1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Constants.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/GlobalVariable.h" 19 #include "llvm/GlobalAlias.h" 20 #include "llvm/IntrinsicInst.h" 21 #include "llvm/LLVMContext.h" 22 #include "llvm/Operator.h" 23 #include "llvm/Target/TargetData.h" 24 #include "llvm/Support/GetElementPtrTypeIterator.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include <cstring> 28 using namespace llvm; 29 30 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 31 /// known to be either zero or one and return them in the KnownZero/KnownOne 32 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 33 /// processing. 34 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 35 /// we cannot optimize based on the assumption that it is zero without changing 36 /// it to be an explicit zero. If we don't change it to zero, other code could 37 /// optimized based on the contradictory assumption that it is non-zero. 38 /// Because instcombine aggressively folds operations with undef args anyway, 39 /// this won't lose us code quality. 40 /// 41 /// This function is defined on values with integer type, values with pointer 42 /// type (but only if TD is non-null), and vectors of integers. In the case 43 /// where V is a vector, the mask, known zero, and known one values are the 44 /// same width as the vector element, and the bit is set only if it is true 45 /// for all of the elements in the vector. 46 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 47 APInt &KnownZero, APInt &KnownOne, 48 const TargetData *TD, unsigned Depth) { 49 const unsigned MaxDepth = 6; 50 assert(V && "No Value?"); 51 assert(Depth <= MaxDepth && "Limit Search Depth"); 52 unsigned BitWidth = Mask.getBitWidth(); 53 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy()) 54 && "Not integer or pointer type!"); 55 assert((!TD || 56 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 57 (!V->getType()->isIntOrIntVectorTy() || 58 V->getType()->getScalarSizeInBits() == BitWidth) && 59 KnownZero.getBitWidth() == BitWidth && 60 KnownOne.getBitWidth() == BitWidth && 61 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 62 63 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 64 // We know all of the bits for a constant! 65 KnownOne = CI->getValue() & Mask; 66 KnownZero = ~KnownOne & Mask; 67 return; 68 } 69 // Null and aggregate-zero are all-zeros. 70 if (isa<ConstantPointerNull>(V) || 71 isa<ConstantAggregateZero>(V)) { 72 KnownOne.clear(); 73 KnownZero = Mask; 74 return; 75 } 76 // Handle a constant vector by taking the intersection of the known bits of 77 // each element. 78 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 79 KnownZero.set(); KnownOne.set(); 80 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 81 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 82 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2, 83 TD, Depth); 84 KnownZero &= KnownZero2; 85 KnownOne &= KnownOne2; 86 } 87 return; 88 } 89 // The address of an aligned GlobalValue has trailing zeros. 90 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 91 unsigned Align = GV->getAlignment(); 92 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { 93 const Type *ObjectType = GV->getType()->getElementType(); 94 // If the object is defined in the current Module, we'll be giving 95 // it the preferred alignment. Otherwise, we have to assume that it 96 // may only have the minimum ABI alignment. 97 if (!GV->isDeclaration() && !GV->mayBeOverridden()) 98 Align = TD->getPrefTypeAlignment(ObjectType); 99 else 100 Align = TD->getABITypeAlignment(ObjectType); 101 } 102 if (Align > 0) 103 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 104 CountTrailingZeros_32(Align)); 105 else 106 KnownZero.clear(); 107 KnownOne.clear(); 108 return; 109 } 110 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 111 // the bits of its aliasee. 112 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 113 if (GA->mayBeOverridden()) { 114 KnownZero.clear(); KnownOne.clear(); 115 } else { 116 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 117 TD, Depth+1); 118 } 119 return; 120 } 121 122 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything. 123 124 if (Depth == MaxDepth || Mask == 0) 125 return; // Limit search depth. 126 127 Operator *I = dyn_cast<Operator>(V); 128 if (!I) return; 129 130 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 131 switch (I->getOpcode()) { 132 default: break; 133 case Instruction::And: { 134 // If either the LHS or the RHS are Zero, the result is zero. 135 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 136 APInt Mask2(Mask & ~KnownZero); 137 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 138 Depth+1); 139 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 140 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 141 142 // Output known-1 bits are only known if set in both the LHS & RHS. 143 KnownOne &= KnownOne2; 144 // Output known-0 are known to be clear if zero in either the LHS | RHS. 145 KnownZero |= KnownZero2; 146 return; 147 } 148 case Instruction::Or: { 149 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 150 APInt Mask2(Mask & ~KnownOne); 151 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 152 Depth+1); 153 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 154 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 155 156 // Output known-0 bits are only known if clear in both the LHS & RHS. 157 KnownZero &= KnownZero2; 158 // Output known-1 are known to be set if set in either the LHS | RHS. 159 KnownOne |= KnownOne2; 160 return; 161 } 162 case Instruction::Xor: { 163 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 164 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 165 Depth+1); 166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 167 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 168 169 // Output known-0 bits are known if clear or set in both the LHS & RHS. 170 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 171 // Output known-1 are known to be set if set in only one of the LHS, RHS. 172 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 173 KnownZero = KnownZeroOut; 174 return; 175 } 176 case Instruction::Mul: { 177 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 178 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); 179 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 180 Depth+1); 181 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 182 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 183 184 // If low bits are zero in either operand, output low known-0 bits. 185 // Also compute a conserative estimate for high known-0 bits. 186 // More trickiness is possible, but this is sufficient for the 187 // interesting case of alignment computation. 