 /// This is because of the potential for mutual recursion to cause 87 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 88 /// classic case of this is assume(x = y), which will attempt to determine 89 /// bits in x from bits in y, which will attempt to determine bits in y from 90 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 91 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 92 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 93 /// on. 94 std::array<const Value *, MaxDepth> Excluded; 95 unsigned NumExcluded; 96 97 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 98 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 99 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 100 101 Query(const Query &Q, const Value *NewExcl) 102 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 103 NumExcluded(Q.NumExcluded) { 104 Excluded = Q.Excluded; 105 Excluded[NumExcluded++] = NewExcl; 106 assert(NumExcluded <= Excluded.size()); 107 } 108 109 bool isExcluded(const Value *Value) const { 110 if (NumExcluded == 0) 111 return false; 112 auto End = Excluded.begin() + NumExcluded; 113 return std::find(Excluded.begin(), End, Value) != End; 114 } 115 }; 116 } // end anonymous namespace 117 118 // Given the provided Value and, potentially, a context instruction, return 119 // the preferred context instruction (if any). 120 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 121 // If we've been provided with a context instruction, then use that (provided 122 // it has been inserted). 123 if (CxtI && CxtI->getParent()) 124 return CxtI; 125 126 // If the value is really an already-inserted instruction, then use that. 127 CxtI = dyn_cast<Instruction>(V); 128 if (CxtI && CxtI->getParent()) 129 return CxtI; 130 131 return nullptr; 132 } 133 134 static void computeKnownBits(const Value *V, KnownBits &Known, 135 unsigned Depth, const Query &Q); 136 137 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 138 const DataLayout &DL, unsigned Depth, 139 AssumptionCache *AC, const Instruction *CxtI, 140 const DominatorTree *DT, 141 OptimizationRemarkEmitter *ORE) { 142 ::computeKnownBits(V, Known, Depth, 143 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 144 } 145 146 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 147 const DataLayout &DL, 148 AssumptionCache *AC, const Instruction *CxtI, 149 const DominatorTree *DT) { 150 assert(LHS->getType() == RHS->getType() && 151 "LHS and RHS should have the same type"); 152 assert(LHS->getType()->isIntOrIntVectorTy() && 153 "LHS and RHS should be integers"); 154 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 155 KnownBits LHSKnown(IT->getBitWidth()); 156 KnownBits RHSKnown(IT->getBitWidth()); 157 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 158 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 159 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 160 } 161 162 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 163 unsigned Depth, const Query &Q); 164 165 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 166 const DataLayout &DL, unsigned Depth, 167 AssumptionCache *AC, const Instruction *CxtI, 168 const DominatorTree *DT) { 169 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 170 Query(DL, AC, safeCxtI(V, CxtI), DT)); 171 } 172 173 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 174 const Query &Q); 175 176 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 177 bool OrZero, 178 unsigned Depth, AssumptionCache *AC, 179 const Instruction *CxtI, 180 const DominatorTree *DT) { 181 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 182 Query(DL, AC, safeCxtI(V, CxtI), DT)); 183 } 184 185 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 186 187 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 188 AssumptionCache *AC, const Instruction *CxtI, 189 const DominatorTree *DT) { 190 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 191 } 192 193 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 194 unsigned Depth, 195 AssumptionCache *AC, const Instruction *CxtI, 196 const DominatorTree *DT) { 197 bool NonNegative, Negative; 198 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 199 return NonNegative; 200 } 201 202 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 203 AssumptionCache *AC, const Instruction *CxtI, 204 const DominatorTree *DT) { 205 if (auto *CI = dyn_cast<ConstantInt>(V)) 206 return CI->getValue().isStrictlyPositive(); 207 208 // TODO: We'd doing two recursive queries here. We should factor this such 209 // that only a single query is needed. 210 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 211 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 212 } 213 214 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 215 AssumptionCache *AC, const Instruction *CxtI, 216 const DominatorTree *DT) { 217 bool NonNegative, Negative; 218 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 219 return Negative; 220 } 221 222 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 223 224 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 225 const DataLayout &DL, 226 AssumptionCache *AC, const Instruction *CxtI, 227 const DominatorTree *DT) { 228 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 229 safeCxtI(V1, safeCxtI(V2, CxtI)), 230 DT)); 231 } 232 233 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 234 const Query &Q); 235 236 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 237 const DataLayout &DL, 238 unsigned Depth, AssumptionCache *AC, 239 const Instruction *CxtI, const DominatorTree *DT) { 240 return ::MaskedValueIsZero(V, Mask, Depth, 241 Query(DL, AC, safeCxtI(V, CxtI), DT)); 242 } 243 244 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 245 const Query &Q); 246 247 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 248 unsigned Depth, AssumptionCache *AC, 249 const Instruction *CxtI, 250 const DominatorTree *DT) { 251 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 252 } 253 254 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 255 bool NSW, 256 KnownBits &KnownOut, KnownBits &Known2, 257 unsigned Depth, const Query &Q) { 258 unsigned BitWidth = KnownOut.getBitWidth(); 259 260 // If an initial sequence of bits in the result is not needed, the 261 // corresponding bits in the operands are not needed. 262 KnownBits LHSKnown(BitWidth); 263 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 264 computeKnownBits(Op1, Known2, Depth + 1, Q); 265 266 // Carry in a 1 for a subtract, rather than a 0. 267 uint64_t CarryIn = 0; 268 if (!Add) { 269 // Sum = LHS + ~RHS + 1 270 std::swap(Known2.Zero, Known2.One); 271 CarryIn = 1; 272 } 273 274 APInt PossibleSumZero = ~LHSKnown.Zero + ~Known2.Zero + CarryIn; 275 APInt PossibleSumOne = LHSKnown.One + Known2.One + CarryIn; 276 277 // Compute known bits of the carry. 278 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnown.Zero ^ Known2.Zero); 279 APInt CarryKnownOne = PossibleSumOne ^ LHSKnown.One ^ Known2.One; 280 281 // Compute set of known bits (where all three relevant bits are known). 282 APInt LHSKnownUnion = LHSKnown.Zero | LHSKnown.One; 283 APInt RHSKnownUnion = Known2.Zero | Known2.One; 284 APInt CarryKnownUnion = CarryKnownZero | CarryKnownOne; 285 APInt Known = LHSKnownUnion & RHSKnownUnion & CarryKnownUnion; 286 287 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 288 "known bits of sum differ"); 289 290 // Compute known bits of the result. 291 KnownOut.Zero = ~PossibleSumOne & Known; 292 KnownOut.One = PossibleSumOne & Known; 293 294 // Are we still trying to solve for the sign bit? 295 if (!Known.isSignBitSet()) { 296 if (NSW) { 297 // Adding two non-negative numbers, or subtracting a negative number from 298 // a non-negative one, can't wrap into negative. 299 if (LHSKnown.isNonNegative() && Known2.isNonNegative()) 300 KnownOut.makeNonNegative(); 301 // Adding two negative numbers, or subtracting a non-negative number from 302 // a negative one, can't wrap into non-negative. 303 else if (LHSKnown.isNegative() && Known2.isNegative()) 304 KnownOut.makeNegative(); 305 } 306 } 307 } 308 309 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 310 KnownBits &Known, KnownBits &Known2, 311 unsigned Depth, const Query &Q) { 312 unsigned BitWidth = Known.getBitWidth(); 313 computeKnownBits(Op1, Known, Depth + 1, Q); 314 computeKnownBits(Op0, Known2, Depth + 1, Q); 315 316 bool isKnownNegative = false; 317 bool isKnownNonNegative = false; 318 // If the multiplication is known not to overflow, compute the sign bit. 319 if (NSW) { 320 if (Op0 == Op1) { 321 // The product of a number with itself is non-negative. 322 isKnownNonNegative = true; 323 } else { 324 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 325 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 326 bool isKnownNegativeOp1 = Known.isNegative(); 327 bool isKnownNegativeOp0 = Known2.isNegative(); 328 // The product of two numbers with the same sign is non-negative. 329 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 330 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 331 // The product of a negative number and a non-negative number is either 332 // negative or zero. 333 if (!isKnownNonNegative) 334 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 335 isKnownNonZero(Op0, Depth, Q)) || 336 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 337 isKnownNonZero(Op1, Depth, Q)); 338 } 339 } 340 341 // If low bits are zero in either operand, output low known-0 bits. 342 // Also compute a conservative estimate for high known-0 bits. 343 // More trickiness is possible, but this is sufficient for the 344 // interesting case of alignment computation. 345 Known.One.clearAllBits(); 346 unsigned TrailZ = Known.Zero.countTrailingOnes() + 347 Known2.Zero.countTrailingOnes(); 348 unsigned LeadZ = std::max(Known.Zero.countLeadingOnes() + 349 Known2.Zero.countLeadingOnes(), 350 BitWidth) - BitWidth; 351 352 TrailZ = std::min(TrailZ, BitWidth); 353 LeadZ = std::min(LeadZ, BitWidth); 354 Known.Zero.clearAllBits(); 355 Known.Zero.setLowBits(TrailZ); 356 Known.Zero.setHighBits(LeadZ); 357 358 // Only make use of no-wrap flags if we failed to compute the sign bit 359 // directly. This matters if the multiplication always overflows, in 360 // which case we prefer to follow the result of the direct computation, 361 // though as the program is invoking undefined behaviour we can choose 362 // whatever we like here. 363 if (isKnownNonNegative && !Known.isNegative()) 364 Known.makeNonNegative(); 365 else if (isKnownNegative && !Known.isNonNegative()) 366 Known.makeNegative(); 367 } 368 369 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 370 KnownBits &Known) { 371 unsigned BitWidth = Known.getBitWidth(); 372 unsigned NumRanges = Ranges.getNumOperands() / 2; 373 assert(NumRanges >= 1); 374 375 Known.Zero.setAllBits(); 376 Known.One.setAllBits(); 377 378 for (unsigned i = 0; i < NumRanges; ++i) { 379 ConstantInt *Lower = 380 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 381 ConstantInt *Upper = 382 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 383 ConstantRange Range(Lower->getValue(), Upper->getValue()); 384 385 // The first CommonPrefixBits of all values in Range are equal. 386 unsigned CommonPrefixBits = 387 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 388 389 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 390 Known.One &= Range.getUnsignedMax() & Mask; 391 Known.Zero &= ~Range.getUnsignedMax() & Mask; 392 } 393 } 394 395 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 396 SmallVector<const Value *, 16> WorkSet(1, I); 397 SmallPtrSet<const Value *, 32> Visited; 398 SmallPtrSet<const Value *, 16> EphValues; 399 400 // The instruction defining an assumption's condition itself is always 401 // considered ephemeral to that assumption (even if it has other 402 // non-ephemeral users). See r246696's test case for an example. 403 if (is_contained(I->operands(), E)) 404 return true; 405 406 while (!WorkSet.empty()) { 407 const Value *V = WorkSet.pop_back_val(); 408 if (!Visited.insert(V).second) 409 continue; 410 411 // If all uses of this value are ephemeral, then so is this value. 412 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 413 if (V == E) 414 return true; 415 416 EphValues.insert(V); 417 if (const User *U = dyn_cast<User>(V)) 418 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 419 J != JE; ++J) { 420 if (isSafeToSpeculativelyExecute(*J)) 421 WorkSet.push_back(*J); 422 } 423 } 424 } 425 426 return false; 427 } 428 429 // Is this an intrinsic that cannot be speculated but also cannot trap? 430 static bool isAssumeLikeIntrinsic(const Instruction *I) { 431 if (const CallInst *CI = dyn_cast<CallInst>(I)) 432 if (Function *F = CI->getCalledFunction()) 433 switch (F->getIntrinsicID()) { 434 default: break; 435 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 436 case Intrinsic::assume: 437 case Intrinsic::dbg_declare: 438 case Intrinsic::dbg_value: 439 case Intrinsic::invariant_start: 440 case Intrinsic::invariant_end: 441 case Intrinsic::lifetime_start: 442 case Intrinsic::lifetime_end: 443 case Intrinsic::objectsize: 444 case Intrinsic::ptr_annotation: 445 case Intrinsic::var_annotation: 446 return true; 447 } 448 449 return false; 450 } 451 452 bool llvm::isValidAssumeForContext(const Instruction *Inv, 453 const Instruction *CxtI, 454 const DominatorTree *DT) { 455 456 // There are two restrictions on the use of an assume: 457 // 1. The assume must dominate the context (or the control flow must 458 // reach the assume whenever it reaches the context). 459 // 2. The context must not be in the assume's set of ephemeral values 460 // (otherwise we will use the assume to prove that the condition 461 // feeding the assume is trivially true, thus causing the removal of 462 // the assume). 463 464 if (DT) { 465 if (DT->dominates(Inv, CxtI)) 466 return true; 467 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 468 // We don't have a DT, but this trivially dominates. 469 return true; 470 } 471 472 // With or without a DT, the only remaining case we will check is if the 473 // instructions are in the same BB. Give up if that is not the case. 474 if (Inv->getParent() != CxtI->getParent()) 475 return false; 476 477 // If we have a dom tree, then we now know that the assume doens't dominate 478 // the other instruction. If we don't have a dom tree then we can check if 479 // the assume is first in the BB. 480 if (!DT) { 481 // Search forward from the assume until we reach the context (or the end 482 // of the block); the common case is that the assume will come first. 483 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 484 IE = Inv->getParent()->end(); I != IE; ++I) 485 if (&*I == CxtI) 486 return true; 487 } 488 489 // The context comes first, but they're both in the same block. Make sure 490 // there is nothing in between that might interrupt the control flow. 491 for (BasicBlock::const_iterator I = 492 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 493 I != IE; ++I) 494 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 495 return false; 496 497 return !isEphemeralValueOf(Inv, CxtI); 498 } 499 500 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 501 unsigned Depth, const Query &Q) { 502 // Use of assumptions is context-sensitive. If we don't have a context, we 503 // cannot use them! 504 if (!Q.AC || !Q.CxtI) 505 return; 506 507 unsigned BitWidth = Known.getBitWidth(); 508 509 // Note that the patterns below need to be kept in sync with the code 510 // in AssumptionCache::updateAffectedValues. 511 512 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 513 if (!AssumeVH) 514 continue; 515 CallInst *I = cast<CallInst>(AssumeVH); 516 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 517 "Got assumption for the wrong function!"); 518 if (Q.isExcluded(I)) 519 continue; 520 521 // Warning: This loop can end up being somewhat performance sensetive. 522 // We're running this loop for once for each value queried resulting in a 523 // runtime of ~O(#assumes * #values). 524 525 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 526 "must be an assume intrinsic"); 527 528 Value *Arg = I->getArgOperand(0); 529 530 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 531 assert(BitWidth == 1 && "assume operand is not i1?"); 532 Known.Zero.clearAllBits(); 533 Known.One.setAllBits(); 534 return; 535 } 536 if (match(Arg, m_Not(m_Specific(V))) && 537 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 538 assert(BitWidth == 1 && "assume operand is not i1?"); 539 Known.Zero.setAllBits(); 540 Known.One.clearAllBits(); 541 return; 542 } 543 544 // The remaining tests are all recursive, so bail out if we hit the limit. 