1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/PatternMatch.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include <algorithm> 69 #include <array> 70 #include <cassert> 71 #include <cstdint> 72 #include <iterator> 73 #include <utility> 74 75 using namespace llvm; 76 using namespace llvm::PatternMatch; 77 78 const unsigned MaxDepth = 6; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getIndexTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static void computeKnownBits(const Value *V, KnownBits &Known, 165 unsigned Depth, const Query &Q); 166 167 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 168 const DataLayout &DL, unsigned Depth, 169 AssumptionCache *AC, const Instruction *CxtI, 170 const DominatorTree *DT, 171 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 172 ::computeKnownBits(V, Known, Depth, 173 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 174 } 175 176 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 177 const Query &Q); 178 179 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 180 unsigned Depth, AssumptionCache *AC, 181 const Instruction *CxtI, 182 const DominatorTree *DT, 183 OptimizationRemarkEmitter *ORE, 184 bool UseInstrInfo) { 185 return ::computeKnownBits( 186 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 187 } 188 189 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 190 const DataLayout &DL, AssumptionCache *AC, 191 const Instruction *CxtI, const DominatorTree *DT, 192 bool UseInstrInfo) { 193 assert(LHS->getType() == RHS->getType() && 194 "LHS and RHS should have the same type"); 195 assert(LHS->getType()->isIntOrIntVectorTy() && 196 "LHS and RHS should be integers"); 197 // Look for an inverted mask: (X & ~M) op (Y & M). 198 Value *M; 199 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 200 match(RHS, m_c_And(m_Specific(M), m_Value()))) 201 return true; 202 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 203 match(LHS, m_c_And(m_Specific(M), m_Value()))) 204 return true; 205 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 206 KnownBits LHSKnown(IT->getBitWidth()); 207 KnownBits RHSKnown(IT->getBitWidth()); 208 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 209 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 210 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 211 } 212 213 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 214 for (const User *U : CxtI->users()) { 215 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 216 if (IC->isEquality()) 217 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 218 if (C->isNullValue()) 219 continue; 220 return false; 221 } 222 return true; 223 } 224 225 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 226 const Query &Q); 227 228 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 229 bool OrZero, unsigned Depth, 230 AssumptionCache *AC, const Instruction *CxtI, 231 const DominatorTree *DT, bool UseInstrInfo) { 232 return ::isKnownToBeAPowerOfTwo( 233 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 234 } 235 236 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 237 238 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 239 AssumptionCache *AC, const Instruction *CxtI, 240 const DominatorTree *DT, bool UseInstrInfo) { 241 return ::isKnownNonZero(V, Depth, 242 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 243 } 244 245 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 246 unsigned Depth, AssumptionCache *AC, 247 const Instruction *CxtI, const DominatorTree *DT, 248 bool UseInstrInfo) { 249 KnownBits Known = 250 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 251 return Known.isNonNegative(); 252 } 253 254 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 255 AssumptionCache *AC, const Instruction *CxtI, 256 const DominatorTree *DT, bool UseInstrInfo) { 257 if (auto *CI = dyn_cast<ConstantInt>(V)) 258 return CI->getValue().isStrictlyPositive(); 259 260 // TODO: We'd doing two recursive queries here. We should factor this such 261 // that only a single query is needed. 262 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 263 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 264 } 265 266 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 267 AssumptionCache *AC, const Instruction *CxtI, 268 const DominatorTree *DT, bool UseInstrInfo) { 269 KnownBits Known = 270 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 271 return Known.isNegative(); 272 } 273 274 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 275 276 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 277 const DataLayout &DL, AssumptionCache *AC, 278 const Instruction *CxtI, const DominatorTree *DT, 279 bool UseInstrInfo) { 280 return ::isKnownNonEqual(V1, V2, 281 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 282 UseInstrInfo, /*ORE=*/nullptr)); 283 } 284 285 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 286 const Query &Q); 287 288 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 289 const DataLayout &DL, unsigned Depth, 290 AssumptionCache *AC, const Instruction *CxtI, 291 const DominatorTree *DT, bool UseInstrInfo) { 292 return ::MaskedValueIsZero( 293 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 294 } 295 296 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 297 const Query &Q); 298 299 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 300 unsigned Depth, AssumptionCache *AC, 301 const Instruction *CxtI, 302 const DominatorTree *DT, bool UseInstrInfo) { 303 return ::ComputeNumSignBits( 304 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 305 } 306 307 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 308 bool NSW, 309 KnownBits &KnownOut, KnownBits &Known2, 310 unsigned Depth, const Query &Q) { 311 unsigned BitWidth = KnownOut.getBitWidth(); 312 313 // If an initial sequence of bits in the result is not needed, the 314 // corresponding bits in the operands are not needed. 315 KnownBits LHSKnown(BitWidth); 316 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 317 computeKnownBits(Op1, Known2, Depth + 1, Q); 318 319 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 320 } 321 322 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 323 KnownBits &Known, KnownBits &Known2, 324 unsigned Depth, const Query &Q) { 325 unsigned BitWidth = Known.getBitWidth(); 326 computeKnownBits(Op1, Known, Depth + 1, Q); 327 computeKnownBits(Op0, Known2, Depth + 1, Q); 328 329 bool isKnownNegative = false; 330 bool isKnownNonNegative = false; 331 // If the multiplication is known not to overflow, compute the sign bit. 332 if (NSW) { 333 if (Op0 == Op1) { 334 // The product of a number with itself is non-negative. 335 isKnownNonNegative = true; 336 } else { 337 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 338 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 339 bool isKnownNegativeOp1 = Known.isNegative(); 340 bool isKnownNegativeOp0 = Known2.isNegative(); 341 // The product of two numbers with the same sign is non-negative. 342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 344 // The product of a negative number and a non-negative number is either 345 // negative or zero. 346 if (!isKnownNonNegative) 347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 348 isKnownNonZero(Op0, Depth, Q)) || 349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 350 isKnownNonZero(Op1, Depth, Q)); 351 } 352 } 353 354 assert(!Known.hasConflict() && !Known2.hasConflict()); 355 // Compute a conservative estimate for high known-0 bits. 356 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 357 Known2.countMinLeadingZeros(), 358 BitWidth) - BitWidth; 359 LeadZ = std::min(LeadZ, BitWidth); 360 361 // The result of the bottom bits of an integer multiply can be 362 // inferred by looking at the bottom bits of both operands and 363 // multiplying them together. 364 // We can infer at least the minimum number of known trailing bits 365 // of both operands. Depending on number of trailing zeros, we can 366 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 367 // a and b are divisible by m and n respectively. 368 // We then calculate how many of those bits are inferrable and set 369 // the output. For example, the i8 mul: 370 // a = XXXX1100 (12) 371 // b = XXXX1110 (14) 372 // We know the bottom 3 bits are zero since the first can be divided by 373 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 374 // Applying the multiplication to the trimmed arguments gets: 375 // XX11 (3) 376 // X111 (7) 377 // ------- 378 // XX11 379 // XX11 380 // XX11 381 // XX11 382 // ------- 383 // XXXXX01 384 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 385 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 386 // The proof for this can be described as: 387 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 388 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 389 // umin(countTrailingZeros(C2), C6) + 390 // umin(C5 - umin(countTrailingZeros(C1), C5), 391 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 392 // %aa = shl i8 %a, C5 393 // %bb = shl i8 %b, C6 394 // %aaa = or i8 %aa, C1 395 // %bbb = or i8 %bb, C2 396 // %mul = mul i8 %aaa, %bbb 397 // %mask = and i8 %mul, C7 398 // => 399 // %mask = i8 ((C1*C2)&C7) 400 // Where C5, C6 describe the known bits of %a, %b 401 // C1, C2 describe the known bottom bits of %a, %b. 402 // C7 describes the mask of the known bits of the result. 403 APInt Bottom0 = Known.One; 404 APInt Bottom1 = Known2.One; 405 406 // How many times we'd be able to divide each argument by 2 (shr by 1). 407 // This gives us the number of trailing zeros on the multiplication result. 408 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 409 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 410 unsigned TrailZero0 = Known.countMinTrailingZeros(); 411 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 412 unsigned TrailZ = TrailZero0 + TrailZero1; 413 414 // Figure out the fewest known-bits operand. 415 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 416 TrailBitsKnown1 - TrailZero1); 417 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 418 419 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 420 Bottom1.getLoBits(TrailBitsKnown1); 421 422 Known.resetAll(); 423 Known.Zero.setHighBits(LeadZ); 424 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 425 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 426 427 // Only make use of no-wrap flags if we failed to compute the sign bit 428 // directly. This matters if the multiplication always overflows, in 429 // which case we prefer to follow the result of the direct computation, 430 // though as the program is invoking undefined behaviour we can choose 431 // whatever we like here. 432 if (isKnownNonNegative && !Known.isNegative()) 433 Known.makeNonNegative(); 434 else if (isKnownNegative && !Known.isNonNegative()) 435 Known.makeNegative(); 436 } 437 438 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 439 KnownBits &Known) { 440 unsigned BitWidth = Known.getBitWidth(); 441 unsigned NumRanges = Ranges.getNumOperands() / 2; 442 assert(NumRanges >= 1); 443 444 Known.Zero.setAllBits(); 445 Known.One.setAllBits(); 446 447 for (unsigned i = 0; i < NumRanges; ++i) { 448 ConstantInt *Lower = 449 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 450 ConstantInt *Upper = 451 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 452 ConstantRange Range(Lower->getValue(), Upper->getValue()); 453 454 // The first CommonPrefixBits of all values in Range are equal. 455 unsigned CommonPrefixBits = 456 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 457 458 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 459 Known.One &= Range.getUnsignedMax() & Mask; 460 Known.Zero &= ~Range.getUnsignedMax() & Mask; 461 } 462 } 463 464 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 465 SmallVector<const Value *, 16> WorkSet(1, I); 466 SmallPtrSet<const Value *, 32> Visited; 467 SmallPtrSet<const Value *, 16> EphValues; 468 469 // The instruction defining an assumption's condition itself is always 470 // considered ephemeral to that assumption (even if it has other 471 // non-ephemeral users). See r246696's test case for an example. 472 if (is_contained(I->operands(), E)) 473 return true; 474 475 while (!WorkSet.empty()) { 476 const Value *V = WorkSet.pop_back_val(); 477 if (!Visited.insert(V).second) 478 continue; 479 480 // If all uses of this value are ephemeral, then so is this value. 481 if (llvm::all_of(V->users(), [&](const User *U) { 482 return EphValues.count(U); 483 })) { 484 if (V == E) 485 return true; 486 487 if (V == I || isSafeToSpeculativelyExecute(V)) { 488 EphValues.insert(V); 489 if (const User *U = dyn_cast<User>(V)) 490 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 491 J != JE; ++J) 492 WorkSet.push_back(*J); 493 } 494 } 495 } 496 497 return false; 498 } 499 500 // Is this an intrinsic that cannot be speculated but also cannot trap? 501 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 502 if (const CallInst *CI = dyn_cast<CallInst>(I)) 503 if (Function *F = CI->getCalledFunction()) 504 switch (F->getIntrinsicID()) { 505 default: break; 506 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 507 case Intrinsic::assume: 508 case Intrinsic::sideeffect: 509 case Intrinsic::dbg_declare: 510 case Intrinsic::dbg_value: 511 case Intrinsic::dbg_label: 512 case Intrinsic::invariant_start: 513 case Intrinsic::invariant_end: 514 case Intrinsic::lifetime_start: 515 case Intrinsic::lifetime_end: 516 case Intrinsic::objectsize: 517 case Intrinsic::ptr_annotation: 518 case Intrinsic::var_annotation: 519 return true; 520 } 521 522 return false; 523 } 524 525 bool llvm::isValidAssumeForContext(const Instruction *Inv, 526 const Instruction *CxtI, 527 const DominatorTree *DT) { 528 // There are two restrictions on the use of an assume: 529 // 1. The assume must dominate the context (or the control flow must 530 // reach the assume whenever it reaches the context). 531 // 2. The context must not be in the assume's set of ephemeral values 532 // (otherwise we will use the assume to prove that the condition 533 // feeding the assume is trivially true, thus causing the removal of 534 // the assume). 535 536 if (DT) { 537 if (DT->dominates(Inv, CxtI)) 538 return true; 539 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 540 // We don't have a DT, but this trivially dominates. 541 return true; 542 } 543 544 // With or without a DT, the only remaining case we will check is if the 545 // instructions are in the same BB. Give up if that is not the case. 546 if (Inv->getParent() != CxtI->getParent()) 547 return false; 548 549 // If we have a dom tree, then we now know that the assume doesn't dominate 550 // the other instruction. If we don't have a dom tree then we can check if 551 // the assume is first in the BB. 552 if (!DT) { 553 // Search forward from the assume until we reach the context (or the end 554 // of the block); the common case is that the assume will come first. 555 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 556 IE = Inv->getParent()->end(); I != IE; ++I) 557 if (&*I == CxtI) 558 return true; 559 } 560 561 // Don't let an assume affect itself - this would cause the problems 562 // `isEphemeralValueOf` is trying to prevent, and it would also make 563 // the loop below go out of bounds. 564 if (Inv == CxtI) 565 return false; 566 567 // The context comes first, but they're both in the same block. Make sure 568 // there is nothing in between that might interrupt the control flow. 569 for (BasicBlock::const_iterator I = 570 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 571 I != IE; ++I) 572 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 573 return false; 574 575 return !isEphemeralValueOf(Inv, CxtI); 576 } 577 578 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 579 unsigned Depth, const Query &Q) { 580 // Use of assumptions is context-sensitive. If we don't have a context, we 581 // cannot use them! 582 if (!Q.AC || !Q.CxtI) 583 return; 584 585 unsigned BitWidth = Known.getBitWidth(); 586 587 // Note that the patterns below need to be kept in sync with the code 588 // in AssumptionCache::updateAffectedValues. 589 590 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 591 if (!AssumeVH) 592 continue; 593 CallInst *I = cast<CallInst>(AssumeVH); 594 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 595 "Got assumption for the wrong function!"); 596 if (Q.isExcluded(I)) 597 continue; 598 599 // Warning: This loop can end up being somewhat performance sensitive. 600 // We're running this loop for once for each value queried resulting in a 601 // runtime of ~O(#assumes * #values). 602 603 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 604 "must be an assume intrinsic"); 605 606 Value *Arg = I->getArgOperand(0); 607 608 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 609 assert(BitWidth == 1 && "assume operand is not i1?"); 610 Known.setAllOnes(); 611 return; 612 } 613 if (match(Arg, m_Not(m_Specific(V))) && 614 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 615 assert(BitWidth == 1 && "assume operand is not i1?"); 616 Known.setAllZero(); 617 return; 618 } 619 620 // The remaining tests are all recursive, so bail out if we hit the limit. 621 if (Depth == MaxDepth) 622 continue; 623 624 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 625 if (!Cmp) 626 continue; 627 628 Value *A, *B; 629 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 630 631 CmpInst::Predicate Pred; 632 uint64_t C; 633 switch (Cmp->getPredicate()) { 634 default: 635 break; 636 case ICmpInst::ICMP_EQ: 637 // assume(v = a) 638 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 639 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 640 KnownBits RHSKnown(BitWidth); 641 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 642 Known.Zero |= RHSKnown.Zero; 643 Known.One |= RHSKnown.One; 644 // assume(v & b = a) 645 } else if (match(Cmp, 646 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 647 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 648 KnownBits RHSKnown(BitWidth); 649 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 650 KnownBits MaskKnown(BitWidth); 651 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 652 653 // For those bits in the mask that are known to be one, we can propagate 654 // known bits from the RHS to V. 655 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 656 Known.One |= RHSKnown.One & MaskKnown.One; 657 // assume(~(v & b) = a) 658 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 659 m_Value(A))) && 660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 661 KnownBits RHSKnown(BitWidth); 662 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 663 KnownBits MaskKnown(BitWidth); 664 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 665 666 // For those bits in the mask that are known to be one, we can propagate 667 // inverted known bits from the RHS to V. 668 Known.Zero |= RHSKnown.One & MaskKnown.One; 669 Known.One |= RHSKnown.Zero & MaskKnown.One; 670 // assume(v | b = a) 671 } else if (match(Cmp, 672 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 673 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 674 KnownBits RHSKnown(BitWidth); 675 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 676 KnownBits BKnown(BitWidth); 677 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 678 679 // For those bits in B that are known to be zero, we can propagate known 680 // bits from the RHS to V. 681 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 682 Known.One |= RHSKnown.One & BKnown.Zero; 683 // assume(~(v | b) = a) 684 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 685 m_Value(A))) && 686 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 687 KnownBits RHSKnown(BitWidth); 688 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 689 KnownBits BKnown(BitWidth); 690 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 691 692 // For those bits in B that are known to be zero, we can propagate 693 // inverted known bits from the RHS to V. 694 Known.Zero |= RHSKnown.One & BKnown.Zero; 695 Known.One |= RHSKnown.Zero & BKnown.Zero; 696 // assume(v ^ b = a) 697 } else if (match(Cmp, 698 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 699 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 700 KnownBits RHSKnown(BitWidth); 701 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 702 KnownBits BKnown(BitWidth); 703 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 704 705 // For those bits in B that are known to be zero, we can propagate known 706 // bits from the RHS to V. For those bits in B that are known to be one, 707 // we can propagate inverted known bits from the RHS to V. 708 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 709 Known.One |= RHSKnown.One & BKnown.Zero; 710 Known.Zero |= RHSKnown.One & BKnown.One; 711 Known.One |= RHSKnown.Zero & BKnown.One; 712 // assume(~(v ^ b) = a) 713 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 714 m_Value(A))) && 715 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 716 KnownBits RHSKnown(BitWidth); 717 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 718 KnownBits BKnown(BitWidth); 719 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 720 721 // For those bits in B that are known to be zero, we can propagate 722 // inverted known bits from the RHS to V. For those bits in B that are 723 // known to be one, we can propagate known bits from the RHS to V. 724 Known.Zero |= RHSKnown.One & BKnown.Zero; 725 Known.One |= RHSKnown.Zero & BKnown.Zero; 726 Known.Zero |= RHSKnown.Zero & BKnown.One; 727 Known.One |= RHSKnown.One & BKnown.One; 728 // assume(v << c = a) 729 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 730 m_Value(A))) && 731 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 732 KnownBits RHSKnown(BitWidth); 733 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 734 // For those bits in RHS that are known, we can propagate them to known 735 // bits in V shifted to the right by C. 736 RHSKnown.Zero.lshrInPlace(C); 737 Known.Zero |= RHSKnown.Zero; 738 RHSKnown.One.lshrInPlace(C); 739 Known.One |= RHSKnown.One; 740 // assume(~(v << c) = a) 741 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 742 m_Value(A))) && 743 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 744 KnownBits RHSKnown(BitWidth); 745 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 746 // For those bits in RHS that are known, we can propagate them inverted 747 // to known bits in V shifted to the right by C. 748 RHSKnown.One.lshrInPlace(C); 749 Known.Zero |= RHSKnown.One; 750 RHSKnown.Zero.lshrInPlace(C); 751 Known.One |= RHSKnown.Zero; 752 // assume(v >> c = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 756 KnownBits RHSKnown(BitWidth); 757 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 758 // For those bits in RHS that are known, we can propagate them to known 759 // bits in V shifted to the right by C. 760 Known.Zero |= RHSKnown.Zero << C; 761 Known.One |= RHSKnown.One << C; 762 // assume(~(v >> c) = a) 763 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 764 m_Value(A))) && 765 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 766 KnownBits RHSKnown(BitWidth); 767 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 768 // For those bits in RHS that are known, we can propagate them inverted 769 // to known bits in V shifted to the right by C. 770 Known.Zero |= RHSKnown.One << C; 771 Known.One |= RHSKnown.Zero << C; 772 } 773 break; 774 case ICmpInst::ICMP_SGE: 775 // assume(v >=_s c) where c is non-negative 776 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 777 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 778 KnownBits RHSKnown(BitWidth); 779 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 780 781 if (RHSKnown.isNonNegative()) { 782 // We know that the sign bit is zero. 783 Known.makeNonNegative(); 784 } 785 } 786 break; 787 case ICmpInst::ICMP_SGT: 788 // assume(v >_s c) where c is at least -1. 789 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 790 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 791 KnownBits RHSKnown(BitWidth); 792 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 793 794 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 795 // We know that the sign bit is zero. 796 Known.makeNonNegative(); 797 } 798 } 799 break; 800 case ICmpInst::ICMP_SLE: 801 // assume(v <=_s c) where c is negative 802 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 803 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 804 KnownBits RHSKnown(BitWidth); 805 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 806 807 if (RHSKnown.isNegative()) { 808 // We know that the sign bit is one. 809 Known.makeNegative(); 810 } 811 } 812 break; 813 case ICmpInst::ICMP_SLT: 814 // assume(v <_s c) where c is non-positive 815 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 816 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 817 KnownBits RHSKnown(BitWidth); 818 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 819 820 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 821 // We know that the sign bit is one. 822 Known.makeNegative(); 823 } 824 } 825 break; 826 case ICmpInst::ICMP_ULE: 827 // assume(v <=_u c) 828 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 829 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 830 KnownBits RHSKnown(BitWidth); 831 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 832 833 // Whatever high bits in c are zero are known to be zero. 834 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 835 } 836 break; 837 case ICmpInst::ICMP_ULT: 838 // assume(v <_u c) 839 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 840 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 841 KnownBits RHSKnown(BitWidth); 842 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 843 844 // If the RHS is known zero, then this assumption must be wrong (nothing 845 // is unsigned less than zero). Signal a conflict and get out of here. 846 if (RHSKnown.isZero()) { 847 Known.Zero.setAllBits(); 848 Known.One.setAllBits(); 849 break; 850 } 851 852 // Whatever high bits in c are zero are known to be zero (if c is a power 853 // of 2, then one more). 