188 KnownOne.clear(); 189 unsigned TrailZ = KnownZero.countTrailingOnes() + 190 KnownZero2.countTrailingOnes(); 191 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 192 KnownZero2.countLeadingOnes(), 193 BitWidth) - BitWidth; 194 195 TrailZ = std::min(TrailZ, BitWidth); 196 LeadZ = std::min(LeadZ, BitWidth); 197 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 198 APInt::getHighBitsSet(BitWidth, LeadZ); 199 KnownZero &= Mask; 200 return; 201 } 202 case Instruction::UDiv: { 203 // For the purposes of computing leading zeros we can conservatively 204 // treat a udiv as a logical right shift by the power of 2 known to 205 // be less than the denominator. 206 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 207 ComputeMaskedBits(I->getOperand(0), 208 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 209 unsigned LeadZ = KnownZero2.countLeadingOnes(); 210 211 KnownOne2.clear(); 212 KnownZero2.clear(); 213 ComputeMaskedBits(I->getOperand(1), 214 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 215 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 216 if (RHSUnknownLeadingOnes != BitWidth) 217 LeadZ = std::min(BitWidth, 218 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 219 220 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 221 return; 222 } 223 case Instruction::Select: 224 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 225 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 226 Depth+1); 227 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 228 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 229 230 // Only known if known in both the LHS and RHS. 231 KnownOne &= KnownOne2; 232 KnownZero &= KnownZero2; 233 return; 234 case Instruction::FPTrunc: 235 case Instruction::FPExt: 236 case Instruction::FPToUI: 237 case Instruction::FPToSI: 238 case Instruction::SIToFP: 239 case Instruction::UIToFP: 240 return; // Can't work with floating point. 241 case Instruction::PtrToInt: 242 case Instruction::IntToPtr: 243 // We can't handle these if we don't know the pointer size. 244 if (!TD) return; 245 // FALL THROUGH and handle them the same as zext/trunc. 246 case Instruction::ZExt: 247 case Instruction::Trunc: { 248 const Type *SrcTy = I->getOperand(0)->getType(); 249 250 unsigned SrcBitWidth; 251 // Note that we handle pointer operands here because of inttoptr/ptrtoint 252 // which fall through here. 253 if (SrcTy->isPointerTy()) 254 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 255 else 256 SrcBitWidth = SrcTy->getScalarSizeInBits(); 257 258 APInt MaskIn(Mask); 259 MaskIn.zextOrTrunc(SrcBitWidth); 260 KnownZero.zextOrTrunc(SrcBitWidth); 261 KnownOne.zextOrTrunc(SrcBitWidth); 262 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 263 Depth+1); 264 KnownZero.zextOrTrunc(BitWidth); 265 KnownOne.zextOrTrunc(BitWidth); 266 // Any top bits are known to be zero. 267 if (BitWidth > SrcBitWidth) 268 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 269 return; 270 } 271 case Instruction::BitCast: { 272 const Type *SrcTy = I->getOperand(0)->getType(); 273 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 274 // TODO: For now, not handling conversions like: 275 // (bitcast i64 %x to <2 x i32>) 276 !I->getType()->isVectorTy()) { 277 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 278 Depth+1); 279 return; 280 } 281 break; 282 } 283 case Instruction::SExt: { 284 // Compute the bits in the result that are not present in the input. 285 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 286 287 APInt MaskIn(Mask); 288 MaskIn.trunc(SrcBitWidth); 289 KnownZero.trunc(SrcBitWidth); 290 KnownOne.trunc(SrcBitWidth); 291 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 292 Depth+1); 293 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 294 KnownZero.zext(BitWidth); 295 KnownOne.zext(BitWidth); 296 297 // If the sign bit of the input is known set or clear, then we know the 298 // top bits of the result. 299 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 300 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 301 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 302 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 303 return; 304 } 305 case Instruction::Shl: 306 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 307 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 308 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 309 APInt Mask2(Mask.lshr(ShiftAmt)); 310 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 311 Depth+1); 312 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 313 KnownZero <<= ShiftAmt; 314 KnownOne <<= ShiftAmt; 315 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 316 return; 317 } 318 break; 319 case Instruction::LShr: 320 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 321 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 322 // Compute the new bits that are at the top now. 323 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 324 325 // Unsigned shift right. 326 APInt Mask2(Mask.shl(ShiftAmt)); 327 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 328 Depth+1); 329 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 330 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 331 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 332 // high bits known zero. 333 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 334 return; 335 } 336 break; 337 case Instruction::AShr: 338 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 339 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 340 // Compute the new bits that are at the top now. 341 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 342 343 // Signed shift right. 