545 if (Depth == MaxDepth) 546 continue; 547 548 Value *A, *B; 549 auto m_V = m_CombineOr(m_Specific(V), 550 m_CombineOr(m_PtrToInt(m_Specific(V)), 551 m_BitCast(m_Specific(V)))); 552 553 CmpInst::Predicate Pred; 554 ConstantInt *C; 555 // assume(v = a) 556 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 557 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 558 KnownBits RHSKnown(BitWidth); 559 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 560 Known.Zero |= RHSKnown.Zero; 561 Known.One |= RHSKnown.One; 562 // assume(v & b = a) 563 } else if (match(Arg, 564 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 565 Pred == ICmpInst::ICMP_EQ && 566 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 567 KnownBits RHSKnown(BitWidth); 568 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 569 KnownBits MaskKnown(BitWidth); 570 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 571 572 // For those bits in the mask that are known to be one, we can propagate 573 // known bits from the RHS to V. 574 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 575 Known.One |= RHSKnown.One & MaskKnown.One; 576 // assume(~(v & b) = a) 577 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 578 m_Value(A))) && 579 Pred == ICmpInst::ICMP_EQ && 580 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 581 KnownBits RHSKnown(BitWidth); 582 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 583 KnownBits MaskKnown(BitWidth); 584 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 585 586 // For those bits in the mask that are known to be one, we can propagate 587 // inverted known bits from the RHS to V. 588 Known.Zero |= RHSKnown.One & MaskKnown.One; 589 Known.One |= RHSKnown.Zero & MaskKnown.One; 590 // assume(v | b = a) 591 } else if (match(Arg, 592 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 593 Pred == ICmpInst::ICMP_EQ && 594 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 595 KnownBits RHSKnown(BitWidth); 596 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 597 KnownBits BKnown(BitWidth); 598 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 599 600 // For those bits in B that are known to be zero, we can propagate known 601 // bits from the RHS to V. 602 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 603 Known.One |= RHSKnown.One & BKnown.Zero; 604 // assume(~(v | b) = a) 605 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 606 m_Value(A))) && 607 Pred == ICmpInst::ICMP_EQ && 608 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 609 KnownBits RHSKnown(BitWidth); 610 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 611 KnownBits BKnown(BitWidth); 612 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 613 614 // For those bits in B that are known to be zero, we can propagate 615 // inverted known bits from the RHS to V. 616 Known.Zero |= RHSKnown.One & BKnown.Zero; 617 Known.One |= RHSKnown.Zero & BKnown.Zero; 618 // assume(v ^ b = a) 619 } else if (match(Arg, 620 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 621 Pred == ICmpInst::ICMP_EQ && 622 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 623 KnownBits RHSKnown(BitWidth); 624 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 625 KnownBits BKnown(BitWidth); 626 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 627 628 // For those bits in B that are known to be zero, we can propagate known 629 // bits from the RHS to V. For those bits in B that are known to be one, 630 // we can propagate inverted known bits from the RHS to V. 631 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 632 Known.One |= RHSKnown.One & BKnown.Zero; 633 Known.Zero |= RHSKnown.One & BKnown.One; 634 Known.One |= RHSKnown.Zero & BKnown.One; 635 // assume(~(v ^ b) = a) 636 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 637 m_Value(A))) && 638 Pred == ICmpInst::ICMP_EQ && 639 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 640 KnownBits RHSKnown(BitWidth); 641 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 642 KnownBits BKnown(BitWidth); 643 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 644 645 // For those bits in B that are known to be zero, we can propagate 646 // inverted known bits from the RHS to V. For those bits in B that are 647 // known to be one, we can propagate known bits from the RHS to V. 648 Known.Zero |= RHSKnown.One & BKnown.Zero; 649 Known.One |= RHSKnown.Zero & BKnown.Zero; 650 Known.Zero |= RHSKnown.Zero & BKnown.One; 651 Known.One |= RHSKnown.One & BKnown.One; 652 // assume(v << c = a) 653 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 654 m_Value(A))) && 655 Pred == ICmpInst::ICMP_EQ && 656 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 657 KnownBits RHSKnown(BitWidth); 658 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 659 // For those bits in RHS that are known, we can propagate them to known 660 // bits in V shifted to the right by C. 661 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 662 Known.Zero |= RHSKnown.Zero; 663 RHSKnown.One.lshrInPlace(C->getZExtValue()); 664 Known.One |= RHSKnown.One; 665 // assume(~(v << c) = a) 666 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 667 m_Value(A))) && 668 Pred == ICmpInst::ICMP_EQ && 669 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 670 KnownBits RHSKnown(BitWidth); 671 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 672 // For those bits in RHS that are known, we can propagate them inverted 673 // to known bits in V shifted to the right by C. 674 RHSKnown.One.lshrInPlace(C->getZExtValue()); 675 Known.Zero |= RHSKnown.One; 676 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 677 Known.One |= RHSKnown.Zero; 678 // assume(v >> c = a) 679 } else if (match(Arg, 680 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 681 m_AShr(m_V, m_ConstantInt(C))), 682 m_Value(A))) && 683 Pred == ICmpInst::ICMP_EQ && 684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 685 KnownBits RHSKnown(BitWidth); 686 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 687 // For those bits in RHS that are known, we can propagate them to known 688 // bits in V shifted to the right by C. 689 Known.Zero |= RHSKnown.Zero << C->getZExtValue(); 690 Known.One |= RHSKnown.One << C->getZExtValue(); 691 // assume(~(v >> c) = a) 692 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 693 m_LShr(m_V, m_ConstantInt(C)), 694 m_AShr(m_V, m_ConstantInt(C)))), 695 m_Value(A))) && 696 Pred == ICmpInst::ICMP_EQ && 697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 698 KnownBits RHSKnown(BitWidth); 699 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 700 // For those bits in RHS that are known, we can propagate them inverted 701 // to known bits in V shifted to the right by C. 702 Known.Zero |= RHSKnown.One << C->getZExtValue(); 703 Known.One |= RHSKnown.Zero << C->getZExtValue(); 704 // assume(v >=_s c) where c is non-negative 705 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 706 Pred == ICmpInst::ICMP_SGE && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 KnownBits RHSKnown(BitWidth); 709 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 710 711 if (RHSKnown.isNonNegative()) { 712 // We know that the sign bit is zero. 713 Known.makeNonNegative(); 714 } 715 // assume(v >_s c) where c is at least -1. 716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 717 Pred == ICmpInst::ICMP_SGT && 718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 719 KnownBits RHSKnown(BitWidth); 720 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 721 722 if (RHSKnown.One.isAllOnesValue() || RHSKnown.isNonNegative()) { 723 // We know that the sign bit is zero. 724 Known.makeNonNegative(); 725 } 726 // assume(v <=_s c) where c is negative 727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 728 Pred == ICmpInst::ICMP_SLE && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 KnownBits RHSKnown(BitWidth); 731 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 732 733 if (RHSKnown.isNegative()) { 734 // We know that the sign bit is one. 735 Known.makeNegative(); 736 } 737 // assume(v <_s c) where c is non-positive 738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 739 Pred == ICmpInst::ICMP_SLT && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 KnownBits RHSKnown(BitWidth); 742 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 743 744 if (RHSKnown.Zero.isAllOnesValue() || RHSKnown.isNegative()) { 745 // We know that the sign bit is one. 746 Known.makeNegative(); 747 } 748 // assume(v <=_u c) 749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 750 Pred == ICmpInst::ICMP_ULE && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 KnownBits RHSKnown(BitWidth); 753 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 754 755 // Whatever high bits in c are zero are known to be zero. 756 Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()); 757 // assume(v <_u c) 758 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 759 Pred == ICmpInst::ICMP_ULT && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown(BitWidth); 762 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 763 764 // Whatever high bits in c are zero are known to be zero (if c is a power 765 // of 2, then one more). 766 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 767 Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()+1); 768 else 769 Known.Zero.setHighBits(RHSKnown.Zero.countLeadingOnes()); 770 } 771 } 772 773 // If assumptions conflict with each other or previous known bits, then we 774 // have a logical fallacy. It's possible that the assumption is not reachable, 775 // so this isn't a real bug. On the other hand, the program may have undefined 776 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 777 // clear out the known bits, try to warn the user, and hope for the best. 778 if (Known.Zero.intersects(Known.One)) { 779 Known.Zero.clearAllBits(); 780 Known.One.clearAllBits(); 781 782 if (Q.ORE) { 783 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 784 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 785 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 786 "have undefined behavior, or compiler may have " 787 "internal error."); 788 } 789 } 790 } 791 792 // Compute known bits from a shift operator, including those with a 793 // non-constant shift amount. Known is the outputs of this function. Known2 is a 794 // pre-allocated temporary with the/ same bit width as Known. KZF and KOF are 795 // operator-specific functors that, given the known-zero or known-one bits 796 // respectively, and a shift amount, compute the implied known-zero or known-one 797 // bits of the shift operator's result respectively for that shift amount. The 798 // results from calling KZF and KOF are conservatively combined for all 799 // permitted shift amounts. 800 static void computeKnownBitsFromShiftOperator( 801 const Operator *I, KnownBits &Known, KnownBits &Known2, 802 unsigned Depth, const Query &Q, 803 function_ref<APInt(const APInt &, unsigned)> KZF, 804 function_ref<APInt(const APInt &, unsigned)> KOF) { 805 unsigned BitWidth = Known.getBitWidth(); 806 807 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 808 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 809 810 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 811 Known.Zero = KZF(Known.Zero, ShiftAmt); 812 Known.One = KOF(Known.One, ShiftAmt); 813 // If there is conflict between Known.Zero and Known.One, this must be an 814 // overflowing left shift, so the shift result is undefined. Clear Known 815 // bits so that other code could propagate this undef. 816 if ((Known.Zero & Known.One) != 0) { 817 Known.Zero.clearAllBits(); 818 Known.One.clearAllBits(); 819 } 820 821 return; 822 } 823 824 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 825 826 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 827 // value could be undef, so we don't know anything about it. 828 if ((~Known.Zero).uge(BitWidth)) { 829 Known.Zero.clearAllBits(); 830 Known.One.clearAllBits(); 831 return; 832 } 833 834 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 835 // BitWidth > 64 and any upper bits are known, we'll end up returning the 836 // limit value (which implies all bits are known). 837 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 838 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 839 840 // It would be more-clearly correct to use the two temporaries for this 841 // calculation. Reusing the APInts here to prevent unnecessary allocations. 842 Known.Zero.clearAllBits(); 843 Known.One.clearAllBits(); 844 845 // If we know the shifter operand is nonzero, we can sometimes infer more 846 // known bits. However this is expensive to compute, so be lazy about it and 847 // only compute it when absolutely necessary. 848 Optional<bool> ShifterOperandIsNonZero; 849 850 // Early exit if we can't constrain any well-defined shift amount. 851 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 852 ShifterOperandIsNonZero = 853 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 854 if (!*ShifterOperandIsNonZero) 855 return; 856 } 857 858 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 859 860 Known.Zero.setAllBits(); 861 Known.One.setAllBits(); 862 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 863 // Combine the shifted known input bits only for those shift amounts 864 // compatible with its known constraints. 865 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 866 continue; 867 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 868 continue; 869 // If we know the shifter is nonzero, we may be able to infer more known 870 // bits. This check is sunk down as far as possible to avoid the expensive 871 // call to isKnownNonZero if the cheaper checks above fail. 872 if (ShiftAmt == 0) { 873 if (!ShifterOperandIsNonZero.hasValue()) 874 ShifterOperandIsNonZero = 875 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 876 if (*ShifterOperandIsNonZero) 877 continue; 878 } 879 880 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 881 Known.One &= KOF(Known2.One, ShiftAmt); 882 } 883 884 // If there are no compatible shift amounts, then we've proven that the shift 885 // amount must be >= the BitWidth, and the result is undefined. We could 886 // return anything we'd like, but we need to make sure the sets of known bits 887 // stay disjoint (it should be better for some other code to actually 888 // propagate the undef than to pick a value here using known bits). 889 if (Known.Zero.intersects(Known.One)) { 890 Known.Zero.clearAllBits(); 891 Known.One.clearAllBits(); 892 } 893 } 894 895 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 896 unsigned Depth, const Query &Q) { 897 unsigned BitWidth = Known.getBitWidth(); 898 899 KnownBits Known2(Known); 900 switch (I->getOpcode()) { 901 default: break; 902 case Instruction::Load: 903 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 904 computeKnownBitsFromRangeMetadata(*MD, Known); 905 break; 906 case Instruction::And: { 907 // If either the LHS or the RHS are Zero, the result is zero. 908 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 909 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 910 911 // Output known-1 bits are only known if set in both the LHS & RHS. 912 Known.One &= Known2.One; 913 // Output known-0 are known to be clear if zero in either the LHS | RHS. 914 Known.Zero |= Known2.Zero; 915 916 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 917 // here we handle the more general case of adding any odd number by 918 // matching the form add(x, add(x, y)) where y is odd. 919 // TODO: This could be generalized to clearing any bit set in y where the 920 // following bit is known to be unset in y. 921 Value *Y = nullptr; 922 if (!Known.Zero[0] && !Known.One[0] && 923 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 924 m_Value(Y))) || 925 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 926 m_Value(Y))))) { 927 Known2.Zero.clearAllBits(); Known2.One.clearAllBits(); 928 computeKnownBits(Y, Known2, Depth + 1, Q); 929 if (Known2.One.countTrailingOnes() > 0) 930 Known.Zero.setBit(0); 931 } 932 break; 933 } 934 case Instruction::Or: { 935 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 936 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 937 938 // Output known-0 bits are only known if clear in both the LHS & RHS. 939 Known.Zero &= Known2.Zero; 940 // Output known-1 are known to be set if set in either the LHS | RHS. 941 Known.One |= Known2.One; 942 break; 943 } 944 case Instruction::Xor: { 945 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 946 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 947 948 // Output known-0 bits are known if clear or set in both the LHS & RHS. 949 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 950 // Output known-1 are known to be set if set in only one of the LHS, RHS. 951 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 952 Known.Zero = std::move(KnownZeroOut); 953 break; 954 } 955 case Instruction::Mul: { 956 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 957 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 958 Known2, Depth, Q); 959 break; 960 } 961 case Instruction::UDiv: { 962 // For the purposes of computing leading zeros we can conservatively 963 // treat a udiv as a logical right shift by the power of 2 known to 964 // be less than the denominator. 965 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 966 unsigned LeadZ = Known2.Zero.countLeadingOnes(); 967 968 Known2.One.clearAllBits(); 969 Known2.Zero.clearAllBits(); 970 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 971 unsigned RHSUnknownLeadingOnes = Known2.One.countLeadingZeros(); 972 if (RHSUnknownLeadingOnes != BitWidth) 973 LeadZ = std::min(BitWidth, 974 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 975 976 Known.Zero.setHighBits(LeadZ); 977 break; 978 } 979 case Instruction::Select: { 980 const Value *LHS, *RHS; 981 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 982 if (SelectPatternResult::isMinOrMax(SPF)) { 983 computeKnownBits(RHS, Known, Depth + 1, Q); 984 computeKnownBits(LHS, Known2, Depth + 1, Q); 985 } else { 986 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 987 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 988 } 989 990 unsigned MaxHighOnes = 0; 991 unsigned MaxHighZeros = 0; 992 if (SPF == SPF_SMAX) { 993 // If both sides are negative, the result is negative. 994 if (Known.isNegative() && Known2.isNegative()) 995 // We can derive a lower bound on the result by taking the max of the 996 // leading one bits. 997 MaxHighOnes = std::max(Known.One.countLeadingOnes(), 998 Known2.One.countLeadingOnes()); 999 // If either side is non-negative, the result is non-negative. 1000 else if (Known.isNonNegative() || Known2.isNonNegative()) 1001 MaxHighZeros = 1; 1002 } else if (SPF == SPF_SMIN) { 1003 // If both sides are non-negative, the result is non-negative. 1004 if (Known.isNonNegative() && Known2.isNonNegative()) 1005 // We can derive an upper bound on the result by taking the max of the 1006 // leading zero bits. 1007 MaxHighZeros = std::max(Known.Zero.countLeadingOnes(), 1008 Known2.Zero.countLeadingOnes()); 1009 // If either side is negative, the result is negative. 1010 else if (Known.isNegative() || Known2.isNegative()) 1011 MaxHighOnes = 1; 1012 } else if (SPF == SPF_UMAX) { 1013 // We can derive a lower bound on the result by taking the max of the 1014 // leading one bits. 1015 MaxHighOnes = 1016 std::max(Known.One.countLeadingOnes(), Known2.One.countLeadingOnes()); 1017 } else if (SPF == SPF_UMIN) { 1018 // We can derive an upper bound on the result by taking the max of the 1019 // leading zero bits. 1020 MaxHighZeros = 1021 std::max(Known.Zero.countLeadingOnes(), Known2.Zero.countLeadingOnes()); 1022 } 1023 1024 // Only known if known in both the LHS and RHS. 1025 Known.One &= Known2.One; 1026 Known.Zero &= Known2.Zero; 1027 if (MaxHighOnes > 0) 1028 Known.One.setHighBits(MaxHighOnes); 1029 if (MaxHighZeros > 0) 1030 Known.Zero.setHighBits(MaxHighZeros); 1031 break; 1032 } 1033 case Instruction::FPTrunc: 1034 case Instruction::FPExt: 1035 case Instruction::FPToUI: 1036 case Instruction::FPToSI: 1037 case Instruction::SIToFP: 1038 case Instruction::UIToFP: 1039 break; // Can't work with floating point. 1040 case Instruction::PtrToInt: 1041 case Instruction::IntToPtr: 1042 // Fall through and handle them the same as zext/trunc. 1043 LLVM_FALLTHROUGH; 1044 case Instruction::ZExt: 1045 case Instruction::Trunc: { 1046 Type *SrcTy = I->getOperand(0)->getType(); 1047 1048 unsigned SrcBitWidth; 1049 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1050 // which fall through here. 1051 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1052 1053 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1054 Known = Known.zextOrTrunc(SrcBitWidth); 1055 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1056 Known = Known.zextOrTrunc(BitWidth); 1057 // Any top bits are known to be zero. 1058 if (BitWidth > SrcBitWidth) 1059 Known.Zero.setBitsFrom(SrcBitWidth); 1060 break; 1061 } 1062 case Instruction::BitCast: { 1063 Type *SrcTy = I->getOperand(0)->getType(); 1064 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1065 // TODO: For now, not handling conversions like: 1066 // (bitcast i64 %x to <2 x i32>) 1067 !I->getType()->isVectorTy()) { 1068 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1069 break; 1070 } 1071 break; 1072 } 1073 case Instruction::SExt: { 1074 // Compute the bits in the result that are not present in the input. 1075 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1076 1077 Known = Known.trunc(SrcBitWidth); 1078 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1079 // If the sign bit of the input is known set or clear, then we know the 1080 // top bits of the result. 1081 Known = Known.sext(BitWidth); 1082 break; 1083 } 1084 case Instruction::Shl: { 1085 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1086 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1087 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1088 APInt KZResult = KnownZero << ShiftAmt; 1089 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1090 // If this shift has "nsw" keyword, then the result is either a poison 1091 // value or has the same sign bit as the first operand. 