1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getPointerTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 unsigned NumExcluded = 0; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} 126 127 Query(const Query &Q, const Value *NewExcl) 128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 129 NumExcluded(Q.NumExcluded) { 130 Excluded = Q.Excluded; 131 Excluded[NumExcluded++] = NewExcl; 132 assert(NumExcluded <= Excluded.size()); 133 } 134 135 bool isExcluded(const Value *Value) const { 136 if (NumExcluded == 0) 137 return false; 138 auto End = Excluded.begin() + NumExcluded; 139 return std::find(Excluded.begin(), End, Value) != End; 140 } 141 }; 142 143 } // end anonymous namespace 144 145 // Given the provided Value and, potentially, a context instruction, return 146 // the preferred context instruction (if any). 147 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 return nullptr; 159 } 160 161 static void computeKnownBits(const Value *V, KnownBits &Known, 162 unsigned Depth, const Query &Q); 163 164 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT, 168 OptimizationRemarkEmitter *ORE) { 169 ::computeKnownBits(V, Known, Depth, 170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 171 } 172 173 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 174 const Query &Q); 175 176 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT, 180 OptimizationRemarkEmitter *ORE) { 181 return ::computeKnownBits(V, Depth, 182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 183 } 184 185 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 186 const DataLayout &DL, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 assert(LHS->getType() == RHS->getType() && 190 "LHS and RHS should have the same type"); 191 assert(LHS->getType()->isIntOrIntVectorTy() && 192 "LHS and RHS should be integers"); 193 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 194 KnownBits LHSKnown(IT->getBitWidth()); 195 KnownBits RHSKnown(IT->getBitWidth()); 196 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 197 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 198 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 199 } 200 201 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 202 for (const User *U : CxtI->users()) { 203 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 204 if (IC->isEquality()) 205 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 206 if (C->isNullValue()) 207 continue; 208 return false; 209 } 210 return true; 211 } 212 213 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 214 const Query &Q); 215 216 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 217 bool OrZero, 218 unsigned Depth, AssumptionCache *AC, 219 const Instruction *CxtI, 220 const DominatorTree *DT) { 221 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 222 Query(DL, AC, safeCxtI(V, CxtI), DT)); 223 } 224 225 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 226 227 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 228 AssumptionCache *AC, const Instruction *CxtI, 229 const DominatorTree *DT) { 230 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 231 } 232 233 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 234 unsigned Depth, 235 AssumptionCache *AC, const Instruction *CxtI, 236 const DominatorTree *DT) { 237 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 238 return Known.isNonNegative(); 239 } 240 241 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 242 AssumptionCache *AC, const Instruction *CxtI, 243 const DominatorTree *DT) { 244 if (auto *CI = dyn_cast<ConstantInt>(V)) 245 return CI->getValue().isStrictlyPositive(); 246 247 // TODO: We'd doing two recursive queries here. We should factor this such 248 // that only a single query is needed. 249 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 250 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 251 } 252 253 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 254 AssumptionCache *AC, const Instruction *CxtI, 255 const DominatorTree *DT) { 256 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 257 return Known.isNegative(); 258 } 259 260 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 261 262 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 263 const DataLayout &DL, 264 AssumptionCache *AC, const Instruction *CxtI, 265 const DominatorTree *DT) { 266 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 267 safeCxtI(V1, safeCxtI(V2, CxtI)), 268 DT)); 269 } 270 271 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 272 const Query &Q); 273 274 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 275 const DataLayout &DL, 276 unsigned Depth, AssumptionCache *AC, 277 const Instruction *CxtI, const DominatorTree *DT) { 278 return ::MaskedValueIsZero(V, Mask, Depth, 279 Query(DL, AC, safeCxtI(V, CxtI), DT)); 280 } 281 282 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 283 const Query &Q); 284 285 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 286 unsigned Depth, AssumptionCache *AC, 287 const Instruction *CxtI, 288 const DominatorTree *DT) { 289 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 290 } 291 292 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 293 bool NSW, 294 KnownBits &KnownOut, KnownBits &Known2, 295 unsigned Depth, const Query &Q) { 296 unsigned BitWidth = KnownOut.getBitWidth(); 297 298 // If an initial sequence of bits in the result is not needed, the 299 // corresponding bits in the operands are not needed. 300 KnownBits LHSKnown(BitWidth); 301 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 302 computeKnownBits(Op1, Known2, Depth + 1, Q); 303 304 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 305 } 306 307 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 308 KnownBits &Known, KnownBits &Known2, 309 unsigned Depth, const Query &Q) { 310 unsigned BitWidth = Known.getBitWidth(); 311 computeKnownBits(Op1, Known, Depth + 1, Q); 312 computeKnownBits(Op0, Known2, Depth + 1, Q); 313 314 bool isKnownNegative = false; 315 bool isKnownNonNegative = false; 316 // If the multiplication is known not to overflow, compute the sign bit. 317 if (NSW) { 318 if (Op0 == Op1) { 319 // The product of a number with itself is non-negative. 320 isKnownNonNegative = true; 321 } else { 322 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 323 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 324 bool isKnownNegativeOp1 = Known.isNegative(); 325 bool isKnownNegativeOp0 = Known2.isNegative(); 326 // The product of two numbers with the same sign is non-negative. 327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 329 // The product of a negative number and a non-negative number is either 330 // negative or zero. 331 if (!isKnownNonNegative) 332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 333 isKnownNonZero(Op0, Depth, Q)) || 334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 335 isKnownNonZero(Op1, Depth, Q)); 336 } 337 } 338 339 assert(!Known.hasConflict() && !Known2.hasConflict()); 340 // Compute a conservative estimate for high known-0 bits. 341 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 342 Known2.countMinLeadingZeros(), 343 BitWidth) - BitWidth; 344 LeadZ = std::min(LeadZ, BitWidth); 345 346 // The result of the bottom bits of an integer multiply can be 347 // inferred by looking at the bottom bits of both operands and 348 // multiplying them together. 349 // We can infer at least the minimum number of known trailing bits 350 // of both operands. Depending on number of trailing zeros, we can 351 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 352 // a and b are divisible by m and n respectively. 353 // We then calculate how many of those bits are inferrable and set 354 // the output. For example, the i8 mul: 355 // a = XXXX1100 (12) 356 // b = XXXX1110 (14) 357 // We know the bottom 3 bits are zero since the first can be divided by 358 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 359 // Applying the multiplication to the trimmed arguments gets: 360 // XX11 (3) 361 // X111 (7) 362 // ------- 363 // XX11 364 // XX11 365 // XX11 366 // XX11 367 // ------- 368 // XXXXX01 369 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 370 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 371 // The proof for this can be described as: 372 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 373 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 374 // umin(countTrailingZeros(C2), C6) + 375 // umin(C5 - umin(countTrailingZeros(C1), C5), 376 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 377 // %aa = shl i8 %a, C5 378 // %bb = shl i8 %b, C6 379 // %aaa = or i8 %aa, C1 380 // %bbb = or i8 %bb, C2 381 // %mul = mul i8 %aaa, %bbb 382 // %mask = and i8 %mul, C7 383 // => 384 // %mask = i8 ((C1*C2)&C7) 385 // Where C5, C6 describe the known bits of %a, %b 386 // C1, C2 describe the known bottom bits of %a, %b. 387 // C7 describes the mask of the known bits of the result. 388 APInt Bottom0 = Known.One; 389 APInt Bottom1 = Known2.One; 390 391 // How many times we'd be able to divide each argument by 2 (shr by 1). 392 // This gives us the number of trailing zeros on the multiplication result. 393 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 394 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 395 unsigned TrailZero0 = Known.countMinTrailingZeros(); 396 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 397 unsigned TrailZ = TrailZero0 + TrailZero1; 398 399 // Figure out the fewest known-bits operand. 400 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 401 TrailBitsKnown1 - TrailZero1); 402 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 403 404 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 405 Bottom1.getLoBits(TrailBitsKnown1); 406 407 Known.resetAll(); 408 Known.Zero.setHighBits(LeadZ); 409 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 410 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 411 412 // Only make use of no-wrap flags if we failed to compute the sign bit 413 // directly. This matters if the multiplication always overflows, in 414 // which case we prefer to follow the result of the direct computation, 415 // though as the program is invoking undefined behaviour we can choose 416 // whatever we like here. 417 if (isKnownNonNegative && !Known.isNegative()) 418 Known.makeNonNegative(); 419 else if (isKnownNegative && !Known.isNonNegative()) 420 Known.makeNegative(); 421 } 422 423 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 424 KnownBits &Known) { 425 unsigned BitWidth = Known.getBitWidth(); 426 unsigned NumRanges = Ranges.getNumOperands() / 2; 427 assert(NumRanges >= 1); 428 429 Known.Zero.setAllBits(); 430 Known.One.setAllBits(); 431 432 for (unsigned i = 0; i < NumRanges; ++i) { 433 ConstantInt *Lower = 434 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 435 ConstantInt *Upper = 436 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 437 ConstantRange Range(Lower->getValue(), Upper->getValue()); 438 439 // The first CommonPrefixBits of all values in Range are equal. 440 unsigned CommonPrefixBits = 441 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 442 443 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 444 Known.One &= Range.getUnsignedMax() & Mask; 445 Known.Zero &= ~Range.getUnsignedMax() & Mask; 446 } 447 } 448 449 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 450 SmallVector<const Value *, 16> WorkSet(1, I); 451 SmallPtrSet<const Value *, 32> Visited; 452 SmallPtrSet<const Value *, 16> EphValues; 453 454 // The instruction defining an assumption's condition itself is always 455 // considered ephemeral to that assumption (even if it has other 456 // non-ephemeral users). See r246696's test case for an example. 457 if (is_contained(I->operands(), E)) 458 return true; 459 460 while (!WorkSet.empty()) { 461 const Value *V = WorkSet.pop_back_val(); 462 if (!Visited.insert(V).second) 463 continue; 464 465 // If all uses of this value are ephemeral, then so is this value. 466 if (llvm::all_of(V->users(), [&](const User *U) { 467 return EphValues.count(U); 468 })) { 469 if (V == E) 470 return true; 471 472 if (V == I || isSafeToSpeculativelyExecute(V)) { 473 EphValues.insert(V); 474 if (const User *U = dyn_cast<User>(V)) 475 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 476 J != JE; ++J) 477 WorkSet.push_back(*J); 478 } 479 } 480 } 481 482 return false; 483 } 484 485 // Is this an intrinsic that cannot be speculated but also cannot trap? 486 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 487 if (const CallInst *CI = dyn_cast<CallInst>(I)) 488 if (Function *F = CI->getCalledFunction()) 489 switch (F->getIntrinsicID()) { 490 default: break; 491 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 492 case Intrinsic::assume: 493 case Intrinsic::sideeffect: 494 case Intrinsic::dbg_declare: 495 case Intrinsic::dbg_value: 496 case Intrinsic::invariant_start: 497 case Intrinsic::invariant_end: 498 case Intrinsic::lifetime_start: 499 case Intrinsic::lifetime_end: 500 case Intrinsic::objectsize: 501 case Intrinsic::ptr_annotation: 502 case Intrinsic::var_annotation: 503 return true; 504 } 505 506 return false; 507 } 508 509 bool llvm::isValidAssumeForContext(const Instruction *Inv, 510 const Instruction *CxtI, 511 const DominatorTree *DT) { 512 // There are two restrictions on the use of an assume: 513 // 1. The assume must dominate the context (or the control flow must 514 // reach the assume whenever it reaches the context). 515 // 2. The context must not be in the assume's set of ephemeral values 516 // (otherwise we will use the assume to prove that the condition 517 // feeding the assume is trivially true, thus causing the removal of 518 // the assume). 519 520 if (DT) { 521 if (DT->dominates(Inv, CxtI)) 522 return true; 523 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 524 // We don't have a DT, but this trivially dominates. 525 return true; 526 } 527 528 // With or without a DT, the only remaining case we will check is if the 529 // instructions are in the same BB. Give up if that is not the case. 530 if (Inv->getParent() != CxtI->getParent()) 531 return false; 532 533 // If we have a dom tree, then we now know that the assume doens't dominate 534 // the other instruction. If we don't have a dom tree then we can check if 535 // the assume is first in the BB. 536 if (!DT) { 537 // Search forward from the assume until we reach the context (or the end 538 // of the block); the common case is that the assume will come first. 539 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 540 IE = Inv->getParent()->end(); I != IE; ++I) 541 if (&*I == CxtI) 542 return true; 543 } 544 545 // The context comes first, but they're both in the same block. Make sure 546 // there is nothing in between that might interrupt the control flow. 547 for (BasicBlock::const_iterator I = 548 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 549 I != IE; ++I) 550 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 551 return false; 552 553 return !isEphemeralValueOf(Inv, CxtI); 554 } 555 556 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 557 unsigned Depth, const Query &Q) { 558 // Use of assumptions is context-sensitive. If we don't have a context, we 559 // cannot use them! 560 if (!Q.AC || !Q.CxtI) 561 return; 562 563 unsigned BitWidth = Known.getBitWidth(); 564 565 // Note that the patterns below need to be kept in sync with the code 566 // in AssumptionCache::updateAffectedValues. 567 568 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 569 if (!AssumeVH) 570 continue; 571 CallInst *I = cast<CallInst>(AssumeVH); 572 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 573 "Got assumption for the wrong function!"); 574 if (Q.isExcluded(I)) 575 continue; 576 577 // Warning: This loop can end up being somewhat performance sensetive. 578 // We're running this loop for once for each value queried resulting in a 579 // runtime of ~O(#assumes * #values). 580 581 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 582 "must be an assume intrinsic"); 583 584 Value *Arg = I->getArgOperand(0); 585 586 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 587 assert(BitWidth == 1 && "assume operand is not i1?"); 588 Known.setAllOnes(); 589 return; 590 } 591 if (match(Arg, m_Not(m_Specific(V))) && 592 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 593 assert(BitWidth == 1 && "assume operand is not i1?"); 594 Known.setAllZero(); 595 return; 596 } 597 598 // The remaining tests are all recursive, so bail out if we hit the limit. 599 if (Depth == MaxDepth) 600 continue; 601 602 Value *A, *B; 603 auto m_V = m_CombineOr(m_Specific(V), 604 m_CombineOr(m_PtrToInt(m_Specific(V)), 605 m_BitCast(m_Specific(V)))); 606 607 CmpInst::Predicate Pred; 608 uint64_t C; 609 // assume(v = a) 610 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 611 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 612 KnownBits RHSKnown(BitWidth); 613 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 614 Known.Zero |= RHSKnown.Zero; 615 Known.One |= RHSKnown.One; 616 // assume(v & b = a) 617 } else if (match(Arg, 618 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 619 Pred == ICmpInst::ICMP_EQ && 620 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 KnownBits RHSKnown(BitWidth); 622 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 623 KnownBits MaskKnown(BitWidth); 624 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 625 626 // For those bits in the mask that are known to be one, we can propagate 627 // known bits from the RHS to V. 628 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 629 Known.One |= RHSKnown.One & MaskKnown.One; 630 // assume(~(v & b) = a) 631 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 632 m_Value(A))) && 633 Pred == ICmpInst::ICMP_EQ && 634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 635 KnownBits RHSKnown(BitWidth); 636 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 637 KnownBits MaskKnown(BitWidth); 638 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 639 640 // For those bits in the mask that are known to be one, we can propagate 641 // inverted known bits from the RHS to V. 642 Known.Zero |= RHSKnown.One & MaskKnown.One; 643 Known.One |= RHSKnown.Zero & MaskKnown.One; 644 // assume(v | b = a) 645 } else if (match(Arg, 646 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 647 Pred == ICmpInst::ICMP_EQ && 648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 649 KnownBits RHSKnown(BitWidth); 650 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 651 KnownBits BKnown(BitWidth); 652 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 653 654 // For those bits in B that are known to be zero, we can propagate known 655 // bits from the RHS to V. 656 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 657 Known.One |= RHSKnown.One & BKnown.Zero; 658 // assume(~(v | b) = a) 659 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 660 m_Value(A))) && 661 Pred == ICmpInst::ICMP_EQ && 662 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 663 KnownBits RHSKnown(BitWidth); 664 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 665 KnownBits BKnown(BitWidth); 666 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 667 668 // For those bits in B that are known to be zero, we can propagate 669 // inverted known bits from the RHS to V. 670 Known.Zero |= RHSKnown.One & BKnown.Zero; 671 Known.One |= RHSKnown.Zero & BKnown.Zero; 672 // assume(v ^ b = a) 673 } else if (match(Arg, 674 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 675 Pred == ICmpInst::ICMP_EQ && 676 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 677 KnownBits RHSKnown(BitWidth); 678 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 679 KnownBits BKnown(BitWidth); 680 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 681 682 // For those bits in B that are known to be zero, we can propagate known 683 // bits from the RHS to V. For those bits in B that are known to be one, 684 // we can propagate inverted known bits from the RHS to V. 685 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 686 Known.One |= RHSKnown.One & BKnown.Zero; 687 Known.Zero |= RHSKnown.One & BKnown.One; 688 Known.One |= RHSKnown.Zero & BKnown.One; 689 // assume(~(v ^ b) = a) 690 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 691 m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 KnownBits RHSKnown(BitWidth); 695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 696 KnownBits BKnown(BitWidth); 697 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 698 699 // For those bits in B that are known to be zero, we can propagate 700 // inverted known bits from the RHS to V. For those bits in B that are 701 // known to be one, we can propagate known bits from the RHS to V. 702 Known.Zero |= RHSKnown.One & BKnown.Zero; 703 Known.One |= RHSKnown.Zero & BKnown.Zero; 704 Known.Zero |= RHSKnown.Zero & BKnown.One; 705 Known.One |= RHSKnown.One & BKnown.One; 706 // assume(v << c = a) 707 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 708 m_Value(A))) && 709 Pred == ICmpInst::ICMP_EQ && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 711 C < BitWidth) { 712 KnownBits RHSKnown(BitWidth); 713 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 714 // For those bits in RHS that are known, we can propagate them to known 715 // bits in V shifted to the right by C. 716 RHSKnown.Zero.lshrInPlace(C); 717 Known.Zero |= RHSKnown.Zero; 718 RHSKnown.One.lshrInPlace(C); 719 Known.One |= RHSKnown.One; 720 // assume(~(v << c) = a) 721 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 722 m_Value(A))) && 723 Pred == ICmpInst::ICMP_EQ && 724 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 725 C < BitWidth) { 726 KnownBits RHSKnown(BitWidth); 727 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 728 // For those bits in RHS that are known, we can propagate them inverted 729 // to known bits in V shifted to the right by C. 730 RHSKnown.One.lshrInPlace(C); 731 Known.Zero |= RHSKnown.One; 732 RHSKnown.Zero.lshrInPlace(C); 733 Known.One |= RHSKnown.Zero; 734 // assume(v >> c = a) 735 } else if (match(Arg, 736 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 737 m_Value(A))) && 738 Pred == ICmpInst::ICMP_EQ && 739 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 740 C < BitWidth) { 741 KnownBits RHSKnown(BitWidth); 742 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 743 // For those bits in RHS that are known, we can propagate them to known 744 // bits in V shifted to the right by C. 745 Known.Zero |= RHSKnown.Zero << C; 746 Known.One |= RHSKnown.One << C; 747 // assume(~(v >> c) = a) 748 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 749 m_Value(A))) && 750 Pred == ICmpInst::ICMP_EQ && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 752 C < BitWidth) { 753 KnownBits RHSKnown(BitWidth); 754 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 755 // For those bits in RHS that are known, we can propagate them inverted 756 // to known bits in V shifted to the right by C. 757 Known.Zero |= RHSKnown.One << C; 758 Known.One |= RHSKnown.Zero << C; 759 // assume(v >=_s c) where c is non-negative 760 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 761 Pred == ICmpInst::ICMP_SGE && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown(BitWidth); 764 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 765 766 if (RHSKnown.isNonNegative()) { 767 // We know that the sign bit is zero. 768 Known.makeNonNegative(); 769 } 770 // assume(v >_s c) where c is at least -1. 