344 APInt Mask2(Mask.shl(ShiftAmt)); 345 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 346 Depth+1); 347 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 348 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 349 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 350 351 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 352 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 353 KnownZero |= HighBits; 354 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 355 KnownOne |= HighBits; 356 return; 357 } 358 break; 359 case Instruction::Sub: { 360 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { 361 // We know that the top bits of C-X are clear if X contains less bits 362 // than C (i.e. no wrap-around can happen). For example, 20-X is 363 // positive if we can prove that X is >= 0 and < 16. 364 if (!CLHS->getValue().isNegative()) { 365 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 366 // NLZ can't be BitWidth with no sign bit 367 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 368 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, 369 TD, Depth+1); 370 371 // If all of the MaskV bits are known to be zero, then we know the 372 // output top bits are zero, because we now know that the output is 373 // from [0-C]. 374 if ((KnownZero2 & MaskV) == MaskV) { 375 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 376 // Top bits known zero. 377 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 378 } 379 } 380 } 381 } 382 // fall through 383 case Instruction::Add: { 384 // If one of the operands has trailing zeros, then the bits that the 385 // other operand has in those bit positions will be preserved in the 386 // result. For an add, this works with either operand. For a subtract, 387 // this only works if the known zeros are in the right operand. 388 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 389 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 390 BitWidth - Mask.countLeadingZeros()); 391 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 392 Depth+1); 393 assert((LHSKnownZero & LHSKnownOne) == 0 && 394 "Bits known to be one AND zero?"); 395 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 396 397 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, 398 Depth+1); 399 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 400 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 401 402 // Determine which operand has more trailing zeros, and use that 403 // many bits from the other operand. 404 if (LHSKnownZeroOut > RHSKnownZeroOut) { 405 if (I->getOpcode() == Instruction::Add) { 406 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 407 KnownZero |= KnownZero2 & Mask; 408 KnownOne |= KnownOne2 & Mask; 409 } else { 410 // If the known zeros are in the left operand for a subtract, 411 // fall back to the minimum known zeros in both operands. 412 KnownZero |= APInt::getLowBitsSet(BitWidth, 413 std::min(LHSKnownZeroOut, 414 RHSKnownZeroOut)); 415 } 416 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 417 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 418 KnownZero |= LHSKnownZero & Mask; 419 KnownOne |= LHSKnownOne & Mask; 420 } 421 return; 422 } 423 case Instruction::SRem: 424 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 425 APInt RA = Rem->getValue().abs(); 426 if (RA.isPowerOf2()) { 427 APInt LowBits = RA - 1; 428 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 429 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 430 Depth+1); 431 432 // The low bits of the first operand are unchanged by the srem. 433 KnownZero = KnownZero2 & LowBits; 434 KnownOne = KnownOne2 & LowBits; 435 436 // If the first operand is non-negative or has all low bits zero, then 437 // the upper bits are all zero. 438 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 439 KnownZero |= ~LowBits; 440 441 // If the first operand is negative and not all low bits are zero, then 442 // the upper bits are all one. 443 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 444 KnownOne |= ~LowBits; 445 446 KnownZero &= Mask; 447 KnownOne &= Mask; 448 449 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 450 } 451 } 452 break; 453 case Instruction::URem: { 454 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 455 APInt RA = Rem->getValue(); 456 if (RA.isPowerOf2()) { 457 APInt LowBits = (RA - 1); 458 APInt Mask2 = LowBits & Mask; 459 KnownZero |= ~LowBits & Mask; 460 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 461 Depth+1); 462 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 463 break; 464 } 465 } 466 467 // Since the result is less than or equal to either operand, any leading 468 // zero bits in either operand must also exist in the result. 469 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 470 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 471 TD, Depth+1); 472 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 473 TD, Depth+1); 474 475 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 476 KnownZero2.countLeadingOnes()); 477 KnownOne.clear(); 478 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 479 break; 480 } 481 482 case Instruction::Alloca: { 483 AllocaInst *AI = cast<AllocaInst>(V); 484 unsigned Align = AI->getAlignment(); 485 if (Align == 0 && TD) 486 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 487 488 if (Align > 0) 489 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 490 CountTrailingZeros_32(Align)); 491 break; 492 } 493 case Instruction::GetElementPtr: { 494 // Analyze all of the subscripts of this getelementptr instruction 495 // to determine if we can prove known low zero bits. 496 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 497 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 498 ComputeMaskedBits(I->getOperand(0), LocalMask, 499 LocalKnownZero, LocalKnownOne, TD, Depth+1); 500 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 501 502 gep_type_iterator GTI = gep_type_begin(I); 503 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 504 Value *Index = I->getOperand(i); 505 if (const StructType *STy = dyn_cast<StructType>(*GTI)) { 506 // Handle struct member offset arithmetic. 507 if (!TD) return; 508 const StructLayout *SL = TD->getStructLayout(STy); 509 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 510 uint64_t Offset = SL->getElementOffset(Idx); 511 TrailZ = std::min(TrailZ, 512 CountTrailingZeros_64(Offset)); 513 } else { 514 // Handle array index arithmetic. 