1092 if (NSW && KnownZero.isSignBitSet()) 1093 KZResult.setSignBit(); 1094 return KZResult; 1095 }; 1096 1097 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1098 APInt KOResult = KnownOne << ShiftAmt; 1099 if (NSW && KnownOne.isSignBitSet()) 1100 KOResult.setSignBit(); 1101 return KOResult; 1102 }; 1103 1104 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1105 break; 1106 } 1107 case Instruction::LShr: { 1108 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1109 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1110 APInt KZResult = KnownZero.lshr(ShiftAmt); 1111 // High bits known zero. 1112 KZResult.setHighBits(ShiftAmt); 1113 return KZResult; 1114 }; 1115 1116 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1117 return KnownOne.lshr(ShiftAmt); 1118 }; 1119 1120 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1121 break; 1122 } 1123 case Instruction::AShr: { 1124 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1125 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1126 return KnownZero.ashr(ShiftAmt); 1127 }; 1128 1129 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1130 return KnownOne.ashr(ShiftAmt); 1131 }; 1132 1133 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1134 break; 1135 } 1136 case Instruction::Sub: { 1137 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1138 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1139 Known, Known2, Depth, Q); 1140 break; 1141 } 1142 case Instruction::Add: { 1143 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1144 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1145 Known, Known2, Depth, Q); 1146 break; 1147 } 1148 case Instruction::SRem: 1149 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1150 APInt RA = Rem->getValue().abs(); 1151 if (RA.isPowerOf2()) { 1152 APInt LowBits = RA - 1; 1153 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1154 1155 // The low bits of the first operand are unchanged by the srem. 1156 Known.Zero = Known2.Zero & LowBits; 1157 Known.One = Known2.One & LowBits; 1158 1159 // If the first operand is non-negative or has all low bits zero, then 1160 // the upper bits are all zero. 1161 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1162 Known.Zero |= ~LowBits; 1163 1164 // If the first operand is negative and not all low bits are zero, then 1165 // the upper bits are all one. 1166 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1167 Known.One |= ~LowBits; 1168 1169 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1170 break; 1171 } 1172 } 1173 1174 // The sign bit is the LHS's sign bit, except when the result of the 1175 // remainder is zero. 1176 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1177 // If it's known zero, our sign bit is also zero. 1178 if (Known2.isNonNegative()) 1179 Known.makeNonNegative(); 1180 1181 break; 1182 case Instruction::URem: { 1183 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1184 const APInt &RA = Rem->getValue(); 1185 if (RA.isPowerOf2()) { 1186 APInt LowBits = (RA - 1); 1187 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1188 Known.Zero |= ~LowBits; 1189 Known.One &= LowBits; 1190 break; 1191 } 1192 } 1193 1194 // Since the result is less than or equal to either operand, any leading 1195 // zero bits in either operand must also exist in the result. 1196 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1197 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1198 1199 unsigned Leaders = std::max(Known.Zero.countLeadingOnes(), 1200 Known2.Zero.countLeadingOnes()); 1201 Known.One.clearAllBits(); 1202 Known.Zero.clearAllBits(); 1203 Known.Zero.setHighBits(Leaders); 1204 break; 1205 } 1206 1207 case Instruction::Alloca: { 1208 const AllocaInst *AI = cast<AllocaInst>(I); 1209 unsigned Align = AI->getAlignment(); 1210 if (Align == 0) 1211 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1212 1213 if (Align > 0) 1214 Known.Zero.setLowBits(countTrailingZeros(Align)); 1215 break; 1216 } 1217 case Instruction::GetElementPtr: { 1218 // Analyze all of the subscripts of this getelementptr instruction 1219 // to determine if we can prove known low zero bits. 1220 KnownBits LocalKnown(BitWidth); 1221 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1222 unsigned TrailZ = LocalKnown.Zero.countTrailingOnes(); 1223 1224 gep_type_iterator GTI = gep_type_begin(I); 1225 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1226 Value *Index = I->getOperand(i); 1227 if (StructType *STy = GTI.getStructTypeOrNull()) { 1228 // Handle struct member offset arithmetic. 1229 1230 // Handle case when index is vector zeroinitializer 1231 Constant *CIndex = cast<Constant>(Index); 1232 if (CIndex->isZeroValue()) 1233 continue; 1234 1235 if (CIndex->getType()->isVectorTy()) 1236 Index = CIndex->getSplatValue(); 1237 1238 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1239 const StructLayout *SL = Q.DL.getStructLayout(STy); 1240 uint64_t Offset = SL->getElementOffset(Idx); 1241 TrailZ = std::min<unsigned>(TrailZ, 1242 countTrailingZeros(Offset)); 1243 } else { 1244 // Handle array index arithmetic. 1245 Type *IndexedTy = GTI.getIndexedType(); 1246 if (!IndexedTy->isSized()) { 1247 TrailZ = 0; 1248 break; 1249 } 1250 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1251 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1252 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1253 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1254 TrailZ = std::min(TrailZ, 1255 unsigned(countTrailingZeros(TypeSize) + 1256 LocalKnown.Zero.countTrailingOnes())); 1257 } 1258 } 1259 1260 Known.Zero.setLowBits(TrailZ); 1261 break; 1262 } 1263 case Instruction::PHI: { 1264 const PHINode *P = cast<PHINode>(I); 1265 // Handle the case of a simple two-predecessor recurrence PHI. 1266 // There's a lot more that could theoretically be done here, but 1267 // this is sufficient to catch some interesting cases. 1268 if (P->getNumIncomingValues() == 2) { 1269 for (unsigned i = 0; i != 2; ++i) { 1270 Value *L = P->getIncomingValue(i); 1271 Value *R = P->getIncomingValue(!i); 1272 Operator *LU = dyn_cast<Operator>(L); 1273 if (!LU) 1274 continue; 1275 unsigned Opcode = LU->getOpcode(); 1276 // Check for operations that have the property that if 1277 // both their operands have low zero bits, the result 1278 // will have low zero bits. 1279 if (Opcode == Instruction::Add || 1280 Opcode == Instruction::Sub || 1281 Opcode == Instruction::And || 1282 Opcode == Instruction::Or || 1283 Opcode == Instruction::Mul) { 1284 Value *LL = LU->getOperand(0); 1285 Value *LR = LU->getOperand(1); 1286 // Find a recurrence. 1287 if (LL == I) 1288 L = LR; 1289 else if (LR == I) 1290 L = LL; 1291 else 1292 break; 1293 // Ok, we have a PHI of the form L op= R. Check for low 1294 // zero bits. 1295 computeKnownBits(R, Known2, Depth + 1, Q); 1296 1297 // We need to take the minimum number of known bits 1298 KnownBits Known3(Known); 1299 computeKnownBits(L, Known3, Depth + 1, Q); 1300 1301 Known.Zero.setLowBits(std::min(Known2.Zero.countTrailingOnes(), 1302 Known3.Zero.countTrailingOnes())); 1303 1304 if (DontImproveNonNegativePhiBits) 1305 break; 1306 1307 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1308 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1309 // If initial value of recurrence is nonnegative, and we are adding 1310 // a nonnegative number with nsw, the result can only be nonnegative 1311 // or poison value regardless of the number of times we execute the 1312 // add in phi recurrence. If initial value is negative and we are 1313 // adding a negative number with nsw, the result can only be 1314 // negative or poison value. Similar arguments apply to sub and mul. 1315 // 1316 // (add non-negative, non-negative) --> non-negative 1317 // (add negative, negative) --> negative 1318 if (Opcode == Instruction::Add) { 1319 if (Known2.isNonNegative() && Known3.isNonNegative()) 1320 Known.makeNonNegative(); 1321 else if (Known2.isNegative() && Known3.isNegative()) 1322 Known.makeNegative(); 1323 } 1324 1325 // (sub nsw non-negative, negative) --> non-negative 1326 // (sub nsw negative, non-negative) --> negative 1327 else if (Opcode == Instruction::Sub && LL == I) { 1328 if (Known2.isNonNegative() && Known3.isNegative()) 1329 Known.makeNonNegative(); 1330 else if (Known2.isNegative() && Known3.isNonNegative()) 1331 Known.makeNegative(); 1332 } 1333 1334 // (mul nsw non-negative, non-negative) --> non-negative 1335 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1336 Known3.isNonNegative()) 1337 Known.makeNonNegative(); 1338 } 1339 1340 break; 1341 } 1342 } 1343 } 1344 1345 // Unreachable blocks may have zero-operand PHI nodes. 1346 if (P->getNumIncomingValues() == 0) 1347 break; 1348 1349 // Otherwise take the unions of the known bit sets of the operands, 1350 // taking conservative care to avoid excessive recursion. 1351 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1352 // Skip if every incoming value references to ourself. 1353 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1354 break; 1355 1356 Known.Zero.setAllBits(); 1357 Known.One.setAllBits(); 1358 for (Value *IncValue : P->incoming_values()) { 1359 // Skip direct self references. 1360 if (IncValue == P) continue; 1361 1362 Known2 = KnownBits(BitWidth); 1363 // Recurse, but cap the recursion to one level, because we don't 1364 // want to waste time spinning around in loops. 1365 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1366 Known.Zero &= Known2.Zero; 1367 Known.One &= Known2.One; 1368 // If all bits have been ruled out, there's no need to check 1369 // more operands. 1370 if (!Known.Zero && !Known.One) 1371 break; 1372 } 1373 } 1374 break; 1375 } 1376 case Instruction::Call: 1377 case Instruction::Invoke: 1378 // If range metadata is attached to this call, set known bits from that, 1379 // and then intersect with known bits based on other properties of the 1380 // function. 1381 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1382 computeKnownBitsFromRangeMetadata(*MD, Known); 1383 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1384 computeKnownBits(RV, Known2, Depth + 1, Q); 1385 Known.Zero |= Known2.Zero; 1386 Known.One |= Known2.One; 1387 } 1388 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1389 switch (II->getIntrinsicID()) { 1390 default: break; 1391 case Intrinsic::bitreverse: 1392 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1393 Known.Zero |= Known2.Zero.reverseBits(); 1394 Known.One |= Known2.One.reverseBits(); 1395 break; 1396 case Intrinsic::bswap: 1397 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1398 Known.Zero |= Known2.Zero.byteSwap(); 1399 Known.One |= Known2.One.byteSwap(); 1400 break; 1401 case Intrinsic::ctlz: 1402 case Intrinsic::cttz: { 1403 unsigned LowBits = Log2_32(BitWidth)+1; 1404 // If this call is undefined for 0, the result will be less than 2^n. 1405 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1406 LowBits -= 1; 1407 Known.Zero.setBitsFrom(LowBits); 1408 break; 1409 } 1410 case Intrinsic::ctpop: { 1411 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1412 // We can bound the space the count needs. Also, bits known to be zero 1413 // can't contribute to the population. 1414 unsigned BitsPossiblySet = BitWidth - Known2.Zero.countPopulation(); 1415 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1416 Known.Zero.setBitsFrom(LowBits); 1417 // TODO: we could bound KnownOne using the lower bound on the number 1418 // of bits which might be set provided by popcnt KnownOne2. 1419 break; 1420 } 1421 case Intrinsic::x86_sse42_crc32_64_64: 1422 Known.Zero.setBitsFrom(32); 1423 break; 1424 } 1425 } 1426 break; 1427 case Instruction::ExtractElement: 1428 // Look through extract element. At the moment we keep this simple and skip 1429 // tracking the specific element. But at least we might find information 1430 // valid for all elements of the vector (for example if vector is sign 1431 // extended, shifted, etc). 1432 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1433 break; 1434 case Instruction::ExtractValue: 1435 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1436 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1437 if (EVI->getNumIndices() != 1) break; 1438 if (EVI->getIndices()[0] == 0) { 1439 switch (II->getIntrinsicID()) { 1440 default: break; 1441 case Intrinsic::uadd_with_overflow: 1442 case Intrinsic::sadd_with_overflow: 1443 computeKnownBitsAddSub(true, II->getArgOperand(0), 1444 II->getArgOperand(1), false, Known, Known2, 1445 Depth, Q); 1446 break; 1447 case Intrinsic::usub_with_overflow: 1448 case Intrinsic::ssub_with_overflow: 1449 computeKnownBitsAddSub(false, II->getArgOperand(0), 1450 II->getArgOperand(1), false, Known, Known2, 1451 Depth, Q); 1452 break; 1453 case Intrinsic::umul_with_overflow: 1454 case Intrinsic::smul_with_overflow: 1455 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1456 Known, Known2, Depth, Q); 1457 break; 1458 } 1459 } 1460 } 1461 } 1462 } 1463 1464 /// Determine which bits of V are known to be either zero or one and return 1465 /// them in the Known bit set. 1466 /// 1467 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1468 /// we cannot optimize based on the assumption that it is zero without changing 1469 /// it to be an explicit zero. If we don't change it to zero, other code could 1470 /// optimized based on the contradictory assumption that it is non-zero. 1471 /// Because instcombine aggressively folds operations with undef args anyway, 1472 /// this won't lose us code quality. 1473 /// 1474 /// This function is defined on values with integer type, values with pointer 1475 /// type, and vectors of integers. In the case 1476 /// where V is a vector, known zero, and known one values are the 1477 /// same width as the vector element, and the bit is set only if it is true 1478 /// for all of the elements in the vector. 1479 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1480 const Query &Q) { 1481 assert(V && "No Value?"); 1482 assert(Depth <= MaxDepth && "Limit Search Depth"); 1483 unsigned BitWidth = Known.getBitWidth(); 1484 1485 assert((V->getType()->isIntOrIntVectorTy() || 1486 V->getType()->getScalarType()->isPointerTy()) && 1487 "Not integer or pointer type!"); 1488 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1489 (!V->getType()->isIntOrIntVectorTy() || 1490 V->getType()->getScalarSizeInBits() == BitWidth) && 1491 "V and Known should have same BitWidth"); 1492 (void)BitWidth; 1493 1494 const APInt *C; 1495 if (match(V, m_APInt(C))) { 1496 // We know all of the bits for a scalar constant or a splat vector constant! 1497 Known.One = *C; 1498 Known.Zero = ~Known.One; 1499 return; 1500 } 1501 // Null and aggregate-zero are all-zeros. 1502 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1503 Known.One.clearAllBits(); 1504 Known.Zero.setAllBits(); 1505 return; 1506 } 1507 // Handle a constant vector by taking the intersection of the known bits of 1508 // each element. 1509 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1510 // We know that CDS must be a vector of integers. Take the intersection of 1511 // each element. 1512 Known.Zero.setAllBits(); Known.One.setAllBits(); 1513 APInt Elt(BitWidth, 0); 1514 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1515 Elt = CDS->getElementAsInteger(i); 1516 Known.Zero &= ~Elt; 1517 Known.One &= Elt; 1518 } 1519 return; 1520 } 1521 1522 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1523 // We know that CV must be a vector of integers. Take the intersection of 1524 // each element. 1525 Known.Zero.setAllBits(); Known.One.setAllBits(); 1526 APInt Elt(BitWidth, 0); 1527 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1528 Constant *Element = CV->getAggregateElement(i); 1529 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1530 if (!ElementCI) { 1531 Known.Zero.clearAllBits(); 1532 Known.One.clearAllBits(); 1533 return; 1534 } 1535 Elt = ElementCI->getValue(); 1536 Known.Zero &= ~Elt; 1537 Known.One &= Elt; 1538 } 1539 return; 1540 } 1541 1542 // Start out not knowing anything. 1543 Known.Zero.clearAllBits(); Known.One.clearAllBits(); 1544 1545 // We can't imply anything about undefs. 1546 if (isa<UndefValue>(V)) 1547 return; 1548 1549 // There's no point in looking through other users of ConstantData for 1550 // assumptions. Confirm that we've handled them all. 1551 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1552 1553 // Limit search depth. 1554 // All recursive calls that increase depth must come after this. 1555 if (Depth == MaxDepth) 1556 return; 1557 1558 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1559 // the bits of its aliasee. 1560 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1561 if (!GA->isInterposable()) 1562 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1563 return; 1564 } 1565 1566 if (const Operator *I = dyn_cast<Operator>(V)) 1567 computeKnownBitsFromOperator(I, Known, Depth, Q); 1568 1569 // Aligned pointers have trailing zeros - refine Known.Zero set 1570 if (V->getType()->isPointerTy()) { 1571 unsigned Align = V->getPointerAlignment(Q.DL); 1572 if (Align) 1573 Known.Zero.setLowBits(countTrailingZeros(Align)); 1574 } 1575 1576 // computeKnownBitsFromAssume strictly refines Known. 1577 // Therefore, we run them after computeKnownBitsFromOperator. 1578 1579 // Check whether a nearby assume intrinsic can determine some known bits. 1580 computeKnownBitsFromAssume(V, Known, Depth, Q); 1581 1582 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1583 } 1584 1585 /// Determine whether the sign bit is known to be zero or one. 1586 /// Convenience wrapper around computeKnownBits. 1587 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1588 unsigned Depth, const Query &Q) { 1589 KnownBits Bits(getBitWidth(V->getType(), Q.DL)); 1590 computeKnownBits(V, Bits, Depth, Q); 1591 KnownOne = Bits.isNegative(); 1592 KnownZero = Bits.isNonNegative(); 1593 } 1594 1595 /// Return true if the given value is known to have exactly one 1596 /// bit set when defined. For vectors return true if every element is known to 1597 /// be a power of two when defined. Supports values with integer or pointer 1598 /// types and vectors of integers. 1599 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1600 const Query &Q) { 1601 if (const Constant *C = dyn_cast<Constant>(V)) { 1602 if (C->isNullValue()) 1603 return OrZero; 1604 1605 const APInt *ConstIntOrConstSplatInt; 1606 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1607 return ConstIntOrConstSplatInt->isPowerOf2(); 1608 } 1609 1610 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1611 // it is shifted off the end then the result is undefined. 1612 if (match(V, m_Shl(m_One(), m_Value()))) 1613 return true; 1614 1615 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1616 // the bottom. If it is shifted off the bottom then the result is undefined. 1617 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1618 return true; 1619 1620 // The remaining tests are all recursive, so bail out if we hit the limit. 