771 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 772 Pred == ICmpInst::ICMP_SGT && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown(BitWidth); 775 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 776 777 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 778 // We know that the sign bit is zero. 779 Known.makeNonNegative(); 780 } 781 // assume(v <=_s c) where c is negative 782 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 783 Pred == ICmpInst::ICMP_SLE && 784 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 785 KnownBits RHSKnown(BitWidth); 786 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 787 788 if (RHSKnown.isNegative()) { 789 // We know that the sign bit is one. 790 Known.makeNegative(); 791 } 792 // assume(v <_s c) where c is non-positive 793 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 794 Pred == ICmpInst::ICMP_SLT && 795 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 796 KnownBits RHSKnown(BitWidth); 797 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 798 799 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 800 // We know that the sign bit is one. 801 Known.makeNegative(); 802 } 803 // assume(v <=_u c) 804 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 805 Pred == ICmpInst::ICMP_ULE && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown(BitWidth); 808 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 809 810 // Whatever high bits in c are zero are known to be zero. 811 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 812 // assume(v <_u c) 813 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 814 Pred == ICmpInst::ICMP_ULT && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 816 KnownBits RHSKnown(BitWidth); 817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 818 819 // Whatever high bits in c are zero are known to be zero (if c is a power 820 // of 2, then one more). 821 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 822 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 823 else 824 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 825 } 826 } 827 828 // If assumptions conflict with each other or previous known bits, then we 829 // have a logical fallacy. It's possible that the assumption is not reachable, 830 // so this isn't a real bug. On the other hand, the program may have undefined 831 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 832 // clear out the known bits, try to warn the user, and hope for the best. 833 if (Known.Zero.intersects(Known.One)) { 834 Known.resetAll(); 835 836 if (Q.ORE) 837 Q.ORE->emit([&]() { 838 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 839 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 840 CxtI) 841 << "Detected conflicting code assumptions. Program may " 842 "have undefined behavior, or compiler may have " 843 "internal error."; 844 }); 845 } 846 } 847 848 /// Compute known bits from a shift operator, including those with a 849 /// non-constant shift amount. Known is the output of this function. Known2 is a 850 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 851 /// operator-specific functors that, given the known-zero or known-one bits 852 /// respectively, and a shift amount, compute the implied known-zero or 853 /// known-one bits of the shift operator's result respectively for that shift 854 /// amount. The results from calling KZF and KOF are conservatively combined for 855 /// all permitted shift amounts. 856 static void computeKnownBitsFromShiftOperator( 857 const Operator *I, KnownBits &Known, KnownBits &Known2, 858 unsigned Depth, const Query &Q, 859 function_ref<APInt(const APInt &, unsigned)> KZF, 860 function_ref<APInt(const APInt &, unsigned)> KOF) { 861 unsigned BitWidth = Known.getBitWidth(); 862 863 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 864 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 865 866 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 867 Known.Zero = KZF(Known.Zero, ShiftAmt); 868 Known.One = KOF(Known.One, ShiftAmt); 869 // If the known bits conflict, this must be an overflowing left shift, so 870 // the shift result is poison. We can return anything we want. Choose 0 for 871 // the best folding opportunity. 872 if (Known.hasConflict()) 873 Known.setAllZero(); 874 875 return; 876 } 877 878 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 879 880 // If the shift amount could be greater than or equal to the bit-width of the 881 // LHS, the value could be poison, but bail out because the check below is 882 // expensive. TODO: Should we just carry on? 883 if ((~Known.Zero).uge(BitWidth)) { 884 Known.resetAll(); 885 return; 886 } 887 888 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 889 // BitWidth > 64 and any upper bits are known, we'll end up returning the 890 // limit value (which implies all bits are known). 891 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 892 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 893 894 // It would be more-clearly correct to use the two temporaries for this 895 // calculation. Reusing the APInts here to prevent unnecessary allocations. 896 Known.resetAll(); 897 898 // If we know the shifter operand is nonzero, we can sometimes infer more 899 // known bits. However this is expensive to compute, so be lazy about it and 900 // only compute it when absolutely necessary. 901 Optional<bool> ShifterOperandIsNonZero; 902 903 // Early exit if we can't constrain any well-defined shift amount. 904 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 905 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 906 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 907 if (!*ShifterOperandIsNonZero) 908 return; 909 } 910 911 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 912 913 Known.Zero.setAllBits(); 914 Known.One.setAllBits(); 915 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 916 // Combine the shifted known input bits only for those shift amounts 917 // compatible with its known constraints. 918 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 919 continue; 920 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 921 continue; 922 // If we know the shifter is nonzero, we may be able to infer more known 923 // bits. This check is sunk down as far as possible to avoid the expensive 924 // call to isKnownNonZero if the cheaper checks above fail. 925 if (ShiftAmt == 0) { 926 if (!ShifterOperandIsNonZero.hasValue()) 927 ShifterOperandIsNonZero = 928 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 929 if (*ShifterOperandIsNonZero) 930 continue; 931 } 932 933 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 934 Known.One &= KOF(Known2.One, ShiftAmt); 935 } 936 937 // If the known bits conflict, the result is poison. Return a 0 and hope the 938 // caller can further optimize that. 939 if (Known.hasConflict()) 940 Known.setAllZero(); 941 } 942 943 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 944 unsigned Depth, const Query &Q) { 945 unsigned BitWidth = Known.getBitWidth(); 946 947 KnownBits Known2(Known); 948 switch (I->getOpcode()) { 949 default: break; 950 case Instruction::Load: 951 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 952 computeKnownBitsFromRangeMetadata(*MD, Known); 953 break; 954 case Instruction::And: { 955 // If either the LHS or the RHS are Zero, the result is zero. 956 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 957 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 958 959 // Output known-1 bits are only known if set in both the LHS & RHS. 960 Known.One &= Known2.One; 961 // Output known-0 are known to be clear if zero in either the LHS | RHS. 962 Known.Zero |= Known2.Zero; 963 964 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 965 // here we handle the more general case of adding any odd number by 966 // matching the form add(x, add(x, y)) where y is odd. 967 // TODO: This could be generalized to clearing any bit set in y where the 968 // following bit is known to be unset in y. 969 Value *Y = nullptr; 970 if (!Known.Zero[0] && !Known.One[0] && 971 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 972 m_Value(Y))) || 973 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 974 m_Value(Y))))) { 975 Known2.resetAll(); 976 computeKnownBits(Y, Known2, Depth + 1, Q); 977 if (Known2.countMinTrailingOnes() > 0) 978 Known.Zero.setBit(0); 979 } 980 break; 981 } 982 case Instruction::Or: 983 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 984 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 985 986 // Output known-0 bits are only known if clear in both the LHS & RHS. 987 Known.Zero &= Known2.Zero; 988 // Output known-1 are known to be set if set in either the LHS | RHS. 989 Known.One |= Known2.One; 990 break; 991 case Instruction::Xor: { 992 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 993 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 994 995 // Output known-0 bits are known if clear or set in both the LHS & RHS. 996 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 997 // Output known-1 are known to be set if set in only one of the LHS, RHS. 998 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 999 Known.Zero = std::move(KnownZeroOut); 1000 break; 1001 } 1002 case Instruction::Mul: { 1003 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1004 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1005 Known2, Depth, Q); 1006 break; 1007 } 1008 case Instruction::UDiv: { 1009 // For the purposes of computing leading zeros we can conservatively 1010 // treat a udiv as a logical right shift by the power of 2 known to 1011 // be less than the denominator. 1012 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1013 unsigned LeadZ = Known2.countMinLeadingZeros(); 1014 1015 Known2.resetAll(); 1016 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1017 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1018 if (RHSMaxLeadingZeros != BitWidth) 1019 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1020 1021 Known.Zero.setHighBits(LeadZ); 1022 break; 1023 } 1024 case Instruction::Select: { 1025 const Value *LHS, *RHS; 1026 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1027 if (SelectPatternResult::isMinOrMax(SPF)) { 1028 computeKnownBits(RHS, Known, Depth + 1, Q); 1029 computeKnownBits(LHS, Known2, Depth + 1, Q); 1030 } else { 1031 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1032 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1033 } 1034 1035 unsigned MaxHighOnes = 0; 1036 unsigned MaxHighZeros = 0; 1037 if (SPF == SPF_SMAX) { 1038 // If both sides are negative, the result is negative. 1039 if (Known.isNegative() && Known2.isNegative()) 1040 // We can derive a lower bound on the result by taking the max of the 1041 // leading one bits. 1042 MaxHighOnes = 1043 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1044 // If either side is non-negative, the result is non-negative. 1045 else if (Known.isNonNegative() || Known2.isNonNegative()) 1046 MaxHighZeros = 1; 1047 } else if (SPF == SPF_SMIN) { 1048 // If both sides are non-negative, the result is non-negative. 1049 if (Known.isNonNegative() && Known2.isNonNegative()) 1050 // We can derive an upper bound on the result by taking the max of the 1051 // leading zero bits. 1052 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1053 Known2.countMinLeadingZeros()); 1054 // If either side is negative, the result is negative. 1055 else if (Known.isNegative() || Known2.isNegative()) 1056 MaxHighOnes = 1; 1057 } else if (SPF == SPF_UMAX) { 1058 // We can derive a lower bound on the result by taking the max of the 1059 // leading one bits. 1060 MaxHighOnes = 1061 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1062 } else if (SPF == SPF_UMIN) { 1063 // We can derive an upper bound on the result by taking the max of the 1064 // leading zero bits. 1065 MaxHighZeros = 1066 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1067 } 1068 1069 // Only known if known in both the LHS and RHS. 1070 Known.One &= Known2.One; 1071 Known.Zero &= Known2.Zero; 1072 if (MaxHighOnes > 0) 1073 Known.One.setHighBits(MaxHighOnes); 1074 if (MaxHighZeros > 0) 1075 Known.Zero.setHighBits(MaxHighZeros); 1076 break; 1077 } 1078 case Instruction::FPTrunc: 1079 case Instruction::FPExt: 1080 case Instruction::FPToUI: 1081 case Instruction::FPToSI: 1082 case Instruction::SIToFP: 1083 case Instruction::UIToFP: 1084 break; // Can't work with floating point. 1085 case Instruction::PtrToInt: 1086 case Instruction::IntToPtr: 1087 // Fall through and handle them the same as zext/trunc. 1088 LLVM_FALLTHROUGH; 1089 case Instruction::ZExt: 1090 case Instruction::Trunc: { 1091 Type *SrcTy = I->getOperand(0)->getType(); 1092 1093 unsigned SrcBitWidth; 1094 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1095 // which fall through here. 1096 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1097 1098 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1099 Known = Known.zextOrTrunc(SrcBitWidth); 1100 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1101 Known = Known.zextOrTrunc(BitWidth); 1102 // Any top bits are known to be zero. 1103 if (BitWidth > SrcBitWidth) 1104 Known.Zero.setBitsFrom(SrcBitWidth); 1105 break; 1106 } 1107 case Instruction::BitCast: { 1108 Type *SrcTy = I->getOperand(0)->getType(); 1109 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1110 // TODO: For now, not handling conversions like: 1111 // (bitcast i64 %x to <2 x i32>) 1112 !I->getType()->isVectorTy()) { 1113 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1114 break; 1115 } 1116 break; 1117 } 1118 case Instruction::SExt: { 1119 // Compute the bits in the result that are not present in the input. 1120 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1121 1122 Known = Known.trunc(SrcBitWidth); 1123 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1124 // If the sign bit of the input is known set or clear, then we know the 1125 // top bits of the result. 1126 Known = Known.sext(BitWidth); 1127 break; 1128 } 1129 case Instruction::Shl: { 1130 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1131 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1132 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1133 APInt KZResult = KnownZero << ShiftAmt; 1134 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1135 // If this shift has "nsw" keyword, then the result is either a poison 1136 // value or has the same sign bit as the first operand. 1137 if (NSW && KnownZero.isSignBitSet()) 1138 KZResult.setSignBit(); 1139 return KZResult; 1140 }; 1141 1142 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1143 APInt KOResult = KnownOne << ShiftAmt; 1144 if (NSW && KnownOne.isSignBitSet()) 1145 KOResult.setSignBit(); 1146 return KOResult; 1147 }; 1148 1149 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1150 break; 1151 } 1152 case Instruction::LShr: { 1153 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1154 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1155 APInt KZResult = KnownZero.lshr(ShiftAmt); 1156 // High bits known zero. 1157 KZResult.setHighBits(ShiftAmt); 1158 return KZResult; 1159 }; 1160 1161 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1162 return KnownOne.lshr(ShiftAmt); 1163 }; 1164 1165 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1166 break; 1167 } 1168 case Instruction::AShr: { 1169 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1170 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1171 return KnownZero.ashr(ShiftAmt); 1172 }; 1173 1174 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1175 return KnownOne.ashr(ShiftAmt); 1176 }; 1177 1178 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1179 break; 1180 } 1181 case Instruction::Sub: { 1182 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1183 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1184 Known, Known2, Depth, Q); 1185 break; 1186 } 1187 case Instruction::Add: { 1188 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1189 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::SRem: 1194 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1195 APInt RA = Rem->getValue().abs(); 1196 if (RA.isPowerOf2()) { 1197 APInt LowBits = RA - 1; 1198 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1199 1200 // The low bits of the first operand are unchanged by the srem. 1201 Known.Zero = Known2.Zero & LowBits; 1202 Known.One = Known2.One & LowBits; 1203 1204 // If the first operand is non-negative or has all low bits zero, then 1205 // the upper bits are all zero. 1206 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1207 Known.Zero |= ~LowBits; 1208 1209 // If the first operand is negative and not all low bits are zero, then 1210 // the upper bits are all one. 1211 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1212 Known.One |= ~LowBits; 1213 1214 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1215 break; 1216 } 1217 } 1218 1219 // The sign bit is the LHS's sign bit, except when the result of the 1220 // remainder is zero. 1221 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1222 // If it's known zero, our sign bit is also zero. 1223 if (Known2.isNonNegative()) 1224 Known.makeNonNegative(); 1225 1226 break; 1227 case Instruction::URem: { 1228 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1229 const APInt &RA = Rem->getValue(); 1230 if (RA.isPowerOf2()) { 1231 APInt LowBits = (RA - 1); 1232 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1233 Known.Zero |= ~LowBits; 1234 Known.One &= LowBits; 1235 break; 1236 } 1237 } 1238 1239 // Since the result is less than or equal to either operand, any leading 1240 // zero bits in either operand must also exist in the result. 1241 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1242 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1243 1244 unsigned Leaders = 1245 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1246 Known.resetAll(); 1247 Known.Zero.setHighBits(Leaders); 1248 break; 1249 } 1250 1251 case Instruction::Alloca: { 1252 const AllocaInst *AI = cast<AllocaInst>(I); 1253 unsigned Align = AI->getAlignment(); 1254 if (Align == 0) 1255 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1256 1257 if (Align > 0) 1258 Known.Zero.setLowBits(countTrailingZeros(Align)); 1259 break; 1260 } 1261 case Instruction::GetElementPtr: { 1262 // Analyze all of the subscripts of this getelementptr instruction 1263 // to determine if we can prove known low zero bits. 1264 KnownBits LocalKnown(BitWidth); 1265 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1266 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1267 1268 gep_type_iterator GTI = gep_type_begin(I); 1269 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1270 Value *Index = I->getOperand(i); 1271 if (StructType *STy = GTI.getStructTypeOrNull()) { 1272 // Handle struct member offset arithmetic. 1273 1274 // Handle case when index is vector zeroinitializer 1275 Constant *CIndex = cast<Constant>(Index); 1276 if (CIndex->isZeroValue()) 1277 continue; 1278 1279 if (CIndex->getType()->isVectorTy()) 1280 Index = CIndex->getSplatValue(); 1281 1282 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1283 const StructLayout *SL = Q.DL.getStructLayout(STy); 1284 uint64_t Offset = SL->getElementOffset(Idx); 1285 TrailZ = std::min<unsigned>(TrailZ, 1286 countTrailingZeros(Offset)); 1287 } else { 1288 // Handle array index arithmetic. 