515 const Type *IndexedTy = GTI.getIndexedType(); 516 if (!IndexedTy->isSized()) return; 517 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 518 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 519 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 520 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 521 ComputeMaskedBits(Index, LocalMask, 522 LocalKnownZero, LocalKnownOne, TD, Depth+1); 523 TrailZ = std::min(TrailZ, 524 unsigned(CountTrailingZeros_64(TypeSize) + 525 LocalKnownZero.countTrailingOnes())); 526 } 527 } 528 529 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 530 break; 531 } 532 case Instruction::PHI: { 533 PHINode *P = cast<PHINode>(I); 534 // Handle the case of a simple two-predecessor recurrence PHI. 535 // There's a lot more that could theoretically be done here, but 536 // this is sufficient to catch some interesting cases. 537 if (P->getNumIncomingValues() == 2) { 538 for (unsigned i = 0; i != 2; ++i) { 539 Value *L = P->getIncomingValue(i); 540 Value *R = P->getIncomingValue(!i); 541 Operator *LU = dyn_cast<Operator>(L); 542 if (!LU) 543 continue; 544 unsigned Opcode = LU->getOpcode(); 545 // Check for operations that have the property that if 546 // both their operands have low zero bits, the result 547 // will have low zero bits. 548 if (Opcode == Instruction::Add || 549 Opcode == Instruction::Sub || 550 Opcode == Instruction::And || 551 Opcode == Instruction::Or || 552 Opcode == Instruction::Mul) { 553 Value *LL = LU->getOperand(0); 554 Value *LR = LU->getOperand(1); 555 // Find a recurrence. 556 if (LL == I) 557 L = LR; 558 else if (LR == I) 559 L = LL; 560 else 561 break; 562 // Ok, we have a PHI of the form L op= R. Check for low 563 // zero bits. 564 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 565 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 566 Mask2 = APInt::getLowBitsSet(BitWidth, 567 KnownZero2.countTrailingOnes()); 568 569 // We need to take the minimum number of known bits 570 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 571 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 572 573 KnownZero = Mask & 574 APInt::getLowBitsSet(BitWidth, 575 std::min(KnownZero2.countTrailingOnes(), 576 KnownZero3.countTrailingOnes())); 577 break; 578 } 579 } 580 } 581 582 // Otherwise take the unions of the known bit sets of the operands, 583 // taking conservative care to avoid excessive recursion. 584 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 585 KnownZero = APInt::getAllOnesValue(BitWidth); 586 KnownOne = APInt::getAllOnesValue(BitWidth); 587 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 588 // Skip direct self references. 589 if (P->getIncomingValue(i) == P) continue; 590 591 KnownZero2 = APInt(BitWidth, 0); 592 KnownOne2 = APInt(BitWidth, 0); 593 // Recurse, but cap the recursion to one level, because we don't 594 // want to waste time spinning around in loops. 595 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 596 KnownZero2, KnownOne2, TD, MaxDepth-1); 597 KnownZero &= KnownZero2; 598 KnownOne &= KnownOne2; 599 // If all bits have been ruled out, there's no need to check 600 // more operands. 601 if (!KnownZero && !KnownOne) 602 break; 603 } 604 } 605 break; 606 } 607 case Instruction::Call: 608 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 609 switch (II->getIntrinsicID()) { 610 default: break; 611 case Intrinsic::ctpop: 612 case Intrinsic::ctlz: 613 case Intrinsic::cttz: { 614 unsigned LowBits = Log2_32(BitWidth)+1; 615 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 616 break; 617 } 618 } 619 } 620 break; 621 } 622 } 623 624 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 625 /// this predicate to simplify operations downstream. Mask is known to be zero 626 /// for bits that V cannot have. 627 /// 628 /// This function is defined on values with integer type, values with pointer 629 /// type (but only if TD is non-null), and vectors of integers. In the case 630 /// where V is a vector, the mask, known zero, and known one values are the 631 /// same width as the vector element, and the bit is set only if it is true 632 /// for all of the elements in the vector. 633 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 634 const TargetData *TD, unsigned Depth) { 635 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 636 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 637 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 638 return (KnownZero & Mask) == Mask; 639 } 640 641 642 643 /// ComputeNumSignBits - Return the number of times the sign bit of the 644 /// register is replicated into the other bits. We know that at least 1 bit 645 /// is always equal to the sign bit (itself), but other cases can give us 646 /// information. For example, immediately after an "ashr X, 2", we know that 647 /// the top 3 bits are all equal to each other, so we return 3. 648 /// 649 /// 'Op' must have a scalar integer type. 650 /// 651 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 652 unsigned Depth) { 653 assert((TD || V->getType()->isIntOrIntVectorTy()) && 654 "ComputeNumSignBits requires a TargetData object to operate " 655 "on non-integer values!"); 656 const Type *Ty = V->getType(); 657 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 658 Ty->getScalarSizeInBits(); 659 unsigned Tmp, Tmp2; 660 unsigned FirstAnswer = 1; 661 662 // Note that ConstantInt is handled by the general ComputeMaskedBits case 663 // below. 664 665 if (Depth == 6) 666 return 1; // Limit search depth. 667 668 Operator *U = dyn_cast<Operator>(V); 669 switch (Operator::getOpcode(V)) { 670 default: break; 671 case Instruction::SExt: 672 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 673 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 674 675 case Instruction::AShr: 676 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 677 // ashr X, C -> adds C sign bits. 678 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 679 Tmp += C->getZExtValue(); 680 if (Tmp > TyBits) Tmp = TyBits; 681 } 682 return Tmp; 683 case Instruction::Shl: 684 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 685 // shl destroys sign bits. 686 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 687 if (C->getZExtValue() >= TyBits || // Bad shift. 688 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 689 return Tmp - C->getZExtValue(); 690 } 691 break; 692 case Instruction::And: 693 case Instruction::Or: 694 case Instruction::Xor: // NOT is handled here. 695 // Logical binary ops preserve the number of sign bits at the worst. 696 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 697 if (Tmp != 1) { 698 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 699 FirstAnswer = std::min(Tmp, Tmp2); 700 // We computed what we know about the sign bits as our first 701 // answer. Now proceed to the generic code that uses 702 // ComputeMaskedBits, and pick whichever answer is better. 