1621 if (Depth++ == MaxDepth) 1622 return false; 1623 1624 Value *X = nullptr, *Y = nullptr; 1625 // A shift left or a logical shift right of a power of two is a power of two 1626 // or zero. 1627 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1628 match(V, m_LShr(m_Value(X), m_Value())))) 1629 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1630 1631 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1632 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1633 1634 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1635 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1636 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1637 1638 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1639 // A power of two and'd with anything is a power of two or zero. 1640 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1641 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1642 return true; 1643 // X & (-X) is always a power of two or zero. 1644 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1645 return true; 1646 return false; 1647 } 1648 1649 // Adding a power-of-two or zero to the same power-of-two or zero yields 1650 // either the original power-of-two, a larger power-of-two or zero. 1651 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1652 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1653 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1654 if (match(X, m_And(m_Specific(Y), m_Value())) || 1655 match(X, m_And(m_Value(), m_Specific(Y)))) 1656 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1657 return true; 1658 if (match(Y, m_And(m_Specific(X), m_Value())) || 1659 match(Y, m_And(m_Value(), m_Specific(X)))) 1660 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1661 return true; 1662 1663 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1664 KnownBits LHSBits(BitWidth); 1665 computeKnownBits(X, LHSBits, Depth, Q); 1666 1667 KnownBits RHSBits(BitWidth); 1668 computeKnownBits(Y, RHSBits, Depth, Q); 1669 // If i8 V is a power of two or zero: 1670 // ZeroBits: 1 1 1 0 1 1 1 1 1671 // ~ZeroBits: 0 0 0 1 0 0 0 0 1672 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1673 // If OrZero isn't set, we cannot give back a zero result. 1674 // Make sure either the LHS or RHS has a bit set. 1675 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1676 return true; 1677 } 1678 } 1679 1680 // An exact divide or right shift can only shift off zero bits, so the result 1681 // is a power of two only if the first operand is a power of two and not 1682 // copying a sign bit (sdiv int_min, 2). 1683 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1684 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1685 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1686 Depth, Q); 1687 } 1688 1689 return false; 1690 } 1691 1692 /// \brief Test whether a GEP's result is known to be non-null. 1693 /// 1694 /// Uses properties inherent in a GEP to try to determine whether it is known 1695 /// to be non-null. 1696 /// 1697 /// Currently this routine does not support vector GEPs. 1698 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1699 const Query &Q) { 1700 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1701 return false; 1702 1703 // FIXME: Support vector-GEPs. 1704 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1705 1706 // If the base pointer is non-null, we cannot walk to a null address with an 1707 // inbounds GEP in address space zero. 1708 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1709 return true; 1710 1711 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1712 // If so, then the GEP cannot produce a null pointer, as doing so would 1713 // inherently violate the inbounds contract within address space zero. 1714 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1715 GTI != GTE; ++GTI) { 1716 // Struct types are easy -- they must always be indexed by a constant. 1717 if (StructType *STy = GTI.getStructTypeOrNull()) { 1718 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1719 unsigned ElementIdx = OpC->getZExtValue(); 1720 const StructLayout *SL = Q.DL.getStructLayout(STy); 1721 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1722 if (ElementOffset > 0) 1723 return true; 1724 continue; 1725 } 1726 1727 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1728 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1729 continue; 1730 1731 // Fast path the constant operand case both for efficiency and so we don't 1732 // increment Depth when just zipping down an all-constant GEP. 1733 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1734 if (!OpC->isZero()) 1735 return true; 1736 continue; 1737 } 1738 1739 // We post-increment Depth here because while isKnownNonZero increments it 1740 // as well, when we pop back up that increment won't persist. We don't want 1741 // to recurse 10k times just because we have 10k GEP operands. We don't 1742 // bail completely out because we want to handle constant GEPs regardless 1743 // of depth. 1744 if (Depth++ >= MaxDepth) 1745 continue; 1746 1747 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1748 return true; 1749 } 1750 1751 return false; 1752 } 1753 1754 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1755 /// ensure that the value it's attached to is never Value? 'RangeType' is 1756 /// is the type of the value described by the range. 1757 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1758 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1759 assert(NumRanges >= 1); 1760 for (unsigned i = 0; i < NumRanges; ++i) { 1761 ConstantInt *Lower = 1762 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1763 ConstantInt *Upper = 1764 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1765 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1766 if (Range.contains(Value)) 1767 return false; 1768 } 1769 return true; 1770 } 1771 1772 /// Return true if the given value is known to be non-zero when defined. For 1773 /// vectors, return true if every element is known to be non-zero when 1774 /// defined. For pointers, if the context instruction and dominator tree are 1775 /// specified, perform context-sensitive analysis and return true if the 1776 /// pointer couldn't possibly be null at the specified instruction. 1777 /// Supports values with integer or pointer type and vectors of integers. 1778 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1779 if (auto *C = dyn_cast<Constant>(V)) { 1780 if (C->isNullValue()) 1781 return false; 1782 if (isa<ConstantInt>(C)) 1783 // Must be non-zero due to null test above. 1784 return true; 1785 1786 // For constant vectors, check that all elements are undefined or known 1787 // non-zero to determine that the whole vector is known non-zero. 1788 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1789 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1790 Constant *Elt = C->getAggregateElement(i); 1791 if (!Elt || Elt->isNullValue()) 1792 return false; 1793 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1794 return false; 1795 } 1796 return true; 1797 } 1798 1799 return false; 1800 } 1801 1802 if (auto *I = dyn_cast<Instruction>(V)) { 1803 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1804 // If the possible ranges don't contain zero, then the value is 1805 // definitely non-zero. 1806 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1807 const APInt ZeroValue(Ty->getBitWidth(), 0); 1808 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1809 return true; 1810 } 1811 } 1812 } 1813 1814 // The remaining tests are all recursive, so bail out if we hit the limit. 1815 if (Depth++ >= MaxDepth) 1816 return false; 1817 1818 // Check for pointer simplifications. 1819 if (V->getType()->isPointerTy()) { 1820 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1821 return true; 1822 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1823 if (isGEPKnownNonNull(GEP, Depth, Q)) 1824 return true; 1825 } 1826 1827 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1828 1829 // X | Y != 0 if X != 0 or Y != 0. 1830 Value *X = nullptr, *Y = nullptr; 1831 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1832 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1833 1834 // ext X != 0 if X != 0. 1835 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1836 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1837 1838 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1839 // if the lowest bit is shifted off the end. 1840 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1841 // shl nuw can't remove any non-zero bits. 1842 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1843 if (BO->hasNoUnsignedWrap()) 1844 return isKnownNonZero(X, Depth, Q); 1845 1846 KnownBits Known(BitWidth); 1847 computeKnownBits(X, Known, Depth, Q); 1848 if (Known.One[0]) 1849 return true; 1850 } 1851 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1852 // defined if the sign bit is shifted off the end. 1853 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1854 // shr exact can only shift out zero bits. 1855 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1856 if (BO->isExact()) 1857 return isKnownNonZero(X, Depth, Q); 1858 1859 bool XKnownNonNegative, XKnownNegative; 1860 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1861 if (XKnownNegative) 1862 return true; 1863 1864 // If the shifter operand is a constant, and all of the bits shifted 1865 // out are known to be zero, and X is known non-zero then at least one 1866 // non-zero bit must remain. 1867 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1868 KnownBits Known(BitWidth); 1869 computeKnownBits(X, Known, Depth, Q); 1870 1871 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1872 // Is there a known one in the portion not shifted out? 1873 if (Known.One.countLeadingZeros() < BitWidth - ShiftVal) 1874 return true; 1875 // Are all the bits to be shifted out known zero? 1876 if (Known.Zero.countTrailingOnes() >= ShiftVal) 1877 return isKnownNonZero(X, Depth, Q); 1878 } 1879 } 1880 // div exact can only produce a zero if the dividend is zero. 1881 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1882 return isKnownNonZero(X, Depth, Q); 1883 } 1884 // X + Y. 1885 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1886 bool XKnownNonNegative, XKnownNegative; 1887 bool YKnownNonNegative, YKnownNegative; 1888 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1889 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1890 1891 // If X and Y are both non-negative (as signed values) then their sum is not 1892 // zero unless both X and Y are zero. 1893 if (XKnownNonNegative && YKnownNonNegative) 1894 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1895 return true; 1896 1897 // If X and Y are both negative (as signed values) then their sum is not 1898 // zero unless both X and Y equal INT_MIN. 1899 if (XKnownNegative && YKnownNegative) { 1900 KnownBits Known(BitWidth); 1901 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1902 // The sign bit of X is set. If some other bit is set then X is not equal 1903 // to INT_MIN. 1904 computeKnownBits(X, Known, Depth, Q); 1905 if (Known.One.intersects(Mask)) 1906 return true; 1907 // The sign bit of Y is set. If some other bit is set then Y is not equal 1908 // to INT_MIN. 1909 computeKnownBits(Y, Known, Depth, Q); 1910 if (Known.One.intersects(Mask)) 1911 return true; 1912 } 1913 1914 // The sum of a non-negative number and a power of two is not zero. 1915 if (XKnownNonNegative && 1916 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1917 return true; 1918 if (YKnownNonNegative && 1919 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1920 return true; 1921 } 1922 // X * Y. 1923 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1924 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1925 // If X and Y are non-zero then so is X * Y as long as the multiplication 1926 // does not overflow. 1927 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1928 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1929 return true; 1930 } 1931 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1932 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1933 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1934 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1935 return true; 1936 } 1937 // PHI 1938 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1939 // Try and detect a recurrence that monotonically increases from a 1940 // starting value, as these are common as induction variables. 1941 if (PN->getNumIncomingValues() == 2) { 1942 Value *Start = PN->getIncomingValue(0); 1943 Value *Induction = PN->getIncomingValue(1); 1944 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1945 std::swap(Start, Induction); 1946 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1947 if (!C->isZero() && !C->isNegative()) { 1948 ConstantInt *X; 1949 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1950 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1951 !X->isNegative()) 1952 return true; 1953 } 1954 } 1955 } 1956 // Check if all incoming values are non-zero constant. 1957 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1958 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1959 }); 1960 if (AllNonZeroConstants) 1961 return true; 1962 } 1963 1964 KnownBits Known(BitWidth); 1965 computeKnownBits(V, Known, Depth, Q); 1966 return Known.One != 0; 1967 } 1968 1969 /// Return true if V2 == V1 + X, where X is known non-zero. 1970 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1971 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1972 if (!BO || BO->getOpcode() != Instruction::Add) 1973 return false; 1974 Value *Op = nullptr; 1975 if (V2 == BO->getOperand(0)) 1976 Op = BO->getOperand(1); 1977 else if (V2 == BO->getOperand(1)) 1978 Op = BO->getOperand(0); 1979 else 1980 return false; 1981 return isKnownNonZero(Op, 0, Q); 1982 } 1983 1984 /// Return true if it is known that V1 != V2. 1985 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1986 if (V1->getType()->isVectorTy() || V1 == V2) 1987 return false; 1988 if (V1->getType() != V2->getType()) 1989 // We can't look through casts yet. 1990 return false; 1991 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1992 return true; 1993 1994 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1995 // Are any known bits in V1 contradictory to known bits in V2? If V1 1996 // has a known zero where V2 has a known one, they must not be equal. 1997 auto BitWidth = Ty->getBitWidth(); 1998 KnownBits Known1(BitWidth); 1999 computeKnownBits(V1, Known1, 0, Q); 2000 KnownBits Known2(BitWidth); 2001 computeKnownBits(V2, Known2, 0, Q); 2002 2003 APInt OppositeBits = (Known1.Zero & Known2.One) | 2004 (Known2.Zero & Known1.One); 2005 if (OppositeBits.getBoolValue()) 2006 return true; 2007 } 2008 return false; 2009 } 2010 2011 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2012 /// simplify operations downstream. Mask is known to be zero for bits that V 2013 /// cannot have. 2014 /// 2015 /// This function is defined on values with integer type, values with pointer 2016 /// type, and vectors of integers. In the case 2017 /// where V is a vector, the mask, known zero, and known one values are the 2018 /// same width as the vector element, and the bit is set only if it is true 2019 /// for all of the elements in the vector. 2020 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2021 const Query &Q) { 2022 KnownBits Known(Mask.getBitWidth()); 2023 computeKnownBits(V, Known, Depth, Q); 2024 return Mask.isSubsetOf(Known.Zero); 2025 } 2026 2027 /// For vector constants, loop over the elements and find the constant with the 2028 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2029 /// or if any element was not analyzed; otherwise, return the count for the 2030 /// element with the minimum number of sign bits. 2031 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2032 unsigned TyBits) { 2033 const auto *CV = dyn_cast<Constant>(V); 2034 if (!CV || !CV->getType()->isVectorTy()) 2035 return 0; 2036 2037 unsigned MinSignBits = TyBits; 2038 unsigned NumElts = CV->getType()->getVectorNumElements(); 2039 for (unsigned i = 0; i != NumElts; ++i) { 2040 // If we find a non-ConstantInt, bail out. 2041 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2042 if (!Elt) 2043 return 0; 2044 2045 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2046 APInt EltVal = Elt->getValue(); 2047 if (EltVal.isNegative()) 2048 EltVal = ~EltVal; 2049 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2050 } 2051 2052 return MinSignBits; 2053 } 2054 2055 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2056 const Query &Q); 2057 2058 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2059 const Query &Q) { 2060 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2061 assert(Result > 0 && "At least one sign bit needs to be present!"); 2062 return Result; 2063 } 2064 2065 /// Return the number of times the sign bit of the register is replicated into 2066 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2067 /// (itself), but other cases can give us information. For example, immediately 2068 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2069 /// other, so we return 3. For vectors, return the number of sign bits for the 2070 /// vector element with the mininum number of known sign bits. 2071 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2072 const Query &Q) { 2073 2074 // We return the minimum number of sign bits that are guaranteed to be present 2075 // in V, so for undef we have to conservatively return 1. We don't have the 2076 // same behavior for poison though -- that's a FIXME today. 2077 2078 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2079 unsigned Tmp, Tmp2; 2080 unsigned FirstAnswer = 1; 2081 2082 // Note that ConstantInt is handled by the general computeKnownBits case 2083 // below. 2084 2085 if (Depth == MaxDepth) 2086 return 1; // Limit search depth. 2087 2088 const Operator *U = dyn_cast<Operator>(V); 2089 switch (Operator::getOpcode(V)) { 2090 default: break; 2091 case Instruction::SExt: 2092 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2093 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2094 2095 case Instruction::SDiv: { 2096 const APInt *Denominator; 2097 // sdiv X, C -> adds log(C) sign bits. 2098 if (match(U->getOperand(1), m_APInt(Denominator))) { 2099 2100 // Ignore non-positive denominator. 2101 if (!Denominator->isStrictlyPositive()) 2102 break; 2103 2104 // Calculate the incoming numerator bits. 2105 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2106 2107 // Add floor(log(C)) bits to the numerator bits. 2108 return std::min(TyBits, NumBits + Denominator->logBase2()); 2109 } 2110 break; 2111 } 2112 2113 case Instruction::SRem: { 2114 const APInt *Denominator; 2115 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2116 // positive constant. This let us put a lower bound on the number of sign 2117 // bits. 2118 if (match(U->getOperand(1), m_APInt(Denominator))) { 2119 2120 // Ignore non-positive denominator. 2121 if (!Denominator->isStrictlyPositive()) 2122 break; 2123 2124 // Calculate the incoming numerator bits. SRem by a positive constant 2125 // can't lower the number of sign bits. 2126 unsigned NumrBits = 2127 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2128 2129 // Calculate the leading sign bit constraints by examining the 2130 // denominator. Given that the denominator is positive, there are two 2131 // cases: 2132 // 2133 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2134 // (1 << ceilLogBase2(C)). 2135 // 2136 // 2. the numerator is negative. Then the result range is (-C,0] and 2137 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2138 // 2139 // Thus a lower bound on the number of sign bits is `TyBits - 2140 // ceilLogBase2(C)`. 