1289 Type *IndexedTy = GTI.getIndexedType(); 1290 if (!IndexedTy->isSized()) { 1291 TrailZ = 0; 1292 break; 1293 } 1294 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1295 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1296 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1297 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1298 TrailZ = std::min(TrailZ, 1299 unsigned(countTrailingZeros(TypeSize) + 1300 LocalKnown.countMinTrailingZeros())); 1301 } 1302 } 1303 1304 Known.Zero.setLowBits(TrailZ); 1305 break; 1306 } 1307 case Instruction::PHI: { 1308 const PHINode *P = cast<PHINode>(I); 1309 // Handle the case of a simple two-predecessor recurrence PHI. 1310 // There's a lot more that could theoretically be done here, but 1311 // this is sufficient to catch some interesting cases. 1312 if (P->getNumIncomingValues() == 2) { 1313 for (unsigned i = 0; i != 2; ++i) { 1314 Value *L = P->getIncomingValue(i); 1315 Value *R = P->getIncomingValue(!i); 1316 Operator *LU = dyn_cast<Operator>(L); 1317 if (!LU) 1318 continue; 1319 unsigned Opcode = LU->getOpcode(); 1320 // Check for operations that have the property that if 1321 // both their operands have low zero bits, the result 1322 // will have low zero bits. 1323 if (Opcode == Instruction::Add || 1324 Opcode == Instruction::Sub || 1325 Opcode == Instruction::And || 1326 Opcode == Instruction::Or || 1327 Opcode == Instruction::Mul) { 1328 Value *LL = LU->getOperand(0); 1329 Value *LR = LU->getOperand(1); 1330 // Find a recurrence. 1331 if (LL == I) 1332 L = LR; 1333 else if (LR == I) 1334 L = LL; 1335 else 1336 break; 1337 // Ok, we have a PHI of the form L op= R. Check for low 1338 // zero bits. 1339 computeKnownBits(R, Known2, Depth + 1, Q); 1340 1341 // We need to take the minimum number of known bits 1342 KnownBits Known3(Known); 1343 computeKnownBits(L, Known3, Depth + 1, Q); 1344 1345 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1346 Known3.countMinTrailingZeros())); 1347 1348 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1349 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1350 // If initial value of recurrence is nonnegative, and we are adding 1351 // a nonnegative number with nsw, the result can only be nonnegative 1352 // or poison value regardless of the number of times we execute the 1353 // add in phi recurrence. If initial value is negative and we are 1354 // adding a negative number with nsw, the result can only be 1355 // negative or poison value. Similar arguments apply to sub and mul. 1356 // 1357 // (add non-negative, non-negative) --> non-negative 1358 // (add negative, negative) --> negative 1359 if (Opcode == Instruction::Add) { 1360 if (Known2.isNonNegative() && Known3.isNonNegative()) 1361 Known.makeNonNegative(); 1362 else if (Known2.isNegative() && Known3.isNegative()) 1363 Known.makeNegative(); 1364 } 1365 1366 // (sub nsw non-negative, negative) --> non-negative 1367 // (sub nsw negative, non-negative) --> negative 1368 else if (Opcode == Instruction::Sub && LL == I) { 1369 if (Known2.isNonNegative() && Known3.isNegative()) 1370 Known.makeNonNegative(); 1371 else if (Known2.isNegative() && Known3.isNonNegative()) 1372 Known.makeNegative(); 1373 } 1374 1375 // (mul nsw non-negative, non-negative) --> non-negative 1376 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1377 Known3.isNonNegative()) 1378 Known.makeNonNegative(); 1379 } 1380 1381 break; 1382 } 1383 } 1384 } 1385 1386 // Unreachable blocks may have zero-operand PHI nodes. 1387 if (P->getNumIncomingValues() == 0) 1388 break; 1389 1390 // Otherwise take the unions of the known bit sets of the operands, 1391 // taking conservative care to avoid excessive recursion. 1392 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1393 // Skip if every incoming value references to ourself. 1394 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1395 break; 1396 1397 Known.Zero.setAllBits(); 1398 Known.One.setAllBits(); 1399 for (Value *IncValue : P->incoming_values()) { 1400 // Skip direct self references. 1401 if (IncValue == P) continue; 1402 1403 Known2 = KnownBits(BitWidth); 1404 // Recurse, but cap the recursion to one level, because we don't 1405 // want to waste time spinning around in loops. 1406 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1407 Known.Zero &= Known2.Zero; 1408 Known.One &= Known2.One; 1409 // If all bits have been ruled out, there's no need to check 1410 // more operands. 1411 if (!Known.Zero && !Known.One) 1412 break; 1413 } 1414 } 1415 break; 1416 } 1417 case Instruction::Call: 1418 case Instruction::Invoke: 1419 // If range metadata is attached to this call, set known bits from that, 1420 // and then intersect with known bits based on other properties of the 1421 // function. 1422 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1423 computeKnownBitsFromRangeMetadata(*MD, Known); 1424 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1425 computeKnownBits(RV, Known2, Depth + 1, Q); 1426 Known.Zero |= Known2.Zero; 1427 Known.One |= Known2.One; 1428 } 1429 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1430 switch (II->getIntrinsicID()) { 1431 default: break; 1432 case Intrinsic::bitreverse: 1433 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1434 Known.Zero |= Known2.Zero.reverseBits(); 1435 Known.One |= Known2.One.reverseBits(); 1436 break; 1437 case Intrinsic::bswap: 1438 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1439 Known.Zero |= Known2.Zero.byteSwap(); 1440 Known.One |= Known2.One.byteSwap(); 1441 break; 1442 case Intrinsic::ctlz: { 1443 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1444 // If we have a known 1, its position is our upper bound. 1445 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1446 // If this call is undefined for 0, the result will be less than 2^n. 1447 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1448 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1449 unsigned LowBits = Log2_32(PossibleLZ)+1; 1450 Known.Zero.setBitsFrom(LowBits); 1451 break; 1452 } 1453 case Intrinsic::cttz: { 1454 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1455 // If we have a known 1, its position is our upper bound. 1456 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1457 // If this call is undefined for 0, the result will be less than 2^n. 1458 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1459 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1460 unsigned LowBits = Log2_32(PossibleTZ)+1; 1461 Known.Zero.setBitsFrom(LowBits); 1462 break; 1463 } 1464 case Intrinsic::ctpop: { 1465 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1466 // We can bound the space the count needs. Also, bits known to be zero 1467 // can't contribute to the population. 1468 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1469 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1470 Known.Zero.setBitsFrom(LowBits); 1471 // TODO: we could bound KnownOne using the lower bound on the number 1472 // of bits which might be set provided by popcnt KnownOne2. 1473 break; 1474 } 1475 case Intrinsic::x86_sse42_crc32_64_64: 1476 Known.Zero.setBitsFrom(32); 1477 break; 1478 } 1479 } 1480 break; 1481 case Instruction::ExtractElement: 1482 // Look through extract element. At the moment we keep this simple and skip 1483 // tracking the specific element. But at least we might find information 1484 // valid for all elements of the vector (for example if vector is sign 1485 // extended, shifted, etc). 1486 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1487 break; 1488 case Instruction::ExtractValue: 1489 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1490 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1491 if (EVI->getNumIndices() != 1) break; 1492 if (EVI->getIndices()[0] == 0) { 1493 switch (II->getIntrinsicID()) { 1494 default: break; 1495 case Intrinsic::uadd_with_overflow: 1496 case Intrinsic::sadd_with_overflow: 1497 computeKnownBitsAddSub(true, II->getArgOperand(0), 1498 II->getArgOperand(1), false, Known, Known2, 1499 Depth, Q); 1500 break; 1501 case Intrinsic::usub_with_overflow: 1502 case Intrinsic::ssub_with_overflow: 1503 computeKnownBitsAddSub(false, II->getArgOperand(0), 1504 II->getArgOperand(1), false, Known, Known2, 1505 Depth, Q); 1506 break; 1507 case Intrinsic::umul_with_overflow: 1508 case Intrinsic::smul_with_overflow: 1509 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1510 Known, Known2, Depth, Q); 1511 break; 1512 } 1513 } 1514 } 1515 } 1516 } 1517 1518 /// Determine which bits of V are known to be either zero or one and return 1519 /// them. 1520 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1521 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1522 computeKnownBits(V, Known, Depth, Q); 1523 return Known; 1524 } 1525 1526 /// Determine which bits of V are known to be either zero or one and return 1527 /// them in the Known bit set. 1528 /// 1529 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1530 /// we cannot optimize based on the assumption that it is zero without changing 1531 /// it to be an explicit zero. If we don't change it to zero, other code could 1532 /// optimized based on the contradictory assumption that it is non-zero. 1533 /// Because instcombine aggressively folds operations with undef args anyway, 1534 /// this won't lose us code quality. 1535 /// 1536 /// This function is defined on values with integer type, values with pointer 1537 /// type, and vectors of integers. In the case 1538 /// where V is a vector, known zero, and known one values are the 1539 /// same width as the vector element, and the bit is set only if it is true 1540 /// for all of the elements in the vector. 1541 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1542 const Query &Q) { 1543 assert(V && "No Value?"); 1544 assert(Depth <= MaxDepth && "Limit Search Depth"); 1545 unsigned BitWidth = Known.getBitWidth(); 1546 1547 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1548 V->getType()->isPtrOrPtrVectorTy()) && 1549 "Not integer or pointer type!"); 1550 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth && 1551 "V and Known should have same BitWidth"); 1552 (void)BitWidth; 1553 1554 const APInt *C; 1555 if (match(V, m_APInt(C))) { 1556 // We know all of the bits for a scalar constant or a splat vector constant! 1557 Known.One = *C; 1558 Known.Zero = ~Known.One; 1559 return; 1560 } 1561 // Null and aggregate-zero are all-zeros. 1562 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1563 Known.setAllZero(); 1564 return; 1565 } 1566 // Handle a constant vector by taking the intersection of the known bits of 1567 // each element. 1568 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1569 // We know that CDS must be a vector of integers. Take the intersection of 1570 // each element. 1571 Known.Zero.setAllBits(); Known.One.setAllBits(); 1572 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1573 APInt Elt = CDS->getElementAsAPInt(i); 1574 Known.Zero &= ~Elt; 1575 Known.One &= Elt; 1576 } 1577 return; 1578 } 1579 1580 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1581 // We know that CV must be a vector of integers. Take the intersection of 1582 // each element. 1583 Known.Zero.setAllBits(); Known.One.setAllBits(); 1584 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1585 Constant *Element = CV->getAggregateElement(i); 1586 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1587 if (!ElementCI) { 1588 Known.resetAll(); 1589 return; 1590 } 1591 const APInt &Elt = ElementCI->getValue(); 1592 Known.Zero &= ~Elt; 1593 Known.One &= Elt; 1594 } 1595 return; 1596 } 1597 1598 // Start out not knowing anything. 1599 Known.resetAll(); 1600 1601 // We can't imply anything about undefs. 1602 if (isa<UndefValue>(V)) 1603 return; 1604 1605 // There's no point in looking through other users of ConstantData for 1606 // assumptions. Confirm that we've handled them all. 1607 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1608 1609 // Limit search depth. 1610 // All recursive calls that increase depth must come after this. 1611 if (Depth == MaxDepth) 1612 return; 1613 1614 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1615 // the bits of its aliasee. 1616 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1617 if (!GA->isInterposable()) 1618 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1619 return; 1620 } 1621 1622 if (const Operator *I = dyn_cast<Operator>(V)) 1623 computeKnownBitsFromOperator(I, Known, Depth, Q); 1624 1625 // Aligned pointers have trailing zeros - refine Known.Zero set 1626 if (V->getType()->isPointerTy()) { 1627 unsigned Align = V->getPointerAlignment(Q.DL); 1628 if (Align) 1629 Known.Zero.setLowBits(countTrailingZeros(Align)); 1630 } 1631 1632 // computeKnownBitsFromAssume strictly refines Known. 1633 // Therefore, we run them after computeKnownBitsFromOperator. 1634 1635 // Check whether a nearby assume intrinsic can determine some known bits. 1636 computeKnownBitsFromAssume(V, Known, Depth, Q); 1637 1638 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1639 } 1640 1641 /// Return true if the given value is known to have exactly one 1642 /// bit set when defined. For vectors return true if every element is known to 1643 /// be a power of two when defined. Supports values with integer or pointer 1644 /// types and vectors of integers. 1645 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1646 const Query &Q) { 1647 assert(Depth <= MaxDepth && "Limit Search Depth"); 1648 1649 if (const Constant *C = dyn_cast<Constant>(V)) { 1650 if (C->isNullValue()) 1651 return OrZero; 1652 1653 const APInt *ConstIntOrConstSplatInt; 1654 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1655 return ConstIntOrConstSplatInt->isPowerOf2(); 1656 } 1657 1658 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1659 // it is shifted off the end then the result is undefined. 1660 if (match(V, m_Shl(m_One(), m_Value()))) 1661 return true; 1662 1663 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1664 // the bottom. If it is shifted off the bottom then the result is undefined. 1665 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1666 return true; 1667 1668 // The remaining tests are all recursive, so bail out if we hit the limit. 1669 if (Depth++ == MaxDepth) 1670 return false; 1671 1672 Value *X = nullptr, *Y = nullptr; 1673 // A shift left or a logical shift right of a power of two is a power of two 1674 // or zero. 1675 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1676 match(V, m_LShr(m_Value(X), m_Value())))) 1677 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1678 1679 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1680 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1681 1682 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1683 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1684 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1685 1686 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1687 // A power of two and'd with anything is a power of two or zero. 1688 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1689 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1690 return true; 1691 // X & (-X) is always a power of two or zero. 1692 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1693 return true; 1694 return false; 1695 } 1696 1697 // Adding a power-of-two or zero to the same power-of-two or zero yields 1698 // either the original power-of-two, a larger power-of-two or zero. 1699 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1700 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1701 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1702 if (match(X, m_And(m_Specific(Y), m_Value())) || 1703 match(X, m_And(m_Value(), m_Specific(Y)))) 1704 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1705 return true; 1706 if (match(Y, m_And(m_Specific(X), m_Value())) || 1707 match(Y, m_And(m_Value(), m_Specific(X)))) 1708 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1709 return true; 1710 1711 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1712 KnownBits LHSBits(BitWidth); 1713 computeKnownBits(X, LHSBits, Depth, Q); 1714 1715 KnownBits RHSBits(BitWidth); 1716 computeKnownBits(Y, RHSBits, Depth, Q); 1717 // If i8 V is a power of two or zero: 1718 // ZeroBits: 1 1 1 0 1 1 1 1 1719 // ~ZeroBits: 0 0 0 1 0 0 0 0 1720 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1721 // If OrZero isn't set, we cannot give back a zero result. 1722 // Make sure either the LHS or RHS has a bit set. 1723 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1724 return true; 1725 } 1726 } 1727 1728 // An exact divide or right shift can only shift off zero bits, so the result 1729 // is a power of two only if the first operand is a power of two and not 1730 // copying a sign bit (sdiv int_min, 2). 1731 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1732 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1733 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1734 Depth, Q); 1735 } 1736 1737 return false; 1738 } 1739 1740 /// \brief Test whether a GEP's result is known to be non-null. 1741 /// 1742 /// Uses properties inherent in a GEP to try to determine whether it is known 1743 /// to be non-null. 1744 /// 1745 /// Currently this routine does not support vector GEPs. 1746 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1747 const Query &Q) { 1748 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1749 return false; 1750 1751 // FIXME: Support vector-GEPs. 1752 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1753 1754 // If the base pointer is non-null, we cannot walk to a null address with an 1755 // inbounds GEP in address space zero. 1756 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1757 return true; 1758 1759 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1760 // If so, then the GEP cannot produce a null pointer, as doing so would 1761 // inherently violate the inbounds contract within address space zero. 1762 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1763 GTI != GTE; ++GTI) { 1764 // Struct types are easy -- they must always be indexed by a constant. 1765 if (StructType *STy = GTI.getStructTypeOrNull()) { 1766 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1767 unsigned ElementIdx = OpC->getZExtValue(); 1768 const StructLayout *SL = Q.DL.getStructLayout(STy); 1769 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1770 if (ElementOffset > 0) 1771 return true; 1772 continue; 1773 } 1774 1775 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1776 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1777 continue; 1778 1779 // Fast path the constant operand case both for efficiency and so we don't 1780 // increment Depth when just zipping down an all-constant GEP. 1781 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1782 if (!OpC->isZero()) 1783 return true; 1784 continue; 1785 } 1786 1787 // We post-increment Depth here because while isKnownNonZero increments it 1788 // as well, when we pop back up that increment won't persist. We don't want 1789 // to recurse 10k times just because we have 10k GEP operands. We don't 1790 // bail completely out because we want to handle constant GEPs regardless 1791 // of depth. 1792 if (Depth++ >= MaxDepth) 1793 continue; 1794 1795 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1796 return true; 1797 } 1798 1799 return false; 1800 } 1801 1802 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1803 const Instruction *CtxI, 1804 const DominatorTree *DT) { 1805 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1806 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1807 1808 if (!CtxI || !DT) 1809 return false; 1810 1811 unsigned NumUsesExplored = 0; 1812 for (auto *U : V->users()) { 1813 // Avoid massive lists 1814 if (NumUsesExplored >= DomConditionsMaxUses) 1815 break; 1816 NumUsesExplored++; 1817 1818 // If the value is used as an argument to a call or invoke, then argument 1819 // attributes may provide an answer about null-ness. 1820 if (auto CS = ImmutableCallSite(U)) 1821 if (auto *CalledFunc = CS.getCalledFunction()) 1822 for (const Argument &Arg : CalledFunc->args()) 1823 if (CS.getArgOperand(Arg.getArgNo()) == V && 1824 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1825 return true; 1826 1827 // Consider only compare instructions uniquely controlling a branch 1828 CmpInst::Predicate Pred; 1829 if (!match(const_cast<User *>(U), 1830 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1831 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1832 continue; 1833 1834 for (auto *CmpU : U->users()) { 1835 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 1836 assert(BI->isConditional() && "uses a comparison!"); 1837 1838 BasicBlock *NonNullSuccessor = 1839 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1840 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1841 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1842 return true; 1843 } else if (Pred == ICmpInst::ICMP_NE && 1844 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 1845 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 1846 return true; 1847 } 1848 } 1849 } 1850 1851 return false; 1852 } 1853 1854 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1855 /// ensure that the value it's attached to is never Value? 'RangeType' is 1856 /// is the type of the value described by the range. 