854 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 855 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 856 else 857 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 858 } 859 break; 860 } 861 } 862 863 // If assumptions conflict with each other or previous known bits, then we 864 // have a logical fallacy. It's possible that the assumption is not reachable, 865 // so this isn't a real bug. On the other hand, the program may have undefined 866 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 867 // clear out the known bits, try to warn the user, and hope for the best. 868 if (Known.Zero.intersects(Known.One)) { 869 Known.resetAll(); 870 871 if (Q.ORE) 872 Q.ORE->emit([&]() { 873 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 874 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 875 CxtI) 876 << "Detected conflicting code assumptions. Program may " 877 "have undefined behavior, or compiler may have " 878 "internal error."; 879 }); 880 } 881 } 882 883 /// Compute known bits from a shift operator, including those with a 884 /// non-constant shift amount. Known is the output of this function. Known2 is a 885 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 886 /// operator-specific functions that, given the known-zero or known-one bits 887 /// respectively, and a shift amount, compute the implied known-zero or 888 /// known-one bits of the shift operator's result respectively for that shift 889 /// amount. The results from calling KZF and KOF are conservatively combined for 890 /// all permitted shift amounts. 891 static void computeKnownBitsFromShiftOperator( 892 const Operator *I, KnownBits &Known, KnownBits &Known2, 893 unsigned Depth, const Query &Q, 894 function_ref<APInt(const APInt &, unsigned)> KZF, 895 function_ref<APInt(const APInt &, unsigned)> KOF) { 896 unsigned BitWidth = Known.getBitWidth(); 897 898 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 899 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 900 901 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 902 Known.Zero = KZF(Known.Zero, ShiftAmt); 903 Known.One = KOF(Known.One, ShiftAmt); 904 // If the known bits conflict, this must be an overflowing left shift, so 905 // the shift result is poison. We can return anything we want. Choose 0 for 906 // the best folding opportunity. 907 if (Known.hasConflict()) 908 Known.setAllZero(); 909 910 return; 911 } 912 913 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 914 915 // If the shift amount could be greater than or equal to the bit-width of the 916 // LHS, the value could be poison, but bail out because the check below is 917 // expensive. TODO: Should we just carry on? 918 if (Known.getMaxValue().uge(BitWidth)) { 919 Known.resetAll(); 920 return; 921 } 922 923 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 924 // BitWidth > 64 and any upper bits are known, we'll end up returning the 925 // limit value (which implies all bits are known). 926 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 927 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 928 929 // It would be more-clearly correct to use the two temporaries for this 930 // calculation. Reusing the APInts here to prevent unnecessary allocations. 931 Known.resetAll(); 932 933 // If we know the shifter operand is nonzero, we can sometimes infer more 934 // known bits. However this is expensive to compute, so be lazy about it and 935 // only compute it when absolutely necessary. 936 Optional<bool> ShifterOperandIsNonZero; 937 938 // Early exit if we can't constrain any well-defined shift amount. 939 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 940 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 941 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 942 if (!*ShifterOperandIsNonZero) 943 return; 944 } 945 946 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 947 948 Known.Zero.setAllBits(); 949 Known.One.setAllBits(); 950 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 951 // Combine the shifted known input bits only for those shift amounts 952 // compatible with its known constraints. 953 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 954 continue; 955 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 956 continue; 957 // If we know the shifter is nonzero, we may be able to infer more known 958 // bits. This check is sunk down as far as possible to avoid the expensive 959 // call to isKnownNonZero if the cheaper checks above fail. 960 if (ShiftAmt == 0) { 961 if (!ShifterOperandIsNonZero.hasValue()) 962 ShifterOperandIsNonZero = 963 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 964 if (*ShifterOperandIsNonZero) 965 continue; 966 } 967 968 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 969 Known.One &= KOF(Known2.One, ShiftAmt); 970 } 971 972 // If the known bits conflict, the result is poison. Return a 0 and hope the 973 // caller can further optimize that. 974 if (Known.hasConflict()) 975 Known.setAllZero(); 976 } 977 978 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 979 unsigned Depth, const Query &Q) { 980 unsigned BitWidth = Known.getBitWidth(); 981 982 KnownBits Known2(Known); 983 switch (I->getOpcode()) { 984 default: break; 985 case Instruction::Load: 986 if (MDNode *MD = 987 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 988 computeKnownBitsFromRangeMetadata(*MD, Known); 989 break; 990 case Instruction::And: { 991 // If either the LHS or the RHS are Zero, the result is zero. 992 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 993 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 994 995 // Output known-1 bits are only known if set in both the LHS & RHS. 996 Known.One &= Known2.One; 997 // Output known-0 are known to be clear if zero in either the LHS | RHS. 998 Known.Zero |= Known2.Zero; 999 1000 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1001 // here we handle the more general case of adding any odd number by 1002 // matching the form add(x, add(x, y)) where y is odd. 1003 // TODO: This could be generalized to clearing any bit set in y where the 1004 // following bit is known to be unset in y. 1005 Value *X = nullptr, *Y = nullptr; 1006 if (!Known.Zero[0] && !Known.One[0] && 1007 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1008 Known2.resetAll(); 1009 computeKnownBits(Y, Known2, Depth + 1, Q); 1010 if (Known2.countMinTrailingOnes() > 0) 1011 Known.Zero.setBit(0); 1012 } 1013 break; 1014 } 1015 case Instruction::Or: 1016 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1017 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1018 1019 // Output known-0 bits are only known if clear in both the LHS & RHS. 1020 Known.Zero &= Known2.Zero; 1021 // Output known-1 are known to be set if set in either the LHS | RHS. 1022 Known.One |= Known2.One; 1023 break; 1024 case Instruction::Xor: { 1025 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1026 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1027 1028 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1029 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1030 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1031 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1032 Known.Zero = std::move(KnownZeroOut); 1033 break; 1034 } 1035 case Instruction::Mul: { 1036 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1037 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1038 Known2, Depth, Q); 1039 break; 1040 } 1041 case Instruction::UDiv: { 1042 // For the purposes of computing leading zeros we can conservatively 1043 // treat a udiv as a logical right shift by the power of 2 known to 1044 // be less than the denominator. 1045 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1046 unsigned LeadZ = Known2.countMinLeadingZeros(); 1047 1048 Known2.resetAll(); 1049 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1050 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1051 if (RHSMaxLeadingZeros != BitWidth) 1052 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1053 1054 Known.Zero.setHighBits(LeadZ); 1055 break; 1056 } 1057 case Instruction::Select: { 1058 const Value *LHS = nullptr, *RHS = nullptr; 1059 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1060 if (SelectPatternResult::isMinOrMax(SPF)) { 1061 computeKnownBits(RHS, Known, Depth + 1, Q); 1062 computeKnownBits(LHS, Known2, Depth + 1, Q); 1063 } else { 1064 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1065 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1066 } 1067 1068 unsigned MaxHighOnes = 0; 1069 unsigned MaxHighZeros = 0; 1070 if (SPF == SPF_SMAX) { 1071 // If both sides are negative, the result is negative. 1072 if (Known.isNegative() && Known2.isNegative()) 1073 // We can derive a lower bound on the result by taking the max of the 1074 // leading one bits. 1075 MaxHighOnes = 1076 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1077 // If either side is non-negative, the result is non-negative. 1078 else if (Known.isNonNegative() || Known2.isNonNegative()) 1079 MaxHighZeros = 1; 1080 } else if (SPF == SPF_SMIN) { 1081 // If both sides are non-negative, the result is non-negative. 1082 if (Known.isNonNegative() && Known2.isNonNegative()) 1083 // We can derive an upper bound on the result by taking the max of the 1084 // leading zero bits. 1085 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1086 Known2.countMinLeadingZeros()); 1087 // If either side is negative, the result is negative. 1088 else if (Known.isNegative() || Known2.isNegative()) 1089 MaxHighOnes = 1; 1090 } else if (SPF == SPF_UMAX) { 1091 // We can derive a lower bound on the result by taking the max of the 1092 // leading one bits. 1093 MaxHighOnes = 1094 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1095 } else if (SPF == SPF_UMIN) { 1096 // We can derive an upper bound on the result by taking the max of the 1097 // leading zero bits. 1098 MaxHighZeros = 1099 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1100 } else if (SPF == SPF_ABS) { 1101 // RHS from matchSelectPattern returns the negation part of abs pattern. 1102 // If the negate has an NSW flag we can assume the sign bit of the result 1103 // will be 0 because that makes abs(INT_MIN) undefined. 1104 if (match(RHS, m_Neg(m_Specific(LHS))) && 1105 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1106 MaxHighZeros = 1; 1107 } 1108 1109 // Only known if known in both the LHS and RHS. 1110 Known.One &= Known2.One; 1111 Known.Zero &= Known2.Zero; 1112 if (MaxHighOnes > 0) 1113 Known.One.setHighBits(MaxHighOnes); 1114 if (MaxHighZeros > 0) 1115 Known.Zero.setHighBits(MaxHighZeros); 1116 break; 1117 } 1118 case Instruction::FPTrunc: 1119 case Instruction::FPExt: 1120 case Instruction::FPToUI: 1121 case Instruction::FPToSI: 1122 case Instruction::SIToFP: 1123 case Instruction::UIToFP: 1124 break; // Can't work with floating point. 1125 case Instruction::PtrToInt: 1126 case Instruction::IntToPtr: 1127 // Fall through and handle them the same as zext/trunc. 1128 LLVM_FALLTHROUGH; 1129 case Instruction::ZExt: 1130 case Instruction::Trunc: { 1131 Type *SrcTy = I->getOperand(0)->getType(); 1132 1133 unsigned SrcBitWidth; 1134 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1135 // which fall through here. 1136 Type *ScalarTy = SrcTy->getScalarType(); 1137 SrcBitWidth = ScalarTy->isPointerTy() ? 1138 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1139 Q.DL.getTypeSizeInBits(ScalarTy); 1140 1141 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1142 Known = Known.zextOrTrunc(SrcBitWidth, false); 1143 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1144 Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */); 1145 break; 1146 } 1147 case Instruction::BitCast: { 1148 Type *SrcTy = I->getOperand(0)->getType(); 1149 if (SrcTy->isIntOrPtrTy() && 1150 // TODO: For now, not handling conversions like: 1151 // (bitcast i64 %x to <2 x i32>) 1152 !I->getType()->isVectorTy()) { 1153 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1154 break; 1155 } 1156 break; 1157 } 1158 case Instruction::SExt: { 1159 // Compute the bits in the result that are not present in the input. 1160 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1161 1162 Known = Known.trunc(SrcBitWidth); 1163 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1164 // If the sign bit of the input is known set or clear, then we know the 1165 // top bits of the result. 1166 Known = Known.sext(BitWidth); 1167 break; 1168 } 1169 case Instruction::Shl: { 1170 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1171 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1172 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1173 APInt KZResult = KnownZero << ShiftAmt; 1174 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1175 // If this shift has "nsw" keyword, then the result is either a poison 1176 // value or has the same sign bit as the first operand. 1177 if (NSW && KnownZero.isSignBitSet()) 1178 KZResult.setSignBit(); 1179 return KZResult; 1180 }; 1181 1182 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1183 APInt KOResult = KnownOne << ShiftAmt; 1184 if (NSW && KnownOne.isSignBitSet()) 1185 KOResult.setSignBit(); 1186 return KOResult; 1187 }; 1188 1189 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1190 break; 1191 } 1192 case Instruction::LShr: { 1193 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1194 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1195 APInt KZResult = KnownZero.lshr(ShiftAmt); 1196 // High bits known zero. 1197 KZResult.setHighBits(ShiftAmt); 1198 return KZResult; 1199 }; 1200 1201 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1202 return KnownOne.lshr(ShiftAmt); 1203 }; 1204 1205 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1206 break; 1207 } 1208 case Instruction::AShr: { 1209 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1210 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1211 return KnownZero.ashr(ShiftAmt); 1212 }; 1213 1214 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1215 return KnownOne.ashr(ShiftAmt); 1216 }; 1217 1218 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1219 break; 1220 } 1221 case Instruction::Sub: { 1222 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1223 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1224 Known, Known2, Depth, Q); 1225 break; 1226 } 1227 case Instruction::Add: { 1228 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1229 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1230 Known, Known2, Depth, Q); 1231 break; 1232 } 1233 case Instruction::SRem: 1234 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1235 APInt RA = Rem->getValue().abs(); 1236 if (RA.isPowerOf2()) { 1237 APInt LowBits = RA - 1; 1238 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1239 1240 // The low bits of the first operand are unchanged by the srem. 1241 Known.Zero = Known2.Zero & LowBits; 1242 Known.One = Known2.One & LowBits; 1243 1244 // If the first operand is non-negative or has all low bits zero, then 1245 // the upper bits are all zero. 1246 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1247 Known.Zero |= ~LowBits; 1248 1249 // If the first operand is negative and not all low bits are zero, then 1250 // the upper bits are all one. 1251 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1252 Known.One |= ~LowBits; 1253 1254 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1255 break; 1256 } 1257 } 1258 1259 // The sign bit is the LHS's sign bit, except when the result of the 1260 // remainder is zero. 1261 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1262 // If it's known zero, our sign bit is also zero. 1263 if (Known2.isNonNegative()) 1264 Known.makeNonNegative(); 1265 1266 break; 1267 case Instruction::URem: { 1268 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1269 const APInt &RA = Rem->getValue(); 1270 if (RA.isPowerOf2()) { 1271 APInt LowBits = (RA - 1); 1272 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1273 Known.Zero |= ~LowBits; 1274 Known.One &= LowBits; 1275 break; 1276 } 1277 } 1278 1279 // Since the result is less than or equal to either operand, any leading 1280 // zero bits in either operand must also exist in the result. 1281 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1282 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1283 1284 unsigned Leaders = 1285 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1286 Known.resetAll(); 1287 Known.Zero.setHighBits(Leaders); 1288 break; 1289 } 1290 1291 case Instruction::Alloca: { 1292 const AllocaInst *AI = cast<AllocaInst>(I); 1293 unsigned Align = AI->getAlignment(); 1294 if (Align == 0) 1295 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1296 1297 if (Align > 0) 1298 Known.Zero.setLowBits(countTrailingZeros(Align)); 1299 break; 1300 } 1301 case Instruction::GetElementPtr: { 1302 // Analyze all of the subscripts of this getelementptr instruction 1303 // to determine if we can prove known low zero bits. 1304 KnownBits LocalKnown(BitWidth); 1305 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1306 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1307 1308 gep_type_iterator GTI = gep_type_begin(I); 1309 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1310 Value *Index = I->getOperand(i); 1311 if (StructType *STy = GTI.getStructTypeOrNull()) { 1312 // Handle struct member offset arithmetic. 1313 1314 // Handle case when index is vector zeroinitializer 1315 Constant *CIndex = cast<Constant>(Index); 1316 if (CIndex->isZeroValue()) 1317 continue; 1318 1319 if (CIndex->getType()->isVectorTy()) 1320 Index = CIndex->getSplatValue(); 1321 1322 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1323 const StructLayout *SL = Q.DL.getStructLayout(STy); 1324 uint64_t Offset = SL->getElementOffset(Idx); 1325 TrailZ = std::min<unsigned>(TrailZ, 1326 countTrailingZeros(Offset)); 1327 } else { 1328 // Handle array index arithmetic. 1329 Type *IndexedTy = GTI.getIndexedType(); 1330 if (!IndexedTy->isSized()) { 1331 TrailZ = 0; 1332 break; 1333 } 1334 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1335 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1336 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1337 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1338 TrailZ = std::min(TrailZ, 1339 unsigned(countTrailingZeros(TypeSize) + 1340 LocalKnown.countMinTrailingZeros())); 1341 } 1342 } 1343 1344 Known.Zero.setLowBits(TrailZ); 1345 break; 1346 } 1347 case Instruction::PHI: { 1348 const PHINode *P = cast<PHINode>(I); 1349 // Handle the case of a simple two-predecessor recurrence PHI. 1350 // There's a lot more that could theoretically be done here, but 1351 // this is sufficient to catch some interesting cases. 1352 if (P->getNumIncomingValues() == 2) { 1353 for (unsigned i = 0; i != 2; ++i) { 1354 Value *L = P->getIncomingValue(i); 1355 Value *R = P->getIncomingValue(!i); 1356 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1357 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1358 Operator *LU = dyn_cast<Operator>(L); 1359 if (!LU) 1360 continue; 1361 unsigned Opcode = LU->getOpcode(); 1362 // Check for operations that have the property that if 1363 // both their operands have low zero bits, the result 1364 // will have low zero bits. 1365 if (Opcode == Instruction::Add || 1366 Opcode == Instruction::Sub || 1367 Opcode == Instruction::And || 1368 Opcode == Instruction::Or || 1369 Opcode == Instruction::Mul) { 1370 Value *LL = LU->getOperand(0); 1371 Value *LR = LU->getOperand(1); 1372 // Find a recurrence. 1373 if (LL == I) 1374 L = LR; 1375 else if (LR == I) 1376 L = LL; 1377 else 1378 continue; // Check for recurrence with L and R flipped. 1379 1380 // Change the context instruction to the "edge" that flows into the 1381 // phi. This is important because that is where the value is actually 1382 // "evaluated" even though it is used later somewhere else. (see also 1383 // D69571). 1384 Query RecQ = Q; 1385 1386 // Ok, we have a PHI of the form L op= R. Check for low 1387 // zero bits. 1388 RecQ.CxtI = RInst; 1389 computeKnownBits(R, Known2, Depth + 1, RecQ); 1390 1391 // We need to take the minimum number of known bits 1392 KnownBits Known3(Known); 1393 RecQ.CxtI = LInst; 1394 computeKnownBits(L, Known3, Depth + 1, RecQ); 1395 1396 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1397 Known3.countMinTrailingZeros())); 1398 1399 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1400 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1401 // If initial value of recurrence is nonnegative, and we are adding 1402 // a nonnegative number with nsw, the result can only be nonnegative 1403 // or poison value regardless of the number of times we execute the 1404 // add in phi recurrence. If initial value is negative and we are 1405 // adding a negative number with nsw, the result can only be 1406 // negative or poison value. Similar arguments apply to sub and mul. 1407 // 1408 // (add non-negative, non-negative) --> non-negative 1409 // (add negative, negative) --> negative 1410 if (Opcode == Instruction::Add) { 1411 if (Known2.isNonNegative() && Known3.isNonNegative()) 1412 Known.makeNonNegative(); 1413 else if (Known2.isNegative() && Known3.isNegative()) 1414 Known.makeNegative(); 1415 } 1416 1417 // (sub nsw non-negative, negative) --> non-negative 1418 // (sub nsw negative, non-negative) --> negative 1419 else if (Opcode == Instruction::Sub && LL == I) { 1420 if (Known2.isNonNegative() && Known3.isNegative()) 1421 Known.makeNonNegative(); 1422 else if (Known2.isNegative() && Known3.isNonNegative()) 1423 Known.makeNegative(); 1424 } 1425 1426 // (mul nsw non-negative, non-negative) --> non-negative 1427 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1428 Known3.isNonNegative()) 1429 Known.makeNonNegative(); 1430 } 1431 1432 break; 1433 } 1434 } 1435 } 1436 1437 // Unreachable blocks may have zero-operand PHI nodes. 1438 if (P->getNumIncomingValues() == 0) 1439 break; 1440 1441 // Otherwise take the unions of the known bit sets of the operands, 1442 // taking conservative care to avoid excessive recursion. 1443 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1444 // Skip if every incoming value references to ourself. 1445 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1446 break; 1447 1448 Known.Zero.setAllBits(); 1449 Known.One.setAllBits(); 1450 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1451 Value *IncValue = P->getIncomingValue(u); 1452 // Skip direct self references. 1453 if (IncValue == P) continue; 1454 1455 // Change the context instruction to the "edge" that flows into the 1456 // phi. This is important because that is where the value is actually 1457 // "evaluated" even though it is used later somewhere else. (see also 1458 // D69571). 1459 Query RecQ = Q; 1460 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1461 1462 Known2 = KnownBits(BitWidth); 1463 // Recurse, but cap the recursion to one level, because we don't 1464 // want to waste time spinning around in loops. 1465 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1466 Known.Zero &= Known2.Zero; 1467 Known.One &= Known2.One; 1468 // If all bits have been ruled out, there's no need to check 1469 // more operands. 1470 if (!Known.Zero && !Known.One) 1471 break; 1472 } 1473 } 1474 break; 1475 } 1476 case Instruction::Call: 1477 case Instruction::Invoke: 1478 // If range metadata is attached to this call, set known bits from that, 1479 // and then intersect with known bits based on other properties of the 1480 // function. 1481 if (MDNode *MD = 1482 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1483 computeKnownBitsFromRangeMetadata(*MD, Known); 1484 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1485 computeKnownBits(RV, Known2, Depth + 1, Q); 1486 Known.Zero |= Known2.Zero; 1487 Known.One |= Known2.One; 1488 } 1489 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1490 switch (II->getIntrinsicID()) { 1491 default: break; 1492 case Intrinsic::bitreverse: 1493 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1494 Known.Zero |= Known2.Zero.reverseBits(); 1495 Known.One |= Known2.One.reverseBits(); 1496 break; 1497 case Intrinsic::bswap: 1498 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1499 Known.Zero |= Known2.Zero.byteSwap(); 1500 Known.One |= Known2.One.byteSwap(); 1501 break; 1502 case Intrinsic::ctlz: { 1503 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1504 // If we have a known 1, its position is our upper bound. 1505 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1506 // If this call is undefined for 0, the result will be less than 2^n. 1507 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1508 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1509 unsigned LowBits = Log2_32(PossibleLZ)+1; 1510 Known.Zero.setBitsFrom(LowBits); 1511 break; 1512 } 1513 case Intrinsic::cttz: { 1514 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1515 // If we have a known 1, its position is our upper bound. 1516 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1517 // If this call is undefined for 0, the result will be less than 2^n. 1518 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1519 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1520 unsigned LowBits = Log2_32(PossibleTZ)+1; 1521 Known.Zero.setBitsFrom(LowBits); 1522 break; 1523 } 1524 case Intrinsic::ctpop: { 1525 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1526 // We can bound the space the count needs. Also, bits known to be zero 1527 // can't contribute to the population. 1528 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1529 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1530 Known.Zero.setBitsFrom(LowBits); 1531 // TODO: we could bound KnownOne using the lower bound on the number 1532 // of bits which might be set provided by popcnt KnownOne2. 