2141 2142 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2143 return std::max(NumrBits, ResBits); 2144 } 2145 break; 2146 } 2147 2148 case Instruction::AShr: { 2149 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2150 // ashr X, C -> adds C sign bits. Vectors too. 2151 const APInt *ShAmt; 2152 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2153 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2154 if (ShAmtLimited >= TyBits) 2155 break; // Bad shift. 2156 Tmp += ShAmtLimited; 2157 if (Tmp > TyBits) Tmp = TyBits; 2158 } 2159 return Tmp; 2160 } 2161 case Instruction::Shl: { 2162 const APInt *ShAmt; 2163 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2164 // shl destroys sign bits. 2165 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2166 Tmp2 = ShAmt->getZExtValue(); 2167 if (Tmp2 >= TyBits || // Bad shift. 2168 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2169 return Tmp - Tmp2; 2170 } 2171 break; 2172 } 2173 case Instruction::And: 2174 case Instruction::Or: 2175 case Instruction::Xor: // NOT is handled here. 2176 // Logical binary ops preserve the number of sign bits at the worst. 2177 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2178 if (Tmp != 1) { 2179 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2180 FirstAnswer = std::min(Tmp, Tmp2); 2181 // We computed what we know about the sign bits as our first 2182 // answer. Now proceed to the generic code that uses 2183 // computeKnownBits, and pick whichever answer is better. 2184 } 2185 break; 2186 2187 case Instruction::Select: 2188 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2189 if (Tmp == 1) return 1; // Early out. 2190 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2191 return std::min(Tmp, Tmp2); 2192 2193 case Instruction::Add: 2194 // Add can have at most one carry bit. Thus we know that the output 2195 // is, at worst, one more bit than the inputs. 2196 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2197 if (Tmp == 1) return 1; // Early out. 2198 2199 // Special case decrementing a value (ADD X, -1): 2200 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2201 if (CRHS->isAllOnesValue()) { 2202 KnownBits Known(TyBits); 2203 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2204 2205 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2206 // sign bits set. 2207 if ((Known.Zero | 1).isAllOnesValue()) 2208 return TyBits; 2209 2210 // If we are subtracting one from a positive number, there is no carry 2211 // out of the result. 2212 if (Known.isNonNegative()) 2213 return Tmp; 2214 } 2215 2216 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2217 if (Tmp2 == 1) return 1; 2218 return std::min(Tmp, Tmp2)-1; 2219 2220 case Instruction::Sub: 2221 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2222 if (Tmp2 == 1) return 1; 2223 2224 // Handle NEG. 2225 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2226 if (CLHS->isNullValue()) { 2227 KnownBits Known(TyBits); 2228 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2229 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2230 // sign bits set. 2231 if ((Known.Zero | 1).isAllOnesValue()) 2232 return TyBits; 2233 2234 // If the input is known to be positive (the sign bit is known clear), 2235 // the output of the NEG has the same number of sign bits as the input. 2236 if (Known.isNonNegative()) 2237 return Tmp2; 2238 2239 // Otherwise, we treat this like a SUB. 2240 } 2241 2242 // Sub can have at most one carry bit. Thus we know that the output 2243 // is, at worst, one more bit than the inputs. 2244 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2245 if (Tmp == 1) return 1; // Early out. 2246 return std::min(Tmp, Tmp2)-1; 2247 2248 case Instruction::PHI: { 2249 const PHINode *PN = cast<PHINode>(U); 2250 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2251 // Don't analyze large in-degree PHIs. 2252 if (NumIncomingValues > 4) break; 2253 // Unreachable blocks may have zero-operand PHI nodes. 2254 if (NumIncomingValues == 0) break; 2255 2256 // Take the minimum of all incoming values. This can't infinitely loop 2257 // because of our depth threshold. 2258 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2259 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2260 if (Tmp == 1) return Tmp; 2261 Tmp = std::min( 2262 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2263 } 2264 return Tmp; 2265 } 2266 2267 case Instruction::Trunc: 2268 // FIXME: it's tricky to do anything useful for this, but it is an important 2269 // case for targets like X86. 2270 break; 2271 2272 case Instruction::ExtractElement: 2273 // Look through extract element. At the moment we keep this simple and skip 2274 // tracking the specific element. But at least we might find information 2275 // valid for all elements of the vector (for example if vector is sign 2276 // extended, shifted, etc). 2277 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2278 } 2279 2280 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2281 // use this information. 2282 2283 // If we can examine all elements of a vector constant successfully, we're 2284 // done (we can't do any better than that). If not, keep trying. 2285 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2286 return VecSignBits; 2287 2288 KnownBits Known(TyBits); 2289 computeKnownBits(V, Known, Depth, Q); 2290 2291 // If we know that the sign bit is either zero or one, determine the number of 2292 // identical bits in the top of the input value. 2293 if (Known.isNonNegative()) 2294 return std::max(FirstAnswer, Known.Zero.countLeadingOnes()); 2295 2296 if (Known.isNegative()) 2297 return std::max(FirstAnswer, Known.One.countLeadingOnes()); 2298 2299 // computeKnownBits gave us no extra information about the top bits. 2300 return FirstAnswer; 2301 } 2302 2303 /// This function computes the integer multiple of Base that equals V. 2304 /// If successful, it returns true and returns the multiple in 2305 /// Multiple. If unsuccessful, it returns false. It looks 2306 /// through SExt instructions only if LookThroughSExt is true. 2307 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2308 bool LookThroughSExt, unsigned Depth) { 2309 const unsigned MaxDepth = 6; 2310 2311 assert(V && "No Value?"); 2312 assert(Depth <= MaxDepth && "Limit Search Depth"); 2313 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2314 2315 Type *T = V->getType(); 2316 2317 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2318 2319 if (Base == 0) 2320 return false; 2321 2322 if (Base == 1) { 2323 Multiple = V; 2324 return true; 2325 } 2326 2327 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2328 Constant *BaseVal = ConstantInt::get(T, Base); 2329 if (CO && CO == BaseVal) { 2330 // Multiple is 1. 2331 Multiple = ConstantInt::get(T, 1); 2332 return true; 2333 } 2334 2335 if (CI && CI->getZExtValue() % Base == 0) { 2336 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2337 return true; 2338 } 2339 2340 if (Depth == MaxDepth) return false; // Limit search depth. 2341 2342 Operator *I = dyn_cast<Operator>(V); 2343 if (!I) return false; 2344 2345 switch (I->getOpcode()) { 2346 default: break; 2347 case Instruction::SExt: 2348 if (!LookThroughSExt) return false; 2349 // otherwise fall through to ZExt 2350 case Instruction::ZExt: 2351 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2352 LookThroughSExt, Depth+1); 2353 case Instruction::Shl: 2354 case Instruction::Mul: { 2355 Value *Op0 = I->getOperand(0); 2356 Value *Op1 = I->getOperand(1); 2357 2358 if (I->getOpcode() == Instruction::Shl) { 2359 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2360 if (!Op1CI) return false; 2361 // Turn Op0 << Op1 into Op0 * 2^Op1 2362 APInt Op1Int = Op1CI->getValue(); 2363 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2364 APInt API(Op1Int.getBitWidth(), 0); 2365 API.setBit(BitToSet); 2366 Op1 = ConstantInt::get(V->getContext(), API); 2367 } 2368 2369 Value *Mul0 = nullptr; 2370 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2371 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2372 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2373 if (Op1C->getType()->getPrimitiveSizeInBits() < 2374 MulC->getType()->getPrimitiveSizeInBits()) 2375 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2376 if (Op1C->getType()->getPrimitiveSizeInBits() > 2377 MulC->getType()->getPrimitiveSizeInBits()) 2378 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2379 2380 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2381 Multiple = ConstantExpr::getMul(MulC, Op1C); 2382 return true; 2383 } 2384 2385 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2386 if (Mul0CI->getValue() == 1) { 2387 // V == Base * Op1, so return Op1 2388 Multiple = Op1; 2389 return true; 2390 } 2391 } 2392 2393 Value *Mul1 = nullptr; 2394 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2395 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2396 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2397 if (Op0C->getType()->getPrimitiveSizeInBits() < 2398 MulC->getType()->getPrimitiveSizeInBits()) 2399 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2400 if (Op0C->getType()->getPrimitiveSizeInBits() > 2401 MulC->getType()->getPrimitiveSizeInBits()) 2402 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2403 2404 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2405 Multiple = ConstantExpr::getMul(MulC, Op0C); 2406 return true; 2407 } 2408 2409 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2410 if (Mul1CI->getValue() == 1) { 2411 // V == Base * Op0, so return Op0 2412 Multiple = Op0; 2413 return true; 2414 } 2415 } 2416 } 2417 } 2418 2419 // We could not determine if V is a multiple of Base. 2420 return false; 2421 } 2422 2423 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2424 const TargetLibraryInfo *TLI) { 2425 const Function *F = ICS.getCalledFunction(); 2426 if (!F) 2427 return Intrinsic::not_intrinsic; 2428 2429 if (F->isIntrinsic()) 2430 return F->getIntrinsicID(); 2431 2432 if (!TLI) 2433 return Intrinsic::not_intrinsic; 2434 2435 LibFunc Func; 2436 // We're going to make assumptions on the semantics of the functions, check 2437 // that the target knows that it's available in this environment and it does 2438 // not have local linkage. 2439 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2440 return Intrinsic::not_intrinsic; 2441 2442 if (!ICS.onlyReadsMemory()) 2443 return Intrinsic::not_intrinsic; 2444 2445 // Otherwise check if we have a call to a function that can be turned into a 2446 // vector intrinsic. 2447 switch (Func) { 2448 default: 2449 break; 2450 case LibFunc_sin: 2451 case LibFunc_sinf: 2452 case LibFunc_sinl: 2453 return Intrinsic::sin; 2454 case LibFunc_cos: 2455 case LibFunc_cosf: 2456 case LibFunc_cosl: 2457 return Intrinsic::cos; 2458 case LibFunc_exp: 2459 case LibFunc_expf: 2460 case LibFunc_expl: 2461 return Intrinsic::exp; 2462 case LibFunc_exp2: 2463 case LibFunc_exp2f: 2464 case LibFunc_exp2l: 2465 return Intrinsic::exp2; 2466 case LibFunc_log: 2467 case LibFunc_logf: 2468 case LibFunc_logl: 2469 return Intrinsic::log; 2470 case LibFunc_log10: 2471 case LibFunc_log10f: 2472 case LibFunc_log10l: 2473 return Intrinsic::log10; 2474 case LibFunc_log2: 2475 case LibFunc_log2f: 2476 case LibFunc_log2l: 2477 return Intrinsic::log2; 2478 case LibFunc_fabs: 2479 case LibFunc_fabsf: 2480 case LibFunc_fabsl: 2481 return Intrinsic::fabs; 2482 case LibFunc_fmin: 2483 case LibFunc_fminf: 2484 case LibFunc_fminl: 2485 return Intrinsic::minnum; 2486 case LibFunc_fmax: 2487 case LibFunc_fmaxf: 2488 case LibFunc_fmaxl: 2489 return Intrinsic::maxnum; 2490 case LibFunc_copysign: 2491 case LibFunc_copysignf: 2492 case LibFunc_copysignl: 2493 return Intrinsic::copysign; 2494 case LibFunc_floor: 2495 case LibFunc_floorf: 2496 case LibFunc_floorl: 2497 return Intrinsic::floor; 2498 case LibFunc_ceil: 2499 case LibFunc_ceilf: 2500 case LibFunc_ceill: 2501 return Intrinsic::ceil; 2502 case LibFunc_trunc: 2503 case LibFunc_truncf: 2504 case LibFunc_truncl: 2505 return Intrinsic::trunc; 2506 case LibFunc_rint: 2507 case LibFunc_rintf: 2508 case LibFunc_rintl: 2509 return Intrinsic::rint; 2510 case LibFunc_nearbyint: 2511 case LibFunc_nearbyintf: 2512 case LibFunc_nearbyintl: 2513 return Intrinsic::nearbyint; 2514 case LibFunc_round: 2515 case LibFunc_roundf: 2516 case LibFunc_roundl: 2517 return Intrinsic::round; 2518 case LibFunc_pow: 2519 case LibFunc_powf: 2520 case LibFunc_powl: 2521 return Intrinsic::pow; 2522 case LibFunc_sqrt: 2523 case LibFunc_sqrtf: 2524 case LibFunc_sqrtl: 2525 if (ICS->hasNoNaNs()) 2526 return Intrinsic::sqrt; 2527 return Intrinsic::not_intrinsic; 2528 } 2529 2530 return Intrinsic::not_intrinsic; 2531 } 2532 2533 /// Return true if we can prove that the specified FP value is never equal to 2534 /// -0.0. 2535 /// 2536 /// NOTE: this function will need to be revisited when we support non-default 2537 /// rounding modes! 2538 /// 2539 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2540 unsigned Depth) { 2541 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2542 return !CFP->getValueAPF().isNegZero(); 2543 2544 if (Depth == MaxDepth) 2545 return false; // Limit search depth. 2546 2547 const Operator *I = dyn_cast<Operator>(V); 2548 if (!I) return false; 2549 2550 // Check if the nsz fast-math flag is set 2551 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2552 if (FPO->hasNoSignedZeros()) 2553 return true; 2554 2555 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2556 if (I->getOpcode() == Instruction::FAdd) 2557 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2558 if (CFP->isNullValue()) 2559 return true; 2560 2561 // sitofp and uitofp turn into +0.0 for zero. 2562 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2563 return true; 2564 2565 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2566 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2567 switch (IID) { 2568 default: 2569 break; 2570 // sqrt(-0.0) = -0.0, no other negative results are possible. 2571 case Intrinsic::sqrt: 2572 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2573 // fabs(x) != -0.0 2574 case Intrinsic::fabs: 2575 return true; 2576 } 2577 } 2578 2579 return false; 2580 } 2581 2582 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2583 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2584 /// bit despite comparing equal. 2585 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2586 const TargetLibraryInfo *TLI, 2587 bool SignBitOnly, 2588 unsigned Depth) { 2589 // TODO: This function does not do the right thing when SignBitOnly is true 2590 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2591 // which flips the sign bits of NaNs. See 2592 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2593 2594 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2595 return !CFP->getValueAPF().isNegative() || 2596 (!SignBitOnly && CFP->getValueAPF().isZero()); 2597 } 2598 2599 if (Depth == MaxDepth) 2600 return false; // Limit search depth. 2601 2602 const Operator *I = dyn_cast<Operator>(V); 2603 if (!I) 2604 return false; 2605 2606 switch (I->getOpcode()) { 2607 default: 2608 break; 2609 // Unsigned integers are always nonnegative. 2610 case Instruction::UIToFP: 2611 return true; 2612 case Instruction::FMul: 2613 // x*x is always non-negative or a NaN. 2614 if (I->getOperand(0) == I->getOperand(1) && 2615 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2616 return true; 2617 2618 LLVM_FALLTHROUGH; 2619 case Instruction::FAdd: 2620 case Instruction::FDiv: 2621 case Instruction::FRem: 2622 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2623 Depth + 1) && 2624 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2625 Depth + 1); 2626 case Instruction::Select: 2627 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2628 Depth + 1) && 2629 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2630 Depth + 1); 2631 case Instruction::FPExt: 2632 case Instruction::FPTrunc: 2633 // Widening/narrowing never change sign. 2634 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2635 Depth + 1); 2636 case Instruction::Call: 2637 const auto *CI = cast<CallInst>(I); 2638 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2639 switch (IID) { 2640 default: 2641 break; 2642 case Intrinsic::maxnum: 2643 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2644 Depth + 1) || 2645 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2646 Depth + 1); 2647 case Intrinsic::minnum: 2648 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2649 Depth + 1) && 2650 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2651 Depth + 1); 2652 case Intrinsic::exp: 2653 case Intrinsic::exp2: 2654 case Intrinsic::fabs: 2655 return true; 2656 2657 case Intrinsic::sqrt: 2658 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2659 if (!SignBitOnly) 2660 return true; 2661 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2662 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2663 2664 case Intrinsic::powi: 2665 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2666 // powi(x,n) is non-negative if n is even. 2667 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2668 return true; 2669 } 2670 // TODO: This is not correct. Given that exp is an integer, here are the 2671 // ways that pow can return a negative value: 2672 // 2673 // pow(x, exp) --> negative if exp is odd and x is negative. 2674 // pow(-0, exp) --> -inf if exp is negative odd. 2675 // pow(-0, exp) --> -0 if exp is positive odd. 2676 // pow(-inf, exp) --> -0 if exp is negative odd. 2677 // pow(-inf, exp) --> -inf if exp is positive odd. 2678 // 2679 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2680 // but we must return false if x == -0. Unfortunately we do not currently 2681 // have a way of expressing this constraint. See details in 2682 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2683 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2684 Depth + 1); 2685 2686 case Intrinsic::fma: 2687 case Intrinsic::fmuladd: 2688 // x*x+y is non-negative if y is non-negative. 2689 return I->getOperand(0) == I->getOperand(1) && 2690 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2691 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2692 Depth + 1); 2693 } 2694 break; 2695 } 2696 return false; 2697 } 2698 2699 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2700 const TargetLibraryInfo *TLI) { 2701 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2702 } 2703 2704 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2705 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2706 } 2707 2708 /// If the specified value can be set by repeating the same byte in memory, 2709 /// return the i8 value that it is represented with. This is 2710 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2711 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2712 /// byte store (e.g. i16 0x1234), return null. 2713 Value *llvm::isBytewiseValue(Value *V) { 2714 // All byte-wide stores are splatable, even of arbitrary variables. 2715 if (V->getType()->isIntegerTy(8)) return V; 2716 2717 // Handle 'null' ConstantArrayZero etc. 2718 if (Constant *C = dyn_cast<Constant>(V)) 2719 if (C->isNullValue()) 2720 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2721 2722 // Constant float and double values can be handled as integer values if the 2723 // corresponding integer value is "byteable". An important case is 0.0. 