1857 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1858 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1859 assert(NumRanges >= 1); 1860 for (unsigned i = 0; i < NumRanges; ++i) { 1861 ConstantInt *Lower = 1862 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1863 ConstantInt *Upper = 1864 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1865 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1866 if (Range.contains(Value)) 1867 return false; 1868 } 1869 return true; 1870 } 1871 1872 /// Return true if the given value is known to be non-zero when defined. For 1873 /// vectors, return true if every element is known to be non-zero when 1874 /// defined. For pointers, if the context instruction and dominator tree are 1875 /// specified, perform context-sensitive analysis and return true if the 1876 /// pointer couldn't possibly be null at the specified instruction. 1877 /// Supports values with integer or pointer type and vectors of integers. 1878 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1879 if (auto *C = dyn_cast<Constant>(V)) { 1880 if (C->isNullValue()) 1881 return false; 1882 if (isa<ConstantInt>(C)) 1883 // Must be non-zero due to null test above. 1884 return true; 1885 1886 // For constant vectors, check that all elements are undefined or known 1887 // non-zero to determine that the whole vector is known non-zero. 1888 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1889 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1890 Constant *Elt = C->getAggregateElement(i); 1891 if (!Elt || Elt->isNullValue()) 1892 return false; 1893 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1894 return false; 1895 } 1896 return true; 1897 } 1898 1899 // A global variable in address space 0 is non null unless extern weak 1900 // or an absolute symbol reference. Other address spaces may have null as a 1901 // valid address for a global, so we can't assume anything. 1902 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1903 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1904 GV->getType()->getAddressSpace() == 0) 1905 return true; 1906 } else 1907 return false; 1908 } 1909 1910 if (auto *I = dyn_cast<Instruction>(V)) { 1911 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1912 // If the possible ranges don't contain zero, then the value is 1913 // definitely non-zero. 1914 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1915 const APInt ZeroValue(Ty->getBitWidth(), 0); 1916 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1917 return true; 1918 } 1919 } 1920 } 1921 1922 // Check for pointer simplifications. 1923 if (V->getType()->isPointerTy()) { 1924 // Alloca never returns null, malloc might. 1925 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1926 return true; 1927 1928 // A byval, inalloca, or nonnull argument is never null. 1929 if (const Argument *A = dyn_cast<Argument>(V)) 1930 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1931 return true; 1932 1933 // A Load tagged with nonnull metadata is never null. 1934 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1935 if (LI->getMetadata(LLVMContext::MD_nonnull)) 1936 return true; 1937 1938 if (auto CS = ImmutableCallSite(V)) 1939 if (CS.isReturnNonNull()) 1940 return true; 1941 } 1942 1943 // The remaining tests are all recursive, so bail out if we hit the limit. 1944 if (Depth++ >= MaxDepth) 1945 return false; 1946 1947 // Check for recursive pointer simplifications. 1948 if (V->getType()->isPointerTy()) { 1949 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 1950 return true; 1951 1952 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1953 if (isGEPKnownNonNull(GEP, Depth, Q)) 1954 return true; 1955 } 1956 1957 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1958 1959 // X | Y != 0 if X != 0 or Y != 0. 1960 Value *X = nullptr, *Y = nullptr; 1961 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1962 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1963 1964 // ext X != 0 if X != 0. 1965 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1966 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1967 1968 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1969 // if the lowest bit is shifted off the end. 1970 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1971 // shl nuw can't remove any non-zero bits. 1972 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1973 if (BO->hasNoUnsignedWrap()) 1974 return isKnownNonZero(X, Depth, Q); 1975 1976 KnownBits Known(BitWidth); 1977 computeKnownBits(X, Known, Depth, Q); 1978 if (Known.One[0]) 1979 return true; 1980 } 1981 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1982 // defined if the sign bit is shifted off the end. 1983 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1984 // shr exact can only shift out zero bits. 1985 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1986 if (BO->isExact()) 1987 return isKnownNonZero(X, Depth, Q); 1988 1989 KnownBits Known = computeKnownBits(X, Depth, Q); 1990 if (Known.isNegative()) 1991 return true; 1992 1993 // If the shifter operand is a constant, and all of the bits shifted 1994 // out are known to be zero, and X is known non-zero then at least one 1995 // non-zero bit must remain. 1996 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1997 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1998 // Is there a known one in the portion not shifted out? 1999 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2000 return true; 2001 // Are all the bits to be shifted out known zero? 2002 if (Known.countMinTrailingZeros() >= ShiftVal) 2003 return isKnownNonZero(X, Depth, Q); 2004 } 2005 } 2006 // div exact can only produce a zero if the dividend is zero. 2007 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2008 return isKnownNonZero(X, Depth, Q); 2009 } 2010 // X + Y. 2011 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2012 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2013 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2014 2015 // If X and Y are both non-negative (as signed values) then their sum is not 2016 // zero unless both X and Y are zero. 2017 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2018 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2019 return true; 2020 2021 // If X and Y are both negative (as signed values) then their sum is not 2022 // zero unless both X and Y equal INT_MIN. 2023 if (XKnown.isNegative() && YKnown.isNegative()) { 2024 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2025 // The sign bit of X is set. If some other bit is set then X is not equal 2026 // to INT_MIN. 2027 if (XKnown.One.intersects(Mask)) 2028 return true; 2029 // The sign bit of Y is set. If some other bit is set then Y is not equal 2030 // to INT_MIN. 2031 if (YKnown.One.intersects(Mask)) 2032 return true; 2033 } 2034 2035 // The sum of a non-negative number and a power of two is not zero. 2036 if (XKnown.isNonNegative() && 2037 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2038 return true; 2039 if (YKnown.isNonNegative() && 2040 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2041 return true; 2042 } 2043 // X * Y. 2044 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2045 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2046 // If X and Y are non-zero then so is X * Y as long as the multiplication 2047 // does not overflow. 2048 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2049 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2050 return true; 2051 } 2052 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2053 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2054 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2055 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2056 return true; 2057 } 2058 // PHI 2059 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2060 // Try and detect a recurrence that monotonically increases from a 2061 // starting value, as these are common as induction variables. 2062 if (PN->getNumIncomingValues() == 2) { 2063 Value *Start = PN->getIncomingValue(0); 2064 Value *Induction = PN->getIncomingValue(1); 2065 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2066 std::swap(Start, Induction); 2067 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2068 if (!C->isZero() && !C->isNegative()) { 2069 ConstantInt *X; 2070 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2071 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2072 !X->isNegative()) 2073 return true; 2074 } 2075 } 2076 } 2077 // Check if all incoming values are non-zero constant. 2078 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2079 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2080 }); 2081 if (AllNonZeroConstants) 2082 return true; 2083 } 2084 2085 KnownBits Known(BitWidth); 2086 computeKnownBits(V, Known, Depth, Q); 2087 return Known.One != 0; 2088 } 2089 2090 /// Return true if V2 == V1 + X, where X is known non-zero. 2091 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2092 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2093 if (!BO || BO->getOpcode() != Instruction::Add) 2094 return false; 2095 Value *Op = nullptr; 2096 if (V2 == BO->getOperand(0)) 2097 Op = BO->getOperand(1); 2098 else if (V2 == BO->getOperand(1)) 2099 Op = BO->getOperand(0); 2100 else 2101 return false; 2102 return isKnownNonZero(Op, 0, Q); 2103 } 2104 2105 /// Return true if it is known that V1 != V2. 2106 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2107 if (V1 == V2) 2108 return false; 2109 if (V1->getType() != V2->getType()) 2110 // We can't look through casts yet. 2111 return false; 2112 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2113 return true; 2114 2115 if (V1->getType()->isIntOrIntVectorTy()) { 2116 // Are any known bits in V1 contradictory to known bits in V2? If V1 2117 // has a known zero where V2 has a known one, they must not be equal. 2118 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2119 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2120 2121 if (Known1.Zero.intersects(Known2.One) || 2122 Known2.Zero.intersects(Known1.One)) 2123 return true; 2124 } 2125 return false; 2126 } 2127 2128 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2129 /// simplify operations downstream. Mask is known to be zero for bits that V 2130 /// cannot have. 2131 /// 2132 /// This function is defined on values with integer type, values with pointer 2133 /// type, and vectors of integers. In the case 2134 /// where V is a vector, the mask, known zero, and known one values are the 2135 /// same width as the vector element, and the bit is set only if it is true 2136 /// for all of the elements in the vector. 2137 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2138 const Query &Q) { 2139 KnownBits Known(Mask.getBitWidth()); 2140 computeKnownBits(V, Known, Depth, Q); 2141 return Mask.isSubsetOf(Known.Zero); 2142 } 2143 2144 /// For vector constants, loop over the elements and find the constant with the 2145 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2146 /// or if any element was not analyzed; otherwise, return the count for the 2147 /// element with the minimum number of sign bits. 2148 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2149 unsigned TyBits) { 2150 const auto *CV = dyn_cast<Constant>(V); 2151 if (!CV || !CV->getType()->isVectorTy()) 2152 return 0; 2153 2154 unsigned MinSignBits = TyBits; 2155 unsigned NumElts = CV->getType()->getVectorNumElements(); 2156 for (unsigned i = 0; i != NumElts; ++i) { 2157 // If we find a non-ConstantInt, bail out. 2158 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2159 if (!Elt) 2160 return 0; 2161 2162 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2163 } 2164 2165 return MinSignBits; 2166 } 2167 2168 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2169 const Query &Q); 2170 2171 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2172 const Query &Q) { 2173 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2174 assert(Result > 0 && "At least one sign bit needs to be present!"); 2175 return Result; 2176 } 2177 2178 /// Return the number of times the sign bit of the register is replicated into 2179 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2180 /// (itself), but other cases can give us information. For example, immediately 2181 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2182 /// other, so we return 3. For vectors, return the number of sign bits for the 2183 /// vector element with the mininum number of known sign bits. 2184 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2185 const Query &Q) { 2186 assert(Depth <= MaxDepth && "Limit Search Depth"); 2187 2188 // We return the minimum number of sign bits that are guaranteed to be present 2189 // in V, so for undef we have to conservatively return 1. We don't have the 2190 // same behavior for poison though -- that's a FIXME today. 2191 2192 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2193 unsigned Tmp, Tmp2; 2194 unsigned FirstAnswer = 1; 2195 2196 // Note that ConstantInt is handled by the general computeKnownBits case 2197 // below. 2198 2199 if (Depth == MaxDepth) 2200 return 1; // Limit search depth. 2201 2202 const Operator *U = dyn_cast<Operator>(V); 2203 switch (Operator::getOpcode(V)) { 2204 default: break; 2205 case Instruction::SExt: 2206 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2207 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2208 2209 case Instruction::SDiv: { 2210 const APInt *Denominator; 2211 // sdiv X, C -> adds log(C) sign bits. 2212 if (match(U->getOperand(1), m_APInt(Denominator))) { 2213 2214 // Ignore non-positive denominator. 2215 if (!Denominator->isStrictlyPositive()) 2216 break; 2217 2218 // Calculate the incoming numerator bits. 2219 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2220 2221 // Add floor(log(C)) bits to the numerator bits. 2222 return std::min(TyBits, NumBits + Denominator->logBase2()); 2223 } 2224 break; 2225 } 2226 2227 case Instruction::SRem: { 2228 const APInt *Denominator; 2229 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2230 // positive constant. This let us put a lower bound on the number of sign 2231 // bits. 2232 if (match(U->getOperand(1), m_APInt(Denominator))) { 2233 2234 // Ignore non-positive denominator. 2235 if (!Denominator->isStrictlyPositive()) 2236 break; 2237 2238 // Calculate the incoming numerator bits. SRem by a positive constant 2239 // can't lower the number of sign bits. 2240 unsigned NumrBits = 2241 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2242 2243 // Calculate the leading sign bit constraints by examining the 2244 // denominator. Given that the denominator is positive, there are two 2245 // cases: 2246 // 2247 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2248 // (1 << ceilLogBase2(C)). 2249 // 2250 // 2. the numerator is negative. Then the result range is (-C,0] and 2251 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2252 // 2253 // Thus a lower bound on the number of sign bits is `TyBits - 2254 // ceilLogBase2(C)`. 2255 2256 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2257 return std::max(NumrBits, ResBits); 2258 } 2259 break; 2260 } 2261 2262 case Instruction::AShr: { 2263 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2264 // ashr X, C -> adds C sign bits. Vectors too. 2265 const APInt *ShAmt; 2266 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2267 if (ShAmt->uge(TyBits)) 2268 break; // Bad shift. 2269 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2270 Tmp += ShAmtLimited; 2271 if (Tmp > TyBits) Tmp = TyBits; 2272 } 2273 return Tmp; 2274 } 2275 case Instruction::Shl: { 2276 const APInt *ShAmt; 2277 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2278 // shl destroys sign bits. 2279 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2280 if (ShAmt->uge(TyBits) || // Bad shift. 2281 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2282 Tmp2 = ShAmt->getZExtValue(); 2283 return Tmp - Tmp2; 2284 } 2285 break; 2286 } 2287 case Instruction::And: 2288 case Instruction::Or: 2289 case Instruction::Xor: // NOT is handled here. 2290 // Logical binary ops preserve the number of sign bits at the worst. 2291 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2292 if (Tmp != 1) { 2293 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2294 FirstAnswer = std::min(Tmp, Tmp2); 2295 // We computed what we know about the sign bits as our first 2296 // answer. Now proceed to the generic code that uses 2297 // computeKnownBits, and pick whichever answer is better. 2298 } 2299 break; 2300 2301 case Instruction::Select: 2302 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2303 if (Tmp == 1) return 1; // Early out. 2304 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2305 return std::min(Tmp, Tmp2); 2306 2307 case Instruction::Add: 2308 // Add can have at most one carry bit. Thus we know that the output 2309 // is, at worst, one more bit than the inputs. 2310 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2311 if (Tmp == 1) return 1; // Early out. 2312 2313 // Special case decrementing a value (ADD X, -1): 2314 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2315 if (CRHS->isAllOnesValue()) { 2316 KnownBits Known(TyBits); 2317 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2318 2319 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2320 // sign bits set. 2321 if ((Known.Zero | 1).isAllOnesValue()) 2322 return TyBits; 2323 2324 // If we are subtracting one from a positive number, there is no carry 2325 // out of the result. 2326 if (Known.isNonNegative()) 2327 return Tmp; 2328 } 2329 2330 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2331 if (Tmp2 == 1) return 1; 2332 return std::min(Tmp, Tmp2)-1; 2333 2334 case Instruction::Sub: 2335 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2336 if (Tmp2 == 1) return 1; 2337 2338 // Handle NEG. 2339 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2340 if (CLHS->isNullValue()) { 2341 KnownBits Known(TyBits); 2342 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2343 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2344 // sign bits set. 2345 if ((Known.Zero | 1).isAllOnesValue()) 2346 return TyBits; 2347 2348 // If the input is known to be positive (the sign bit is known clear), 2349 // the output of the NEG has the same number of sign bits as the input. 2350 if (Known.isNonNegative()) 2351 return Tmp2; 2352 2353 // Otherwise, we treat this like a SUB. 2354 } 2355 2356 // Sub can have at most one carry bit. Thus we know that the output 2357 // is, at worst, one more bit than the inputs. 2358 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2359 if (Tmp == 1) return 1; // Early out. 2360 return std::min(Tmp, Tmp2)-1; 2361 2362 case Instruction::Mul: { 2363 // The output of the Mul can be at most twice the valid bits in the inputs. 2364 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2365 if (SignBitsOp0 == 1) return 1; // Early out. 2366 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2367 if (SignBitsOp1 == 1) return 1; 2368 unsigned OutValidBits = 2369 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2370 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2371 } 2372 2373 case Instruction::PHI: { 2374 const PHINode *PN = cast<PHINode>(U); 2375 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2376 // Don't analyze large in-degree PHIs. 2377 if (NumIncomingValues > 4) break; 2378 // Unreachable blocks may have zero-operand PHI nodes. 2379 if (NumIncomingValues == 0) break; 2380 2381 // Take the minimum of all incoming values. This can't infinitely loop 2382 // because of our depth threshold. 2383 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2384 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2385 if (Tmp == 1) return Tmp; 2386 Tmp = std::min( 2387 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2388 } 2389 return Tmp; 2390 } 2391 2392 case Instruction::Trunc: 2393 // FIXME: it's tricky to do anything useful for this, but it is an important 2394 // case for targets like X86. 2395 break; 2396 2397 case Instruction::ExtractElement: 2398 // Look through extract element. At the moment we keep this simple and skip 2399 // tracking the specific element. But at least we might find information 2400 // valid for all elements of the vector (for example if vector is sign 2401 // extended, shifted, etc). 2402 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2403 } 2404 2405 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2406 // use this information. 2407 2408 // If we can examine all elements of a vector constant successfully, we're 2409 // done (we can't do any better than that). If not, keep trying. 2410 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2411 return VecSignBits; 2412 2413 KnownBits Known(TyBits); 2414 computeKnownBits(V, Known, Depth, Q); 2415 2416 // If we know that the sign bit is either zero or one, determine the number of 2417 // identical bits in the top of the input value. 2418 return std::max(FirstAnswer, Known.countMinSignBits()); 2419 } 2420 2421 /// This function computes the integer multiple of Base that equals V. 2422 /// If successful, it returns true and returns the multiple in 2423 /// Multiple. If unsuccessful, it returns false. It looks 2424 /// through SExt instructions only if LookThroughSExt is true. 2425 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2426 bool LookThroughSExt, unsigned Depth) { 2427 const unsigned MaxDepth = 6; 2428 2429 assert(V && "No Value?"); 2430 assert(Depth <= MaxDepth && "Limit Search Depth"); 2431 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2432 2433 Type *T = V->getType(); 2434 2435 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2436 2437 if (Base == 0) 2438 return false; 2439 2440 if (Base == 1) { 2441 Multiple = V; 2442 return true; 2443 } 2444 2445 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2446 Constant *BaseVal = ConstantInt::get(T, Base); 2447 if (CO && CO == BaseVal) { 2448 // Multiple is 1. 