1533 break; 1534 } 1535 case Intrinsic::fshr: 1536 case Intrinsic::fshl: { 1537 const APInt *SA; 1538 if (!match(I->getOperand(2), m_APInt(SA))) 1539 break; 1540 1541 // Normalize to funnel shift left. 1542 uint64_t ShiftAmt = SA->urem(BitWidth); 1543 if (II->getIntrinsicID() == Intrinsic::fshr) 1544 ShiftAmt = BitWidth - ShiftAmt; 1545 1546 KnownBits Known3(Known); 1547 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1548 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1549 1550 Known.Zero = 1551 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1552 Known.One = 1553 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1554 break; 1555 } 1556 case Intrinsic::uadd_sat: 1557 case Intrinsic::usub_sat: { 1558 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1559 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1560 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1561 1562 // Add: Leading ones of either operand are preserved. 1563 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1564 // as leading zeros in the result. 1565 unsigned LeadingKnown; 1566 if (IsAdd) 1567 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1568 Known2.countMinLeadingOnes()); 1569 else 1570 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1571 Known2.countMinLeadingOnes()); 1572 1573 Known = KnownBits::computeForAddSub( 1574 IsAdd, /* NSW */ false, Known, Known2); 1575 1576 // We select between the operation result and all-ones/zero 1577 // respectively, so we can preserve known ones/zeros. 1578 if (IsAdd) { 1579 Known.One.setHighBits(LeadingKnown); 1580 Known.Zero.clearAllBits(); 1581 } else { 1582 Known.Zero.setHighBits(LeadingKnown); 1583 Known.One.clearAllBits(); 1584 } 1585 break; 1586 } 1587 case Intrinsic::x86_sse42_crc32_64_64: 1588 Known.Zero.setBitsFrom(32); 1589 break; 1590 } 1591 } 1592 break; 1593 case Instruction::ExtractElement: 1594 // Look through extract element. At the moment we keep this simple and skip 1595 // tracking the specific element. But at least we might find information 1596 // valid for all elements of the vector (for example if vector is sign 1597 // extended, shifted, etc). 1598 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1599 break; 1600 case Instruction::ExtractValue: 1601 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1602 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1603 if (EVI->getNumIndices() != 1) break; 1604 if (EVI->getIndices()[0] == 0) { 1605 switch (II->getIntrinsicID()) { 1606 default: break; 1607 case Intrinsic::uadd_with_overflow: 1608 case Intrinsic::sadd_with_overflow: 1609 computeKnownBitsAddSub(true, II->getArgOperand(0), 1610 II->getArgOperand(1), false, Known, Known2, 1611 Depth, Q); 1612 break; 1613 case Intrinsic::usub_with_overflow: 1614 case Intrinsic::ssub_with_overflow: 1615 computeKnownBitsAddSub(false, II->getArgOperand(0), 1616 II->getArgOperand(1), false, Known, Known2, 1617 Depth, Q); 1618 break; 1619 case Intrinsic::umul_with_overflow: 1620 case Intrinsic::smul_with_overflow: 1621 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1622 Known, Known2, Depth, Q); 1623 break; 1624 } 1625 } 1626 } 1627 } 1628 } 1629 1630 /// Determine which bits of V are known to be either zero or one and return 1631 /// them. 1632 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1633 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1634 computeKnownBits(V, Known, Depth, Q); 1635 return Known; 1636 } 1637 1638 /// Determine which bits of V are known to be either zero or one and return 1639 /// them in the Known bit set. 1640 /// 1641 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1642 /// we cannot optimize based on the assumption that it is zero without changing 1643 /// it to be an explicit zero. If we don't change it to zero, other code could 1644 /// optimized based on the contradictory assumption that it is non-zero. 1645 /// Because instcombine aggressively folds operations with undef args anyway, 1646 /// this won't lose us code quality. 1647 /// 1648 /// This function is defined on values with integer type, values with pointer 1649 /// type, and vectors of integers. In the case 1650 /// where V is a vector, known zero, and known one values are the 1651 /// same width as the vector element, and the bit is set only if it is true 1652 /// for all of the elements in the vector. 1653 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1654 const Query &Q) { 1655 assert(V && "No Value?"); 1656 assert(Depth <= MaxDepth && "Limit Search Depth"); 1657 unsigned BitWidth = Known.getBitWidth(); 1658 1659 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1660 V->getType()->isPtrOrPtrVectorTy()) && 1661 "Not integer or pointer type!"); 1662 1663 Type *ScalarTy = V->getType()->getScalarType(); 1664 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1665 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1666 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1667 (void)BitWidth; 1668 (void)ExpectedWidth; 1669 1670 const APInt *C; 1671 if (match(V, m_APInt(C))) { 1672 // We know all of the bits for a scalar constant or a splat vector constant! 1673 Known.One = *C; 1674 Known.Zero = ~Known.One; 1675 return; 1676 } 1677 // Null and aggregate-zero are all-zeros. 1678 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1679 Known.setAllZero(); 1680 return; 1681 } 1682 // Handle a constant vector by taking the intersection of the known bits of 1683 // each element. 1684 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1685 // We know that CDS must be a vector of integers. Take the intersection of 1686 // each element. 1687 Known.Zero.setAllBits(); Known.One.setAllBits(); 1688 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1689 APInt Elt = CDS->getElementAsAPInt(i); 1690 Known.Zero &= ~Elt; 1691 Known.One &= Elt; 1692 } 1693 return; 1694 } 1695 1696 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1697 // We know that CV must be a vector of integers. Take the intersection of 1698 // each element. 1699 Known.Zero.setAllBits(); Known.One.setAllBits(); 1700 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1701 Constant *Element = CV->getAggregateElement(i); 1702 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1703 if (!ElementCI) { 1704 Known.resetAll(); 1705 return; 1706 } 1707 const APInt &Elt = ElementCI->getValue(); 1708 Known.Zero &= ~Elt; 1709 Known.One &= Elt; 1710 } 1711 return; 1712 } 1713 1714 // Start out not knowing anything. 1715 Known.resetAll(); 1716 1717 // We can't imply anything about undefs. 1718 if (isa<UndefValue>(V)) 1719 return; 1720 1721 // There's no point in looking through other users of ConstantData for 1722 // assumptions. Confirm that we've handled them all. 1723 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1724 1725 // Limit search depth. 1726 // All recursive calls that increase depth must come after this. 1727 if (Depth == MaxDepth) 1728 return; 1729 1730 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1731 // the bits of its aliasee. 1732 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1733 if (!GA->isInterposable()) 1734 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1735 return; 1736 } 1737 1738 if (const Operator *I = dyn_cast<Operator>(V)) 1739 computeKnownBitsFromOperator(I, Known, Depth, Q); 1740 1741 // Aligned pointers have trailing zeros - refine Known.Zero set 1742 if (V->getType()->isPointerTy()) { 1743 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1744 if (Align) 1745 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1746 } 1747 1748 // computeKnownBitsFromAssume strictly refines Known. 1749 // Therefore, we run them after computeKnownBitsFromOperator. 1750 1751 // Check whether a nearby assume intrinsic can determine some known bits. 1752 computeKnownBitsFromAssume(V, Known, Depth, Q); 1753 1754 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1755 } 1756 1757 /// Return true if the given value is known to have exactly one 1758 /// bit set when defined. For vectors return true if every element is known to 1759 /// be a power of two when defined. Supports values with integer or pointer 1760 /// types and vectors of integers. 1761 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1762 const Query &Q) { 1763 assert(Depth <= MaxDepth && "Limit Search Depth"); 1764 1765 // Attempt to match against constants. 1766 if (OrZero && match(V, m_Power2OrZero())) 1767 return true; 1768 if (match(V, m_Power2())) 1769 return true; 1770 1771 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1772 // it is shifted off the end then the result is undefined. 1773 if (match(V, m_Shl(m_One(), m_Value()))) 1774 return true; 1775 1776 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1777 // the bottom. If it is shifted off the bottom then the result is undefined. 1778 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1779 return true; 1780 1781 // The remaining tests are all recursive, so bail out if we hit the limit. 1782 if (Depth++ == MaxDepth) 1783 return false; 1784 1785 Value *X = nullptr, *Y = nullptr; 1786 // A shift left or a logical shift right of a power of two is a power of two 1787 // or zero. 1788 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1789 match(V, m_LShr(m_Value(X), m_Value())))) 1790 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1791 1792 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1793 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1794 1795 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1796 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1797 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1798 1799 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1800 // A power of two and'd with anything is a power of two or zero. 1801 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1802 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1803 return true; 1804 // X & (-X) is always a power of two or zero. 1805 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1806 return true; 1807 return false; 1808 } 1809 1810 // Adding a power-of-two or zero to the same power-of-two or zero yields 1811 // either the original power-of-two, a larger power-of-two or zero. 1812 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1813 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1814 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1815 Q.IIQ.hasNoSignedWrap(VOBO)) { 1816 if (match(X, m_And(m_Specific(Y), m_Value())) || 1817 match(X, m_And(m_Value(), m_Specific(Y)))) 1818 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1819 return true; 1820 if (match(Y, m_And(m_Specific(X), m_Value())) || 1821 match(Y, m_And(m_Value(), m_Specific(X)))) 1822 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1823 return true; 1824 1825 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1826 KnownBits LHSBits(BitWidth); 1827 computeKnownBits(X, LHSBits, Depth, Q); 1828 1829 KnownBits RHSBits(BitWidth); 1830 computeKnownBits(Y, RHSBits, Depth, Q); 1831 // If i8 V is a power of two or zero: 1832 // ZeroBits: 1 1 1 0 1 1 1 1 1833 // ~ZeroBits: 0 0 0 1 0 0 0 0 1834 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1835 // If OrZero isn't set, we cannot give back a zero result. 1836 // Make sure either the LHS or RHS has a bit set. 1837 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1838 return true; 1839 } 1840 } 1841 1842 // An exact divide or right shift can only shift off zero bits, so the result 1843 // is a power of two only if the first operand is a power of two and not 1844 // copying a sign bit (sdiv int_min, 2). 1845 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1846 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1847 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1848 Depth, Q); 1849 } 1850 1851 return false; 1852 } 1853 1854 /// Test whether a GEP's result is known to be non-null. 1855 /// 1856 /// Uses properties inherent in a GEP to try to determine whether it is known 1857 /// to be non-null. 1858 /// 1859 /// Currently this routine does not support vector GEPs. 1860 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1861 const Query &Q) { 1862 const Function *F = nullptr; 1863 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1864 F = I->getFunction(); 1865 1866 if (!GEP->isInBounds() || 1867 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1868 return false; 1869 1870 // FIXME: Support vector-GEPs. 1871 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1872 1873 // If the base pointer is non-null, we cannot walk to a null address with an 1874 // inbounds GEP in address space zero. 1875 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1876 return true; 1877 1878 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1879 // If so, then the GEP cannot produce a null pointer, as doing so would 1880 // inherently violate the inbounds contract within address space zero. 1881 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1882 GTI != GTE; ++GTI) { 1883 // Struct types are easy -- they must always be indexed by a constant. 1884 if (StructType *STy = GTI.getStructTypeOrNull()) { 1885 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1886 unsigned ElementIdx = OpC->getZExtValue(); 1887 const StructLayout *SL = Q.DL.getStructLayout(STy); 1888 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1889 if (ElementOffset > 0) 1890 return true; 1891 continue; 1892 } 1893 1894 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1895 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1896 continue; 1897 1898 // Fast path the constant operand case both for efficiency and so we don't 1899 // increment Depth when just zipping down an all-constant GEP. 1900 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1901 if (!OpC->isZero()) 1902 return true; 1903 continue; 1904 } 1905 1906 // We post-increment Depth here because while isKnownNonZero increments it 1907 // as well, when we pop back up that increment won't persist. We don't want 1908 // to recurse 10k times just because we have 10k GEP operands. We don't 1909 // bail completely out because we want to handle constant GEPs regardless 1910 // of depth. 1911 if (Depth++ >= MaxDepth) 1912 continue; 1913 1914 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1915 return true; 1916 } 1917 1918 return false; 1919 } 1920 1921 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1922 const Instruction *CtxI, 1923 const DominatorTree *DT) { 1924 if (isa<Constant>(V)) 1925 return false; 1926 1927 if (!CtxI || !DT) 1928 return false; 1929 1930 unsigned NumUsesExplored = 0; 1931 for (auto *U : V->users()) { 1932 // Avoid massive lists 1933 if (NumUsesExplored >= DomConditionsMaxUses) 1934 break; 1935 NumUsesExplored++; 1936 1937 // If the value is used as an argument to a call or invoke, then argument 1938 // attributes may provide an answer about null-ness. 1939 if (auto CS = ImmutableCallSite(U)) 1940 if (auto *CalledFunc = CS.getCalledFunction()) 1941 for (const Argument &Arg : CalledFunc->args()) 1942 if (CS.getArgOperand(Arg.getArgNo()) == V && 1943 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1944 return true; 1945 1946 // Consider only compare instructions uniquely controlling a branch 1947 CmpInst::Predicate Pred; 1948 if (!match(const_cast<User *>(U), 1949 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1950 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1951 continue; 1952 1953 SmallVector<const User *, 4> WorkList; 1954 SmallPtrSet<const User *, 4> Visited; 1955 for (auto *CmpU : U->users()) { 1956 assert(WorkList.empty() && "Should be!"); 1957 if (Visited.insert(CmpU).second) 1958 WorkList.push_back(CmpU); 1959 1960 while (!WorkList.empty()) { 1961 auto *Curr = WorkList.pop_back_val(); 1962 1963 // If a user is an AND, add all its users to the work list. We only 1964 // propagate "pred != null" condition through AND because it is only 1965 // correct to assume that all conditions of AND are met in true branch. 1966 // TODO: Support similar logic of OR and EQ predicate? 1967 if (Pred == ICmpInst::ICMP_NE) 1968 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1969 if (BO->getOpcode() == Instruction::And) { 1970 for (auto *BOU : BO->users()) 1971 if (Visited.insert(BOU).second) 1972 WorkList.push_back(BOU); 1973 continue; 1974 } 1975 1976 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1977 assert(BI->isConditional() && "uses a comparison!"); 1978 1979 BasicBlock *NonNullSuccessor = 1980 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1981 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1982 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1983 return true; 1984 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 1985 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1986 return true; 1987 } 1988 } 1989 } 1990 } 1991 1992 return false; 1993 } 1994 1995 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1996 /// ensure that the value it's attached to is never Value? 'RangeType' is 1997 /// is the type of the value described by the range. 1998 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1999 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2000 assert(NumRanges >= 1); 2001 for (unsigned i = 0; i < NumRanges; ++i) { 2002 ConstantInt *Lower = 2003 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2004 ConstantInt *Upper = 2005 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2006 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2007 if (Range.contains(Value)) 2008 return false; 2009 } 2010 return true; 2011 } 2012 2013 /// Return true if the given value is known to be non-zero when defined. For 2014 /// vectors, return true if every element is known to be non-zero when 2015 /// defined. For pointers, if the context instruction and dominator tree are 2016 /// specified, perform context-sensitive analysis and return true if the 2017 /// pointer couldn't possibly be null at the specified instruction. 2018 /// Supports values with integer or pointer type and vectors of integers. 2019 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 2020 if (auto *C = dyn_cast<Constant>(V)) { 2021 if (C->isNullValue()) 2022 return false; 2023 if (isa<ConstantInt>(C)) 2024 // Must be non-zero due to null test above. 2025 return true; 2026 2027 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2028 // See the comment for IntToPtr/PtrToInt instructions below. 2029 if (CE->getOpcode() == Instruction::IntToPtr || 2030 CE->getOpcode() == Instruction::PtrToInt) 2031 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2032 Q.DL.getTypeSizeInBits(CE->getType())) 2033 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2034 } 2035 2036 // For constant vectors, check that all elements are undefined or known 2037 // non-zero to determine that the whole vector is known non-zero. 2038 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2039 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2040 Constant *Elt = C->getAggregateElement(i); 2041 if (!Elt || Elt->isNullValue()) 2042 return false; 2043 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2044 return false; 2045 } 2046 return true; 2047 } 2048 2049 // A global variable in address space 0 is non null unless extern weak 2050 // or an absolute symbol reference. Other address spaces may have null as a 2051 // valid address for a global, so we can't assume anything. 2052 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2053 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2054 GV->getType()->getAddressSpace() == 0) 2055 return true; 2056 } else 2057 return false; 2058 } 2059 2060 if (auto *I = dyn_cast<Instruction>(V)) { 2061 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2062 // If the possible ranges don't contain zero, then the value is 2063 // definitely non-zero. 2064 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2065 const APInt ZeroValue(Ty->getBitWidth(), 0); 2066 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2067 return true; 2068 } 2069 } 2070 } 2071 2072 // Some of the tests below are recursive, so bail out if we hit the limit. 2073 if (Depth++ >= MaxDepth) 2074 return false; 2075 2076 // Check for pointer simplifications. 2077 if (V->getType()->isPointerTy()) { 2078 // Alloca never returns null, malloc might. 2079 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2080 return true; 2081 2082 // A byval, inalloca, or nonnull argument is never null. 2083 if (const Argument *A = dyn_cast<Argument>(V)) 2084 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2085 return true; 2086 2087 // A Load tagged with nonnull metadata is never null. 2088 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2089 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2090 return true; 2091 2092 if (const auto *Call = dyn_cast<CallBase>(V)) { 2093 if (Call->isReturnNonNull()) 2094 return true; 2095 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2096 return isKnownNonZero(RP, Depth, Q); 2097 } 2098 } 2099 2100 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2101 return true; 2102 2103 // Check for recursive pointer simplifications. 2104 if (V->getType()->isPointerTy()) { 2105 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2106 // do not alter the value, or at least not the nullness property of the 2107 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2108 // 2109 // Note that we have to take special care to avoid looking through 2110 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2111 // as casts that can alter the value, e.g., AddrSpaceCasts. 2112 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2113 if (isGEPKnownNonNull(GEP, Depth, Q)) 2114 return true; 2115 2116 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2117 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2118 2119 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2120 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2121 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2122 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2123 } 2124 2125 // Similar to int2ptr above, we can look through ptr2int here if the cast 2126 // is a no-op or an extend and not a truncate. 2127 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2128 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2129 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2130 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2131 2132 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2133 2134 // X | Y != 0 if X != 0 or Y != 0. 2135 Value *X = nullptr, *Y = nullptr; 2136 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2137 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2138 2139 // ext X != 0 if X != 0. 2140 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2141 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2142 2143 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2144 // if the lowest bit is shifted off the end. 2145 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2146 // shl nuw can't remove any non-zero bits. 2147 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2148 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2149 return isKnownNonZero(X, Depth, Q); 2150 2151 KnownBits Known(BitWidth); 2152 computeKnownBits(X, Known, Depth, Q); 2153 if (Known.One[0]) 2154 return true; 2155 } 2156 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2157 // defined if the sign bit is shifted off the end. 2158 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2159 // shr exact can only shift out zero bits. 2160 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2161 if (BO->isExact()) 2162 return isKnownNonZero(X, Depth, Q); 2163 2164 KnownBits Known = computeKnownBits(X, Depth, Q); 2165 if (Known.isNegative()) 2166 return true; 2167 2168 // If the shifter operand is a constant, and all of the bits shifted 2169 // out are known to be zero, and X is known non-zero then at least one 2170 // non-zero bit must remain. 2171 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2172 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2173 // Is there a known one in the portion not shifted out? 2174 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2175 return true; 2176 // Are all the bits to be shifted out known zero? 2177 if (Known.countMinTrailingZeros() >= ShiftVal) 2178 return isKnownNonZero(X, Depth, Q); 2179 } 2180 } 2181 // div exact can only produce a zero if the dividend is zero. 2182 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2183 return isKnownNonZero(X, Depth, Q); 2184 } 2185 // X + Y. 2186 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2187 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2188 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2189 2190 // If X and Y are both non-negative (as signed values) then their sum is not 2191 // zero unless both X and Y are zero. 2192 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2193 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2194 return true; 2195 2196 // If X and Y are both negative (as signed values) then their sum is not 2197 // zero unless both X and Y equal INT_MIN. 2198 if (XKnown.isNegative() && YKnown.isNegative()) { 2199 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2200 // The sign bit of X is set. If some other bit is set then X is not equal 2201 // to INT_MIN. 2202 if (XKnown.One.intersects(Mask)) 2203 return true; 2204 // The sign bit of Y is set. If some other bit is set then Y is not equal 2205 // to INT_MIN. 2206 if (YKnown.One.intersects(Mask)) 2207 return true; 2208 } 2209 2210 // The sum of a non-negative number and a power of two is not zero. 2211 if (XKnown.isNonNegative() && 2212 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2213 return true; 2214 if (YKnown.isNonNegative() && 2215 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2216 return true; 2217 } 2218 // X * Y. 2219 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2220 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2221 // If X and Y are non-zero then so is X * Y as long as the multiplication 2222 // does not overflow. 