703 } 704 break; 705 706 case Instruction::Select: 707 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 708 if (Tmp == 1) return 1; // Early out. 709 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 710 return std::min(Tmp, Tmp2); 711 712 case Instruction::Add: 713 // Add can have at most one carry bit. Thus we know that the output 714 // is, at worst, one more bit than the inputs. 715 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 716 if (Tmp == 1) return 1; // Early out. 717 718 // Special case decrementing a value (ADD X, -1): 719 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 720 if (CRHS->isAllOnesValue()) { 721 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 722 APInt Mask = APInt::getAllOnesValue(TyBits); 723 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 724 Depth+1); 725 726 // If the input is known to be 0 or 1, the output is 0/-1, which is all 727 // sign bits set. 728 if ((KnownZero | APInt(TyBits, 1)) == Mask) 729 return TyBits; 730 731 // If we are subtracting one from a positive number, there is no carry 732 // out of the result. 733 if (KnownZero.isNegative()) 734 return Tmp; 735 } 736 737 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 738 if (Tmp2 == 1) return 1; 739 return std::min(Tmp, Tmp2)-1; 740 741 case Instruction::Sub: 742 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 743 if (Tmp2 == 1) return 1; 744 745 // Handle NEG. 746 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 747 if (CLHS->isNullValue()) { 748 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 749 APInt Mask = APInt::getAllOnesValue(TyBits); 750 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 751 TD, Depth+1); 752 // If the input is known to be 0 or 1, the output is 0/-1, which is all 753 // sign bits set. 754 if ((KnownZero | APInt(TyBits, 1)) == Mask) 755 return TyBits; 756 757 // If the input is known to be positive (the sign bit is known clear), 758 // the output of the NEG has the same number of sign bits as the input. 759 if (KnownZero.isNegative()) 760 return Tmp2; 761 762 // Otherwise, we treat this like a SUB. 763 } 764 765 // Sub can have at most one carry bit. Thus we know that the output 766 // is, at worst, one more bit than the inputs. 767 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 768 if (Tmp == 1) return 1; // Early out. 769 return std::min(Tmp, Tmp2)-1; 770 771 case Instruction::PHI: { 772 PHINode *PN = cast<PHINode>(U); 773 // Don't analyze large in-degree PHIs. 774 if (PN->getNumIncomingValues() > 4) break; 775 776 // Take the minimum of all incoming values. This can't infinitely loop 777 // because of our depth threshold. 778 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 779 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 780 if (Tmp == 1) return Tmp; 781 Tmp = std::min(Tmp, 782 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 783 } 784 return Tmp; 785 } 786 787 case Instruction::Trunc: 788 // FIXME: it's tricky to do anything useful for this, but it is an important 789 // case for targets like X86. 790 break; 791 } 792 793 // Finally, if we can prove that the top bits of the result are 0's or 1's, 794 // use this information. 795 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 796 APInt Mask = APInt::getAllOnesValue(TyBits); 797 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 798 799 if (KnownZero.isNegative()) { // sign bit is 0 800 Mask = KnownZero; 801 } else if (KnownOne.isNegative()) { // sign bit is 1; 802 Mask = KnownOne; 803 } else { 804 // Nothing known. 805 return FirstAnswer; 806 } 807 808 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 809 // the number of identical bits in the top of the input value. 810 Mask = ~Mask; 811 Mask <<= Mask.getBitWidth()-TyBits; 812 // Return # leading zeros. We use 'min' here in case Val was zero before 813 // shifting. We don't want to return '64' as for an i32 "0". 814 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 815 } 816 817 /// ComputeMultiple - This function computes the integer multiple of Base that 818 /// equals V. If successful, it returns true and returns the multiple in 819 /// Multiple. If unsuccessful, it returns false. It looks 820 /// through SExt instructions only if LookThroughSExt is true. 821 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 822 bool LookThroughSExt, unsigned Depth) { 823 const unsigned MaxDepth = 6; 824 825 assert(V && "No Value?"); 826 assert(Depth <= MaxDepth && "Limit Search Depth"); 827 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 828 829 const Type *T = V->getType(); 830 831 ConstantInt *CI = dyn_cast<ConstantInt>(V); 832 833 if (Base == 0) 834 return false; 835 836 if (Base == 1) { 837 Multiple = V; 838 return true; 839 } 840 841 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 842 Constant *BaseVal = ConstantInt::get(T, Base); 843 if (CO && CO == BaseVal) { 844 // Multiple is 1. 845 Multiple = ConstantInt::get(T, 1); 846 return true; 847 } 848 849 if (CI && CI->getZExtValue() % Base == 0) { 850 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 851 return true; 852 } 853 854 if (Depth == MaxDepth) return false; // Limit search depth. 855 856 Operator *I = dyn_cast<Operator>(V); 857 if (!I) return false; 858 859 switch (I->getOpcode()) { 860 default: break; 861 case Instruction::SExt: 862 if (!LookThroughSExt) return false; 863 // otherwise fall through to ZExt 864 case Instruction::ZExt: 865 return ComputeMultiple(I->getOperand(0), Base, Multiple, 866 LookThroughSExt, Depth+1); 867 case Instruction::Shl: 868 case Instruction::Mul: { 869 Value *Op0 = I->getOperand(0); 870 Value *Op1 = I->getOperand(1); 871 872 if (I->getOpcode() == Instruction::Shl) { 873 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 874 if (!Op1CI) return false; 875 // Turn Op0 << Op1 into Op0 * 2^Op1 876 APInt Op1Int = Op1CI->getValue(); 877 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 878 Op1 = ConstantInt::get(V->getContext(), 879 APInt(Op1Int.getBitWidth(), 0).set(BitToSet)); 880 } 881 882 Value *Mul0 = NULL; 883 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 884 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 885 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 886 if (Op1C->getType()->getPrimitiveSizeInBits() < 887 MulC->getType()->getPrimitiveSizeInBits()) 888 