2449 Multiple = ConstantInt::get(T, 1); 2450 return true; 2451 } 2452 2453 if (CI && CI->getZExtValue() % Base == 0) { 2454 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2455 return true; 2456 } 2457 2458 if (Depth == MaxDepth) return false; // Limit search depth. 2459 2460 Operator *I = dyn_cast<Operator>(V); 2461 if (!I) return false; 2462 2463 switch (I->getOpcode()) { 2464 default: break; 2465 case Instruction::SExt: 2466 if (!LookThroughSExt) return false; 2467 // otherwise fall through to ZExt 2468 LLVM_FALLTHROUGH; 2469 case Instruction::ZExt: 2470 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2471 LookThroughSExt, Depth+1); 2472 case Instruction::Shl: 2473 case Instruction::Mul: { 2474 Value *Op0 = I->getOperand(0); 2475 Value *Op1 = I->getOperand(1); 2476 2477 if (I->getOpcode() == Instruction::Shl) { 2478 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2479 if (!Op1CI) return false; 2480 // Turn Op0 << Op1 into Op0 * 2^Op1 2481 APInt Op1Int = Op1CI->getValue(); 2482 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2483 APInt API(Op1Int.getBitWidth(), 0); 2484 API.setBit(BitToSet); 2485 Op1 = ConstantInt::get(V->getContext(), API); 2486 } 2487 2488 Value *Mul0 = nullptr; 2489 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2490 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2491 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2492 if (Op1C->getType()->getPrimitiveSizeInBits() < 2493 MulC->getType()->getPrimitiveSizeInBits()) 2494 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2495 if (Op1C->getType()->getPrimitiveSizeInBits() > 2496 MulC->getType()->getPrimitiveSizeInBits()) 2497 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2498 2499 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2500 Multiple = ConstantExpr::getMul(MulC, Op1C); 2501 return true; 2502 } 2503 2504 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2505 if (Mul0CI->getValue() == 1) { 2506 // V == Base * Op1, so return Op1 2507 Multiple = Op1; 2508 return true; 2509 } 2510 } 2511 2512 Value *Mul1 = nullptr; 2513 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2514 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2515 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2516 if (Op0C->getType()->getPrimitiveSizeInBits() < 2517 MulC->getType()->getPrimitiveSizeInBits()) 2518 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2519 if (Op0C->getType()->getPrimitiveSizeInBits() > 2520 MulC->getType()->getPrimitiveSizeInBits()) 2521 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2522 2523 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2524 Multiple = ConstantExpr::getMul(MulC, Op0C); 2525 return true; 2526 } 2527 2528 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2529 if (Mul1CI->getValue() == 1) { 2530 // V == Base * Op0, so return Op0 2531 Multiple = Op0; 2532 return true; 2533 } 2534 } 2535 } 2536 } 2537 2538 // We could not determine if V is a multiple of Base. 2539 return false; 2540 } 2541 2542 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2543 const TargetLibraryInfo *TLI) { 2544 const Function *F = ICS.getCalledFunction(); 2545 if (!F) 2546 return Intrinsic::not_intrinsic; 2547 2548 if (F->isIntrinsic()) 2549 return F->getIntrinsicID(); 2550 2551 if (!TLI) 2552 return Intrinsic::not_intrinsic; 2553 2554 LibFunc Func; 2555 // We're going to make assumptions on the semantics of the functions, check 2556 // that the target knows that it's available in this environment and it does 2557 // not have local linkage. 2558 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2559 return Intrinsic::not_intrinsic; 2560 2561 if (!ICS.onlyReadsMemory()) 2562 return Intrinsic::not_intrinsic; 2563 2564 // Otherwise check if we have a call to a function that can be turned into a 2565 // vector intrinsic. 2566 switch (Func) { 2567 default: 2568 break; 2569 case LibFunc_sin: 2570 case LibFunc_sinf: 2571 case LibFunc_sinl: 2572 return Intrinsic::sin; 2573 case LibFunc_cos: 2574 case LibFunc_cosf: 2575 case LibFunc_cosl: 2576 return Intrinsic::cos; 2577 case LibFunc_exp: 2578 case LibFunc_expf: 2579 case LibFunc_expl: 2580 return Intrinsic::exp; 2581 case LibFunc_exp2: 2582 case LibFunc_exp2f: 2583 case LibFunc_exp2l: 2584 return Intrinsic::exp2; 2585 case LibFunc_log: 2586 case LibFunc_logf: 2587 case LibFunc_logl: 2588 return Intrinsic::log; 2589 case LibFunc_log10: 2590 case LibFunc_log10f: 2591 case LibFunc_log10l: 2592 return Intrinsic::log10; 2593 case LibFunc_log2: 2594 case LibFunc_log2f: 2595 case LibFunc_log2l: 2596 return Intrinsic::log2; 2597 case LibFunc_fabs: 2598 case LibFunc_fabsf: 2599 case LibFunc_fabsl: 2600 return Intrinsic::fabs; 2601 case LibFunc_fmin: 2602 case LibFunc_fminf: 2603 case LibFunc_fminl: 2604 return Intrinsic::minnum; 2605 case LibFunc_fmax: 2606 case LibFunc_fmaxf: 2607 case LibFunc_fmaxl: 2608 return Intrinsic::maxnum; 2609 case LibFunc_copysign: 2610 case LibFunc_copysignf: 2611 case LibFunc_copysignl: 2612 return Intrinsic::copysign; 2613 case LibFunc_floor: 2614 case LibFunc_floorf: 2615 case LibFunc_floorl: 2616 return Intrinsic::floor; 2617 case LibFunc_ceil: 2618 case LibFunc_ceilf: 2619 case LibFunc_ceill: 2620 return Intrinsic::ceil; 2621 case LibFunc_trunc: 2622 case LibFunc_truncf: 2623 case LibFunc_truncl: 2624 return Intrinsic::trunc; 2625 case LibFunc_rint: 2626 case LibFunc_rintf: 2627 case LibFunc_rintl: 2628 return Intrinsic::rint; 2629 case LibFunc_nearbyint: 2630 case LibFunc_nearbyintf: 2631 case LibFunc_nearbyintl: 2632 return Intrinsic::nearbyint; 2633 case LibFunc_round: 2634 case LibFunc_roundf: 2635 case LibFunc_roundl: 2636 return Intrinsic::round; 2637 case LibFunc_pow: 2638 case LibFunc_powf: 2639 case LibFunc_powl: 2640 return Intrinsic::pow; 2641 case LibFunc_sqrt: 2642 case LibFunc_sqrtf: 2643 case LibFunc_sqrtl: 2644 return Intrinsic::sqrt; 2645 } 2646 2647 return Intrinsic::not_intrinsic; 2648 } 2649 2650 /// Return true if we can prove that the specified FP value is never equal to 2651 /// -0.0. 2652 /// 2653 /// NOTE: this function will need to be revisited when we support non-default 2654 /// rounding modes! 2655 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2656 unsigned Depth) { 2657 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2658 return !CFP->getValueAPF().isNegZero(); 2659 2660 // Limit search depth. 2661 if (Depth == MaxDepth) 2662 return false; 2663 2664 auto *Op = dyn_cast<Operator>(V); 2665 if (!Op) 2666 return false; 2667 2668 // Check if the nsz fast-math flag is set. 2669 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2670 if (FPO->hasNoSignedZeros()) 2671 return true; 2672 2673 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2674 if (match(Op, m_FAdd(m_Value(), m_Zero()))) 2675 return true; 2676 2677 // sitofp and uitofp turn into +0.0 for zero. 2678 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2679 return true; 2680 2681 if (auto *Call = dyn_cast<CallInst>(Op)) { 2682 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2683 switch (IID) { 2684 default: 2685 break; 2686 // sqrt(-0.0) = -0.0, no other negative results are possible. 2687 case Intrinsic::sqrt: 2688 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2689 // fabs(x) != -0.0 2690 case Intrinsic::fabs: 2691 return true; 2692 } 2693 } 2694 2695 return false; 2696 } 2697 2698 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2699 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2700 /// bit despite comparing equal. 2701 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2702 const TargetLibraryInfo *TLI, 2703 bool SignBitOnly, 2704 unsigned Depth) { 2705 // TODO: This function does not do the right thing when SignBitOnly is true 2706 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2707 // which flips the sign bits of NaNs. See 2708 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2709 2710 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2711 return !CFP->getValueAPF().isNegative() || 2712 (!SignBitOnly && CFP->getValueAPF().isZero()); 2713 } 2714 2715 if (Depth == MaxDepth) 2716 return false; // Limit search depth. 2717 2718 const Operator *I = dyn_cast<Operator>(V); 2719 if (!I) 2720 return false; 2721 2722 switch (I->getOpcode()) { 2723 default: 2724 break; 2725 // Unsigned integers are always nonnegative. 2726 case Instruction::UIToFP: 2727 return true; 2728 case Instruction::FMul: 2729 // x*x is always non-negative or a NaN. 2730 if (I->getOperand(0) == I->getOperand(1) && 2731 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2732 return true; 2733 2734 LLVM_FALLTHROUGH; 2735 case Instruction::FAdd: 2736 case Instruction::FDiv: 2737 case Instruction::FRem: 2738 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2739 Depth + 1) && 2740 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2741 Depth + 1); 2742 case Instruction::Select: 2743 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2744 Depth + 1) && 2745 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2746 Depth + 1); 2747 case Instruction::FPExt: 2748 case Instruction::FPTrunc: 2749 // Widening/narrowing never change sign. 2750 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2751 Depth + 1); 2752 case Instruction::Call: 2753 const auto *CI = cast<CallInst>(I); 2754 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2755 switch (IID) { 2756 default: 2757 break; 2758 case Intrinsic::maxnum: 2759 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2760 Depth + 1) || 2761 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2762 Depth + 1); 2763 case Intrinsic::minnum: 2764 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2765 Depth + 1) && 2766 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2767 Depth + 1); 2768 case Intrinsic::exp: 2769 case Intrinsic::exp2: 2770 case Intrinsic::fabs: 2771 return true; 2772 2773 case Intrinsic::sqrt: 2774 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2775 if (!SignBitOnly) 2776 return true; 2777 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2778 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2779 2780 case Intrinsic::powi: 2781 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2782 // powi(x,n) is non-negative if n is even. 2783 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2784 return true; 2785 } 2786 // TODO: This is not correct. Given that exp is an integer, here are the 2787 // ways that pow can return a negative value: 2788 // 2789 // pow(x, exp) --> negative if exp is odd and x is negative. 2790 // pow(-0, exp) --> -inf if exp is negative odd. 2791 // pow(-0, exp) --> -0 if exp is positive odd. 2792 // pow(-inf, exp) --> -0 if exp is negative odd. 2793 // pow(-inf, exp) --> -inf if exp is positive odd. 2794 // 2795 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2796 // but we must return false if x == -0. Unfortunately we do not currently 2797 // have a way of expressing this constraint. See details in 2798 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2799 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2800 Depth + 1); 2801 2802 case Intrinsic::fma: 2803 case Intrinsic::fmuladd: 2804 // x*x+y is non-negative if y is non-negative. 2805 return I->getOperand(0) == I->getOperand(1) && 2806 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2807 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2808 Depth + 1); 2809 } 2810 break; 2811 } 2812 return false; 2813 } 2814 2815 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2816 const TargetLibraryInfo *TLI) { 2817 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2818 } 2819 2820 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2821 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2822 } 2823 2824 bool llvm::isKnownNeverNaN(const Value *V) { 2825 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2826 2827 // If we're told that NaNs won't happen, assume they won't. 2828 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2829 if (FPMathOp->hasNoNaNs()) 2830 return true; 2831 2832 // TODO: Handle instructions and potentially recurse like other 'isKnown' 2833 // functions. For example, the result of sitofp is never NaN. 2834 2835 // Handle scalar constants. 2836 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2837 return !CFP->isNaN(); 2838 2839 // Bail out for constant expressions, but try to handle vector constants. 2840 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2841 return false; 2842 2843 // For vectors, verify that each element is not NaN. 2844 unsigned NumElts = V->getType()->getVectorNumElements(); 2845 for (unsigned i = 0; i != NumElts; ++i) { 2846 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2847 if (!Elt) 2848 return false; 2849 if (isa<UndefValue>(Elt)) 2850 continue; 2851 auto *CElt = dyn_cast<ConstantFP>(Elt); 2852 if (!CElt || CElt->isNaN()) 2853 return false; 2854 } 2855 // All elements were confirmed not-NaN or undefined. 2856 return true; 2857 } 2858 2859 /// If the specified value can be set by repeating the same byte in memory, 2860 /// return the i8 value that it is represented with. This is 2861 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2862 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2863 /// byte store (e.g. i16 0x1234), return null. 2864 Value *llvm::isBytewiseValue(Value *V) { 2865 // All byte-wide stores are splatable, even of arbitrary variables. 2866 if (V->getType()->isIntegerTy(8)) return V; 2867 2868 // Handle 'null' ConstantArrayZero etc. 2869 if (Constant *C = dyn_cast<Constant>(V)) 2870 if (C->isNullValue()) 2871 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2872 2873 // Constant float and double values can be handled as integer values if the 2874 // corresponding integer value is "byteable". An important case is 0.0. 2875 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2876 if (CFP->getType()->isFloatTy()) 2877 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2878 if (CFP->getType()->isDoubleTy()) 2879 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2880 // Don't handle long double formats, which have strange constraints. 2881 } 2882 2883 // We can handle constant integers that are multiple of 8 bits. 2884 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2885 if (CI->getBitWidth() % 8 == 0) { 2886 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2887 2888 if (!CI->getValue().isSplat(8)) 2889 return nullptr; 2890 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2891 } 2892 } 2893 2894 // A ConstantDataArray/Vector is splatable if all its members are equal and 2895 // also splatable. 2896 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2897 Value *Elt = CA->getElementAsConstant(0); 2898 Value *Val = isBytewiseValue(Elt); 2899 if (!Val) 2900 return nullptr; 2901 2902 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2903 if (CA->getElementAsConstant(I) != Elt) 2904 return nullptr; 2905 2906 return Val; 2907 } 2908 2909 // Conceptually, we could handle things like: 2910 // %a = zext i8 %X to i16 2911 // %b = shl i16 %a, 8 2912 // %c = or i16 %a, %b 2913 // but until there is an example that actually needs this, it doesn't seem 2914 // worth worrying about. 2915 return nullptr; 2916 } 2917 2918 // This is the recursive version of BuildSubAggregate. It takes a few different 2919 // arguments. Idxs is the index within the nested struct From that we are 2920 // looking at now (which is of type IndexedType). IdxSkip is the number of 2921 // indices from Idxs that should be left out when inserting into the resulting 2922 // struct. To is the result struct built so far, new insertvalue instructions 2923 // build on that. 2924 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2925 SmallVectorImpl<unsigned> &Idxs, 2926 unsigned IdxSkip, 2927 Instruction *InsertBefore) { 2928 StructType *STy = dyn_cast<StructType>(IndexedType); 2929 if (STy) { 2930 // Save the original To argument so we can modify it 2931 Value *OrigTo = To; 2932 // General case, the type indexed by Idxs is a struct 2933 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2934 // Process each struct element recursively 2935 Idxs.push_back(i); 2936 Value *PrevTo = To; 2937 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2938 InsertBefore); 2939 Idxs.pop_back(); 2940 if (!To) { 2941 // Couldn't find any inserted value for this index? Cleanup 2942 while (PrevTo != OrigTo) { 2943 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2944 PrevTo = Del->getAggregateOperand(); 2945 Del->eraseFromParent(); 2946 } 2947 // Stop processing elements 2948 break; 2949 } 2950 } 2951 // If we successfully found a value for each of our subaggregates 2952 if (To) 2953 return To; 2954 } 2955 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2956 // the struct's elements had a value that was inserted directly. In the latter 2957 // case, perhaps we can't determine each of the subelements individually, but 2958 // we might be able to find the complete struct somewhere. 2959 2960 // Find the value that is at that particular spot 2961 Value *V = FindInsertedValue(From, Idxs); 2962 2963 if (!V) 2964 return nullptr; 2965 2966 // Insert the value in the new (sub) aggregrate 2967 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2968 "tmp", InsertBefore); 2969 } 2970 2971 // This helper takes a nested struct and extracts a part of it (which is again a 2972 // struct) into a new value. For example, given the struct: 2973 // { a, { b, { c, d }, e } } 2974 // and the indices "1, 1" this returns 2975 // { c, d }. 2976 // 2977 // It does this by inserting an insertvalue for each element in the resulting 2978 // struct, as opposed to just inserting a single struct. This will only work if 2979 // each of the elements of the substruct are known (ie, inserted into From by an 2980 // insertvalue instruction somewhere). 2981 // 2982 // All inserted insertvalue instructions are inserted before InsertBefore 2983 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2984 Instruction *InsertBefore) { 2985 assert(InsertBefore && "Must have someplace to insert!"); 2986 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2987 idx_range); 2988 Value *To = UndefValue::get(IndexedType); 2989 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2990 unsigned IdxSkip = Idxs.size(); 2991 2992 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2993 } 2994 2995 /// Given an aggregrate and an sequence of indices, see if 2996 /// the scalar value indexed is already around as a register, for example if it 2997 /// were inserted directly into the aggregrate. 2998 /// 2999 /// If InsertBefore is not null, this function will duplicate (modified) 3000 /// insertvalues when a part of a nested struct is extracted. 3001 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3002 Instruction *InsertBefore) { 3003 // Nothing to index? Just return V then (this is useful at the end of our 3004 // recursion). 3005 if (idx_range.empty()) 3006 return V; 3007 // We have indices, so V should have an indexable type. 3008 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3009 "Not looking at a struct or array?"); 3010 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3011 "Invalid indices for type?"); 3012 3013 if (Constant *C = dyn_cast<Constant>(V)) { 3014 C = C->getAggregateElement(idx_range[0]); 3015 if (!C) return nullptr; 3016 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3017 } 3018 3019 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3020 // Loop the indices for the insertvalue instruction in parallel with the 3021 // requested indices 3022 const unsigned *req_idx = idx_range.begin(); 3023 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3024 i != e; ++i, ++req_idx) { 3025 if (req_idx == idx_range.end()) { 3026 // We can't handle this without inserting insertvalues 3027 if (!InsertBefore) 3028 return nullptr; 3029 3030 // The requested index identifies a part of a nested aggregate. Handle 3031 // this specially. For example, 3032 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3033 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3034 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3035 // This can be changed into 3036 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3037 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3038 // which allows the unused 0,0 element from the nested struct to be 3039 // removed. 3040 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3041 InsertBefore); 3042 } 3043 3044 // This insert value inserts something else than what we are looking for. 3045 // See if the (aggregate) value inserted into has the value we are 3046 // looking for, then. 3047 if (*req_idx != *i) 3048 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3049 InsertBefore); 3050 } 3051 // If we end up here, the indices of the insertvalue match with those 3052 // requested (though possibly only partially). Now we recursively look at 3053 // the inserted value, passing any remaining indices. 3054 return FindInsertedValue(I->getInsertedValueOperand(), 3055 makeArrayRef(req_idx, idx_range.end()), 3056 InsertBefore); 3057 } 3058 3059 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3060 // If we're extracting a value from an aggregate that was extracted from 3061 // something else, we can extract from that something else directly instead. 3062 // However, we will need to chain I's indices with the requested indices. 