2223 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2224 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2225 return true; 2226 } 2227 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2228 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2229 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2230 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2231 return true; 2232 } 2233 // PHI 2234 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2235 // Try and detect a recurrence that monotonically increases from a 2236 // starting value, as these are common as induction variables. 2237 if (PN->getNumIncomingValues() == 2) { 2238 Value *Start = PN->getIncomingValue(0); 2239 Value *Induction = PN->getIncomingValue(1); 2240 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2241 std::swap(Start, Induction); 2242 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2243 if (!C->isZero() && !C->isNegative()) { 2244 ConstantInt *X; 2245 if (Q.IIQ.UseInstrInfo && 2246 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2247 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2248 !X->isNegative()) 2249 return true; 2250 } 2251 } 2252 } 2253 // Check if all incoming values are non-zero constant. 2254 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2255 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2256 }); 2257 if (AllNonZeroConstants) 2258 return true; 2259 } 2260 2261 KnownBits Known(BitWidth); 2262 computeKnownBits(V, Known, Depth, Q); 2263 return Known.One != 0; 2264 } 2265 2266 /// Return true if V2 == V1 + X, where X is known non-zero. 2267 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2268 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2269 if (!BO || BO->getOpcode() != Instruction::Add) 2270 return false; 2271 Value *Op = nullptr; 2272 if (V2 == BO->getOperand(0)) 2273 Op = BO->getOperand(1); 2274 else if (V2 == BO->getOperand(1)) 2275 Op = BO->getOperand(0); 2276 else 2277 return false; 2278 return isKnownNonZero(Op, 0, Q); 2279 } 2280 2281 /// Return true if it is known that V1 != V2. 2282 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2283 if (V1 == V2) 2284 return false; 2285 if (V1->getType() != V2->getType()) 2286 // We can't look through casts yet. 2287 return false; 2288 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2289 return true; 2290 2291 if (V1->getType()->isIntOrIntVectorTy()) { 2292 // Are any known bits in V1 contradictory to known bits in V2? If V1 2293 // has a known zero where V2 has a known one, they must not be equal. 2294 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2295 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2296 2297 if (Known1.Zero.intersects(Known2.One) || 2298 Known2.Zero.intersects(Known1.One)) 2299 return true; 2300 } 2301 return false; 2302 } 2303 2304 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2305 /// simplify operations downstream. Mask is known to be zero for bits that V 2306 /// cannot have. 2307 /// 2308 /// This function is defined on values with integer type, values with pointer 2309 /// type, and vectors of integers. In the case 2310 /// where V is a vector, the mask, known zero, and known one values are the 2311 /// same width as the vector element, and the bit is set only if it is true 2312 /// for all of the elements in the vector. 2313 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2314 const Query &Q) { 2315 KnownBits Known(Mask.getBitWidth()); 2316 computeKnownBits(V, Known, Depth, Q); 2317 return Mask.isSubsetOf(Known.Zero); 2318 } 2319 2320 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2321 // Returns the input and lower/upper bounds. 2322 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2323 const APInt *&CLow, const APInt *&CHigh) { 2324 assert(isa<Operator>(Select) && 2325 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2326 "Input should be a Select!"); 2327 2328 const Value *LHS = nullptr, *RHS = nullptr; 2329 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2330 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2331 return false; 2332 2333 if (!match(RHS, m_APInt(CLow))) 2334 return false; 2335 2336 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2337 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2338 if (getInverseMinMaxFlavor(SPF) != SPF2) 2339 return false; 2340 2341 if (!match(RHS2, m_APInt(CHigh))) 2342 return false; 2343 2344 if (SPF == SPF_SMIN) 2345 std::swap(CLow, CHigh); 2346 2347 In = LHS2; 2348 return CLow->sle(*CHigh); 2349 } 2350 2351 /// For vector constants, loop over the elements and find the constant with the 2352 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2353 /// or if any element was not analyzed; otherwise, return the count for the 2354 /// element with the minimum number of sign bits. 2355 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2356 unsigned TyBits) { 2357 const auto *CV = dyn_cast<Constant>(V); 2358 if (!CV || !CV->getType()->isVectorTy()) 2359 return 0; 2360 2361 unsigned MinSignBits = TyBits; 2362 unsigned NumElts = CV->getType()->getVectorNumElements(); 2363 for (unsigned i = 0; i != NumElts; ++i) { 2364 // If we find a non-ConstantInt, bail out. 2365 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2366 if (!Elt) 2367 return 0; 2368 2369 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2370 } 2371 2372 return MinSignBits; 2373 } 2374 2375 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2376 const Query &Q); 2377 2378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2379 const Query &Q) { 2380 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2381 assert(Result > 0 && "At least one sign bit needs to be present!"); 2382 return Result; 2383 } 2384 2385 /// Return the number of times the sign bit of the register is replicated into 2386 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2387 /// (itself), but other cases can give us information. For example, immediately 2388 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2389 /// other, so we return 3. For vectors, return the number of sign bits for the 2390 /// vector element with the minimum number of known sign bits. 2391 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2392 const Query &Q) { 2393 assert(Depth <= MaxDepth && "Limit Search Depth"); 2394 2395 // We return the minimum number of sign bits that are guaranteed to be present 2396 // in V, so for undef we have to conservatively return 1. We don't have the 2397 // same behavior for poison though -- that's a FIXME today. 2398 2399 Type *ScalarTy = V->getType()->getScalarType(); 2400 unsigned TyBits = ScalarTy->isPointerTy() ? 2401 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2402 Q.DL.getTypeSizeInBits(ScalarTy); 2403 2404 unsigned Tmp, Tmp2; 2405 unsigned FirstAnswer = 1; 2406 2407 // Note that ConstantInt is handled by the general computeKnownBits case 2408 // below. 2409 2410 if (Depth == MaxDepth) 2411 return 1; // Limit search depth. 2412 2413 if (auto *U = dyn_cast<Operator>(V)) { 2414 switch (Operator::getOpcode(V)) { 2415 default: break; 2416 case Instruction::SExt: 2417 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2418 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2419 2420 case Instruction::SDiv: { 2421 const APInt *Denominator; 2422 // sdiv X, C -> adds log(C) sign bits. 2423 if (match(U->getOperand(1), m_APInt(Denominator))) { 2424 2425 // Ignore non-positive denominator. 2426 if (!Denominator->isStrictlyPositive()) 2427 break; 2428 2429 // Calculate the incoming numerator bits. 2430 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2431 2432 // Add floor(log(C)) bits to the numerator bits. 2433 return std::min(TyBits, NumBits + Denominator->logBase2()); 2434 } 2435 break; 2436 } 2437 2438 case Instruction::SRem: { 2439 const APInt *Denominator; 2440 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2441 // positive constant. This let us put a lower bound on the number of sign 2442 // bits. 2443 if (match(U->getOperand(1), m_APInt(Denominator))) { 2444 2445 // Ignore non-positive denominator. 2446 if (!Denominator->isStrictlyPositive()) 2447 break; 2448 2449 // Calculate the incoming numerator bits. SRem by a positive constant 2450 // can't lower the number of sign bits. 2451 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2452 2453 // Calculate the leading sign bit constraints by examining the 2454 // denominator. Given that the denominator is positive, there are two 2455 // cases: 2456 // 2457 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2458 // (1 << ceilLogBase2(C)). 2459 // 2460 // 2. the numerator is negative. Then the result range is (-C,0] and 2461 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2462 // 2463 // Thus a lower bound on the number of sign bits is `TyBits - 2464 // ceilLogBase2(C)`. 2465 2466 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2467 return std::max(NumrBits, ResBits); 2468 } 2469 break; 2470 } 2471 2472 case Instruction::AShr: { 2473 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2474 // ashr X, C -> adds C sign bits. Vectors too. 2475 const APInt *ShAmt; 2476 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2477 if (ShAmt->uge(TyBits)) 2478 break; // Bad shift. 2479 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2480 Tmp += ShAmtLimited; 2481 if (Tmp > TyBits) Tmp = TyBits; 2482 } 2483 return Tmp; 2484 } 2485 case Instruction::Shl: { 2486 const APInt *ShAmt; 2487 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2488 // shl destroys sign bits. 2489 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2490 if (ShAmt->uge(TyBits) || // Bad shift. 2491 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2492 Tmp2 = ShAmt->getZExtValue(); 2493 return Tmp - Tmp2; 2494 } 2495 break; 2496 } 2497 case Instruction::And: 2498 case Instruction::Or: 2499 case Instruction::Xor: // NOT is handled here. 2500 // Logical binary ops preserve the number of sign bits at the worst. 2501 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2502 if (Tmp != 1) { 2503 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2504 FirstAnswer = std::min(Tmp, Tmp2); 2505 // We computed what we know about the sign bits as our first 2506 // answer. Now proceed to the generic code that uses 2507 // computeKnownBits, and pick whichever answer is better. 2508 } 2509 break; 2510 2511 case Instruction::Select: { 2512 // If we have a clamp pattern, we know that the number of sign bits will 2513 // be the minimum of the clamp min/max range. 2514 const Value *X; 2515 const APInt *CLow, *CHigh; 2516 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2517 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2518 2519 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2520 if (Tmp == 1) break; 2521 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2522 return std::min(Tmp, Tmp2); 2523 } 2524 2525 case Instruction::Add: 2526 // Add can have at most one carry bit. Thus we know that the output 2527 // is, at worst, one more bit than the inputs. 2528 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2529 if (Tmp == 1) break; 2530 2531 // Special case decrementing a value (ADD X, -1): 2532 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2533 if (CRHS->isAllOnesValue()) { 2534 KnownBits Known(TyBits); 2535 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2536 2537 // If the input is known to be 0 or 1, the output is 0/-1, which is 2538 // all sign bits set. 2539 if ((Known.Zero | 1).isAllOnesValue()) 2540 return TyBits; 2541 2542 // If we are subtracting one from a positive number, there is no carry 2543 // out of the result. 2544 if (Known.isNonNegative()) 2545 return Tmp; 2546 } 2547 2548 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2549 if (Tmp2 == 1) break; 2550 return std::min(Tmp, Tmp2) - 1; 2551 2552 case Instruction::Sub: 2553 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2554 if (Tmp2 == 1) break; 2555 2556 // Handle NEG. 2557 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2558 if (CLHS->isNullValue()) { 2559 KnownBits Known(TyBits); 2560 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2561 // If the input is known to be 0 or 1, the output is 0/-1, which is 2562 // all sign bits set. 2563 if ((Known.Zero | 1).isAllOnesValue()) 2564 return TyBits; 2565 2566 // If the input is known to be positive (the sign bit is known clear), 2567 // the output of the NEG has the same number of sign bits as the 2568 // input. 2569 if (Known.isNonNegative()) 2570 return Tmp2; 2571 2572 // Otherwise, we treat this like a SUB. 2573 } 2574 2575 // Sub can have at most one carry bit. Thus we know that the output 2576 // is, at worst, one more bit than the inputs. 2577 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2578 if (Tmp == 1) break; 2579 return std::min(Tmp, Tmp2) - 1; 2580 2581 case Instruction::Mul: { 2582 // The output of the Mul can be at most twice the valid bits in the 2583 // inputs. 2584 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2585 if (SignBitsOp0 == 1) break; 2586 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2587 if (SignBitsOp1 == 1) break; 2588 unsigned OutValidBits = 2589 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2590 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2591 } 2592 2593 case Instruction::PHI: { 2594 const PHINode *PN = cast<PHINode>(U); 2595 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2596 // Don't analyze large in-degree PHIs. 2597 if (NumIncomingValues > 4) break; 2598 // Unreachable blocks may have zero-operand PHI nodes. 2599 if (NumIncomingValues == 0) break; 2600 2601 // Take the minimum of all incoming values. This can't infinitely loop 2602 // because of our depth threshold. 2603 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2604 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2605 if (Tmp == 1) return Tmp; 2606 Tmp = std::min( 2607 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2608 } 2609 return Tmp; 2610 } 2611 2612 case Instruction::Trunc: 2613 // FIXME: it's tricky to do anything useful for this, but it is an 2614 // important case for targets like X86. 2615 break; 2616 2617 case Instruction::ExtractElement: 2618 // Look through extract element. At the moment we keep this simple and 2619 // skip tracking the specific element. But at least we might find 2620 // information valid for all elements of the vector (for example if vector 2621 // is sign extended, shifted, etc). 2622 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2623 2624 case Instruction::ShuffleVector: { 2625 // TODO: This is copied almost directly from the SelectionDAG version of 2626 // ComputeNumSignBits. It would be better if we could share common 2627 // code. If not, make sure that changes are translated to the DAG. 2628 2629 // Collect the minimum number of sign bits that are shared by every vector 2630 // element referenced by the shuffle. 2631 auto *Shuf = cast<ShuffleVectorInst>(U); 2632 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 2633 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 2634 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2635 for (int i = 0; i != NumMaskElts; ++i) { 2636 int M = Shuf->getMaskValue(i); 2637 assert(M < NumElts * 2 && "Invalid shuffle mask constant"); 2638 // For undef elements, we don't know anything about the common state of 2639 // the shuffle result. 2640 if (M == -1) 2641 return 1; 2642 if (M < NumElts) 2643 DemandedLHS.setBit(M % NumElts); 2644 else 2645 DemandedRHS.setBit(M % NumElts); 2646 } 2647 Tmp = std::numeric_limits<unsigned>::max(); 2648 if (!!DemandedLHS) 2649 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); 2650 if (!!DemandedRHS) { 2651 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); 2652 Tmp = std::min(Tmp, Tmp2); 2653 } 2654 // If we don't know anything, early out and try computeKnownBits 2655 // fall-back. 2656 if (Tmp == 1) 2657 break; 2658 assert(Tmp <= V->getType()->getScalarSizeInBits() && 2659 "Failed to determine minimum sign bits"); 2660 return Tmp; 2661 } 2662 } 2663 } 2664 2665 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2666 // use this information. 2667 2668 // If we can examine all elements of a vector constant successfully, we're 2669 // done (we can't do any better than that). If not, keep trying. 2670 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2671 return VecSignBits; 2672 2673 KnownBits Known(TyBits); 2674 computeKnownBits(V, Known, Depth, Q); 2675 2676 // If we know that the sign bit is either zero or one, determine the number of 2677 // identical bits in the top of the input value. 2678 return std::max(FirstAnswer, Known.countMinSignBits()); 2679 } 2680 2681 /// This function computes the integer multiple of Base that equals V. 2682 /// If successful, it returns true and returns the multiple in 2683 /// Multiple. If unsuccessful, it returns false. It looks 2684 /// through SExt instructions only if LookThroughSExt is true. 2685 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2686 bool LookThroughSExt, unsigned Depth) { 2687 assert(V && "No Value?"); 2688 assert(Depth <= MaxDepth && "Limit Search Depth"); 2689 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2690 2691 Type *T = V->getType(); 2692 2693 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2694 2695 if (Base == 0) 2696 return false; 2697 2698 if (Base == 1) { 2699 Multiple = V; 2700 return true; 2701 } 2702 2703 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2704 Constant *BaseVal = ConstantInt::get(T, Base); 2705 if (CO && CO == BaseVal) { 2706 // Multiple is 1. 2707 Multiple = ConstantInt::get(T, 1); 2708 return true; 2709 } 2710 2711 if (CI && CI->getZExtValue() % Base == 0) { 2712 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2713 return true; 2714 } 2715 2716 if (Depth == MaxDepth) return false; // Limit search depth. 2717 2718 Operator *I = dyn_cast<Operator>(V); 2719 if (!I) return false; 2720 2721 switch (I->getOpcode()) { 2722 default: break; 2723 case Instruction::SExt: 2724 if (!LookThroughSExt) return false; 2725 // otherwise fall through to ZExt 2726 LLVM_FALLTHROUGH; 2727 case Instruction::ZExt: 2728 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2729 LookThroughSExt, Depth+1); 2730 case Instruction::Shl: 2731 case Instruction::Mul: { 2732 Value *Op0 = I->getOperand(0); 2733 Value *Op1 = I->getOperand(1); 2734 2735 if (I->getOpcode() == Instruction::Shl) { 2736 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2737 if (!Op1CI) return false; 2738 // Turn Op0 << Op1 into Op0 * 2^Op1 2739 APInt Op1Int = Op1CI->getValue(); 2740 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2741 APInt API(Op1Int.getBitWidth(), 0); 2742 API.setBit(BitToSet); 2743 Op1 = ConstantInt::get(V->getContext(), API); 2744 } 2745 2746 Value *Mul0 = nullptr; 2747 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2748 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2749 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2750 if (Op1C->getType()->getPrimitiveSizeInBits() < 2751 MulC->getType()->getPrimitiveSizeInBits()) 2752 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2753 if (Op1C->getType()->getPrimitiveSizeInBits() > 2754 MulC->getType()->getPrimitiveSizeInBits()) 2755 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2756 2757 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2758 Multiple = ConstantExpr::getMul(MulC, Op1C); 2759 return true; 2760 } 2761 2762 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2763 if (Mul0CI->getValue() == 1) { 2764 // V == Base * Op1, so return Op1 2765 Multiple = Op1; 2766 return true; 2767 } 2768 } 2769 2770 Value *Mul1 = nullptr; 2771 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2772 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2773 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2774 if (Op0C->getType()->getPrimitiveSizeInBits() < 2775 MulC->getType()->getPrimitiveSizeInBits()) 2776 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2777 if (Op0C->getType()->getPrimitiveSizeInBits() > 2778 MulC->getType()->getPrimitiveSizeInBits()) 2779 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2780 2781 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2782 Multiple = ConstantExpr::getMul(MulC, Op0C); 2783 return true; 2784 } 2785 2786 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2787 if (Mul1CI->getValue() == 1) { 2788 // V == Base * Op0, so return Op0 2789 Multiple = Op0; 2790 return true; 2791 } 2792 } 2793 } 2794 } 2795 2796 // We could not determine if V is a multiple of Base. 2797 return false; 2798 } 2799 2800 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2801 const TargetLibraryInfo *TLI) { 2802 const Function *F = ICS.getCalledFunction(); 2803 if (!F) 2804 return Intrinsic::not_intrinsic; 2805 2806 if (F->isIntrinsic()) 2807 return F->getIntrinsicID(); 2808 2809 if (!TLI) 2810 return Intrinsic::not_intrinsic; 2811 2812 LibFunc Func; 2813 // We're going to make assumptions on the semantics of the functions, check 2814 // that the target knows that it's available in this environment and it does 2815 // not have local linkage. 2816 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2817 return Intrinsic::not_intrinsic; 2818 2819 if (!ICS.onlyReadsMemory()) 2820 return Intrinsic::not_intrinsic; 2821 2822 // Otherwise check if we have a call to a function that can be turned into a 2823 // vector intrinsic. 2824 switch (Func) { 2825 default: 2826 break; 2827 case LibFunc_sin: 2828 case LibFunc_sinf: 2829 case LibFunc_sinl: 2830 return Intrinsic::sin; 2831 case LibFunc_cos: 2832 case LibFunc_cosf: 2833 case LibFunc_cosl: 2834 return Intrinsic::cos; 2835 case LibFunc_exp: 2836 case LibFunc_expf: 2837 case LibFunc_expl: 2838 return Intrinsic::exp; 2839 case LibFunc_exp2: 2840 case LibFunc_exp2f: 2841 case LibFunc_exp2l: 2842 return Intrinsic::exp2; 2843 case LibFunc_log: 2844 case LibFunc_logf: 2845 case LibFunc_logl: 2846 return Intrinsic::log; 2847 case LibFunc_log10: 2848 case LibFunc_log10f: 2849 case LibFunc_log10l: 2850 return Intrinsic::log10; 2851 case LibFunc_log2: 2852 case LibFunc_log2f: 2853 case LibFunc_log2l: 2854 return Intrinsic::log2; 2855 case LibFunc_fabs: 2856 case LibFunc_fabsf: 2857 case LibFunc_fabsl: 2858 return Intrinsic::fabs; 2859 case LibFunc_fmin: 2860 case LibFunc_fminf: 2861 case LibFunc_fminl: 2862 return Intrinsic::minnum; 2863 case LibFunc_fmax: 2864 case LibFunc_fmaxf: 2865 case LibFunc_fmaxl: 2866 return Intrinsic::maxnum; 2867 case LibFunc_copysign: 2868 case LibFunc_copysignf: 2869 case LibFunc_copysignl: 2870 return Intrinsic::copysign; 2871 case LibFunc_floor: 2872 case LibFunc_floorf: 2873 case LibFunc_floorl: 2874 return Intrinsic::floor; 2875 case LibFunc_ceil: 2876 case LibFunc_ceilf: 2877 case LibFunc_ceill: 2878 return Intrinsic::ceil; 2879 case LibFunc_trunc: 2880 case LibFunc_truncf: 2881 case LibFunc_truncl: 2882 return Intrinsic::trunc; 2883 case LibFunc_rint: 2884 case LibFunc_rintf: 2885 case LibFunc_rintl: 2886 return Intrinsic::rint; 2887 case LibFunc_nearbyint: 2888 case LibFunc_nearbyintf: 2889 case LibFunc_nearbyintl: 2890 return Intrinsic::nearbyint; 2891 case LibFunc_round: 2892 case LibFunc_roundf: 2893 case LibFunc_roundl: 2894 return Intrinsic::round; 2895 case LibFunc_pow: 2896 case LibFunc_powf: 2897 case LibFunc_powl: 2898 return Intrinsic::pow; 2899 case LibFunc_sqrt: 2900 case LibFunc_sqrtf: 2901 case LibFunc_sqrtl: 2902 return Intrinsic::sqrt; 2903 } 2904 2905 return Intrinsic::not_intrinsic; 2906 } 2907 2908 /// Return true if we can prove that the specified FP value is never equal to 2909 /// -0.0. 2910 /// 2911 /// NOTE: this function will need to be revisited when we support non-default 2912 /// rounding modes! 2913 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2914 unsigned Depth) { 2915 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2916 return !CFP->getValueAPF().isNegZero(); 2917 2918 // Limit search depth. 2919 if (Depth == MaxDepth) 2920 return false; 2921 2922 auto *Op = dyn_cast<Operator>(V); 2923 if (!Op) 2924 return false; 2925 2926 // Check if the nsz fast-math flag is set. 2927 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2928 if (FPO->hasNoSignedZeros()) 2929 return true; 2930 2931 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2932 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2933 return true; 2934 2935 // sitofp and uitofp turn into +0.0 for zero. 2936 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2937 return true; 2938 2939 if (auto *Call = dyn_cast<CallInst>(Op)) { 2940 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2941 switch (IID) { 2942 default: 2943 break; 2944 // sqrt(-0.0) = -0.0, no other negative results are possible. 2945 case Intrinsic::sqrt: 2946 case Intrinsic::canonicalize: 2947 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2948 // fabs(x) != -0.0 2949 case Intrinsic::fabs: 2950 return true; 2951 } 2952 } 2953 2954 return false; 2955 } 2956 2957 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2958 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2959 /// bit despite comparing equal. 2960 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2961 const TargetLibraryInfo *TLI, 2962 bool SignBitOnly, 2963 unsigned Depth) { 2964 // TODO: This function does not do the right thing when SignBitOnly is true 2965 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2966 // which flips the sign bits of NaNs. See 2967 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2968 2969 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2970 return !CFP->getValueAPF().isNegative() || 2971 (!SignBitOnly && CFP->getValueAPF().isZero()); 2972 } 2973 2974 // Handle vector of constants. 2975 if (auto *CV = dyn_cast<Constant>(V)) { 2976 if (CV->getType()->isVectorTy()) { 2977 unsigned NumElts = CV->getType()->getVectorNumElements(); 2978 for (unsigned i = 0; i != NumElts; ++i) { 2979 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2980 if (!CFP) 2981 return false; 2982 if (CFP->getValueAPF().isNegative() && 2983 (SignBitOnly || !CFP->getValueAPF().isZero())) 2984 return false; 2985 } 2986 2987 // All non-negative ConstantFPs. 