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 889 if (Op1C->getType()->getPrimitiveSizeInBits() > 890 MulC->getType()->getPrimitiveSizeInBits()) 891 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 892 893 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 894 Multiple = ConstantExpr::getMul(MulC, Op1C); 895 return true; 896 } 897 898 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 899 if (Mul0CI->getValue() == 1) { 900 // V == Base * Op1, so return Op1 901 Multiple = Op1; 902 return true; 903 } 904 } 905 906 Value *Mul1 = NULL; 907 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 908 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 909 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 910 if (Op0C->getType()->getPrimitiveSizeInBits() < 911 MulC->getType()->getPrimitiveSizeInBits()) 912 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 913 if (Op0C->getType()->getPrimitiveSizeInBits() > 914 MulC->getType()->getPrimitiveSizeInBits()) 915 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 916 917 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 918 Multiple = ConstantExpr::getMul(MulC, Op0C); 919 return true; 920 } 921 922 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 923 if (Mul1CI->getValue() == 1) { 924 // V == Base * Op0, so return Op0 925 Multiple = Op0; 926 return true; 927 } 928 } 929 } 930 } 931 932 // We could not determine if V is a multiple of Base. 933 return false; 934 } 935 936 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 937 /// value is never equal to -0.0. 938 /// 939 /// NOTE: this function will need to be revisited when we support non-default 940 /// rounding modes! 941 /// 942 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 943 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 944 return !CFP->getValueAPF().isNegZero(); 945 946 if (Depth == 6) 947 return 1; // Limit search depth. 948 949 const Operator *I = dyn_cast<Operator>(V); 950 if (I == 0) return false; 951 952 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 953 if (I->getOpcode() == Instruction::FAdd && 954 isa<ConstantFP>(I->getOperand(1)) && 955 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 956 return true; 957 958 // sitofp and uitofp turn into +0.0 for zero. 959 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 960 return true; 961 962 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 963 // sqrt(-0.0) = -0.0, no other negative results are possible. 964 if (II->getIntrinsicID() == Intrinsic::sqrt) 965 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 966 967 if (const CallInst *CI = dyn_cast<CallInst>(I)) 968 if (const Function *F = CI->getCalledFunction()) { 969 if (F->isDeclaration()) { 970 // abs(x) != -0.0 971 if (F->getName() == "abs") return true; 972 // fabs[lf](x) != -0.0 973 if (F->getName() == "fabs") return true; 974 if (F->getName() == "fabsf") return true; 975 if (F->getName() == "fabsl") return true; 976 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 977 F->getName() == "sqrtl") 978 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 979 } 980 } 981 982 return false; 983 } 984 985 // This is the recursive version of BuildSubAggregate. It takes a few different 986 // arguments. Idxs is the index within the nested struct From that we are 987 // looking at now (which is of type IndexedType). IdxSkip is the number of 988 // indices from Idxs that should be left out when inserting into the resulting 989 // struct. To is the result struct built so far, new insertvalue instructions 990 // build on that. 991 static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, 992 SmallVector<unsigned, 10> &Idxs, 993 unsigned IdxSkip, 994 Instruction *InsertBefore) { 995 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 996 if (STy) { 997 // Save the original To argument so we can modify it 998 Value *OrigTo = To; 999 // General case, the type indexed by Idxs is a struct 1000 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1001 // Process each struct element recursively 1002 Idxs.push_back(i); 1003 Value *PrevTo = To; 1004 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1005 InsertBefore); 1006 Idxs.pop_back(); 1007 if (!To) { 1008 // Couldn't find any inserted value for this index? Cleanup 1009 while (PrevTo != OrigTo) { 1010 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1011 PrevTo = Del->getAggregateOperand(); 1012 Del->eraseFromParent(); 1013 } 1014 // Stop processing elements 1015 break; 1016 } 1017 } 1018 // If we succesfully found a value for each of our subaggregates 1019 if (To) 1020 return To; 1021 } 1022 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1023 // the struct's elements had a value that was inserted directly. In the latter 1024 // case, perhaps we can't determine each of the subelements individually, but 1025 // we might be able to find the complete struct somewhere. 1026 1027 // Find the value that is at that particular spot 1028 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end()); 1029 1030 if (!V) 1031 return NULL; 1032 1033 // Insert the value in the new (sub) aggregrate 1034 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip, 1035 Idxs.end(), "tmp", InsertBefore); 1036 } 1037 1038 // This helper takes a nested struct and extracts a part of it (which is again a 1039 // struct) into a new value. For example, given the struct: 1040 // { a, { b, { c, d }, e } } 1041 // and the indices "1, 1" this returns 1042 // { c, d }. 1043 // 1044 // It does this by inserting an insertvalue for each element in the resulting 1045 // struct, as opposed to just inserting a single struct. This will only work if 1046 // each of the elements of the substruct are known (ie, inserted into From by an 1047 // insertvalue instruction somewhere). 1048 // 1049 // All inserted insertvalue instructions are inserted before InsertBefore 1050 static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, 1051 const unsigned *idx_end, 1052 Instruction *InsertBefore) { 1053 assert(InsertBefore && "Must have someplace to insert!"); 1054 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1055 idx_begin, 1056 idx_end); 1057 Value *To = UndefValue::get(IndexedType); 1058 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); 1059 unsigned IdxSkip = Idxs.size(); 1060 1061 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1062 } 1063 1064 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1065 /// the scalar value indexed is already around as a register, for example if it 1066 /// were inserted directly into the aggregrate. 