3063 3064 // Calculate the number of indices required 3065 unsigned size = I->getNumIndices() + idx_range.size(); 3066 // Allocate some space to put the new indices in 3067 SmallVector<unsigned, 5> Idxs; 3068 Idxs.reserve(size); 3069 // Add indices from the extract value instruction 3070 Idxs.append(I->idx_begin(), I->idx_end()); 3071 3072 // Add requested indices 3073 Idxs.append(idx_range.begin(), idx_range.end()); 3074 3075 assert(Idxs.size() == size 3076 && "Number of indices added not correct?"); 3077 3078 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3079 } 3080 // Otherwise, we don't know (such as, extracting from a function return value 3081 // or load instruction) 3082 return nullptr; 3083 } 3084 3085 /// Analyze the specified pointer to see if it can be expressed as a base 3086 /// pointer plus a constant offset. Return the base and offset to the caller. 3087 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3088 const DataLayout &DL) { 3089 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 3090 APInt ByteOffset(BitWidth, 0); 3091 3092 // We walk up the defs but use a visited set to handle unreachable code. In 3093 // that case, we stop after accumulating the cycle once (not that it 3094 // matters). 3095 SmallPtrSet<Value *, 16> Visited; 3096 while (Visited.insert(Ptr).second) { 3097 if (Ptr->getType()->isVectorTy()) 3098 break; 3099 3100 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3101 // If one of the values we have visited is an addrspacecast, then 3102 // the pointer type of this GEP may be different from the type 3103 // of the Ptr parameter which was passed to this function. This 3104 // means when we construct GEPOffset, we need to use the size 3105 // of GEP's pointer type rather than the size of the original 3106 // pointer type. 3107 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 3108 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3109 break; 3110 3111 ByteOffset += GEPOffset.getSExtValue(); 3112 3113 Ptr = GEP->getPointerOperand(); 3114 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3115 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3116 Ptr = cast<Operator>(Ptr)->getOperand(0); 3117 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3118 if (GA->isInterposable()) 3119 break; 3120 Ptr = GA->getAliasee(); 3121 } else { 3122 break; 3123 } 3124 } 3125 Offset = ByteOffset.getSExtValue(); 3126 return Ptr; 3127 } 3128 3129 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3130 unsigned CharSize) { 3131 // Make sure the GEP has exactly three arguments. 3132 if (GEP->getNumOperands() != 3) 3133 return false; 3134 3135 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3136 // CharSize. 3137 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3138 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3139 return false; 3140 3141 // Check to make sure that the first operand of the GEP is an integer and 3142 // has value 0 so that we are sure we're indexing into the initializer. 3143 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3144 if (!FirstIdx || !FirstIdx->isZero()) 3145 return false; 3146 3147 return true; 3148 } 3149 3150 bool llvm::getConstantDataArrayInfo(const Value *V, 3151 ConstantDataArraySlice &Slice, 3152 unsigned ElementSize, uint64_t Offset) { 3153 assert(V); 3154 3155 // Look through bitcast instructions and geps. 3156 V = V->stripPointerCasts(); 3157 3158 // If the value is a GEP instruction or constant expression, treat it as an 3159 // offset. 3160 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3161 // The GEP operator should be based on a pointer to string constant, and is 3162 // indexing into the string constant. 3163 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3164 return false; 3165 3166 // If the second index isn't a ConstantInt, then this is a variable index 3167 // into the array. If this occurs, we can't say anything meaningful about 3168 // the string. 3169 uint64_t StartIdx = 0; 3170 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3171 StartIdx = CI->getZExtValue(); 3172 else 3173 return false; 3174 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3175 StartIdx + Offset); 3176 } 3177 3178 // The GEP instruction, constant or instruction, must reference a global 3179 // variable that is a constant and is initialized. The referenced constant 3180 // initializer is the array that we'll use for optimization. 3181 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3182 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3183 return false; 3184 3185 const ConstantDataArray *Array; 3186 ArrayType *ArrayTy; 3187 if (GV->getInitializer()->isNullValue()) { 3188 Type *GVTy = GV->getValueType(); 3189 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3190 // A zeroinitializer for the array; there is no ConstantDataArray. 3191 Array = nullptr; 3192 } else { 3193 const DataLayout &DL = GV->getParent()->getDataLayout(); 3194 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3195 uint64_t Length = SizeInBytes / (ElementSize / 8); 3196 if (Length <= Offset) 3197 return false; 3198 3199 Slice.Array = nullptr; 3200 Slice.Offset = 0; 3201 Slice.Length = Length - Offset; 3202 return true; 3203 } 3204 } else { 3205 // This must be a ConstantDataArray. 3206 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3207 if (!Array) 3208 return false; 3209 ArrayTy = Array->getType(); 3210 } 3211 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3212 return false; 3213 3214 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3215 if (Offset > NumElts) 3216 return false; 3217 3218 Slice.Array = Array; 3219 Slice.Offset = Offset; 3220 Slice.Length = NumElts - Offset; 3221 return true; 3222 } 3223 3224 /// This function computes the length of a null-terminated C string pointed to 3225 /// by V. If successful, it returns true and returns the string in Str. 3226 /// If unsuccessful, it returns false. 3227 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3228 uint64_t Offset, bool TrimAtNul) { 3229 ConstantDataArraySlice Slice; 3230 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3231 return false; 3232 3233 if (Slice.Array == nullptr) { 3234 if (TrimAtNul) { 3235 Str = StringRef(); 3236 return true; 3237 } 3238 if (Slice.Length == 1) { 3239 Str = StringRef("", 1); 3240 return true; 3241 } 3242 // We cannot instantiate a StringRef as we do not have an appropriate string 3243 // of 0s at hand. 3244 return false; 3245 } 3246 3247 // Start out with the entire array in the StringRef. 3248 Str = Slice.Array->getAsString(); 3249 // Skip over 'offset' bytes. 3250 Str = Str.substr(Slice.Offset); 3251 3252 if (TrimAtNul) { 3253 // Trim off the \0 and anything after it. If the array is not nul 3254 // terminated, we just return the whole end of string. The client may know 3255 // some other way that the string is length-bound. 3256 Str = Str.substr(0, Str.find('\0')); 3257 } 3258 return true; 3259 } 3260 3261 // These next two are very similar to the above, but also look through PHI 3262 // nodes. 3263 // TODO: See if we can integrate these two together. 3264 3265 /// If we can compute the length of the string pointed to by 3266 /// the specified pointer, return 'len+1'. If we can't, return 0. 3267 static uint64_t GetStringLengthH(const Value *V, 3268 SmallPtrSetImpl<const PHINode*> &PHIs, 3269 unsigned CharSize) { 3270 // Look through noop bitcast instructions. 3271 V = V->stripPointerCasts(); 3272 3273 // If this is a PHI node, there are two cases: either we have already seen it 3274 // or we haven't. 3275 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3276 if (!PHIs.insert(PN).second) 3277 return ~0ULL; // already in the set. 3278 3279 // If it was new, see if all the input strings are the same length. 3280 uint64_t LenSoFar = ~0ULL; 3281 for (Value *IncValue : PN->incoming_values()) { 3282 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3283 if (Len == 0) return 0; // Unknown length -> unknown. 3284 3285 if (Len == ~0ULL) continue; 3286 3287 if (Len != LenSoFar && LenSoFar != ~0ULL) 3288 return 0; // Disagree -> unknown. 3289 LenSoFar = Len; 3290 } 3291 3292 // Success, all agree. 3293 return LenSoFar; 3294 } 3295 3296 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3297 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3298 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3299 if (Len1 == 0) return 0; 3300 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3301 if (Len2 == 0) return 0; 3302 if (Len1 == ~0ULL) return Len2; 3303 if (Len2 == ~0ULL) return Len1; 3304 if (Len1 != Len2) return 0; 3305 return Len1; 3306 } 3307 3308 // Otherwise, see if we can read the string. 3309 ConstantDataArraySlice Slice; 3310 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3311 return 0; 3312 3313 if (Slice.Array == nullptr) 3314 return 1; 3315 3316 // Search for nul characters 3317 unsigned NullIndex = 0; 3318 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3319 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3320 break; 3321 } 3322 3323 return NullIndex + 1; 3324 } 3325 3326 /// If we can compute the length of the string pointed to by 3327 /// the specified pointer, return 'len+1'. If we can't, return 0. 3328 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3329 if (!V->getType()->isPointerTy()) return 0; 3330 3331 SmallPtrSet<const PHINode*, 32> PHIs; 3332 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3333 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3334 // an empty string as a length. 3335 return Len == ~0ULL ? 1 : Len; 3336 } 3337 3338 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3339 /// previous iteration of the loop was referring to the same object as \p PN. 3340 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3341 const LoopInfo *LI) { 3342 // Find the loop-defined value. 3343 Loop *L = LI->getLoopFor(PN->getParent()); 3344 if (PN->getNumIncomingValues() != 2) 3345 return true; 3346 3347 // Find the value from previous iteration. 3348 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3349 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3350 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3351 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3352 return true; 3353 3354 // If a new pointer is loaded in the loop, the pointer references a different 3355 // object in every iteration. E.g.: 3356 // for (i) 3357 // int *p = a[i]; 3358 // ... 3359 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3360 if (!L->isLoopInvariant(Load->getPointerOperand())) 3361 return false; 3362 return true; 3363 } 3364 3365 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3366 unsigned MaxLookup) { 3367 if (!V->getType()->isPointerTy()) 3368 return V; 3369 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3370 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3371 V = GEP->getPointerOperand(); 3372 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3373 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3374 V = cast<Operator>(V)->getOperand(0); 3375 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3376 if (GA->isInterposable()) 3377 return V; 3378 V = GA->getAliasee(); 3379 } else if (isa<AllocaInst>(V)) { 3380 // An alloca can't be further simplified. 3381 return V; 3382 } else { 3383 if (auto CS = CallSite(V)) 3384 if (Value *RV = CS.getReturnedArgOperand()) { 3385 V = RV; 3386 continue; 3387 } 3388 3389 // See if InstructionSimplify knows any relevant tricks. 3390 if (Instruction *I = dyn_cast<Instruction>(V)) 3391 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3392 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3393 V = Simplified; 3394 continue; 3395 } 3396 3397 return V; 3398 } 3399 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3400 } 3401 return V; 3402 } 3403 3404 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3405 const DataLayout &DL, LoopInfo *LI, 3406 unsigned MaxLookup) { 3407 SmallPtrSet<Value *, 4> Visited; 3408 SmallVector<Value *, 4> Worklist; 3409 Worklist.push_back(V); 3410 do { 3411 Value *P = Worklist.pop_back_val(); 3412 P = GetUnderlyingObject(P, DL, MaxLookup); 3413 3414 if (!Visited.insert(P).second) 3415 continue; 3416 3417 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3418 Worklist.push_back(SI->getTrueValue()); 3419 Worklist.push_back(SI->getFalseValue()); 3420 continue; 3421 } 3422 3423 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3424 // If this PHI changes the underlying object in every iteration of the 3425 // loop, don't look through it. Consider: 3426 // int **A; 3427 // for (i) { 3428 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3429 // Curr = A[i]; 3430 // *Prev, *Curr; 3431 // 3432 // Prev is tracking Curr one iteration behind so they refer to different 3433 // underlying objects. 3434 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3435 isSameUnderlyingObjectInLoop(PN, LI)) 3436 for (Value *IncValue : PN->incoming_values()) 3437 Worklist.push_back(IncValue); 3438 continue; 3439 } 3440 3441 Objects.push_back(P); 3442 } while (!Worklist.empty()); 3443 } 3444 3445 /// This is the function that does the work of looking through basic 3446 /// ptrtoint+arithmetic+inttoptr sequences. 3447 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3448 do { 3449 if (const Operator *U = dyn_cast<Operator>(V)) { 3450 // If we find a ptrtoint, we can transfer control back to the 3451 // regular getUnderlyingObjectFromInt. 3452 if (U->getOpcode() == Instruction::PtrToInt) 3453 return U->getOperand(0); 3454 // If we find an add of a constant, a multiplied value, or a phi, it's 3455 // likely that the other operand will lead us to the base 3456 // object. We don't have to worry about the case where the 3457 // object address is somehow being computed by the multiply, 3458 // because our callers only care when the result is an 3459 // identifiable object. 3460 if (U->getOpcode() != Instruction::Add || 3461 (!isa<ConstantInt>(U->getOperand(1)) && 3462 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3463 !isa<PHINode>(U->getOperand(1)))) 3464 return V; 3465 V = U->getOperand(0); 3466 } else { 3467 return V; 3468 } 3469 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3470 } while (true); 3471 } 3472 3473 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3474 /// ptrtoint+arithmetic+inttoptr sequences. 3475 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3476 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3477 SmallVectorImpl<Value *> &Objects, 3478 const DataLayout &DL) { 3479 SmallPtrSet<const Value *, 16> Visited; 3480 SmallVector<const Value *, 4> Working(1, V); 3481 do { 3482 V = Working.pop_back_val(); 3483 3484 SmallVector<Value *, 4> Objs; 3485 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3486 3487 for (Value *V : Objs) { 3488 if (!Visited.insert(V).second) 3489 continue; 3490 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3491 const Value *O = 3492 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3493 if (O->getType()->isPointerTy()) { 3494 Working.push_back(O); 3495 continue; 3496 } 3497 } 3498 // If GetUnderlyingObjects fails to find an identifiable object, 3499 // getUnderlyingObjectsForCodeGen also fails for safety. 3500 if (!isIdentifiedObject(V)) { 3501 Objects.clear(); 3502 return false; 3503 } 3504 Objects.push_back(const_cast<Value *>(V)); 3505 } 3506 } while (!Working.empty()); 3507 return true; 3508 } 3509 3510 /// Return true if the only users of this pointer are lifetime markers. 3511 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3512 for (const User *U : V->users()) { 3513 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3514 if (!II) return false; 3515 3516 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3517 II->getIntrinsicID() != Intrinsic::lifetime_end) 3518 return false; 3519 } 3520 return true; 3521 } 3522 3523 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3524 const Instruction *CtxI, 3525 const DominatorTree *DT) { 3526 const Operator *Inst = dyn_cast<Operator>(V); 3527 if (!Inst) 3528 return false; 3529 3530 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3531 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3532 if (C->canTrap()) 3533 return false; 3534 3535 switch (Inst->getOpcode()) { 3536 default: 3537 return true; 3538 case Instruction::UDiv: 3539 case Instruction::URem: { 3540 // x / y is undefined if y == 0. 3541 const APInt *V; 3542 if (match(Inst->getOperand(1), m_APInt(V))) 3543 return *V != 0; 3544 return false; 3545 } 3546 case Instruction::SDiv: 3547 case Instruction::SRem: { 3548 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3549 const APInt *Numerator, *Denominator; 3550 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3551 return false; 3552 // We cannot hoist this division if the denominator is 0. 3553 if (*Denominator == 0) 3554 return false; 3555 // It's safe to hoist if the denominator is not 0 or -1. 3556 if (*Denominator != -1) 3557 return true; 3558 // At this point we know that the denominator is -1. It is safe to hoist as 3559 // long we know that the numerator is not INT_MIN. 3560 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3561 return !Numerator->isMinSignedValue(); 3562 // The numerator *might* be MinSignedValue. 3563 return false; 3564 } 3565 case Instruction::Load: { 3566 const LoadInst *LI = cast<LoadInst>(Inst); 3567 if (!LI->isUnordered() || 3568 // Speculative load may create a race that did not exist in the source. 3569 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3570 // Speculative load may load data from dirty regions. 3571 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3572 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3573 return false; 3574 const DataLayout &DL = LI->getModule()->getDataLayout(); 3575 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3576 LI->getAlignment(), DL, CtxI, DT); 3577 } 3578 case Instruction::Call: { 3579 auto *CI = cast<const CallInst>(Inst); 3580 const Function *Callee = CI->getCalledFunction(); 3581 3582 // The called function could have undefined behavior or side-effects, even 3583 // if marked readnone nounwind. 3584 return Callee && Callee->isSpeculatable(); 3585 } 3586 case Instruction::VAArg: 3587 case Instruction::Alloca: 3588 case Instruction::Invoke: 3589 case Instruction::PHI: 3590 case Instruction::Store: 3591 case Instruction::Ret: 3592 case Instruction::Br: 3593 case Instruction::IndirectBr: 3594 case Instruction::Switch: 3595 case Instruction::Unreachable: 3596 case Instruction::Fence: 3597 case Instruction::AtomicRMW: 3598 case Instruction::AtomicCmpXchg: 3599 case Instruction::LandingPad: 3600 case Instruction::Resume: 3601 case Instruction::CatchSwitch: 3602 case Instruction::CatchPad: 3603 case Instruction::CatchRet: 3604 case Instruction::CleanupPad: 3605 case Instruction::CleanupRet: 3606 return false; // Misc instructions which have effects 3607 } 3608 } 3609 3610 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3611 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3612 } 3613 3614 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3615 const Value *RHS, 3616 const DataLayout &DL, 3617 AssumptionCache *AC, 3618 const Instruction *CxtI, 3619 const DominatorTree *DT) { 3620 // Multiplying n * m significant bits yields a result of n + m significant 3621 // bits. If the total number of significant bits does not exceed the 3622 // result bit width (minus 1), there is no overflow. 3623 // This means if we have enough leading zero bits in the operands 3624 // we can guarantee that the result does not overflow. 3625 // Ref: "Hacker's Delight" by Henry Warren 3626 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3627 KnownBits LHSKnown(BitWidth); 3628 KnownBits RHSKnown(BitWidth); 3629 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3630 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3631 // Note that underestimating the number of zero bits gives a more 3632 // conservative answer. 3633 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3634 RHSKnown.countMinLeadingZeros(); 3635 // First handle the easy case: if we have enough zero bits there's 3636 // definitely no overflow. 3637 if (ZeroBits >= BitWidth) 3638 return OverflowResult::NeverOverflows; 3639 3640 // Get the largest possible values for each operand. 3641 APInt LHSMax = ~LHSKnown.Zero; 3642 APInt RHSMax = ~RHSKnown.Zero; 3643 3644 // We know the multiply operation doesn't overflow if the maximum values for 3645 // each operand will not overflow after we multiply them together. 3646 bool MaxOverflow; 3647 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3648 if (!MaxOverflow) 3649 return OverflowResult::NeverOverflows; 3650 3651 // We know it always overflows if multiplying the smallest possible values for 3652 // the operands also results in overflow. 3653 bool MinOverflow; 3654 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3655 if (MinOverflow) 3656 return OverflowResult::AlwaysOverflows; 3657 3658 return OverflowResult::MayOverflow; 3659 } 3660 3661 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3662 const Value *RHS, 3663 const DataLayout &DL, 3664 AssumptionCache *AC, 3665 const Instruction *CxtI, 3666 const DominatorTree *DT) { 3667 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3668 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3669 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3670 3671 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3672 // The sign bit is set in both cases: this MUST overflow. 3673 // Create a simple add instruction, and insert it into the struct. 3674 return OverflowResult::AlwaysOverflows; 3675 } 3676 3677 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3678 // The sign bit is clear in both cases: this CANNOT overflow. 