2988 return true; 2989 } 2990 } 2991 2992 if (Depth == MaxDepth) 2993 return false; // Limit search depth. 2994 2995 const Operator *I = dyn_cast<Operator>(V); 2996 if (!I) 2997 return false; 2998 2999 switch (I->getOpcode()) { 3000 default: 3001 break; 3002 // Unsigned integers are always nonnegative. 3003 case Instruction::UIToFP: 3004 return true; 3005 case Instruction::FMul: 3006 // x*x is always non-negative or a NaN. 3007 if (I->getOperand(0) == I->getOperand(1) && 3008 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3009 return true; 3010 3011 LLVM_FALLTHROUGH; 3012 case Instruction::FAdd: 3013 case Instruction::FDiv: 3014 case Instruction::FRem: 3015 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3016 Depth + 1) && 3017 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3018 Depth + 1); 3019 case Instruction::Select: 3020 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3021 Depth + 1) && 3022 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3023 Depth + 1); 3024 case Instruction::FPExt: 3025 case Instruction::FPTrunc: 3026 // Widening/narrowing never change sign. 3027 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3028 Depth + 1); 3029 case Instruction::ExtractElement: 3030 // Look through extract element. At the moment we keep this simple and skip 3031 // tracking the specific element. But at least we might find information 3032 // valid for all elements of the vector. 3033 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3034 Depth + 1); 3035 case Instruction::Call: 3036 const auto *CI = cast<CallInst>(I); 3037 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3038 switch (IID) { 3039 default: 3040 break; 3041 case Intrinsic::maxnum: 3042 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3043 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3044 SignBitOnly, Depth + 1)) || 3045 (isKnownNeverNaN(I->getOperand(1), TLI) && 3046 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3047 SignBitOnly, Depth + 1)); 3048 3049 case Intrinsic::maximum: 3050 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3051 Depth + 1) || 3052 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3053 Depth + 1); 3054 case Intrinsic::minnum: 3055 case Intrinsic::minimum: 3056 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3057 Depth + 1) && 3058 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3059 Depth + 1); 3060 case Intrinsic::exp: 3061 case Intrinsic::exp2: 3062 case Intrinsic::fabs: 3063 return true; 3064 3065 case Intrinsic::sqrt: 3066 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3067 if (!SignBitOnly) 3068 return true; 3069 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3070 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3071 3072 case Intrinsic::powi: 3073 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3074 // powi(x,n) is non-negative if n is even. 3075 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3076 return true; 3077 } 3078 // TODO: This is not correct. Given that exp is an integer, here are the 3079 // ways that pow can return a negative value: 3080 // 3081 // pow(x, exp) --> negative if exp is odd and x is negative. 3082 // pow(-0, exp) --> -inf if exp is negative odd. 3083 // pow(-0, exp) --> -0 if exp is positive odd. 3084 // pow(-inf, exp) --> -0 if exp is negative odd. 3085 // pow(-inf, exp) --> -inf if exp is positive odd. 3086 // 3087 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3088 // but we must return false if x == -0. Unfortunately we do not currently 3089 // have a way of expressing this constraint. See details in 3090 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3091 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3092 Depth + 1); 3093 3094 case Intrinsic::fma: 3095 case Intrinsic::fmuladd: 3096 // x*x+y is non-negative if y is non-negative. 3097 return I->getOperand(0) == I->getOperand(1) && 3098 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3099 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3100 Depth + 1); 3101 } 3102 break; 3103 } 3104 return false; 3105 } 3106 3107 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3108 const TargetLibraryInfo *TLI) { 3109 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3110 } 3111 3112 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3113 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3114 } 3115 3116 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3117 unsigned Depth) { 3118 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3119 3120 // If we're told that infinities won't happen, assume they won't. 3121 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3122 if (FPMathOp->hasNoInfs()) 3123 return true; 3124 3125 // Handle scalar constants. 3126 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3127 return !CFP->isInfinity(); 3128 3129 if (Depth == MaxDepth) 3130 return false; 3131 3132 if (auto *Inst = dyn_cast<Instruction>(V)) { 3133 switch (Inst->getOpcode()) { 3134 case Instruction::Select: { 3135 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3136 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3137 } 3138 case Instruction::UIToFP: 3139 // If the input type fits into the floating type the result is finite. 3140 return ilogb(APFloat::getLargest( 3141 Inst->getType()->getScalarType()->getFltSemantics())) >= 3142 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3143 default: 3144 break; 3145 } 3146 } 3147 3148 // Bail out for constant expressions, but try to handle vector constants. 3149 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3150 return false; 3151 3152 // For vectors, verify that each element is not infinity. 3153 unsigned NumElts = V->getType()->getVectorNumElements(); 3154 for (unsigned i = 0; i != NumElts; ++i) { 3155 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3156 if (!Elt) 3157 return false; 3158 if (isa<UndefValue>(Elt)) 3159 continue; 3160 auto *CElt = dyn_cast<ConstantFP>(Elt); 3161 if (!CElt || CElt->isInfinity()) 3162 return false; 3163 } 3164 // All elements were confirmed non-infinity or undefined. 3165 return true; 3166 } 3167 3168 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3169 unsigned Depth) { 3170 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3171 3172 // If we're told that NaNs won't happen, assume they won't. 3173 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3174 if (FPMathOp->hasNoNaNs()) 3175 return true; 3176 3177 // Handle scalar constants. 3178 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3179 return !CFP->isNaN(); 3180 3181 if (Depth == MaxDepth) 3182 return false; 3183 3184 if (auto *Inst = dyn_cast<Instruction>(V)) { 3185 switch (Inst->getOpcode()) { 3186 case Instruction::FAdd: 3187 case Instruction::FSub: 3188 // Adding positive and negative infinity produces NaN. 3189 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3190 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3191 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3192 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3193 3194 case Instruction::FMul: 3195 // Zero multiplied with infinity produces NaN. 3196 // FIXME: If neither side can be zero fmul never produces NaN. 3197 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3198 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3199 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3200 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3201 3202 case Instruction::FDiv: 3203 case Instruction::FRem: 3204 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3205 return false; 3206 3207 case Instruction::Select: { 3208 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3209 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3210 } 3211 case Instruction::SIToFP: 3212 case Instruction::UIToFP: 3213 return true; 3214 case Instruction::FPTrunc: 3215 case Instruction::FPExt: 3216 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3217 default: 3218 break; 3219 } 3220 } 3221 3222 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3223 switch (II->getIntrinsicID()) { 3224 case Intrinsic::canonicalize: 3225 case Intrinsic::fabs: 3226 case Intrinsic::copysign: 3227 case Intrinsic::exp: 3228 case Intrinsic::exp2: 3229 case Intrinsic::floor: 3230 case Intrinsic::ceil: 3231 case Intrinsic::trunc: 3232 case Intrinsic::rint: 3233 case Intrinsic::nearbyint: 3234 case Intrinsic::round: 3235 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3236 case Intrinsic::sqrt: 3237 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3238 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3239 case Intrinsic::minnum: 3240 case Intrinsic::maxnum: 3241 // If either operand is not NaN, the result is not NaN. 3242 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3243 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3244 default: 3245 return false; 3246 } 3247 } 3248 3249 // Bail out for constant expressions, but try to handle vector constants. 3250 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3251 return false; 3252 3253 // For vectors, verify that each element is not NaN. 3254 unsigned NumElts = V->getType()->getVectorNumElements(); 3255 for (unsigned i = 0; i != NumElts; ++i) { 3256 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3257 if (!Elt) 3258 return false; 3259 if (isa<UndefValue>(Elt)) 3260 continue; 3261 auto *CElt = dyn_cast<ConstantFP>(Elt); 3262 if (!CElt || CElt->isNaN()) 3263 return false; 3264 } 3265 // All elements were confirmed not-NaN or undefined. 3266 return true; 3267 } 3268 3269 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3270 3271 // All byte-wide stores are splatable, even of arbitrary variables. 3272 if (V->getType()->isIntegerTy(8)) 3273 return V; 3274 3275 LLVMContext &Ctx = V->getContext(); 3276 3277 // Undef don't care. 3278 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3279 if (isa<UndefValue>(V)) 3280 return UndefInt8; 3281 3282 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3283 if (!Size) 3284 return UndefInt8; 3285 3286 Constant *C = dyn_cast<Constant>(V); 3287 if (!C) { 3288 // Conceptually, we could handle things like: 3289 // %a = zext i8 %X to i16 3290 // %b = shl i16 %a, 8 3291 // %c = or i16 %a, %b 3292 // but until there is an example that actually needs this, it doesn't seem 3293 // worth worrying about. 3294 return nullptr; 3295 } 3296 3297 // Handle 'null' ConstantArrayZero etc. 3298 if (C->isNullValue()) 3299 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3300 3301 // Constant floating-point values can be handled as integer values if the 3302 // corresponding integer value is "byteable". An important case is 0.0. 3303 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3304 Type *Ty = nullptr; 3305 if (CFP->getType()->isHalfTy()) 3306 Ty = Type::getInt16Ty(Ctx); 3307 else if (CFP->getType()->isFloatTy()) 3308 Ty = Type::getInt32Ty(Ctx); 3309 else if (CFP->getType()->isDoubleTy()) 3310 Ty = Type::getInt64Ty(Ctx); 3311 // Don't handle long double formats, which have strange constraints. 3312 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3313 : nullptr; 3314 } 3315 3316 // We can handle constant integers that are multiple of 8 bits. 3317 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3318 if (CI->getBitWidth() % 8 == 0) { 3319 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3320 if (!CI->getValue().isSplat(8)) 3321 return nullptr; 3322 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3323 } 3324 } 3325 3326 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3327 if (CE->getOpcode() == Instruction::IntToPtr) { 3328 auto PS = DL.getPointerSizeInBits( 3329 cast<PointerType>(CE->getType())->getAddressSpace()); 3330 return isBytewiseValue( 3331 ConstantExpr::getIntegerCast(CE->getOperand(0), 3332 Type::getIntNTy(Ctx, PS), false), 3333 DL); 3334 } 3335 } 3336 3337 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3338 if (LHS == RHS) 3339 return LHS; 3340 if (!LHS || !RHS) 3341 return nullptr; 3342 if (LHS == UndefInt8) 3343 return RHS; 3344 if (RHS == UndefInt8) 3345 return LHS; 3346 return nullptr; 3347 }; 3348 3349 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3350 Value *Val = UndefInt8; 3351 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3352 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3353 return nullptr; 3354 return Val; 3355 } 3356 3357 if (isa<ConstantAggregate>(C)) { 3358 Value *Val = UndefInt8; 3359 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3360 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3361 return nullptr; 3362 return Val; 3363 } 3364 3365 // Don't try to handle the handful of other constants. 3366 return nullptr; 3367 } 3368 3369 // This is the recursive version of BuildSubAggregate. It takes a few different 3370 // arguments. Idxs is the index within the nested struct From that we are 3371 // looking at now (which is of type IndexedType). IdxSkip is the number of 3372 // indices from Idxs that should be left out when inserting into the resulting 3373 // struct. To is the result struct built so far, new insertvalue instructions 3374 // build on that. 3375 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3376 SmallVectorImpl<unsigned> &Idxs, 3377 unsigned IdxSkip, 3378 Instruction *InsertBefore) { 3379 StructType *STy = dyn_cast<StructType>(IndexedType); 3380 if (STy) { 3381 // Save the original To argument so we can modify it 3382 Value *OrigTo = To; 3383 // General case, the type indexed by Idxs is a struct 3384 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3385 // Process each struct element recursively 3386 Idxs.push_back(i); 3387 Value *PrevTo = To; 3388 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3389 InsertBefore); 3390 Idxs.pop_back(); 3391 if (!To) { 3392 // Couldn't find any inserted value for this index? Cleanup 3393 while (PrevTo != OrigTo) { 3394 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3395 PrevTo = Del->getAggregateOperand(); 3396 Del->eraseFromParent(); 3397 } 3398 // Stop processing elements 3399 break; 3400 } 3401 } 3402 // If we successfully found a value for each of our subaggregates 3403 if (To) 3404 return To; 3405 } 3406 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3407 // the struct's elements had a value that was inserted directly. In the latter 3408 // case, perhaps we can't determine each of the subelements individually, but 3409 // we might be able to find the complete struct somewhere. 3410 3411 // Find the value that is at that particular spot 3412 Value *V = FindInsertedValue(From, Idxs); 3413 3414 if (!V) 3415 return nullptr; 3416 3417 // Insert the value in the new (sub) aggregate 3418 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3419 "tmp", InsertBefore); 3420 } 3421 3422 // This helper takes a nested struct and extracts a part of it (which is again a 3423 // struct) into a new value. For example, given the struct: 3424 // { a, { b, { c, d }, e } } 3425 // and the indices "1, 1" this returns 3426 // { c, d }. 3427 // 3428 // It does this by inserting an insertvalue for each element in the resulting 3429 // struct, as opposed to just inserting a single struct. This will only work if 3430 // each of the elements of the substruct are known (ie, inserted into From by an 3431 // insertvalue instruction somewhere). 3432 // 3433 // All inserted insertvalue instructions are inserted before InsertBefore 3434 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3435 Instruction *InsertBefore) { 3436 assert(InsertBefore && "Must have someplace to insert!"); 3437 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3438 idx_range); 3439 Value *To = UndefValue::get(IndexedType); 3440 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3441 unsigned IdxSkip = Idxs.size(); 3442 3443 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3444 } 3445 3446 /// Given an aggregate and a sequence of indices, see if the scalar value 3447 /// indexed is already around as a register, for example if it was inserted 3448 /// directly into the aggregate. 3449 /// 3450 /// If InsertBefore is not null, this function will duplicate (modified) 3451 /// insertvalues when a part of a nested struct is extracted. 3452 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3453 Instruction *InsertBefore) { 3454 // Nothing to index? Just return V then (this is useful at the end of our 3455 // recursion). 3456 if (idx_range.empty()) 3457 return V; 3458 // We have indices, so V should have an indexable type. 3459 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3460 "Not looking at a struct or array?"); 3461 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3462 "Invalid indices for type?"); 3463 3464 if (Constant *C = dyn_cast<Constant>(V)) { 3465 C = C->getAggregateElement(idx_range[0]); 3466 if (!C) return nullptr; 3467 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3468 } 3469 3470 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3471 // Loop the indices for the insertvalue instruction in parallel with the 3472 // requested indices 3473 const unsigned *req_idx = idx_range.begin(); 3474 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3475 i != e; ++i, ++req_idx) { 3476 if (req_idx == idx_range.end()) { 3477 // We can't handle this without inserting insertvalues 3478 if (!InsertBefore) 3479 return nullptr; 3480 3481 // The requested index identifies a part of a nested aggregate. Handle 3482 // this specially. For example, 3483 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3484 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3485 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3486 // This can be changed into 3487 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3488 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3489 // which allows the unused 0,0 element from the nested struct to be 3490 // removed. 3491 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3492 InsertBefore); 3493 } 3494 3495 // This insert value inserts something else than what we are looking for. 3496 // See if the (aggregate) value inserted into has the value we are 3497 // looking for, then. 3498 if (*req_idx != *i) 3499 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3500 InsertBefore); 3501 } 3502 // If we end up here, the indices of the insertvalue match with those 3503 // requested (though possibly only partially). Now we recursively look at 3504 // the inserted value, passing any remaining indices. 3505 return FindInsertedValue(I->getInsertedValueOperand(), 3506 makeArrayRef(req_idx, idx_range.end()), 3507 InsertBefore); 3508 } 3509 3510 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3511 // If we're extracting a value from an aggregate that was extracted from 3512 // something else, we can extract from that something else directly instead. 3513 // However, we will need to chain I's indices with the requested indices. 3514 3515 // Calculate the number of indices required 3516 unsigned size = I->getNumIndices() + idx_range.size(); 3517 // Allocate some space to put the new indices in 3518 SmallVector<unsigned, 5> Idxs; 3519 Idxs.reserve(size); 3520 // Add indices from the extract value instruction 3521 Idxs.append(I->idx_begin(), I->idx_end()); 3522 3523 // Add requested indices 3524 Idxs.append(idx_range.begin(), idx_range.end()); 3525 3526 assert(Idxs.size() == size 3527 && "Number of indices added not correct?"); 3528 3529 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3530 } 3531 // Otherwise, we don't know (such as, extracting from a function return value 3532 // or load instruction) 3533 return nullptr; 3534 } 3535 3536 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3537 unsigned CharSize) { 3538 // Make sure the GEP has exactly three arguments. 3539 if (GEP->getNumOperands() != 3) 3540 return false; 3541 3542 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3543 // CharSize. 3544 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3545 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3546 return false; 3547 3548 // Check to make sure that the first operand of the GEP is an integer and 3549 // has value 0 so that we are sure we're indexing into the initializer. 3550 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3551 if (!FirstIdx || !FirstIdx->isZero()) 3552 return false; 3553 3554 return true; 3555 } 3556 3557 bool llvm::getConstantDataArrayInfo(const Value *V, 3558 ConstantDataArraySlice &Slice, 3559 unsigned ElementSize, uint64_t Offset) { 3560 assert(V); 3561 3562 // Look through bitcast instructions and geps. 3563 V = V->stripPointerCasts(); 3564 3565 // If the value is a GEP instruction or constant expression, treat it as an 3566 // offset. 3567 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3568 // The GEP operator should be based on a pointer to string constant, and is 3569 // indexing into the string constant. 3570 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3571 return false; 3572 3573 // If the second index isn't a ConstantInt, then this is a variable index 3574 // into the array. If this occurs, we can't say anything meaningful about 3575 // the string. 3576 uint64_t StartIdx = 0; 3577 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3578 StartIdx = CI->getZExtValue(); 3579 else 3580 return false; 3581 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3582 StartIdx + Offset); 3583 } 3584 3585 // The GEP instruction, constant or instruction, must reference a global 3586 // variable that is a constant and is initialized. The referenced constant 3587 // initializer is the array that we'll use for optimization. 3588 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3589 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3590 return false; 3591 3592 const ConstantDataArray *Array; 3593 ArrayType *ArrayTy; 3594 if (GV->getInitializer()->isNullValue()) { 3595 Type *GVTy = GV->getValueType(); 3596 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3597 // A zeroinitializer for the array; there is no ConstantDataArray. 3598 Array = nullptr; 3599 } else { 3600 const DataLayout &DL = GV->getParent()->getDataLayout(); 3601 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3602 uint64_t Length = SizeInBytes / (ElementSize / 8); 3603 if (Length <= Offset) 3604 return false; 3605 3606 Slice.Array = nullptr; 3607 Slice.Offset = 0; 3608 Slice.Length = Length - Offset; 3609 return true; 3610 } 3611 } else { 3612 // This must be a ConstantDataArray. 3613 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3614 if (!Array) 3615 return false; 3616 ArrayTy = Array->getType(); 3617 } 3618 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3619 return false; 3620 3621 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3622 if (Offset > NumElts) 3623 return false; 3624 3625 Slice.Array = Array; 3626 Slice.Offset = Offset; 3627 Slice.Length = NumElts - Offset; 3628 return true; 3629 } 3630 3631 /// This function computes the length of a null-terminated C string pointed to 3632 /// by V. If successful, it returns true and returns the string in Str. 3633 /// If unsuccessful, it returns false. 3634 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3635 uint64_t Offset, bool TrimAtNul) { 3636 ConstantDataArraySlice Slice; 3637 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3638 return false; 3639 3640 if (Slice.Array == nullptr) { 3641 if (TrimAtNul) { 3642 Str = StringRef(); 3643 return true; 3644 } 3645 if (Slice.Length == 1) { 3646 Str = StringRef("", 1); 3647 return true; 3648 } 3649 // We cannot instantiate a StringRef as we do not have an appropriate string 3650 // of 0s at hand. 3651 return false; 3652 } 3653 3654 // Start out with the entire array in the StringRef. 3655 Str = Slice.Array->getAsString(); 3656 // Skip over 'offset' bytes. 3657 Str = Str.substr(Slice.Offset); 3658 3659 if (TrimAtNul) { 3660 // Trim off the \0 and anything after it. If the array is not nul 3661 // terminated, we just return the whole end of string. The client may know 3662 // some other way that the string is length-bound. 3663 Str = Str.substr(0, Str.find('\0')); 3664 } 3665 return true; 3666 } 3667 3668 // These next two are very similar to the above, but also look through PHI 3669 // nodes. 3670 // TODO: See if we can integrate these two together. 3671 3672 /// If we can compute the length of the string pointed to by 3673 /// the specified pointer, return 'len+1'. If we can't, return 0. 3674 static uint64_t GetStringLengthH(const Value *V, 3675 SmallPtrSetImpl<const PHINode*> &PHIs, 3676 unsigned CharSize) { 3677 // Look through noop bitcast instructions. 3678 V = V->stripPointerCasts(); 3679 3680 // If this is a PHI node, there are two cases: either we have already seen it 3681 // or we haven't. 3682 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3683 if (!PHIs.insert(PN).second) 3684 return ~0ULL; // already in the set. 3685 3686 // If it was new, see if all the input strings are the same length. 3687 uint64_t LenSoFar = ~0ULL; 3688 for (Value *IncValue : PN->incoming_values()) { 3689 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3690 if (Len == 0) return 0; // Unknown length -> unknown. 3691 3692 if (Len == ~0ULL) continue; 3693 3694 if (Len != LenSoFar && LenSoFar != ~0ULL) 3695 return 0; // Disagree -> unknown. 3696 LenSoFar = Len; 3697 } 3698 3699 // Success, all agree. 3700 return LenSoFar; 3701 } 3702 3703 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3704 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3705 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3706 if (Len1 == 0) return 0; 3707 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3708 if (Len2 == 0) return 0; 3709 if (Len1 == ~0ULL) return Len2; 3710 if (Len2 == ~0ULL) return Len1; 3711 if (Len1 != Len2) return 0; 3712 return Len1; 3713 } 3714 3715 // Otherwise, see if we can read the string. 3716 ConstantDataArraySlice Slice; 3717 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3718 return 0; 3719 3720 if (Slice.Array == nullptr) 3721 return 1; 3722 3723 // Search for nul characters 3724 unsigned NullIndex = 0; 3725 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3726 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3727 break; 3728 } 3729 3730 return NullIndex + 1; 3731 } 3732 3733 /// If we can compute the length of the string pointed to by 3734 /// the specified pointer, return 'len+1'. If we can't, return 0. 