1067 /// 1068 /// If InsertBefore is not null, this function will duplicate (modified) 1069 /// insertvalues when a part of a nested struct is extracted. 1070 Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, 1071 const unsigned *idx_end, Instruction *InsertBefore) { 1072 // Nothing to index? Just return V then (this is useful at the end of our 1073 // recursion) 1074 if (idx_begin == idx_end) 1075 return V; 1076 // We have indices, so V should have an indexable type 1077 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) 1078 && "Not looking at a struct or array?"); 1079 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end) 1080 && "Invalid indices for type?"); 1081 const CompositeType *PTy = cast<CompositeType>(V->getType()); 1082 1083 if (isa<UndefValue>(V)) 1084 return UndefValue::get(ExtractValueInst::getIndexedType(PTy, 1085 idx_begin, 1086 idx_end)); 1087 else if (isa<ConstantAggregateZero>(V)) 1088 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, 1089 idx_begin, 1090 idx_end)); 1091 else if (Constant *C = dyn_cast<Constant>(V)) { 1092 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) 1093 // Recursively process this constant 1094 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, 1095 idx_end, InsertBefore); 1096 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1097 // Loop the indices for the insertvalue instruction in parallel with the 1098 // requested indices 1099 const unsigned *req_idx = idx_begin; 1100 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1101 i != e; ++i, ++req_idx) { 1102 if (req_idx == idx_end) { 1103 if (InsertBefore) 1104 // The requested index identifies a part of a nested aggregate. Handle 1105 // this specially. For example, 1106 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1107 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1108 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1109 // This can be changed into 1110 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1111 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1112 // which allows the unused 0,0 element from the nested struct to be 1113 // removed. 1114 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore); 1115 else 1116 // We can't handle this without inserting insertvalues 1117 return 0; 1118 } 1119 1120 // This insert value inserts something else than what we are looking for. 1121 // See if the (aggregrate) value inserted into has the value we are 1122 // looking for, then. 1123 if (*req_idx != *i) 1124 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end, 1125 InsertBefore); 1126 } 1127 // If we end up here, the indices of the insertvalue match with those 1128 // requested (though possibly only partially). Now we recursively look at 1129 // the inserted value, passing any remaining indices. 1130 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end, 1131 InsertBefore); 1132 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1133 // If we're extracting a value from an aggregrate that was extracted from 1134 // something else, we can extract from that something else directly instead. 1135 // However, we will need to chain I's indices with the requested indices. 1136 1137 // Calculate the number of indices required 1138 unsigned size = I->getNumIndices() + (idx_end - idx_begin); 1139 // Allocate some space to put the new indices in 1140 SmallVector<unsigned, 5> Idxs; 1141 Idxs.reserve(size); 1142 // Add indices from the extract value instruction 1143 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1144 i != e; ++i) 1145 Idxs.push_back(*i); 1146 1147 // Add requested indices 1148 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i) 1149 Idxs.push_back(*i); 1150 1151 assert(Idxs.size() == size 1152 && "Number of indices added not correct?"); 1153 1154 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(), 1155 InsertBefore); 1156 } 1157 // Otherwise, we don't know (such as, extracting from a function return value 1158 // or load instruction) 1159 return 0; 1160 } 1161 1162 /// GetConstantStringInfo - This function computes the length of a 1163 /// null-terminated C string pointed to by V. If successful, it returns true 1164 /// and returns the string in Str. If unsuccessful, it returns false. 1165 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str, 1166 uint64_t Offset, 1167 bool StopAtNul) { 1168 // If V is NULL then return false; 1169 if (V == NULL) return false; 1170 1171 // Look through bitcast instructions. 1172 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1173 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); 1174 1175 // If the value is not a GEP instruction nor a constant expression with a 1176 // GEP instruction, then return false because ConstantArray can't occur 1177 // any other way 1178 const User *GEP = 0; 1179 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1180 GEP = GEPI; 1181 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1182 if (CE->getOpcode() == Instruction::BitCast) 1183 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); 1184 if (CE->getOpcode() != Instruction::GetElementPtr) 1185 return false; 1186 GEP = CE; 1187 } 1188 1189 if (GEP) { 1190 // Make sure the GEP has exactly three arguments. 1191 if (GEP->getNumOperands() != 3) 1192 return false; 1193 1194 // Make sure the index-ee is a pointer to array of i8. 1195 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1196 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1197 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1198 return false; 1199 1200 // Check to make sure that the first operand of the GEP is an integer and 1201 // has value 0 so that we are sure we're indexing into the initializer. 1202 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1203 if (FirstIdx == 0 || !FirstIdx->isZero()) 1204 return false; 1205 1206 // If the second index isn't a ConstantInt, then this is a variable index 1207 // into the array. If this occurs, we can't say anything meaningful about 1208 // the string. 1209 uint64_t StartIdx = 0; 1210 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1211 StartIdx = CI->getZExtValue(); 1212 else 1213 return false; 1214 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, 1215 StopAtNul); 1216 } 1217 1218 // The GEP instruction, constant or instruction, must reference a global 1219 // variable that is a constant and is initialized. The referenced constant 1220 // initializer is the array that we'll use for optimization. 