3679 // Create a simple add instruction, and insert it into the struct. 3680 return OverflowResult::NeverOverflows; 3681 } 3682 } 3683 3684 return OverflowResult::MayOverflow; 3685 } 3686 3687 /// \brief Return true if we can prove that adding the two values of the 3688 /// knownbits will not overflow. 3689 /// Otherwise return false. 3690 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3691 const KnownBits &RHSKnown) { 3692 // Addition of two 2's complement numbers having opposite signs will never 3693 // overflow. 3694 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3695 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3696 return true; 3697 3698 // If either of the values is known to be non-negative, adding them can only 3699 // overflow if the second is also non-negative, so we can assume that. 3700 // Two non-negative numbers will only overflow if there is a carry to the 3701 // sign bit, so we can check if even when the values are as big as possible 3702 // there is no overflow to the sign bit. 3703 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3704 APInt MaxLHS = ~LHSKnown.Zero; 3705 MaxLHS.clearSignBit(); 3706 APInt MaxRHS = ~RHSKnown.Zero; 3707 MaxRHS.clearSignBit(); 3708 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3709 return Result.isSignBitClear(); 3710 } 3711 3712 // If either of the values is known to be negative, adding them can only 3713 // overflow if the second is also negative, so we can assume that. 3714 // Two negative number will only overflow if there is no carry to the sign 3715 // bit, so we can check if even when the values are as small as possible 3716 // there is overflow to the sign bit. 3717 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3718 APInt MinLHS = LHSKnown.One; 3719 MinLHS.clearSignBit(); 3720 APInt MinRHS = RHSKnown.One; 3721 MinRHS.clearSignBit(); 3722 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3723 return Result.isSignBitSet(); 3724 } 3725 3726 // If we reached here it means that we know nothing about the sign bits. 3727 // In this case we can't know if there will be an overflow, since by 3728 // changing the sign bits any two values can be made to overflow. 3729 return false; 3730 } 3731 3732 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3733 const Value *RHS, 3734 const AddOperator *Add, 3735 const DataLayout &DL, 3736 AssumptionCache *AC, 3737 const Instruction *CxtI, 3738 const DominatorTree *DT) { 3739 if (Add && Add->hasNoSignedWrap()) { 3740 return OverflowResult::NeverOverflows; 3741 } 3742 3743 // If LHS and RHS each have at least two sign bits, the addition will look 3744 // like 3745 // 3746 // XX..... + 3747 // YY..... 3748 // 3749 // If the carry into the most significant position is 0, X and Y can't both 3750 // be 1 and therefore the carry out of the addition is also 0. 3751 // 3752 // If the carry into the most significant position is 1, X and Y can't both 3753 // be 0 and therefore the carry out of the addition is also 1. 3754 // 3755 // Since the carry into the most significant position is always equal to 3756 // the carry out of the addition, there is no signed overflow. 3757 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3758 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3759 return OverflowResult::NeverOverflows; 3760 3761 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3762 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3763 3764 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3765 return OverflowResult::NeverOverflows; 3766 3767 // The remaining code needs Add to be available. Early returns if not so. 3768 if (!Add) 3769 return OverflowResult::MayOverflow; 3770 3771 // If the sign of Add is the same as at least one of the operands, this add 3772 // CANNOT overflow. This is particularly useful when the sum is 3773 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3774 // operands. 3775 bool LHSOrRHSKnownNonNegative = 3776 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3777 bool LHSOrRHSKnownNegative = 3778 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3779 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3780 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3781 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3782 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3783 return OverflowResult::NeverOverflows; 3784 } 3785 } 3786 3787 return OverflowResult::MayOverflow; 3788 } 3789 3790 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3791 const DominatorTree &DT) { 3792 #ifndef NDEBUG 3793 auto IID = II->getIntrinsicID(); 3794 assert((IID == Intrinsic::sadd_with_overflow || 3795 IID == Intrinsic::uadd_with_overflow || 3796 IID == Intrinsic::ssub_with_overflow || 3797 IID == Intrinsic::usub_with_overflow || 3798 IID == Intrinsic::smul_with_overflow || 3799 IID == Intrinsic::umul_with_overflow) && 3800 "Not an overflow intrinsic!"); 3801 #endif 3802 3803 SmallVector<const BranchInst *, 2> GuardingBranches; 3804 SmallVector<const ExtractValueInst *, 2> Results; 3805 3806 for (const User *U : II->users()) { 3807 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3808 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3809 3810 if (EVI->getIndices()[0] == 0) 3811 Results.push_back(EVI); 3812 else { 3813 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3814 3815 for (const auto *U : EVI->users()) 3816 if (const auto *B = dyn_cast<BranchInst>(U)) { 3817 assert(B->isConditional() && "How else is it using an i1?"); 3818 GuardingBranches.push_back(B); 3819 } 3820 } 3821 } else { 3822 // We are using the aggregate directly in a way we don't want to analyze 3823 // here (storing it to a global, say). 3824 return false; 3825 } 3826 } 3827 3828 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3829 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3830 if (!NoWrapEdge.isSingleEdge()) 3831 return false; 3832 3833 // Check if all users of the add are provably no-wrap. 3834 for (const auto *Result : Results) { 3835 // If the extractvalue itself is not executed on overflow, the we don't 3836 // need to check each use separately, since domination is transitive. 3837 if (DT.dominates(NoWrapEdge, Result->getParent())) 3838 continue; 3839 3840 for (auto &RU : Result->uses()) 3841 if (!DT.dominates(NoWrapEdge, RU)) 3842 return false; 3843 } 3844 3845 return true; 3846 }; 3847 3848 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 3849 } 3850 3851 3852 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3853 const DataLayout &DL, 3854 AssumptionCache *AC, 3855 const Instruction *CxtI, 3856 const DominatorTree *DT) { 3857 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3858 Add, DL, AC, CxtI, DT); 3859 } 3860 3861 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3862 const Value *RHS, 3863 const DataLayout &DL, 3864 AssumptionCache *AC, 3865 const Instruction *CxtI, 3866 const DominatorTree *DT) { 3867 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3868 } 3869 3870 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3871 // A memory operation returns normally if it isn't volatile. A volatile 3872 // operation is allowed to trap. 3873 // 3874 // An atomic operation isn't guaranteed to return in a reasonable amount of 3875 // time because it's possible for another thread to interfere with it for an 3876 // arbitrary length of time, but programs aren't allowed to rely on that. 3877 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3878 return !LI->isVolatile(); 3879 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3880 return !SI->isVolatile(); 3881 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3882 return !CXI->isVolatile(); 3883 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3884 return !RMWI->isVolatile(); 3885 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3886 return !MII->isVolatile(); 3887 3888 // If there is no successor, then execution can't transfer to it. 3889 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3890 return !CRI->unwindsToCaller(); 3891 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3892 return !CatchSwitch->unwindsToCaller(); 3893 if (isa<ResumeInst>(I)) 3894 return false; 3895 if (isa<ReturnInst>(I)) 3896 return false; 3897 if (isa<UnreachableInst>(I)) 3898 return false; 3899 3900 // Calls can throw, or contain an infinite loop, or kill the process. 3901 if (auto CS = ImmutableCallSite(I)) { 3902 // Call sites that throw have implicit non-local control flow. 3903 if (!CS.doesNotThrow()) 3904 return false; 3905 3906 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3907 // etc. and thus not return. However, LLVM already assumes that 3908 // 3909 // - Thread exiting actions are modeled as writes to memory invisible to 3910 // the program. 3911 // 3912 // - Loops that don't have side effects (side effects are volatile/atomic 3913 // stores and IO) always terminate (see http://llvm.org/PR965). 3914 // Furthermore IO itself is also modeled as writes to memory invisible to 3915 // the program. 3916 // 3917 // We rely on those assumptions here, and use the memory effects of the call 3918 // target as a proxy for checking that it always returns. 3919 3920 // FIXME: This isn't aggressive enough; a call which only writes to a global 3921 // is guaranteed to return. 3922 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3923 match(I, m_Intrinsic<Intrinsic::assume>()) || 3924 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 3925 } 3926 3927 // Other instructions return normally. 3928 return true; 3929 } 3930 3931 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3932 const Loop *L) { 3933 // The loop header is guaranteed to be executed for every iteration. 3934 // 3935 // FIXME: Relax this constraint to cover all basic blocks that are 3936 // guaranteed to be executed at every iteration. 3937 if (I->getParent() != L->getHeader()) return false; 3938 3939 for (const Instruction &LI : *L->getHeader()) { 3940 if (&LI == I) return true; 3941 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3942 } 3943 llvm_unreachable("Instruction not contained in its own parent basic block."); 3944 } 3945 3946 bool llvm::propagatesFullPoison(const Instruction *I) { 3947 switch (I->getOpcode()) { 3948 case Instruction::Add: 3949 case Instruction::Sub: 3950 case Instruction::Xor: 3951 case Instruction::Trunc: 3952 case Instruction::BitCast: 3953 case Instruction::AddrSpaceCast: 3954 case Instruction::Mul: 3955 case Instruction::Shl: 3956 case Instruction::GetElementPtr: 3957 // These operations all propagate poison unconditionally. Note that poison 3958 // is not any particular value, so xor or subtraction of poison with 3959 // itself still yields poison, not zero. 3960 return true; 3961 3962 case Instruction::AShr: 3963 case Instruction::SExt: 3964 // For these operations, one bit of the input is replicated across 3965 // multiple output bits. A replicated poison bit is still poison. 3966 return true; 3967 3968 case Instruction::ICmp: 3969 // Comparing poison with any value yields poison. This is why, for 3970 // instance, x s< (x +nsw 1) can be folded to true. 3971 return true; 3972 3973 default: 3974 return false; 3975 } 3976 } 3977 3978 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3979 switch (I->getOpcode()) { 3980 case Instruction::Store: 3981 return cast<StoreInst>(I)->getPointerOperand(); 3982 3983 case Instruction::Load: 3984 return cast<LoadInst>(I)->getPointerOperand(); 3985 3986 case Instruction::AtomicCmpXchg: 3987 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3988 3989 case Instruction::AtomicRMW: 3990 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3991 3992 case Instruction::UDiv: 3993 case Instruction::SDiv: 3994 case Instruction::URem: 3995 case Instruction::SRem: 3996 return I->getOperand(1); 3997 3998 default: 3999 return nullptr; 4000 } 4001 } 4002 4003 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4004 // We currently only look for uses of poison values within the same basic 4005 // block, as that makes it easier to guarantee that the uses will be 4006 // executed given that PoisonI is executed. 4007 // 4008 // FIXME: Expand this to consider uses beyond the same basic block. To do 4009 // this, look out for the distinction between post-dominance and strong 4010 // post-dominance. 4011 const BasicBlock *BB = PoisonI->getParent(); 4012 4013 // Set of instructions that we have proved will yield poison if PoisonI 4014 // does. 4015 SmallSet<const Value *, 16> YieldsPoison; 4016 SmallSet<const BasicBlock *, 4> Visited; 4017 YieldsPoison.insert(PoisonI); 4018 Visited.insert(PoisonI->getParent()); 4019 4020 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4021 4022 unsigned Iter = 0; 4023 while (Iter++ < MaxDepth) { 4024 for (auto &I : make_range(Begin, End)) { 4025 if (&I != PoisonI) { 4026 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4027 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4028 return true; 4029 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4030 return false; 4031 } 4032 4033 // Mark poison that propagates from I through uses of I. 4034 if (YieldsPoison.count(&I)) { 4035 for (const User *User : I.users()) { 4036 const Instruction *UserI = cast<Instruction>(User); 4037 if (propagatesFullPoison(UserI)) 4038 YieldsPoison.insert(User); 4039 } 4040 } 4041 } 4042 4043 if (auto *NextBB = BB->getSingleSuccessor()) { 4044 if (Visited.insert(NextBB).second) { 4045 BB = NextBB; 4046 Begin = BB->getFirstNonPHI()->getIterator(); 4047 End = BB->end(); 4048 continue; 4049 } 4050 } 4051 4052 break; 4053 } 4054 return false; 4055 } 4056 4057 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4058 if (FMF.noNaNs()) 4059 return true; 4060 4061 if (auto *C = dyn_cast<ConstantFP>(V)) 4062 return !C->isNaN(); 4063 return false; 4064 } 4065 4066 static bool isKnownNonZero(const Value *V) { 4067 if (auto *C = dyn_cast<ConstantFP>(V)) 4068 return !C->isZero(); 4069 return false; 4070 } 4071 4072 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4073 /// Given non-min/max outer cmp/select from the clamp pattern this 4074 /// function recognizes if it can be substitued by a "canonical" min/max 4075 /// pattern. 4076 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4077 Value *CmpLHS, Value *CmpRHS, 4078 Value *TrueVal, Value *FalseVal, 4079 Value *&LHS, Value *&RHS) { 4080 // Try to match 4081 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4082 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4083 // and return description of the outer Max/Min. 4084 4085 // First, check if select has inverse order: 4086 if (CmpRHS == FalseVal) { 4087 std::swap(TrueVal, FalseVal); 4088 Pred = CmpInst::getInversePredicate(Pred); 4089 } 4090 4091 // Assume success now. If there's no match, callers should not use these anyway. 4092 LHS = TrueVal; 4093 RHS = FalseVal; 4094 4095 const APFloat *FC1; 4096 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4097 return {SPF_UNKNOWN, SPNB_NA, false}; 4098 4099 const APFloat *FC2; 4100 switch (Pred) { 4101 case CmpInst::FCMP_OLT: 4102 case CmpInst::FCMP_OLE: 4103 case CmpInst::FCMP_ULT: 4104 case CmpInst::FCMP_ULE: 4105 if (match(FalseVal, 4106 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4107 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4108 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4109 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4110 break; 4111 case CmpInst::FCMP_OGT: 4112 case CmpInst::FCMP_OGE: 4113 case CmpInst::FCMP_UGT: 4114 case CmpInst::FCMP_UGE: 4115 if (match(FalseVal, 4116 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4117 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4118 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4119 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4120 break; 4121 default: 4122 break; 4123 } 4124 4125 return {SPF_UNKNOWN, SPNB_NA, false}; 4126 } 4127 4128 /// Recognize variations of: 4129 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4130 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4131 Value *CmpLHS, Value *CmpRHS, 4132 Value *TrueVal, Value *FalseVal) { 4133 // Swap the select operands and predicate to match the patterns below. 4134 if (CmpRHS != TrueVal) { 4135 Pred = ICmpInst::getSwappedPredicate(Pred); 4136 std::swap(TrueVal, FalseVal); 4137 } 4138 const APInt *C1; 4139 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4140 const APInt *C2; 4141 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4142 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4143 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4144 return {SPF_SMAX, SPNB_NA, false}; 4145 4146 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4147 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4148 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4149 return {SPF_SMIN, SPNB_NA, false}; 4150 4151 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4152 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4153 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4154 return {SPF_UMAX, SPNB_NA, false}; 4155 4156 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4157 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4158 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4159 return {SPF_UMIN, SPNB_NA, false}; 4160 } 4161 return {SPF_UNKNOWN, SPNB_NA, false}; 4162 } 4163 4164 /// Recognize variations of: 4165 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4166 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4167 Value *CmpLHS, Value *CmpRHS, 4168 Value *TrueVal, Value *FalseVal) { 4169 // TODO: Allow FP min/max with nnan/nsz. 4170 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4171 4172 Value *A, *B; 4173 SelectPatternResult L = matchSelectPattern(TrueVal, A, B); 4174 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4175 return {SPF_UNKNOWN, SPNB_NA, false}; 4176 4177 Value *C, *D; 4178 SelectPatternResult R = matchSelectPattern(FalseVal, C, D); 4179 if (L.Flavor != R.Flavor) 4180 return {SPF_UNKNOWN, SPNB_NA, false}; 4181 4182 // We have something like: x Pred y ? min(a, b) : min(c, d). 4183 // Try to match the compare to the min/max operations of the select operands. 4184 // First, make sure we have the right compare predicate. 4185 switch (L.Flavor) { 4186 case SPF_SMIN: 4187 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4188 Pred = ICmpInst::getSwappedPredicate(Pred); 4189 std::swap(CmpLHS, CmpRHS); 4190 } 4191 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4192 break; 4193 return {SPF_UNKNOWN, SPNB_NA, false}; 4194 case SPF_SMAX: 4195 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4196 Pred = ICmpInst::getSwappedPredicate(Pred); 4197 std::swap(CmpLHS, CmpRHS); 4198 } 4199 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4200 break; 4201 return {SPF_UNKNOWN, SPNB_NA, false}; 4202 case SPF_UMIN: 4203 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4204 Pred = ICmpInst::getSwappedPredicate(Pred); 4205 std::swap(CmpLHS, CmpRHS); 4206 } 4207 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4208 break; 4209 return {SPF_UNKNOWN, SPNB_NA, false}; 4210 case SPF_UMAX: 4211 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4212 Pred = ICmpInst::getSwappedPredicate(Pred); 4213 std::swap(CmpLHS, CmpRHS); 4214 } 4215 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4216 break; 4217 return {SPF_UNKNOWN, SPNB_NA, false}; 4218 default: 4219 return {SPF_UNKNOWN, SPNB_NA, false}; 4220 } 4221 4222 // If there is a common operand in the already matched min/max and the other 4223 // min/max operands match the compare operands (either directly or inverted), 4224 // then this is min/max of the same flavor. 4225 4226 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4227 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4228 if (D == B) { 4229 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4230 match(A, m_Not(m_Specific(CmpRHS))))) 4231 return {L.Flavor, SPNB_NA, false}; 4232 } 4233 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4234 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4235 if (C == B) { 4236 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4237 match(A, m_Not(m_Specific(CmpRHS))))) 4238 return {L.Flavor, SPNB_NA, false}; 4239 } 4240 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4241 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4242 if (D == A) { 4243 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4244 match(B, m_Not(m_Specific(CmpRHS))))) 4245 return {L.Flavor, SPNB_NA, false}; 4246 } 4247 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4248 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4249 if (C == A) { 4250 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4251 match(B, m_Not(m_Specific(CmpRHS))))) 4252 return {L.Flavor, SPNB_NA, false}; 4253 } 4254 4255 return {SPF_UNKNOWN, SPNB_NA, false}; 4256 } 4257 4258 /// Match non-obvious integer minimum and maximum sequences. 4259 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4260 Value *CmpLHS, Value *CmpRHS, 4261 Value *TrueVal, Value *FalseVal, 4262 Value *&LHS, Value *&RHS) { 4263 // Assume success. If there's no match, callers should not use these anyway. 