3735 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3736 if (!V->getType()->isPointerTy()) 3737 return 0; 3738 3739 SmallPtrSet<const PHINode*, 32> PHIs; 3740 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3741 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3742 // an empty string as a length. 3743 return Len == ~0ULL ? 1 : Len; 3744 } 3745 3746 const Value * 3747 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 3748 bool MustPreserveNullness) { 3749 assert(Call && 3750 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3751 if (const Value *RV = Call->getReturnedArgOperand()) 3752 return RV; 3753 // This can be used only as a aliasing property. 3754 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3755 Call, MustPreserveNullness)) 3756 return Call->getArgOperand(0); 3757 return nullptr; 3758 } 3759 3760 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3761 const CallBase *Call, bool MustPreserveNullness) { 3762 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3763 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3764 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3765 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 3766 (!MustPreserveNullness && 3767 Call->getIntrinsicID() == Intrinsic::ptrmask); 3768 } 3769 3770 /// \p PN defines a loop-variant pointer to an object. Check if the 3771 /// previous iteration of the loop was referring to the same object as \p PN. 3772 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3773 const LoopInfo *LI) { 3774 // Find the loop-defined value. 3775 Loop *L = LI->getLoopFor(PN->getParent()); 3776 if (PN->getNumIncomingValues() != 2) 3777 return true; 3778 3779 // Find the value from previous iteration. 3780 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3781 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3782 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3783 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3784 return true; 3785 3786 // If a new pointer is loaded in the loop, the pointer references a different 3787 // object in every iteration. E.g.: 3788 // for (i) 3789 // int *p = a[i]; 3790 // ... 3791 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3792 if (!L->isLoopInvariant(Load->getPointerOperand())) 3793 return false; 3794 return true; 3795 } 3796 3797 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3798 unsigned MaxLookup) { 3799 if (!V->getType()->isPointerTy()) 3800 return V; 3801 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3802 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3803 V = GEP->getPointerOperand(); 3804 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3805 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3806 V = cast<Operator>(V)->getOperand(0); 3807 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3808 if (GA->isInterposable()) 3809 return V; 3810 V = GA->getAliasee(); 3811 } else if (isa<AllocaInst>(V)) { 3812 // An alloca can't be further simplified. 3813 return V; 3814 } else { 3815 if (auto *Call = dyn_cast<CallBase>(V)) { 3816 // CaptureTracking can know about special capturing properties of some 3817 // intrinsics like launder.invariant.group, that can't be expressed with 3818 // the attributes, but have properties like returning aliasing pointer. 3819 // Because some analysis may assume that nocaptured pointer is not 3820 // returned from some special intrinsic (because function would have to 3821 // be marked with returns attribute), it is crucial to use this function 3822 // because it should be in sync with CaptureTracking. Not using it may 3823 // cause weird miscompilations where 2 aliasing pointers are assumed to 3824 // noalias. 3825 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 3826 V = RP; 3827 continue; 3828 } 3829 } 3830 3831 // See if InstructionSimplify knows any relevant tricks. 3832 if (Instruction *I = dyn_cast<Instruction>(V)) 3833 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3834 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3835 V = Simplified; 3836 continue; 3837 } 3838 3839 return V; 3840 } 3841 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3842 } 3843 return V; 3844 } 3845 3846 void llvm::GetUnderlyingObjects(const Value *V, 3847 SmallVectorImpl<const Value *> &Objects, 3848 const DataLayout &DL, LoopInfo *LI, 3849 unsigned MaxLookup) { 3850 SmallPtrSet<const Value *, 4> Visited; 3851 SmallVector<const Value *, 4> Worklist; 3852 Worklist.push_back(V); 3853 do { 3854 const Value *P = Worklist.pop_back_val(); 3855 P = GetUnderlyingObject(P, DL, MaxLookup); 3856 3857 if (!Visited.insert(P).second) 3858 continue; 3859 3860 if (auto *SI = dyn_cast<SelectInst>(P)) { 3861 Worklist.push_back(SI->getTrueValue()); 3862 Worklist.push_back(SI->getFalseValue()); 3863 continue; 3864 } 3865 3866 if (auto *PN = dyn_cast<PHINode>(P)) { 3867 // If this PHI changes the underlying object in every iteration of the 3868 // loop, don't look through it. Consider: 3869 // int **A; 3870 // for (i) { 3871 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3872 // Curr = A[i]; 3873 // *Prev, *Curr; 3874 // 3875 // Prev is tracking Curr one iteration behind so they refer to different 3876 // underlying objects. 3877 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3878 isSameUnderlyingObjectInLoop(PN, LI)) 3879 for (Value *IncValue : PN->incoming_values()) 3880 Worklist.push_back(IncValue); 3881 continue; 3882 } 3883 3884 Objects.push_back(P); 3885 } while (!Worklist.empty()); 3886 } 3887 3888 /// This is the function that does the work of looking through basic 3889 /// ptrtoint+arithmetic+inttoptr sequences. 3890 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3891 do { 3892 if (const Operator *U = dyn_cast<Operator>(V)) { 3893 // If we find a ptrtoint, we can transfer control back to the 3894 // regular getUnderlyingObjectFromInt. 3895 if (U->getOpcode() == Instruction::PtrToInt) 3896 return U->getOperand(0); 3897 // If we find an add of a constant, a multiplied value, or a phi, it's 3898 // likely that the other operand will lead us to the base 3899 // object. We don't have to worry about the case where the 3900 // object address is somehow being computed by the multiply, 3901 // because our callers only care when the result is an 3902 // identifiable object. 3903 if (U->getOpcode() != Instruction::Add || 3904 (!isa<ConstantInt>(U->getOperand(1)) && 3905 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3906 !isa<PHINode>(U->getOperand(1)))) 3907 return V; 3908 V = U->getOperand(0); 3909 } else { 3910 return V; 3911 } 3912 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3913 } while (true); 3914 } 3915 3916 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3917 /// ptrtoint+arithmetic+inttoptr sequences. 3918 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3919 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3920 SmallVectorImpl<Value *> &Objects, 3921 const DataLayout &DL) { 3922 SmallPtrSet<const Value *, 16> Visited; 3923 SmallVector<const Value *, 4> Working(1, V); 3924 do { 3925 V = Working.pop_back_val(); 3926 3927 SmallVector<const Value *, 4> Objs; 3928 GetUnderlyingObjects(V, Objs, DL); 3929 3930 for (const Value *V : Objs) { 3931 if (!Visited.insert(V).second) 3932 continue; 3933 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3934 const Value *O = 3935 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3936 if (O->getType()->isPointerTy()) { 3937 Working.push_back(O); 3938 continue; 3939 } 3940 } 3941 // If GetUnderlyingObjects fails to find an identifiable object, 3942 // getUnderlyingObjectsForCodeGen also fails for safety. 3943 if (!isIdentifiedObject(V)) { 3944 Objects.clear(); 3945 return false; 3946 } 3947 Objects.push_back(const_cast<Value *>(V)); 3948 } 3949 } while (!Working.empty()); 3950 return true; 3951 } 3952 3953 /// Return true if the only users of this pointer are lifetime markers. 3954 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3955 for (const User *U : V->users()) { 3956 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3957 if (!II) return false; 3958 3959 if (!II->isLifetimeStartOrEnd()) 3960 return false; 3961 } 3962 return true; 3963 } 3964 3965 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 3966 if (!LI.isUnordered()) 3967 return true; 3968 const Function &F = *LI.getFunction(); 3969 // Speculative load may create a race that did not exist in the source. 3970 return F.hasFnAttribute(Attribute::SanitizeThread) || 3971 // Speculative load may load data from dirty regions. 3972 F.hasFnAttribute(Attribute::SanitizeAddress) || 3973 F.hasFnAttribute(Attribute::SanitizeHWAddress); 3974 } 3975 3976 3977 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3978 const Instruction *CtxI, 3979 const DominatorTree *DT) { 3980 const Operator *Inst = dyn_cast<Operator>(V); 3981 if (!Inst) 3982 return false; 3983 3984 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3985 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3986 if (C->canTrap()) 3987 return false; 3988 3989 switch (Inst->getOpcode()) { 3990 default: 3991 return true; 3992 case Instruction::UDiv: 3993 case Instruction::URem: { 3994 // x / y is undefined if y == 0. 3995 const APInt *V; 3996 if (match(Inst->getOperand(1), m_APInt(V))) 3997 return *V != 0; 3998 return false; 3999 } 4000 case Instruction::SDiv: 4001 case Instruction::SRem: { 4002 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4003 const APInt *Numerator, *Denominator; 4004 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4005 return false; 4006 // We cannot hoist this division if the denominator is 0. 4007 if (*Denominator == 0) 4008 return false; 4009 // It's safe to hoist if the denominator is not 0 or -1. 4010 if (*Denominator != -1) 4011 return true; 4012 // At this point we know that the denominator is -1. It is safe to hoist as 4013 // long we know that the numerator is not INT_MIN. 4014 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4015 return !Numerator->isMinSignedValue(); 4016 // The numerator *might* be MinSignedValue. 4017 return false; 4018 } 4019 case Instruction::Load: { 4020 const LoadInst *LI = cast<LoadInst>(Inst); 4021 if (mustSuppressSpeculation(*LI)) 4022 return false; 4023 const DataLayout &DL = LI->getModule()->getDataLayout(); 4024 return isDereferenceableAndAlignedPointer( 4025 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4026 DL, CtxI, DT); 4027 } 4028 case Instruction::Call: { 4029 auto *CI = cast<const CallInst>(Inst); 4030 const Function *Callee = CI->getCalledFunction(); 4031 4032 // The called function could have undefined behavior or side-effects, even 4033 // if marked readnone nounwind. 4034 return Callee && Callee->isSpeculatable(); 4035 } 4036 case Instruction::VAArg: 4037 case Instruction::Alloca: 4038 case Instruction::Invoke: 4039 case Instruction::CallBr: 4040 case Instruction::PHI: 4041 case Instruction::Store: 4042 case Instruction::Ret: 4043 case Instruction::Br: 4044 case Instruction::IndirectBr: 4045 case Instruction::Switch: 4046 case Instruction::Unreachable: 4047 case Instruction::Fence: 4048 case Instruction::AtomicRMW: 4049 case Instruction::AtomicCmpXchg: 4050 case Instruction::LandingPad: 4051 case Instruction::Resume: 4052 case Instruction::CatchSwitch: 4053 case Instruction::CatchPad: 4054 case Instruction::CatchRet: 4055 case Instruction::CleanupPad: 4056 case Instruction::CleanupRet: 4057 return false; // Misc instructions which have effects 4058 } 4059 } 4060 4061 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4062 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4063 } 4064 4065 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4066 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4067 switch (OR) { 4068 case ConstantRange::OverflowResult::MayOverflow: 4069 return OverflowResult::MayOverflow; 4070 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4071 return OverflowResult::AlwaysOverflowsLow; 4072 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4073 return OverflowResult::AlwaysOverflowsHigh; 4074 case ConstantRange::OverflowResult::NeverOverflows: 4075 return OverflowResult::NeverOverflows; 4076 } 4077 llvm_unreachable("Unknown OverflowResult"); 4078 } 4079 4080 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4081 static ConstantRange computeConstantRangeIncludingKnownBits( 4082 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4083 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4084 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4085 KnownBits Known = computeKnownBits( 4086 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4087 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4088 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4089 ConstantRange::PreferredRangeType RangeType = 4090 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4091 return CR1.intersectWith(CR2, RangeType); 4092 } 4093 4094 OverflowResult llvm::computeOverflowForUnsignedMul( 4095 const Value *LHS, const Value *RHS, const DataLayout &DL, 4096 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4097 bool UseInstrInfo) { 4098 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4099 nullptr, UseInstrInfo); 4100 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4101 nullptr, UseInstrInfo); 4102 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4103 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4104 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4105 } 4106 4107 OverflowResult 4108 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4109 const DataLayout &DL, AssumptionCache *AC, 4110 const Instruction *CxtI, 4111 const DominatorTree *DT, bool UseInstrInfo) { 4112 // Multiplying n * m significant bits yields a result of n + m significant 4113 // bits. If the total number of significant bits does not exceed the 4114 // result bit width (minus 1), there is no overflow. 4115 // This means if we have enough leading sign bits in the operands 4116 // we can guarantee that the result does not overflow. 4117 // Ref: "Hacker's Delight" by Henry Warren 4118 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4119 4120 // Note that underestimating the number of sign bits gives a more 4121 // conservative answer. 4122 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4123 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4124 4125 // First handle the easy case: if we have enough sign bits there's 4126 // definitely no overflow. 4127 if (SignBits > BitWidth + 1) 4128 return OverflowResult::NeverOverflows; 4129 4130 // There are two ambiguous cases where there can be no overflow: 4131 // SignBits == BitWidth + 1 and 4132 // SignBits == BitWidth 4133 // The second case is difficult to check, therefore we only handle the 4134 // first case. 4135 if (SignBits == BitWidth + 1) { 4136 // It overflows only when both arguments are negative and the true 4137 // product is exactly the minimum negative number. 4138 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4139 // For simplicity we just check if at least one side is not negative. 4140 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4141 nullptr, UseInstrInfo); 4142 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4143 nullptr, UseInstrInfo); 4144 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4145 return OverflowResult::NeverOverflows; 4146 } 4147 return OverflowResult::MayOverflow; 4148 } 4149 4150 OverflowResult llvm::computeOverflowForUnsignedAdd( 4151 const Value *LHS, const Value *RHS, const DataLayout &DL, 4152 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4153 bool UseInstrInfo) { 4154 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4155 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4156 nullptr, UseInstrInfo); 4157 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4158 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4159 nullptr, UseInstrInfo); 4160 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4161 } 4162 4163 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4164 const Value *RHS, 4165 const AddOperator *Add, 4166 const DataLayout &DL, 4167 AssumptionCache *AC, 4168 const Instruction *CxtI, 4169 const DominatorTree *DT) { 4170 if (Add && Add->hasNoSignedWrap()) { 4171 return OverflowResult::NeverOverflows; 4172 } 4173 4174 // If LHS and RHS each have at least two sign bits, the addition will look 4175 // like 4176 // 4177 // XX..... + 4178 // YY..... 4179 // 4180 // If the carry into the most significant position is 0, X and Y can't both 4181 // be 1 and therefore the carry out of the addition is also 0. 4182 // 4183 // If the carry into the most significant position is 1, X and Y can't both 4184 // be 0 and therefore the carry out of the addition is also 1. 4185 // 4186 // Since the carry into the most significant position is always equal to 4187 // the carry out of the addition, there is no signed overflow. 4188 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4189 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4190 return OverflowResult::NeverOverflows; 4191 4192 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4193 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4194 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4195 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4196 OverflowResult OR = 4197 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4198 if (OR != OverflowResult::MayOverflow) 4199 return OR; 4200 4201 // The remaining code needs Add to be available. Early returns if not so. 4202 if (!Add) 4203 return OverflowResult::MayOverflow; 4204 4205 // If the sign of Add is the same as at least one of the operands, this add 4206 // CANNOT overflow. If this can be determined from the known bits of the 4207 // operands the above signedAddMayOverflow() check will have already done so. 4208 // The only other way to improve on the known bits is from an assumption, so 4209 // call computeKnownBitsFromAssume() directly. 4210 bool LHSOrRHSKnownNonNegative = 4211 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4212 bool LHSOrRHSKnownNegative = 4213 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4214 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4215 KnownBits AddKnown(LHSRange.getBitWidth()); 4216 computeKnownBitsFromAssume( 4217 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4218 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4219 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4220 return OverflowResult::NeverOverflows; 4221 } 4222 4223 return OverflowResult::MayOverflow; 4224 } 4225 4226 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4227 const Value *RHS, 4228 const DataLayout &DL, 4229 AssumptionCache *AC, 4230 const Instruction *CxtI, 4231 const DominatorTree *DT) { 4232 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4233 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4234 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4235 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4236 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4237 } 4238 4239 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4240 const Value *RHS, 4241 const DataLayout &DL, 4242 AssumptionCache *AC, 4243 const Instruction *CxtI, 4244 const DominatorTree *DT) { 4245 // If LHS and RHS each have at least two sign bits, the subtraction 4246 // cannot overflow. 4247 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4248 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4249 return OverflowResult::NeverOverflows; 4250 4251 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4252 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4253 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4254 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4255 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4256 } 4257 4258 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4259 const DominatorTree &DT) { 4260 SmallVector<const BranchInst *, 2> GuardingBranches; 4261 SmallVector<const ExtractValueInst *, 2> Results; 4262 4263 for (const User *U : WO->users()) { 4264 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4265 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4266 4267 if (EVI->getIndices()[0] == 0) 4268 Results.push_back(EVI); 4269 else { 4270 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4271 4272 for (const auto *U : EVI->users()) 4273 if (const auto *B = dyn_cast<BranchInst>(U)) { 4274 assert(B->isConditional() && "How else is it using an i1?"); 4275 GuardingBranches.push_back(B); 4276 } 4277 } 4278 } else { 4279 // We are using the aggregate directly in a way we don't want to analyze 4280 // here (storing it to a global, say). 4281 return false; 4282 } 4283 } 4284 4285 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4286 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4287 if (!NoWrapEdge.isSingleEdge()) 4288 return false; 4289 4290 // Check if all users of the add are provably no-wrap. 4291 for (const auto *Result : Results) { 4292 // If the extractvalue itself is not executed on overflow, the we don't 4293 // need to check each use separately, since domination is transitive. 4294 if (DT.dominates(NoWrapEdge, Result->getParent())) 4295 continue; 4296 4297 for (auto &RU : Result->uses()) 4298 if (!DT.dominates(NoWrapEdge, RU)) 4299 return false; 4300 } 4301 4302 return true; 4303 }; 4304 4305 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4306 } 4307 4308 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V) { 4309 // If the value is a freeze instruction, then it can never 4310 // be undef or poison. 4311 if (isa<FreezeInst>(V)) 4312 return true; 4313 // TODO: Some instructions are guaranteed to return neither undef 4314 // nor poison if their arguments are not poison/undef. 4315 4316 // TODO: Deal with other Constant subclasses. 4317 if (isa<ConstantInt>(V) || isa<GlobalVariable>(V)) 4318 return true; 4319 4320 return false; 4321 } 4322 4323 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4324 const DataLayout &DL, 4325 AssumptionCache *AC, 4326 const Instruction *CxtI, 4327 const DominatorTree *DT) { 4328 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4329 Add, DL, AC, CxtI, DT); 4330 } 4331 4332 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4333 const Value *RHS, 4334 const DataLayout &DL, 4335 AssumptionCache *AC, 4336 const Instruction *CxtI, 4337 const DominatorTree *DT) { 4338 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4339 } 4340 4341 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4342 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4343 // of time because it's possible for another thread to interfere with it for an 4344 // arbitrary length of time, but programs aren't allowed to rely on that. 4345 4346 // If there is no successor, then execution can't transfer to it. 4347 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4348 return !CRI->unwindsToCaller(); 4349 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4350 return !CatchSwitch->unwindsToCaller(); 4351 if (isa<ResumeInst>(I)) 4352 return false; 4353 if (isa<ReturnInst>(I)) 4354 return false; 4355 if (isa<UnreachableInst>(I)) 4356 return false; 4357 4358 // Calls can throw, or contain an infinite loop, or kill the process. 4359 if (auto CS = ImmutableCallSite(I)) { 4360 // Call sites that throw have implicit non-local control flow. 4361 if (!CS.doesNotThrow()) 4362 return false; 4363 4364 // A function which doens't throw and has "willreturn" attribute will 4365 // always return. 4366 if (CS.hasFnAttr(Attribute::WillReturn)) 4367 return true; 4368 4369 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4370 // etc. and thus not return. However, LLVM already assumes that 4371 // 4372 // - Thread exiting actions are modeled as writes to memory invisible to 4373 // the program. 4374 // 4375 // - Loops that don't have side effects (side effects are volatile/atomic 4376 // stores and IO) always terminate (see http://llvm.org/PR965). 4377 // Furthermore IO itself is also modeled as writes to memory invisible to 4378 // the program. 4379 // 4380 // We rely on those assumptions here, and use the memory effects of the call 4381 // target as a proxy for checking that it always returns. 4382 4383 // FIXME: This isn't aggressive enough; a call which only writes to a global 4384 // is guaranteed to return. 4385 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4386 } 4387 4388 // Other instructions return normally. 4389 return true; 4390 } 4391 4392 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4393 // TODO: This is slightly conservative for invoke instruction since exiting 4394 // via an exception *is* normal control for them. 4395 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4396 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4397 return false; 4398 return true; 4399 } 4400 4401 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4402 const Loop *L) { 4403 // The loop header is guaranteed to be executed for every iteration. 4404 // 4405 // FIXME: Relax this constraint to cover all basic blocks that are 4406 // guaranteed to be executed at every iteration. 4407 if (I->getParent() != L->getHeader()) return false; 4408 4409 for (const Instruction &LI : *L->getHeader()) { 4410 if (&LI == I) return true; 4411 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4412 } 4413 llvm_unreachable("Instruction not contained in its own parent basic block."); 4414 } 4415 4416 bool llvm::propagatesFullPoison(const Instruction *I) { 4417 // TODO: This should include all instructions apart from phis, selects and 4418 // call-like instructions. 