2724 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2725 if (CFP->getType()->isFloatTy()) 2726 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2727 if (CFP->getType()->isDoubleTy()) 2728 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2729 // Don't handle long double formats, which have strange constraints. 2730 } 2731 2732 // We can handle constant integers that are multiple of 8 bits. 2733 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2734 if (CI->getBitWidth() % 8 == 0) { 2735 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2736 2737 if (!CI->getValue().isSplat(8)) 2738 return nullptr; 2739 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2740 } 2741 } 2742 2743 // A ConstantDataArray/Vector is splatable if all its members are equal and 2744 // also splatable. 2745 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2746 Value *Elt = CA->getElementAsConstant(0); 2747 Value *Val = isBytewiseValue(Elt); 2748 if (!Val) 2749 return nullptr; 2750 2751 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2752 if (CA->getElementAsConstant(I) != Elt) 2753 return nullptr; 2754 2755 return Val; 2756 } 2757 2758 // Conceptually, we could handle things like: 2759 // %a = zext i8 %X to i16 2760 // %b = shl i16 %a, 8 2761 // %c = or i16 %a, %b 2762 // but until there is an example that actually needs this, it doesn't seem 2763 // worth worrying about. 2764 return nullptr; 2765 } 2766 2767 2768 // This is the recursive version of BuildSubAggregate. It takes a few different 2769 // arguments. Idxs is the index within the nested struct From that we are 2770 // looking at now (which is of type IndexedType). IdxSkip is the number of 2771 // indices from Idxs that should be left out when inserting into the resulting 2772 // struct. To is the result struct built so far, new insertvalue instructions 2773 // build on that. 2774 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2775 SmallVectorImpl<unsigned> &Idxs, 2776 unsigned IdxSkip, 2777 Instruction *InsertBefore) { 2778 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2779 if (STy) { 2780 // Save the original To argument so we can modify it 2781 Value *OrigTo = To; 2782 // General case, the type indexed by Idxs is a struct 2783 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2784 // Process each struct element recursively 2785 Idxs.push_back(i); 2786 Value *PrevTo = To; 2787 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2788 InsertBefore); 2789 Idxs.pop_back(); 2790 if (!To) { 2791 // Couldn't find any inserted value for this index? Cleanup 2792 while (PrevTo != OrigTo) { 2793 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2794 PrevTo = Del->getAggregateOperand(); 2795 Del->eraseFromParent(); 2796 } 2797 // Stop processing elements 2798 break; 2799 } 2800 } 2801 // If we successfully found a value for each of our subaggregates 2802 if (To) 2803 return To; 2804 } 2805 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2806 // the struct's elements had a value that was inserted directly. In the latter 2807 // case, perhaps we can't determine each of the subelements individually, but 2808 // we might be able to find the complete struct somewhere. 2809 2810 // Find the value that is at that particular spot 2811 Value *V = FindInsertedValue(From, Idxs); 2812 2813 if (!V) 2814 return nullptr; 2815 2816 // Insert the value in the new (sub) aggregrate 2817 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2818 "tmp", InsertBefore); 2819 } 2820 2821 // This helper takes a nested struct and extracts a part of it (which is again a 2822 // struct) into a new value. For example, given the struct: 2823 // { a, { b, { c, d }, e } } 2824 // and the indices "1, 1" this returns 2825 // { c, d }. 2826 // 2827 // It does this by inserting an insertvalue for each element in the resulting 2828 // struct, as opposed to just inserting a single struct. This will only work if 2829 // each of the elements of the substruct are known (ie, inserted into From by an 2830 // insertvalue instruction somewhere). 2831 // 2832 // All inserted insertvalue instructions are inserted before InsertBefore 2833 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2834 Instruction *InsertBefore) { 2835 assert(InsertBefore && "Must have someplace to insert!"); 2836 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2837 idx_range); 2838 Value *To = UndefValue::get(IndexedType); 2839 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2840 unsigned IdxSkip = Idxs.size(); 2841 2842 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2843 } 2844 2845 /// Given an aggregrate and an sequence of indices, see if 2846 /// the scalar value indexed is already around as a register, for example if it 2847 /// were inserted directly into the aggregrate. 2848 /// 2849 /// If InsertBefore is not null, this function will duplicate (modified) 2850 /// insertvalues when a part of a nested struct is extracted. 2851 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2852 Instruction *InsertBefore) { 2853 // Nothing to index? Just return V then (this is useful at the end of our 2854 // recursion). 2855 if (idx_range.empty()) 2856 return V; 2857 // We have indices, so V should have an indexable type. 2858 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2859 "Not looking at a struct or array?"); 2860 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2861 "Invalid indices for type?"); 2862 2863 if (Constant *C = dyn_cast<Constant>(V)) { 2864 C = C->getAggregateElement(idx_range[0]); 2865 if (!C) return nullptr; 2866 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2867 } 2868 2869 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2870 // Loop the indices for the insertvalue instruction in parallel with the 2871 // requested indices 2872 const unsigned *req_idx = idx_range.begin(); 2873 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2874 i != e; ++i, ++req_idx) { 2875 if (req_idx == idx_range.end()) { 2876 // We can't handle this without inserting insertvalues 2877 if (!InsertBefore) 2878 return nullptr; 2879 2880 // The requested index identifies a part of a nested aggregate. Handle 2881 // this specially. For example, 2882 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2883 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2884 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2885 // This can be changed into 2886 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2887 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2888 // which allows the unused 0,0 element from the nested struct to be 2889 // removed. 2890 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2891 InsertBefore); 2892 } 2893 2894 // This insert value inserts something else than what we are looking for. 2895 // See if the (aggregate) value inserted into has the value we are 2896 // looking for, then. 2897 if (*req_idx != *i) 2898 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2899 InsertBefore); 2900 } 2901 // If we end up here, the indices of the insertvalue match with those 2902 // requested (though possibly only partially). Now we recursively look at 2903 // the inserted value, passing any remaining indices. 2904 return FindInsertedValue(I->getInsertedValueOperand(), 2905 makeArrayRef(req_idx, idx_range.end()), 2906 InsertBefore); 2907 } 2908 2909 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2910 // If we're extracting a value from an aggregate that was extracted from 2911 // something else, we can extract from that something else directly instead. 2912 // However, we will need to chain I's indices with the requested indices. 2913 2914 // Calculate the number of indices required 2915 unsigned size = I->getNumIndices() + idx_range.size(); 2916 // Allocate some space to put the new indices in 2917 SmallVector<unsigned, 5> Idxs; 2918 Idxs.reserve(size); 2919 // Add indices from the extract value instruction 2920 Idxs.append(I->idx_begin(), I->idx_end()); 2921 2922 // Add requested indices 2923 Idxs.append(idx_range.begin(), idx_range.end()); 2924 2925 assert(Idxs.size() == size 2926 && "Number of indices added not correct?"); 2927 2928 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2929 } 2930 // Otherwise, we don't know (such as, extracting from a function return value 2931 // or load instruction) 2932 return nullptr; 2933 } 2934 2935 /// Analyze the specified pointer to see if it can be expressed as a base 2936 /// pointer plus a constant offset. Return the base and offset to the caller. 2937 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2938 const DataLayout &DL) { 2939 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2940 APInt ByteOffset(BitWidth, 0); 2941 2942 // We walk up the defs but use a visited set to handle unreachable code. In 2943 // that case, we stop after accumulating the cycle once (not that it 2944 // matters). 2945 SmallPtrSet<Value *, 16> Visited; 2946 while (Visited.insert(Ptr).second) { 2947 if (Ptr->getType()->isVectorTy()) 2948 break; 2949 2950 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2951 // If one of the values we have visited is an addrspacecast, then 2952 // the pointer type of this GEP may be different from the type 2953 // of the Ptr parameter which was passed to this function. This 2954 // means when we construct GEPOffset, we need to use the size 2955 // of GEP's pointer type rather than the size of the original 2956 // pointer type. 2957 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2958 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2959 break; 2960 2961 ByteOffset += GEPOffset.getSExtValue(); 2962 2963 Ptr = GEP->getPointerOperand(); 2964 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2965 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2966 Ptr = cast<Operator>(Ptr)->getOperand(0); 2967 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2968 if (GA->isInterposable()) 2969 break; 2970 Ptr = GA->getAliasee(); 2971 } else { 2972 break; 2973 } 2974 } 2975 Offset = ByteOffset.getSExtValue(); 2976 return Ptr; 2977 } 2978 2979 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2980 // Make sure the GEP has exactly three arguments. 2981 if (GEP->getNumOperands() != 3) 2982 return false; 2983 2984 // Make sure the index-ee is a pointer to array of i8. 2985 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2986 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2987 return false; 2988 2989 // Check to make sure that the first operand of the GEP is an integer and 2990 // has value 0 so that we are sure we're indexing into the initializer. 2991 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2992 if (!FirstIdx || !FirstIdx->isZero()) 2993 return false; 2994 2995 return true; 2996 } 2997 2998 /// This function computes the length of a null-terminated C string pointed to 2999 /// by V. If successful, it returns true and returns the string in Str. 3000 /// If unsuccessful, it returns false. 3001 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3002 uint64_t Offset, bool TrimAtNul) { 3003 assert(V); 3004 3005 // Look through bitcast instructions and geps. 3006 V = V->stripPointerCasts(); 3007 3008 // If the value is a GEP instruction or constant expression, treat it as an 3009 // offset. 3010 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3011 // The GEP operator should be based on a pointer to string constant, and is 3012 // indexing into the string constant. 3013 if (!isGEPBasedOnPointerToString(GEP)) 3014 return false; 3015 3016 // If the second index isn't a ConstantInt, then this is a variable index 3017 // into the array. If this occurs, we can't say anything meaningful about 3018 // the string. 3019 uint64_t StartIdx = 0; 3020 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3021 StartIdx = CI->getZExtValue(); 3022 else 3023 return false; 3024 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3025 TrimAtNul); 3026 } 3027 3028 // The GEP instruction, constant or instruction, must reference a global 3029 // variable that is a constant and is initialized. The referenced constant 3030 // initializer is the array that we'll use for optimization. 3031 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3032 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3033 return false; 3034 3035 // Handle the all-zeros case. 3036 if (GV->getInitializer()->isNullValue()) { 3037 // This is a degenerate case. The initializer is constant zero so the 3038 // length of the string must be zero. 3039 Str = ""; 3040 return true; 3041 } 3042 3043 // This must be a ConstantDataArray. 3044 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3045 if (!Array || !Array->isString()) 3046 return false; 3047 3048 // Get the number of elements in the array. 3049 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3050 3051 // Start out with the entire array in the StringRef. 3052 Str = Array->getAsString(); 3053 3054 if (Offset > NumElts) 3055 return false; 3056 3057 // Skip over 'offset' bytes. 3058 Str = Str.substr(Offset); 3059 3060 if (TrimAtNul) { 3061 // Trim off the \0 and anything after it. If the array is not nul 3062 // terminated, we just return the whole end of string. The client may know 3063 // some other way that the string is length-bound. 3064 Str = Str.substr(0, Str.find('\0')); 3065 } 3066 return true; 3067 } 3068 3069 // These next two are very similar to the above, but also look through PHI 3070 // nodes. 3071 // TODO: See if we can integrate these two together. 3072 3073 /// If we can compute the length of the string pointed to by 3074 /// the specified pointer, return 'len+1'. If we can't, return 0. 3075 static uint64_t GetStringLengthH(const Value *V, 3076 SmallPtrSetImpl<const PHINode*> &PHIs) { 3077 // Look through noop bitcast instructions. 3078 V = V->stripPointerCasts(); 3079 3080 // If this is a PHI node, there are two cases: either we have already seen it 3081 // or we haven't. 3082 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3083 if (!PHIs.insert(PN).second) 3084 return ~0ULL; // already in the set. 3085 3086 // If it was new, see if all the input strings are the same length. 3087 uint64_t LenSoFar = ~0ULL; 3088 for (Value *IncValue : PN->incoming_values()) { 3089 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3090 if (Len == 0) return 0; // Unknown length -> unknown. 3091 3092 if (Len == ~0ULL) continue; 3093 3094 if (Len != LenSoFar && LenSoFar != ~0ULL) 3095 return 0; // Disagree -> unknown. 3096 LenSoFar = Len; 3097 } 3098 3099 // Success, all agree. 3100 return LenSoFar; 3101 } 3102 3103 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3104 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3105 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3106 if (Len1 == 0) return 0; 3107 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3108 if (Len2 == 0) return 0; 3109 if (Len1 == ~0ULL) return Len2; 3110 if (Len2 == ~0ULL) return Len1; 3111 if (Len1 != Len2) return 0; 3112 return Len1; 3113 } 3114 3115 // Otherwise, see if we can read the string. 3116 StringRef StrData; 3117 if (!getConstantStringInfo(V, StrData)) 3118 return 0; 3119 3120 return StrData.size()+1; 3121 } 3122 3123 /// If we can compute the length of the string pointed to by 3124 /// the specified pointer, return 'len+1'. If we can't, return 0. 3125 uint64_t llvm::GetStringLength(const Value *V) { 3126 if (!V->getType()->isPointerTy()) return 0; 3127 3128 SmallPtrSet<const PHINode*, 32> PHIs; 3129 uint64_t Len = GetStringLengthH(V, PHIs); 3130 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3131 // an empty string as a length. 3132 return Len == ~0ULL ? 1 : Len; 3133 } 3134 3135 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3136 /// previous iteration of the loop was referring to the same object as \p PN. 3137 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3138 const LoopInfo *LI) { 3139 // Find the loop-defined value. 3140 Loop *L = LI->getLoopFor(PN->getParent()); 3141 if (PN->getNumIncomingValues() != 2) 3142 return true; 3143 3144 // Find the value from previous iteration. 3145 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3146 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3147 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3148 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3149 return true; 3150 3151 // If a new pointer is loaded in the loop, the pointer references a different 3152 // object in every iteration. E.g.: 3153 // for (i) 3154 // int *p = a[i]; 3155 // ... 3156 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3157 if (!L->isLoopInvariant(Load->getPointerOperand())) 3158 return false; 3159 return true; 3160 } 3161 3162 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3163 unsigned MaxLookup) { 3164 if (!V->getType()->isPointerTy()) 3165 return V; 3166 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3167 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3168 V = GEP->getPointerOperand(); 3169 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3170 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3171 V = cast<Operator>(V)->getOperand(0); 3172 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3173 if (GA->isInterposable()) 3174 return V; 3175 V = GA->getAliasee(); 3176 } else if (isa<AllocaInst>(V)) { 3177 // An alloca can't be further simplified. 3178 return V; 3179 } else { 3180 if (auto CS = CallSite(V)) 3181 if (Value *RV = CS.getReturnedArgOperand()) { 3182 V = RV; 3183 continue; 3184 } 3185 3186 // See if InstructionSimplify knows any relevant tricks. 3187 if (Instruction *I = dyn_cast<Instruction>(V)) 3188 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3189 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3190 V = Simplified; 3191 continue; 3192 } 3193 3194 return V; 3195 } 3196 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3197 } 3198 return V; 3199 } 3200 3201 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3202 const DataLayout &DL, LoopInfo *LI, 3203 unsigned MaxLookup) { 3204 SmallPtrSet<Value *, 4> Visited; 3205 SmallVector<Value *, 4> Worklist; 3206 Worklist.push_back(V); 3207 do { 3208 Value *P = Worklist.pop_back_val(); 3209 P = GetUnderlyingObject(P, DL, MaxLookup); 3210 3211 if (!Visited.insert(P).second) 3212 continue; 3213 3214 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3215 Worklist.push_back(SI->getTrueValue()); 3216 Worklist.push_back(SI->getFalseValue()); 3217 continue; 3218 } 3219 3220 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3221 // If this PHI changes the underlying object in every iteration of the 3222 // loop, don't look through it. Consider: 3223 // int **A; 3224 // for (i) { 3225 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3226 // Curr = A[i]; 3227 // *Prev, *Curr; 3228 // 3229 // Prev is tracking Curr one iteration behind so they refer to different 3230 // underlying objects. 3231 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3232 isSameUnderlyingObjectInLoop(PN, LI)) 3233 for (Value *IncValue : PN->incoming_values()) 3234 Worklist.push_back(IncValue); 3235 continue; 3236 } 3237 3238 Objects.push_back(P); 3239 } while (!Worklist.empty()); 3240 } 3241 3242 /// Return true if the only users of this pointer are lifetime markers. 