1221 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V); 1222 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1223 return false; 1224 const Constant *GlobalInit = GV->getInitializer(); 1225 1226 // Handle the ConstantAggregateZero case 1227 if (isa<ConstantAggregateZero>(GlobalInit)) { 1228 // This is a degenerate case. The initializer is constant zero so the 1229 // length of the string must be zero. 1230 Str.clear(); 1231 return true; 1232 } 1233 1234 // Must be a Constant Array 1235 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1236 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8)) 1237 return false; 1238 1239 // Get the number of elements in the array 1240 uint64_t NumElts = Array->getType()->getNumElements(); 1241 1242 if (Offset > NumElts) 1243 return false; 1244 1245 // Traverse the constant array from 'Offset' which is the place the GEP refers 1246 // to in the array. 1247 Str.reserve(NumElts-Offset); 1248 for (unsigned i = Offset; i != NumElts; ++i) { 1249 const Constant *Elt = Array->getOperand(i); 1250 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1251 if (!CI) // This array isn't suitable, non-int initializer. 1252 return false; 1253 if (StopAtNul && CI->isZero()) 1254 return true; // we found end of string, success! 1255 Str += (char)CI->getZExtValue(); 1256 } 1257 1258 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. 1259 return true; 1260 } 1261 1262 // These next two are very similar to the above, but also look through PHI 1263 // nodes. 1264 // TODO: See if we can integrate these two together. 1265 1266 /// GetStringLengthH - If we can compute the length of the string pointed to by 1267 /// the specified pointer, return 'len+1'. If we can't, return 0. 1268 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1269 // Look through noop bitcast instructions. 1270 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1271 return GetStringLengthH(BCI->getOperand(0), PHIs); 1272 1273 // If this is a PHI node, there are two cases: either we have already seen it 1274 // or we haven't. 1275 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1276 if (!PHIs.insert(PN)) 1277 return ~0ULL; // already in the set. 1278 1279 // If it was new, see if all the input strings are the same length. 1280 uint64_t LenSoFar = ~0ULL; 1281 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1282 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1283 if (Len == 0) return 0; // Unknown length -> unknown. 1284 1285 if (Len == ~0ULL) continue; 1286 1287 if (Len != LenSoFar && LenSoFar != ~0ULL) 1288 return 0; // Disagree -> unknown. 1289 LenSoFar = Len; 1290 } 1291 1292 // Success, all agree. 1293 return LenSoFar; 1294 } 1295 1296 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1297 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1298 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1299 if (Len1 == 0) return 0; 1300 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1301 if (Len2 == 0) return 0; 1302 if (Len1 == ~0ULL) return Len2; 1303 if (Len2 == ~0ULL) return Len1; 1304 if (Len1 != Len2) return 0; 1305 return Len1; 1306 } 1307 1308 // If the value is not a GEP instruction nor a constant expression with a 1309 // GEP instruction, then return unknown. 1310 User *GEP = 0; 1311 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1312 GEP = GEPI; 1313 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1314 if (CE->getOpcode() != Instruction::GetElementPtr) 1315 return 0; 1316 GEP = CE; 1317 } else { 1318 return 0; 1319 } 1320 1321 // Make sure the GEP has exactly three arguments. 1322 if (GEP->getNumOperands() != 3) 1323 return 0; 1324 1325 // Check to make sure that the first operand of the GEP is an integer and 1326 // has value 0 so that we are sure we're indexing into the initializer. 1327 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { 1328 if (!Idx->isZero()) 1329 return 0; 1330 } else 1331 return 0; 1332 1333 // If the second index isn't a ConstantInt, then this is a variable index 1334 // into the array. If this occurs, we can't say anything meaningful about 1335 // the string. 1336 uint64_t StartIdx = 0; 1337 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1338 StartIdx = CI->getZExtValue(); 1339 else 1340 return 0; 1341 1342 // The GEP instruction, constant or instruction, must reference a global 1343 // variable that is a constant and is initialized. The referenced constant 1344 // initializer is the array that we'll use for optimization. 1345 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1346 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1347 GV->mayBeOverridden()) 1348 return 0; 1349 Constant *GlobalInit = GV->getInitializer(); 1350 1351 // Handle the ConstantAggregateZero case, which is a degenerate case. The 1352 // initializer is constant zero so the length of the string must be zero. 1353 if (isa<ConstantAggregateZero>(GlobalInit)) 1354 return 1; // Len = 0 offset by 1. 1355 1356 // Must be a Constant Array 1357 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1358 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8)) 1359 return false; 1360 1361 // Get the number of elements in the array 1362 uint64_t NumElts = Array->getType()->getNumElements(); 1363 1364 // Traverse the constant array from StartIdx (derived above) which is 1365 // the place the GEP refers to in the array. 1366 for (unsigned i = StartIdx; i != NumElts; ++i) { 1367 Constant *Elt = Array->getOperand(i); 1368 ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1369 if (!CI) // This array isn't suitable, non-int initializer. 1370 return 0; 1371 if (CI->isZero()) 1372 return i-StartIdx+1; // We found end of string, success! 1373 } 1374 1375 return 0; // The array isn't null terminated, conservatively return 'unknown'. 1376 } 1377 1378 /// GetStringLength - If we can compute the length of the string pointed to by 1379 /// the specified pointer, return 'len+1'. If we can't, return 0. 1380 uint64_t llvm::GetStringLength(Value *V) { 1381 if (!V->getType()->isPointerTy()) return 0; 1382 1383 SmallPtrSet<PHINode*, 32> PHIs; 1384 uint64_t Len = GetStringLengthH(V, PHIs); 1385 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1386 // an empty string as a length. 1387 return Len == ~0ULL ? 1 : Len; 1388 } 1389