4264 LHS = TrueVal; 4265 RHS = FalseVal; 4266 4267 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4268 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4269 return SPR; 4270 4271 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4272 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4273 return SPR; 4274 4275 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4276 return {SPF_UNKNOWN, SPNB_NA, false}; 4277 4278 // Z = X -nsw Y 4279 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4280 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4281 if (match(TrueVal, m_Zero()) && 4282 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4283 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4284 4285 // Z = X -nsw Y 4286 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4287 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4288 if (match(FalseVal, m_Zero()) && 4289 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4290 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4291 4292 const APInt *C1; 4293 if (!match(CmpRHS, m_APInt(C1))) 4294 return {SPF_UNKNOWN, SPNB_NA, false}; 4295 4296 // An unsigned min/max can be written with a signed compare. 4297 const APInt *C2; 4298 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4299 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4300 // Is the sign bit set? 4301 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4302 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4303 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4304 C2->isMaxSignedValue()) 4305 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4306 4307 // Is the sign bit clear? 4308 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4309 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4310 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4311 C2->isMinSignedValue()) 4312 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4313 } 4314 4315 // Look through 'not' ops to find disguised signed min/max. 4316 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4317 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4318 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4319 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4320 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4321 4322 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4323 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4324 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4325 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4326 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4327 4328 return {SPF_UNKNOWN, SPNB_NA, false}; 4329 } 4330 4331 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4332 FastMathFlags FMF, 4333 Value *CmpLHS, Value *CmpRHS, 4334 Value *TrueVal, Value *FalseVal, 4335 Value *&LHS, Value *&RHS) { 4336 LHS = CmpLHS; 4337 RHS = CmpRHS; 4338 4339 // Signed zero may return inconsistent results between implementations. 4340 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4341 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4342 // Therefore, we behave conservatively and only proceed if at least one of the 4343 // operands is known to not be zero or if we don't care about signed zero. 4344 switch (Pred) { 4345 default: break; 4346 // FIXME: Include OGT/OLT/UGT/ULT. 4347 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4348 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4349 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4350 !isKnownNonZero(CmpRHS)) 4351 return {SPF_UNKNOWN, SPNB_NA, false}; 4352 } 4353 4354 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4355 bool Ordered = false; 4356 4357 // When given one NaN and one non-NaN input: 4358 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4359 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4360 // ordered comparison fails), which could be NaN or non-NaN. 4361 // so here we discover exactly what NaN behavior is required/accepted. 4362 if (CmpInst::isFPPredicate(Pred)) { 4363 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4364 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4365 4366 if (LHSSafe && RHSSafe) { 4367 // Both operands are known non-NaN. 4368 NaNBehavior = SPNB_RETURNS_ANY; 4369 } else if (CmpInst::isOrdered(Pred)) { 4370 // An ordered comparison will return false when given a NaN, so it 4371 // returns the RHS. 4372 Ordered = true; 4373 if (LHSSafe) 4374 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4375 NaNBehavior = SPNB_RETURNS_NAN; 4376 else if (RHSSafe) 4377 NaNBehavior = SPNB_RETURNS_OTHER; 4378 else 4379 // Completely unsafe. 4380 return {SPF_UNKNOWN, SPNB_NA, false}; 4381 } else { 4382 Ordered = false; 4383 // An unordered comparison will return true when given a NaN, so it 4384 // returns the LHS. 4385 if (LHSSafe) 4386 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4387 NaNBehavior = SPNB_RETURNS_OTHER; 4388 else if (RHSSafe) 4389 NaNBehavior = SPNB_RETURNS_NAN; 4390 else 4391 // Completely unsafe. 4392 return {SPF_UNKNOWN, SPNB_NA, false}; 4393 } 4394 } 4395 4396 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4397 std::swap(CmpLHS, CmpRHS); 4398 Pred = CmpInst::getSwappedPredicate(Pred); 4399 if (NaNBehavior == SPNB_RETURNS_NAN) 4400 NaNBehavior = SPNB_RETURNS_OTHER; 4401 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4402 NaNBehavior = SPNB_RETURNS_NAN; 4403 Ordered = !Ordered; 4404 } 4405 4406 // ([if]cmp X, Y) ? X : Y 4407 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4408 switch (Pred) { 4409 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4410 case ICmpInst::ICMP_UGT: 4411 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4412 case ICmpInst::ICMP_SGT: 4413 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4414 case ICmpInst::ICMP_ULT: 4415 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4416 case ICmpInst::ICMP_SLT: 4417 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4418 case FCmpInst::FCMP_UGT: 4419 case FCmpInst::FCMP_UGE: 4420 case FCmpInst::FCMP_OGT: 4421 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4422 case FCmpInst::FCMP_ULT: 4423 case FCmpInst::FCMP_ULE: 4424 case FCmpInst::FCMP_OLT: 4425 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4426 } 4427 } 4428 4429 const APInt *C1; 4430 if (match(CmpRHS, m_APInt(C1))) { 4431 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4432 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4433 4434 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4435 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4436 if (Pred == ICmpInst::ICMP_SGT && 4437 (C1->isNullValue() || C1->isAllOnesValue())) { 4438 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4439 } 4440 4441 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4442 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4443 if (Pred == ICmpInst::ICMP_SLT && 4444 (C1->isNullValue() || C1->isOneValue())) { 4445 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4446 } 4447 } 4448 } 4449 4450 if (CmpInst::isIntPredicate(Pred)) 4451 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4452 4453 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4454 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4455 // semantics than minNum. Be conservative in such case. 4456 if (NaNBehavior != SPNB_RETURNS_ANY || 4457 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4458 !isKnownNonZero(CmpRHS))) 4459 return {SPF_UNKNOWN, SPNB_NA, false}; 4460 4461 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4462 } 4463 4464 /// Helps to match a select pattern in case of a type mismatch. 4465 /// 4466 /// The function processes the case when type of true and false values of a 4467 /// select instruction differs from type of the cmp instruction operands because 4468 /// of a cast instructon. The function checks if it is legal to move the cast 4469 /// operation after "select". If yes, it returns the new second value of 4470 /// "select" (with the assumption that cast is moved): 4471 /// 1. As operand of cast instruction when both values of "select" are same cast 4472 /// instructions. 4473 /// 2. As restored constant (by applying reverse cast operation) when the first 4474 /// value of the "select" is a cast operation and the second value is a 4475 /// constant. 4476 /// NOTE: We return only the new second value because the first value could be 4477 /// accessed as operand of cast instruction. 4478 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4479 Instruction::CastOps *CastOp) { 4480 auto *Cast1 = dyn_cast<CastInst>(V1); 4481 if (!Cast1) 4482 return nullptr; 4483 4484 *CastOp = Cast1->getOpcode(); 4485 Type *SrcTy = Cast1->getSrcTy(); 4486 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4487 // If V1 and V2 are both the same cast from the same type, look through V1. 4488 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4489 return Cast2->getOperand(0); 4490 return nullptr; 4491 } 4492 4493 auto *C = dyn_cast<Constant>(V2); 4494 if (!C) 4495 return nullptr; 4496 4497 Constant *CastedTo = nullptr; 4498 switch (*CastOp) { 4499 case Instruction::ZExt: 4500 if (CmpI->isUnsigned()) 4501 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4502 break; 4503 case Instruction::SExt: 4504 if (CmpI->isSigned()) 4505 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4506 break; 4507 case Instruction::Trunc: 4508 Constant *CmpConst; 4509 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4510 CmpConst->getType() == SrcTy) { 4511 // Here we have the following case: 4512 // 4513 // %cond = cmp iN %x, CmpConst 4514 // %tr = trunc iN %x to iK 4515 // %narrowsel = select i1 %cond, iK %t, iK C 4516 // 4517 // We can always move trunc after select operation: 4518 // 4519 // %cond = cmp iN %x, CmpConst 4520 // %widesel = select i1 %cond, iN %x, iN CmpConst 4521 // %tr = trunc iN %widesel to iK 4522 // 4523 // Note that C could be extended in any way because we don't care about 4524 // upper bits after truncation. It can't be abs pattern, because it would 4525 // look like: 4526 // 4527 // select i1 %cond, x, -x. 4528 // 4529 // So only min/max pattern could be matched. Such match requires widened C 4530 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4531 // CmpConst == C is checked below. 4532 CastedTo = CmpConst; 4533 } else { 4534 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4535 } 4536 break; 4537 case Instruction::FPTrunc: 4538 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4539 break; 4540 case Instruction::FPExt: 4541 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4542 break; 4543 case Instruction::FPToUI: 4544 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4545 break; 4546 case Instruction::FPToSI: 4547 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4548 break; 4549 case Instruction::UIToFP: 4550 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4551 break; 4552 case Instruction::SIToFP: 4553 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4554 break; 4555 default: 4556 break; 4557 } 4558 4559 if (!CastedTo) 4560 return nullptr; 4561 4562 // Make sure the cast doesn't lose any information. 4563 Constant *CastedBack = 4564 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4565 if (CastedBack != C) 4566 return nullptr; 4567 4568 return CastedTo; 4569 } 4570 4571 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4572 Instruction::CastOps *CastOp) { 4573 SelectInst *SI = dyn_cast<SelectInst>(V); 4574 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4575 4576 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4577 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4578 4579 CmpInst::Predicate Pred = CmpI->getPredicate(); 4580 Value *CmpLHS = CmpI->getOperand(0); 4581 Value *CmpRHS = CmpI->getOperand(1); 4582 Value *TrueVal = SI->getTrueValue(); 4583 Value *FalseVal = SI->getFalseValue(); 4584 FastMathFlags FMF; 4585 if (isa<FPMathOperator>(CmpI)) 4586 FMF = CmpI->getFastMathFlags(); 4587 4588 // Bail out early. 4589 if (CmpI->isEquality()) 4590 return {SPF_UNKNOWN, SPNB_NA, false}; 4591 4592 // Deal with type mismatches. 4593 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4594 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 4595 // If this is a potential fmin/fmax with a cast to integer, then ignore 4596 // -0.0 because there is no corresponding integer value. 4597 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4598 FMF.setNoSignedZeros(); 4599 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4600 cast<CastInst>(TrueVal)->getOperand(0), C, 4601 LHS, RHS); 4602 } 4603 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 4604 // If this is a potential fmin/fmax with a cast to integer, then ignore 4605 // -0.0 because there is no corresponding integer value. 4606 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4607 FMF.setNoSignedZeros(); 4608 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4609 C, cast<CastInst>(FalseVal)->getOperand(0), 4610 LHS, RHS); 4611 } 4612 } 4613 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4614 LHS, RHS); 4615 } 4616 4617 /// Return true if "icmp Pred LHS RHS" is always true. 4618 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4619 const Value *RHS, const DataLayout &DL, 4620 unsigned Depth) { 4621 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4622 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4623 return true; 4624 4625 switch (Pred) { 4626 default: 4627 return false; 4628 4629 case CmpInst::ICMP_SLE: { 4630 const APInt *C; 4631 4632 // LHS s<= LHS +_{nsw} C if C >= 0 4633 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4634 return !C->isNegative(); 4635 return false; 4636 } 4637 4638 case CmpInst::ICMP_ULE: { 4639 const APInt *C; 4640 4641 // LHS u<= LHS +_{nuw} C for any C 4642 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4643 return true; 4644 4645 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4646 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4647 const Value *&X, 4648 const APInt *&CA, const APInt *&CB) { 4649 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4650 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4651 return true; 4652 4653 // If X & C == 0 then (X | C) == X +_{nuw} C 4654 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4655 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4656 KnownBits Known(CA->getBitWidth()); 4657 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4658 /*CxtI*/ nullptr, /*DT*/ nullptr); 4659 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4660 return true; 4661 } 4662 4663 return false; 4664 }; 4665 4666 const Value *X; 4667 const APInt *CLHS, *CRHS; 4668 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4669 return CLHS->ule(*CRHS); 4670 4671 return false; 4672 } 4673 } 4674 } 4675 4676 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4677 /// ALHS ARHS" is true. Otherwise, return None. 4678 static Optional<bool> 4679 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4680 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4681 const DataLayout &DL, unsigned Depth) { 4682 switch (Pred) { 4683 default: 4684 return None; 4685 4686 case CmpInst::ICMP_SLT: 4687 case CmpInst::ICMP_SLE: 4688 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4689 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4690 return true; 4691 return None; 4692 4693 case CmpInst::ICMP_ULT: 4694 case CmpInst::ICMP_ULE: 4695 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4696 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4697 return true; 4698 return None; 4699 } 4700 } 4701 4702 /// Return true if the operands of the two compares match. IsSwappedOps is true 4703 /// when the operands match, but are swapped. 4704 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4705 const Value *BLHS, const Value *BRHS, 4706 bool &IsSwappedOps) { 4707 4708 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4709 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4710 return IsMatchingOps || IsSwappedOps; 4711 } 4712 4713 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4714 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4715 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4716 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4717 const Value *ALHS, 4718 const Value *ARHS, 4719 CmpInst::Predicate BPred, 4720 const Value *BLHS, 4721 const Value *BRHS, 4722 bool IsSwappedOps) { 4723 // Canonicalize the operands so they're matching. 4724 if (IsSwappedOps) { 4725 std::swap(BLHS, BRHS); 4726 BPred = ICmpInst::getSwappedPredicate(BPred); 4727 } 4728 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4729 return true; 4730 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4731 return false; 4732 4733 return None; 4734 } 4735 4736 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4737 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4738 /// C2" is false. Otherwise, return None if we can't infer anything. 4739 static Optional<bool> 4740 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4741 const ConstantInt *C1, 4742 CmpInst::Predicate BPred, 4743 const Value *BLHS, const ConstantInt *C2) { 4744 assert(ALHS == BLHS && "LHS operands must match."); 4745 ConstantRange DomCR = 4746 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4747 ConstantRange CR = 4748 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4749 ConstantRange Intersection = DomCR.intersectWith(CR); 4750 ConstantRange Difference = DomCR.difference(CR); 4751 if (Intersection.isEmptySet()) 4752 return false; 4753 if (Difference.isEmptySet()) 4754 return true; 4755 return None; 4756 } 4757 4758 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4759 /// false. Otherwise, return None if we can't infer anything. 4760 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4761 const ICmpInst *RHS, 4762 const DataLayout &DL, bool LHSIsTrue, 4763 unsigned Depth) { 4764 Value *ALHS = LHS->getOperand(0); 4765 Value *ARHS = LHS->getOperand(1); 4766 // The rest of the logic assumes the LHS condition is true. If that's not the 4767 // case, invert the predicate to make it so. 4768 ICmpInst::Predicate APred = 4769 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4770 4771 Value *BLHS = RHS->getOperand(0); 4772 Value *BRHS = RHS->getOperand(1); 4773 ICmpInst::Predicate BPred = RHS->getPredicate(); 4774 4775 // Can we infer anything when the two compares have matching operands? 4776 bool IsSwappedOps; 4777 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4778 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4779 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4780 return Implication; 4781 // No amount of additional analysis will infer the second condition, so 4782 // early exit. 4783 return None; 4784 } 4785 4786 // Can we infer anything when the LHS operands match and the RHS operands are 4787 // constants (not necessarily matching)? 4788 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4789 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4790 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4791 cast<ConstantInt>(BRHS))) 4792 return Implication; 4793 // No amount of additional analysis will infer the second condition, so 4794 // early exit. 4795 return None; 4796 } 4797 4798 if (APred == BPred) 4799 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 4800 return None; 4801 } 4802 4803 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4804 /// false. Otherwise, return None if we can't infer anything. We expect the 4805 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 4806 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 4807 const ICmpInst *RHS, 4808 const DataLayout &DL, bool LHSIsTrue, 4809 unsigned Depth) { 4810 // The LHS must be an 'or' or an 'and' instruction. 4811 assert((LHS->getOpcode() == Instruction::And || 4812 LHS->getOpcode() == Instruction::Or) && 4813 "Expected LHS to be 'and' or 'or'."); 4814 4815 assert(Depth <= MaxDepth && "Hit recursion limit"); 4816 4817 // If the result of an 'or' is false, then we know both legs of the 'or' are 4818 // false. Similarly, if the result of an 'and' is true, then we know both 4819 // legs of the 'and' are true. 4820 Value *ALHS, *ARHS; 4821 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 4822 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 4823 // FIXME: Make this non-recursion. 4824 if (Optional<bool> Implication = 4825 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 4826 return Implication; 4827 if (Optional<bool> Implication = 4828 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 4829 return Implication; 4830 return None; 4831 } 4832 return None; 4833 } 4834 4835 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4836 const DataLayout &DL, bool LHSIsTrue, 4837 unsigned Depth) { 4838 // Bail out when we hit the limit. 4839 if (Depth == MaxDepth) 4840 return None; 4841 4842 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 4843 // example. 4844 if (LHS->getType() != RHS->getType()) 4845 return None; 4846 4847 Type *OpTy = LHS->getType(); 4848 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 4849 4850 // LHS ==> RHS by definition 4851 if (LHS == RHS) 4852 return LHSIsTrue; 4853 4854 // FIXME: Extending the code below to handle vectors. 4855 if (OpTy->isVectorTy()) 4856 return None; 4857 4858 assert(OpTy->isIntegerTy(1) && "implied by above"); 4859 4860 // Both LHS and RHS are icmps. 4861 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 4862 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 4863 if (LHSCmp && RHSCmp) 4864 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 4865 4866 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 4867 // an icmp. FIXME: Add support for and/or on the RHS. 4868 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 4869 if (LHSBO && RHSCmp) { 4870 if ((LHSBO->getOpcode() == Instruction::And || 4871 LHSBO->getOpcode() == Instruction::Or)) 4872 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 4873 } 4874 return None; 4875 } 4876