4419 switch (I->getOpcode()) { 4420 case Instruction::Add: 4421 case Instruction::Sub: 4422 case Instruction::Xor: 4423 case Instruction::Trunc: 4424 case Instruction::BitCast: 4425 case Instruction::AddrSpaceCast: 4426 case Instruction::Mul: 4427 case Instruction::Shl: 4428 case Instruction::GetElementPtr: 4429 // These operations all propagate poison unconditionally. Note that poison 4430 // is not any particular value, so xor or subtraction of poison with 4431 // itself still yields poison, not zero. 4432 return true; 4433 4434 case Instruction::AShr: 4435 case Instruction::SExt: 4436 // For these operations, one bit of the input is replicated across 4437 // multiple output bits. A replicated poison bit is still poison. 4438 return true; 4439 4440 case Instruction::ICmp: 4441 // Comparing poison with any value yields poison. This is why, for 4442 // instance, x s< (x +nsw 1) can be folded to true. 4443 return true; 4444 4445 default: 4446 return false; 4447 } 4448 } 4449 4450 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4451 switch (I->getOpcode()) { 4452 case Instruction::Store: 4453 return cast<StoreInst>(I)->getPointerOperand(); 4454 4455 case Instruction::Load: 4456 return cast<LoadInst>(I)->getPointerOperand(); 4457 4458 case Instruction::AtomicCmpXchg: 4459 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4460 4461 case Instruction::AtomicRMW: 4462 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4463 4464 case Instruction::UDiv: 4465 case Instruction::SDiv: 4466 case Instruction::URem: 4467 case Instruction::SRem: 4468 return I->getOperand(1); 4469 4470 default: 4471 // Note: It's really tempting to think that a conditional branch or 4472 // switch should be listed here, but that's incorrect. It's not 4473 // branching off of poison which is UB, it is executing a side effecting 4474 // instruction which follows the branch. 4475 return nullptr; 4476 } 4477 } 4478 4479 bool llvm::mustTriggerUB(const Instruction *I, 4480 const SmallSet<const Value *, 16>& KnownPoison) { 4481 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4482 return (NotPoison && KnownPoison.count(NotPoison)); 4483 } 4484 4485 4486 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4487 // We currently only look for uses of poison values within the same basic 4488 // block, as that makes it easier to guarantee that the uses will be 4489 // executed given that PoisonI is executed. 4490 // 4491 // FIXME: Expand this to consider uses beyond the same basic block. To do 4492 // this, look out for the distinction between post-dominance and strong 4493 // post-dominance. 4494 const BasicBlock *BB = PoisonI->getParent(); 4495 4496 // Set of instructions that we have proved will yield poison if PoisonI 4497 // does. 4498 SmallSet<const Value *, 16> YieldsPoison; 4499 SmallSet<const BasicBlock *, 4> Visited; 4500 YieldsPoison.insert(PoisonI); 4501 Visited.insert(PoisonI->getParent()); 4502 4503 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4504 4505 unsigned Iter = 0; 4506 while (Iter++ < MaxDepth) { 4507 for (auto &I : make_range(Begin, End)) { 4508 if (&I != PoisonI) { 4509 if (mustTriggerUB(&I, YieldsPoison)) 4510 return true; 4511 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4512 return false; 4513 } 4514 4515 // Mark poison that propagates from I through uses of I. 4516 if (YieldsPoison.count(&I)) { 4517 for (const User *User : I.users()) { 4518 const Instruction *UserI = cast<Instruction>(User); 4519 if (propagatesFullPoison(UserI)) 4520 YieldsPoison.insert(User); 4521 } 4522 } 4523 } 4524 4525 if (auto *NextBB = BB->getSingleSuccessor()) { 4526 if (Visited.insert(NextBB).second) { 4527 BB = NextBB; 4528 Begin = BB->getFirstNonPHI()->getIterator(); 4529 End = BB->end(); 4530 continue; 4531 } 4532 } 4533 4534 break; 4535 } 4536 return false; 4537 } 4538 4539 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4540 if (FMF.noNaNs()) 4541 return true; 4542 4543 if (auto *C = dyn_cast<ConstantFP>(V)) 4544 return !C->isNaN(); 4545 4546 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4547 if (!C->getElementType()->isFloatingPointTy()) 4548 return false; 4549 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4550 if (C->getElementAsAPFloat(I).isNaN()) 4551 return false; 4552 } 4553 return true; 4554 } 4555 4556 return false; 4557 } 4558 4559 static bool isKnownNonZero(const Value *V) { 4560 if (auto *C = dyn_cast<ConstantFP>(V)) 4561 return !C->isZero(); 4562 4563 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4564 if (!C->getElementType()->isFloatingPointTy()) 4565 return false; 4566 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4567 if (C->getElementAsAPFloat(I).isZero()) 4568 return false; 4569 } 4570 return true; 4571 } 4572 4573 return false; 4574 } 4575 4576 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4577 /// Given non-min/max outer cmp/select from the clamp pattern this 4578 /// function recognizes if it can be substitued by a "canonical" min/max 4579 /// pattern. 4580 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4581 Value *CmpLHS, Value *CmpRHS, 4582 Value *TrueVal, Value *FalseVal, 4583 Value *&LHS, Value *&RHS) { 4584 // Try to match 4585 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4586 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4587 // and return description of the outer Max/Min. 4588 4589 // First, check if select has inverse order: 4590 if (CmpRHS == FalseVal) { 4591 std::swap(TrueVal, FalseVal); 4592 Pred = CmpInst::getInversePredicate(Pred); 4593 } 4594 4595 // Assume success now. If there's no match, callers should not use these anyway. 4596 LHS = TrueVal; 4597 RHS = FalseVal; 4598 4599 const APFloat *FC1; 4600 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4601 return {SPF_UNKNOWN, SPNB_NA, false}; 4602 4603 const APFloat *FC2; 4604 switch (Pred) { 4605 case CmpInst::FCMP_OLT: 4606 case CmpInst::FCMP_OLE: 4607 case CmpInst::FCMP_ULT: 4608 case CmpInst::FCMP_ULE: 4609 if (match(FalseVal, 4610 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4611 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4612 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4613 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4614 break; 4615 case CmpInst::FCMP_OGT: 4616 case CmpInst::FCMP_OGE: 4617 case CmpInst::FCMP_UGT: 4618 case CmpInst::FCMP_UGE: 4619 if (match(FalseVal, 4620 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4621 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4622 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4623 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4624 break; 4625 default: 4626 break; 4627 } 4628 4629 return {SPF_UNKNOWN, SPNB_NA, false}; 4630 } 4631 4632 /// Recognize variations of: 4633 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4634 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4635 Value *CmpLHS, Value *CmpRHS, 4636 Value *TrueVal, Value *FalseVal) { 4637 // Swap the select operands and predicate to match the patterns below. 4638 if (CmpRHS != TrueVal) { 4639 Pred = ICmpInst::getSwappedPredicate(Pred); 4640 std::swap(TrueVal, FalseVal); 4641 } 4642 const APInt *C1; 4643 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4644 const APInt *C2; 4645 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4646 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4647 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4648 return {SPF_SMAX, SPNB_NA, false}; 4649 4650 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4651 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4652 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4653 return {SPF_SMIN, SPNB_NA, false}; 4654 4655 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4656 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4657 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4658 return {SPF_UMAX, SPNB_NA, false}; 4659 4660 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4661 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4662 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4663 return {SPF_UMIN, SPNB_NA, false}; 4664 } 4665 return {SPF_UNKNOWN, SPNB_NA, false}; 4666 } 4667 4668 /// Recognize variations of: 4669 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4670 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4671 Value *CmpLHS, Value *CmpRHS, 4672 Value *TVal, Value *FVal, 4673 unsigned Depth) { 4674 // TODO: Allow FP min/max with nnan/nsz. 4675 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4676 4677 Value *A = nullptr, *B = nullptr; 4678 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4679 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4680 return {SPF_UNKNOWN, SPNB_NA, false}; 4681 4682 Value *C = nullptr, *D = nullptr; 4683 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4684 if (L.Flavor != R.Flavor) 4685 return {SPF_UNKNOWN, SPNB_NA, false}; 4686 4687 // We have something like: x Pred y ? min(a, b) : min(c, d). 4688 // Try to match the compare to the min/max operations of the select operands. 4689 // First, make sure we have the right compare predicate. 4690 switch (L.Flavor) { 4691 case SPF_SMIN: 4692 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4693 Pred = ICmpInst::getSwappedPredicate(Pred); 4694 std::swap(CmpLHS, CmpRHS); 4695 } 4696 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4697 break; 4698 return {SPF_UNKNOWN, SPNB_NA, false}; 4699 case SPF_SMAX: 4700 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4701 Pred = ICmpInst::getSwappedPredicate(Pred); 4702 std::swap(CmpLHS, CmpRHS); 4703 } 4704 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4705 break; 4706 return {SPF_UNKNOWN, SPNB_NA, false}; 4707 case SPF_UMIN: 4708 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4709 Pred = ICmpInst::getSwappedPredicate(Pred); 4710 std::swap(CmpLHS, CmpRHS); 4711 } 4712 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4713 break; 4714 return {SPF_UNKNOWN, SPNB_NA, false}; 4715 case SPF_UMAX: 4716 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4717 Pred = ICmpInst::getSwappedPredicate(Pred); 4718 std::swap(CmpLHS, CmpRHS); 4719 } 4720 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4721 break; 4722 return {SPF_UNKNOWN, SPNB_NA, false}; 4723 default: 4724 return {SPF_UNKNOWN, SPNB_NA, false}; 4725 } 4726 4727 // If there is a common operand in the already matched min/max and the other 4728 // min/max operands match the compare operands (either directly or inverted), 4729 // then this is min/max of the same flavor. 4730 4731 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4732 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4733 if (D == B) { 4734 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4735 match(A, m_Not(m_Specific(CmpRHS))))) 4736 return {L.Flavor, SPNB_NA, false}; 4737 } 4738 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4739 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4740 if (C == B) { 4741 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4742 match(A, m_Not(m_Specific(CmpRHS))))) 4743 return {L.Flavor, SPNB_NA, false}; 4744 } 4745 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4746 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4747 if (D == A) { 4748 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4749 match(B, m_Not(m_Specific(CmpRHS))))) 4750 return {L.Flavor, SPNB_NA, false}; 4751 } 4752 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4753 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4754 if (C == A) { 4755 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4756 match(B, m_Not(m_Specific(CmpRHS))))) 4757 return {L.Flavor, SPNB_NA, false}; 4758 } 4759 4760 return {SPF_UNKNOWN, SPNB_NA, false}; 4761 } 4762 4763 /// Match non-obvious integer minimum and maximum sequences. 4764 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4765 Value *CmpLHS, Value *CmpRHS, 4766 Value *TrueVal, Value *FalseVal, 4767 Value *&LHS, Value *&RHS, 4768 unsigned Depth) { 4769 // Assume success. If there's no match, callers should not use these anyway. 4770 LHS = TrueVal; 4771 RHS = FalseVal; 4772 4773 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4774 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4775 return SPR; 4776 4777 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4778 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4779 return SPR; 4780 4781 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4782 return {SPF_UNKNOWN, SPNB_NA, false}; 4783 4784 // Z = X -nsw Y 4785 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4786 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4787 if (match(TrueVal, m_Zero()) && 4788 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4789 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4790 4791 // Z = X -nsw Y 4792 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4793 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4794 if (match(FalseVal, m_Zero()) && 4795 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4796 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4797 4798 const APInt *C1; 4799 if (!match(CmpRHS, m_APInt(C1))) 4800 return {SPF_UNKNOWN, SPNB_NA, false}; 4801 4802 // An unsigned min/max can be written with a signed compare. 4803 const APInt *C2; 4804 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4805 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4806 // Is the sign bit set? 4807 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4808 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4809 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4810 C2->isMaxSignedValue()) 4811 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4812 4813 // Is the sign bit clear? 4814 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4815 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4816 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4817 C2->isMinSignedValue()) 4818 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4819 } 4820 4821 // Look through 'not' ops to find disguised signed min/max. 4822 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4823 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4824 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4825 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4826 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4827 4828 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4829 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4830 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4831 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4832 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4833 4834 return {SPF_UNKNOWN, SPNB_NA, false}; 4835 } 4836 4837 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4838 assert(X && Y && "Invalid operand"); 4839 4840 // X = sub (0, Y) || X = sub nsw (0, Y) 4841 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4842 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4843 return true; 4844 4845 // Y = sub (0, X) || Y = sub nsw (0, X) 4846 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4847 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4848 return true; 4849 4850 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4851 Value *A, *B; 4852 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4853 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4854 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4855 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4856 } 4857 4858 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4859 FastMathFlags FMF, 4860 Value *CmpLHS, Value *CmpRHS, 4861 Value *TrueVal, Value *FalseVal, 4862 Value *&LHS, Value *&RHS, 4863 unsigned Depth) { 4864 if (CmpInst::isFPPredicate(Pred)) { 4865 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 4866 // 0.0 operand, set the compare's 0.0 operands to that same value for the 4867 // purpose of identifying min/max. Disregard vector constants with undefined 4868 // elements because those can not be back-propagated for analysis. 4869 Value *OutputZeroVal = nullptr; 4870 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 4871 !cast<Constant>(TrueVal)->containsUndefElement()) 4872 OutputZeroVal = TrueVal; 4873 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 4874 !cast<Constant>(FalseVal)->containsUndefElement()) 4875 OutputZeroVal = FalseVal; 4876 4877 if (OutputZeroVal) { 4878 if (match(CmpLHS, m_AnyZeroFP())) 4879 CmpLHS = OutputZeroVal; 4880 if (match(CmpRHS, m_AnyZeroFP())) 4881 CmpRHS = OutputZeroVal; 4882 } 4883 } 4884 4885 LHS = CmpLHS; 4886 RHS = CmpRHS; 4887 4888 // Signed zero may return inconsistent results between implementations. 4889 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4890 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4891 // Therefore, we behave conservatively and only proceed if at least one of the 4892 // operands is known to not be zero or if we don't care about signed zero. 4893 switch (Pred) { 4894 default: break; 4895 // FIXME: Include OGT/OLT/UGT/ULT. 4896 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4897 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4898 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4899 !isKnownNonZero(CmpRHS)) 4900 return {SPF_UNKNOWN, SPNB_NA, false}; 4901 } 4902 4903 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4904 bool Ordered = false; 4905 4906 // When given one NaN and one non-NaN input: 4907 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4908 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4909 // ordered comparison fails), which could be NaN or non-NaN. 4910 // so here we discover exactly what NaN behavior is required/accepted. 4911 if (CmpInst::isFPPredicate(Pred)) { 4912 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4913 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4914 4915 if (LHSSafe && RHSSafe) { 4916 // Both operands are known non-NaN. 4917 NaNBehavior = SPNB_RETURNS_ANY; 4918 } else if (CmpInst::isOrdered(Pred)) { 4919 // An ordered comparison will return false when given a NaN, so it 4920 // returns the RHS. 4921 Ordered = true; 4922 if (LHSSafe) 4923 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4924 NaNBehavior = SPNB_RETURNS_NAN; 4925 else if (RHSSafe) 4926 NaNBehavior = SPNB_RETURNS_OTHER; 4927 else 4928 // Completely unsafe. 4929 return {SPF_UNKNOWN, SPNB_NA, false}; 4930 } else { 4931 Ordered = false; 4932 // An unordered comparison will return true when given a NaN, so it 4933 // returns the LHS. 4934 if (LHSSafe) 4935 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4936 NaNBehavior = SPNB_RETURNS_OTHER; 4937 else if (RHSSafe) 4938 NaNBehavior = SPNB_RETURNS_NAN; 4939 else 4940 // Completely unsafe. 4941 return {SPF_UNKNOWN, SPNB_NA, false}; 4942 } 4943 } 4944 4945 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4946 std::swap(CmpLHS, CmpRHS); 4947 Pred = CmpInst::getSwappedPredicate(Pred); 4948 if (NaNBehavior == SPNB_RETURNS_NAN) 4949 NaNBehavior = SPNB_RETURNS_OTHER; 4950 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4951 NaNBehavior = SPNB_RETURNS_NAN; 4952 Ordered = !Ordered; 4953 } 4954 4955 // ([if]cmp X, Y) ? X : Y 4956 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4957 switch (Pred) { 4958 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4959 case ICmpInst::ICMP_UGT: 4960 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4961 case ICmpInst::ICMP_SGT: 4962 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4963 case ICmpInst::ICMP_ULT: 4964 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4965 case ICmpInst::ICMP_SLT: 4966 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4967 case FCmpInst::FCMP_UGT: 4968 case FCmpInst::FCMP_UGE: 4969 case FCmpInst::FCMP_OGT: 4970 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4971 case FCmpInst::FCMP_ULT: 4972 case FCmpInst::FCMP_ULE: 4973 case FCmpInst::FCMP_OLT: 4974 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4975 } 4976 } 4977 4978 if (isKnownNegation(TrueVal, FalseVal)) { 4979 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4980 // match against either LHS or sext(LHS). 4981 auto MaybeSExtCmpLHS = 4982 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4983 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4984 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4985 if (match(TrueVal, MaybeSExtCmpLHS)) { 4986 // Set the return values. If the compare uses the negated value (-X >s 0), 4987 // swap the return values because the negated value is always 'RHS'. 4988 LHS = TrueVal; 4989 RHS = FalseVal; 4990 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 4991 std::swap(LHS, RHS); 4992 4993 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 4994 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 4995 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4996 return {SPF_ABS, SPNB_NA, false}; 4997 4998 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 4999 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5000 return {SPF_ABS, SPNB_NA, false}; 5001 5002 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5003 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5004 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5005 return {SPF_NABS, SPNB_NA, false}; 5006 } 5007 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5008 // Set the return values. If the compare uses the negated value (-X >s 0), 5009 // swap the return values because the negated value is always 'RHS'. 5010 LHS = FalseVal; 5011 RHS = TrueVal; 5012 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5013 std::swap(LHS, RHS); 5014 5015 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5016 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5017 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5018 return {SPF_NABS, SPNB_NA, false}; 5019 5020 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5021 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5022 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5023 return {SPF_ABS, SPNB_NA, false}; 5024 } 5025 } 5026 5027 if (CmpInst::isIntPredicate(Pred)) 5028 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5029 5030 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5031 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5032 // semantics than minNum. Be conservative in such case. 5033 if (NaNBehavior != SPNB_RETURNS_ANY || 5034 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5035 !isKnownNonZero(CmpRHS))) 5036 return {SPF_UNKNOWN, SPNB_NA, false}; 5037 5038 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5039 } 5040 5041 /// Helps to match a select pattern in case of a type mismatch. 5042 /// 5043 /// The function processes the case when type of true and false values of a 5044 /// select instruction differs from type of the cmp instruction operands because 5045 /// of a cast instruction. The function checks if it is legal to move the cast 5046 /// operation after "select". If yes, it returns the new second value of 5047 /// "select" (with the assumption that cast is moved): 5048 /// 1. As operand of cast instruction when both values of "select" are same cast 5049 /// instructions. 5050 /// 2. As restored constant (by applying reverse cast operation) when the first 5051 /// value of the "select" is a cast operation and the second value is a 5052 /// constant. 5053 /// NOTE: We return only the new second value because the first value could be 5054 /// accessed as operand of cast instruction. 5055 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5056 Instruction::CastOps *CastOp) { 5057 auto *Cast1 = dyn_cast<CastInst>(V1); 5058 if (!Cast1) 5059 return nullptr; 5060 5061 *CastOp = Cast1->getOpcode(); 5062 Type *SrcTy = Cast1->getSrcTy(); 5063 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5064 // If V1 and V2 are both the same cast from the same type, look through V1. 5065 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5066 return Cast2->getOperand(0); 5067 return nullptr; 5068 } 5069 5070 auto *C = dyn_cast<Constant>(V2); 5071 if (!C) 5072 return nullptr; 5073 5074 Constant *CastedTo = nullptr; 5075 switch (*CastOp) { 5076 case Instruction::ZExt: 5077 if (CmpI->isUnsigned()) 5078 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5079 break; 5080 case Instruction::SExt: 5081 if (CmpI->isSigned()) 5082 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5083 break; 5084 case Instruction::Trunc: 5085 Constant *CmpConst; 5086 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5087 CmpConst->getType() == SrcTy) { 5088 // Here we have the following case: 5089 // 5090 // %cond = cmp iN %x, CmpConst 5091 // %tr = trunc iN %x to iK 5092 // %narrowsel = select i1 %cond, iK %t, iK C 5093 // 5094 // We can always move trunc after select operation: 5095 // 5096 // %cond = cmp iN %x, CmpConst 5097 // %widesel = select i1 %cond, iN %x, iN CmpConst 5098 // %tr = trunc iN %widesel to iK 5099 // 5100 // Note that C could be extended in any way because we don't care about 5101 // upper bits after truncation. It can't be abs pattern, because it would 5102 // look like: 5103 // 5104 // select i1 %cond, x, -x. 5105 // 5106 // So only min/max pattern could be matched. Such match requires widened C 5107 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5108 // CmpConst == C is checked below. 5109 CastedTo = CmpConst; 5110 } else { 5111 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5112 } 5113 break; 5114 case Instruction::FPTrunc: 5115 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5116 break; 5117 case Instruction::FPExt: 5118 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5119 break; 5120 case Instruction::FPToUI: 5121 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5122 break; 5123 case Instruction::FPToSI: 5124 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5125 break; 5126 case Instruction::UIToFP: 5127 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5128 break; 5129 case Instruction::SIToFP: 5130 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5131 break; 5132 default: 5133 break; 5134 } 5135 5136 if (!CastedTo) 5137 return nullptr; 5138 5139 // Make sure the cast doesn't lose any information. 