3243 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3244 for (const User *U : V->users()) { 3245 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3246 if (!II) return false; 3247 3248 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3249 II->getIntrinsicID() != Intrinsic::lifetime_end) 3250 return false; 3251 } 3252 return true; 3253 } 3254 3255 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3256 const Instruction *CtxI, 3257 const DominatorTree *DT) { 3258 const Operator *Inst = dyn_cast<Operator>(V); 3259 if (!Inst) 3260 return false; 3261 3262 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3263 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3264 if (C->canTrap()) 3265 return false; 3266 3267 switch (Inst->getOpcode()) { 3268 default: 3269 return true; 3270 case Instruction::UDiv: 3271 case Instruction::URem: { 3272 // x / y is undefined if y == 0. 3273 const APInt *V; 3274 if (match(Inst->getOperand(1), m_APInt(V))) 3275 return *V != 0; 3276 return false; 3277 } 3278 case Instruction::SDiv: 3279 case Instruction::SRem: { 3280 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3281 const APInt *Numerator, *Denominator; 3282 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3283 return false; 3284 // We cannot hoist this division if the denominator is 0. 3285 if (*Denominator == 0) 3286 return false; 3287 // It's safe to hoist if the denominator is not 0 or -1. 3288 if (*Denominator != -1) 3289 return true; 3290 // At this point we know that the denominator is -1. It is safe to hoist as 3291 // long we know that the numerator is not INT_MIN. 3292 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3293 return !Numerator->isMinSignedValue(); 3294 // The numerator *might* be MinSignedValue. 3295 return false; 3296 } 3297 case Instruction::Load: { 3298 const LoadInst *LI = cast<LoadInst>(Inst); 3299 if (!LI->isUnordered() || 3300 // Speculative load may create a race that did not exist in the source. 3301 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3302 // Speculative load may load data from dirty regions. 3303 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3304 return false; 3305 const DataLayout &DL = LI->getModule()->getDataLayout(); 3306 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3307 LI->getAlignment(), DL, CtxI, DT); 3308 } 3309 case Instruction::Call: { 3310 auto *CI = cast<const CallInst>(Inst); 3311 const Function *Callee = CI->getCalledFunction(); 3312 3313 // The called function could have undefined behavior or side-effects, even 3314 // if marked readnone nounwind. 3315 return Callee && Callee->isSpeculatable(); 3316 } 3317 case Instruction::VAArg: 3318 case Instruction::Alloca: 3319 case Instruction::Invoke: 3320 case Instruction::PHI: 3321 case Instruction::Store: 3322 case Instruction::Ret: 3323 case Instruction::Br: 3324 case Instruction::IndirectBr: 3325 case Instruction::Switch: 3326 case Instruction::Unreachable: 3327 case Instruction::Fence: 3328 case Instruction::AtomicRMW: 3329 case Instruction::AtomicCmpXchg: 3330 case Instruction::LandingPad: 3331 case Instruction::Resume: 3332 case Instruction::CatchSwitch: 3333 case Instruction::CatchPad: 3334 case Instruction::CatchRet: 3335 case Instruction::CleanupPad: 3336 case Instruction::CleanupRet: 3337 return false; // Misc instructions which have effects 3338 } 3339 } 3340 3341 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3342 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3343 } 3344 3345 /// Return true if we know that the specified value is never null. 3346 bool llvm::isKnownNonNull(const Value *V) { 3347 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3348 3349 // Alloca never returns null, malloc might. 3350 if (isa<AllocaInst>(V)) return true; 3351 3352 // A byval, inalloca, or nonnull argument is never null. 3353 if (const Argument *A = dyn_cast<Argument>(V)) 3354 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3355 3356 // A global variable in address space 0 is non null unless extern weak 3357 // or an absolute symbol reference. Other address spaces may have null as a 3358 // valid address for a global, so we can't assume anything. 3359 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3360 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3361 GV->getType()->getAddressSpace() == 0; 3362 3363 // A Load tagged with nonnull metadata is never null. 3364 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3365 return LI->getMetadata(LLVMContext::MD_nonnull); 3366 3367 if (auto CS = ImmutableCallSite(V)) 3368 if (CS.isReturnNonNull()) 3369 return true; 3370 3371 return false; 3372 } 3373 3374 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3375 const Instruction *CtxI, 3376 const DominatorTree *DT) { 3377 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3378 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3379 assert(CtxI && "Context instruction required for analysis"); 3380 assert(DT && "Dominator tree required for analysis"); 3381 3382 unsigned NumUsesExplored = 0; 3383 for (auto *U : V->users()) { 3384 // Avoid massive lists 3385 if (NumUsesExplored >= DomConditionsMaxUses) 3386 break; 3387 NumUsesExplored++; 3388 3389 // If the value is used as an argument to a call or invoke, then argument 3390 // attributes may provide an answer about null-ness. 3391 if (auto CS = ImmutableCallSite(U)) 3392 if (auto *CalledFunc = CS.getCalledFunction()) 3393 for (const Argument &Arg : CalledFunc->args()) 3394 if (CS.getArgOperand(Arg.getArgNo()) == V && 3395 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3396 return true; 3397 3398 // Consider only compare instructions uniquely controlling a branch 3399 CmpInst::Predicate Pred; 3400 if (!match(const_cast<User *>(U), 3401 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3402 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3403 continue; 3404 3405 for (auto *CmpU : U->users()) { 3406 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3407 assert(BI->isConditional() && "uses a comparison!"); 3408 3409 BasicBlock *NonNullSuccessor = 3410 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3411 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3412 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3413 return true; 3414 } else if (Pred == ICmpInst::ICMP_NE && 3415 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3416 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3417 return true; 3418 } 3419 } 3420 } 3421 3422 return false; 3423 } 3424 3425 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3426 const DominatorTree *DT) { 3427 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3428 return false; 3429 3430 if (isKnownNonNull(V)) 3431 return true; 3432 3433 if (!CtxI || !DT) 3434 return false; 3435 3436 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3437 } 3438 3439 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3440 const Value *RHS, 3441 const DataLayout &DL, 3442 AssumptionCache *AC, 3443 const Instruction *CxtI, 3444 const DominatorTree *DT) { 3445 // Multiplying n * m significant bits yields a result of n + m significant 3446 // bits. If the total number of significant bits does not exceed the 3447 // result bit width (minus 1), there is no overflow. 3448 // This means if we have enough leading zero bits in the operands 3449 // we can guarantee that the result does not overflow. 3450 // Ref: "Hacker's Delight" by Henry Warren 3451 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3452 KnownBits LHSKnown(BitWidth); 3453 KnownBits RHSKnown(BitWidth); 3454 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3455 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3456 // Note that underestimating the number of zero bits gives a more 3457 // conservative answer. 3458 unsigned ZeroBits = LHSKnown.Zero.countLeadingOnes() + 3459 RHSKnown.Zero.countLeadingOnes(); 3460 // First handle the easy case: if we have enough zero bits there's 3461 // definitely no overflow. 3462 if (ZeroBits >= BitWidth) 3463 return OverflowResult::NeverOverflows; 3464 3465 // Get the largest possible values for each operand. 3466 APInt LHSMax = ~LHSKnown.Zero; 3467 APInt RHSMax = ~RHSKnown.Zero; 3468 3469 // We know the multiply operation doesn't overflow if the maximum values for 3470 // each operand will not overflow after we multiply them together. 3471 bool MaxOverflow; 3472 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3473 if (!MaxOverflow) 3474 return OverflowResult::NeverOverflows; 3475 3476 // We know it always overflows if multiplying the smallest possible values for 3477 // the operands also results in overflow. 3478 bool MinOverflow; 3479 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3480 if (MinOverflow) 3481 return OverflowResult::AlwaysOverflows; 3482 3483 return OverflowResult::MayOverflow; 3484 } 3485 3486 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3487 const Value *RHS, 3488 const DataLayout &DL, 3489 AssumptionCache *AC, 3490 const Instruction *CxtI, 3491 const DominatorTree *DT) { 3492 bool LHSKnownNonNegative, LHSKnownNegative; 3493 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3494 AC, CxtI, DT); 3495 if (LHSKnownNonNegative || LHSKnownNegative) { 3496 bool RHSKnownNonNegative, RHSKnownNegative; 3497 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3498 AC, CxtI, DT); 3499 3500 if (LHSKnownNegative && RHSKnownNegative) { 3501 // The sign bit is set in both cases: this MUST overflow. 3502 // Create a simple add instruction, and insert it into the struct. 3503 return OverflowResult::AlwaysOverflows; 3504 } 3505 3506 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3507 // The sign bit is clear in both cases: this CANNOT overflow. 3508 // Create a simple add instruction, and insert it into the struct. 3509 return OverflowResult::NeverOverflows; 3510 } 3511 } 3512 3513 return OverflowResult::MayOverflow; 3514 } 3515 3516 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3517 const Value *RHS, 3518 const AddOperator *Add, 3519 const DataLayout &DL, 3520 AssumptionCache *AC, 3521 const Instruction *CxtI, 3522 const DominatorTree *DT) { 3523 if (Add && Add->hasNoSignedWrap()) { 3524 return OverflowResult::NeverOverflows; 3525 } 3526 3527 bool LHSKnownNonNegative, LHSKnownNegative; 3528 bool RHSKnownNonNegative, RHSKnownNegative; 3529 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3530 AC, CxtI, DT); 3531 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3532 AC, CxtI, DT); 3533 3534 if ((LHSKnownNonNegative && RHSKnownNegative) || 3535 (LHSKnownNegative && RHSKnownNonNegative)) { 3536 // The sign bits are opposite: this CANNOT overflow. 3537 return OverflowResult::NeverOverflows; 3538 } 3539 3540 // The remaining code needs Add to be available. Early returns if not so. 3541 if (!Add) 3542 return OverflowResult::MayOverflow; 3543 3544 // If the sign of Add is the same as at least one of the operands, this add 3545 // CANNOT overflow. This is particularly useful when the sum is 3546 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3547 // operands. 3548 bool LHSOrRHSKnownNonNegative = 3549 (LHSKnownNonNegative || RHSKnownNonNegative); 3550 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3551 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3552 bool AddKnownNonNegative, AddKnownNegative; 3553 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3554 /*Depth=*/0, AC, CxtI, DT); 3555 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3556 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3557 return OverflowResult::NeverOverflows; 3558 } 3559 } 3560 3561 return OverflowResult::MayOverflow; 3562 } 3563 3564 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3565 const DominatorTree &DT) { 3566 #ifndef NDEBUG 3567 auto IID = II->getIntrinsicID(); 3568 assert((IID == Intrinsic::sadd_with_overflow || 3569 IID == Intrinsic::uadd_with_overflow || 3570 IID == Intrinsic::ssub_with_overflow || 3571 IID == Intrinsic::usub_with_overflow || 3572 IID == Intrinsic::smul_with_overflow || 3573 IID == Intrinsic::umul_with_overflow) && 3574 "Not an overflow intrinsic!"); 3575 #endif 3576 3577 SmallVector<const BranchInst *, 2> GuardingBranches; 3578 SmallVector<const ExtractValueInst *, 2> Results; 3579 3580 for (const User *U : II->users()) { 3581 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3582 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3583 3584 if (EVI->getIndices()[0] == 0) 3585 Results.push_back(EVI); 3586 else { 3587 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3588 3589 for (const auto *U : EVI->users()) 3590 if (const auto *B = dyn_cast<BranchInst>(U)) { 3591 assert(B->isConditional() && "How else is it using an i1?"); 3592 GuardingBranches.push_back(B); 3593 } 3594 } 3595 } else { 3596 // We are using the aggregate directly in a way we don't want to analyze 3597 // here (storing it to a global, say). 3598 return false; 3599 } 3600 } 3601 3602 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3603 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3604 if (!NoWrapEdge.isSingleEdge()) 3605 return false; 3606 3607 // Check if all users of the add are provably no-wrap. 3608 for (const auto *Result : Results) { 3609 // If the extractvalue itself is not executed on overflow, the we don't 3610 // need to check each use separately, since domination is transitive. 3611 if (DT.dominates(NoWrapEdge, Result->getParent())) 3612 continue; 3613 3614 for (auto &RU : Result->uses()) 3615 if (!DT.dominates(NoWrapEdge, RU)) 3616 return false; 3617 } 3618 3619 return true; 3620 }; 3621 3622 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3623 } 3624 3625 3626 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3627 const DataLayout &DL, 3628 AssumptionCache *AC, 3629 const Instruction *CxtI, 3630 const DominatorTree *DT) { 3631 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3632 Add, DL, AC, CxtI, DT); 3633 } 3634 3635 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3636 const Value *RHS, 3637 const DataLayout &DL, 3638 AssumptionCache *AC, 3639 const Instruction *CxtI, 3640 const DominatorTree *DT) { 3641 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3642 } 3643 3644 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3645 // A memory operation returns normally if it isn't volatile. A volatile 3646 // operation is allowed to trap. 3647 // 3648 // An atomic operation isn't guaranteed to return in a reasonable amount of 3649 // time because it's possible for another thread to interfere with it for an 3650 // arbitrary length of time, but programs aren't allowed to rely on that. 3651 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3652 return !LI->isVolatile(); 3653 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3654 return !SI->isVolatile(); 3655 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3656 return !CXI->isVolatile(); 3657 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3658 return !RMWI->isVolatile(); 3659 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3660 return !MII->isVolatile(); 3661 3662 // If there is no successor, then execution can't transfer to it. 3663 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3664 return !CRI->unwindsToCaller(); 3665 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3666 return !CatchSwitch->unwindsToCaller(); 3667 if (isa<ResumeInst>(I)) 3668 return false; 3669 if (isa<ReturnInst>(I)) 3670 return false; 3671 if (isa<UnreachableInst>(I)) 3672 return false; 3673 3674 // Calls can throw, or contain an infinite loop, or kill the process. 3675 if (auto CS = ImmutableCallSite(I)) { 3676 // Call sites that throw have implicit non-local control flow. 3677 if (!CS.doesNotThrow()) 3678 return false; 3679 3680 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3681 // etc. and thus not return. However, LLVM already assumes that 3682 // 3683 // - Thread exiting actions are modeled as writes to memory invisible to 3684 // the program. 3685 // 3686 // - Loops that don't have side effects (side effects are volatile/atomic 3687 // stores and IO) always terminate (see http://llvm.org/PR965). 3688 // Furthermore IO itself is also modeled as writes to memory invisible to 3689 // the program. 3690 // 3691 // We rely on those assumptions here, and use the memory effects of the call 3692 // target as a proxy for checking that it always returns. 3693 3694 // FIXME: This isn't aggressive enough; a call which only writes to a global 3695 // is guaranteed to return. 3696 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3697 match(I, m_Intrinsic<Intrinsic::assume>()); 3698 } 3699 3700 // Other instructions return normally. 3701 return true; 3702 } 3703 3704 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3705 const Loop *L) { 3706 // The loop header is guaranteed to be executed for every iteration. 3707 // 3708 // FIXME: Relax this constraint to cover all basic blocks that are 3709 // guaranteed to be executed at every iteration. 3710 if (I->getParent() != L->getHeader()) return false; 3711 3712 for (const Instruction &LI : *L->getHeader()) { 3713 if (&LI == I) return true; 3714 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3715 } 3716 llvm_unreachable("Instruction not contained in its own parent basic block."); 3717 } 3718 3719 bool llvm::propagatesFullPoison(const Instruction *I) { 3720 switch (I->getOpcode()) { 3721 case Instruction::Add: 3722 case Instruction::Sub: 3723 case Instruction::Xor: 3724 case Instruction::Trunc: 3725 case Instruction::BitCast: 3726 case Instruction::AddrSpaceCast: 3727 case Instruction::Mul: 3728 case Instruction::Shl: 3729 case Instruction::GetElementPtr: 3730 // These operations all propagate poison unconditionally. Note that poison 3731 // is not any particular value, so xor or subtraction of poison with 3732 // itself still yields poison, not zero. 3733 return true; 3734 3735 case Instruction::AShr: 3736 case Instruction::SExt: 3737 // For these operations, one bit of the input is replicated across 3738 // multiple output bits. A replicated poison bit is still poison. 3739 return true; 3740 3741 case Instruction::ICmp: 3742 // Comparing poison with any value yields poison. This is why, for 3743 // instance, x s< (x +nsw 1) can be folded to true. 3744 return true; 3745 3746 default: 3747 return false; 3748 } 3749 } 3750 3751 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3752 switch (I->getOpcode()) { 3753 case Instruction::Store: 3754 return cast<StoreInst>(I)->getPointerOperand(); 3755 3756 case Instruction::Load: 3757 return cast<LoadInst>(I)->getPointerOperand(); 3758 3759 case Instruction::AtomicCmpXchg: 3760 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3761 3762 case Instruction::AtomicRMW: 3763 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3764 3765 case Instruction::UDiv: 3766 case Instruction::SDiv: 3767 case Instruction::URem: 3768 case Instruction::SRem: 3769 return I->getOperand(1); 3770 3771 default: 3772 return nullptr; 3773 } 3774 } 3775 3776 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 3777 // We currently only look for uses of poison values within the same basic 3778 // block, as that makes it easier to guarantee that the uses will be 3779 // executed given that PoisonI is executed. 3780 // 3781 // FIXME: Expand this to consider uses beyond the same basic block. To do 3782 // this, look out for the distinction between post-dominance and strong 3783 // post-dominance. 