5140 Constant *CastedBack = 5141 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5142 if (CastedBack != C) 5143 return nullptr; 5144 5145 return CastedTo; 5146 } 5147 5148 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5149 Instruction::CastOps *CastOp, 5150 unsigned Depth) { 5151 if (Depth >= MaxDepth) 5152 return {SPF_UNKNOWN, SPNB_NA, false}; 5153 5154 SelectInst *SI = dyn_cast<SelectInst>(V); 5155 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5156 5157 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5158 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5159 5160 Value *TrueVal = SI->getTrueValue(); 5161 Value *FalseVal = SI->getFalseValue(); 5162 5163 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5164 CastOp, Depth); 5165 } 5166 5167 SelectPatternResult llvm::matchDecomposedSelectPattern( 5168 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5169 Instruction::CastOps *CastOp, unsigned Depth) { 5170 CmpInst::Predicate Pred = CmpI->getPredicate(); 5171 Value *CmpLHS = CmpI->getOperand(0); 5172 Value *CmpRHS = CmpI->getOperand(1); 5173 FastMathFlags FMF; 5174 if (isa<FPMathOperator>(CmpI)) 5175 FMF = CmpI->getFastMathFlags(); 5176 5177 // Bail out early. 5178 if (CmpI->isEquality()) 5179 return {SPF_UNKNOWN, SPNB_NA, false}; 5180 5181 // Deal with type mismatches. 5182 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5183 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5184 // If this is a potential fmin/fmax with a cast to integer, then ignore 5185 // -0.0 because there is no corresponding integer value. 5186 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5187 FMF.setNoSignedZeros(); 5188 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5189 cast<CastInst>(TrueVal)->getOperand(0), C, 5190 LHS, RHS, Depth); 5191 } 5192 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5193 // If this is a potential fmin/fmax with a cast to integer, then ignore 5194 // -0.0 because there is no corresponding integer value. 5195 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5196 FMF.setNoSignedZeros(); 5197 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5198 C, cast<CastInst>(FalseVal)->getOperand(0), 5199 LHS, RHS, Depth); 5200 } 5201 } 5202 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5203 LHS, RHS, Depth); 5204 } 5205 5206 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5207 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5208 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5209 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5210 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5211 if (SPF == SPF_FMINNUM) 5212 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5213 if (SPF == SPF_FMAXNUM) 5214 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5215 llvm_unreachable("unhandled!"); 5216 } 5217 5218 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5219 if (SPF == SPF_SMIN) return SPF_SMAX; 5220 if (SPF == SPF_UMIN) return SPF_UMAX; 5221 if (SPF == SPF_SMAX) return SPF_SMIN; 5222 if (SPF == SPF_UMAX) return SPF_UMIN; 5223 llvm_unreachable("unhandled!"); 5224 } 5225 5226 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5227 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5228 } 5229 5230 /// Return true if "icmp Pred LHS RHS" is always true. 5231 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5232 const Value *RHS, const DataLayout &DL, 5233 unsigned Depth) { 5234 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5235 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5236 return true; 5237 5238 switch (Pred) { 5239 default: 5240 return false; 5241 5242 case CmpInst::ICMP_SLE: { 5243 const APInt *C; 5244 5245 // LHS s<= LHS +_{nsw} C if C >= 0 5246 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5247 return !C->isNegative(); 5248 return false; 5249 } 5250 5251 case CmpInst::ICMP_ULE: { 5252 const APInt *C; 5253 5254 // LHS u<= LHS +_{nuw} C for any C 5255 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5256 return true; 5257 5258 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5259 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5260 const Value *&X, 5261 const APInt *&CA, const APInt *&CB) { 5262 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5263 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5264 return true; 5265 5266 // If X & C == 0 then (X | C) == X +_{nuw} C 5267 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5268 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5269 KnownBits Known(CA->getBitWidth()); 5270 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5271 /*CxtI*/ nullptr, /*DT*/ nullptr); 5272 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5273 return true; 5274 } 5275 5276 return false; 5277 }; 5278 5279 const Value *X; 5280 const APInt *CLHS, *CRHS; 5281 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5282 return CLHS->ule(*CRHS); 5283 5284 return false; 5285 } 5286 } 5287 } 5288 5289 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5290 /// ALHS ARHS" is true. Otherwise, return None. 5291 static Optional<bool> 5292 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5293 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5294 const DataLayout &DL, unsigned Depth) { 5295 switch (Pred) { 5296 default: 5297 return None; 5298 5299 case CmpInst::ICMP_SLT: 5300 case CmpInst::ICMP_SLE: 5301 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5302 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5303 return true; 5304 return None; 5305 5306 case CmpInst::ICMP_ULT: 5307 case CmpInst::ICMP_ULE: 5308 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5309 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5310 return true; 5311 return None; 5312 } 5313 } 5314 5315 /// Return true if the operands of the two compares match. IsSwappedOps is true 5316 /// when the operands match, but are swapped. 5317 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5318 const Value *BLHS, const Value *BRHS, 5319 bool &IsSwappedOps) { 5320 5321 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5322 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5323 return IsMatchingOps || IsSwappedOps; 5324 } 5325 5326 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5327 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5328 /// Otherwise, return None if we can't infer anything. 5329 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5330 CmpInst::Predicate BPred, 5331 bool AreSwappedOps) { 5332 // Canonicalize the predicate as if the operands were not commuted. 5333 if (AreSwappedOps) 5334 BPred = ICmpInst::getSwappedPredicate(BPred); 5335 5336 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5337 return true; 5338 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5339 return false; 5340 5341 return None; 5342 } 5343 5344 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5345 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5346 /// Otherwise, return None if we can't infer anything. 5347 static Optional<bool> 5348 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5349 const ConstantInt *C1, 5350 CmpInst::Predicate BPred, 5351 const ConstantInt *C2) { 5352 ConstantRange DomCR = 5353 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5354 ConstantRange CR = 5355 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5356 ConstantRange Intersection = DomCR.intersectWith(CR); 5357 ConstantRange Difference = DomCR.difference(CR); 5358 if (Intersection.isEmptySet()) 5359 return false; 5360 if (Difference.isEmptySet()) 5361 return true; 5362 return None; 5363 } 5364 5365 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5366 /// false. Otherwise, return None if we can't infer anything. 5367 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5368 const ICmpInst *RHS, 5369 const DataLayout &DL, bool LHSIsTrue, 5370 unsigned Depth) { 5371 Value *ALHS = LHS->getOperand(0); 5372 Value *ARHS = LHS->getOperand(1); 5373 // The rest of the logic assumes the LHS condition is true. If that's not the 5374 // case, invert the predicate to make it so. 5375 ICmpInst::Predicate APred = 5376 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5377 5378 Value *BLHS = RHS->getOperand(0); 5379 Value *BRHS = RHS->getOperand(1); 5380 ICmpInst::Predicate BPred = RHS->getPredicate(); 5381 5382 // Can we infer anything when the two compares have matching operands? 5383 bool AreSwappedOps; 5384 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5385 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5386 APred, BPred, AreSwappedOps)) 5387 return Implication; 5388 // No amount of additional analysis will infer the second condition, so 5389 // early exit. 5390 return None; 5391 } 5392 5393 // Can we infer anything when the LHS operands match and the RHS operands are 5394 // constants (not necessarily matching)? 5395 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5396 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5397 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5398 return Implication; 5399 // No amount of additional analysis will infer the second condition, so 5400 // early exit. 5401 return None; 5402 } 5403 5404 if (APred == BPred) 5405 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5406 return None; 5407 } 5408 5409 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5410 /// false. Otherwise, return None if we can't infer anything. We expect the 5411 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5412 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5413 const ICmpInst *RHS, 5414 const DataLayout &DL, bool LHSIsTrue, 5415 unsigned Depth) { 5416 // The LHS must be an 'or' or an 'and' instruction. 5417 assert((LHS->getOpcode() == Instruction::And || 5418 LHS->getOpcode() == Instruction::Or) && 5419 "Expected LHS to be 'and' or 'or'."); 5420 5421 assert(Depth <= MaxDepth && "Hit recursion limit"); 5422 5423 // If the result of an 'or' is false, then we know both legs of the 'or' are 5424 // false. Similarly, if the result of an 'and' is true, then we know both 5425 // legs of the 'and' are true. 5426 Value *ALHS, *ARHS; 5427 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5428 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5429 // FIXME: Make this non-recursion. 5430 if (Optional<bool> Implication = 5431 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5432 return Implication; 5433 if (Optional<bool> Implication = 5434 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5435 return Implication; 5436 return None; 5437 } 5438 return None; 5439 } 5440 5441 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5442 const DataLayout &DL, bool LHSIsTrue, 5443 unsigned Depth) { 5444 // Bail out when we hit the limit. 5445 if (Depth == MaxDepth) 5446 return None; 5447 5448 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5449 // example. 5450 if (LHS->getType() != RHS->getType()) 5451 return None; 5452 5453 Type *OpTy = LHS->getType(); 5454 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5455 5456 // LHS ==> RHS by definition 5457 if (LHS == RHS) 5458 return LHSIsTrue; 5459 5460 // FIXME: Extending the code below to handle vectors. 5461 if (OpTy->isVectorTy()) 5462 return None; 5463 5464 assert(OpTy->isIntegerTy(1) && "implied by above"); 5465 5466 // Both LHS and RHS are icmps. 5467 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5468 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5469 if (LHSCmp && RHSCmp) 5470 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5471 5472 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5473 // an icmp. FIXME: Add support for and/or on the RHS. 5474 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5475 if (LHSBO && RHSCmp) { 5476 if ((LHSBO->getOpcode() == Instruction::And || 5477 LHSBO->getOpcode() == Instruction::Or)) 5478 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5479 } 5480 return None; 5481 } 5482 5483 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5484 const Instruction *ContextI, 5485 const DataLayout &DL) { 5486 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5487 if (!ContextI || !ContextI->getParent()) 5488 return None; 5489 5490 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5491 // dominator tree (eg, from a SimplifyQuery) instead? 5492 const BasicBlock *ContextBB = ContextI->getParent(); 5493 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5494 if (!PredBB) 5495 return None; 5496 5497 // We need a conditional branch in the predecessor. 5498 Value *PredCond; 5499 BasicBlock *TrueBB, *FalseBB; 5500 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5501 return None; 5502 5503 // The branch should get simplified. Don't bother simplifying this condition. 5504 if (TrueBB == FalseBB) 5505 return None; 5506 5507 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5508 "Predecessor block does not point to successor?"); 5509 5510 // Is this condition implied by the predecessor condition? 5511 bool CondIsTrue = TrueBB == ContextBB; 5512 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); 5513 } 5514 5515 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5516 APInt &Upper, const InstrInfoQuery &IIQ) { 5517 unsigned Width = Lower.getBitWidth(); 5518 const APInt *C; 5519 switch (BO.getOpcode()) { 5520 case Instruction::Add: 5521 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5522 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5523 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5524 // 'add nuw x, C' produces [C, UINT_MAX]. 5525 Lower = *C; 5526 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5527 if (C->isNegative()) { 5528 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5529 Lower = APInt::getSignedMinValue(Width); 5530 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5531 } else { 5532 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5533 Lower = APInt::getSignedMinValue(Width) + *C; 5534 Upper = APInt::getSignedMaxValue(Width) + 1; 5535 } 5536 } 5537 } 5538 break; 5539 5540 case Instruction::And: 5541 if (match(BO.getOperand(1), m_APInt(C))) 5542 // 'and x, C' produces [0, C]. 5543 Upper = *C + 1; 5544 break; 5545 5546 case Instruction::Or: 5547 if (match(BO.getOperand(1), m_APInt(C))) 5548 // 'or x, C' produces [C, UINT_MAX]. 5549 Lower = *C; 5550 break; 5551 5552 case Instruction::AShr: 5553 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5554 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5555 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5556 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5557 } else if (match(BO.getOperand(0), m_APInt(C))) { 5558 unsigned ShiftAmount = Width - 1; 5559 if (!C->isNullValue() && IIQ.isExact(&BO)) 5560 ShiftAmount = C->countTrailingZeros(); 5561 if (C->isNegative()) { 5562 // 'ashr C, x' produces [C, C >> (Width-1)] 5563 Lower = *C; 5564 Upper = C->ashr(ShiftAmount) + 1; 5565 } else { 5566 // 'ashr C, x' produces [C >> (Width-1), C] 5567 Lower = C->ashr(ShiftAmount); 5568 Upper = *C + 1; 5569 } 5570 } 5571 break; 5572 5573 case Instruction::LShr: 5574 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5575 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5576 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5577 } else if (match(BO.getOperand(0), m_APInt(C))) { 5578 // 'lshr C, x' produces [C >> (Width-1), C]. 5579 unsigned ShiftAmount = Width - 1; 5580 if (!C->isNullValue() && IIQ.isExact(&BO)) 5581 ShiftAmount = C->countTrailingZeros(); 5582 Lower = C->lshr(ShiftAmount); 5583 Upper = *C + 1; 5584 } 5585 break; 5586 5587 case Instruction::Shl: 5588 if (match(BO.getOperand(0), m_APInt(C))) { 5589 if (IIQ.hasNoUnsignedWrap(&BO)) { 5590 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5591 Lower = *C; 5592 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5593 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5594 if (C->isNegative()) { 5595 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5596 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5597 Lower = C->shl(ShiftAmount); 5598 Upper = *C + 1; 5599 } else { 5600 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5601 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5602 Lower = *C; 5603 Upper = C->shl(ShiftAmount) + 1; 5604 } 5605 } 5606 } 5607 break; 5608 5609 case Instruction::SDiv: 5610 if (match(BO.getOperand(1), m_APInt(C))) { 5611 APInt IntMin = APInt::getSignedMinValue(Width); 5612 APInt IntMax = APInt::getSignedMaxValue(Width); 5613 if (C->isAllOnesValue()) { 5614 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5615 // where C != -1 and C != 0 and C != 1 5616 Lower = IntMin + 1; 5617 Upper = IntMax + 1; 5618 } else if (C->countLeadingZeros() < Width - 1) { 5619 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5620 // where C != -1 and C != 0 and C != 1 5621 Lower = IntMin.sdiv(*C); 5622 Upper = IntMax.sdiv(*C); 5623 if (Lower.sgt(Upper)) 5624 std::swap(Lower, Upper); 5625 Upper = Upper + 1; 5626 assert(Upper != Lower && "Upper part of range has wrapped!"); 5627 } 5628 } else if (match(BO.getOperand(0), m_APInt(C))) { 5629 if (C->isMinSignedValue()) { 5630 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5631 Lower = *C; 5632 Upper = Lower.lshr(1) + 1; 5633 } else { 5634 // 'sdiv C, x' produces [-|C|, |C|]. 5635 Upper = C->abs() + 1; 5636 Lower = (-Upper) + 1; 5637 } 5638 } 5639 break; 5640 5641 case Instruction::UDiv: 5642 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5643 // 'udiv x, C' produces [0, UINT_MAX / C]. 5644 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5645 } else if (match(BO.getOperand(0), m_APInt(C))) { 5646 // 'udiv C, x' produces [0, C]. 5647 Upper = *C + 1; 5648 } 5649 break; 5650 5651 case Instruction::SRem: 5652 if (match(BO.getOperand(1), m_APInt(C))) { 5653 // 'srem x, C' produces (-|C|, |C|). 5654 Upper = C->abs(); 5655 Lower = (-Upper) + 1; 5656 } 5657 break; 5658 5659 case Instruction::URem: 5660 if (match(BO.getOperand(1), m_APInt(C))) 5661 // 'urem x, C' produces [0, C). 5662 Upper = *C; 5663 break; 5664 5665 default: 5666 break; 5667 } 5668 } 5669 5670 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5671 APInt &Upper) { 5672 unsigned Width = Lower.getBitWidth(); 5673 const APInt *C; 5674 switch (II.getIntrinsicID()) { 5675 case Intrinsic::uadd_sat: 5676 // uadd.sat(x, C) produces [C, UINT_MAX]. 5677 if (match(II.getOperand(0), m_APInt(C)) || 5678 match(II.getOperand(1), m_APInt(C))) 5679 Lower = *C; 5680 break; 5681 case Intrinsic::sadd_sat: 5682 if (match(II.getOperand(0), m_APInt(C)) || 5683 match(II.getOperand(1), m_APInt(C))) { 5684 if (C->isNegative()) { 5685 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 5686 Lower = APInt::getSignedMinValue(Width); 5687 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5688 } else { 5689 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 5690 Lower = APInt::getSignedMinValue(Width) + *C; 5691 Upper = APInt::getSignedMaxValue(Width) + 1; 5692 } 5693 } 5694 break; 5695 case Intrinsic::usub_sat: 5696 // usub.sat(C, x) produces [0, C]. 5697 if (match(II.getOperand(0), m_APInt(C))) 5698 Upper = *C + 1; 5699 // usub.sat(x, C) produces [0, UINT_MAX - C]. 5700 else if (match(II.getOperand(1), m_APInt(C))) 5701 Upper = APInt::getMaxValue(Width) - *C + 1; 5702 break; 5703 case Intrinsic::ssub_sat: 5704 if (match(II.getOperand(0), m_APInt(C))) { 5705 if (C->isNegative()) { 5706 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 5707 Lower = APInt::getSignedMinValue(Width); 5708 Upper = *C - APInt::getSignedMinValue(Width) + 1; 5709 } else { 5710 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 5711 Lower = *C - APInt::getSignedMaxValue(Width); 5712 Upper = APInt::getSignedMaxValue(Width) + 1; 5713 } 5714 } else if (match(II.getOperand(1), m_APInt(C))) { 5715 if (C->isNegative()) { 5716 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 5717 Lower = APInt::getSignedMinValue(Width) - *C; 5718 Upper = APInt::getSignedMaxValue(Width) + 1; 5719 } else { 5720 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 5721 Lower = APInt::getSignedMinValue(Width); 5722 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 5723 } 5724 } 5725 break; 5726 default: 5727 break; 5728 } 5729 } 5730 5731 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 5732 APInt &Upper, const InstrInfoQuery &IIQ) { 5733 const Value *LHS = nullptr, *RHS = nullptr; 5734 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 5735 if (R.Flavor == SPF_UNKNOWN) 5736 return; 5737 5738 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 5739 5740 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 5741 // If the negation part of the abs (in RHS) has the NSW flag, 5742 // then the result of abs(X) is [0..SIGNED_MAX], 5743 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 5744 Lower = APInt::getNullValue(BitWidth); 5745 if (match(RHS, m_Neg(m_Specific(LHS))) && 5746 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 5747 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5748 else 5749 Upper = APInt::getSignedMinValue(BitWidth) + 1; 5750 return; 5751 } 5752 5753 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 5754 // The result of -abs(X) is <= 0. 5755 Lower = APInt::getSignedMinValue(BitWidth); 5756 Upper = APInt(BitWidth, 1); 5757 return; 5758 } 5759 5760 const APInt *C; 5761 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 5762 return; 5763 5764 switch (R.Flavor) { 5765 case SPF_UMIN: 5766 Upper = *C + 1; 5767 break; 5768 case SPF_UMAX: 5769 Lower = *C; 5770 break; 5771 case SPF_SMIN: 5772 Lower = APInt::getSignedMinValue(BitWidth); 5773 Upper = *C + 1; 5774 break; 5775 case SPF_SMAX: 5776 Lower = *C; 5777 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5778 break; 5779 default: 5780 break; 5781 } 5782 } 5783 5784 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 5785 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 5786 5787 const APInt *C; 5788 if (match(V, m_APInt(C))) 5789 return ConstantRange(*C); 5790 5791 InstrInfoQuery IIQ(UseInstrInfo); 5792 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 5793 APInt Lower = APInt(BitWidth, 0); 5794 APInt Upper = APInt(BitWidth, 0); 5795 if (auto *BO = dyn_cast<BinaryOperator>(V)) 5796 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 5797 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 5798 setLimitsForIntrinsic(*II, Lower, Upper); 5799 else if (auto *SI = dyn_cast<SelectInst>(V)) 5800 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 5801 5802 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 5803 5804 if (auto *I = dyn_cast<Instruction>(V)) 5805 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 5806 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 5807 5808 return CR; 5809 } 5810 5811 static Optional<int64_t> 5812 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 5813 // Skip over the first indices. 5814 gep_type_iterator GTI = gep_type_begin(GEP); 5815 for (unsigned i = 1; i != Idx; ++i, ++GTI) 5816 /*skip along*/; 5817 5818 // Compute the offset implied by the rest of the indices. 5819 int64_t Offset = 0; 5820 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 5821 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 5822 if (!OpC) 5823 return None; 5824 if (OpC->isZero()) 5825 continue; // No offset. 5826 5827 // Handle struct indices, which add their field offset to the pointer. 5828 if (StructType *STy = GTI.getStructTypeOrNull()) { 5829 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 5830 continue; 5831 } 5832 5833 // Otherwise, we have a sequential type like an array or vector. Multiply 5834 // the index by the ElementSize. 5835 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 5836 Offset += Size * OpC->getSExtValue(); 5837 } 5838 5839 return Offset; 5840 } 5841 5842 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 5843 const DataLayout &DL) { 5844 Ptr1 = Ptr1->stripPointerCasts(); 5845 Ptr2 = Ptr2->stripPointerCasts(); 5846 5847 // Handle the trivial case first. 5848 if (Ptr1 == Ptr2) { 5849 return 0; 5850 } 5851 5852 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 5853 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 5854 5855 // If one pointer is a GEP see if the GEP is a constant offset from the base, 5856 // as in "P" and "gep P, 1". 5857 // Also do this iteratively to handle the the following case: 5858 // Ptr_t1 = GEP Ptr1, c1 5859 // Ptr_t2 = GEP Ptr_t1, c2 5860 // Ptr2 = GEP Ptr_t2, c3 5861 // where we will return c1+c2+c3. 5862 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 5863 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 5864 // are the same, and return the difference between offsets. 5865 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 5866 const Value *Ptr) -> Optional<int64_t> { 5867 const GEPOperator *GEP_T = GEP; 5868 int64_t OffsetVal = 0; 5869 bool HasSameBase = false; 5870 while (GEP_T) { 5871 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 5872 if (!Offset) 5873 return None; 5874 OffsetVal += *Offset; 5875 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 5876 if (Op0 == Ptr) { 5877 HasSameBase = true; 5878 break; 5879 } 5880 GEP_T = dyn_cast<GEPOperator>(Op0); 5881 } 5882 if (!HasSameBase) 5883 return None; 5884 return OffsetVal; 5885 }; 5886 5887 if (GEP1) { 5888 auto Offset = getOffsetFromBase(GEP1, Ptr2); 5889 if (Offset) 5890 return -*Offset; 5891 } 5892 if (GEP2) { 5893 auto Offset = getOffsetFromBase(GEP2, Ptr1); 5894 if (Offset) 5895 return Offset; 5896 } 5897 5898 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 5899 // base. After that base, they may have some number of common (and 5900 // potentially variable) indices. After that they handle some constant 5901 // offset, which determines their offset from each other. At this point, we 5902 // handle no other case. 5903 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 5904 return None; 5905 5906 // Skip any common indices and track the GEP types. 5907 unsigned Idx = 1; 5908 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 5909 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 5910 break; 5911 5912 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 5913 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 5914 if (!Offset1 || !Offset2) 5915 return None; 5916 return *Offset2 - *Offset1; 5917 } 5918