3784 const BasicBlock *BB = PoisonI->getParent(); 3785 3786 // Set of instructions that we have proved will yield poison if PoisonI 3787 // does. 3788 SmallSet<const Value *, 16> YieldsPoison; 3789 SmallSet<const BasicBlock *, 4> Visited; 3790 YieldsPoison.insert(PoisonI); 3791 Visited.insert(PoisonI->getParent()); 3792 3793 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3794 3795 unsigned Iter = 0; 3796 while (Iter++ < MaxDepth) { 3797 for (auto &I : make_range(Begin, End)) { 3798 if (&I != PoisonI) { 3799 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3800 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3801 return true; 3802 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3803 return false; 3804 } 3805 3806 // Mark poison that propagates from I through uses of I. 3807 if (YieldsPoison.count(&I)) { 3808 for (const User *User : I.users()) { 3809 const Instruction *UserI = cast<Instruction>(User); 3810 if (propagatesFullPoison(UserI)) 3811 YieldsPoison.insert(User); 3812 } 3813 } 3814 } 3815 3816 if (auto *NextBB = BB->getSingleSuccessor()) { 3817 if (Visited.insert(NextBB).second) { 3818 BB = NextBB; 3819 Begin = BB->getFirstNonPHI()->getIterator(); 3820 End = BB->end(); 3821 continue; 3822 } 3823 } 3824 3825 break; 3826 }; 3827 return false; 3828 } 3829 3830 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3831 if (FMF.noNaNs()) 3832 return true; 3833 3834 if (auto *C = dyn_cast<ConstantFP>(V)) 3835 return !C->isNaN(); 3836 return false; 3837 } 3838 3839 static bool isKnownNonZero(const Value *V) { 3840 if (auto *C = dyn_cast<ConstantFP>(V)) 3841 return !C->isZero(); 3842 return false; 3843 } 3844 3845 /// Match non-obvious integer minimum and maximum sequences. 3846 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3847 Value *CmpLHS, Value *CmpRHS, 3848 Value *TrueVal, Value *FalseVal, 3849 Value *&LHS, Value *&RHS) { 3850 // Assume success. If there's no match, callers should not use these anyway. 3851 LHS = TrueVal; 3852 RHS = FalseVal; 3853 3854 // Recognize variations of: 3855 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3856 const APInt *C1; 3857 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3858 const APInt *C2; 3859 3860 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3861 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3862 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3863 return {SPF_SMAX, SPNB_NA, false}; 3864 3865 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3866 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3867 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3868 return {SPF_SMIN, SPNB_NA, false}; 3869 3870 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3871 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3872 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3873 return {SPF_UMAX, SPNB_NA, false}; 3874 3875 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3876 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3877 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3878 return {SPF_UMIN, SPNB_NA, false}; 3879 } 3880 3881 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3882 return {SPF_UNKNOWN, SPNB_NA, false}; 3883 3884 // Z = X -nsw Y 3885 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3886 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3887 if (match(TrueVal, m_Zero()) && 3888 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3889 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3890 3891 // Z = X -nsw Y 3892 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 3893 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 3894 if (match(FalseVal, m_Zero()) && 3895 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3896 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3897 3898 if (!match(CmpRHS, m_APInt(C1))) 3899 return {SPF_UNKNOWN, SPNB_NA, false}; 3900 3901 // An unsigned min/max can be written with a signed compare. 3902 const APInt *C2; 3903 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 3904 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 3905 // Is the sign bit set? 3906 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 3907 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 3908 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 3909 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3910 3911 // Is the sign bit clear? 3912 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 3913 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 3914 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 3915 C2->isMinSignedValue()) 3916 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3917 } 3918 3919 // Look through 'not' ops to find disguised signed min/max. 3920 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 3921 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 3922 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 3923 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 3924 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3925 3926 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 3927 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 3928 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 3929 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 3930 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3931 3932 return {SPF_UNKNOWN, SPNB_NA, false}; 3933 } 3934 3935 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3936 FastMathFlags FMF, 3937 Value *CmpLHS, Value *CmpRHS, 3938 Value *TrueVal, Value *FalseVal, 3939 Value *&LHS, Value *&RHS) { 3940 LHS = CmpLHS; 3941 RHS = CmpRHS; 3942 3943 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3944 // return inconsistent results between implementations. 3945 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3946 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3947 // Therefore we behave conservatively and only proceed if at least one of the 3948 // operands is known to not be zero, or if we don't care about signed zeroes. 3949 switch (Pred) { 3950 default: break; 3951 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3952 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3953 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3954 !isKnownNonZero(CmpRHS)) 3955 return {SPF_UNKNOWN, SPNB_NA, false}; 3956 } 3957 3958 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3959 bool Ordered = false; 3960 3961 // When given one NaN and one non-NaN input: 3962 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3963 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3964 // ordered comparison fails), which could be NaN or non-NaN. 3965 // so here we discover exactly what NaN behavior is required/accepted. 3966 if (CmpInst::isFPPredicate(Pred)) { 3967 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3968 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3969 3970 if (LHSSafe && RHSSafe) { 3971 // Both operands are known non-NaN. 3972 NaNBehavior = SPNB_RETURNS_ANY; 3973 } else if (CmpInst::isOrdered(Pred)) { 3974 // An ordered comparison will return false when given a NaN, so it 3975 // returns the RHS. 3976 Ordered = true; 3977 if (LHSSafe) 3978 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3979 NaNBehavior = SPNB_RETURNS_NAN; 3980 else if (RHSSafe) 3981 NaNBehavior = SPNB_RETURNS_OTHER; 3982 else 3983 // Completely unsafe. 3984 return {SPF_UNKNOWN, SPNB_NA, false}; 3985 } else { 3986 Ordered = false; 3987 // An unordered comparison will return true when given a NaN, so it 3988 // returns the LHS. 3989 if (LHSSafe) 3990 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3991 NaNBehavior = SPNB_RETURNS_OTHER; 3992 else if (RHSSafe) 3993 NaNBehavior = SPNB_RETURNS_NAN; 3994 else 3995 // Completely unsafe. 3996 return {SPF_UNKNOWN, SPNB_NA, false}; 3997 } 3998 } 3999 4000 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4001 std::swap(CmpLHS, CmpRHS); 4002 Pred = CmpInst::getSwappedPredicate(Pred); 4003 if (NaNBehavior == SPNB_RETURNS_NAN) 4004 NaNBehavior = SPNB_RETURNS_OTHER; 4005 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4006 NaNBehavior = SPNB_RETURNS_NAN; 4007 Ordered = !Ordered; 4008 } 4009 4010 // ([if]cmp X, Y) ? X : Y 4011 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4012 switch (Pred) { 4013 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4014 case ICmpInst::ICMP_UGT: 4015 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4016 case ICmpInst::ICMP_SGT: 4017 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4018 case ICmpInst::ICMP_ULT: 4019 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4020 case ICmpInst::ICMP_SLT: 4021 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4022 case FCmpInst::FCMP_UGT: 4023 case FCmpInst::FCMP_UGE: 4024 case FCmpInst::FCMP_OGT: 4025 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4026 case FCmpInst::FCMP_ULT: 4027 case FCmpInst::FCMP_ULE: 4028 case FCmpInst::FCMP_OLT: 4029 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4030 } 4031 } 4032 4033 const APInt *C1; 4034 if (match(CmpRHS, m_APInt(C1))) { 4035 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4036 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4037 4038 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4039 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4040 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4041 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4042 } 4043 4044 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4045 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4046 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4047 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4048 } 4049 } 4050 } 4051 4052 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4053 } 4054 4055 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4056 Instruction::CastOps *CastOp) { 4057 auto *Cast1 = dyn_cast<CastInst>(V1); 4058 if (!Cast1) 4059 return nullptr; 4060 4061 *CastOp = Cast1->getOpcode(); 4062 Type *SrcTy = Cast1->getSrcTy(); 4063 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4064 // If V1 and V2 are both the same cast from the same type, look through V1. 4065 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4066 return Cast2->getOperand(0); 4067 return nullptr; 4068 } 4069 4070 auto *C = dyn_cast<Constant>(V2); 4071 if (!C) 4072 return nullptr; 4073 4074 Constant *CastedTo = nullptr; 4075 switch (*CastOp) { 4076 case Instruction::ZExt: 4077 if (CmpI->isUnsigned()) 4078 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4079 break; 4080 case Instruction::SExt: 4081 if (CmpI->isSigned()) 4082 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4083 break; 4084 case Instruction::Trunc: 4085 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4086 break; 4087 case Instruction::FPTrunc: 4088 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4089 break; 4090 case Instruction::FPExt: 4091 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4092 break; 4093 case Instruction::FPToUI: 4094 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4095 break; 4096 case Instruction::FPToSI: 4097 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4098 break; 4099 case Instruction::UIToFP: 4100 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4101 break; 4102 case Instruction::SIToFP: 4103 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4104 break; 4105 default: 4106 break; 4107 } 4108 4109 if (!CastedTo) 4110 return nullptr; 4111 4112 // Make sure the cast doesn't lose any information. 4113 Constant *CastedBack = 4114 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4115 if (CastedBack != C) 4116 return nullptr; 4117 4118 return CastedTo; 4119 } 4120 4121 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4122 Instruction::CastOps *CastOp) { 4123 SelectInst *SI = dyn_cast<SelectInst>(V); 4124 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4125 4126 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4127 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4128 4129 CmpInst::Predicate Pred = CmpI->getPredicate(); 4130 Value *CmpLHS = CmpI->getOperand(0); 4131 Value *CmpRHS = CmpI->getOperand(1); 4132 Value *TrueVal = SI->getTrueValue(); 4133 Value *FalseVal = SI->getFalseValue(); 4134 FastMathFlags FMF; 4135 if (isa<FPMathOperator>(CmpI)) 4136 FMF = CmpI->getFastMathFlags(); 4137 4138 // Bail out early. 4139 if (CmpI->isEquality()) 4140 return {SPF_UNKNOWN, SPNB_NA, false}; 4141 4142 // Deal with type mismatches. 4143 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4144 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4145 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4146 cast<CastInst>(TrueVal)->getOperand(0), C, 4147 LHS, RHS); 4148 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4149 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4150 C, cast<CastInst>(FalseVal)->getOperand(0), 4151 LHS, RHS); 4152 } 4153 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4154 LHS, RHS); 4155 } 4156 4157 /// Return true if "icmp Pred LHS RHS" is always true. 4158 static bool isTruePredicate(CmpInst::Predicate Pred, 4159 const Value *LHS, const Value *RHS, 4160 const DataLayout &DL, unsigned Depth, 4161 AssumptionCache *AC, const Instruction *CxtI, 4162 const DominatorTree *DT) { 4163 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4164 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4165 return true; 4166 4167 switch (Pred) { 4168 default: 4169 return false; 4170 4171 case CmpInst::ICMP_SLE: { 4172 const APInt *C; 4173 4174 // LHS s<= LHS +_{nsw} C if C >= 0 4175 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4176 return !C->isNegative(); 4177 return false; 4178 } 4179 4180 case CmpInst::ICMP_ULE: { 4181 const APInt *C; 4182 4183 // LHS u<= LHS +_{nuw} C for any C 4184 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4185 return true; 4186 4187 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4188 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4189 const Value *&X, 4190 const APInt *&CA, const APInt *&CB) { 4191 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4192 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4193 return true; 4194 4195 // If X & C == 0 then (X | C) == X +_{nuw} C 4196 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4197 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4198 KnownBits Known(CA->getBitWidth()); 4199 computeKnownBits(X, Known, DL, Depth + 1, AC, CxtI, DT); 4200 4201 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4202 return true; 4203 } 4204 4205 return false; 4206 }; 4207 4208 const Value *X; 4209 const APInt *CLHS, *CRHS; 4210 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4211 return CLHS->ule(*CRHS); 4212 4213 return false; 4214 } 4215 } 4216 } 4217 4218 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4219 /// ALHS ARHS" is true. Otherwise, return None. 4220 static Optional<bool> 4221 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4222 const Value *ARHS, const Value *BLHS, 4223 const Value *BRHS, const DataLayout &DL, 4224 unsigned Depth, AssumptionCache *AC, 4225 const Instruction *CxtI, const DominatorTree *DT) { 4226 switch (Pred) { 4227 default: 4228 return None; 4229 4230 case CmpInst::ICMP_SLT: 4231 case CmpInst::ICMP_SLE: 4232 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4233 DT) && 4234 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4235 return true; 4236 return None; 4237 4238 case CmpInst::ICMP_ULT: 4239 case CmpInst::ICMP_ULE: 4240 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4241 DT) && 4242 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4243 return true; 4244 return None; 4245 } 4246 } 4247 4248 /// Return true if the operands of the two compares match. IsSwappedOps is true 4249 /// when the operands match, but are swapped. 4250 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4251 const Value *BLHS, const Value *BRHS, 4252 bool &IsSwappedOps) { 4253 4254 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4255 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4256 return IsMatchingOps || IsSwappedOps; 4257 } 4258 4259 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4260 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4261 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4262 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4263 const Value *ALHS, 4264 const Value *ARHS, 4265 CmpInst::Predicate BPred, 4266 const Value *BLHS, 4267 const Value *BRHS, 4268 bool IsSwappedOps) { 4269 // Canonicalize the operands so they're matching. 4270 if (IsSwappedOps) { 4271 std::swap(BLHS, BRHS); 4272 BPred = ICmpInst::getSwappedPredicate(BPred); 4273 } 4274 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4275 return true; 4276 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4277 return false; 4278 4279 return None; 4280 } 4281 4282 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4283 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4284 /// C2" is false. Otherwise, return None if we can't infer anything. 4285 static Optional<bool> 4286 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4287 const ConstantInt *C1, 4288 CmpInst::Predicate BPred, 4289 const Value *BLHS, const ConstantInt *C2) { 4290 assert(ALHS == BLHS && "LHS operands must match."); 4291 ConstantRange DomCR = 4292 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4293 ConstantRange CR = 4294 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4295 ConstantRange Intersection = DomCR.intersectWith(CR); 4296 ConstantRange Difference = DomCR.difference(CR); 4297 if (Intersection.isEmptySet()) 4298 return false; 4299 if (Difference.isEmptySet()) 4300 return true; 4301 return None; 4302 } 4303 4304 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4305 const DataLayout &DL, bool InvertAPred, 4306 unsigned Depth, AssumptionCache *AC, 4307 const Instruction *CxtI, 4308 const DominatorTree *DT) { 4309 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4310 if (LHS->getType() != RHS->getType()) 4311 return None; 4312 4313 Type *OpTy = LHS->getType(); 4314 assert(OpTy->getScalarType()->isIntegerTy(1)); 4315 4316 // LHS ==> RHS by definition 4317 if (!InvertAPred && LHS == RHS) 4318 return true; 4319 4320 if (OpTy->isVectorTy()) 4321 // TODO: extending the code below to handle vectors 4322 return None; 4323 assert(OpTy->isIntegerTy(1) && "implied by above"); 4324 4325 ICmpInst::Predicate APred, BPred; 4326 Value *ALHS, *ARHS; 4327 Value *BLHS, *BRHS; 4328 4329 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4330 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4331 return None; 4332 4333 if (InvertAPred) 4334 APred = CmpInst::getInversePredicate(APred); 4335 4336 // Can we infer anything when the two compares have matching operands? 4337 bool IsSwappedOps; 4338 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4339 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4340 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4341 return Implication; 4342 // No amount of additional analysis will infer the second condition, so 4343 // early exit. 4344 return None; 4345 } 4346 4347 // Can we infer anything when the LHS operands match and the RHS operands are 4348 // constants (not necessarily matching)? 4349 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4350 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4351 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4352 cast<ConstantInt>(BRHS))) 4353 return Implication; 4354 // No amount of additional analysis will infer the second condition, so 4355 // early exit. 4356 return None; 4357 } 4358 4359 if (APred == BPred) 4360 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4361 CxtI, DT); 4362 4363 return None; 4364 } 4365